# Pelagic Fisheries of the Western Pacific Region



# 2003 Annual Report



June 2004 Western Pacific Regional Fishery Management Council Honolulu, Hawaii Cover photo: (from: http://www.investguam.com/pft/transocean.html)
Foreign longline fisheries on Guam grew from five vessels in late 1986 to 328 vessels in 1990. During 1996, longliners made more than 2,144 port calls to the island. Longline transshipment fisheries on Guam consist mainly of Japanese and Taiwanese vessels. Longline vessels, which fish mainly in the waters of the Federated States of Micronesia, offload their catch (which consists mainly of yellowfin and big-eye tuna) at the commercial port on Guam, where the fish is processed for transshipment by air to Japan for the sashimi markets. Tuna portions that do not meet the required standards are frozen for container transshipment to canneries or processed locally. Several spin-off industries have resulted from processing non-sashimi-grade tuna, including tuna jerky products, tuna loins and other value-added products.

A report of the Western Pacific Regional Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award No. NA77FC0008



# Pelagic Fisheries of the Western Pacific Region 2003 Annual Report

Printed on June 30, 2004

Prepared by the Pelagics Plan Team and Council Staff

for the

Western Pacific Regional Fishery Management Council 1164 Bishop Street, Suite 1400, Honolulu, Hawaii 96813

### **Table of Contents**

| Table of Contents                                                                 | ii |
|-----------------------------------------------------------------------------------|----|
| I. Introduction                                                                   | 1  |
| A. Background                                                                     | 1  |
| B. Report Content                                                                 | 2  |
| C. Report Appraisal                                                               | 2  |
| D. Plan Team Members                                                              | 2  |
| II. Summary <sup>2</sup>                                                          | 6  |
| A. Plan Administration                                                            | 6  |
| B. Island Areas                                                                   | 6  |
| C. Species                                                                        | 8  |
| Mahimahi                                                                          | 8  |
| Blue marlin                                                                       | 8  |
| Striped marlin                                                                    | 9  |
| Sailfish                                                                          | 9  |
| Shortbill spearfish                                                               | 10 |
| Skipjack tuna                                                                     | 10 |
| Yellowfin tuna                                                                    |    |
| Wahoo                                                                             | 11 |
| D. Gear                                                                           | 11 |
| Troll fisheries                                                                   | 11 |
| III. Issues                                                                       | 11 |
| IV. 2003 Region-wide Annual Report Recommendations                                | 11 |
| V. Plan Administration                                                            | 12 |
| A. Administrative Activities                                                      | 12 |
| B. Longline Permits                                                               | 12 |
| C. Foreign Fishing Permits                                                        | 13 |
| 2003 Hawaii longline limited access permit holders without vessels                | 16 |
| Western Pacific longline general permit holders in 2003                           | 16 |
| D. Protected Species Conservation                                                 | 18 |
| E. USCG Enforcement Activities                                                    | 18 |
| F. NOAA Fisheries Office for Law Enforcement Pacific Islands Enforcement Division | 20 |
| Tables                                                                            |    |
| 1. Names of Pacific pelagic management unit species                               | 4  |
| 2. Total 2002 pelagic landings in the western Pacific region                      | 5  |

# Appendices

## Appendix 1- American Samoa

|    | Tables                                                                                                                                                    | <u>Page</u> |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1  | American Samoa 2003 estimated total landings by pelagic species and by                                                                                    | 1-9         |
|    | gear type                                                                                                                                                 |             |
| 2  | American Samoa 2003 commercial landings, value, and average price by pelagic species                                                                      | 1-10        |
| 3  | American Samoa 2003 longline effort, kept and released by the three sizes of longline vessels                                                             | 1-11        |
| 4  | American Samoa 2003 longline effort and catch by boats < 50' long and > 50' long inside and outside of the restricted areas less than 50 miles from shore | 1-13        |
| 5a | American Samoa 2003 longline bycatch percentages for the three sizes of longline vessels                                                                  | 1-15        |
| 5b | American Samoa 2003 trolling bycatch                                                                                                                      | 1-15        |
| 6  | American Samoa 1996-2003 catch per 1000 hooks by species for the alia longline fishery, comparing logbook and creel survey data.                          | 1-43        |
| 7  | American Samoa catch/1000 hooks for the three sizes of longline vessels for 2000-2003                                                                     | 1-45        |
| 8  | American Samoa estimated average weight per fish by species from the Offshore Creel Survey Interviews and from Cannery Sampling                           | 1-47        |
|    | Figures                                                                                                                                                   |             |
| 2  | American Samoa annual estimated total landings of Mahimahi by gear.                                                                                       | 1-18        |
| 3  | American Samoa annual estimated total landings of Wahoo by gear.                                                                                          | 1-19        |
| 4  | American Samoa annual estimated total landings of Blue Marlin by gear.                                                                                    | 1-20        |
| 5  | American Samoa annual estimated total landings of Sailfish by gear.                                                                                       | 1-21        |
| 6  | American Samoa annual estimated total landings of Skipjack Tuna by gear.                                                                                  | 1-22        |
| 7  | American Samoa annual estimated total landings of Yellowfin Tuna by gear.                                                                                 | 1-23        |
| 8  | American Samoa annual estimated total landings of Bigeye Tuna by gear.                                                                                    | 1-24        |
| 9  | American Samoa annual estimated total landings of Albacore by longlining.                                                                                 | 1-25        |
| 10 | American Samoa annual commercial landings of Tunas and Non-Tuna PMUS.                                                                                     | 1-26        |
| 11 | Number of American Samoa boats landing any pelagic species, tunas, and non-tuna PMUS.                                                                     | 1-27        |
| 12 | Number of American Samoa boats landing any pelagic species, by                                                                                            |             |
|    | longlining, trolling, and all methods.                                                                                                                    | 1-29        |
| 13 | Number of American Samoa fishing trips or sets for all pelagic species by method.                                                                         | 1-31        |
| 14 | Number of American Samoa hours fished for all pelagic species by                                                                                          | 1-33        |
|    | longlining                                                                                                                                                | 1 33        |
| 15 | Thousands of American Samoa longline hooks set from logbook and creel survey data.                                                                        | 1-35        |

| 16 | American Samoa pelagic catch per hour trolling and number of trolling hours     | 1-37 |
|----|---------------------------------------------------------------------------------|------|
| 17 | American Samoa trolling catch rates for Blue marlin, Mahimahi, and Wahoo.       | 1-39 |
| 18 | American Samoa trolling catch rates for Skipjack and Yellowfin Tuna.            | 1-41 |
| 19 | American Samoa catch per 1000 hooks of Albacore for the Alia longline           | 1-42 |
|    | fishery,                                                                        |      |
|    | Comparing Logbook and Creel Survey Data                                         |      |
| 20 | American Samoa annual inflation-adjusted revenue in 2003 dollars for Tuna       | 1-49 |
|    | and Non-Tuna PMUS                                                               |      |
| 21 | American Samoa average inflation-adjusted price per pound of Tunas and          | 1-51 |
|    | Non-Tuna PMUS.                                                                  |      |
| 22 | American Samoa average inflation-adjusted revenue per trolling trip             | 1-53 |
| 22 | landing pelagic species.                                                        |      |
| 23 | American Samoa average inflation-adjusted revenue per longline set by           | 1-56 |
|    | alias landing pelagic species.                                                  |      |
|    | Appendix 2-Guam                                                                 |      |
|    | Tables                                                                          |      |
|    | Tables                                                                          | Page |
| 1. | Guam 2003 creel survey-pelagic species composition                              | 6    |
| 2. | Guam 2003 annual commercial average price of pelagic species                    | 7    |
| 3. | Annual consumer price indexes and CPI adjustment factors                        | 7    |
|    | ·                                                                               |      |
| 4. | Offshore creel survey bycatch number summary - trolling                         | 56   |
|    | Figures                                                                         |      |
|    |                                                                                 | Page |
| 1a | Guam annual estimated total landings: All Pelagics, Tunas PMUS, and non-        | 8    |
|    | Tuna PMUS                                                                       |      |
| 1b | Guam annual estimated total landings: All Pelagics, non-charter Pelagic, and    | 10   |
|    | charter Pelagic                                                                 |      |
| 1c | Guam annual estimated total landings: All Tunas, non-charter Tunas, and charter | 12   |
|    | Tunas                                                                           |      |
| 1d | Guam annual estimated total landings: Total Non-Tuna PMUS, Non-charter          | 14   |
|    | PMUS, and Charter PMUS                                                          |      |
| 2a | Guam annual estimated total landings: Total Mahimahi, Non-charter Mahimahi,     | 16   |
|    | and Charter Mahimahi                                                            |      |
| 2b | Guam annual estimated total landings: Total Wahoo, Non-charter Wahoo, and       | 18   |
|    | Charter Wahoo                                                                   |      |
| 3a | Guam annual estimated total landings: Total Blue Marlin, Non-charter Blue       | 20   |
|    | Marlin, and Charter Blue Marlin                                                 |      |
| 4a | Guam annual estimated total landings: Total Skipjack Tuna, Non-charter          | 22   |
|    | Skipjack Tuna, and Charter Skipjack Tuna                                        |      |

