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Executive Summary 

Stock assessments of the bottomfish management unit species (BMUS) for Guam, the 
Commonwealth of the Northern Mariana Islands (CNMI), and American Samoa were conducted 
through 2018 and finalized in 2019. Bottomfish resources are managed as one multi-species 
complex around each territory. The BMUS identified within the archipelagic fishery ecosystem 
plans (FEPs) is comprised of 16 species for Guam and CNMI and 17 species for American 
Samoa. These species consist of snappers, groupers, emperors, and jacks. In 2019, the BMUS 
were reduced to 13 species for Guam and CNMI and 11 species for American Samoa. The 
species in the revised lists were assessed for this set of stock assessments after discussions with 
federal managers. 

These 2019 assessments were conducted as a benchmark; therefore, all components of the 
assessment analyses (selection of data sets, data filtering, catch-per-unit-effort (CPUE) 
standardization, choice of model, and model fitting) were evaluated. Several changes relative to 
previous assessments of BMUS in Guam, CNMI, and American Samoa were incorporated into 
the 2019 benchmark assessments. These include using new species lists, calculating the 
percentage of catch reported at the family or species-group level and believed to contain BMUS, 
filtering CPUE based on gear, standardizing the CPUE for covariates that may affect the catch 
rate, removing independently-estimated maximum sustainable yield values from the model 
fitting process, and including a Pella-Tomlinson production model parameterization for Guam 
and American Samoa.  

The assessments used a state-space Bayesian surplus production model within the modeling 
framework Just Another Bayesian Biomass Assessment (JABBA). Estimates of harvest rate (H), 
annual biomass (B), the harvest rate associated with overfishing as determined by the harvest 
control rule (HCR), maximum sustainable yield (MSY), and the biomass at maximum sustainable 
yield (BMSY) allowed for determination of stock status relative to reference points determining 
overfishing (H/HCR > 1) and overfished (B < 0.7×BMSY) status. Stock projections were conducted 
for 2020–2025 for a range of hypothetical 6-year catches, and the corresponding risk of 
overfishing was calculated.  

Stock status of BMUS varied by territory. The current benchmark assessments determined that in 
2017, Guam BMUS were in an overfished state but not undergoing overfishing, CNMI BMUS 
were not overfished nor were undergoing overfishing, and American Samoa BMUS were 
determined to be both undergoing overfishing and in an overfished state. The status 
determinations from the 2019 benchmark assessments differed from the previous assessments for 
Guam and American Samoa, which determined that these stocks were not overfished nor were 
undergoing overfishing as of 2015 (Yau et al. 2016).  

Projections assumed that the same amount of catch was caught from 2020 to 2025. For Guam, 
the catch corresponding to a 50% probability of overfishing in 2025 was 36 thousand pounds. 
For CNMI, the catch that would produce a 50% probability of overfishing in 2025 was 95 
thousand pounds. For American Samoa, the catch that would produce a 50% probability of 
overfishing in 2025 was 8 thousand pounds. The catch values associated with a 50% probability 
of overfishing were greater than the observed landings in 2017 for Guam (16 thousand pounds) 
and for CNMI (70 thousand pounds). For American Samoa, the observed landings in 2017 
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totaled 16 thousand pounds, which exceeded the catch that would produce a 50% probability of 
overfishing. 
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1. Introduction 

Deep-slope finfish are found around all central and western Pacific islands and reefs where they 
support small vessel hook-and-line fisheries. The Western Pacific Regional Fishery Management 
Council (WPRFMC) manages these resources in federal waters surrounding Guam, the 
Commonwealth of the Northern Mariana Islands (CNMI), and American Samoa under the 
archipelagic fishery ecosystem plans (FEPs) for the Marianas (which includes both Guam and 
CNMI; WPRFMC 2009a) and American Samoa (WPRFMC 2009b). The set of bottomfish 
management unit species (BMUS) identified within the FEPs is comprised of 16 species for the 
Marianas and 17 species for American Samoa. These species consist of snappers, groupers, 
emperors, and jacks. As of March 11, 2019, the list of BMUS species in the FEPs was revised to 
13 species for the Marinas and 11 species for American Samoa (NMFS 2019). The revised 
species lists were used for the stock assessments of Guam and CNMI (Table 1) and American 
Samoa (Table 2) after discussions with federal managers.  

Bottomfish resources are managed as one multi-species complex around each territory. 
Amendment 6 of the FEPs established methods for determining fishing mortality and stock 
biomass reference values and, by a comparison of current conditions to the reference values, 
determining if the stock is being overfished and if overfishing is occurring. Overfished is defined 
as the stock biomass B falling below the Minimum Stock Size Threshold (MSST) of (1 – M) × 
BMSY, where M is the natural mortality rate of the complex and BMSY is the biomass that produces 
the maximum sustainable yield. As was done in the previous assessment, M was set at 0.30, so 
the overfished definition is defined as B < 0.7 × BMSY. Overfishing is defined as a fishing/harvest 
rate H that exceeds the Maximum Fishing Mortality Threshold (MFMT) of HMSY, the harvest rate 
that produces maximum sustainable yield. According to the FEPs, the MFMT varies depending 
on whether biomass is above or below the MSST (Figure 1; see WPRFMC 2009a, pages 127–
128 for a description of the harvest control rule). If the stock biomass is above the MSST (B > 
0.7 × BMSY), then the MFMT equals HMSY, whereas if the stock biomass falls below the MSST (B 
< 0.7 × BMSY), then the MFMT declines from HMSY in proportion to the ratio of biomass to the 
biomass reference point. Throughout this report, we refer to status in relation to HCR instead of 
HMSY to reflect the harvest control rule as stated in the FEPs. 

1.1. Description of the Fisheries 
Guam 

Guam is the largest and southernmost of the Mariana Islands. Prior to European arrival, 
inhabitants possessed sailing canoes that allowed fishing of nearshore and offshore banks (Allen 
and Bartram 2008). Fishing in Guam continues to be important for contributing to the 
subsistence needs of the people, preserving history and identity, and maintaining cultural 
practices (Allen and Bartram 2008). Bottomfish are caught by a combination of recreational, 
subsistence, and small-scale commercial fishing operations utilizing vertical lines with electric or 
spin-casting reels depending on fishing depth. In 2017, a total of 841 fishers were estimated to 
have participated in bottomfishing activities (WPRFMC 2018). Most of the fleet consists of 
vessels less than 25 feet in length that target shallower BMUS species for recreational or 
subsistence purposes. Some recreational vessels (<25 ft) also target the deeper BMUS species at 
the offshore banks and other areas offshore of Guam where bottomfish habitat occurs. Larger 
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vessels (>25 ft) fishing commercially target the deeper species at offshore banks (e.g., Galvez 
and Santa Rosa Banks to the south and Rota Bank to the north).   

Commonwealth of the Northern Mariana Islands (CNMI) 

The CNMI consists of a series of islands in the long Marianas Islands chain, which excluding 
Guam extends approximately 500 nm in a north-south direction, and is paralleled by a chain of 
seamounts about 150 nm to the west. Most of the fishing activity occurs around the population 
centers of Rota, Tinian, and Saipan and extends north to Zealandia Bank, approximately 120 nm 
north of Saipan. As in other territories, fishing has deep traditions and cultural significance 
(Hospital and Beavers 2014). In 2017, a total of 786 fishers were estimated to have participated 
in bottomfishing activities (WPRFMC 2018). The shallower BMUS component, dominated by 
Lethrinus rubrioperculatus, is fished both commercially and for subsistence with most fishing 
trips made by small vessels (<25 ft) using handlines or homemade hand or electric reels and 
lasting a single day (WPRFMC 2018). In contrast, the deeper BMUS component is fished 
primarily commercially using larger (>25 ft) vessels. In the late 1980s to early 1990s there were 
12-15 large vessels (~70 ft) on Saipan that would fish around Saipan but also to the Northern 
Islands (Yau et al. 2016). The larger vessels can conduct multi-day trips and employ electric or 
hydraulic reels (WPRFMC 2018). 

American Samoa 

Prior to European contact, indigenous fishers of the Samoan Islands fished for subsistence from 
canoes using pearl shell hooks and sennit lines. They caught many fish species including some 
BMUS. By the 1950s, the Samoa fleet had adopted small boats equipped with outboard engines 
and fished with steel hooks and monofilament lines, but the fishery remained for subsistence 
only. Surveys conducted in the late 1960s by the American Samoa Office of Marine Resources 
revealed substantial deep bottomfish resources around the island of Tutuila, and by the early 
1970s a small commercial fishery was established. In an attempt to develop local fisheries, two 
subsidized boat building programs, the dory program in the 1970s and the alia program in the 
1980s, provided fishers with low cost vessels. The bottomfish fleet expanded in the mid-1980s 
with a government subsidized project aimed at exporting deep-water snappers to Hawaii (Itano 
1996). At the fishery’s peak in 1984, forty-eight vessels fished for bottomfish. Declines in 
participation in this fishery can be attributed to shifts in the importance of bottomfish fishing 
compared to trolling and longlining for pelagic species and to the periodic impact of hurricanes.  
In 1987, for example, hurricane Tusi damaged or destroyed a large segment of the small boat 
fishing fleet. In 2005, a total of 16 part-time vessels participated in the bottomfish fishery 
(WPRFMC 2006). Most vessels are small aluminum alia catamarans (<30 ft) with low-tech 
fishing practices (e.g., no depth sounders, electric or hydraulic reels, global positioning systems, 
or ice chilling capability) (WPRFMC 2006). In recent years, however, a number of larger (>35 
ft) vessels with higher technological capability have been entering the fishery (WPRFMC 2006). 
As in Guam, during the period 1986–2005 fishing effort (in line hours) spent targeting the 
shallow bottomfish component was nearly double that spent on the deep component. 
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1.2. Previous Stock Assessments 
Previous Benchmark Stock Assessments in 2007 

The 2007 benchmark stock assessments improved upon earlier assessment approaches that used 
catch-per-unit-effort (CPUE) indices as proxies for MSY-based reference points (Moffitt et al. 
2007). The base case model for the benchmark stock assessments was a Bayesian surplus 
production model, which directly estimated MSY-based reference points as well as trajectories 
of biomass and harvest rate from which stock status was determined. The Bayesian surplus 
production model explicitly accounted for both process and observation errors, and therefore 
captured parameter uncertainty for status determinations. Consequently, the 2007 benchmark 
assessments were the first to directly calculate reference points to use for status determination. 
The results from the 2007 benchmark assessments showed that for all territories, BMUS stocks 
were not overfished and overfishing was not occurring.  

As with any modeling approach, the benchmark stock assessments made a number of 
assumptions on model structure and data treatment. In regards to model structure, a Schaefer 
surplus production function was assumed for all territories. To help inform parameter estimates, 
the models were fit to estimates of MSY calculated from independent studies. These estimates 
were based on research conducted in the Marianas (Polovina et al. 1985) and extended to include 
American Samoa, and were found in the Our Living Oceans (OLO) report by Humphreys and 
Moffitt (1999) and later Moffitt and Humphreys (2009). The methods used to estimate MSY 
were described in Polovina and Ralston (1986), and were a fishery-independent estimate that 
combined life history assumptions (von Bertalanffy growth, constant natural mortality, and 
constant recruitment) with data on length-frequency, CPUE, and an estimate of catchability from 
an intensive fishing experiment. 

Assumptions around catch and CPUE data were also made. The 2007 benchmark assessment 
models used data through 2006. For CNMI, this limited the utility of relatively recent creel 
survey data that started in 2000, and so the model utilized commercial purchase data for CPUE 
and catch trends that extended back to 1983. Catch and CPUE data for Guam and American 
Samoa extended back to 1982 and 1986, respectively. Nominal CPUE data was exclusively used 
in the 2007 benchmark assessments, no standardizations were considered. The assessments also 
filtered the CPUE data to only include interviews with greater than 50% of BMUS by weight for 
Guam and American Samoa, and filtered to the data to only include interviews reporting 
bottomfishing gear for CNMI. Lastly, catch reported by families or species groups was assumed 
to be 75% BMUS for American Samoa, and because CNMI catch data were not filtered by 
species, all catch on bottomfishing gear for CNMI commercial purchase data were assumed to be 
BMUS.  

Previous Stock Assessment Updates in 2012 

The 2012 stock assessment updates used data through 2010 and used a similar treatment of data, 
analytical approach, and assessment methodology as the 2007 benchmark assessments (Brodziak 
et al. 2012). Five new years of data were added to the catch and CPUE time series from those 
used in the previous benchmark assessments. Results of the 2012 assessment updates were 
similar to the 2007 stock assessments, in that stocks for all territories were not overfished and 
overfishing was not occurring. 
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Previous Stock Assessment Updates in 2016 

The 2016 stock assessment updates using data through 2013 also used a similar treatment of 
data, analytical approach, and assessment methodology as the 2012 assessment updates and 2007 
benchmark assessments (Yau et al. 2016). Catch and CPUE for Guam and American Samoa 
were calculated using the offshore creel survey dataset, and catch and CPUE for CNMI were 
calculated using the Commercial Purchase Database program. Three new years of data were 
added to the catch and CPUE time series, with the exception of the CPUE time series for CNMI. 
The CNMI CPUE time series was truncated at 2006, which was the previous benchmark 
assessment’s terminal year, because the updated data after 2006 differed substantially from the 
data used for the 2012 update assessment. Notwithstanding this small change in the length of the 
CPUE data time series for CNMI, results of the 2016 assessment updates were similar to the 
2012 and 2007 stock assessments, in that stocks for all territories were not overfished and 
overfishing was not occurring.  

The 2016 assessment updates were the first assessments to go through the Western Pacific Stock 
Assessment Review (WPSAR) process. This peer-review process produced a number of 
recommendations for improvements to the stock assessments (Franklin et al. 2015). Many of the 
improvements were incorporated for the current (2019) benchmark stock assessments, although 
not all could be addressed due to tractability and time constraints. The following section 
describes recommendations from the panel and responses to them in the current stock 
assessments.  

Current Benchmark Stock Assessments  

As done in previous assessments, the model for the 2019 benchmark stock assessments was a 
Bayesian surplus production model that explicitly accounted for both process and observation 
errors, and directly estimated MSY-based reference points as well as trajectories and projections 
of biomass and harvest rate to determine stock status of BMUS complexes for Guam, CNMI, and 
American Samoa. For these assessments, however, we used new modeling software to run the 
production model and estimate the trajectories and statuses of BMUS complexes for the three 
territories. In addition to updated modeling software, a number of changes from the previous 
update and benchmark stock assessments were made for the current benchmark stock 
assessments. The details of all of these changes are described throughout this report. The changes 
primarily followed from recommendations from the WPSAR panel of reviewers for the previous 
update assessments.  

The WPSAR recommendations on future research, data collection, and changes in methods that 
may improve future iterations of territorial bottomfish assessments (Franklin et al. 2015, pg. 3–4) 
included, in order of priority: 

1. include all years of CNMI boat-based creel CPUE series into future assessments, 
2. sufficiently verify and document the analysis and results for the MSY estimates (if these 

are included in future assessments), 
3. investigate additional analysis that excludes the MSY prior values as a constraint to 

compare output with MSY-constrained models, 
4. include a detailed explanation of the expansion algorithm used to generate catch data, 
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5. explore splitting the BMUS into shallow and deep species components for future 
assessments, 

6. consider using standardized CPUE rather than nominal CPUE in future assessment,  
7. explore macro-scale oceanographic effects on the process component of the model such 

as SST on productivity via the r parameter (make r a varying parameter as opposed to 
fixed), 

8. explore local-scale oceanographic effects on the observation component of the model 
such as wind and current that influence fisher and fish behavior and catchability,  

9. account for the varying BMUS species composition over time by either incorporating 
multilevel priors or in the CPUE data standardization process,  

10. account for unreported landings by perhaps using a censored catch approach within the 
Bayesian stock assessment model, 

11. investigate other prior distributions (e.g., uniforms) as well as document the various 
distributions used as well as show graphically how informative or uninformative they 
are, 

12. integrate fishery area map designations into creel surveys to standardize reports of 
spatial fishing effort for American Samoa and CNMI, and  

13. explore length-based data and life history-based approaches for the assessment process 
if sufficient data is available.  

All recommendations from the WPSAR process were considered, but only recommendations 1–
3, 6, 8, and 11–12 were specifically completed for this set of benchmark stock assessments. In 
addition, recommendations 4 and 10 were partially addressed for this assessment. Other 
recommendations were not addressed because of time constraints, data availability, or 
jurisdiction (responsibility does not fall solely or primarily on the Pacific Islands Fisheries 
Science Center).  

Recommendations 1, 6, 8, and 12 all dealt with CPUE processes. For this set of benchmark stock 
assessments, we standardized CPUE data from boat-based creel surveys for all territories, and 
therefore addressed recommendations 1 and 6. Factors within the standardizations included, 
among others, area and self-reported wind speed which addressed recommendations 8 and 12. 
Other environmental factors were not reported in the creel data and therefore could not be used. 
Recommendations 2 and 3 both dealt with treatment of the independent OLO MSY estimates 
used to inform model parameters in previous assessments. No further documentation about the 
data or methods used to generate these MSY estimates could be found. Therefore, the current 
benchmark stock assessments were not fit to the independent OLO MSY estimates. We did, 
however, use the independent OLO MSY estimates to inform the prior mean values for carrying 
capacity, as was done in previous stock assessments. For this set of assessments, we include 
extensive sensitivity analyses to understand the implications of prior assumptions on model 
results, which addressed recommendation 11.  

We include a brief explanation of the expansion algorithm used to estimate catch, which partially 
addressed recommendation 4. Each territorial agency collects its own boat-based and shore-
based creel survey data, and although sampling and estimates of expanded catch follow the same 
general methods, each territory differs slightly in the details. Guam’s Division of Aquatic and 
Wildlife Resources creel survey manual provides more description of the methods for the data 
collection and estimation of expanded catch in Guam (Jasper et al. 2016). We have ongoing 
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plans to work with territorial agency partners to document the expansion algorithms in detail for 
each territory, but such reports were not finalized before these 2019 stock assessments were 
completed. We also partially addressed recommendation 10 by allowing catch to be modelled 
with variability around the input values. Although not completely accounting for unreported 
catches (i.e., catches not captured in the creel surveys), this approach does acknowledge that 
catch values are derived estimates from a creel survey, and therefore by modifying the current 
assessment models to include variability in catch, we accounted for uncertainty from the catch 
expansion algorithm. 

We did not incorporate recommendations 5, 7, 9, and 13 in the current stock assessment models 
due to time limitations after making the improvements already described. We considered 
splitting the BMUS complex into deep and shallow components, but did not do so. The current 
FEP specifies the BMUS complex as a single stock, and therefore we chose to maintain 
consistency with the FEPs’ definition of the stock. Length measurements are collected by the 
biosampling program and are also collected during some creel survey interviews. The 
biosampling program also collects fish weight, and includes information on gear fished, hours 
fished, and area fished. Although a source of additional catch and effort information, we did not 
include the catch and effort data from the biosampling program in the current assessments 
because the earliest available data started in 2009 and represents a subset of the available catch. 
Length information from the biosampling program and creel survey interviews was also not 
included for this assessment given time constraints.  
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2. Methods for Assessment Model Including Values for Data Inputs 

2.1. Data Sources 
Three sources of catch or catch and effort data were used for each territory: the offshore (boat-
based) creel survey data, nearshore (shore-based) creel survey data, and data from the 
Commercial Purchase Database program. Participation by fishers and dealers in all programs is 
voluntary. Creel surveys are conducted by territorial agencies to collect fishery data that are then 
passed to the Western Pacific Fisheries Information Network (WPacFIN). The creel surveys 
consist of fisher interviews, where species-specific catch and fishing effort information are 
recorded. The creel surveys also incorporate effort-based surveys, which consist of a 
participation survey for shore-based fishing, and a boating-log survey for boat-based fishing. For 
each territory, catch data from the surveyed (interviewed) subset of fishing trips are expanded 
using the effort surveys to estimate total (expanded) catch for the territory. The species 
composition from the surveyed subset of fishing trips was then applied to obtain total species-
specific catches for each territory. Under the Commercial Purchase Database program, first-level 
purchasers of local fresh fish provided records of purchases by species categories. Species 
categories reported in the Commercial Purchase Database do not necessarily align with BMUS 
categories from the creel survey program, and are typically more aggregated. The commercial 
purchase dataset also includes an identifier of the seller for all territories, whether the sale is a 
resale and thus was previously reported in the dataset, information on method and location of 
fishing for the Guam and American Samoa datasets, information on effort for the Guam dataset, 
and information on whether the sale was of imported fish for the American Samoa dataset. 

Survey coverage and quality of data collected vary by territory, location, and time period. Guam 
has been collecting voluntary fishery creel data since the late 1960s, although only shore-based 
creel data collected since 1985 and boat-based creel data collected since 1982 were used for 
analysis. Data collected prior to these years were not as extensive as required in order to apply 
the expansion algorithm for catch. Commercial purchase data were available starting in 1979. 
Collection of bottomfish catch data from the east side of the island is hampered by logistical 
problems and lack of voluntary reporting. The east side of the island is heavily fished for 
bottomfish species during the calmer summer months. The current statistical expansion of 
fishery data, however, adjusts for this to the extent possible. The CNMI creel survey is a more 
recent program, with available data starting in 2000 for the boat-based creel data and 2005 for 
the shore-based creel data. Prior to the creel survey, data were collected through the voluntary 
commercial purchase program, which started in 1983. The current American Samoa boat-based 
creel survey was initiated in October 1985 and recorded landings and effort of commercial, 
recreational, and subsistence fishers. Given that the data in 1985 started in October, and were 
therefore incomplete for the year, we used data starting in 1986. The shore-based creel survey 
was initiated in October 1987, but data from the participation survey and the resulting expanded 
catch estimates were not available until 1990. Commercial purchase data for American Samoa 
were available starting in 1990. All years referred to herein for this set of assessments are 
calendar years. 

Other datasets of fishing information were available for consideration. These include the 
WPacFIN biosampling program and the federal permit logbook dataset of catch and effort for 
bottomfishing in federal waters. The biosampling program consisted of length and weight data 
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on a subset of sampled catch, as well as information on where the fish was caught, what method 
was used to catch the fish, and the effort expended to catch the fish. Although this information 
could be used for length-based methods or even CPUE calculations, the data started in 2009 and 
so was of limited utility for determining the size of the stock compared to other data sources, and 
therefore ultimately the biosampling data were not used. As more and more years are added to 
the dataset in the future, the biosampling data could provide additional sources of information to 
inform the assessments. Investigation of the federal logbook dataset of catch and effort for 
bottomfishing in each of the territories revealed that the data are very sparse, starting in 2009 
with only 0–5 permit holders reporting annually. Consequently, these data were not useful to 
include in the assessments. Until there is a higher reporting rate, the federal logbook dataset is 
likely not useful for future stock assessment purposes.  

2.1. Methods of Calculating Catch and Resulting Catch Values 
2.1.1. Total Catch 
We explored all three data sources of catch data (expanded boat-based creel survey data, 
expanded shore-based creel survey data, and data from the Commercial Purchase Database 
program) when calculating total catch removals. For each data source, we calculated total catch 
by species for each year and then summed across species to obtain a total catch series. Data from 
American Samoa included information on the species Pristipomoides rutilans, which is not an 
actual species. Based on conversations with life history experts at PIFSC, we concluded that this 
species was likely Aphareus rutilans, and therefore replaced P. rutilans with A. rutilans when 
calculating catch (and also catch variance and CPUE) for the American Samoa assessment. In 
addition to species-specific codes in the data, valid species codes for species at the family level 
and for species categories were reported in the data. We included catch from these groupings by 
calculating the total catch of BMUS as the sum of catches of individual BMUS (Table 1 and 
Table 2) plus a percentage of catch from species groups believed to contain BMUS as explained 
in detail in the next paragraphs. A similar concept but using a fixed percentage (75%) was used 
in the previous benchmark and update assessments, and was applied solely to American Samoa 
creel-survey data. Prior to calculating commercial purchase catch, we excluded resale catches, 
which were catches already reported in the commercial purchase dataset, and imported catches, 
which were from sources outside the respective territory. 

The percentage of catch of species groups believed to contain BMUS in each year was calculated 
based on the ratio of the catch of BMUS (Table 2) to the catch of non-BMUS within each species 
group for that year in each territory. If no BMUS within a group were caught, or no species-
specific information other than that group was available, then the proportion of catch from that 
group applied to BMUS catch was zero. If no individual species of a group were caught within a 
year, but were caught in other years, then the overall average ratio of BMUS to non-BMUS 
across all years within that species group was used for that year. We assumed 10 species groups 
contained BMUS for Guam boat- and shore-based survey data, 7 for Guam commercial purchase 
data, 6 for CNMI boat- and shore-based survey data, 5 for CNMI commercial purchase data, and 
9 for all three American Samoa data sources. Species groups for Guam survey data were 
Carangidae, Caranx i’e’ (juvenile Caranx), Lethrinidae, Lutjanidae, Serranidae, assorted 
bottomfish, shallow bottomfish, deep bottomfish, shallow snappers, and deep snappers. Species 
groups for Guam commercial purchase data were jacks, bottomfish, deep bottomfish, grouper, 
emperor, and two groupings of snapper (tagafi and snapper). Species groups for CNMI survey 
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data were jacks, juvenile jacks, bottomfish, grouper, emperor, and snapper. Species groups for 
CNMI commercial purchase data were the same as for the survey data but did not include 
juvenile jacks. Species groups for American Samoa were trevallys, jacks, bottomfish, groupers, 
deepwater snappers, pristipomoides/etelis, emperors, inshore groupers, and inshore snappers. 

General rules were applied to determine the non-BMUS species for each species group from the 
species lists provided by WPacFIN. For each territory, family-level groups included species 
within the family. Exceptions to this included Serranidae, where basslets and soapfish were not 
included, and Carangidae, where scads (i.e., genera Decapterus, Selar, and Selaroides) were not 
included. These exclusions were also applied to all rules described below. For the following sets 
of species groups, the same list of species was applied to all species groups within the set: 
juvenile and adult groups (Carangidae and Caranx i’e’ in Guam survey data, and jacks and 
juvenile jacks in CNMI survey data), shallow and deep groups (shallow bottomfish and deep 
bottomfish, and shallow snappers and deep snappers in Guam data), deepwater and nearshore 
groups (groupers and inshore groupers, and inshore snappers and deepwater snappers in 
American Samoa data), and groups of similar categories (assorted bottomfish and shallow/deep 
bottomfish in Guam survey data, tagafi and snapper in Guam commercial purchase data, and 
trevallys and jacks in American Samoa data). Snappers were defined as species in the family 
Lutjanidae, emperors as species in the family Lethrinidae, groupers as species in the family 
Serranidae, jacks/trevallys as species in the family Carangidae, and pristipomoides/etelis as 
species in the genera Etelis or Pristipomoides. Bottomfish were defined as species in the families 
Lutjanidae, Lethrinidae, Serranidae, and Carangidae, and also included the large-headed 
scorpionfish (Pontinus macrocephalus), alfonsin (Beryx decadactylus), oilfish (Ruvettus 
pretiosus), species of the family Bramidae, and species of the family Priacanthidae. These 
additional species were added to “bottomfish” based on the assumption that these species were 
likely to be reported as bottomfish by fishers.  