| 4b Guam annual estimated total landings: Total Yellowfin Tuna, Non-charter Yellowfin Tuna, and Charter Yellowfin Tuna  5. Guam annual estimated commercial landings: All Pologies, Tuna PMUS, and |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24                                   |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|
| 5                                                                                                                                                                                                 | Guam annual estimated commercial landings: All Pelagics, Tuna PMUS, and Non-Tuna PMUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                   |  |  |
| 6                                                                                                                                                                                                 | Guam estimated number of trolling boats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                   |  |  |
| 7a                                                                                                                                                                                                | Guam annual estimated number of Total Troll trips, Non-Charter Troll trips, and Charter Troll trips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                   |  |  |
| 7b                                                                                                                                                                                                | Yellowfin Tuna, and Charter Yellowfin Tuna Guam annual estimated commercial landings: All Pelagics, Tuna PMUS, and Non-Tuna PMUS Guam estimated number of trolling boats Guam annual estimated number of Total Troll trips, Non-Charter Troll trips, and Charter Troll trips Guam annual estimated number of Total Troll hours, Non-Charter Troll hours, and Charter Troll hours Guam annual estimated Overall Average Hours/Trip, Average Non-Charter Hours/Trip, and Average Charter Hours/Trip Guam annual estimated commercial inflated-adjusted total revenues Guam annual price of All Pelagics, Tuna PMUS, Non-Tuna PMUS Guam trolling catch rates: Overall Average CPH, Non-Charter CPH, and Charter CPH Guam trolling catch rates: All Mahimahi, Non-Charter Mahimahi, and Charter Mahimahi Guam trolling catch rates: All Skipjack, Non-charter Wahoo, and Charter Wahoo Guam trolling catch rates: All Skipjack, Non-charter Skipjack, and Charter Skipjack Guam trolling catch rates: All Pellowfin, Non-charter Yellowfin, and Charter Skipjack Guam trolling catch rates: All Blue Marlin, Non-Charter Blue Marlin, and Charter Blue Marlin Guam trolling catch rates: All Blue Marlin, Non-Charter Blue Marlin, and Charter Blue Marlin Guam Inflation-adjusted revenues per trolling trip: All Pelagics, Tuna PMUS, Non-Tuna PMUS Annual Guam longline landings from primarily foreign longliners fishing outside the Guam EEZ  Appendix 3- Hawaii  Tables  waii commercial pelagic catch, revenue, and average price by species, 2002-2003 waii commercial pelagic catch, revenue, and average price by gear, 2002-2003 |                                      |  |  |
| 7c                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34                                   |  |  |
| 8                                                                                                                                                                                                 | Guam annual estimated commercial inflated-adjusted total revenues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                                   |  |  |
| 9                                                                                                                                                                                                 | Guam annual price of All Pelagics, Tuna PMUS, Non-Tuna PMUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38                                   |  |  |
| 10a                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                   |  |  |
| 10b                                                                                                                                                                                               | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42                                   |  |  |
| 10c                                                                                                                                                                                               | Guam trolling catch rates: All Wahoo, Non-charter Wahoo, and Charter Wahoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44                                   |  |  |
| 11a                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46                                   |  |  |
| 11b                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48                                   |  |  |
| 11c                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                   |  |  |
| 12                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52                                   |  |  |
| 13                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54                                   |  |  |
|                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |  |  |
| <ol> <li>Ha</li> <li>Di</li> <li>Nu</li> <li>Ha</li> <li>Av</li> <li>By</li> </ol>                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-10<br>3-37<br>3-38<br>3-44<br>3-46 |  |  |

# Figures

| 1. ] | Hawaii total commercial catch and revenue, 1987-2003                    | 3-11 |
|------|-------------------------------------------------------------------------|------|
| 2. ] | Hawaii commercial tuna billfish, shark, and other PMUS catch, 1987-2003 | 3-12 |
| 3. ′ | Total commercial pelagic catch by gear type, 1987-2003                  | 3-14 |
| 4. ′ | Total commercial pelagic ex-vessel revenue by gear type 1987-2003       | 3-16 |
| 5. ] | Hawaii commercial tuna catch by gear type, 1987-2003                    | 3-18 |
|      | Species composition of the tuna catch, 1987-2003                        |      |
| 7.   | Hawaii bigeye tuna catch, 1987-2003                                     | 3-20 |
|      | Hawaii yellowfin tuna catch, 1987-2003                                  |      |
|      | Hawaii skipjack tuna, 1987-2003                                         |      |
| 10.  | Hawaii albacore catch, 1987-2003                                        | 3-22 |
| 11.  | Hawaii commercial billfish catch by gear type, 1987-2003                | 3-23 |
|      | Species composition of the billfish catch, 1987-2003                    |      |
|      | Hawaii swordfish catch, 1987-2003                                       |      |
|      | Hawaii blue marlin catch, 1987-2003                                     |      |
| 15.  | Hawaii striped marlin catch, 1987-2003                                  | 3-27 |
| 16.  | Hawaii commercial catch of other pelagic PMUS by gear type, 1987-2003   | 3-28 |
|      | Species composition of other PMUS catch, 1987-2003                      |      |
|      | Hawaii mahimahi catch, 1987-2003                                        |      |
|      | Hawaii ono (wahoo) catch, 1987-2003                                     |      |
|      | Hawaii moonfish catch, 1987-2003                                        |      |
|      | Hawaii shark catch, 1987-2003                                           |      |
| 22.  | Number of Hawaii-based longline vessels, 1987-2003                      | 3-34 |
|      | Number of trips by Hawaii-based longline vessels, 1991-2003             |      |
|      | Number of hooks set by the Hawaii-based longline fishery, 1991-2003     |      |
|      | Hawaii longline catch and revenue, 1987-2003                            |      |
|      | Hawaii longline tuna catch, 1987-2003                                   |      |
|      | Hawaii longline billfish catch, 1987-2003                               |      |
|      | Hawaii longline of other pelagic PMUS catch, 1987-2003                  |      |
|      | Hawaii longline shark catch, 1987-2003                                  |      |
| 30.  | Hawaii longline CPUE for major tunas on tuna trips, 1991-2003           | 3-49 |
|      | Hawaii longline swordfish CPUE by trip type, 1991-2003                  |      |
|      | . Longline blue marlin CPUE by trip type, 1992-2003                     |      |
|      |                                                                         | 3-52 |
|      | Number of Main Hawaiian Islands troll trips, 1983-2003                  |      |
|      | Main Hawaiian Islands troll catch and revenue, 1983-2003                |      |
|      | Main Hawaiian Islands troll tuna catch, 1983-2003                       |      |
|      | Main Hawaiian Islands troll billfish catch, 1983-2003                   |      |
|      | Main Hawaiian Islands troll catch of other pelagic PMUS, 1983-2003      |      |
|      | Main Hawaiian Islands troll tuna catch per trip, 1983-2003              |      |
|      | Main Hawaiian Islands troll marlin catch per trip, 1983-2003            |      |
|      | Main Hawaiian Islands troll mahimahi and ono catch per trip, 1983-2003  |      |
| 41.  | Number of Main Hawaiian Islands handline trips, 1983-2003               | 3-62 |

| 42.        | Main Hawaiian Island handline catch and revenue, 1983-2003                | 3-63 |
|------------|---------------------------------------------------------------------------|------|
|            | Main Hawaiian Island handline tuna catch, 1983-2003.                      |      |
|            | Main Hawaiian Island handline tuna catch per trip, 1983-2003              |      |
|            | Number of offshore tuna handline trips, 1990-2003                         |      |
| 46.        | Offshore tuna handline catch and revenue, 1990-2003                       | 3-67 |
|            | Offshore tuna handline catch, 1990-2003                                   |      |
| 48.        | Offshore tuna handline catch per trip, 1990-2003                          | 3-70 |
| 49.        | Hawaii aku boat (pole and line) vessel and trip activity, 1983-2003       | 3-72 |
| 50.        | Hawaii aku boat (pole and line) catch and revenue, 1983-2003              | 3-73 |
|            | Hawaii aku boat (pole and line) fishery catch, 1983-2003                  |      |
| 52.        | Hawaii aku boat (pole and line) fishery catch per trip, 1983-2003         | 3-75 |
|            | Appendix 4- Northern Mariana Islands                                      |      |
|            | Tables                                                                    |      |
|            |                                                                           | page |
|            | NMI 2003 commercial pelagic landings, revenues and price                  |      |
| 2.         | NMI 2003 by catch summary                                                 | 4-23 |
|            | Figures                                                                   |      |
| 1          | NIMI annual commercial landings, all relacing tune DMHS and non-tune DMHS | page |
| 1.         | NMI annual commercial landings: all pelagics, tuna PMUS and non-tuna PMUS |      |
| 2.         | NMI annual commercial landings: mahimahi, wahoo, and marlin               |      |
| 3.         | NMI annual commercial landings: skipjack and yellowfin tuna               |      |
| 4.<br>5.   | Number of NMI fishermen (boats) making commercial pelagic landings        |      |
| <i>5</i> . | NMI number of trips catching any pelagic fish                             |      |
| 0.<br>7.   | NMI annual commercial adjusted revenues                                   |      |
| 8.         | NMI annual commercial adjusted revenue for PMUS trips only                |      |
| 9.         | NMI trolling catch rates of mahimahi, wahoo and marlin                    |      |
|            | NMI trolling catch rates of skipjack and yellowfin tuna                   |      |
|            | NMI trolling Creel Survey bycatch summary                                 |      |
|            |                                                                           | page |
| <i>5</i> . | International Module                                                      | 5-1  |
| 6.         | Marine Recreational Fisheries Module                                      | 6-1  |
| 7          | West Coast Fisheries                                                      | 7-1  |
| <i>7</i> . | West Coast Fisheries                                                      | /-1  |
| 8.         | NMFS Pacific Island Fisheries Science Center 2003 Publications            | 8-1  |
| 9.         | Pelagic Fisheries Research Program 2003 Publications                      | 9-1  |
| 10         | . Glossary                                                                | 10-1 |

#### Pelagic Fisheries of the Western Pacific Region — 2003 Annual Report

#### I. Introduction

#### A. Background

The Fishery Management Plan (FMP) for Pelagic Fisheries of the Western Pacific Region was implemented by the National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NMFS) on 23 March 1987. The Western Pacific Regional Fishery Management Council (WPRFMC, or Council) developed the FMP to manage the pelagic resources that are covered by the Magnuson Fishery Conservation and Management Act of 1976 and that occur in the US Exclusive Economic Zone (EEZ) around American Samoa, Guam, Hawaii, the Northern Mariana Islands, and the US possessions in the Western Pacific Region (Johnston Atoll, Kingman Reef and Palmyra, Jarvis, Howland, Baker, Midway, and Wake Islands).

The objectives of the Pelagics FMP were revised in 1991. The abridged objectives are to:

- Manage fisheries for Pacific pelagic management unit species (PPMUS) to achieve optimum yield (OY).
- Promote domestic harvest of and domestic fishery values associated with PPMUS<sup>1</sup> (e.g., by enhancing the opportunities for satisfying recreational fishing experience, continuation of traditional fishing practices and domestic commercial fishers to engage in profitable operations).
- Diminish gear conflicts in the EEZ, particularly in areas of concentrated domestic fishing. Improve the statistical base for conducting better stock assessments and fishery evaluations.
- Promote the formation of regional/international arrangements for assessing and conserving PPMUS throughout their range.
- Preclude waste of PPMUS associated with longline, purse seine, pole-and-line or other fishing operations.
- Promote domestic marketing of PPMUS in American Samoa, Guam, Hawaii and the Northern Mariana Islands.

The Magnuson Act was amended to allow the inclusion of tunes in

The Magnuson Act was amended to allow the inclusion of tunas in US fishery management authority as of January 1992. In the Pacific, tuna management is the responsibility of the regional fishery management councils. Pacific pelagic management unit species (PPMUS) includes former pelagic management unit species (PMUS) and tunas.

Non-tuna PPMUS are sometimes referred to as "other PPMUS" in this report. This term is equivalent to PMUS (Pelagic Management Unit Species) used in annual reports previous to 1992, before tunas were included in the management unit.

The PPMUS are caught in the troll, longline, handline and pole-and-line (baitboat) fisheries. They are caught in oceanic as well as insular pelagic waters. Most of these species are considered to be epipelagic because they occupy the uppermost layers of the pelagic zone. All are high-level predators in the trophic sense. Pelagic fisheries for PPMUS are among the most important, if not the dominant Pacific Island fisheries.

#### **B. Report Content**

This report contains fishery performance data from each of the four island groups through 2003, interpretations of trends or important events occurring in the fisheries and recommendations. This report was prepared using reports submitted by the following agencies. The Hawaii report is an integration of State of Hawaii Division of Aquatic Resources and NMFS summaries.

- Territory of American Samoa, Department of Marine and Wildlife Resources
- Territory of Guam, Division of Aquatic and Wildlife Resources
- Territory of Guam, Department of Commerce
- State of Hawaii, Division of Aquatic Resources
- Commonwealth of the Northern Mariana Islands, Division of Fish and Wildlife
- NMFS, Pacific Islands Region\* (including Pacific Islands Fisheries Science Center, Pacific Islands Regional Office and Office for Law Enforcement)
- US Coast Guard, District 14
- Pelagic Fisheries Research Program, University of Hawaii

#### C. Report Appraisal

The report content has changed over the years. More recently, in addition to the four main modules (American Samoa, Guam, Hawaii, Northern Mariana Islands), the report now contains and international module, a recreational fisheries appendix, a synopsis of landings data for the US West Coast, and a section on the value of the Western Pacific Region fisheries.

#### **D. Plan Team Members**

The FMP requires the Council's Pelagic Plan Team (Team) to prepare an annual report on the status of the pelagic fisheries taking place in each of the island areas served by the Council (American Samoa, Guam, Hawaii and Northern Mariana Islands), to evaluate the effectiveness of the FMP in meeting its goals and objectives, and make recommendations for future management and administrative action.

<sup>\*</sup> NMFS Pacific Islands Region was created in April 2003. Before that date, the Western Pacific region was part of the NMFS Southwest Region. The new Pacific Islands Region created a new Pacific Island Regional Office (formerly Pacific Islands Area Office), and a new Pacific Islands Fisheries Science Center (formerly known as the Honolulu Laboratory).