We compared catches across all three data sources, as well as compared how our choice to use a 
percentage of catch from species groups in our catch estimates influenced catch estimates. A 
comparison of BMUS catch and group species catch for all data sources are provided for Guam 
(Figure 2), CNMI (Figure 3), and American Samoa (Figure 4). These figures show that catch for 
all territories was primarily from individual BMUS and from the boat-based creel survey, and 
that catch of species groups in American Samoa was more prominent than for the other 
territories. Given that the majority of catch was from the boat-based survey, the start years of our 
models corresponded to the first year when boat-based creel survey data were available.  

Once catch from non-BMUS groups was added to catch of individual BMUS for each data 
source, a single total catch time series was calculated for each source. The two creel surveys 
represent catch from different fishing sectors, so total expanded yearly catch from the boat-based 
and shore-based data were combined to obtain a total expanded creel survey catch estimate. The 
boat-based and shore-based creel data were added together in years when both were available. 
Boat-based data covered more years than shore-based data, so for years when shore-based data 
were not available but boat-based data were available, we assumed a value for shore-based catch 
equal to the average of shore-based catches across available years. This approach therefore 
assumed that shore based catch likely occurred during years when data were not collected. 
Commercial purchase data can overlap with catch from the creel surveys, and so represents a 
separate estimate of catch. Consequently, catch from the commercial purchase dataset was 
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compared to the summed catch from the two creel surveys. To obtain a final catch time series, 
the maximum of the total expanded creel survey catch and the total catch from the commercial 
purchase data in each year was used as the final yearly catch value for use in the stock 
assessment models. Guam commercial purchase catch was always less than the sum of expanded 
catch from the creel surveys in overlapping years (Figure 2). CNMI commercial purchase data 
was greater than the sum of expanded catch from the creel surveys in only two of the 
overlapping years: 2003 and 2014 (Figure 3); while American Samoa commercial purchase data 
was greater than the sum of expanded catch from the creel surveys in six of the overlapping 
years: 1995, 1996, 1998, 2000, 2003, and 2006 (Figure 4). Resulting total catch values used for 
the assessments are provided in Table 3 and Figure 5. 

Although we did not model individual species catch in the assessment models, for comparison 
among territories we report here the top five species or species groups recorded in the expanded 
boat-based survey catch (the data source reporting the most BMUS catch). For Guam, the 
dominant species was redgill emperor at 20% of the total catch over all years, followed by flame 
snapper (12%), goldflag snapper (11%), oblique-banded snapper (8%), and the species group 
shallow bottomfish (7%). For CNMI, the dominant species was also redgill emperor at 24% of 
the total catch over all years, followed by flame snapper (22%), ruby snapper (9%), pink snapper 
(9%), and Von Siebold’s snapper (7%). For American Samoa, the dominant species was the 
species group bottomfish at 24% of the total catch over all years, followed by the species group 
emperors (11%), and then bluestripe snapper (11%), green jobfish (9%), and flame snapper 
(8%). 

2.1.2. Catch Variance 
Total catch of BMUS as reported in Table 3 was in part from expanded boat-based and shore-
based interview data. Although total expanded creel survey catch had an associated variance 
estimate, variances of species-specific creel survey catch estimates did not have explicit variance 
formulations. To obtain variance estimates at a species level, the data were bootstrapped to 
generate uncertainty around species-specific catches. Initially, the bootstrap procedure was run 
separately for total expanded creel survey catch (in years with both shore-based and boat-based 
data), and for boat-based expanded catch. Given these two sets of variance estimates, we chose 
to use only the boat-based bootstrap estimates of variance. This choice assumed that the species-
specific coefficients of variation for the boat-based data were the same as for the shore-based 
data. Given the much higher catch of BMUS in the boat-based survey, we felt this choice was 
better than the alternative option of using the combined shore-based and boat-based variance in 
overlapping years and applying an imputation algorithm to determine variance in years without 
bootstrap estimates but with catch estimates. Variance estimates were not available for 
commercial purchase data; therefore, in years where commercial purchase catch data were used 
(i.e., commercial purchase catch was greater than the sum of boat- and shore-based creel survey 
expanded catch), we applied the coefficient of variation from the boat-based data to the total 
catch value. In other words, we used variance estimates from the expanded boat-based creel 
survey catch estimates to represent total catch variance in every year. Given that the purpose was 
to capture general as opposed to exact variance, we believe the choice of using variance 
estimates from just the boat-based creel survey data was appropriate.  
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To generate the variance estimate, the value for expanded catch was drawn from a truncated (at 
0) normal distribution with mean and standard deviation equal to the value and standard 
deviation of the original boat-based survey expanded catch estimate. Interview data were 
resampled with replacement, which were then used together with the redrawn expanded catch 
estimate to calculate species-specific expanded catch. This process was repeated 1,000 times and 
the variance around species-specific expanded catches for BMUS from the boat-based creel 
surveys were used as a measure of uncertainty around total BMUS catch.  

We applied the same group proportions that were applied to catches of species groups for the 
boat-based data when calculating variance. Species-specific variance estimates for each BMUS 
within a year were summed to obtain total BMUS variance, which required an assumption of 
independence among species catches. The variance of each species group believed to contain 
BMUS was also added into the total variance for BMUS, and was scaled by the square of the 
percentage of BMUS to non-BMUS catch for each species group. Estimates of uncertainty 
applied to total catches, as reported using the coefficients of variation based on boat-based creel 
survey data, are provided for all territories in Table 4.  

2.2. Methods of Calculating CPUE and Resulting CPUE Values 
Estimation of standardized CPUE indices for each territory’s BMUS complex was done as an 
improvement over methods used in previous stock assessments. The details of the 
standardization approach are described below, including selecting representative data from the 
fishery in section 2.2.1. Dataset Choice and Filtering, selecting covariates to include in the CPUE 
standardization in section 2.2.2. Covariates for Standardization, and details of the standardization 
procedure, including model choices and diagnostics, in section 2.2.3. CPUE Standardization. 

2.2.1. Dataset Choice and Filtering 

Dataset choice 

Non-expanded interview data from the boat-based creel surveys were used as the basis for CPUE 
calculations. The interview data contained catch by species, measures of fishing activity that 
were used to determine fishing effort, and additional environmental and fishing related 
covariates that were used to account for changes in fishing conditions not related to changes in 
the underlying fish abundance. Two interview datasets were considered: boat-based interviews 
and shore-based interviews. Given that BMUS are primarily caught offshore and with boats, and 
that the expanded boat-based creel survey catch represented a greater proportion of total BMUS 
catch than the expanded shore-based creel survey catch (Figure 2–Figure 4), we restricted CPUE 
analyses to only the non-expanded boat-based interview dataset.  

We considered using the commercial purchase dataset for CPUE standardization because it 
contained information that could be used to determine catch and effort of fishing activities. The 
commercial purchase dataset for Guam included information on the day of sale, the name of the 
seller, the method used, species name and corresponding catch, hours fished, and area fished. 
The dataset for CNMI had fewer fields, and only included day of sale, an identifier of the seller, 
and species name and corresponding catch weight. There was no information on method, effort, 
or area of fishing. The dataset for American Samoa was similar to Guam, with information on 
the day of sale, an identifier of the seller, the method used, species name and corresponding 
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catch, and area fished, but lacked information on effort. Although many pertinent fields were 
available, not all values for each record were filled in, and information useful for standardizing 
CPUE was missing from roughly 10–50% of records, depending on the field and territory. Given 
the limited information in pertinent fields, in particular for effort for CNMI and American 
Samoa, as well as uncertainty around the proportion of catch that is sold or reported in the 
commercial purchase dataset, we did not use commercial purchase data for CPUE calculations. 

Dataset filtering  

Each interview in the boat-based survey data reflected the catch and fishing activity from a 
single fishing event. Consequently, interview was the basic unit of data. There were a total of 
30,533 interviews in the boat-based dataset for Guam, 4,062 for CNMI, and 14,408 for American 
Samoa for all species/groups and gears. We applied a number of filtering steps to these base 
level datasets to come up with representative CPUE data for BMUS in each territory.  

As was the case for the expanded catch datasets, non-expanded interview data contained both 
species-specific codes and aggregated family-level or species category codes. Consequently, 
catch of BMUS plus a portion of the catches from aggregated species codes within each 
interview were used to determine the catch of BMUS for CPUE. The same proportions used to 
determine catches of BMUS from aggregated groups in the expanded catch datasets were applied 
to determine the catch of BMUS from species groups in the non-expanded interview datasets. 
These proportions were calculated as the ratio of known (species-specific) catches of BMUS in a 
year to known catches of non-BMUS in a year. Within the interview datasets, Guam had 841 
interviews (2.8% of total interviews) that included catch of species groups, CNMI had 964 
interviews (24% of total interviews), and American Samoa had 2,196 interviews (15% of total 
interviews).  

The interview data was filtered to reflect fishing activity expected to target BMUS. The reason 
for doing this was to avoid fishing activity unlikely to catch BMUS, the inclusion of which 
would inaccurately reflect CPUE patterns over time for BMUS. There is no indication in the 
interview data on the species or groups of species a fisher targets. Statistical methods exist for 
separating data into clusters which could be used to determine interviews targeting BMUS (e.g., 
Stephens and MacCall 2004). Such methods would rely on characteristics of either the catch 
composition or variables on fishing activity to differentiate among clusters. Our approach was to 
use gear as a simple and straightforward distinction for determining fishing that targeted BMUS. 
The vast majority of BMUS were caught on bottom-line gear (96% for Guam, 95% for CNMI, 
and 72% for American Samoa). The most significant other gears that caught BMUS were trolling 
for Guam, which accounted for 1.2% of BMUS catch; spear/snorkel for CNMI, which accounted 
for 2.3% of BMUS catch; and bottomfishing/trolling mix and spearfishing in boats without tanks 
for American Samoa, which accounted for 22% and 6% of BMUS catch, respectively. Although 
bottomfishing/trolling mix caught 22% of the BMUS for American Samoa, it was not ultimately 
used to maintain consistency with the Guam and CNMI filtering approaches and because it was 
not a dominant gear. After filtering by gear, there remained 5,423 interviews for Guam, 968 
interviews for CNMI, and 2,437 interviews for American Samoa. 

In addition to filtering the interview data by gear, we filtered data based on two additional 
criteria. First, we removed any interviews from vessels that never caught any BMUS. Catches of 
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aggregated species codes were already adjusted to reflect expected catches of BMUS and were 
included when considering whether a vessel caught any BMUS. In total, this removed 314 
vessels and 468 interviews from the Guam dataset, 51 vessels and 58 interviews from the CNMI 
dataset, and 2 vessels and 3 interviews from the American Samoa dataset. Second, we removed 
any interviews from charter fishing trips, which occurred in 726 interviews in the Guam dataset 
and 340 interviews in the CNMI dataset. Whether a vessel was a charter fishing event was 
reported in the interview form. These fishing events were most often designated in shallow 
water, and had much higher number of gears and slightly fewer hours of fishing, and therefore 
much lower CPUE values. The primary reason these fishing events were excluded was that they 
represented a different sector of fishing activity that did not target BMUS. As such, we assumed 
that this activity would not reflect BMUS fishing on the whole, and therefore interviews from 
charters were excluded. There was one interview in the American Samoa dataset that was 
reported as a charter fishing trip, but because this interview did not appear distinct from other 
non-charter interviews, we did not exclude it from the standardization. 

The final step in filtering the CPUE data was to select interviews with complete information on 
the categories used within the standardization describing changes in the environment or patterns 
of fishing activity. These categories included temporal factors of month and year; spatial factors 
of area; fishing activity factors of type of day, depth, and vessel name; and categories used to 
calculate CPUE including catch, number of gears, and hours fished. In total, 409 interviews were 
removed based on incomplete field values in the Guam dataset, 4 interviews in the CNMI 
dataset, and 790 interviews in the American Samoa dataset. In addition, the 30 interviews from 
American Samoa’s initial survey year (1985) were excluded because they were from a partial 
calendar year. After all filtering steps were complete, the final number of interviews used for 
CPUE standardization of BMUS was 3,820 for Guam, 566 for CNMI, and 1,614 for American 
Samoa. 

Once data filtering was complete, CPUE was calculated as catch divided by effort. Effort was 
calculated as the product of hours fished and number of gears, as was done in the previous 
benchmark stock assessments (Moffitt et al. 2007). We explored the influence of number of 
gears on the overall value of CPUE across years and found that the relative trend was similar 
regardless of whether number of gears was used in effort calculation.  

2.2.2. Covariates for Standardization 
Covariates explored in CPUE standardization included year, month, area, type of day, depth, 
wind speed, and vessel name, and are defined in more detail below. These covariates were 
considered to have a possible effect on BMUS CPUE other than changes in annual stock 
abundance. In other words, these factors may have caused CPUE to vary due to changes in the 
distribution of fish or the pattern and effectiveness of fishing effort. Only the Guam database 
included information on wind speed so wind speed was not explored for CNMI or American 
Samoa. Although the American Samoa database included the field for depth, there was no 
reported information on depth so depth was not used for that territory. All covariates were 
explored for inclusion in the standardization as categorical factors. Wind speed for Guam was 
reported in integers; however, it was apparent in the data that most fishers rounded to the nearest 
5 knots. Therefore, we combined wind speed into groups of 0 knots, 1–5 knots, 6–10 knots, etc., 
up to 30 knots. 
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Year, month, and area are typical time and area covariates explored for CPUE standardization. 
Areas followed the grid numbering shown for Guam (Figure 6), CNMI (Figure 7), and American 
Samoa (Figure 8). Fishing grids as defined on interview sheets were not necessarily distinct 
because general cardinal directions were reported as well as ordinal directions for Guam and 
CNMI. Furthermore, individual areas such as banks or reefs within a general direction were also 
reported. We acknowledge that a lack of distinction among reported areas could mask any 
individual area effect, and thus we considered aggregating fishing grids into groups that were 
distinct from one another. Ultimately, we decided to keep reported fishing grids as they were 
reported without further adjustment to maintain as fine a scale as possible. When exploring the 
area designations for Guam, we removed an additional 17 interviews from grid 99 (northern 
Marianas) and the 9 interviews with invalid grid numbers (values less than 10; see Figure 6) 
prior to standardization. When exploring the area designations for CNMI, we removed an 
additional 8 interviews with invalid grid numbers (values equal to 0; see Figure 7) prior to 
standardization. We did not consider second order interactions between area-year for any 
territory because of the possibility of over-parameterizing the standardization models given the 
limited number of interview data points, and because there were no visual patterns of the most 
common fishing areas in each territory shifting over time.  

Type of day, depth, wind speed, and vessel name were explored in the standardization because 
information on them was available in the datasets, and these covariates were believed to 
potentially influence CPUE independent of changes in BMUS abundance. Type of day was 
reported as either weekend or weekday interviews, and was explored in the standardization to 
capture potential differences between full-time fishers, which we assumed would fish on the 
weekday, and part-time fishers, which we assumed would fish on the weekends. Depth was 
reported in four categories: deep, mixed, shallow, and unknown; and all were explored within the 
standardization. Depth was included to account for differences among nearer shore versus farther 
offshore habitat and species within the BMUS complex. Lastly, vessel information was included 
in the standardization as an attempt to determine difference among individual fishers/vessels. 
Fisher-specific information such as fisher name was not reported in the creel-survey database, so 
vessel was used as a proxy to account for differences among vessels assuming vessel names are 
unique, and among fishers assuming fishers do not switch vessels.  

2.2.3. CPUE Standardization 
Catch-per-unit-effort data were standardized using generalized linear and generalized linear 
mixed models (McCulloch et al. 2008). Given our choices in filtering the data based on fishing 
gear, as described in section 2.2.1. Dataset Choice and Filtering, the data contained a number of 
records where CPUE of BMUS was zero. We considered it possible to catch zero pounds of 
BMUS when fishing. Consequently, instances of zero catches of BMUS were included in CPUE 
standardization for each assessment. Eighteen percent of the data for the Guam assessment, 14% 
for the CNMI assessment, and 6.6% for the American Samoa assessment had zero catches of 
BMUS. There are numerous ways to deal with zero catches when standardizing CPUE including 
ignoring them, adding a small constant, using count-based distributions that allow for zero 
catches such as Poisson or Negative Binomial, using continuous distributions that incorporate a 
zero component such as a Tweedie distribution, using zero-inflated models that account for 
greater than expected proportions of zeroes, and using delta-type models that separately model 
the zero-process (Maunder and Punt 2004).  
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A delta-type approach was used in the 2019 assessments wherein CPUE was modeled as the 
product of two processes: a Bernoulli process modeling the probability of positive catches, and a 
positive process modeling the distribution of CPUE given a positive catch. We tested both a 
gamma distribution and a lognormal distribution for the positive process by comparing fits of the 
nominal CPUE data to both distributions. The lognormal distribution fit the positive catch data 
better than the gamma for Guam and CNMI, and therefore was used for those assessments, 
whereas the gamma distribution fit the positive catch data better than the lognormal distribution 
for American Samoa, and therefore the gamma distribution was used for that assessment. The 
response variable for the Bernoulli process was a binomial variable that was added to the dataset, 
indicating whether a BMUS was captured (1 = captured, 0 = not captured). The relationship 
between the response variable and the predictor variables was modeled as a Binomial 
distribution using a logit link function. The response variable for the positive process for the 
Guam and CNMI assessment was the natural logarithm of CPUE from positive catches of BMUS 
and was modelled as a Gaussian distribution. The response variable for the positive gamma 
process for the American Samoa assessment was CPUE from positive catches of BMUS and was 
modeled as a Gamma distribution with inverse-link function.  

2.2.3.1. CPUE Model Selection 
Model selection techniques were used for each process (Bernoulli and positive) for each territory 
to select a set of predictors that most improved model fit from the suite of possible covariates. 
The covariates for each territory were described in section 2.2.2. Covariates for Standardization. 
All variables were modeled as fixed effects except for vessel name, which was modeled as a 
random effect. Selection among CPUE standardization models was performed using Akaike’s 
information criterion (AIC = 2 × number of parameters – 2 × the natural logarithm of the 
likelihood evaluated at its maximum) to judge the relative goodness of fit (Burnham and 
Anderson 2002). Model selection was done using a backward-selection process with a threshold 
of 2 units above the previous model’s AIC. Thus, if the AIC of a model after removing a 
predictor was less than or up to 2 units more than the previous model’s AIC, the removed 
predictor was not considered significant and was removed from the standardization. The 
significance of the random effect of vessel name was tested first, and model selection using fixed 
effect terms was done thereafter. Year was required for the calculation of an annual index, so it 
was retained regardless of AIC score. Model selection was done using maximum likelihood for 
all models but estimation was done for generalized linear mixed models using restricted 
maximum likelihood once the best-fit model was determined. Restricted maximum likelihood 
accounts for degrees of freedom used in estimating fixed effects and estimates variance 
components of the random effects without influence from fixed-effect terms (Harville 1977; 
McCulloch et al. 2008). Statistical modeling was done with the lme4 package version 3.2 (Bates 
et al. 2015) within the R software package version 3.2.4 (R Core Team 2016). 

Model selection for the vessel identifier was problematic for the Bernoulli process for all 
territories. A mix of convergence and memory errors were encountered when fitting using the 
vessel name covariate. Vessel name was therefore excluded as a covariate for model selection for 
the Bernoulli process for CNMI and Guam, but was retained as a covariate for model selection 
for the positive process.  

The best-fit model for the Bernoulli process for Guam included only year, area, and depth. Wind 
speed, month, and type of day were not considered significant (Table 5). The best-fit model for 
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the Bernoulli process reduced deviance by 22% from the null model (intercept only) and 17% 
from the year-effects only model. The best-fit model for the lognormal process for Guam 
included year, area, and depth, but also included vessel name. As for the Bernoulli process, wind 
speed, month, and type of day were not considered significant. The best-fit model for the 
lognormal process reduced deviance by 8.4% from the null model (intercept only), 4.4% from 
the model with only vessel name, and 2.9% from the model with only year and vessel name.  

The best-fit model for the Bernoulli process for CNMI included only year, depth, and type of 
day. Area and month were not considered significant (Table 6). The best-fit model for the 
Bernoulli process reduced deviance by 23% from the null model (intercept only) and 16% from 
the year-effects only model. The best-fit model for the lognormal process for CNMI also 
included year, depth, and type of day, but also included vessel name and area. Only month was 
not considered significant. The best-fit model for the lognormal process reduced deviance by 
14% from the null model (intercept only), 10% from the model with only vessel name, and 8.3% 
from the model with only year and vessel name.  

The best-fit model for the Bernoulli process for American Samoa included year, area, and type of 
day. Only month was not considered significant (Table 7). The best-fit model for the Bernoulli 
process reduced deviance by 62% from the null model (intercept only) and 19% from the year-
effects only model. The best-fit model for the gamma process included only year and vessel 
name. Month, type of day, and area were not considered significant. The best-fit model for the 
gamma process reduced deviance by 6% from the null model (intercept only) and 2.9% from the 
model with only fisher.   

2.5.3.2. CPUE Model Diagnostics 
Regression diagnostics were used to qualitatively check assumptions of the best-fit models for 
CPUE standardization. Model fit was assessed through visual comparison of residuals plotted 
against predicted values of the response variable and against values of the predictor variables. A 
histogram of the residuals was plotted to assess normality for both processes. Plots of the 
quantiles of the standardized residuals to the quantiles of a standard normal distribution were 
also used to assess assumptions of normality for models for the lognormal process. Pearson 
residuals were used for all models for the positive processes (lognormal for Guam and CNMI 
and gamma for American Samoa). Quantile residuals were used for all models for the Bernoulli 
process as recommended by Dunn and Smythe (1996). 

Diagnostic residual plots showed that model assumptions were not violated for all processes and 
territories. Diagnostics for Guam indicated the model for each process was appropriate (Figure 9 
and Figure 10). There was a slight reduction in the range of residuals at lower predicted 
probabilities for the Bernoulli process, and some patterning of residuals with area values, but we 
considered these minor (Figure 9). Diagnostics for the lognormal process indicated a slightly 
heavier lower tail of the residuals than expected for a normal distribution, but this too we 
considered minor (Figure 10). Diagnostics indicated the model for each process was also 
appropriate for CNMI (Figure 11 and Figure 12) and American Samoa (Figure 13 and Figure 
14). For CNMI, there was a slight reduction in the range of the residuals at lower predicted 
probabilities and some variation in residuals by year for the Bernoulli process for CNMI (Figure 
11), but we considered these minor. For American Samoa, although the few combinations of 
factors within the year, area, and type of day covariates with low probabilities aggregated 
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predicted probabilities for the Bernoulli process, the ranges of residuals across predicted 
probabilities were similar (Figure 13). The quantile-quantile plot for the gamma distribution also 
indicated slightly heavier tails than expected for a gamma distribution, but we considered this to 
be minor (Figure 14). 

2.5.3.3. CPUE Index Calculation 
Once the set of factors that minimized AIC were selected and diagnostics indicated model 
assumptions were not violated, an index of CPUE as a proxy for biomass was generated using 
the best-fit models for each process within all territories. Predicted values of the response 
variable from each model were calculated using the predict function in R, and the mean and 
variance of the predictions within a year were calculated. The mean predicted values from the 
lognormal process for Guam and CNMI were multiplied by the exponential of one-half the 
residual variance to correct for bias when back-transforming from ln(CPUE) to CPUE, following 
Brodziak and Walsh (2013). The index It was then calculated as the product of the mean 
probability of catching BMUS in year t with the mean CPUE in year t calculated from positive 
catches of BMUS. The variance of the index in year t was calculated as the variance of the 
product of two independent random variables, the Bernoulli (Δt) and positive process (φt), 
following Brodziak and Walsh (2013): 

Equation 1 ( ) ( ) ( ) ( ) [ ] ( ) [ ]2 2= ∆ + ∆ + ∆t t t t t t tVar I Var Var φ Var E φ Var φ E . 

The variance of the index was then divided by the sample size in each year and used to obtain 
CVs around the mean index, which were then used for determining the yearly observation errors 
around the CPUE index in the assessment models. The assessment model requires the user to 
input variability around the CPUE index as the standard error of the mean index on the scale of 
the logarithm. Consequently, we calculated standard errors on the scale of the logarithm in each 
year from the CV in each year: 

Equation 2 
2

1= −tσ
tCV e . 

The yearly indices and standard errors on the scale of the logarithm were used as input into the 
assessment models and are provided in Table 8 for all territories.  

2.3. Assessment Model Methods 
This section describes the production model assumptions and structure that were used to estimate 
biomass and fishing mortality for the territorial stock assessments. The current assessments use 
new modeling software from that of the previous benchmark and update assessments, yet still 
implements a Bayesian state-space surplus production modeling framework. The current 
assessment models do not fit to independent OLO MSY estimates that were included in the 
previous assessment models to inform model estimates.  

2.3.1. Biomass Dynamics Model 
This set of stock assessments used Just Another Bayesian Biomass Assessment (JABBA), which 
is an open-source modeling framework for conducting state-space Bayesian surplus production 
models (Winker et al. 2018). JABBA uses R to set up the model and call the software program 
JAGS (Just Another Gibbs Sampler, Plummer (2003)) using the R package “rjags” (Plummer 
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2016). JABBA explicitly estimates both process error variance and observation error variance 
that have been commonly used for fitting production models with biomass indices (Meyer and 
Millar 1999; McAllister et al. 2001; Punt 2003; Brodziak and Ishimura 2011), and estimates 
Bayesian posterior distributions of model outputs using Markov Chain Monte Carlo (MCMC) 
simulation (Gilks et al. 1996).  

Surplus production models are frequently implemented to estimate sustainable levels of harvest 
(biomass removals) at corresponding levels of stock biomass. The exploitable biomass time 
series comprised the unobserved state variables, and was estimated by fitting model predictions 
to the observed biomass indices (i.e., CPUE) and catches using observation error likelihood 
functions and prior distributions for the model parameters. The observation error likelihood 
measured the discrepancy between observed and predicted CPUE, as well as between observed 
and predicted biomass indices, while the prior distributions represented the relative degree of 
belief about the probable values of model parameters. Assumptions of this model were that 
production followed a specified functional form, the assessments applied to exploitable 
individuals, all exploitable individuals were mature and equally vulnerable to fishing, and that 
biomass was proportional to CPUE. 

The process dynamics represented the temporal fluctuations in exploitable bottomfish biomass 
due to density-dependent population processes (e.g., growth) and fishery catches. JABBA 
formulates the surplus production function as a generalized three-parameter equation following 
the formulation of Pella and Tomlinson (1969) and Fletcher (1978) (Gilbert 1992; Thorson et al. 
2012). Under this three-parameter production function, exploitable biomass at the start of year t 
(Bt) depended only on the previous time period’s exploitable biomass (Bt-1) and total catch (Ct-1), 
and on the intrinsic growth rate (r), carrying capacity (K), and production shape (m) parameters: 

Equation 3 
1
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The production shape parameter m determined where surplus production peaked as biomass 
varied as a fraction of carrying capacity (Figure 15). If the shape parameter m = 2, the model 
reduces to the Schaefer form, with the surplus production function attaining a maximum at a 
biomass value equal to K/2. If 0 < m < 2, MSY occurs when biomass values are smaller than K/2, 
and when m > 2, MSY occurs when biomass values are greater than K/2. The Pella-Tomlinson 
formulation reduces to a Fox form if m approaches 1, resulting in MSY at approximately 1/e ≈ 
0.368K, but there is no exact solution for MSY when m = 1. 

For computational purposes, the production model in Equation 3 was expressed in terms of the 
proportion of carrying capacity (P) in year t (i.e., setting Pt = Bt/K) to improve the efficiency of 
the MCMC algorithm for estimating parameters (e.g., Meyer and Millar 1999). As such, the 
process dynamics for the temporal changes in the proportion of carrying capacity were 

Equation 4 ( )( )1 1
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The values of exploitable biomass and harvest rate that maximized biomass production were 
relevant as biological reference points for fishery management and for estimating the MSY of 
bottomfish stocks. Based on Equation 3, the exploitable biomass that was required to produce 
maximum sustainable yield (BMSY) was 

Equation 5 
1
1.

−
−= m

MSYB Km  

It follows that the shape parameter m can be arithmetically translated into a ratio of BMSY to K 
(Prager 1994), such that 

Equation 6 
1

1 .
 − − = mMSYB m

K
 

Within JABBA, the user actually enters a value of BMSY/K to assign the prior mean for m. The 
harvest rate that was required to produce maximum sustainable yield (HMSY) was 

Equation 7 
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where the harvest rate H was defined as the ratio of catch over biomass. The estimate of MSY 
was 

Equation 8 
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2.3.2. Process and Observation Error Models 

2.3.2.1. Process Error Model 
Process error was added to the deterministic process dynamics (Equation 4). The process error 
model related the dynamics of exploitable biomass to natural variability in demographic and 
environmental processes affecting populations of BMUS. The deterministic process dynamics 
were subject to natural variation due to fluctuations in life history parameters, trophic 
interactions, environmental conditions, and other factors. In this case, the process error 
represented the joint effects of many random multiplicative events which combined to form a 
multiplicative lognormal process under the Central Limit Theorem. As a result, the process error 
terms were set to be independent and lognormally distributed random variables. 

The process error model defined the stochastic process dynamics by relating the unobserved 
biomass states to the observed catches and the estimated population dynamics parameters. Given 
the multiplicative lognormal process errors, the state equations for the initial year (t = 1) and 
subsequent years (t > 1) were 

Equation 9 
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where ηt were identically distributed normal random variables with mean 0 and constant process 
error variance 2

ησ . Separate process error variance was estimated for each territory. The coupled 
process dynamic equation set the prior distribution for the proportion of carrying capacity p(Pt) 
in each year t > 1, conditioned on the proportion of carrying capacity in the previous period. The 
proportion of carrying capacity in the initial year was assigned its own prior p(ψ), which is 
described in section 2.3.3. Prior Distributions. 

2.3.2.2. Observation Error Model 
An observation error model for the CPUE index was applied for each territory. The observation 
error model related the observed fishery CPUE to the exploitable biomass of each bottomfish 
stock. We assumed that the standardized fishery CPUE index (It) in year t was proportional to 
biomass with catchability coefficient q as 

Equation 10   = =q qt t tI B P K . 

Observation error was added to the deterministic index equation (Equation 10). The observed 
CPUE dynamics were subject to natural sampling variation which was assumed to be 
lognormally distributed. Given the lognormal observation errors, the observation equations for 
the CPUE index for each year t were 

Equation 11   =q tτ
t tI P Ke , 

where tτ  were identically distributed normal random variables with mean 0 and total observation 
error variance 2

tτσ . This specifies the CPUE observation error likelihood function p(It |θ) for each 
territory given model parameters and unobservable states θ. Separate observation errors were 
estimated for each territory.  

JABBA partitions the annual total observation error variance into three separate components 
following Francis et al. (2003). The three components were: 1) 2 ,

SEtτσ  the inter-annual variability 

in observation error inputted as the standard error on the scale of the logarithm of standardized 
CPUE in year t; 2) 2

fixedτσ , an optional user-provided component of observation error that is 

constant across all years, and 3) 2
estimatedτσ , an estimated observation error that is constant across all 

years. Consequently, total observation error variance for year y for each territory was 

Equation 12 2 2 2 2   = + +
t SE fixed estimatedtτ τ τ τσ σ σ σ . 

Total observation error typically ranges from 0.1 to 0.4 (Francis et al. 2003). For these 
assessments, we did not use the optional fixed component of observation error ( 2 0

fixedτσ = ), but 
rather allowed the model to estimate the total observation error variance.  

The previous stock assessment updates (Brodziak et al. 2012; Yau et al. 2016) and benchmark 
(Moffitt et al. 2007) assessments included an observation error model on fits to independent 
MSY estimates for each territories. These estimates were based on research conducted in the 
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Marianas (Polovina et al. 1985), and extended to include American Samoa, and were found in 
the Our Living Oceans (OLO) report by Humphreys and Moffitt (1999) and later Moffitt and 
Humphreys (2009). The methods used to estimate MSY were described in Polovina and Ralston 
(1986), and are a fishery-independent estimate which combines life history assumptions (von 
Bertalanffy growth, constant natural mortality, and constant recruitment) with data on length-
frequency, CPUE, and an estimate of catchability from an intensive fishing experiment. The 
results were extrapolated along pre-determined isobaths for each territory. The estimates of OLO 
MSY were 55,000 pounds, 172,000 pounds, and 75,000 pounds for Guam, CNMI, and American 
Samoa, respectively. 

Despite the OLO MSY estimates representing fishery-independent values which could inform 
parameter estimates for this set of stock assessments, no further documentation about the data or 
methods used to generate these OLO MSY estimates could be found. As such, these OLO MSY 
estimates were not used for fitting to data in the base case model for the current stock 
assessments. As described in the section below, the independent OLO MSY estimates were used 
to inform the mean value for the prior distribution of carrying capacity. The effect of including 
the independent OLO MSY estimates in data fitting was addressed as a sensitivity analysis, and 
the observation error model for this sensitivity is described in section 2.3.8. Sensitivity Analysis. 

2.3.3. Prior Distributions 
A Bayesian estimation approach was used to estimate production model parameters. Prior 
distributions were used to represent existing knowledge and beliefs about the likely values of 
model parameters. The intrinsic growth rate parameter r, the production shape parameter m, the 
carrying capacity parameter K, the ratio of initial biomass to carrying capacity parameter ψ, the 
catchability parameter q, and the process error 2

ησ  and the estimable component of observation 

error 2
estimatedτσ  variance parameters had prior distributions. Unobserved biomass states expressed 

as the proportion of carrying capacity were included in the joint prior distribution and were 
conditioned on the parameter estimates and the previous biomass as a proportion of carrying 
capacity and catch. A summary of assumed priors is found in Table 9. The effect of the choice of 
prior assumptions on model results was assessed through sensitivity analyses as described in 
section 2.3.8. Sensitivity Analysis. 

Prior for Intrinsic Growth Rate 

The prior distribution for intrinsic growth rate p(r) was a moderately informative lognormal 
distribution with mean (𝜇𝜇𝑟𝑟) and variance (𝜎𝜎𝑟𝑟2) parameters: 

Equation 13 ( ) ( )2
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As input for a lognormal prior on r, JABBA requires the user to enter the mean on the original 
scale, and the standard deviation on the scale of the natural logarithm. The value of the prior 
mean of the intrinsic growth rate parameter was set to μr = 0.46 for each territory and the prior 
variance value was set such that the coefficient of variation was 50%. The prior mean and 
variance values were the same used in the last update assessment; however, that assessment 
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assumed a beta distribution (Yau et al. 2016). JABBA does not use the beta distribution for r and 
so we used a lognormal distribution instead. A prior mean value of 0.46 is near the upper range of 
medium productivity species as suggested by Musick (1999), but is approximately the midpoint of 
the range (0.2–0.8) assumed by Froese et al. (2017) for medium resilient species. Medium 
categories were supported by values for age at maturity, maximum age, and the Brody growth 
coefficient for BMUS from an analysis of information available in FishBase (Froese and Pauly 
2018) by Thorson et al. (2017), and from resiliency categories in FishBase for the majority of 
BMUS.  

Prior for Production Shape Parameter 

The prior distribution for the production function shape parameter p(m) for Guam and American 
Samoa was a moderately informative lognormal distribution with mean ( mµ ) and variance ( 2

mσ ) 
parameters: 

Equation 14 ( ) ( )2
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JABBA parameterizes the m prior based on user input for BMSY/K, where m is determined from 
BMSY/K according to Equation 6. As input for the lognormal prior on m, JABBA requires the user 
to enter the mean of BMSY/K on the original scale, and the standard deviation of m on the scale of 
the natural logarithm. The prior mean of the production shape parameter was set to μm = 2 
(BMSY/K = 0.5) with a value of the variance for m set so that the coefficient of variation was 50%. 
This mean value for m corresponds to the value of m for a Schaefer production model, which was 
the assumed production function for the previous update assessment, and the choice of CV 
approximated a 95% confidence interval from 0.8 to 5. In effect, the production shape parameter 
prior was centered on the symmetric Schaefer production model as the default with flexibility to 
fit an asymmetrical production function.  

The production shape parameter for CNMI was fixed at 2, and thus was set to follow the 
Schaefer production function. We fixed the surplus production function to be a Schaefer for 
CNMI because the catch and CPUE data showed little contrast in comparison to data for Guam 
and American Samoa, and therefore we assumed that the model for CNMI would have difficulty 
estimating m. We tested the effect of our choice of fixing m through a sensitivity analysis for 
CNMI by allowing the model to estimate m from the prior distribution described above. This 
sensitivity analysis is described in section 2.3.8. Sensitivity Analysis. 

Prior for Carrying Capacity 

The prior distribution for carrying capacity p(K) was an informative lognormal distribution with 
mean ( Kµ ) and variance ( 2

Kσ ) parameters:  

Equation 15 ( ) ( )2
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As input for a lognormal prior on K, JABBA requires the user to enter the mean and coefficient 
of variation on the original scale. The values of the prior means of carrying capacity were set to 
μK = 478,261, 1,495,652, and 652,174 pounds for Guam, CNMI, and American Samoa, 
respectively. The prior variance was set for all territories so that the coefficient of variation was 
50%. The mean values were set following the same procedure as was used in the last benchmark 
assessment (Moffitt et al. 2007), which was to match the MSY calculated from the prior mean for 
intrinsic rate of growth, carrying capacity, and production shape parameter to the independent 
OLO MSY estimates for each territory as reported in Humphreys and Moffitt (1999). The 
independent OLO estimates of MSY were 55,000 pounds for Guam, 172,000 pounds for CNMI, 
and 75,000 pounds for American Samoa.   

Prior for Ratio of Initial Biomass to Carrying Capacity 

The prior distribution for the ratio of initial biomass to carrying capacity p(ψ) was a moderately 
informative lognormal distribution with mean ( ψµ ) and variance ( 2

ψσ ) parameters:  

Equation 16 ( ) ( )2
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As input for a lognormal prior on ψ, JABBA requires the user to enter the mean and coefficient 
of variation on the original scale. The values of the prior means of the ratio of initial biomass to 
carrying capacity were set to μψ = 0.75, 0.45, and 0.8 for Guam, CNMI, and American Samoa, 
respectively. The prior variance was set for all territories so that the coefficient of variation was 
50%. The mean values were identical to the values used in the previous update assessment, but 
the coefficient of variation was increased from 20% to 50%. The previous update assessment 
used the same values from the previous benchmark, which derived prior means from a grid 
search of a few K-ψ pairings. We did not do a similar grid search for the current assessment, but 
instead allowed greater flexibility in the prior distribution for both K and ψ by increasing CV to 
50%. 

Prior for Catchability 

The prior distribution for fishery catchability p(q) was chosen to be an uninformative uniform 
distribution on the interval [10-10, 10]. This diffuse prior was chosen to allow the data and model 
structure to completely determine the distribution of fishery catchability estimates.  

Prior for Variability Around Catch 

An informative prior was used to incorporate annual variability in catch in year t into model 
estimates. The prior distribution for catch uncertainty p(Ct) was an informative lognormal 
distribution with mean (

tCµ ) and variance ( 2
tCσ ) parameters:  
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The mean parameter was set to the value of catch in each year and variance was set to match the 
coefficient of variation in each year from the bootstrapped catch estimates, which were 
calculated as described in section 2.1.2. Catch Variance. The catch variation prior was chosen to 
propagate uncertainty inherent in the expansion of interview data to total catch into the estimation 
of sustainable harvest rates and biomasses. In effect, including in the model variation around 
catch estimates accounts for uncertainty in the data for total catch. 

Priors for Error Variances 

The prior distributions for the process error p( 2
ησ ) and the estimated component of the 

observation error p( 2
estimatedτσ ) were chosen to be moderately informative inverse-gamma 

distributions with rate parameter λ > 0 and shape parameter k > 0:  

Equation 18 ( )
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where x represents either η  or estimatedτ . The inverse-gamma distribution is a useful choice for 
priors that describe model variances (Congdon 2001). For the process and estimated observation 
error variance priors, the rate parameter was set to λ = 0.1 and the shape parameter was k = 0.2. 
These values followed the same process for determining prior parameters values as was done in 
the last update assessment (Yau et al. 2016), and were identical to the values used for the process 
error prior. For this choice of parameters, the expected value of the inverse-gamma distribution is 
not defined, and the mode for 2

xσ  denoted as MODE[ 2
xσ ] = 1/12 ≈ 0.083 provides an alternative 

measure of the central tendency of the distribution. The choice of the process error prior matched 
the expected scaling of process errors for the state equations describing changes in the proportion 
of carrying capacity (Equation 9), which was on the order of 0 to 1. Similarly, the choice of the 
observation error prior matched the expected scaling of observation errors for the observation 
equation describing the model fit to observed CPUE (Equation 11). The observation error prior 
was based on CPUE and corresponding standard error values on the scale of the logarithm, 
which were on the order of 0 to 1. The central tendency of 0.083 for the process error is higher 
than the level of process error where state-space surplus production models are most likely to 
adequately perform, e.g., have lower model errors (Thorson et al. 2014), but is similar to or 
lower than the errors used in the last benchmark and update assessments. 

2.3.4. Posterior Distribution 
Independent samples from the joint posterior distribution of the surplus production model were 
numerically simulated to estimate model parameters and make inferences. The joint posterior 
distribution of model parameters and unobservable states θ given the data D, p(θ|D), was 
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proportional to the product of the priors of the parameters and unobservable states, and the joint 
likelihood of the CPUE data across all n years: 

Equation 19 
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Parameter estimation for multi-parameter and nonlinear Bayesian models, such as those used in 
this assessment, is typically based on simulating a large number of independent samples from the 
posterior distribution (Gelman et al. 1995). JABBA uses MCMC simulation (Gilks et al. 1996) to 
numerically generate samples from the posterior distribution.  

MCMC simulations were done for each territory. Initial starting conditions of the MCMC chains 
were randomly drawn from their respective prior distributions. Two chains of 300,000 samples 
each were then simulated from the posterior distribution. The first 60,000 samples of each 
simulated chain for CNMI, and the first 75,000 samples of each simulated chain for Guam and 
American Samoa were excluded from the estimation process to remove dependence of the 
MCMC chain on the initial conditions and to ensure stationarity of the remaining samples in the 
chain. Each chain was then thinned by 5 to reduce autocorrelation (e.g., every fifth sample from 
the posterior distribution was stored and used for inference). As a result, a total of 96,000 
samples for CNMI, and a total of 90,000 samples for Guam and American Samoa were available 
to summarize model results.  

Prior distributions and estimated posterior distributions were compared to show whether the 
catch and standardized CPUE data were informative for estimating model parameters. This 
comparison included the priors and posteriors for the following model parameters: intrinsic 
growth rate, production shape, carrying capacity, ratio of initial biomass to carrying capacity, 
catchability, estimable observation error variance, and process error variance. Posteriors of the 
derived quantities MSY, BMSY, and HMSY were also compared to their respective derived prior 
distributions.  

2.3.5. Convergence and Model Diagnostics 
Convergence of the simulated MCMC samples to the posterior distribution was assessed via 
visual inspection of the trace and autocorrelation plots, and confirmed using the Geweke 
convergence diagnostic (Geweke 1992), and the Heidelberger and Welch stationarity and half-
width diagnostics (Heidelberger and Welch 1992). The set of convergence diagnostics were 
applied to key model parameters (intrinsic growth rate, production function shape parameter, 
carrying capacity, ratio of initial biomass to carrying capacity, catchability coefficients, and error 
variances) to verify convergence of the MCMC chains to the posterior distribution. 

Residuals from the base case model fit to CPUE were used to measure the goodness of fit of the 
production model. These log-scale observation errors εi,T of observed minus predicted CPUE 
were 
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Equation 20 ( ) ( ), ,= −ln lni T i T i Tε I q KP . 

Nonrandom patterns in the CPUE residuals would suggest that the observed CPUE may not have 
conformed to one or more model assumptions. We tested normality of the log-scale residuals 
using the Shapiro-Wilk test, patterns in the sign of the residuals using a runs test, and trend in the 
residuals by assessing if the slope of a regression of the residuals over time was significantly 
different than zero. All residuals tests were done using a p-value of 0.05.  

2.3.6. Retrospective Analysis 
A retrospective analysis was conducted to assess whether there were consistent patterns in 
model-estimated outputs based on decreasing periods of data (Mohn 1999). The retrospective 
analysis was conducted by successively removing the catch and CPUE data for years 2017 to 
2013 in one-year increments such that the terminal years of the model ranged from 2016 to 2012, 
re-estimating model parameters, and comparing the resulting biomass and harvest rate time 
series with the model with all data included. The magnitude of the retrospective pattern was 
assessed using Mohn’s rho (ρ; Mohn 1999), which computes relative patterns of deviations with 
respect to a base case model: 

Equation 21 ( ) ( )
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where y1 = the start year of data for each territory and y2 = 2017, spanning the full data set of the 
base case model; X indicates either exploitable biomass or harvest rate, and y indicates the 
terminal year for each retrospective refitting (i.e., y from 2012 to 2016). 

2.3.7. Catch Projections 
Estimated posterior distributions of base case assessment model parameters were used in forward 
projections for 2020–2025 to estimate the probability of overfishing, P*, from 2020 to 2025 
under alternative future catches. The projection results accounted for uncertainty in the 
distribution of estimates of model parameters from the posterior of the base case model.  

The projections were conducted assuming each value for the future catch was constant through 
all projection years. The projected total catch scenarios ranged from 0 to 200,000 lb in 1000-lb 
increments for Guam and American Samoa, and 0 to 500,000 lb in 1000-lb increments for 
CNMI. To move the model forward to the starting year of projections, total catches from 2018 to 
2019 were set equal to the average catch value from 2015 to 2017. Projections were used to 
compute reported catches for 2020–2025 that would produce probabilities of overfishing varying 
from 0% to 50% at 1% intervals. The future catch corresponding to a 50% risk of overfishing can 
be considered the overfishing limit (OFL). Other quantities of interest were also calculated, 
including corresponding relative biomass (B/BMSY), stock status, and risks of overfishing and 
overfished status. 

2.3.8. Sensitivity Analysis 
A suite of sensitivity analyses were conducted to evaluate how the base case model results would 
be affected if different assumptions were made regarding model structure, prior distributions, 
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data sources, and initial conditions. The initial conditions and of the MCMC sampler for the 
sensitivities were kept the same as for the base case, except where otherwise noted. Scenarios for 
sensitivity analyses are described below and in Table 10. 

Sensitivity to alternative prior distribution for intrinsic growth rate 

The sensitivity of base case model results to the prior distribution for intrinsic growth rate was 
evaluated by fitting the model using four different prior distributions for r. The same sensitivities 
were done for each territory. In the first and second sensitivity, the prior mean for r was 
changed by ±50%, which corresponded to values µr = 0.23 (50% decrease in base case prior 
mean) and µr = 0.69 (50% increase in base case prior mean). In the third sensitivity, the prior 
mean for r was set to rµ = 0.33 and the prior variance value was set such that the coefficient of 
variation was 30%. A prior mean of 0.33 was the midpoint of the probable range of r (0.16–0.5) 
recommended by Musick (1999) for medium productivity stocks and a CV of 30% produced a 
95% confidence interval that approximated the suggested range. In the fourth sensitivity, the prior 
distribution for r was set by supplying a lower and upper range for r values of 0.015 and 0.8, 
respectively. The model assumes a lognormal distribution with prior mean set to the geometric 
mean of the range values, and standard deviation set to approximate a 95% confidence interval at 
the range values (Winker et al. 2018). The resulting values from this sensitivity were a prior mean 
value of 0.15 and CV of 115%. The range of 0.015 and 0.8 reflected the range of r values for very 
low to medium resiliency categories provided in Froese et al. (2017) based on resiliency from 
FishBase across all BMUS. Altogether, the sensitivity analyses addressed whether the choice of 
the base case prior distribution for r had a strong influence on model results. 

Sensitivity to alternative prior distribution for production model shape parameter 

The sensitivity of base case model results to the prior distribution for the production model shape 
parameter m was evaluated by fitting the model using four different prior distributions for m for 
Guam and American Samoa, and fitting the model using a single different prior distribution for 
m for CNMI. In the first and second sensitivities for Guam and American Samoa, the prior mean 
for m was changed by ±50%, which corresponded to values µm = 1 (50% decrease in base case 
prior mean) and µm = 3 (50% increase in base case prior mean). In the third sensitivity for Guam 
and American Samoa, the prior mean for m was set to 0.92 with a CV of 80%. This prior mean 
was calculated from the average ratio of biomass at maximum sustainable yield to carrying 
capacity for Perciformes (BMSY/K = 0.353) from an analysis of 147 stocks (Thorson et al. 2012). 
The production shape parameter prior mean was calculated from BMSY/K following Equation 6 
which yields m = 0.92 for BMSY/K = 0.353. Thorson et al. (2012) present a coefficient of variation 
for BMSY/K of 34%, but because JABBA requires a CV for m, the prior variance value for m was 
set such that the coefficient of variation was 80%, which approximates a CV of 34% for BMSY/K. 
In the fourth sensitivity for Guam and American Samoa, a Schaefer surplus production curve 
was assumed, thereby fixing the prior mean for m at 2.  

The sole sensitivity for CNMI assumed the base case assumptions from Guam and American 
Samoa, that is the prior mean was set to m = 2 and the variation was set so that the coefficient of 
variation was 50%. Essentially, the sensitivity was that instead of setting m = 2 and thereby 
assuming a Schaefer production function, a Pella-Tomlinson model was used with the prior 
distribution equivalent to the distribution assumed for the base case models for Guam and 
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American Samoa. Altogether, the sensitivity analyses addressed whether the choice of the base 
case prior distribution for m had a strong influence on model results. 

Sensitivity to alternative prior distribution for carrying capacity 

The sensitivity of base case model results to the prior distribution for carrying capacity was 
evaluated by fitting the model using four different prior distributions for K for each territory. In 
the first and second sensitivity, the prior mean for K was changed by ±50%, which corresponded 
to values µK = 239,130 pounds (50% decrease in base case prior mean) and µK = 717,391 pounds 
(50% increase in base case prior mean) for Guam; µK = 747,826 pounds (50% decrease in base 
case prior mean) and µK = 2,243,478 pounds (50% increase in base case prior mean) for CNMI, 
and µK = 326,087 pounds (50% decrease in base case prior mean) and µK = 978,261 pounds 
(50% increase in base case prior mean) for American Samoa. In the third sensitivity, the 
coefficient of variation for the prior distribution for K was decreased to 20%. In the fourth 
sensitivity, the prior distribution for K was set by supplying a lower and upper range for K values 
of 

Equation 22 ( )2  
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where rhigh = 1.16 and rlow = 0.18 were the upper and lower 95% confidence intervals from the 
base case prior distribution for intrinsic rate of growth. Equation 22 was based on 
recommendations from Froese et al. (2017) for lightly exploited populations, as suggested by the 
previous update assessment (Yau et al. 2016). The maximum total catch in the base case was 
68,251 pounds for Guam, 176,129 pounds for CNMI, and 90,689 for American Samoa. 
Consequently, the range of K values in pounds was (117,674 and 4,550,067) for Guam, (303,671 
and 11,741,933) for CNMI, and (156,360 and 6,045,933) for American Samoa. The model 
assumes a lognormal distribution with prior mean set to the geometric mean of the range values, 
and standard deviation set to approximate a 95% confidence interval at the range values (Winker 
et al. 2017). Altogether, the sensitivity analyses addressed whether the choice of the base case 
prior distribution had a strong influence on model results. 

Sensitivity to alternative prior distribution for ratio of initial biomass to carrying capacity 

The sensitivity of base case model results to the prior distribution for the ratio of initial biomass 
to carrying capacity was evaluated by fitting the model using six different prior distributions for 
ψ for each territory. In the first and second sensitivity, the prior mean for ψ was changed by 
±50%, which corresponded to values µψ  = 0.375 (50% decrease in base case prior mean) and µψ  
= 1.5 (50% increase in base case prior mean) for Guam; µψ = 0.225 (50% decrease in base case 
prior mean) and µψ  = 0.9 (50% increase in base case prior mean) for CNMI, and µψ  = 0.4 pounds 
(50% decrease in base case prior mean) and µψ  = 1.6 (50% increase in base case prior mean) for 
American Samoa. In the third sensitivity, the coefficient of variation for ψ from the previous 
update assessment was used, which was 20%. In the fourth and fifth sensitivities, the prior 
distribution for ψ was set by supplying a lower and upper range for ψ values of 0.2–0.6 and 0.5–
0.9, respectively. The model assumes a lognormal distribution with prior mean set to the 
geometric mean of the range values, and standard deviation set to approximate a 95% confidence 
interval at the range values (Winker et al. 2017). The resulting values for the lognormal 
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distribution for ψ in the fourth and fifth sensitivity were 0.35 and 0.67 for the prior means, 
respectively, with variance values such that the CVs were 28% and 15%, respectively. The ranges 
0.2–0.6 and 0.5–0.9 reflected the range of ψ values for species with medium and high prior 
biomasses, respectively, as assumed by Froese et al. (2017). Both ranges were used although 
Froese et al. (2017) suggest medium biomass be used for stocks such as ours where the catch data 
starts after 1960. In the sixth sensitivity, the prior distribution was changed to a beta distribution 
with shape parameters α = 1.5 and β = 1.5. These values for the shape parameters corresponded to 
a beta distribution centered at 0.5 and spread across its domain with sufficient probability to cover 
the range from 0 to 1, and therefore reproduces a uniform distribution, for which JABBA 
currently does not have functionality. Initial conditions for the MCMC chains for the beta 
sensitivity were changed to come from the beta distribution. This was done to reflect the change 
in domain when going from a lognormal distribution to a beta distribution. Altogether, the 
sensitivity analyses addressed whether the choice of the base case prior distribution for ψ had a 
strong influence on model results. 