#### 2003 Pelagic Plan Team Members

American Samoa

#### Selaina Vaitautolu

Dept. of Marine & Wildlife Resources

PO Box 3730

Pago Pago, AS 96799 Tel: (684) 633-4456 Fax: (684) 633-5944

Guam

#### **Nathaniel Martin**

Div. of Aquatic and Wildlife Resources

192 Dairy Road

Mangilao, GU 96923

Tel: (671) 735-3958 Fax: (671) 734-6570

Hawaii

Christofer H. Boggs

**Russell Ito** 

Pierre Kleiber

Robert A. Skillman

**Keith Bigelow (Chair)** 

**David Hamm** 

**Minling Pan** 

National Marine Fisheries Service

Pacific Islands Fisheries Science Center

2570 Dole Street

Honolulu, HI 96822-2396

Tel: (808) 948-9706 Fax: (808) 943-1290

#### Andrew Burnell Reginald Kokubun

Hawaii Division of Aquatic Resources

1151 Punchbowl Street, #330

Honolulu, HI 96813

Tel: (808) 587-0096 Fax: (808) 587-0115

#### John Sibert

SOEST/JIMAR

1000 Pope Road, MSB 312

Honolulu, HI 96822

Tel: (808) 956-4109

Fax: (808) 956-4104

#### Northern Mariana Islands

#### **Rav Roberto**

Division of Fish and Wildlife

Department of Land & Natural Resources

P.O. Box 10007

Saipan, MP 96950

Tel: (670) 322-9627

Fax: (670) 322-9629

#### Council Staff

#### **Paul Dalzell**

Western Pacific Regional Fishery

Management Council

1164 Bishop St, #1400

Honolulu, HI 96813

Tel: (808) 522-8220

Fax: (808) 522-8226

The list of Management Unit Species (MUS) managed under the Pelagic FMP has been revised to exclude dogtooth tuna (*Gymnosarda unicolor*) and all sharks except the following nine species: pelagic thresher shark (*Alopias pelagicus*), bigeye thresher shark (*Alopias superciliosus*), common thresher shark (*Alopias vulpinus*), silky shark (*Carcharhinus falciformis*), oceanic whitetip shark, (*Carcharhinus longimanus*), blue shark (*Prionace glauca*), shortfin mako shark (*Isurus oxyrinchus*), longfin mako shark (*Isurus paucus*), and salmon shark (*Lamna ditropis*).

The previous MUS shark listing used to include oceanic species of the families *Alopiidae*, *Carcharinidae*, *Lamnidae*, *Sphynidae*. However, this could be construed to mean all members of these four shark families, which would also include nearshore and demersal sharks. The Pelagics Plan Team recommended in 1999 revising the sharks contained in the management unit when the Council had completed a Coral Reef Ecosystem FMP (CREFMP), which would include nearshore species in the management unit The Plan team also recommended removing dogtooth tuna as this is not a true pelagic fish but a nearshore reef species. The CREFMP was completed in 2001 and among other measures, amended the Pelagics FMP by removing dogtooth tuna from the management unit and listed only 9 true pelagic sharks for inclusion therein (Table1).

A summary of the total pelagic landings during 2003 in the Western Pacific and the percentage change between 2002 and 2003 is shown in Table 2.

Table 2. Total pelagic landings in lbs in the Western Pacific Region in 2003

| Species            | Am         | % change | Guam    | % change | Hawaii     | % change | CNMI    | % change |
|--------------------|------------|----------|---------|----------|------------|----------|---------|----------|
|                    | Samoa      |          |         | _        |            | _        |         |          |
| Swordfish          | 16,441     | -55.7    |         |          | 320,000    | -55.6    |         | _        |
| Blue marlin        | 24,661     | -66.8    | 66,058  | +23.4    | 1,160,000  | +11.5    | 1,130   | -10.4    |
| Striped marlin     | 8,910      | +131.4   |         |          | 1,370,000  | +124.6   |         |          |
| Other billfish     | 16,447     | +33.2    |         |          | 580,000    | +48.7    | 137     | +661.1   |
| Mahimahi           | 82,406     | -4.7     | 83,730  | -51.5    | 1,340,000  | -5.6     | 7,173   | -60      |
| Wahoo              | 434,837    | +21.4    | 63,285  | -11.9    | 1,000,000  | +44.9    | 7,803   | -4.4     |
| Opah (moonfish)    | 9,283      | +37.3    |         |          | 1,090,000  | +18.5    |         |          |
| Sharks (whole wgt) | 8,851      | +35.3    |         |          | 340,000    | -2.9     |         |          |
| Albacore           | 8,821,199  | -32.7    |         |          | 1,340,000  | -19.8    |         |          |
| Bigeye tuna        | 557,557    | -29.2    |         |          | 8,350,000  | -23.9    |         |          |
| Bluefin tuna       |            |          |         |          | 1,000      | -50.0    |         |          |
| Skipjack tuna      | 277,170    | -46.7    | 187,726 | +3.9     | 1,580,000  | +36.2    | 171,312 | -3.5     |
| Yellowfin tuna     | 1,145,417  | +6.1     | 67,690  | +50.6    | 3,420,000  | +27.6    | 25,500  | -13.2    |
| Other pelagics     | 11,564     | +6.1     | 42,821  | +235.5   | 770,000    | +5.5     | 14,146  | -25.6    |
| Total              | 11,414,743 | -27.4    | 506,310 | -5.2     | 22,600,000 | -3.4     | 227,203 | -10.3    |

**Table 1. Names of Pacific Pelagic Management Unit Species** 

| <b>English Common Name</b>                                                                                                                                           | Scientific Name                                                                                                                                                          | Samoan or<br>AS local  | Hawaiian or<br>HI local          | Chamorroan or Guam local | S. Carolinian or NMI local | N. Carolinian or<br>NMI local |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|--------------------------|----------------------------|-------------------------------|
| Mahimahi (dolphinfishes)                                                                                                                                             | Coryphaena spp.                                                                                                                                                          | Masimasi               | Mahimahi                         | Botague                  | Sopor                      | Habwur                        |
| Wahoo                                                                                                                                                                | Acanthocybium solandri                                                                                                                                                   | Paala                  | Ono                              | Toson                    | Ngaal                      | Ngaal                         |
| Indo-Pacific blue marlin<br>Black marlin                                                                                                                             | Makaira mazara:<br>M. indica                                                                                                                                             | Sa'ula                 | A'u, Kajiki                      | Batto'                   | Taghalaar                  | Taghalaar                     |
| Striped marlin                                                                                                                                                       | Tetrapturus audax                                                                                                                                                        |                        | Nairagi                          |                          |                            |                               |
| Shortbill spearfish                                                                                                                                                  | T. angustirostris                                                                                                                                                        | Sa'ula                 | Hebi                             | Spearfish                |                            |                               |
| Swordfish                                                                                                                                                            | Xiphias gladius                                                                                                                                                          | Sa'ula malie           | A'u kū,<br>Broadbill,<br>Shutome | Swordfish                | Taghalaar                  | Taghalaar                     |
| Sailfish                                                                                                                                                             | Istiophorus platypterus                                                                                                                                                  | Sa'ula                 | A'u lepe                         | Guihan layak             | Taghalaar                  | Taghalaar                     |
| Pelagic thresher shark Bigeye thresher shark Common thresher shark Silky shark Oceanic whitetip shark Blue shark Shortfin mako shark Longfin mako shark Salmon shark | Alopias pelagicus Alopias superciliosus Alopias vulpinus Carcharhinus falciformis Carcharhinus longimanus Prionace glauca Isurus oxyrinchus Isurus paucus Lamna ditropis | Malie                  | Mano                             | Halu'u                   | Paaw                       | Paaw                          |
| Albacore                                                                                                                                                             | Thunnus alalunga                                                                                                                                                         | Apakoa                 | 'Ahi palaha,<br>Tombo            | Albacore                 | Angaraap                   | Hangaraap                     |
| Bigeye tuna                                                                                                                                                          | T. obesus                                                                                                                                                                | Asiasi, To'uo          | 'Ahi po'onui,<br>Mabachi         | Bigeye tuna              | Toghu, Sangir              | Toghu, Sangir                 |
| Yellowfin tuna                                                                                                                                                       | T. albacares                                                                                                                                                             | Asiasi, To'uo          | 'Ahi shibi                       | 'Ahi, Shibi              | Yellowfin tuna             | Toghu                         |
| Northern bluefin tuna                                                                                                                                                | T. thynnus                                                                                                                                                               |                        | Maguro                           |                          |                            |                               |
| Skipjack tuna                                                                                                                                                        | Katsuwonus pelamis                                                                                                                                                       | Atu, Faolua,<br>Ga'oga | Aku                              | Bunita                   | Angaraap                   | Hangaraap                     |
| Kawakawa                                                                                                                                                             | Euthynnus affinis                                                                                                                                                        | Atualo,<br>Kavalau     | Kawakawa                         | Kawakawa                 | Asilay                     | Hailuway                      |
| Moonfish                                                                                                                                                             | Lampris spp                                                                                                                                                              | Koko                   | Opah                             |                          | Ligehrigher                | Ligehrigher                   |
| Oilfish family                                                                                                                                                       | Gempylidae                                                                                                                                                               | Palu talatala          | Walu, Escolar                    |                          | Tekiniipek                 | Tekiniipek                    |
| Pomfret                                                                                                                                                              | family Bramidae                                                                                                                                                          | Manifi moana           | Monchong                         |                          | -                          | -                             |
| Other tuna relatives                                                                                                                                                 | Auxis spp, Scomber spp; Allothunus spp                                                                                                                                   | (various)              | Ke'o ke'o,<br>saba (various)     | (various)                | (various)                  | (various)                     |