Sensitivity to alternative prior distribution for observation and process error variance 

The sensitivity of base case model results to the prior distributions for the estimated observation 
and process error variance was evaluated using three different prior distributions for 2

ησ  and 

separately for 2
estimatedτσ  for each territory. Sensitivities were done for each error variance 

separately. In the first and second sensitivity, the rate parameter λ of the inverse-gamma 
distribution was changed such that the prior mode, which equaled λ/(k+1), was decreased and 
increased an order of magnitude to 0.00833 and 0.833, respectively. Note that the value for the 
shape parameter k was 0.2. In the third sensitivity, a non-informative uniform prior distribution 
on the interval [0,10] was used for the standard deviation of process and estimated observation 
errors, as opposed to an inverse-gamma prior distribution on the error variances, as 
recommended by Gelman (2006). Initial conditions for the MCMC chains for the uniform 
sensitivity were changed to come from the uniform distribution. This was done to reflect the 
change in domain when going from an inverse-gamma distribution to a uniform distribution. 
Altogether, the sensitivity analyses addressed whether the choice of the base case prior 
distribution values and distribution for 2

ησ  and 2
estimatedτσ  had a strong influence on model results. 

Sensitivity to excluding variation around catch 

The sensitivity of excluding variability around the catch estimates was assessed using a single 
sensitivity. For this sensitivity, the variation around catch was removed from the model. In 
effect, this sensitivity analyses addressed whether including additional uncertainty in the catch 
time series had a strong influence on model results. 

Sensitivity to inclusion of OLO MSY estimates 

The sensitivity of base case model results to fitting model-estimated MSY to the independent 
OLO MSY estimates was evaluated. Estimates of OLO MSY for each territory were 75,000 
pounds for Guam, 172,000 for CNMI, and 55,000 pounds for American Samoa (Humphreys and 
Moffitt 1999). The independent estimates were added as an observation error model for model-
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estimated MSY. As such, this sensitivity explored the extent to which the independent estimates 
of OLO MSY affected the estimated model parameters and quantities.  

Observation error was added to the equation for calculating MSY (Equation 8), which became 

Equation 23 ·
1
111

1

−
− = − ⋅ −  

ξmrMSY Km
m m
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where ξ was a normally distributed random variable with mean 0 and error variance 2
msyσ . We 

assumed 2
msyσ  was fixed such that the coefficient of variation of the OLO MSY estimate was 

20%. The choice of 20% matches the assumptions made in the previous update and benchmark 
assessments for the independent OLO MSY estimates.  

Sensitivity to initial conditions 

The sensitivity of base case model results to the initial conditions used for the MCMC sampler 
was evaluated. In the base case, initial conditions were set using a single random draw from the 
prior distribution of each parameter. Consequently, for this sensitivity, the assessment model was 
rerun 10 times with different random seeds to allow for different initial conditions. The same 
random seeds were used for each chain.   
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3. Results for Assessment Model 

3.1. Convergence Diagnostics 
Convergence diagnostics indicated that the MCMC simulation to estimate the posterior 
distribution of production model parameters converged. The Geweke diagnostic test was passed 
for all parameters across all chains except for one chain of the ratio of initial biomass to carrying 
capacity for Guam. The Heidelberger and Welch stationarity and half-width diagnostic tests were 
passed by all of the parameters for both chains using all samples and using a ratio of half-width 
to sample mean of 0.1. Autocorrelation was low for all parameters. The highest lag-1 
autocorrelation was less than 0.013 for all parameters in models for all territories. Visual 
inspection of trace plots of parameters did not reveal convergence issues. Overall, convergence 
diagnostics suggested that the MCMC sampler for the base case assessment models converged to 
a stationary distribution for each. 

3.2. Assessment Model Diagnostics 
The predicted CPUE from the base case model provided a good fit to the standardized CPUE 
observations for all three territories (Figure 16, Figure 17, and Figure 18). Residuals (Figure 19 – 
Figure 21) were normal (p = 0.81 for Guam, p = 0.95 for CNMI, and p = 0.20 for American 
Samoa), did not exhibit patterns in sign (p = 0.31 for Guam, p = 0.66 for CNMI, and p = 0.98 for 
American Samoa), and did not exhibit temporal trend (p = 0.51 for Guam, p = 0.60 for CNMI, 
and p = 0.77 for American Samoa).   

Comparisons of assumed prior distributions and estimated posterior distributions showed that the 
priors were more informative or similarly informative relative to the information in the data for 
some model parameters and derived quantities than others, although the prior distributions for 
derived quantities MSY, BMSY, HMSY, and BMSY/K were not formally set but instead derived from 
the priors for r, K, and m. For Guam, the median posterior estimate of K was 12% greater than 
the median of the prior distribution, the median estimate of the shape parameter m was 13% 
lower than the median of the prior distribution, and the median estimate for ψ was 10% greater 
than the median of the prior distribution (Table 9; Table 11; Figure 22). The derived quantities 
BMSY and BMSY/K were estimated to be 6% greater and 5% lower than the median of the prior 
distributions, respectively (Figure 23). The prior was less similar to the posterior for the 
parameter r, which was estimated to be 36% lower than the median of the prior distribution 
(Table 9; Table 11), and for the derived quantities MSY and HMSY, which were estimated to be 
24% and 28% lower than the median of the prior distribution, respectively (Figure 23). For 
CNMI, the prior was most similar to the posterior for the parameter ψ, which was estimated to be 
6% greater than the median of the prior distribution (Table 9; Table 11; Figure 24). Prior 
distributions were less similar to the posterior for the parameters K and r, with estimates 24% 
and 27% lower than the median of the prior distribution, respectively (Table 9; Table 11; Figure 
24); and for the estimate of the derived quantity MSY (46% lower than the median of the prior 
distribution), BMSY (24% lower than the median of the prior distribution), and HMSY (27% lower 
than the median of the prior distribution) (Figure 25). For American Samoa, the prior was most 
similar to the posterior for the parameter ψ, which was estimated to be 11% lower than the 
median of the prior distribution (Table 9; Table 11; Figure 26), and for BMSY and BMSY/K, which 
were estimated to be 16% lower and 11% higher than the median of the prior distributions, 
respectively (Figure 27). The priors were less similar to the posteriors for the shape parameter m 
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(posterior estimate 33% greater than the median of the prior distribution), K (posterior estimate 
24% lower than the median of the prior distribution) and r (posterior estimate 39% lower than 
median of the prior distribution) (Table 9; Table 11; Figure 26). Priors were also less similar to 
the posteriors for the derived quantities MSY (posterior estimate 61% lower than prior median) 
and HMSY (estimate 53% lower than the median of the prior distribution; Figure 27). Posterior 
distributions for catchability, process error, and the estimable component of observation error for 
all territories were substantially different from prior distributions, which were chosen to be 
uninformative (Table 9; Table 11; Figure 22, Figure 24, and Figure 26). 

Parameter correlations aligned with expectations for a production model and therefore did not 
suggest problems with parameter estimation. For Guam, the greatest correlation (–0.73) occurred 
among carrying capacity K and catchability q (Figure 28) which both scale biomass to the 
relative CPUE index (Equation 10). Correlations among other parameters were less than 0.46 in 
magnitude. For CNMI, the highest correlation was –0.45 for the parameters K and r, with other 
correlations less than 0.40 in magnitude (Figure 29). For American Samoa, the greatest 
correlation was –0.60 for K and q, followed by m and r (0.47). Correlations among other 
parameters were less than 0.35 in magnitude (Figure 30). Total observation error (i.e., the sum of 
the uncertainty in the standardized CPUE estimates and the uncertainty estimated within the 
production model as described by Equation 12) averaged 0.084 and varied from 0.078 to 0.096 
among years for Guam (Figure 31), averaged 0.51 and varied from 0.41 to 0.94 for CNMI 
(Figure 32), and averaged 0.17 and varied from 0.165 to 0.175 for American Samoa (Figure 33). 
Only the average total observation error for American Samoa was within the range of 0.1 to 0.4 
suggested by Francis et al. (2003) as reasonable, with the estimate for Guam being slightly lower 
and the estimate for CNMI being higher. The larger observation error for the CNMI model was 
likely due to there being less contrast in the data compared to the models for Guam and 
American Samoa.  

3.3. Parameter Estimates and Stock Status 
Production model results included parameter estimates and stock status of bottomfish stocks for 
each territory relative to MSY-based reference points. Quantities of interest, including parameter 
estimates and time series of harvest rate and biomass were calculated from the median of their 
respective posterior distributions. Time series of the relative harvest rate (harvest rate in a given 
year compared to HCR, e.g., in 2017 the relative harvest rate was the ratio H2017/HCR) and relative 
biomass (biomass in a given year compared to BMSY, e.g., in 2017 the relative biomass was the 
ratio B2017/BMSY) were also calculated using the median of the posterior distributions of the ratios 
relative harvest rate and relative biomass to determine stock status.  

3.3.1. Guam 
Production model estimates indicated that HMSY was 17% and that BMSY was 248.8 thousand 
pounds of exploitable bottomfish with an associated MSY of 42.1 thousand pounds (Table 11). 
Median estimates of the MSY-based reference points of maximum sustainable yield for the catch 
(MSY) with 95% confidence interval, the harvest rate to produce maximum sustainable yield 
(HMSY) with 95% confidence interval, and the exploitable biomass to produce maximum 
sustainable yield (BMSY) with 95% confidence interval were 

1) MSY = 42.1 thousand pounds (29.3 – 65.5 thousand pounds) 
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2) HMSY = 17.0% (7.1% – 38.2%), and 
 
3) BMSY = 248.8 thousand pounds (107.1 – 636.8 thousand pounds). 

Bottomfish biomass exhibited a decline from 443 thousand pounds in 1982 to values below 
0.7 × BMSY starting in the early 1990s, increased in the early 2000s, varied between 180 and 228 
thousand pounds from 2004 through 2011, and declined to 143 thousand pounds in 2017 (Table 
12, Figure 34). The estimated harvest rate increased from 6% in 1982 to a peak of 42% in 2000, 
declined to 15% in 2002 and varied from 8% to 24% from 2003 through 2016, and was 11% in 
2017 (Table 12, Figure 34). 

Base case model results indicated that the BMUS stock in Guam was overfished from 1995–
2003, and in 2014–2017 which is the terminal year of these assessments (B2017/BMSY = 0.57; 
Table 12; Figure 34 and Figure 35). The BMUS stock in Guam was experiencing overfishing in 
1985, 1988, 1992–2003, 2006, 2009, 2011, 2013, and 2016, but not in 2017 (H2017/HCR = 0.81; 
Table 12; Figure 34; Figure 35). In 2017, there was a 70% probability that biomass exceeded the 
limit of 0.7 × BMSY and a 39% probability that the harvest rate exceeded HCR (Table 12; Figure 
35). As a result, BMUS in Guam was categorized as overfished but not experiencing overfishing 
in 2017. 

3.3.2. Commonwealth of the Northern Mariana Islands 
Production model estimates indicated that HMSY was 16.7% and that BMSY was 570.6 thousand 
pounds of exploitable bottomfish with an associated MSY of 93.6 thousand pounds (Table 11). 
Median estimates of the MSY-based reference points of maximum sustainable yield for the catch 
(MSY) with 95% confidence interval, the harvest rate to produce maximum sustainable yield 
(HMSY) with 95% confidence interval, and the exploitable biomass to produce maximum 
sustainable yield (BMSY) with 95% confidence interval were 

1) MSY = 93.6 thousand pounds (48.8 – 205.3 thousand pounds) 

2) HMSY = 16.7% (8.4% – 31.5%), and 

3) BMSY = 570.6 thousand pounds (271.8 – 1,287.0 thousand pounds). 

Bottomfish biomass exhibited a decline from 528 thousand pounds in 2000 to 311 thousand 
pounds in 2008, increased to 465 thousand pounds in 2012, and was 569 thousand pounds in 
2017 (Table 13; Figure 36). The estimated harvest rate decreased from 36% in 2000 to 5% in 
2003, varied from 8% to 31% from 2004 through 2013 before declining to 2% in 2015, and was 
12% in 2017 (Table 13; Figure 36). 

Base case model results indicated that the BMUS stock in CNMI was overfished from 2005 – 
2009, but not in subsequent years, including 2017 (B2017/BMSY = 1.08; Table 13; Figure 36; 
Figure 37). The BMUS stock in CNMI was experiencing overfishing in 2000-2001, 2004-2005, 
2007, 2009-2010, and 2012, but not in 2017 (H2017/HCR = 0.79; Table 13; Figure 36; Figure 37). 
In 2017, there was a 24% probability that biomass exceeded the limit of 0.7*BMSY and a 41% 
probability that the harvest rate exceeded HCR (Table 13; Figure 37). As a result, BMUS in 
CNMI was categorized as not overfished and not experiencing overfishing in 2017. 
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3.3.3. American Samoa 
Production model estimates indicated that HMSY was 10.7% and that BMSY was 272.8 thousand 
pounds of exploitable bottomfish with an associated MSY of 28.8 thousand pounds (Table 11). 
Median estimates of the MSY-based reference points of maximum sustainable yield for the catch 
(MSY) with 95% confidence interval, the harvest rate to produce maximum sustainable yield 
(HMSY) with 95% confidence interval, and the exploitable biomass to produce maximum 
sustainable yield (BMSY) with 95% confidence interval were 

1) MSY = 28.8 thousand pounds (16.4 – 55.9 thousand pounds) 

2) HMSY = 10.7% (4.4% – 22.8%), and 

3) BMSY = 272.8 thousand pounds (120.8 – 687.4 thousand pounds). 

Bottomfish biomass exhibited a decline from 335.9 thousand pounds in 1986 to 229.7 thousand 
pounds in 1991, increased to about 285–300 thousand pounds in the late 1990s, and declined to a 
low of 102.6 thousand pounds in 2017 (Table 14; Figure 38). The estimated harvest rate 
decreased from 27% in 1986 to 5% in 1993, varied from 6% to 15% from 1994 through 2007, 
and varied from 7% to 24% from 2008 through 2016, and was 15% in 2017 (Table 14 ; Figure 
38). 
 
Base case model results indicated that the BMUS stock in American Samoa was overfished from 
2006 – 2017 (B2017/BMSY = 0.38; Table 14; Figure 38; Figure 39). The BMUS stock in American 
Samoa was experiencing overfishing in 1986, 1988–1989, 1994-1995, 1997, 2001–2017 
(H2017/HCR = 2.75; Table 14; Figure 38; Figure 39). In 2017, there was a 91% probability that 
biomass exceeded the limit of 0.7*BMSY and an 85% probability that the harvest rate exceeded 
HCR (Table 14; Figure 39). As a result, BMUS in American Samoa was categorized as 
overfished and experiencing overfishing in 2017. 

3.4. Retrospective Analysis 
3.4.1. Guam 
Retrospective analysis of the estimated biomass and harvest rate from the assessment model for 
Guam indicated that the model outputs did not exhibit substantial retrospective patterns (Figure 
40). The retrospective pattern for biomass in the most recent 5 years was positive (ρ = 0.3) with 
terminal biomass estimates overestimating biomass compared to the base case model by about 
6% on average as each year of data was removed (Figure 40). In other words, adding additional 
years of data to the model resulted in lower terminal biomass estimates. The opposite is true for 
biomass estimates early in the time series; adding additional years of data resulted in higher 
biomass before 2012. The corresponding pattern for harvest rates was negative (ρ = –0.43), 
representing an underestimate of harvest rate by about 8.5% on average as each year of data was 
removed (Figure 40). In other words, adding additional years of data to the model resulted in 
slightly higher terminal year harvest rate estimates.  

3.4.2. Commonwealth of the Northern Mariana Islands 
Retrospective analysis of the estimated biomass and harvest rate from the assessment model for 
CNMI indicated that the model outputs did not exhibit substantial retrospective patterns (Figure 
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41). The retrospective pattern for biomass in the most recent 5 years was negative (ρ = –0.25), 
indicating that the terminal year biomass estimate increased by about 5% on average as each new 
year of data was added (Figure 41). The corresponding pattern for harvest rates was positive (ρ = 
0.21), indicating that the terminal year harvest rate estimate decreased by about 4% on average 
as each new year of data was added (Figure 41). 

3.4.3. American Samoa 
Retrospective analysis of the estimated biomass and harvest rate from the assessment model for 
American Samoa indicated that the model outputs did not exhibit retrospective patterns (Figure 
42). The retrospective pattern for biomass in the most recent 5 years was negative (ρ = –0.014) 
with an increase in terminal year biomass estimates by about 0.3% on average as each new year 
of data was added (Figure 42). The corresponding pattern for harvest rates was positive (ρ = 
0.080), representing a decrease in terminal year harvest rate by about 1.6% on average as each 
new year of data was added (Figure 42). 

3.5. Catch Projections 
3.5.1. Guam 
The constant 6-year catch projection scenarios showed the distribution of outcomes for 
probability of overfishing, biomass, harvest rates, and probability of being overfished that would 
likely occur under alternative catch levels in Guam during 2020–2025 (Table 15; Table 16; 
Figure 43; Figure 44). Projections indicated that the Guam bottomfish catch that would produce 
approximately a 50% chance of overfishing in any year from 2020 through 2025 was 36 
thousand pounds when for each terminal projection year catch was constant in all projection 
years preceding it (Table 15; Figure 44). For comparison, the catch that would lead to roughly a 
40% chance of overfishing in any given year from 2020 to 2025 was between 30 and 32 
thousand pounds (Table 15; Figure 44). The reported catch to achieve a lower risk of overfishing 
(e.g., 25% chance of overfishing) in any year from 2020 through 2025 varied from 20 to 25 
thousand pounds depending on the terminal projection year (Table 16). 

3.5.2. Commonwealth of the Northern Mariana Islands 
The constant 6-year catch projection scenarios showed the distribution of outcomes for 
probability of overfishing, biomass, harvest rates, and probability of being overfished that would 
likely occur under alternative catch levels in CNMI during 2020–2025 (Table 17; Table 18; 
Figure 45; Figure 46). Projections indicated that the CNMI bottomfish catch that would produce 
approximately a 50% chance of overfishing in any year from 2020 through 2025 was between 95 
and 109 thousand pounds when for each terminal projection year catch was constant in all 
projection years preceding it (Table 17; Figure 46). For comparison, the smallest catch that 
would lead to roughly a 40% chance of overfishing in any given year from 2020-2025 was 
between 83 and 92 thousand pounds (Table 17; Figure 46). The reported catch to achieve a lower 
risk of overfishing (e.g., 25% chance of overfishing) in any year from 2020 through 2025 varied 
from 65 to 67 thousand pounds depending on the terminal projection year (Table 18). 

3.5.3. American Samoa 
The constant 6-year catch projection scenarios showed the distribution of outcomes for 
probability of overfishing, biomass, harvest rates, and probability of being overfished that would 
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likely occur under alternative catch levels in American Samoa during 2020–2025 (Table 19; 
Table 20; Figure 47; Figure 48). Projections indicated that the American Samoa bottomfish catch 
that would produce approximately a 50% chance of overfishing in any year from 2020 through 
2025 was between 4 and 8 thousand pounds when for each terminal projection year catch was 
constant in all projection years preceding it (Table 19; Figure 48). For comparison, the smallest 
catch that would lead to roughly a 40% chance of overfishing in any given year from 2020-2025 
was between 2 and 5 thousand pounds (Table 19; Figure 48). The reported catch to achieve a 
lower risk of overfishing (e.g., 25% chance of overfishing) from 2020 through 2025 varied from 
0 to 2 thousand pounds (Table 20). 

3.6. Sensitivity Analyses 
Sensitivity of model results varied depending on which parameters or model assumptions were 
assessed, and which model result was being compared. Model results for all three territories were 
sensitive to assumed prior distributions for the parameters r, K, m, ψ, and the inclusion of 
independent OLO MSY estimates to varying degrees. Results for CNMI exhibited greater 
sensitivity to starting conditions compared to Guam and American Samoa, while results for 
Guam and American Samoa exhibited greater sensitivity to the shape of the production curve 
compared to CNMI. Model results were less sensitive to assumed prior distributions for 
observation and process variances. None of the results was sensitive to exclusion of variation in 
catch estimates.  

Several sensitivity scenarios resulted in changes in the status for H2017/HCR or B2017/BMSY for 
Guam and CNMI. These sensitivity scenarios included scenarios for m and ψ for Guam, and r 
and ψ for CNMI. Status for H2017/HCR or B2017/BMSY did not change for American Samoa in any 
scenario. Further details on sensitivity analyses are provided below and summarized for Guam 
(Table 21), CNMI (Table 22), and American Samoa (Table 23). 

3.6.1. Sensitivity to Alternative Prior Distribution for Intrinsic Growth Rate 
Model results for Guam were sensitive to assumed mean prior values for intrinsic growth rate 
(Table 21; Figure 49). Assuming a lower prior mean parameter for r resulted in increased 
estimates of biomass and reduced harvest rate estimates (Figure 49). When the prior mean 
parameter for r was changed by –50% and 50%, the posterior estimate for r changed by –30% 
and 23%, respectively (Table 21). The model compensated for changes in the mean prior for r 
with estimates of K that were inversely related and estimates of m that were directly related 
(Table 21). Reducing the prior mean parameter for r to 0.15 while increasing the CV to 115% 
resulted in a 48% reduction in the estimate of r, with the estimate of K increasing by 41% and m 
decreasing by 22% (Table 21). This scenario represented the most substantial changes to 
estimated biomass and harvest rate among the r sensitivity scenarios (Figure 49). None of the r-
prior sensitivity scenarios resulted in a change in status for B2017/BMSY or H2017/HCR for Guam 
(Table 21; Figure 49). 

Model results for CNMI were highly sensitive to assumed mean prior values for intrinsic growth 
rate (Table 22; Figure 50). Assuming a lower prior mean for r resulted in increased estimates of 
biomass but lowered the relative biomass, and reduced harvest rate estimates but increased the 
relative harvest rate (Figure 50). When the prior mean parameter for r was changed by –50% and 
50%, the posterior estimate for r changed by –32% and 21%, respectively (Table 22). The model 
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compensated for changes in the mean prior for r with estimates of K that were inversely related 
(Table 22). Reducing the prior mean parameter for r to 0.15 while increasing the CV to 115% 
resulted in a 52% reduction in the estimate of r, with the estimate of K increasing by 41% (Table 
22) and the most substantial changes to estimated biomass and harvest rate among the r 
sensitivity scenarios (Figure 50). The sensitivity scenarios with a large decrease in the prior 
mean parameter for r (decrease of 50% and decrease to 0.15) changed the status for H2017/HCR 
from not overfishing to overfishing for CNMI (Table 22; Figure 50). 

Model results for American Samoa were sensitive to assumed mean prior values for intrinsic 
growth rate (Table 23; Figure 51). Assuming a lower prior mean for r resulted in increased 
estimates of biomass and reduced harvest rate estimates (Figure 51). When the prior mean 
parameter for r was changed by –50% and 50%, the posterior estimate for r changed by –36% 
and 28%, respectively (Table 23). The model compensated for changes in the mean prior for r 
with estimates of K that were inversely related and estimates of m that were directly related 
(Table 23). Reducing the prior mean parameter for r to 0.15 while increasing the CV to 115% 
resulted in a 64% reduction in the estimate of r, with the estimate of K increasing by 43% and the 
estimate of m decreasing by 28% (Table 23). This scenario represented the most substantial 
changes to estimated biomass and harvest rate among the r sensitivity scenarios (Figure 51). 
None of the r-prior sensitivity scenarios resulted in a change in status for B2017/BMSY or 
H2017/HCR for American Samoa (Table 23; Figure 51). 

3.6.2. Sensitivity to Alternative Prior Distribution for Production Model Shape Parameter 
Model results for Guam were highly sensitive to the assumed prior for the shape parameter. 
When the prior mean parameter for m was changed by –50% and 50%, the posterior estimates 
changed by –46% and 48%, respectively (Table 21). Increasing the CV of the m prior from 50% 
to 100% resulted in a 17% decrease in the posterior estimate of m (Table 21). Estimates of 
biomass and relative harvest rate were directly related to the assumed prior mean for m, whereas 
harvest rates and relative biomass were inversely related to prior mean values for m (Figure 52). 
The use of a Schaefer surplus production model that assumes m was fixed at 2 resulted in similar 
estimates for biomass and harvest rate compared to the base case Pella-Tomlinson model (Figure 
52). Scenarios in which the prior mean parameter for m was reduced by 50% and to 0.92 with an 
80% CV resulted in changes in status for B2017/BMSY from overfished to not overfished for Guam 
(Table 21; Figure 52). The scenario in which the prior mean parameter for m was increased by 
50% resulted in change in status for H2017/HMSY from not overfishing to overfishing (Table 21; 
Figure 52). 

Model results for CNMI were not sensitive to the scenario that assumed a prior on m rather than 
setting m = 2. Although the estimate of m increased by 8% for this scenario (Table 22), estimates 
of biomass in 2017 increased slightly (3%) and estimates of harvest rate in 2017 decreased 
slightly (2%; Table 22; Figure 53). The m-prior sensitivity scenario did not result in a change in 
status for B2017/BMSY or H2017/HCR for CNMI (Table 22; Figure 53).  

Model results for American Samoa were sensitive to the assumed prior for the shape parameter. 
When the prior mean parameter for m was changed by –50% and 50%, the posterior estimates 
changed by –40% and 46%, respectively (Table 23). Increasing the CV of the m prior from 50% 
to 100% resulted in a 44% increase in the posterior estimate of m (Table 23). Estimates of 
biomass were directly related to the assumed prior mean for m, whereas harvest rates were 
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inversely related to prior mean values for m (Figure 54). The use of a Schaefer surplus 
production model that assumed m was fixed at 2 resulted in reduced estimates of biomass and 
increased estimates of harvest rate relative to the base case Pella-Tomlinson model (Figure 54).  
Estimates of HMSY increased and BMSY decreased when the prior mean parameter for m was 
reduced (Table 23). None of the m-prior sensitivity scenarios resulted in a change in status for 
B2017/BMSY or H2017/HCR for American Samoa (Table 23; Figure 54). 

3.6.3. Sensitivity to Alternative Prior Distribution for Carrying Capacity 
Model results for Guam were sensitive to assumed mean prior values for carrying capacity 
(Table 21; Figure 55). The sensitivity analysis indicated that estimates of exploitable biomass 
were scaled with the prior mean for K (Figure 55). Assuming a higher prior mean parameter for 
K resulted in greater estimates of biomass and reduced harvest rate estimates (Figure 55). The 
posterior estimates for r were inversely related to estimates of K and the posterior estimates of m 
were directly related to estimates of K (Table 21). When the mean prior parameter for K was 
changed by –50% and 50%, the posterior estimates for K changed by –27% and 28%, 
respectively (Table 21). Decreasing the CV of the K prior resulted in a 9% decrease in the 
estimate of K, and modeling the K prior as a range from 118 to 4,550 thousand pounds resulted 
in a 24% increase in the posterior estimate for K (Table 21). None of the K-prior sensitivity 
scenarios resulted in a change in status for B2017/BMSY or H2017/HCR for Guam (Table 21; Figure 
55). 

Model results for CNMI were sensitive to assumed mean prior values for carrying capacity 
(Table 22; Figure 56). The sensitivity analysis indicated that estimates of exploitable biomass 
were scaled with the prior mean for K (Figure 56). Assuming a higher prior mean parameter for 
K resulted in greater estimates of biomass and reduced harvest rate estimates (Figure 56). The 
posterior estimates for r were inversely related to estimates of K (Table 22). When the mean 
prior parameter for K was changed by –50% and 50%, the posterior estimates for K changed by –
36% and 34%, respectively (Table 22). Decreasing the CV of the K prior resulted in a 23% 
increase in the estimate of K, and modeling the K prior as a range from 303 to 11,741 thousand 
pounds resulted in a 14% decrease in the posterior estimate for K (Table 22). None of the K-prior 
sensitivity scenarios resulted in a change in status for B2017/BMSY or H2017/HCR for CNMI (Table 
22; Figure 56). 

Model results for American Samoa were sensitive to assumed mean prior values for carrying 
capacity (Table 23; Figure 57). The sensitivity analysis indicated that estimates of exploitable 
biomass were scaled with the prior mean for K (Figure 57). Assuming a higher prior mean 
parameter for K resulted in greater estimates of biomass and reduced harvest rate estimates 
(Figure 57). The posterior estimates for r were inversely related to estimates of K and the 
posterior estimate of m were directly related to estimate of K (Table 23). When the mean prior 
parameter for K was changed by –50% and 50%, the posterior estimates for K changed by –30% 
and 32%, respectively (Table 23). Decreasing the CV of the K prior resulted in a 24% increase in 
the estimate of K, and modeling the K prior as a range from 156 to 6,046 thousand pounds 
resulted in a 4% decrease in the posterior estimate for K (Table 23). None of the K-prior 
sensitivity scenarios resulted in a change in status for B2017/BMSY or H2017/HCR for American 
Samoa (Table 23; Figure 57). 
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3.6.4. Sensitivity to Alternative Prior Distribution for Ratio of Initial Biomass to Carrying 
Capacity 
Model results for Guam were sensitive to the assumed prior mean for ratio of initial biomass to 
carrying capacity. Estimates of biomass and harvest rate were very similar to the base case 
estimates for all ψ scenarios but estimates of relative biomass and relative harvest differed from 
base case values (Table 21; Figure 58). The sensitivity analyses indicated that posterior estimates 
of ψ changed by 9% and –17% when prior mean parameter for ψ was changed by 50% and -
50%, respectively (Table 21). The model assuming the prior mean parameter of ψ = 0.35 (95% 
CI of 0.2–0.6) had the largest effects on parameter estimates; the posterior estimate of K 
increased 16%, the posterior estimate of MSY decreased by 7%, H2017/HCR increased 48% and 
the status changed from not overfishing to overfishing for Guam (Table 21; Figure 58).  

Model results for CNMI were highly sensitive to the assumed prior mean for ratio of initial 
biomass to carrying capacity. Estimates of biomass were directly related to the assumed prior 
mean for ψ, whereas harvest rates were inversely related to prior mean values for ψ (Figure 59). 
When the mean prior parameter for ψ was changed by –50% and 50%, the posterior estimates of 
ψ changed by –42% and 32%, respectively (Table 22). The scenarios assuming a 50% reduction 
in the prior mean parameter for ψ resulted in a change in the estimate of status for B2017/BMSY 
from not overfished to overfished for CNMI (Table 22; Figure 59). The scenario assuming a 50% 
reduction in the prior mean parameter for ψ along with the scenario assuming the prior mean 
parameter of ψ = 0.35 (50% CI of 0.2–0.6) resulted in a change in status for H2017/HCR from not 
overfishing to overfishing for CNMI (Table 22; Figure 59).  

Model results for American Samoa were sensitive to the assumed prior mean for ratio of initial 
biomass to carrying capacity. Estimates of biomass were directly related to the assumed prior 
mean for ψ, whereas harvest rates were inversely related to prior mean values for ψ (Figure 60). 
When the mean prior parameter for ψ was changed by -50% and 50%, the posterior estimates 
changed by –31% and 13%, respectively (Table 23). None of the ψ-prior sensitivity scenarios 
resulted in a change in status for B2017/BMSY or H2017/HCR for American Samoa (Table 23; Figure 
60). 

3.6.5. Sensitivity to Alternative Prior Distribution for Process Error Variance 

Model results for Guam were not sensitive to the assumed prior for process error variance (Table 
21; Figure 61). Estimates of biomass and harvest rate for the sensitivity analyses differed by at 
most 9% and –8%, respectively from the base model and parameter estimates were very similar 
(Table 21; Figure 61). None of the process error sensitivity scenarios resulted in a change in 
status for B2017/BMSY or H2017/HCR for Guam (Table 21; Figure 61). 

Model results for CNMI were not sensitive to the assumed prior for process error variance. 
Estimates of biomass increased and estimates of harvest rate decreased for the scenario with the 
scale parameter for σ2 reduced by a factor of 10, with changes most noticeable in the middle of 
the data times series (i.e., the late 2000s; Figure 62). Neither scenario resulted in a change in 
status for B2017/BMSY or H2017/HCR for CNMI (Table 22; Figure 62). 

Model results for American Samoa were not sensitive to the assumed prior for process error 
variance. Estimates of biomass and harvest rate were very similar to the base case model, but 
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estimates of relative harvest rate in 2017 increased 18% for the scenario with the scale parameter 
for σ2 reduced by a factor of 10 (Table 23; Figure 63). Neither scenario resulted in a change in 
status for B2017/BMSY or H2017/HCR for American Samoa (Table 23; Figure 63). 

3.6.6. Sensitivity to Alternative prior Distribution for Observation Error Variance 

Model results for Guam were not sensitive to the assumed prior for observation error variance 
(Table 21; Figure 64). Estimates of biomass and harvest rate were similar between the base case 
model and the scenario when the prior mode of τ2 decreased by a factor of 0.1 (Figure 64). None 
of the observation error sensitivity scenarios resulted in a change in status for B2017/BMSY or 
H2017/HCR for Guam (Table 21; Figure 64). 

Model results for CNMI were not sensitive to the assumed prior for observation error variance. 
Changes in biomass and harvest rate were similar to those observed for the process error 
sensitivities; however, contrary to the process error sensitivities, biomass increased and harvest 
rate decreased when observation error was increased (Figure 65). Neither scenario resulted in a 
change in status for B2017/BMSY or H2017/HCR for CNMI (Table 22; Figure 65). 

Model results for American Samoa were not sensitive to the assumed prior for process error 
variance. Estimates of biomass and harvest rate were similar to the base case whether the prior 
mode for τ2 was decreased or increased by a factor of 10 (Figure 66). Neither scenario resulted in 
a change in status for B2017/BMSY or H2017/HCR for American Samoa (Table 23; Figure 66). 

3.6.7. Sensitivity to Uniform Prior for Observation and Process Error Standard Deviation 
Model results for Guam were not sensitive to assuming a uniform prior distribution for both 
observation and process error variances. Estimated biomass increased slightly and the estimated 
harvest rate decreased slightly for the scenario assuming uniform prior distributions (Figure 67). 
This sensitivity did not result in a change in status for B2017/BMSY or H2017/HCR for Guam (Table 
21; Figure 67). 

Model results for CNMI were sensitive to assuming a uniform prior distribution for both 
observation and process error variances. Estimates of biomass increased 10% and estimates of 
harvest rate decreased 10% for the scenario with the uniform prior distributions (Table 22; 
Figure 68). This sensitivity did not result in a change in status for B2017/BMSY or H2017/HCR for 
CNMI (Table 22; Figure 68). 

Model results for American Samoa were not sensitive to assuming a uniform prior distribution 
for both observation and process error variances. Similar to the sensitivity when decreasing the 
prior mode for process error variance, estimates of biomass decreased slightly and estimates of 
harvest rate increased for the scenario using uniform prior distributions (Figure 69). Neither 
scenario resulted in a change in status for B2017/BMSY or H2017/HCR for American Samoa (Table 
23; Figure 69). 

3.6.8. Sensitivity to Excluding Variability around Catch 
Model results for Guam were not sensitive to excluding variability around catch estimates. 
Estimates of model parameters K, r, m, and ψ from the model excluding catch variability were 
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within 2% of the base case estimates (Table 21). Changes in model results did not cause changes 
in status for B2017/BMSY or H2017/HCR for Guam (Table 21; Figure 70). 

Model results for CNMI were not sensitive to excluding variability around catch estimates based 
on median parameter estimates. Estimates of model parameters K, r, and ψ from the model 
excluding catch variability were within 3% of the base case estimates (Table 22). The greatest 
differences occurred for the estimates of the probability of overfishing and probability of being 
overfished, which changed by –15% and –5%, respectively (Table 22). Such decreases in the 
probability of being overfished or of overfishing indicate that removing variability around catch 
increased the certainty in estimating status, particularly given the small changes in relative 
biomass (1% increase) and relative harvest (2% decrease; Table 22). Plotting of the 95% CI also 
showed that variability in the estimate of harvest rate and H2017/HCR decreased when variability 
around catch was removed (Figure 71). Changes in model results did not cause changes in status 
for B2017/BMSY or H2017/HCR for CNMI (Table 22; Figure 71). 

Model results for American Samoa were not sensitive to excluding variability around catch 
estimates. Estimates of model parameters K, r, m, and ψ from the model excluding catch 
variability were within 2% of the base case estimates (Table 23). The greatest difference 
occurred for the estimate of H2017/HCR, which changed 5% (Table 23). Changes in model results 
did not cause changes in status for B2017/BMSY or H2017/HCR for American Samoa (Table 23; 
Figure 72). 

3.6.9. Sensitivity to Inclusion of OLO MSY Estimates 
Model results for Guam were not sensitive to including the independent OLO MSY estimate as a 
data point for the model to fit. Estimates of model parameters K, r, m, and ψ from the model with 
the OLO MSY estimate were within 6% of the base case estimates (Table 21). The estimate of 
MSY increased 9% from the base case model (Table 21). Estimates of biomass and harvest rate 
and status for B2017/BMSY or H2017/HCR were similar to the base case results for Guam (Table 21; 
Figure 73). 

Model results for CNMI were sensitive to including the independent OLO MSY estimate. 
Estimates of model parameters K, r, and ψ from the model with the OLO MSY estimate varied 
by 33%, 10%, and -14%, respectively from the estimates from the base case model (Table 22). 
The estimate of MSY increased by 50% from the base case model (Table 22). Estimates of 
biomass increased and estimates of harvest rate decreased when including the OLO MSY 
estimate (Figure 74). Status for B2017/BMSY and H2017/HCR did not change when including the 
OLO MSY estimate for CNMI (Table 22; Figure 74). 

Model results for American Samoa were sensitive to including the independent OLO MSY 
estimate. Estimates of model parameters K, r, m, and ψ from the model with the OLO MSY 
estimate varied by 56%, 21%, 12%, and -15%, respectively from estimates from the base case 
model (Table 23). The estimate of MSY increased by 82% from the base case model (Table 23). 
Estimates of biomass increased and estimates of harvest rate decreased when including the OLO 
MSY estimate (Figure 75). Status for B2017/BMSY and H2017/HCR did not change when including 
the OLO MSY estimate for American Samoa (Table 23; Figure 75). 
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3.6.10. Sensitivity to Initial Conditions 
Model results for Guam were not sensitive to initial conditions. Estimates of H2017/HCR varied 
from –2.6% to 1.6% relative to the base case results and estimates of B2017/BMSY varied from -
0.9% to 1.6% relative to the base case results (Figure 76). None of the scenarios with different 
random seeds resulted in a change in status for B2017/BMSY or H2017/HCR for Guam.  

Model results for CNMI were slightly sensitive to initial conditions. Estimates of H2017/HCR 
varied from –2.3% to 3.1% relative to the base case results and estimates of B2017/BMSY varied 
from –4.1% to 1.5% relative to the base case results (Figure 76). None of the scenarios with 
different random seeds resulted in a change status for B2017/BMSY or H2017/HCR for CNMI.  

Model results for American Samoa were not sensitive to initial conditions. Estimates of 
H2017/HCR varied from –1.4% to 4.4% relative to the base case results and estimates of 
B2017/BMSY varied from –2.1% to 0.8% relative to the base case results (Figure 76). None of the 
scenarios with different random seeds resulted in a change status for B2017/BMSY or H2017/HCR for 
American Samoa.  
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4. Discussion 

Several improvements relative to previous assessments for territorial bottomfish were 
incorporated into the 2019 benchmark assessments. The filtering procedure for CPUE data 
selected all creel survey interviews that reported using bottomfishing gear rather than selecting 
all interviews for which BMUS composed 50% or more of the catch, regardless of gear. This 
decision was made because we considered that it more accurately selected for bottomfish-
directed trips and accounts for our understanding that bottomfishing does not specifically target 
only BMUS. Furthermore, CPUE data filtering methods used in the assessments included zero or 
low BMUS catch records which were previously excluded through a selection of records with 
50% or more BMUS catch. For the 2019 benchmark stock assessments, we standardized CPUE 
data from non-expanded boat-based creel surveys for all territories, following the 
recommendation from the WPSAR review of the previous assessments (Franklin et al. 2015). 
The standardization included covariates likely to explain variation in CPUE that could 
reasonably be included for each territory.  

The 2019 benchmark assessments for bottomfish management unit species in American Samoa, 
CNMI, and Guam represent what we consider an improvement in analyses and data 
consideration over previous assessments through detailed evaluation of previously used 
assumptions and methods for data preparation and production model fitting. The quality and 
coverage of the creel surveys remain a concern for these assessments, but they remain the 
primary source of data that are available. We acknowledge that the benchmark assessments 
represent substantial changes from previous assessments in the scale, status, and projected 
catches of these important stocks, yet we believe the updated methods and modeling approach 
are robust and represent an improvement in methods from previous assessments. 

Stock status of BMUS for the territories of Guam, CNMI, and American Samoa was assessed 
based on reference points for overfishing (H/HCR > 1) and for being overfished (B/BMSY < 0.7). 
Guam was determined to be in an overfished state, and was not undergoing overfishing in 2017. 
CNMI was determined not to be undergoing overfishing, and was not in an overfished state in 
2017. American Samoa was determined to be both undergoing overfishing and in an overfished 
state in 2017, and neither biomass nor harvest rate were particularly close to the reference points.  

The status determinations from these 2019 benchmark assessments differed from the previous 
assessments for these territories, which determined that these stocks were not overfished nor 
were they undergoing overfishing as of 2015 (Yau et al. 2016). Not only did estimates of 
biomass and harvest rate change relative to the reference points, but the scaling of the absolute 
biomass estimates also changed in these 2019 benchmark assessments. In the 2016 assessments, 
estimated biomass exhibited no trend and fluctuated around 240 thousand pounds for Guam, 
1,200 thousand pounds for CNMI, and 600 thousand pounds for American Samoa (Yau et al. 
2016). For the 2019 benchmark assessments, estimated biomass exhibited more of a decline for 
Guam, but was scaled similarly to the 2016 assessment. Estimated biomass for CNMI in the 
2019 benchmark assessment exhibited little temporal trend, but was scaled at about one-third as 
great as the biomass estimates from the previous assessment. For American Samoa, biomass in 
most years was scaled at about one-half as great as the estimates from the 2016 assessment and 
exhibited a decline through time that was not evident in the 2016 assessment. The estimates of 
MSY for the 2019 benchmark assessments were also reduced relative to the 2016 assessments. 
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Previous estimates of MSY were 56 thousand pounds for Guam, 173 thousand pounds for CNMI, 
and 76 thousand pounds for American Samoa (Yau et al. 2016). For the 2019 benchmark 
assessments, the estimates of MSY were 42 thousand pounds for Guam, 94 thousand pounds for 
CNMI, and 29 thousand pounds for American Samoa. Estimates of MSY from the previous stock 
assessments were close to the independent OLO MSY values used as fitted data points. As 
previously stated, the independent estimates were 75 thousand pounds for Guam, 172 thousand 
pounds for CNMI, and 55 thousand pounds for American Samoa. 

For Guam, the catch that corresponded to 50% probability of overfishing through 6 years was 36 
thousand pounds. For CNMI, the catch that would produce a 50% probability of overfishing was 
95 thousand pounds. For American Samoa, the catch that would produce a 50% probability of 
overfishing was 8 thousand pounds. The catch values associated with a 50% probability of 
overfishing were greater than the observed landings in 2017 for Guam (16 thousand pounds) and 
for CNMI (70 thousand pounds). For American Samoa, the observed landings in 2017 totaled 16 
thousand pounds, which exceeded the catch that would produce a 50% probability of 
overfishing. 

The decreases in biomass and productivity found in these 2019 assessments relative to the 2016 
assessments are likely a function of several factors that are new for these assessments, including 
different CPUE data filters, re-estimation of the proportion of species groups that were 
comprised of BMUS, the exclusion of the independent OLO MSY estimates from the likelihood 
estimation, the use of a Pella-Tomlinson model structure for Guam and American Samoa, and 
different data choices for CNMI. The filtering of CPUE data and application of new BMUS 
proportions for species groups resulted in temporal patterns for CPUE for Guam and American 
Samoa that were different from those found in the 2016 assessments. The production model 
attributed a decline in biomass resulting from these decreasing trends to lower stock production 
relative to the 2016 assessments. Thus, the different temporal trends that resulted from the CPUE 
filtering procedure are likely a dominant contributing factor to the decrease in the estimated 
biomass and MSY relative to the 2016 assessments. 

The change in treatment of the independent estimates of MSY in the 2019 benchmark 
assessments, from use in the model estimation and informing the carrying capacity prior to only 
informing the carrying capacity prior, partially explained the difference in results between the 
2019 benchmark and 2016 assessments. Given the limited contrast in the CPUE time series that 
were used in the 2016 assessments, the independent estimates of MSY were likely important for 
determining the scale of biomass estimates. Productivity was estimated to be high in order for the 
production model to produce MSY estimates that matched the independent OLO estimates, and 
the estimates of the intrinsic rate of increase (r) were greater for the 2016 assessments compared 
to the 2019 benchmark assessments. Sensitivity analyses indicated that excluding the 
independent OLO estimates of MSY from model estimation partially explained the decline in the 
estimates of MSY and biomass relative to the 2016 assessments for CNMI (Figure 74) and 
American Samoa (Figure 75), but not for Guam (Figure 73). However, the scenario in which the 
independent OLO MSY estimate was included for American Samoa did not cause results to 
change sufficiently to cause a change in status for B/BMSY or H/HCR in 2017. A possible reason 
why Guam MSY and biomass estimates were less affected by the inclusion of the independent 
OLO estimate of MSY was that the base case model MSY estimate was more similar to the 
independent OLO MSY estimate than for the other territories and therefore adding the OLO 
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MSY estimates offered very little new information compared to the assessments for the other 
territories.  

The use of the Pella-Tomlinson model which includes a prior distribution and estimation of the 
shape parameter (m) for Guam and American Samoa also allowed for increased flexibility in the 
estimation of productivity for the 2019 benchmark assessments relative to the 2016 assessments. 
The 2016 assessments applied Schaefer models that forced maximum surplus production to 
occur at a biomass value one half of carrying capacity (K) by assuming the shape parameter was 
equal to 2. For Guam, the estimate of m was less than 2, indicating that maximum surplus 
production occurred at a biomass value less than K/2 and was greater than the production that 
would occur when m = 2 (Figure 15; Winker et al 2018). For American Samoa, the estimate of m 
was greater than 2, indicating that maximum surplus production occurred at a biomass value 
greater than K/2 and that estimated maximum surplus production was lower than the production 
that would occur when m = 2. However, sensitivity results indicated that the use of the Pella-
Tomlinson model only did not explain the changes in results for Guam (Figure 52) and American 
Samoa (Figure 54) relative to the 2016 assessments.  

The Pella-Tomlinson model was not applied to the CNMI model, primarily because of the 
limited amount of contrast in the catch and CPUE data over time for this territory. This lack of 
contrast remains a feature of the CNMI model, contributing both to high estimated observation 
error, and high uncertainty in the status of the stock. Given the use of the Schaefer model for 
CNMI, production model results were most sensitive to the assumed prior for the ratio of initial 
biomass to carrying capacity (ψ) rather than m, which was sensitive for the Pella-Tomlinson 
model results for Guam and American Samoa. The prior for ψ for the CNMI production model 
was influential in scaling the estimated biomass, and the sensitivity of base case model results to 
changes in ψ further suggest that the data for the CNMI model have limited information to 
inform model parameters related to model scale. In addition, variability around catch was higher 
for CNMI than for other territories, and influenced the certainty around estimates of harvest rate 
and relative harvest rate, suggesting variability around catch contributed in part to high 
uncertainty in overfishing status. All together, the overall certainty with which we could make 
conclusions about CNMI biomass and harvest rates was less than that for Guam and American 
Samoa. 
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6. Tables 

Table 1: List of bottomfish management unit species (BMUS) that are identified in the 
relevant Fishery Ecosystem Plan and that are used for the bottomfish assessments for 
Guam and the Commonwealth of the Northern Mariana Islands. 

 

Species name Common name Chamorro/Carolinian name 

Aphareus rutilans Rusty jobfish lehi/maroobw 

Caranx ignobilis Giant trevally mamulan/etam 

Caranx lugubris Black trevally tarakiton attelong/orong 

Etelis carbunculus Ruby snapper buninas agaga’/falaghal 
moroobw 

Etelis coruscans Flame snapper buninas/taighulupegh 

Lethrinus rubrioperculatus Redgill emperor mafute’/atigh 

Lutjanus kasmira Bluestripe snapper funai/saas 

Pristipomoides flavipinnis Yelloweye snapper buninas/falaghal-maroobw 

Pristipomoides sieboldii Von Siebold’s snapper buninas/- 

Pristipomoides zonatus Oblique-banded snapper buninas rayao amiriyu 
/falaghal-maroobw 

Pristipomoides auricilla Goldflag snapper buninas/falaghal-maroobw 

Pristipomoides filamentosus Pink snapper buninas/falaghal-maroobw 

Variola louti Lyretail grouper gadau matingon/bwele 
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Table 2: List of bottomfish management unit species (BMUS) that are identified in the 
relevant Fishery Ecosystem Plan and that are used for the bottomfish assessment for 
American Samoa.   

 

                                                 

1 E. carbunculus is now known to be comprised of two distinct, non-interbreeding lineages (Andrews et al. 2016). 
Both species occur in the Samoa Archipelago and were likely both captured by fishermen in the 1980s but reported 
as one species. 

Species name Common name Samoan name 

Aphareus rutilans Rusty jobfish palu-gutusiliva 

Aprion virescens Green jobfish asoama 

Caranx lugubris Black trevally tafauli 

Etelis carbunculus1 Ruby snapper palu malau 

Etelis coruscans Flame snapper palu-loa 

Lethrinus rubrioperculatus Redgill emperor filoa-paomumu 

Lutjanus kasmira Bluestripe snapper savane 

Pristipomoides flavipinnis Yelloweye snapper palu-sina 

Pristipomoides zonatus Oblique-banded snapper palu-ula, palu-sega 

Pristipomoides filamentosus Pink snapper palu-‘ena‘ena 

Variola louti Lyretail grouper papa, velo 
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Table 3: Annual total catch of bottomfish management unit species (BMUS) for Guam, 
the Commonwealth of the Northern Mariana Islands (CNMI), and American Samoa used 
as input into the stock assessments. Data are from the Western Pacific Fisheries 
Information Network, and are the greater of the sum of the boat-based and shore-based 
creel survey data, and the commercial purchase data. See section ‘2.1.1. Total Catch’ in 
the text for the description for how catch was calculated. 

Year 
Guam BMUS catch 

(1000 lb) 
CNMI BMUS catch 

(1000 lb) 
American Samoa BMUS 

catch (1000 lb) 
1982 27.357 - - 
1983 44.593 - - 
1984 52.018 - - 
1985 68.251 - - 
1986 29.560 - 90.689 
1987 37.000 - 23.763 
1988 50.455 - 44.718 
1989 47.796 - 33.426 
1990 37.223 - 14.885 
1991 42.767 - 17.637 
1992 46.714 - 12.559 
1993 53.233 - 11.611 
1994 54.128 - 28.817 
1995 35.031 - 30.866 
1996 51.242 - 28.713 
1997 28.032 - 39.928 
1998 29.480 - 22.593 
1999 47.084 - 17.282 
2000 66.447 176.129 23.913 
2001 46.427 77.861 42.301 
2002 21.727 34.006 31.657 
2003 29.835 20.119 21.039 
2004 25.236 76.132 17.622 
2005 29.046 57.854 14.541 
2006 34.917 35.294 15.569 
2007 18.186 57.995 22.359 
2008 34.249 22.908 32.965 
2009 40.735 74.587 40.446 
2010 26.544 67.944 11.978 
2011 54.062 30.203 24.569 
2012 19.714 140.631 7.688 
2013 30.243 29.229 19.740 
2014 20.554 13.889 20.352 
2015 11.711 11.281 29.511 
2016 30.192 59.774 20.181 
2017 15.864 70.228 15.913 

  



 

74 

Table 4: Uncertainty in total catch for bottomfish management unit species in Guam, the 
Commonwealth of the Northern Mariana Islands (CNMI), and American Samoa. 
Uncertainty is reported as the coefficient of variation (CV).  

Year Guam catch CV CNMI catch CV American Samoa catch CV 
1982 0.12 - - 
1983 0.16 - - 
1984 0.12 - - 
1985 0.10 - - 
1986 0.18 - 0.091 
1987 0.14 - 0.162 
1988 0.11 - 0.092 
1989 0.11 - 0.078 
1990 0.10 - 0.102 
1991 0.12 - 0.106 
1992 0.16 - 0.121 
1993 0.22 - 0.111 
1994 0.14 - 0.080 
1995 0.17 - 0.090 
1996 0.12 - 0.074 
1997 0.17 - 0.061 
1998 0.15 - 0.111 
1999 0.24 - 0.089 
2000 0.17 0.50 0.145 
2001 0.17 0.15 0.110 
2002 0.19 0.28 0.093 
2003 0.31 0.50 0.087 
2004 0.24 0.23 0.088 
2005 0.32 0.20 0.116 
2006 0.27 0.19 0.124 
2007 0.43 0.21 0.093 
2008 0.14 0.24 0.092 
2009 0.16 0.22 0.076 
2010 0.16 0.12 0.139 
2011 0.18 0.23 0.121 
2012 0.25 0.41 0.155 
2013 0.19 0.47 0.115 
2014 0.19 0.53 0.155 
2015 0.28 0.59 0.081 
2016 0.18 0.39 0.094 
2017 0.22 0.83 0.095 
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Table 5: Summary of log likelihood values and reduction in AIC (∆AIC = AIC proposed 
model – AIC previous model) during model selection for the best-fit model for the 
Bernoulli and lognormal processes for bottomfish management unit species in Guam. 
Each parameter removed was removed from the model with all previously removed 
parameters excluded. The year predictor was included in all models regardless of AIC 
value. 

 
Table 6: Summary of log likelihood values and reduction in AIC (∆AIC = AIC proposed 
model –AIC previous model) during model selection for the best-fit model for the 
Bernoulli and lognormal processes for bottomfish management unit species in the 
Commonwealth of the Northern Mariana Islands. Each parameter removed was removed 
from the model with all previously removed parameters excluded. The year predictor was 
included in all models regardless of AIC value. 