#### II. Summary <sup>2</sup>

#### A. Plan Administration

NOAA Fisheries approved a supplement to FMP Amendment 8 (68 FR 46112, August 5, 2003). The supplement addresses portions of the original amendment that were disapproved by NOAA Fisheries in 1999 because of inconsistency with the Magnuson-Stevens Act, as amended by the Sustainable Fisheries Act. The supplemental amendment does not revise the existing regulations so rulemaking was not required. NOAA Fisheries first published a Notice of Intent to prepare a Supplemental Environmental Impact Statement (SEIS) for pelagic fishery issues generally (68 FR 59771, October 17, 2003). A supplement to the Notice of Intent was published December 3, 2003 (68 FR 67640) to explain that the NEPA process would be split into two phases. In December 2003 NOAA Fisheries initiated consultation under section 7 of the Endangered Species Act with the NOAA Fisheries Office of Protected Resources. The consultation would consider the Council's "new technologies" regulatory amendment and would ultimately result in the issuance in a new biological opinion.

#### **B.** Island Areas

In **American Samoa**, total landings of all pelagic species decreased 27 %, down from last year's 92% increase in landings. An estimated 11, 414, 743 lb (-27.4%) of pelagic fish were landed in 2003, of which 11,158,092 lb were commercial landings valued at \$10,496,968 (-27.1%). The average price for all pelagics was \$0.94/lb (+4.4%).

Sixty-eight vessels reported landing pelagic species in 2003, which was the same number of vessels as in 2002. Of these, 50 reported fishing with longline gear (-13.8%), and 20 reported fishing as trollers (+25%).

Trolling vessels made 307 trips an increase of 6.2% from 2002 and 47% of the long term average. Longline data are derived from both creel survey extrapolations and through submitted logbooks. Logbook data reported a total 6,220 sets for 2003, or a decrease of 9.5% from 2002. Creel survey extrapolation reported 6,662 longline sets, a 10.3 % decrease on the 2002 creel survey estimate of sets. The average duration for trolling trips in 2003 was 3.4 hr/trip, an 28% decrease from 2002. The average longline set duration by calculated via logbooks was 19.0 hr/set (+2.7%) and by creel survey was 17.4 hr/set (+4.8%). Data from the troll fishery suggests that the catch per unit effort (CPUE) in 2003 increased by 60.6% and about 27.6% above the long term average. The average size of albacore has dramatically decreased from 2002 to 2003 from 45.5 to 38.6 lb/fish. Albacore accounts for about 78% of the total longline catch. Overall longline albacore catch rates increased between 2002 and 2003 (+20.3%).

In **Guam** landings of all pelagics amounted to 506,310 lbs, a decrease of 5.2%. The total revenues decreased to \$399,899, or a decrease of 20.9%. Tuna landings increased to 258,340 lbs (+16.7%), with a 12.4% decrease in revenues to \$163,243. The overall tuna landings have fluctuated around a relatively constant average for the past decade. Non-Tuna PPMUS landings

<sup>2</sup> 

decreased to 213,324 lbs (-29.1%), and adjusted revenues also decreased to \$214,143 (-22.9%). Landings in 2003 followed the 1997 trend in Guam's pelagic fisheries towards targeting other PPMUS, principally mahimahi and wahoo, rather than tuna. Tunas comprised about 51% of the 2003 pelagic landings, between the previous three years where they formed between 41 and 54% of pelagic landings. Mahimahi comprised 16.5% of the total pelagic landings, yellowfin tuna 13.3%, skipjack 36% blue marlin 13% and wahoo 12.5%.

Guam's adjusted prices for pelagic fish remained fairly stable in 2003, following a general decline since 1980. The adjusted price (\$/lb) of tuna has declined since 1996, and non-tuna PPMUS has started to decline in the past few years.

Virtually all the landings of pelagic fish are made by trolling vessels. The fleet size in 2003 was an estimated 371 vessels. The fleet size has declined in 2003 from 2002 (-1.1%), but is still above the long term average (+8.2%). The number of trips (6,962) was down in 2003 (-22%), and hours fished (31,834) were also down 22%, but hours per trip (4.6) was the same as 2002.

Foreign longline landing activity in Guam decreased (-9.1%) overall in Guam during 2003, with yellowfin tuna landings decreasing by 7.4% and bigeye by 12.9%.

The **Hawaii** fisheries for PPMUS produced total pelagic landings in excess of 22 million lb in 2003, down 3% (-800 thousand pounds) from 2002. Tunas represented 65% of the total catch. Although bigeye tuna catch was down 24% from a record catch observed in the previous year, it was still the largest component representing about 37% of the total catch, with Yellowfin tuna was the next largest component. Striped marlin was the largest component of the billfish catch, while mahimahi, opah, and ono were the largest components of the other PMUS category in 2003.

Total Hawaii pelagics ex-vessel revenue and average price was about the same in 2003 (\$47.9 million and \$2.18, respectively) as 2002. In 2003 the inflation adjusted ex-vessel revenue for the longline fishery increased by about 3 % to \$38.6 million, while the combined MHI handline/offshore handline fishery revenues decreased by 41.7%, the troll fishery increased by about 21.2% and the aku baitboats increased by 13.6%.

The Hawaii longline fleet landed 17.44 million lb of fish in 2003, a 0.2% decrease from 2002 landings. Of the billfish landed in Hawaii, longlining accounted for most of the swordfish (94%), striped marlin (95%) and blue marlin (66%). About 17% of the longline landings (2.932 million lb) were billfish, and 10% of billfish landings were swordfish. The longline fleet also accounted for all of the bluefin tuna (100%) and moonfish (100%), and most of the bigeye tuna (93%), sharks (98.5%) and albacore (86%) landed in Hawaii.

Fishing effort for the combined pelagic fisheries in Hawaii remained at a high level in 2003. The number of Hawaii-based longline vessels increased to 110 vessels in 2003 after a 12-year low in 2002. The total number of longline trips out of Hawaii has remained relatively stable over the past ten years, but experienced its highest number of total trips since 1992. However, there has been a significant change with a shift of longline effort from swordfish to tunas. The number of swordfish-directed trips has declined from 319 in 1993 to 0 in 2003. In contrast, tuna-directed

effort has increased during this period, from 458 trips in 1992 to 1,215 trips in 2003. Pelagic landings of the main Hawaiian Islands (MHI) troll and handline fisheries were relatively stable throughout the late 1980s to 2000, but MHI troll landings in 2003 have increased (+12.6%) from 2002 while MHI handline has decreased significantly (-35%). Catch by the aku boat fleet (pole-and-line for skipjack tuna) had been on a declining trend down to a historic low in 2002, but rebounded to land over 1 million pounds in 2003. The offshore handline fishery has grown into a fishey with catches that rivals and often exceeds catches of the established aku boat fishery, but in 2003 showed a 67.7% decrease in landings and saw its lowest landings since 1990.

Landings of all pelagics in the **Northern Mariana Islands** (NMI) decreased (-10.3%) between 2002 and 2003 to 227,203 lb and was only 1% below the long term average. Skipjack landings of 171,312 lb were down (-3.5%) from 2002, and was above (+4.1%) the long term average. Yellowfin tuna also declined from 2002 (-13.2%) and was also above the long term average (+37%). Landings of mahimahi was at its lowest landings in the 21-year period, down 60% from 2002 and dramatically lower (-62.2%) than the long term average. Wahoo landings decreased (-4.4%) from 2002 and was nearly 3% below the long term average. Blue marlin landings decreased (-10.4%), and continued to be significantly below the long term average (-67.8%). The decrease in landings during 2003 were matched by a small (-11%) decrease in total adjusted revenues (\$444,625) over those in 2002.

The number of fishers making commercial pelagic landings decreased in 2003 (-18.9%), from 90 to 73, and below the long term average (-18%). The number of trips landing any pelagic fish also decreased (-7.1%) in 2003 and was higher (+8.9%) than the long term average. Thus the average number of trips per fisher in 2003 increased to 23.3 from 20.4 trips per fisher in 2002.

The inflation adjusted price of tunas and non-tuna PPMUS increased in 2003. The average adjusted price of tunas decreased to \$1.96/lb (-1.5%) and other PPMUS increased to \$2.11/lb (-9.9%). Tuna prices were above the long term average (+0.5%), and prices for other PPMUS were also slightly below the long term average (+0.5%).

#### C. Species

Mahimahi landings (82,406 lbs) in American Samoa during 2003 were the third highest since the fishery began, but decreased for the second year in a row, 4.7% from 2002, with 98% of the landings coming from the longline fishery. Guam's 2003 mahimahi landings (83,730 lbs) increased substantially (-51.5%) from 2002, and the lowest recording landings since 1987. Year 2003 landings were 51.8% below the long term average. Mahimahi landings in Guam have displayed wide, unexplained annual fluctuations since 1987. The trolling catch rate for mahimahi in 2003 was at its lowest since 1992 with a CPUE of 2.6 lbs/hr. Mahimahi landings (1,335,000 lbs) made up 29.8% of the 2003 non-tuna PMUS landings in Hawaii, a decrease of 13.9%. The troll catch rate in Hawaii in 2003 was 5.4% lower than the 2002 rate, but still 50.9% above the long-term average. Northern Marianas mahimahi landings (7,173 lb) decreased in 2003 ending an upward trend that started in 2001. As with Guam, NMI experiences annual fluctuations in the catch of mahimahi. Mahimahi accounted for 42% of the total non-tuna PPMUS landings. The trolling catch rate in 2003 in the NMI was down (-57.2%) from 2002.

**Blue marlin** catches in American Samoa decreased (-67%) after an upward trend as a result of the expansion of the longline fishery, which took 78.2% of the total blue marlin catch. Guam's

landings of blue marlin (66,058 lbs) was at its highest in three years, and continues an upward trend after an 18-year low in 2001. The 2003 trolling catch rate was nearly 50% higher than the long-term average. Blue marlin landings (1.160 million lb) in 2003 in Hawaii were 11.5% higher than in 2002. Longliners accounted for 66% of the total Hawaii blue marlin landings. Blue marlin landings in the Northern Marianas (1,130 lbs) declined in 2003 by 10% from 2002 landings. This drop in landings is similar with most species caught in the fishery.

The catch rate of blue marlin in the American Samoa troll fishery increased to 1.35 lb/troll-hr and was at its highest since 1997, while the longline fishery had a CPUE of 0.26 from the logbooks, and 0.13 from the creel surveys. In Guam, blue marlin troll catch rate in 2003 (2.1 lb/troll-hr) increased 61.5% from 2002 (1.3 lb/troll-hr). In the Hawaii longline fishery, blue marlin tends to be caught incidentally at higher rates on mixed trips than in either tuna trips or swordfish trips. Court-ordered regulations limiting swordfish-directed effort implemented in 2000 either forced vessels to convert to target tunas or leave Hawaii and fish elsewhere. Therefore, only data on tuna trips for blue marlin is available. The catch rate of blue marlin stayed the same as in 2002 at 0.2 fish per 1000 hooks in 2003. The catch rate of blue marlin in the Hawaii commercial troll fishery decreased 4.3% and was 20.6% lower than the long-term average. In the Northern Marianas, the 2003 catch rate decreased by about 3.6% from 2002, and was 70.7% below the long-term average.

**Striped marlin** landings normally ranks third among the billfish in Hawaii (after swordfish and blue marlin), and in 2003 it accounted for 17% of the commercial landings of non-tuna PPMUS. The 2003 landings of 1,370,000 lbs were up from 610,000 lbs in 2002, an increase of over 124%. Striped marlin is regarded as a secondary target species (after bigeye tuna) in the winter longline fishery. Landings in the Hawaii commercial troll and handline fisheries during 2003 (63,000 lb, -1.6%) were down from 2002 and over 14% below the long-term average. The species rarely appears in the domestic landings from other areas, but increasing amounts of striped are being caught in American Samoa's developing longline fishery, with 8,910 lb landed in 2003, up 131% from 2002.

**Sailfish** landings were insignificant in most areas. American Samoa reported landings of 6,858 lbs of sailfish in 2003 were an almost 3% decrease on 2002 landings (7,064 lb) with 100% of the catch coming from longlining.

Estimated domestic landings of Hawaii **Sharks** decreased by 2.9% between 2002 and 2003, the result of regulations banning shark finning. Shark landings from other areas were relatively minor, if landed at all. In American Samoa, 8,851 lbs of sharks were caught with over 97% of the catch from longlining. Virtually the entire shark landings for Hawaii come from longline vessels. However, the Bottomfish Plan Team has also noted that Northwestern Hawaiian Islands bottom fishery also lands fins of coastal and reef sharks taken incidentally <sup>3</sup>, although the quantity has not been estimated.

9

WPRFMC Bottomfish Plan Team meeting, March 27-28, 1996, Executive Centre Hotel, Honolulu, HI.

**Shortbill spearfish** landings were reported for the first time in American Samoa at 5102 in 2003, a 68.2% increase over 2002 landings. No catches were reported in Guam, Hawaii, or NMI during 2003.

The **Swordfish** longline fishery in Hawaii began in 1989 with landings of 0.6 million lb, increasing to 3.4 million lb in 1990, and peaking at 13.1 million lb in 1993. Swordfish landings declined in 1994 and 1995 but may be leveling out and stabilizing at about 6-7 million lb. Landings in 2003 amounted to 0.32 million lbs a decline of about 55% from 2002. The estimated average weight of longline-caught swordfish was 141 lb in 2002 the fifth-smallest average size since 1987. Swordfish comprised only 9% of the total billfish PMUS landings by all fisheries in Hawaii. The longline catch rate of swordfish has remained steady since 1998, and about 4% slightly below the long-term average between 1991 and 2003, at 0.1 fish per 1000 hooks in the tuna trip fishery. Other areas did not report landings of swordfish, apart from the American Samoa longline fishery, which landed 16,441 lb in 2003, down (-55.7%) from 2002.

American Samoa reported landings of 8,821,199 lbs of **Albacore** during 2003, a 32.7% decrease on 2002 landings. This was the second highest albacore landings recorded by the American Samoa fleet. Hawaii total landing of albacore (1.340 million lb) in 2003 was a 19.8% decrease from 2002. Landings of albacore by longline vessels increased slightly by 0.4% in 2003. Other areas did not report landings of albacore.

Hawaii landings of **Bigeye** tuna (8.350 million lb) were lower in 2003 than in 2002 (-23.9%), and almost all (93%) caught by longline. No other areas reported bigeye landings apart from American Samoa, where the expanding longline fishery in 2003 caught 557,557 lbs, or an increase of 29.2% on 2002 landings.

Skipjack tuna landings in American Samoa in 2003 (277,170 lbs) decreased (-46.7%) following a 257% increase in 2002. The 2003 landings for longline fishing were almost 247% higher than the long-term average between 1982 and 2003. Skipjack landings in the troll fishery increased (+79%), compared with the dramatic decrease in the longline fishery (-49%). Due to the focus on longlining, troll landings continued to be significantly below the long term average, representing only 30% of the average of troll landings between 1982 and 2003. However, trolling catch rate was 128% lower than the 2002 value and 33% lower than the long-term average. Guam skipjack landings in 2003 (182,728 lbs) increased following a dip in 2002 landings. This represented a one year increase of about 4% on the 2002 landings, and 12% higher than the longterm average. Catch rates increased from 4.3 lb/trolling hour to 5.7 lb/trolling hour, an increase of 32.6%. Hawaii skipjack landings in 2003 of 1,580,000 lbs represented an increase of about 36.2%. The skipjack were caught principally by baitboats, which landed 960,000 lb of skipjack in 2003, which was an increase of 42.9% over its 2002 total landings. Northern Marianas Islands skipjack landings decreased by about 3.5% from 177,487 1b in 2002 to 171,312 lb in 2003. The catch rate in 2003 slightly increased (+2.6)% from 2002, but was 12.1% below the long-term average.