Process Selected predictor ∆AIC AIC 
Number of 
parameters 

Bernoulli Full (year+month+area+ depth+type of 
day+wind speed) 

 2952 87 

 -wind speed -6.01 2946 81 

 -month -2.00 2944 70 

 -type of day -1.81 2942 69 

 Best = year+area+depth    

Lognormal Full (year+vessel+month+ 
area+depth+type of day+ wind speed) 

 10254 89 

 -month -11.35 10243 78 

 -wind speed -1.07 10242 72 
 -type of day -0.29 10241 71 
 Best = year+vessel+area+depth   

Process Selected predictor ∆AIC AIC 
Number of 
parameters 

Bernoulli Full (year+month+area+ depth+type of day)  433 56 

 -area -25.1 408 33 

 -month -14.0 394 22 

 Best = year+depth+type of day   

Lognormal Full (year+vessel+month +area+depth+type 
of day) 

 1776 58 

 -month -12.1 1764 47 

 Best = year+vessel+area+depth+type of day  
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Table 7: Summary of log likelihood values and reduction in AIC (∆AIC = AIC proposed 
model –AIC previous model) during model selection for the best-fit model for the 
Bernoulli and lognormal processes for bottomfish management unit species in American 
Samoa. Each parameter removed was removed from the model with all previously 
removed parameters excluded. The year predictor was included in all models regardless 
of AIC value. 

  

Process Selected predictor ∆AIC AIC 
Number of 
parameters 

Bernoulli Full (year+month+area+ type of day)  414 66 

 -month -10.3 403 55 
 Best = year+area+type of day   

Gamma Full (year+vessel+month +area+type of 
day) 

 5932 68 

 -area -20.4 5912 46 

 -month -13.5 5898 35 

 -type of day -1.6 5896 34 

 Best = year+vessel    
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Table 8: Annual index of standardized CPUE from boat-based creel survey data for 
bottomfish management unit species in Guam, the Commonwealth of the Northern 
Mariana Islands (CNMI), and American Samoa. Uncertainty around the standardized 
indices in the form of standard errors (SE) on the scale of the logarithm is also provided. 
Both the index and the measure of uncertainty were used as input into the assessment 
model for each territory.  

Year Guam 
CPUE 
(lb/line hr) 

Guam 
SE 

CNMI 
CPUE 
(lb/line hr) 

CNMI 
SE 

American 
Samoa CPUE 
(lb/line hr) 

American 
Samoa SE 

1982 3.22 0.047     
1983 2.17 0.050     
1984 3.73 0.033     
1985 1.82 0.037     
1986 1.80 0.064   3.66 0.052 
1987 2.04 0.055   2.77 0.039 
1988 1.26 0.044   4.62 0.074 
1989 1.91 0.051   5.20 0.102 
1990 1.50 0.056   2.50 0.065 
1991 1.76 0.052   2.12 0.010 
1992 1.10 0.055   3.01 0.025 
1993 1.26 0.064   2.40 0.040 
1994 1.12 0.078   2.01 0.014 
1995 0.70 0.056   3.50 0.040 
1996 1.16 0.073   4.56 0.064 
1997 0.53 0.077   4.09 0.046 
1998 0.60 0.058   4.00 0.076 
1999 0.64 0.065   3.45 0.032 
2000 0.71 0.071 5.36 0.206 4.54 0.086 
2001 0.72 0.114 1.10 0.238 4.09 0.030 
2002 0.80 0.113 2.62 0.339 2.20 0.016 
2003 0.82 0.091 5.43 0.117 4.42 0.029 
2004 1.27 0.074 3.98 0.141 1.81 0.022 
2005 1.63 0.100 1.98 0.149 3.55 0.049 
2006 1.35 0.124 0.98 0.155 0.90 0.042 
2007 0.62 0.106 1.80 0.215 2.05 0.010 
2008 1.28 0.100 0.54 0.116 2.32 0.018 
2009 1.51 0.089 0.80 0.210 2.98 0.015 
2010 0.68 0.074 2.69 0.170 1.77 0.025 
2011 1.90 0.137 1.87 0.492 2.76 0.022 
2012 1.49 0.105 6.32 0.320 0.60 0.070 
2013 1.28 0.107 1.27 0.734 0.75 0.056 
2014 0.77 0.102 1.39 0.741 1.67 0.018 
2015 0.56 0.132 1.99 0.576 2.37 0.023 
2016 0.82 0.115 4.32 0.171 1.05 0.010 
2017 0.67 0.056 3.21 0.251 1.22 0.010 
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Table 9: Prior distributions for the 2019 base case assessment models for bottomfish 
management unit species in Guam, the Commonwealth of the Northern Mariana Islands 
(CNMI), and American Samoa (AmSam). Parameters are intrinsic growth rate (r), 
production shape parameter (m), carrying capacity (K), ratio of initial biomass to carrying 
capacity (ψ), catchability (q), process error (ση

2), and the estimable component of the 
observation error (στestimate d

2 ). 

Parameter Distribution Prior mean parameter/bounds CV 

  Guam CNMI AmSam  

r lognormal 0.46 0.46 0.46 0.50 

K (lb) lognormal 478,261  1,495,652  652,174  0.50 

m lognormal 2 fixed at 2 2 0.50 

ψ lognormal 0.75 0.45 0.8 0.50 

q uniform [10-10,10] [10-10,10] [10-10,10] - 

ση2 inverse gamma 0.083* 0.083* 0.083* - 

στestimated2 inverse gamma 0.083* 0.083* 0.083* - 

*Value is mode rather than mean parameter 
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Table 10. Summary of sensitivity scenarios evaluated for the territorial bottomfish 
assessments for Guam (G), the Commonwealth of the Northern Mariana Islands (C), and 
American Samoa (A) as described in detail in the sensitivity analyses section (2.3.8. 
Sensitivity Analysis). Sensitivities are for intrinsic growth rate (r), shape parameter (m), 
carrying capacity (K), ratio of initial biomass to carrying capacity (ψ), process error (ση

2), 
estimate component of observation error (στestimate d

2), to include MSY estimates, to 
remove variability in catch, and to initial starting conditions of the Markov Chain Monte 
Carlo routine. 

Sensitivity Scenario Distribution Mean Parameter 
/Value 

CV/Value 

r prior mean parameter increased 50% lognormal 0.69 0.50 
r prior mean parameter reduced 50% lognormal 0.23 0.50 
r prior based on medium productivity 
(Musick 1999)  

lognormal 0.33 0.30 

r prior based on range of very-low to 
medium resiliency (0.015-0.8; Froese et al. 
2017)  

lognormal 0.11 1.30 

    
m prior mean parameter increased 50% lognormal 3 0.50 
m prior mean parameter decreased 50% lognormal 1 0.50 
m prior CV increased lognormal 2 1.00 
m prior based on BMSY/K for teleosts (0.353; 
Thorson et al. 2012) 

lognormal 0.92 0.80 

m prior for alternative production function fixed 
lognormal 
fixed 

2 (G) 
2 (C) 
2 (A) 

- 
0.50 
- 

K prior mean parameter increased 50% lognormal 
 

717,391 lb (G) 
2,242,478 lb (C) 
978,261 lb (A) 

0.50 
 

K prior mean parameter reduced 50% lognormal 
 

239,130 lb (G) 
747,826 lb (C) 
326,087 lb (A) 

0.50 
 

K prior CV reduced lognormal 
 

478,261 lb (G) 
1,495,652 lb (C) 
652,174 lb (A) 

 
0.20 
 

K prior based on range for high biomass 
(Froese et al. 2017) 

lognormal 
 

731,727 lb (G) 
1,888,302 lb (C) 
1,038,791 lb (A) 

 
1.14 
 

ψ  prior mean parameter increased 50% lognormal 
 

1.125 (G) 
0.675 (C) 
1.20 (A) 

0.50 
 

ψ  prior mean parameter reduced 50% lognormal 
 

0.375 (G) 
0.225 (C) 
0.40 (A) 

0.50 
 

ψ  prior CV reduced lognormal 
 

0.75 (G) 
0.45 (C) 

 
0.20 
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Sensitivity Scenario Distribution Mean Parameter 
/Value 

CV/Value 

0.80 (A)  
beta ψ  prior distribution beta α = 1.5  β = 1.5 
ψ prior based on range for medium biomass 
(0.2-0.6; Froese et al. 2017) 

lognormal  0.346 0.28 

ψ prior based on range for high biomass (0.5-
0.9; Froese et al. 2017) 

lognormal 0.671 0.148 

    
ση2 prior mode increased 10x inv-gamma shape = 0.2 rate = 1 
ση2 prior mode decreased 10x inv-gamma shape = 0.2 rate = 0.01 
    
στestimated2 prior mode increased 10x inv-gamma shape = 0.2 rate = 1 
στestimated2 prior mode decreased 10x inv-gamma shape = 0.2 rate = 0.01 
    
uniform ση and στestimated prior distributions uniform a = 10-10 b = 10  

   
Include independent OLO MSY estimates    
Exclude variability around catch 

   

Sensitivity of starting conditions for MCMC  priors 10 random draws 
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Table 11. Parameter estimates for the 2019 base case assessment models for bottomfish 
management unit species in Guam, the Commonwealth of the Northern Mariana Islands 
(CNMI), and American Samoa. Parameters are intrinsic growth rate (r), carrying capacity 
(K), shape parameter (m), ratio of initial biomass to carrying capacity (ψ), catchability (q), 
process error (ση

2), and estimable component of observation error (στestimate d
2). Derived 

quantities are maximum sustainable yield (MSY), harvest rate at maximum sustainable 
yield (HMSY), biomass at maximum sustainable yield (BMSY), and proportion of carrying 
capacity at maximum sustainable yield (BMSY/K). K, BMSY, and MSY are reported in 
thousand pounds. 

 Guam CNMI American Samoa 
Parameter Median 95% CI Median 95% CI Median 95% CI 

r 0.29 0.15–0.58 0.33 0.17–0.63 0.28 0.13–0.58 

K 533.7 290.2–1104.6 1141.2 543.7–2574.0 495.8 262.0–1101.4 

m 1.73 0.73–4.29 2.0 - 2.66 1.13–6.12 

ψ 0.86 0.53–1.04 0.48 0.20–0.94 0.71 0.37–1.15 

q 0.006 0.003–0.010 0.006 0.002–0.015 0.012 0.005–0.026 

ση2 0.035 0.019–0.044 0.035 0.019–0.045 0.034 0.018–0.044 

στestimated
2 0.077 0.039–0.157 0.394 0.168–0.896 0.159 0.090–0.301 

MSY 42.1 29.3–65.5 93.6 48.8–205.3 28.8 16.4–55.9 

HMSY 0.170 0.071–0.382 0.167 0.084–0.315 0.107 0.044–0.228 

BMSY 248.8 107.1–636.8 570.6 271.8–1287.0 272.8 120.8–687.4 

BMSY/K 0.47 0.31-0.64 0.5 - 0.55 0.39–0.71 
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Table 12. Estimates of median exploitable biomass in thousand pounds, median relative 
exploitable biomass (B/BMSY), probability of being overfished (B/BMSY< 0.7), median 
harvest rate (H), median harvest rate relative to the control rule (H/HCR), and probability of 
overfishing (H/HCR>1) for bottomfish management unit species in Guam 1982-2017. 

Year Biomass B/BMSY Probability of 
being Overfished 

H H/HCR Probability of 
Overfishing 

1982 443.2 1.78 0.00 0.06 0.36 0.00 
1983 425.2 1.71 0.00 0.10 0.61 0.06 
1984 431.7 1.74 0.00 0.12 0.71 0.13 
1985 368.3 1.48 0.01 0.19 1.09 0.62 
1986 323.4 1.30 0.02 0.09 0.54 0.04 
1987 323.2 1.30 0.03 0.12 0.68 0.12 
1988 295.8 1.19 0.05 0.17 1.01 0.51 
1989 293.5 1.18 0.05 0.16 0.97 0.46 
1990 273.5 1.10 0.07 0.14 0.81 0.26 
1991 266.3 1.07 0.09 0.16 0.96 0.45 
1992 234.4 0.94 0.17 0.20 1.20 0.70 
1993 216.7 0.87 0.23 0.25 1.51 0.86 
1994 188.3 0.76 0.40 0.29 1.79 0.95 
1995 157.0 0.63 0.65 0.22 1.52 0.82 
1996 157.6 0.63 0.64 0.33 2.22 0.98 
1997 127.0 0.50 0.87 0.22 1.84 0.86 
1998 130.9 0.52 0.84 0.22 1.80 0.86 
1999 143.1 0.57 0.75 0.30 2.23 0.96 
2000 149.6 0.60 0.71 0.42 2.91 1.00 
2001 137.3 0.55 0.81 0.33 2.50 0.97 
2002 139.3 0.55 0.78 0.15 1.18 0.61 
2003 164.5 0.66 0.58 0.17 1.14 0.60 
2004 193.2 0.77 0.38 0.13 0.80 0.32 
2005 215.4 0.86 0.26 0.14 0.85 0.37 
2006 206.2 0.82 0.30 0.18 1.10 0.58 
2007 180.1 0.72 0.47 0.10 0.64 0.23 
2008 208.6 0.83 0.29 0.16 0.99 0.49 
2009 214.4 0.86 0.26 0.19 1.16 0.66 
2010 193.4 0.77 0.38 0.14 0.84 0.34 
2011 228.0 0.91 0.20 0.24 1.43 0.83 
2012 203.1 0.81 0.32 0.10 0.62 0.17 
2013 189.0 0.75 0.41 0.17 1.04 0.53 
2014 155.5 0.62 0.65 0.14 0.94 0.46 
2015 140.3 0.56 0.75 0.08 0.64 0.25 
2016 150.3 0.60 0.67 0.20 1.44 0.73 
2017 143.0 0.57 0.70 0.11 0.81 0.39 



 

83 

Table 13. Estimates of median exploitable biomass in thousand pounds, median relative 
exploitable biomass (B/BMSY), probability of being overfished (B/BMSY< 0.7), median 
harvest rate (H), median harvest rate relative to the control rule (H/HCR), and probability of 
overfishing (H/HCR>1) for bottomfish management unit species in the Commonwealth of 
the Northern Mariana Islands 2000-2017. 

Year Biomass B/BMSY 
Probability of 

being Overfished H H/HCR 
Probability of 

Overfishing 
2000 528.3 0.96 0.24 0.36 2.30 0.89 
2001 383.8 0.71 0.49 0.20 1.40 0.68 
2002 382.6 0.71 0.49 0.09 0.63 0.32 
2003 417.4 0.78 0.43 0.05 0.35 0.15 
2004 427.8 0.80 0.41 0.18 1.26 0.61 
2005 365.4 0.68 0.51 0.16 1.17 0.57 
2006 329.3 0.61 0.59 0.11 0.83 0.43 
2007 331.3 0.62 0.59 0.18 1.36 0.62 
2008 310.8 0.58 0.63 0.07 0.59 0.32 
2009 357.1 0.67 0.53 0.20 1.47 0.68 
2010 379.5 0.71 0.49 0.18 1.23 0.60 
2011 400.9 0.75 0.45 0.07 0.51 0.25 
2012 464.7 0.88 0.35 0.31 2.04 0.82 
2013 379.6 0.71 0.49 0.08 0.55 0.31 
2014 416.8 0.79 0.43 0.03 0.23 0.12 
2015 480.6 0.91 0.34 0.02 0.15 0.05 
2016 558.1 1.06 0.25 0.11 0.67 0.31 
2017 569.2 1.08 0.24 0.12 0.79 0.41 
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Table 14. Estimates of median exploitable biomass in thousand pounds, median relative 
exploitable biomass (B/BMSY), probability of being overfished (B/BMSY< 0.7), median 
harvest rate (H), median harvest rate relative to the control rule (H/HCR), and probability of 
overfishing (H/HCR>1) for bottomfish management unit species in American Samoa 1986-
2017. 

Year Biomass B/BMSY 
Probability of 

being Overfished H H/HCR 
Probability of 

Overfishing 
1986 335.9 1.27 0.05 0.27 2.53 0.99 
1987 270.9 1.02 0.15 0.09 0.84 0.34 
1988 287.9 1.08 0.12 0.16 1.50 0.83 
1989 266.9 1.00 0.18 0.13 1.22 0.67 
1990 235.2 0.88 0.27 0.06 0.62 0.18 
1991 229.7 0.86 0.29 0.08 0.76 0.29 
1992 234.2 0.88 0.28 0.05 0.53 0.12 
1993 239.1 0.90 0.26 0.05 0.47 0.08 
1994 254.1 0.96 0.20 0.11 1.09 0.58 
1995 274.7 1.04 0.15 0.11 1.07 0.57 
1996 291.8 1.10 0.12 0.10 0.94 0.44 
1997 298.2 1.13 0.11 0.13 1.28 0.72 
1998 286.5 1.08 0.14 0.08 0.76 0.27 
1999 286.0 1.08 0.14 0.06 0.58 0.12 
2000 292.2 1.10 0.13 0.08 0.79 0.30 
2001 277.6 1.05 0.15 0.15 1.48 0.81 
2002 237.8 0.89 0.26 0.13 1.31 0.72 
2003 224.2 0.84 0.32 0.09 0.93 0.45 
2004 199.5 0.74 0.44 0.09 0.91 0.43 
2005 191.5 0.71 0.48 0.08 0.79 0.35 
2006 169.6 0.63 0.61 0.09 1.01 0.50 
2007 177.7 0.66 0.56 0.13 1.34 0.71 
2008 180.3 0.67 0.54 0.18 1.94 0.90 
2009 168.6 0.63 0.62 0.24 2.66 0.96 
2010 138.8 0.52 0.80 0.09 1.16 0.58 
2011 134.4 0.50 0.83 0.19 2.54 0.91 
2012 107.3 0.40 0.94 0.07 1.23 0.61 
2013 113.4 0.42 0.93 0.17 2.76 0.92 
2014 120.9 0.45 0.89 0.17 2.50 0.90 
2015 123.9 0.46 0.87 0.24 3.49 0.96 
2016 107.3 0.40 0.92 0.19 3.21 0.91 
2017 102.6 0.38 0.91 0.15 2.75 0.85 
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Table 15. Projection results showing annual catch where the specified median probability 
of overfishing (H/HCR>1) was reached for bottomfish management unit species in Guam. 
The median biomass, median harvest rate, and median probability the stock is overfished 
(B/BMSY<0.7) are the values in each year that correspond to the specified catch values. 
Catch values for a given probability of overfishing in any terminal year were applied to all 
previous years from 2020 to the terminal year. 

Probability of 
overfishing 
(H/HCR>1) in 
terminal year 

0.1 0.2 0.3 0.4 0.5 

Terminal Year Catch (1000 lb) Constant in all years from 2020-terminal year 
2020 9 16 24 30 36 
2021 10 18 26 31 36 
2022 12 19 26 31 36 
2023 13 20 27 31 36 
2024 13 21 27 32 36 
2025 15 22 28 32 36  

Biomass (1000 lb) 
2020 212.4 213.8 211.4 211.8 212.2 
2021 240.9 232.5 226.3 221.0 215.0 
2022 268.0 254.5 238.6 227.4 217.6 
2023 286.6 265.8 248.0 234.1 219.3 
2024 307.6 282.7 259.1 235.2 220.5 
2025 321.8 289.5 258.5 241.0 222.1  

Harvest rate 
2020 0.04 0.08 0.12 0.14 0.17 
2021 0.04 0.08 0.12 0.14 0.17 
2022 0.05 0.08 0.11 0.14 0.17 
2023 0.05 0.08 0.12 0.14 0.17 
2024 0.04 0.08 0.11 0.15 0.17 
2025 0.05 0.08 0.12 0.14 0.17  

Probability stock is overfished (B/BMSY < 0.7) 
2020 0.34 0.34 0.34 0.34 0.33 
2021 0.28 0.29 0.31 0.33 0.34 
2022 0.23 0.26 0.30 0.33 0.35 
2023 0.21 0.25 0.29 0.32 0.35 
2024 0.18 0.23 0.28 0.32 0.36 
2025 0.17 0.22 0.28 0.33 0.37 
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Table 16. Projection results showing annual catch (1000 lb) applied across all years from 2020 to the terminal year where 
the specified median probability of overfishing (H/HCR>1) was reached in the terminal year for bottomfish management unit 
species in Guam.  

Probability of 
overfishing 
(H/HCR>1) in 
terminal year 

2020 2021 2022 2023 2024 2025 

Probability of 
overfishing 
(H/HCR>1) in 
terminal year 

2020 2021 2022 2023 2024 2025 

0.01 2 2 2 3 3 3 0.26 21 23 24 25 25 26 
0.02 3 3 4 4 5 5 0.27 22 23 24 25 26 26 
0.03 4 5 5 6 6 7 0.28 23 24 25 26 26 27 
0.04 5 5 6 7 8 9 0.29 23 24 26 27 27 27 
0.05 5 6 7 8 9 9 0.30 24 26 26 27 27 28 
0.06 6 7 9 9 10 11 0.31 25 26 27 27 28 28 
0.07 7 8 9 10 11 11 0.32 25 27 27 28 28 29 
0.08 8 9 10 11 12 13 0.33 26 27 27 28 29 29 
0.09 9 10 11 12 13 13 0.34 26 27 28 29 29 30 
0.10 9 10 12 13 13 15 0.35 27 28 29 29 30 30 
0.11 10 11 13 13 14 16 0.36 27 29 29 30 30 31 
0.12 11 12 13 14 15 16 0.37 28 29 30 30 31 31 
0.13 11 13 14 15 17 17 0.38 29 30 30 31 31 31 
0.14 12 13 15 16 17 18 0.39 29 31 31 31 31 32 
0.15 13 15 16 17 18 18 0.40 30 31 31 31 32 32 
0.16 13 15 17 18 19 19 0.41 31 31 32 32 32 33 
0.17 14 16 17 18 19 19 0.42 31 32 32 33 33 33 
0.18 15 17 18 19 19 21 0.43 32 32 33 33 33 33 
0.19 16 18 19 19 20 22 0.44 32 32 33 33 33 34 
0.20 16 18 19 20 21 22 0.45 33 33 33 34 35 35 
0.21 17 19 20 21 22 23 0.46 33 34 35 35 35 35 
0.22 18 19 21 22 23 24 0.47 34 35 35 35 35 35 
0.23 19 20 22 23 23 24 0.48 35 35 35 36 35 36 
0.24 19 21 22 23 24 24 0.49 35 36 36 36 36 36 
0.25 20 22 23 24 25 25 0.50 36 36 36 36 36 36 
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Table 17. Projection results showing annual catch where the specified median probability 
of overfishing (H/HCR>1) was reached for bottomfish management unit species in the 
Commonwealth of the Northern Mariana Islands. The median biomass, median harvest 
rate, and median probability the stock is overfished (B/BMSY<0.7) are the values in each 
year that correspond to the specified catch values. Catch values for a given probability of 
overfishing in any terminal year were applied to all previous years from 2020 to the 
terminal year. 

Probability of 
overfishing 
(H/HCR>1) in 
terminal year 0.1 0.2 0.3 0.4 0.5 
Terminal Year Catch (1000 lb) Constant in all years from 2020-terminal year 
2020 32 57 75 92 109 
2021 36 57 74 89 104 
2022 38 58 74 87 101 
2023 39 59 72 86 98 
2024 40 59 72 84 96 
2025 42 59 71 83 95  

Biomass (1000 lb) 
2020 699.2 689.4 695.5 696.3 701.2 
2021 733.2 714.2 696.3 675.8 665.6 
2022 770.4 724.5 688.7 665.1 639.5 
2023 788.4 728.6 694.8 655.1 619.6 
2024 809.7 742.3 698.9 644.7 606.2 
2025 818.7 751.6 699.6 645.0 589.3  

Harvest rate 
2020 0.05 0.09 0.12 0.14 0.17 
2021 0.05 0.09 0.11 0.14 0.17 
2022 0.05 0.09 0.11 0.14 0.17 
2023 0.05 0.09 0.11 0.14 0.17 
2024 0.05 0.08 0.11 0.14 0.17 
2025 0.05 0.08 0.11 0.14 0.17  

Probability stock is overfished (B/BMSY < 0.7) 
2020 0.18 0.18 0.18 0.18 0.18 
2021 0.16 0.18 0.19 0.20 0.21 
2022 0.14 0.17 0.20 0.21 0.24 
2023 0.13 0.17 0.20 0.24 0.27 
2024 0.12 0.17 0.20 0.25 0.29 
2025 0.12 0.17 0.21 0.26 0.31 
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Table 18. Projection results showing annual catch (1000 lb) applied across all years from 2020 to the terminal year where 
the specified median probability of overfishing (H/HCR>1) was reached in the terminal year for bottomfish management unit 
species in the Commonwealth of the Northern Mariana Islands.  

Probability of 
overfishing 
(H/HCR>1) in 
terminal year 

2020 2021 2022 2023 2024 2025 

Probability of 
overfishing 
(H/HCR>1) in 
terminal year 

2020 2021 2022 2023 2024 2025 

0.01 2 3 4 5 6 7 0.26 68 68 68 68 68 66 
0.02 6 7 9 11 13 14 0.27 70 69 70 68 68 68 
0.03 9 11 14 16 17 21 0.28 72 71 71 70 70 69 
0.04 12 15 18 21 22 24 0.29 74 72 72 72 71 71 
0.05 16 18 23 24 26 28 0.30 75 74 74 72 72 71 
0.06 18 22 25 28 29 31 0.31 77 76 74 74 73 72 
0.07 22 25 29 31 33 34 0.32 79 78 77 75 74 74 
0.08 25 29 32 35 35 36 0.33 81 79 78 77 75 75 
0.09 28 33 34 37 38 38 0.34 82 81 79 78 77 75 
0.10 32 36 38 39 40 42 0.35 84 82 80 80 78 77 
0.11 35 38 40 41 43 43 0.36 85 83 82 80 80 78 
0.12 38 41 41 44 45 45 0.37 87 85 83 82 81 80 
0.13 40 44 45 46 48 49 0.38 89 87 85 83 82 81 
0.14 43 46 48 49 49 49 0.39 90 88 86 84 83 82 
0.15 46 49 49 50 51 51 0.40 92 89 87 86 84 83 
0.16 48 50 51 51 52 53 0.41 95 90 88 86 86 84 
0.17 50 52 53 53 54 54 0.42 94 91 90 88 86 85 
0.18 53 54 55 56 56 56 0.43 97 95 90 89 87 86 
0.19 54 56 57 57 57 57 0.44 98 94 93 90 89 88 
0.20 57 57 58 59 59 59 0.45 101 96 93 92 90 89 
0.21 58 60 60 61 61 60 0.46 102 97 94 93 90 90 
0.22 61 62 62 61 61 61 0.47 104 99 96 94 93 90 
0.23 63 63 63 63 63 62 0.48 105 101 97 94 93 93 
0.24 64 64 65 64 64 63 0.49 108 102 100 96 94 93 
0.25 66 66 67 66 65 66 0.50 109 104 101 98 96 95 
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Table 19. Projection results showing annual catch where the specified median probability 
of overfishing (H/HCR>1) was reached for bottomfish management unit species in 
American Samoa. The median biomass, median harvest rate, and median probability the 
stock is overfished (B/BMSY<0.7) are the values in each year that correspond to the 
specified catch values. Catch values for a given probability of overfishing in any terminal 
year were applied to all previous years from 2020 to the terminal year. 

Probability of 
overfishing 

(H/HCR>1) in 
terminal year 0.1 0.2 0.3 0.4 0.5 
Terminal Year Catch (1000 lb) Constant in all years from 2020-terminal year 
2020 0 0 1 2 4 
2021 0 0 1 3 5 
2022 0 0 2 3 5 
2023 0 1 2 4 6 
2024 0 1 2 4 7 
2025 0 1 3 5 8  

Biomass (1000 lb) 
2020 87.6 87.6 88.5 86.9 87.9 
2021 102.4 102.4 101.5 98.4 95.8 
2022 118.5 118.5 112.7 109.9 105.4 
2023 136.1 132.4 128.2 120.4 114.0 
2024 155.7 150.5 144.6 134.1 117.9 
2025 175.6 168.3 155.1 139.8 122.4  

Harvest rate 
2020 0.00 0.00 0.01 0.02 0.05 
2021 0.00 0.00 0.01 0.03 0.05 
2022 0.00 0.00 0.02 0.03 0.05 
2023 0.00 0.01 0.02 0.03 0.05 
2024 0.00 0.01 0.01 0.03 0.06 
2025 0.00 0.01 0.02 0.03 0.06  

Probability stock is overfished (B/BMSY < 0.7) 
2020 0.83 0.83 0.84 0.83 0.83 
2021 0.77 0.77 0.77 0.78 0.78 
2022 0.71 0.71 0.72 0.72 0.73 
2023 0.65 0.65 0.66 0.67 0.70 
2024 0.58 0.60 0.61 0.62 0.66 
2025 0.53 0.54 0.58 0.61 0.64 
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Table 20. Projection results showing annual catch (1000 lb) applied across all years from 2020 to the terminal year where 
the specified median probability of overfishing (H/HCR>1) was reached in the terminal year for bottomfish management unit 
species in American Samoa.  

Probability 
of overfishing 
(H/HCR>1) in 
terminal year 

2020 2021 2022 2023 2024 2025 

Probability of 
overfishing 
(H/HCR>1) in 
terminal year 

2020 2021 2022 2023 2024 2025 

0.01 0 0 0 0 0 0 0.26 1 1 1 1 2 2 
0.02 0 0 0 0 0 0 0.27 1 1 1 1 2 2 
0.03 0 0 0 0 0 0 0.28 1 1 1 2 2 2 
0.04 0 0 0 0 0 0 0.29 1 1 1 2 2 2 
0.05 0 0 0 0 0 0 0.30 1 1 2 2 2 3 
0.06 0 0 0 0 0 0 0.31 1 1 2 2 2 3 
0.07 0 0 0 0 0 0 0.32 1 1 2 2 3 3 
0.08 0 0 0 0 0 0 0.33 1 2 2 2 3 3 
0.09 0 0 0 0 0 0 0.34 1 2 2 3 3 3 
0.10 0 0 0 0 0 0 0.35 1 2 2 3 3 4 
0.11 0 0 0 0 0 0 0.36 1 2 2 3 3 4 
0.12 0 0 0 0 0 0 0.37 2 2 3 3 4 4 
0.13 0 0 0 0 0 0 0.38 2 2 3 3 4 4 
0.14 0 0 0 0 0 0 0.39 2 2 3 3 4 4 
0.15 0 0 0 0 0 0 0.40 2 3 3 4 4 5 
0.16 0 0 0 0 0 0 0.41 2 3 3 4 4 5 
0.17 0 0 0 0 0 1 0.42 2 3 3 4 5 5 
0.18 0 0 0 0 1 1 0.43 2 3 4 4 5 6 
0.19 0 0 0 0 1 1 0.44 3 3 4 5 5 6 
0.20 0 0 0 1 1 1 0.45 3 3 4 5 6 6 
0.21 0 0 1 1 1 1 0.46 3 4 4 5 6 6 
0.22 0 0 1 1 1 1 0.47 3 4 5 5 6 7 
0.23 0 0 1 1 1 1 0.48 3 4 5 6 6 7 
0.24 0 1 1 1 1 2 0.49 3 4 5 6 7 7 
0.25 0 1 1 1 1 2 0.50 4 5 5 6 7 8 
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Table 21. Sensitivity of production model results for bottomfish management unit species in Guam to scenarios with 
different assumed prior distributions, different model structure (i.e., Schaefer), excluding variability in estimated catch, and 
fitting to an independent estimate of MSY (OLO MSY). Results are expressed as proportional change relative to base case 
model (first row) for K, r, m, ψ, maximum sustainable yield (MSY), biomass at maximum sustainable yield (BMSY), harvest 
rate at maximum sustainable yield (HMSY), total exploitable biomass in 2017 (B201 7), harvest rate in 2017 (H201 7), harvest rate 
in 2017 relative to the control rule (H201 7/HCR), and total exploitable biomass in 2017 relative to BMSY (B201 7/BMSY), probability 
of overfishing in 2017 (i.e., H/HHCR>1; poflH201 7), and probability of the stock being overfished in 2017 (i.e., B/BMSY<0.7; 
poflB201 7). An asterisk (*) in cells of the pofl columns indicates a change in status for the sensitivity run compared to the 
base case. 

Scenario K r m ψ MSY HMSY BMSY B2017 H2017 B2017/ 
BMSY 

H2017/ 
HCR 

poflH 
2017 

poflB 
2017 

Base case 533.7 0.29 1.73 0.82 42.15 0.17 248.8 142.97 0.11 0.57 0.81 0.39 0.70 
r prior mean 
increased 50% -0.08 0.23 0.15 0.00 0.04 0.07 -0.02 -0.05 0.05 -0.03 0.01 0.01 0.03 
r prior mean  
reduced 50% 0.18 -0.30 -0.17 -0.02 -0.07 -0.15 0.10 0.11 -0.09 0.02 0.06 0.08 -0.01 
r prior mean = 0.33, 
CV = 30% 0.01 -0.04 -0.03 0.00 -0.01 -0.01 0.00 0.01 -0.01 0.01 -0.01 -0.02 -0.01 
r prior mean = 0.15, 
CV = 115% 0.41 -0.48 -0.22 -0.03 -0.14 -0.32 0.27 0.26 -0.18 0.00 0.23 0.28 0.01 
K prior mean 
increased 50% 0.28 -0.08 0.17 -0.03 0.06 -0.22 0.36 0.18 -0.16 -0.13 0.22 0.27 0.14 
K prior mean 
reduced 50% -0.27 0.16 -0.16 0.02 -0.04 0.40 -0.32 -0.20 0.26 0.17 -0.20 -0.34 -0.22 
K prior CV = 20% -0.09 0.02 -0.07 0.01 -0.02 0.10 -0.10 -0.06 0.07 0.06 -0.07 -0.13 -0.05 
K prior = range(118 
– 4550) 0.24 -0.06 0.16 -0.03 0.06 -0.20 0.32 0.18 -0.17 -0.11 0.16 0.21 0.11 
ψ prior mean 
increased 50% -0.01 0.00 -0.01 0.09 -0.01 0.01 -0.02 0.01 -0.01 0.02 -0.03 -0.04 -0.02 
ψ prior mean 
reduced 50% 0.05 -0.02 0.01 -0.17 0.03 -0.03 0.06 -0.02 0.02 -0.07 0.14 0.18 0.08 
ψ prior CV = 20% -0.01 0.00 -0.01 -0.04 0.00 0.01 -0.01 -0.01 0.01 0.00 0.00 -0.01 0.00 
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Scenario K r m ψ MSY HMSY BMSY B2017 H2017 B2017/ 
BMSY 

H2017/ 
HCR 

poflH 
2017 

poflB 
2017 

ψ prior = 
range(0.2,0.6) 0.16 -0.04 0.03 -0.39 0.08 -0.07 0.18 -0.07 0.08 -0.21 0.48 0.51* 0.20 
ψ prior = 
range(0.5,0.9) 0.02 -0.01 0.00 -0.14 0.01 -0.01 0.02 -0.01 0.01 -0.04 0.06 0.08 0.05 
ψ prior = 
beta(1.5,1.5) 0.01 0.00 0.01 -0.07 0.01 -0.01 0.01 -0.01 0.01 -0.02 0.04 0.06 0.03 
m prior mean 
increased 50% 0.17 0.14 0.48 -0.01 0.04 -0.22 0.36 0.14 -0.11 -0.16 0.36 0.41* 0.21 
m prior mean 
reduced 50% -0.17 -0.17 -0.46 0.00 -0.04 0.52 -0.37 -0.14 0.17 0.37 -0.36 -0.58 -0.45* 
m prior CV =100% -0.05 -0.06 -0.17 0.00 -0.01 0.13 -0.13 -0.03 0.03 0.10 -0.15 -0.13 -0.16 
m prior mean = 
0.92, CV = 80% -0.16 -0.20 -0.51 0.00 -0.03 0.62 -0.41 -0.13 0.15 0.45 -0.41 -0.60 -0.50* 
Schaefer model 0.04 0.05 0.15 0.00 0.02 -0.09 0.12 0.04 -0.03 -0.07 0.14 0.16 0.16 
ση2 prior mode 
decreased 10x -0.03 -0.03 -0.01 0.03 -0.05 -0.02 -0.03 0.09 -0.08 0.12 -0.14 -0.22 -0.16 
ση2 prior mode 
increased 10x 0.02 0.02 0.00 -0.02 0.04 0.02 0.02 -0.05 0.05 -0.06 0.10 0.12 0.09 
στestimated2 prior 
mode decreased 
10x 0.02 -0.01 0.00 0.00 0.01 -0.01 0.02 -0.02 0.02 -0.04 0.07 0.09 0.06 
στestimated2 prior 
mode increased 10x -0.05 0.06 0.01 -0.03 0.01 0.05 -0.05 0.15 -0.13 0.21 -0.28 -0.33 -0.28 
Uniform ση2and 
στestimated2  priors -0.03 -0.03 -0.01 0.03 -0.05 -0.02 -0.03 0.09 -0.07 0.11 -0.13 -0.19 -0.15 
Exclude variability 
in catch 0.02 -0.01 0.02 0.00 0.00 -0.03 0.03 0.04 -0.04 0.02 -0.03 -0.04 -0.02 
Fit to OLO MSY 
estimate 0.05 0.06 0.05 -0.01 0.09 0.02 0.07 0.05 -0.04 -0.02 -0.05 -0.05 0.02 
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Table 22. Sensitivity of production model results for bottomfish management unit species in the Commonwealth of the 
Northern Mariana Islands to scenarios with different assumed prior distributions, different model structure (i.e., Pella), 
excluding variability in estimated catch, and fitting to an independent estimate of MSY (OLO MSY). Results are expressed 
as proportional change relative to base case model (first row) for K, r, m, ψ, maximum sustainable yield (MSY), biomass at 
maximum sustainable yield (BMSY), harvest rate at maximum sustainable yield (HMSY), total exploitable biomass in 2017 
(B201 7), harvest rate in 2017 (H201 7), harvest rate in 2017 relative to the control rule (H2017/HCR), and total exploitable biomass 
in 2017 relative to BMSY (B201 7/BMS Y), probability of overfishing in 2017 (i.e., H/HHCR>1; poflH201 7), and probability of the stock 
being overfished in 2017 (i.e., B/BMSY<0.7; poflB201 7). An asterisk (*) in cells of the pofl columns indicates a change in status 
for the sensitivity run compared to the base case. 

Scenario K r m ψ MSY HMSY BMSY B2017 H2017 B2017/ 
BMSY 

H2017/ 
HCR 

poflH 
2017 

poflB 
2017 

Base 1141.2 0.33 2.00 0.48 93.64 0.17 570.6 569.23 0.13 1.08 0.79 0.41 0.24 
r prior mean 
increased 50% -0.11 0.21 - 0.02 0.06 0.21 -0.11 -0.08 0.08 0.06 -0.11 -0.11 -0.09 
r prior mean  
reduced 50% 0.25 -0.32 - -0.02 -0.14 -0.32 0.25 0.13 -0.11 -0.12 0.33 0.27* 0.26 
r prior mean = 
0.33, CV = 30% 0.06 -0.09 - -0.01 -0.03 -0.09 0.06 0.03 -0.04 -0.04 0.06 0.06 0.05 
r prior mean = 
0.15, CV = 115% 0.41 -0.52 - 0.03 -0.32 -0.52 0.41 0.22 -0.13 -0.16 0.88 0.54* 0.36 
K prior mean 
increased 50% 0.34 -0.11 - -0.07 0.19 -0.11 0.34 0.31 -0.23 -0.02 -0.13 -0.10 0.11 
K prior mean 
reduced 50% -0.36 0.26 - 0.17 -0.19 0.26 -0.36 -0.29 0.40 0.09 0.08 0.06 -0.37 
K prior CV = 
20% 0.23 -0.10 - -0.09 0.12 -0.10 0.23 0.20 -0.12 -0.09 0.00 0.00 0.24 
K prior = 
range(303 – 
11741) -0.14 0.08 - 0.05 -0.07 0.08 -0.14 -0.13 0.11 0.03 0.02 0.01 -0.11 
ψ prior mean 
increased 50% -0.07 0.01 - 0.32 -0.06 0.01 -0.07 0.08 -0.08 0.15 -0.12 -0.13 -0.45 
ψ prior mean 
reduced 50% 0.23 0.00 - -0.42 0.23 0.00 0.23 -0.17 0.20 -0.36 0.39 0.30* 1.12* 
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Scenario K r m ψ MSY HMSY BMSY B2017 H2017 B2017/ 
BMSY 

H2017/ 
HCR 

poflH 
2017 

poflB 
2017 

ψ prior CV = 
20% -0.01 -0.02 - -0.04 -0.02 -0.02 -0.01 0.00 0.00 -0.02 0.01 0.00 -0.07 
ψ prior = 
range(0.2,0.6) 0.08 -0.01 - -0.23 0.07 -0.01 0.08 -0.07 0.08 -0.17 0.14 0.12 0.43 
ψ prior = 
range(0.5,0.9) -0.11 0.02 - 0.40 -0.10 0.02 -0.11 0.10 -0.09 0.19 -0.14 -0.17 -0.62 
ψ prior = 
beta(1.5,1.5) -0.03 0.01 - 0.20 -0.02 0.01 -0.03 0.03 -0.02 0.07 -0.04 -0.04 -0.15 
Pella model 0.04 0.03 0.08 0.00 0.00 -0.04 0.06 0.03 -0.02 -0.04 0.03 0.04 0.12 
ση2 prior mode 
decreased 10x -0.02 -0.02 - 0.02 -0.04 -0.02 -0.02 0.00 -0.01 0.03 0.01 0.01 -0.03 
ση2 prior mode 
increased 10x 0.02 0.01 - 0.00 0.03 0.01 0.02 0.02 -0.02 -0.01 -0.03 -0.03 -0.03 
στestimated2 prior 
mode decreased 
10x 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.02 
στestimated2 prior 
mode increased 
10x 0.02 0.00 - -0.01 0.01 -0.01 0.02 0.03 -0.02 0.02 -0.02 -0.01 0.00 
Uniform ση2and 
στestimated2  priors -0.02 -0.01 - 0.06 -0.03 -0.01 -0.02 0.10 -0.10 0.15 -0.11 -0.10 -0.22 
Exclude 
variability in 
catch -0.03 -0.01 - -0.02 -0.04 -0.01 -0.03 -0.02 0.01 0.01 -0.02 -0.15 -0.05 
Fit to OLO MSY 
estimate 0.33 0.10 - -0.14 0.50 0.10 0.33 0.38 -0.24 0.04 -0.30 -0.27 0.19 
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Table 23. Sensitivity of production model results for bottomfish management unit species in American Samoa to scenarios 
with different assumed prior distributions, different model structure (i.e., Schaefer), excluding variability in estimated catch, 
and fitting to an independent estimate of MSY (OLO MSY). Results are expressed as proportional change relative to base 
case model (first row) for K, r, m, ψ, maximum sustainable yield (MSY), biomass at maximum sustainable yield (BMSY), 
harvest rate at maximum sustainable yield (HMSY), total exploitable biomass in 2017 (B201 7), harvest rate in 2017 (H2017), 
harvest rate in 2017 relative to the control rule (H2017/HCR), and total exploitable biomass in 2017 relative to BMSY 
(B201 7/BMS Y), probability of overfishing in 2017 (i.e., H/HHCR>1; poflH201 7), and probability of the stock being overfished in 
2017 (i.e., B/BMSY<0.7; poflB201 7). An asterisk (*) in cells of the pofl columns indicates a change in status for the sensitivity 
run compared to the base case. 

Scenario K r m ψ MSY HMSY BMSY B2017 H2017 B2017/ 
BMSY 

H2017/ 
HCR 

poflH 
2017 

poflB 
2017 

Base case 495.8 0.28 2.66 0.71 28.8 0.11 272.8 102.6 0.15 0.38 2.75 0.85 0.91 
r prior mean 
increased 50% 

-0.06 0.28 0.16 -0.01 0.09 0.12 -0.02 -0.09 0.11 -0.07 0.07 0.02 0.02 

r prior mean  
reduced 50% 

0.17 -0.36 -0.19 -0.03 -0.13 -0.21 0.09 0.13 -0.11 0.03 0.09 0.03 -0.01 

r prior mean = 
0.33, CV = 30% 

0.00 -0.02 -0.03 -0.01 0.00 0.00 0.00 -0.01 0.02 -0.01 0.03 0.00 0.00 

r prior mean = 
0.15, CV = 115% 

0.43 -0.64 -0.28 -0.02 -0.35 -0.50 0.26 0.37 -0.26 0.08 0.41 0.09 -0.03 

K prior mean 
increased 50% 

0.32 -0.07 0.11 -0.07 0.14 -0.16 0.37 0.23 -0.19 -0.08 0.06 -0.02 0.01 

K prior mean 
reduced 50% 

-0.30 0.16 -0.14 0.08 -0.09 0.35 -0.33 -0.26 0.36 0.08 -0.08 0.01 -0.02 

K prior CV = 20% 0.24 -0.08 0.09 -0.07 0.09 -0.14 0.28 0.20 -0.13 -0.08 0.11 0.01 0.02 
K prior = range 
(156 – 6046) 

-0.04 0.03 -0.01 0.01 0.00 0.05 -0.05 -0.05 0.03 0.00 -0.02 -0.01 0.00 

ψ prior mean 
increased 50% 

-0.05 0.01 -0.02 0.13 -0.03 0.03 -0.05 0.01 -0.01 0.06 -0.10 -0.03 -0.02 

ψ prior mean 
reduced 50% 

0.19 0.00 0.03 -0.31 0.15 -0.02 0.21 -0.14 0.17 -0.29 0.71 0.11 0.07 

ψ prior CV = 20% -0.04 0.00 -0.01 0.09 -0.04 0.02 -0.05 0.04 -0.04 0.08 -0.13 -0.04 -0.03 



 

96 

Scenario K r m ψ MSY HMSY BMSY B2017 H2017 B2017/ 
BMSY 

H2017/ 
HCR 

poflH 
2017 

poflB 
2017 

ψ prior = 
range(0.2,0.6) 

0.36 0.02 0.06 -0.46 0.31 -0.03 0.39 -0.23 0.30 -0.46 1.48 0.17 0.10 

ψ prior = 
range(0.5,0.9) 

0.00 -0.01 0.00 -0.05 -0.01 0.00 0.00 0.01 -0.01 0.00 0.00 0.01 0.01 

ψ prior = 
beta(1.5,1.5) 

0.08 0.00 0.02 -0.12 0.06 -0.01 0.09 -0.07 0.08 -0.13 0.26 0.05 0.04 

m prior mean 
increased 50% 

0.12 0.14 0.40 -0.02 0.02 -0.18 0.26 0.09 -0.09 -0.12 0.27 0.08 0.07 

m prior mean 
reduced 50% 

-0.13 -0.20 -0.46 0.03 -0.01 0.47 -0.32 -0.07 0.09 0.37 -0.46 -0.27 -0.25 

m prior CV =100% 0.13 0.14 0.44 -0.02 0.01 -0.19 0.27 0.10 -0.07 -0.14 0.34 0.06 0.04 
m prior mean = 
0.92, CV = 80% 

-0.08 -0.12 -0.29 0.02 0.00 0.25 -0.20 -0.01 0.04 0.20 -0.31 -0.18 -0.17 

Schaefer model -0.09 -0.10 -0.25 0.00 -0.02 0.19 -0.18 -0.10 0.10 0.11 -0.17 -0.05 -0.03 
ση2 prior mode 
decreased 10x 

0.00 -0.04 0.08 0.01 -0.09 -0.10 0.03 0.00 0.02 -0.03 0.18 0.05 0.00 

ση2 prior mode 
increased 10x 

0.02 0.02 -0.04 -0.03 0.07 0.07 0.01 -0.02 0.02 -0.03 -0.02 -0.01 0.01 

στestimated2 prior 
mode decreased 
10x 

0.01 0.00 0.01 0.00 0.00 -0.01 0.01 0.00 0.00 -0.01 0.01 0.02 0.02 

στestimated2 prior 
mode increased 
10x 

0.01 0.01 -0.03 0.00 0.03 0.05 -0.01 0.07 -0.06 0.07 -0.15 -0.10 -0.09 

Uniform ση2and 
στestimated2  priors 

0.01 -0.02 0.12 -0.05 -0.10 -0.12 0.05 -0.09 0.11 -0.13 0.47 0.13 0.06 

Exclude variability 
in catch 

0.02 0.00 0.01 -0.01 0.01 -0.01 0.02 -0.01 0.01 -0.03 0.05 0.01 0.01 

Fit to OLO MSY 
estimate 

0.56 0.21 0.12 -0.15 
 

0.82 0.09 0.62 0.46 -0.29 -0.08 -0.29 -0.23 -0.07 



 

97 

7. Figures 

 

Figure 1: Harvest control rule for Guam, the Commonwealth of the Northern Mariana 
Islands, and American Samoa (reproduced from WPRFMC 2009a). F and FMSY in the 
figure are equivalent to harvest rate (H) and harvest rate that produces maximum 
sustainable yield (MSY; HMSY) in the 2019 benchmark assessments. The harvest control 
rule determines the threshold for overfishing (defined as HCR  in the 2019 assessments) 
as a function of HMSY, biomass (B), the biomass that produces maximum sustainable 
yield (BMSY), and 1 minus the rate of natural mortality (M; assumed to be 0.3). 
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Figure 2: Catch in Guam of individual bottomfish management unit species (BMUS; 
dashed line) and catch of individual species with added portion from species groups 
believed to contain BMUS (solid line) for the a) boat-based survey, b) shore-based 
survey, and c) commercial purchase data in years where data were available. Subpanels 
are plotted on the same axes to allow comparison. 
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Figure 3: Catch in the Commonwealth of the Northern Mariana Islands of individual 
bottomfish management unit species (BMUS; dashed line) and catch of individual 
species with added portion from species groups believed to contain BMUS (solid line) for 
the a) boat-based survey, b) shore-based survey, and c) commercial purchase data in 
years where data were available. Subpanels are plotted on the same axes to allow 
comparison. 
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Figure 4: Catch in American Samoa of individual bottomfish management unit species 
(BMUS; dashed line) and catch of individual species with added portion from species 
groups believed to contain BMUS (solid line) for the (a) boat-based survey, (b) shore-
based survey, and (c) commercial purchase data in years where data were available. 
Subpanels are plotted on the same axes to allow comparison. 
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Figure 5: Total catch used as input into the 2019 benchmark stock assessment models 
for (a) Guam, (b) the Commonwealth of the Northern Mariana Islands (CNMI), and (c) 
American Samoa.  
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Figure 6: Map of offshore fishing grids used in CPUE standardization for Guam. Areas 10, 
30, 50, and 70 represent ordinal directions, while areas 20, 40, 60, and 80 represent 
cardinal directions. Cardinal directions overlap with two of the ordinal directions. Map 
provided by Western Pacific Fisheries Information Network (WPacFIN). 
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Figure 7: Map of offshore fishing grids used in CPUE standardization for the 
Commonwealth of the Northern Mariana Islands. Circles (1-8) represent large general 
fishing areas by cardinal and ordinal quadrants, triangles (9-24) represent inshore and 
offshore areas within the quadrants, and diamonds (25-34) represent specific reefs. Map 
provided by Western Pacific Fisheries Information Network (WPacFIN). 
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Figure 8: Map of offshore fishing grids used in CPUE standardization for American 
Samoa. Map provided by Western Pacific Fisheries Information Network (WPacFIN). 
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Figure 9: Model diagnostics for the best fit Bernoulli model for bottomfish management 
unit species in Guam. Diagnostic plots include plots of quantile residuals against model 
predicted values (to assess heteroscedasticity), histogram of quantile residuals (to 
assess normality), and plots of quantile residuals against values of each selected 
covariate (to assess patterning in the covariates). 
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Figure 10: Model diagnostics for the best fit lognormal model for bottomfish 
management unit species in Guam. Diagnostic plots include plots of residuals against 
model predicted values (to assess heteroscedasticity), histogram of residuals and the 
quantile-quantile plot (to assess normality), and plots of residuals against values of each 
covariate (to assess patterning in the covariates). 
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Figure 11: Model diagnostics for the best fit Bernoulli model for bottomfish management 
unit species in the Commonwealth of the Northern Mariana Islands (CNMI). Diagnostic 
plots include plots of quantile residuals against model predicted values (to assess 
heteroscedasticity), histogram of quantile residuals (to assess normality), and plots of 
quantile residuals against values of each selected covariate (to assess patterning in the 
covariates). 
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Figure 12: Model diagnostics for the best fit lognormal model for bottomfish 
management unit species in the Commonwealth of the Northern Mariana Islands (CNMI). 
Diagnostic plots include plots of residuals against model predicted values (to assess 
heteroscedasticity), histogram of residuals and the quantile-quantile plot (to assess 
normality), and plots of residuals against values of each covariate (to assess patterning 
in the covariates). 
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Figure 13: Model diagnostics for the best fit Bernoulli model for bottomfish management 
unit species in American Samoa (AmSam). Diagnostic plots include plots of quantile 
residuals against model predicted values (to assess heteroscedasticity), histogram of 
quantile residuals (to assess normality), and plots of quantile residuals against values of 
each selected covariate (to assess patterning in the covariates). 
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Figure 14: Model diagnostics for the best fit gamma model for bottomfish management 
unit species in American Samoa (AmSam). Diagnostic plots include plots of residuals 
against model predicted values (to assess heteroscedasticity), histogram of residuals 
and the quantile-quantile plot (to assess normality), and plots of residuals against values 
of each covariate (to assess patterning in the covariates). 
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Figure 15: Pella-Tomlinson (1969) generalized surplus production curves as a function of 
biomass relative to carrying capacity (K) for various production shape parameter (m) 
values. In this example, K = 1, and intrinsic growth rate (r ) = 0.5. 
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Figure 16. Observed (standardized CPUE) and the CPUE series estimated from the 
production model for bottomfish management unit species in Guam from 1982 through 
2017.  
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Figure 17. Observed (standardized CPUE) and the CPUE series estimated from the 
production model for bottomfish management unit species in the Commonwealth of the 
Northern Mariana Islands from 2000 through 2017. 
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Figure 18. Observed (standardized CPUE) and the CPUE series estimated from the 
production model for bottomfish management unit species in American Samoa from 
1986 through 2017. 
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Figure 19. Residuals of production model fit to standardized CPUE for bottomfish 
management unit species in Guam from 1982-2017. 
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Figure 20. Residuals of production model fit to standardized CPUE for bottomfish 
management unit species in the Commonwealth of the Northern Mariana Islands from 
2000-2017. 
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Figure 21. Residuals of production model fit to standardized CPUE for bottomfish 
management unit species in American Samoa from 1986 to 2017. 
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Figure 22. Prior distributions (dark gray) and posterior densities (light gray) for model 
parameters for bottomfish management unit species in Guam including carrying capacity 
(K), intrinsic growth rate (r), shape parameter (m), ratio of initial biomass to carrying 
capacity (ψ), catchability (q), process error variance (ση