**Yellowfin tuna** landings in American Samoa (1,145,417 lbs) increased by 6%; the longline fleet catching 99.4% of the yellowfin which had a 17.2% increase in catch rates from 2003 logbook data, but was about 34.5% higher in 2003 from creel survey data. Catch rates decreased 25% in

the troll fishery and was below the long term average. Guam yellowfin landings (67,691 lbs) increased 50.7% in 2003 from 2002. Catch rates were 91% higher in 2003 and at its highest since 1999. The 2003 total Hawaii commercial landings of yellowfin (3.42 million lb) were 27.6% higher than 2002. Landings of yellowfin by commercial trollers decreased (+60%) in 2003, while landings by longliners increased between 2002 and 2003 (+44.7%). The 2003 longline CPUE of yellowfin by directed tuna trips was 12.5% higher than the 2002 CPUE. Northern Mariana Islands yellowfin landings declined in 2003 to 25,500 lb, a 13.2% decrease from 2002. Catch rates decreased in 2003 (12 lb/hr) 7.7% and was 20% above the long-term average.

**Wahoo** landings in American Samoa increased in 2002, following a large increase in 2002. This increase in landings was generated from the longline fishery as catch from trolling was about 0.14% of the total. The trolling catch rate continued a decline starting after 1996 and was at its highest catch rate since 1997, at 0.58 lb/hr. Guam's wahoo landings continue to show extreme interannual variability. Landings of wahoo in Guam (63,287 lbs) decreased by about 12% in 2003 and was 25.7% lower than the long term average. Troll catch rates for in Guam in 2003 increased to 2.0 lb/hr, an increase of 17.6 from 2002. Wahoo landings in Hawaii increased (+44.9%) from 690,000 lbs to 1,000,000 lbs between 2002 and 2003. The 2003 trolling catch rate for wahoo in Hawaii was up by 33.2%. The Northern Marianas wahoo landings (7,803 lb) decreased and catch rate (3.66 lb/trip) increased from the 2002 estimates. The CPUE was still below the long-term average (16.6%).

#### D. Gear

**Troll fisheries** continue to dominate the domestic fisheries in Guam and the Northern Mariana Islands. Growing charter fishing businesses in Guam and the Northern Mariana Islands contributed heavily to troll fishing effort. In Hawaii, longline landings continue to dominate pelagic fisheries production and in 2003 accounted for 77% of the landed volume of PPMUS. American Samoa's longline fishery is still expanding and accounted for 99.7% of PPMUS landings in 2003.

#### III. Issues

In October 2003 NOAA Fisheries initiated the analyses required under the National Environmental Policy Act (NEPA) for the Council's upcoming regulatory amendment on "management measures to implement new technologies for the western Pacific pelagic longline fisheries," which would focus on gear technologies with the potential to mitigate turtle interactions during swordfish-directed longlining. Public scoping meetings were held in American Samoa, Hawaii, CNMI, and Guam during October through December. The first phase would focus on management action related to turtle mitigation and would be completed on a compressed schedule in order to establish turtle mitigation measures by April 1, 2004, the date many of the existing turtle mitigation measures (and the most recent biological opinion issued by NOAA Fisheries for the pelagic fisheries) were due to be invalidated by court order in *Hawaii Longline Assoc.* v. *NMFS*.

#### IV. 2003 Region-wide Annual Report Recommendations

1. The Plan Team recommends that the Council, pursuant to its requirement for taking action when overfishing occurs, requests that the US delegation to the

Preparatory Conference pursue action by the Conference to assure that fishing mortality on bigeye and yellowfin tuna does not exceed a level where overfishing is occurring.

#### V. Plan Administration

#### **A. Administrative Activities** \*prepared by Tom Graham, NMFS-PIRO

NOAA Fisheries approved a supplement to FMP Amendment 8 (68 FR 46112, August 5, 2003). The supplement addresses portions of the original amendment that were disapproved by NOAA Fisheries in 1999 because of inconsistency with the Magnuson-Stevens Act, as amended by the Sustainable Fisheries Act. The supplement includes specifications of a new set of overfishing criteria, bycatch provisions, and identification of "fishing communities" in Hawaii. The supplemental amendment does not revise the existing regulations so rulemaking was not required.

In October 2003 NOAA Fisheries initiated the analyses required under the National Environmental Policy Act (NEPA) for the Council's upcoming regulatory amendment on "management measures to implement new technologies for the western Pacific pelagic longline fisheries," which would focus on gear technologies with the potential to mitigate turtle interactions during swordfish-directed longlining. NOAA Fisheries first published a Notice of Intent to prepare a Supplemental Environmental Impact Statement (SEIS) for pelagic fishery issues generally (68 FR 59771, October 17, 2003). Public scoping meetings were held in American Samoa, Hawaii, CNMI, and Guam during October through December. A supplement to the Notice of Intent was published December 3, 2003 (68 FR 67640) to explain that the NEPA process would be split into two phases. The first phase would focus on management action related to turtle mitigation and would be completed on a compressed schedule in order to establish turtle mitigation measures by April 1, 2004, the date many of the existing turtle mitigation measures (and the most recent biological opinion issued by NOAA Fisheries for the pelagic fisheries) were due to be invalidated by court order in *Hawaii Longline Assoc*. v. *NMFS*. In December 2003 NOAA Fisheries initiated consultation under section 7 of the Endangered Species Act with the NOAA Fisheries Office of Protected Resources. The consultation would consider the Council's "new technologies" regulatory amendment and would ultimately result in the issuance in a new biological opinion.

#### **B.** Longline Permits

During 2003, 164 permits, the maximum allowed under the FMP, were maintained in the Hawaii longline limited access fishery. Of the 164 permit holders, 41 were without vessels for those permits. PIRO also processed 22 permit transfers. PIRO also issued Western Pacific longline general permits for the pelagic fisheries, including 64 permits for vessels based in American Samoa, one permit for a vessel based in Guam, and one permit for a vessel based in the Northern Mariana Islands.

The names of the vessels registered with Hawaii limited access permits and Western Pacific longline general permits and permit holders are listed in Table 3.

#### C. Foreign Fishing Permits

No administrative actions relating to foreign fishing in the western Pacific EEZ were required because no foreign fishing permits were requested for any vessels with which the U.S. has a Governing International Fishing Agreement.

#### <u>Table 3.</u> Hawaii longline limited access permit holders in 2003

\*permit data were compiled by Georgia Matsukawa.

#### VESSEL NAME HOLDER

F/V ADRAMYTTIUM THK Fishing Inc.

F/V ALEUTIAN BEAUTY Daniel Gunn/William Widing

F/V AMANDA K Amanda K Inc.
F/V ARROW Arrow Inc.

F/V BARBARA H Arthur/Barbara Haworth

F/V BLACK MAGIC

F/V BLUE FIN

Blue Sky Fishing Producer

F/V CAPT. GREG Aquanut Co. Inc. F/V CAPT. MILLIONS I Nga Van Le

F/V CAPT. MILLIONS III Capt. Millions III, Inc. F/V CAPT. MILLIONS IV H and M Fishery Inc.

F/V CARLETA Carleta LLC

F/V CAROLEIGH Vessel Management Assoc.

F/V CRYSTAL Davis B Inc.

F/V CUMBERLAND TRAIL Leland Oldenburg

F/V DAE IN HO IV KYL Inc. F/V DAE IN HO IV Wynne Inc.

F/V DASHER II DukSung Fishing Inc.
F/V DEBORAH ANN Amko Fishing Co. Inc.
F/V EDWARD G Edward G. Co. Inc.

F/V ENTERPRISE Brian Porter/Larry Suezaki

F/V EXCALIBUR Bruce Picton

F/V FINBACK Vessel Management Assoc.
F/V FIREBIRD Firebird Fishing Corp.
F/V GAIL ANN Gail Ann Co. Inc.
F/V GARDEN SUN Konam Fishing

F/V GLORY Roy Yi

F/V GOLDEN SABLE Golden Sable Fisheries Inc.