2), and the estimable component 
of observation error variance (στestimated

2). The vertical white line in the shape parameter 
panel indicates that the Pella-Tomlinson production function is undefined at m=1.  
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Figure 23. Calculated prior distributions (dark gray) and posterior densities (light gray) 
for model estimates of derived quantities maximum sustainable yield (MSY), biomass to 
produce maximum sustainable yield (BMSY), harvest rate to produce maximum 
sustainable yield (HMSY), and proportion of carrying capacity to produce maximum 
sustainable yield (BMSY/K) for bottomfish management unit species in Guam. The vertical 
white line in the BMSY/K panel indicates where the Pella-Tomlinson production function is 
undefined at m=1. 
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Figure 24. Prior distributions (dark gray) and posterior densities (light gray) for model 
parameters for bottomfish management unit species in the Commonwealth of the 
Northern Mariana Islands including carrying capacity (K), intrinsic growth rate (r), shape 
parameter (m), ratio of initial biomass to carrying capacity (ψ), catchability (q), process 
error variance (ση

2), and the estimable component of observation error variance 
(στestimated

2). The value for m was fixed at 2 to represent a Schaefer production function.  
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Figure 25. Calculated prior distributions (dark gray) and posterior densities (light gray) 
for model estimates of derived quantities maximum sustainable yield (MSY), biomass to 
produce maximum sustainable yield (BMSY), harvest rate to produce maximum 
sustainable yield (HMSY), and proportion of carrying capacity to produce maximum 
sustainable yield (BMSY/K) for bottomfish management unit species in the Commonwealth 
of the Northern Mariana Islands. 
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Figure 26. Prior distributions (dark gray) and posterior densities (light gray) for model 
parameters for bottomfish management unit species in American Samoa including 
carrying capacity (K), intrinsic growth rate (r), shape parameter (m), ratio of initial 
biomass to carrying capacity (ψ), catchability (q), process error variance (ση

2), and the 
estimable component of observation error variance (στestimated

2). The vertical white line in 
the shape parameter panel indicates that the Pella-Tomlinson production function is 
undefined at m=1.   
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Figure 27. Calculated prior distributions (dark gray) and posterior densities (light gray) 
for model estimates of derived quantities maximum sustainable yield (MSY), biomass to 
produce maximum sustainable yield (BMSY), harvest rate to produce maximum 
sustainable yield (HMSY), and proportion of carrying capacity to produce maximum 
sustainable yield (BMSY/K) for bottomfish management unit species in American Samoa. 
The vertical white line in the BMSY/K panel indicates where the Pella-Tomlinson 
production function is undefined at m=1. 
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Figure 28. Pairwise scatterplots and correlations for parameter estimates for bottomfish 
management unit species in Guam. Parameters are carrying capacity (K), intrinsic rate of 
increase (r), ratio of initial biomass to carrying capacity (ψ), shape parameter (m), 
catchability (q), observation error variance (ση

2), and the estimable component of 
observation error variance (στestimated

2). 
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Figure 29. Pairwise scatterplots and correlations for parameter estimates for bottomfish 
management unit species in the Commonwealth of the Northern Mariana Islands. 
Parameters are carrying capacity (K), intrinsic rate of increase (r), ratio of initial biomass 
to carrying capacity (ψ), shape parameter (m) set to 2, catchability (q), observation error 
variance (ση

2), and the estimable component of observation error variance (στestimated
2). 
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Figure 30. Pairwise scatterplots and correlations for parameter estimates for bottomfish 
management unit species in American Samoa. Parameters are carrying capacity (K), 
intrinsic rate of increase (r), ratio of initial biomass to carrying capacity (ψ), shape 
parameter (m), catchability (q), observation error variance (ση

2), and the estimable 
component of observation error variance (στestimated

2). 
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Figure 31. Total observation error variance by year for bottomfish management unit 
species in Guam from 1982 through 2017, partitioned into minimum observation error 
(set to 0), observation error from CPUE (light gray) and estimable observation error (dark 
gray). 
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Figure 32. Total observation error variance by year for the Commonwealth of the 
Northern Mariana Islands from 2000 through 2017, partitioned into minimum observation 
error (set to 0), observation error from CPUE (light gray) and estimable observation error 
(dark gray). 
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Figure 33. Total observation error variance by year for American Samoa from 1986 
through 2017, partitioned into minimum observation error (set to 0), observation error 
from CPUE (light gray) and estimable observation error (dark gray). 
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Figure 34. Estimated biomass, harvest rate, relative biomass (B/BMSY), and relative 
harvest rate (H/HCR) for bottomfish management unit species in Guam from 1982 through 
2017 with 95% credible intervals (shaded area). Solid horizontal lines delineate reference 
points for biomass (0.7*BMSY) and harvest rate (H/HCR). Dashed horizontal lines delineate 
BMSY and HMSY.  
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Figure 35. Estimated stock status for bottomfish management unit species in Guam from 
1982 through 2017. The circle denotes the start year and the triangle denotes the final 
year. Outer bounds of gray shaded area delineate the 95% credible interval for 2017. 
Colored areas delineate stock statuses (red = overfished and overfishing, yellow = 
overfished but not overfishing, orange = overfishing but not overfished, and green = not 
overfished and no overfishing). The probability of stock status in 2017 occurring in each 
area is displayed in the legend.  
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Figure 36. Estimated biomass, harvest rate, relative biomass (B/BMSY), and relative 
harvest rate (H/HCR) for bottomfish management unit species in the Commonwealth of 
the Northern Mariana Islands from 2000 through 2017 with 95% credible intervals (shaded 
area). Solid horizontal lines delineate reference points for biomass (0.7*BMSY) and harvest 
rate (H/HCR). Dashed horizontal lines delineate BMSY and HMSY. 
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Figure 37. Estimated stock status for bottomfish management unit species the 
Commonwealth of the Northern Mariana Islands from 2000 through 2017. The circle 
denotes the start year and the triangle denotes the final year. Outer bounds of gray 
shaded area delineate the 95% credible interval for 2017. Colored areas delineate stock 
statuses (red = overfished and overfishing, yellow = overfished but not overfishing, 
orange = overfishing but not overfished, and green = not overfished and no overfishing). 
The probability of stock status in 2017 occurring in each area is displayed in the legend. 
Bounds of the credibility intervals are cut off on both axes for illustrative purposes.  

  



 

134 

 

Figure 38. Estimated biomass, harvest rate, relative biomass (B/BMSY), and relative 
harvest rate (H/HCR) for bottomfish management unit species in American Samoa from 
1986 through 2017 with 95% credible intervals (shaded area). Solid horizontal lines 
delineate reference points for biomass (0.7*BMSY) and harvest rate (H/HCR). Dashed 
horizontal lines delineate BMSY and HMSY. 
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Figure 39. Estimated stock status for bottomfish management unit species in American 
Samoa from 1986 through 2017. The circle denotes the start year and the triangle 
denotes the final year. Outer bounds of gray shaded area delineate the 95% credible 
interval for 2017. Colored areas delineate stock statuses (red = overfished and 
overfishing, yellow = overfished but not overfishing, orange = overfishing but not 
overfished, and green = not overfished and no overfishing). The probability of stock 
status in 2017 occurring in each area is displayed in the legend. Bounds of the credibility 
intervals are cut off on the y-axis for illustrative purposes. 
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Figure 40. Retrospective analysis for biomass (top) and harvest rate (bottom) with the 
base case model ending in 2017 as a reference (blue line) and with terminal year set as 
2016 through 2012 (gray lines) for bottomfish management unit species in Guam. 
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Figure 41. Retrospective analysis for biomass (top) and harvest rate (bottom) with the 
base case model ending in 2017 as a reference (blue line) and with terminal year set as 
2016 through 2012 (gray lines) for bottomfish management unit species in the 
Commonwealth of the Northern Mariana Islands. 
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Figure 42. Retrospective analysis for biomass (top) and harvest rate (bottom) with the 
base case model ending in 2017 as a reference (blue line) and with terminal year set as 
2016 through 2012 (gray lines) for bottomfish management unit species in American 
Samoa. 
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Figure 43. Relative harvest rate H/HCR (top) and relative biomass B/BMSY (bottom) for 
bottomfish management unit species in Guam from 2020 through 2025 as a function of 
catch varying from 0 to 200 thousand pounds. 
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Figure 44. Risk of Guam bottomfish management unit species becoming overfished 
(B/BMSY < 0.7) and risk of overfishing (H/HCR > 1.0) from 2020 through 2025 as a function 
of catch varying from 0 to 200 thousand pounds.  
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Figure 45. Relative harvest rate H/HCR (top) and relative biomass B/BMSY (bottom) for 
bottomfish management unit species in the Commonwealth of the Northern Mariana 
Islands from 2020 through 2025 as a function of catch varying from 0 to 500 thousand 
pounds.  
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Figure 46. Risk of the Commonwealth of the Northern Mariana Islands bottomfish 
management unit species becoming overfished (B/BMSY < 0.7) and risk of overfishing 
(H/HCR > 1.0) from 2020 through 2025 as a function of catch varying from 0 to 500 
thousand pounds.  
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Figure 47. Relative harvest rate H/HCR (top) and relative biomass B/BMSY (bottom) for 
bottomfish management unit species in American Samoa from 2020 through 2025 as a 
function of catch varying from 0 to 200 thousand pounds.  
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Figure 48. Risk of the American Samoa bottomfish management unit species becoming 
overfished (B/BMSY < 0.7) and risk of overfishing (H/HCR > 1.0) from 2020 through 2025 as 
a function of catch varying from 0 to 200 thousand pounds. 
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Figure 49. Results of sensitivity analyses for the prior distribution of intrinsic growth rate 
(r) for bottomfish management unit species in Guam: estimated biomass (top left), 
harvest rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom right). Priors for r were 
calculated as ± 50% of the mean prior, the mean prior for r = 0.33, and the mean prior for r 
= 0.15 with CV of 115% (inputted as a range for r from 0.015 to 0.8).  
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Figure 50. Results of sensitivity analyses for the prior distribution of intrinsic growth rate 
(r) for bottomfish management unit species in the Commonwealth of the Northern 
Mariana Islands: estimated biomass (top left), harvest rate (H; top right), B/BMSY (bottom 
left), and H/HCR (bottom right). Priors for r were calculated as ± 50% of the mean prior, the 
mean prior for r = 0.33, the mean prior for r = 0.15 with CV of 115% (inputted as a range 
for r from 0.015 to 0.8). 
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Figure 51. Results of sensitivity analyses for the prior distribution of intrinsic growth rate 
(r) for bottomfish management unit species in American Samoa: estimated biomass (top 
left), harvest rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom right). Priors for r 
were calculated as ± 50% of the mean prior, the mean prior for r = 0.33, the mean prior for 
r = 0.15 with CV of 115% (inputted as a range for r from 0.015 to 0.8). 
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Figure 52. Results of sensitivity analyses for the shape parameter (m) for bottomfish 
management unit species in Guam: estimated biomass (top left), harvest rate (H; top 
right), B/BMSY (bottom left), and H/HCR (bottom right). Priors for m were calculated as ± 
50% of the mean prior, the CV for the m prior increased to 100%, mean of prior m = 0.92 
with 80% CV, and m fixed at 2.0 (i.e., a Schaefer model). 
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Figure 53. Results of sensitivity analyses for the shape parameter (m) for the bottomfish 
management unit species in the Commonwealth of the Northern Mariana Islands: 
estimated biomass (top left), harvest rate (H; top right), B/BMSY (bottom left), and H/HCR 
(bottom right). A model estimating m (i.e., a Pella-Tomlinson model) was fit as an 
alternative to the base case model where m was fixed at 2. 

  



 

150 

 

Figure 54. Results of sensitivity analyses for the shape parameter (m) for bottomfish 
management unit species in American Samoa: estimated biomass (top left), harvest rate 
(H; top right), B/BMSY (bottom left), and H/HCR (bottom right). Priors for m were calculated 
as ± 50% of the mean prior, the CV for the m prior increased to 100%, mean of prior m = 
0.92 with 80% CV, and m fixed at 2.0 (i.e., a Schaefer model). 
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Figure 55. Results of sensitivity analyses for the prior distribution of carrying capacity 
(K) for bottomfish management unit species in Guam: estimated biomass (top left), 
harvest rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom right). Priors for K 
were calculated as ± 50% of the mean prior, the CV for the K prior decreased to 20%, and 
K with 95% confidence interval from 118 to 4550 thousand pounds.  
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Figure 56. Results of sensitivity analyses for the prior distribution of carrying capacity 
(K) for bottomfish management unit species in the Commonwealth of the Northern 
Mariana Islands: estimated biomass (top left), harvest rate (H; top right), B/BMSY (bottom 
left), and H/HCR (bottom right). Priors for K were calculated as ± 50% of the mean prior, 
the CV for the K prior decreased to 20%, and K with 95% confidence interval from 303 to 
11741 thousand pounds.  
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Figure 57. Results of sensitivity analyses for the prior distribution of carrying capacity 
(K) for bottomfish management unit species in American Samoa: estimated biomass (top 
left), harvest rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom right). Priors for K 
were calculated as ± 50% of the mean prior, the CV for the K prior decreased to 20%, and 
K with a 95% confidence interval from 156 to 6046 thousand pounds.  
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Figure 58. Results of sensitivity analyses for the prior distribution of ratio of initial 
biomass to carrying capacity (ψ) for bottomfish management unit species in Guam: 
estimated biomass (top left), harvest rate (H; top right), B/BMSY (bottom left), and H/HCR 
(bottom right). Priors for ψ were calculated as ± 50% of the mean prior, the CV for the ψ 
prior decreased to 20%, ψ with a 95% confidence interval from 0.2 to 0.6 and 0.5 to 0.9, 
and ψ as a beta distribution with mean and CV equal to 0.5. 
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Figure 59. Results of sensitivity analyses for the prior distribution of ratio of initial 
biomass to carrying capacity (ψ) for bottomfish management unit species in the 
Commonwealth of the Northern Mariana Islands: estimated biomass (top left), harvest 
rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom right). Priors for ψ were 
calculated as ± 50% of the mean prior, the CV for the ψ prior decreased to 20%, ψ with a 
95% confidence interval from 0.2 to 0.6 and 0.5 to 0.9, and ψ as a beta distribution with 
mean and CV equal to 0.5. 
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Figure 60. Results of sensitivity analyses for the prior distribution of ratio of initial 
biomass to carrying capacity (ψ) for bottomfish management unit species in American 
Samoa: estimated biomass (top left), harvest rate (H; top right), B/BMSY (bottom left), and 
H/HCR (bottom right). Priors for ψ were calculated as ± 50% of the mean prior, the CV for 
the ψ prior decreased to 20%, ψ with a 95% confidence interval from 0.2 to 0.6 and 0.5 to 
0.9, and ψ as a beta distribution with mean and CV equal to 0.5.  
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Figure 61. Results of sensitivity analyses for the prior mode of process error (ση
2) for 

bottomfish management unit species in Guam: estimated biomass (top left), harvest rate 
(H; top right), B/BMSY (bottom left), and H/HCR (bottom right). Prior mode for ση

2 was 
decreased by a factor of 10 by reducing the scale parameter to 0.01 and increased by a 
factor of 10 by increasing the scale parameter to 1.0. 
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Figure 62. Results of sensitivity analyses for the prior mode of process error (ση
2) for 

bottomfish management unit species in the Commonwealth of the Northern Mariana 
Islands: estimated biomass (top left), harvest rate (H; top right), B/BMSY (bottom left), and 
H/HCR (bottom right). Prior mode for ση

2 was decreased by a factor of 10 by reducing the 
scale parameter to 0.01 and increased by a factor of 10 by increasing the scale parameter 
to 1.0.  
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Figure 63. Results of sensitivity analyses for the prior mode of process error (ση
2) for 

bottomfish management unit species in American Samoa: estimated biomass (top left), 
harvest rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom right). Prior mode for 
ση

2 was decreased by a factor of 10 by reducing the scale parameter to 0.01 and 
increased by a factor of 10 by increasing the scale parameter to 1.0.  
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Figure 64. Results of sensitivity analyses for the prior mode of observation error 
(στestimated

2) for bottomfish management unit species in Guam: estimated biomass (top 
left), harvest rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom right). Prior mode 
for στestimated

2 was decreased by a factor of 10 by reducing the scale parameter to 0.01 and 
increased by a factor of 10 by increasing the scale parameter to 1.0. 
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Figure 65. Results of sensitivity analyses for the prior mode of observation error 
(στestimated

2) for bottomfish management unit species in the Commonwealth of the 
Northern Mariana Islands: estimated biomass (top left), harvest rate (H; top right), B/BMSY 
(bottom left), and H/HCR (bottom right). Prior mode for στestimated

2 was decreased by a 
factor of 10 by reducing the scale parameter to 0.01 and increased by a factor of 10 by 
increasing the scale parameter to 1.0.  
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Figure 66. Results of sensitivity analyses for the prior mode of observation error 
(στestimated

2) for bottomfish management unit species in American Samoa: estimated 
biomass (top left), harvest rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom 
right). Prior mode for στestimated

2 was decreased by a factor of 10 by reducing the scale 
parameter to 0.01 and increased by a factor of 10 by increasing the scale parameter to 
1.0. 
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Figure 67. Results of sensitivity analyses for uniform prior distributions for the standard 
deviation of both the estimable component of observation error (στestimated) and process 
error (ση) for bottomfish management unit species in Guam: estimated biomass (top left), 
harvest rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom right). 
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Figure 68. Results of sensitivity analyses for uniform prior distributions for the standard 
deviation of both the estimable component of observation error (στestimated) and process 
error (ση) for bottomfish management unit species in the Commonwealth of the Northern 
Mariana Islands: estimated biomass (top left), harvest rate (H; top right), B/BMSY (bottom 
left), and H/HCR (bottom right).  
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Figure 69. Results of sensitivity analyses for uniform prior distributions for the standard 
deviation of both the estimable component of observation error (στestimated) and process 
error (ση) for bottomfish management unit species in American Samoa: estimated 
biomass (top left), harvest rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom 
right). 
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Figure 70. Results of sensitivity analyses for excluding variation in bottomfish 
management unit species catch for Guam: estimated biomass (top left), harvest rate (H; 
top right), B/BMSY (bottom left), and H/HCR (bottom right). Shaded areas are the 95% 
credible intervals for the base case (blue shading) and for the sensitivity when excluding 
variation in catch (grey shading).  
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Figure 71. Results of sensitivity analyses for excluding variation in bottomfish 
management unit species catch for the Commonwealth of the Northern Mariana Islands: 
estimated biomass (top left), harvest rate (H; top right), B/BMSY (bottom left), and H/HCR 
(bottom right). Shaded areas are the 95% credible intervals for the base case (blue 
shading) and for the sensitivity when excluding variation in catch (grey shading).  
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Figure 72. Results of sensitivity analyses for excluding variation in bottomfish 
management unit species catch for American Samoa: estimated biomass (top left), 
harvest rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom right). Shaded areas 
are the 95% credible intervals for the base case (blue shading) and for the sensitivity 
when excluding variation in catch (grey shading). 
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Figure 73. Results of sensitivity analyses for fitting to independent estimate of MSY for 
bottomfish management unit species in Guam: estimated biomass (top left), harvest rate 
(H; top right), B/BMSY (bottom left), and H/HCR (bottom right). 
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Figure 74. Results of sensitivity analyses for fitting to independent estimate of MSY for 
bottomfish management unit species in the Commonwealth of the Northern Mariana 
Islands: estimated biomass (top left), harvest rate (H; top right), B/BMSY (bottom left), and 
H/HCR (bottom right). 
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Figure 75. Results of sensitivity analyses for fitting to independent estimate of MSY for 
bottomfish management unit species in American Samoa: estimated biomass (top left), 
harvest rate (H; top right), B/BMSY (bottom left), and H/HCR (bottom right). 
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Figure 76. Results of sensitivity analyses for initial conditions of the Markov Chain Monte 
Carlo routine for Guam, the Commonwealth of the Northern Mariana Islands (CNMI), and 
American Samoa. The open black circles are the estimated stock status in 2017 for the 
ten models with random initial conditions, and the closed white square is the estimated 
stock status in 2017 of the base case model.  
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Appendix A: Effects of data preparation procedures on nominal 
CPUE. 

Methods 

At the request of the WPSAR panel at the conclusion of the 2019 review, we prepared nominal 
catch per unit effort (CPUE) time series for Guam and American Samoa resulting from each of 
four procedural steps in data preparation for the 2019 assessments and compared these trends to 
the CPUE time series from the 2016 assessments. The intent of this appendix is to show how the 
data preparation choices made for the 2019 assessments result in differences with the 2016 
update assessments for Guam and American Samoa. We did not prepare time series for the 
Commonwealth of the Northern Mariana Islands (CNMI) because the dataset used for the 2019 
assessment was different from the dataset used for the 2016 assessment, and therefore comparing 
data preparation procedures would not be applicable. The 2016 assessments for Guam and 
American Samoa used data that ended in 2013, had a different species list than the 2019 
assessments, assumed that species reported at the family- or species-group level either contained 
no BMUS (for Guam) or 75% BMUS (for American Samoa) for all years, and only selected 
interviews where 50% or more of the catch by weight was BMUS regardless of fishing gear. The 
first series we prepared was the nominal CPUE series reported in Yau et al. (2016). The second 
series used the 2016 procedure with the 2019 data, which ended in 2017. For this series, nominal 
CPUE was calculated after applying the 2016 species list, using species-group proportions from 
the 2016 assessments, and selecting all interviews where at least 50% of the catch by weight was 
composed of BMUS. The third series used the 2019 data and 2019 species list but assumed 
species group proportions from the 2016 assessments and selected all interviews where at least 
50% of the catch by weight was of BMUS. The fourth series used the 2019 data, 2019 species 
list and 2019 species group proportions, and selected all interviews where at least 50% of the 
catch by weight was of BMUS. The fifth series used the 2019 data, 2019 species list and 2019 
species group proportions, and selected all interviews that reported using bottomfishing gear, 
regardless of the proportion of the catch that was BMUS. The fifth series was the same as used 
for CPUE standardization for the 2019 benchmark stock assessments. For each series, we also 
excluded interviews with incomplete information on factors used in the standardization of 
nominal CPUE. The order of data preparation steps presented herein were done for ease of 
presentation in meeting the intent of this appendix and are not meant to reflect a preferred order 
for steps done within the assessments. 

Results 

Guam 

Nominal CPUE series using the data preparation procedure from the 2019 assessments were 
generally similar to nominal CPUE from the 2016 assessment with the exception of filtering 
based on bottomfishing gear and the value in 1984 (Figure A1). The choice to use bottomfishing 
gear, and thereby the choice not to filter based on a percentage of BMUS catch within an 
interview, changed nominal CPUE the most among all procedural differences. Although the 
decline in CPUE compared to previous approaches appears consistent across years in Figure A1, 
CPUE declined more in the later part of the time series than in the earlier part after filtering 
based on bottomfishing gear. Nominal CPUE for the 2019 assessment was approximately 80% 
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the value prior to applying the bottomfishing gear filter in the early part of the time series, 
declined to 40% the value in 1997, and then averaged 47% thereafter. The other large change in 
CPUE when applying the data preparation procedure for the 2019 assessment occurred for 1984. 
Given that no procedural steps for the 2019 assessment showed the same large spike in 1984 that 
was present in the 2016 assessment, the difference was not due to data preparation but instead 
was due to underlying differences in the data.  

American Samoa 

Nominal CPUE calculated using the 2019 data with the 2016 data preparation procedure (Series 
2) was similar to CPUE from the 2016 report in most years (Figure A2). The single largest 
differences occurred in 1989 and 2000, when CPUE using the 2019 data was 65% and 43% 
greater, respectively, relative to using the 2019 data. Nominal CPUE using the 2019 data varied 
from -21% to +33% relative to the 2016 data among all other years. The use of the 2019 species 
list (Series 3) resulted in similar CPUE to Series 1 and 2 in most years, with the exception of 
2012, when the use of the 2019 species list accounted for a 52% increase in CPUE for the new 
data. The use of the estimated group proportions (Series 4) reduced nominal CPUE in several 
years starting with 2000. The selection of interviews reporting bottomfishing gear (Series 5) 
resulted in a reduction in nominal CPUE in most years, particularly after 2005. Selecting 
interviews based on bottomfishing gear resulted in the inclusion of interviews reporting zero 
BMUS catch in the data set, whereas using a 50% BMUS threshold excluded any interviews 
reporting zero catch. 
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Figure A1: Nominal catch per unit effort (CPUE) following a sequence of data preparation 
steps from the 2016 update assessment to the 2019 benchmark assessment for Guam. 
The series are from 1) the 2016 assessment report; 2) the data for the 2019 assessment 
but applying the 2016 species list, the 2016 species group proportions (assumed 0% of 
species groups are BMUS), and the 2016 filtering approach (only selecting interviews 
with at least 50% BMUS catch); 3) the data for the 2019 assessment, applying the 2019 
species list, but applying the 2016 species group proportions, and the 2016 filtering 
approach; 4) the data for the 2019 assessment, applying the 2019 species list and the 
2019 species group proportions, but using the 2016 filtering approach; and 5) the data for 
the 2019 assessment and applying the 2019 species list, 2019 species group proportions, 
and 2019 filtering (i.e., selecting interviews that reported bottomfishing gear). Series 5 
was used for standardization in the 2019 benchmark assessment.  
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Figure A2: Nominal catch per unit effort (CPUE) following a sequence of data preparation 
steps from the 2016 update assessment to the 2019 benchmark assessment for American 
Samoa. The series are from 1) the 2016 assessment report; 2) the data for the 2019 
assessment but applying the 2016 species list, the 2016 species group proportions 
(assumed 75% of species groups are BMUS), and the 2016 filtering approach (only 
selecting interviews with at least 50% BMUS catch); 3) the data for the 2019 assessment, 
applying the 2019 species list, but applying the 2016 species group proportions, and the 
2016 filtering approach; 4) the data for the 2019 assessment, applying the 2019 species 
list and the 2019 species group proportions, but using the 2016 filtering approach; and 5) 
the data for the 2019 assessment and applying the 2019 species list, 2019 species group 
proportions, and 2019 filtering (i.e., selecting interviews that reported bottomfishing 
gear). Series 5 was used for standardization in the 2019 benchmark assessment. 
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Supplementary material 

Supplementary material on model code and data scripts for each territorial assessment are 
provided in a separate document connected to this assessment report, and can be found at 
https://doi.org/10.25923/bz8b-ng72. 
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