F/V GRACE Kim Fishing Co.
F/V HAVANA Thomas Webster

F/V HAWAII POWER Intl. Quality Fishery Inc

F/V HEOLA Heola Inc. F/V HOKUAO White Inc.

F/V IMMIGRANT Martin Noel Inc.
F/V INDEPENDENCE Independence Inc.
F/V JANE Ohana Fishing LLC
F/V JANTHINA Trans World Marine Inc.

F/V JENNIFER Kil Cho Moon F/V KAIMI Fishrite Inc.

F/V KAMI M Pacific Jennings Inc.
F/V KATHERINE II K.A. Fishing Co. Inc.
F/V KATHERINE VII Katherine VII LLC
F/V KATHERINE Y Song Fishing Corp.

F/V KATY MARY Vessel Management Assoc. F/V KAWIKA Vessel Management Assoc.

F/V KAY
Young S Fishing Inc.
F/V KELLY ANN
Kelly Ann Corp.
F/V KILAUEA
Aukai Fishing Co.Ltd.
F/V KINUE KAI
Awahnee Oceanics Inc.

F/V KOLEA
Paik Fishing Inc.

F/V KUKUS
Kuku Fishing Inc.

F/V LADY ALICE
Lady Alice Co. Inc.

F/V LADY CHUL
Jong Ik Fishing Co. Inc.

F/V LAURA ANN
Crivello Fishing LLC

F/V LEA LEA
M.S. Honolulu Inc.

F/V LEGACY
Amak River Legacy

F/V LIHAU White Inc.
F/V LUCKY I Duoc Nguyen
F/V MAN SEOK KMC & PCC Inc.
F/V MANA LOA Two Bulls Inc.

F/V MARIAH Vessel Management Assoc.

F/V MARIE M Viking V Inc.
F/V MARINE STAR Viking V Inc.
F/V MIDNIGHT III Albert K. Duarte

F/V MISS JANE Palmer Pedersen Fisheries

F/V MISS JULIE Quan Do
F/V MISS LISA Miss Lisa Inc.
F/V MOKULELE ROSE Charles A. Dye
F/V PACIFIC FIN Fishrite Inc.
F/V PACIFIC HORIZON John Gibbs

F/V PACIFIC PARADISE
Twin N Fishery Inc.

F/V PACIFIC REFLECTION
Gunn Pacific Reflection

F/V PACIFICA

F/V PAN AM II

Dongwon Marine Inc.

F/V PARADISE 2001

Dang Fishery Inc.

F/V PARADISE 2002

Nguyen Fishery Inc.

F/V PEARL HARBOR II

F/V PETITE ONE

Ka'upu Ltd.

F/V PIKY

M/V Piky Inc.

F/V PRINCESS K Princess K Fishing Corp.
F/V QUEEN DIAMOND Queen Diamond Inc.
F/V QUYNH VY Reagan Nguyen
F/V RACHEL Bethel Inc.
F/V RED BARON Donald Aasted
F/V RED DIAMOND Xuan Nguyen

F/V ROBIN Universal Fishing Co.

F/V ROBIN II H & Lee Inc. F/V ROBIN V L.S. Fishing Inc. F/V SANDY DORY Highliner Inc. F/V SAPPHIRE H-N Fishery Inc. F/V SAPPHIRE II H-N Fishery Inc. F/V SEA DIAMOND Nancy Nguyen F/V SEA DIAMOND II Sea Diamond II Inc. F/V SEA FALCON Frank/Michelle Crabtree F/V SEA GODDESS Capt. Washington I Inc. F/V SEA HAWK Hawaii Fishing Co. F/V SEA MOON Sea Flower Inc. F/V SEA MOON II Sea Moon II Inc.

F/V SEA PEARL Coldwater Fisheries Inc.
F/V SEA SPIDER Paul Seaton, Trustee
F/V SEASPRAY Hanson/Hanson Fishing Co.

F/V SEEKER II Seeker Fisheries Inc.

F/V SEVEN STARS

Kwang Myong Co. Inc.
F/V SKY SUN

Kyong Dok Kim

F/V SRY SUN Kyong Dok Kim
F/V SPACER K Hwa Deog Kim

F/V ST. MICHAEL Tony/Lorna Franulovich F/V ST. PETER N. Pac. Fishery Inc.

F/V SUSAN K Mini Corp.

F/V SWELL RIDER Bayshore Mgmt. Inc.

F/V SYLVIA B-52 Inc.

F/V TANYA ROSE
Port Lynch Inc.
F/V TUCANA
Pacboat LLC
F/V TWO STAR
Two Bulls Inc.
Ulheelani Corp.
F/V VICTORIA
Aegis Fishing Inc.
F/V VIRGINIA CREEPER
Sylvan Seafoods Inc.

F/V VUI VUI II Vui Vui II Inc.
F/V VUI-VUI Nick Van Pham
F/V WHITE NIGHT Natalia/Kiril Basargin
F/V WONIYA Sierra Fisheries Inc.

#### 2003 Hawaii longline limited access permit holders without vessels

Alan Duong Andy Hoang Bac Tran

----

Christine Tran 2 permits

David Lewis
Diana Thi To
Gary Painter
Ho Son Nguyen

Hong Lu

James Chan Song Kim

Jerry Ray

K.R. Fishing Inc.

Lady Ann Margaret Inc.

Lan Thi Van Larry DaRosa Liana Do

Lindgren-Pitman Inc. Long Thanh Nguyen Natali Fishing Inc.

Ocean Associates Corp.

Pacific Fishing & Supply 2 permits
Pacific Seafoods Inc. 3 permits

Peter Webster
Quang Nguyen
Quy Thanh Truong
Richard Gallimore
Scotty Nguyen
Sea Dragon II Inc.
Steven Nguyen
Stewart Miyamoto

Tina Hoang Tom C.Y. Kim

Tom The Van Le

Tony Phan Truong

Tuan Nguyen

Vessel Management Assoc 2 permits

#### Western Pacific longline general permit holders in 2003

#### American Samoa

#### **VESSEL NAME**

#### **HOLDER**

F/V ADELITA Adelita Fishing LLC

F/V AETO Aleni Ripine

F/V ALI-B Harbor Refuse and Environmental Services

F/V ALLIANCE Offshore Adventures Inc.

F/V ALLIANCE Morgan Davies

F/V AMERICA Robert/Dorothy Pringle F/V AURO Longline Services Inc. F/V BREANA LYNN Robert/Dorothy Pringle

F/V CAPT. CARLOS ANDRES Afoa Lures F/V CHIEF TAPEET Aiga Ma Uo LLC F/V EASTERN STAR Mataio Tiapula F/V FAAOLATAGA Pele Tui

F/V FAIVAIMOANA I Faivaimoana Fishing Co Lt

F/V FETUOLEMOANA Tuna Ventures Inc. Feli Fisheries Inc. F/V FLORA F/V FOTOLUPE Richard Solaita F/V FUAO I Asifoa Atualevao F/V FUAO II Asifoa & Sons Inc. F/V GALUEGA FOU Floyd Scanlan F/V GLORIA PARK Mee Won Inc.

F/V GOGOSINA Native Resources Develope

F/V INJA Taufuiava Vaivai F/V ISLAND GIRL Clay Howenstine Inc. F/V JIMMY JR. Jimmy Vaiagae F/V JULIE IRENE Michael Pulu F/V KARLY Tulele Laolagi F/V KATHERYN ANN Silva Fishing Inc. F/V L.J. EXPRESS I Letalitonu Alofaituli F/V L.J. EXPRESS II Letalitonu Alofaituli F/V LADY ANA Ioane Maselino F/V LADY BARBARA Barbara H Inc. F/V LADY ELINOR Afoa Lures F/V LADY FRANCELLA Faamausili Pola F/V LADY HANNACHO II Afoa Lures F/V LADY MARIA Phillip Taula

F/V MIDDLEPOINT Island Tuna Mgmt. Inc.

F/V MONIQUE II William Hollister F/V NO 1 JI HYUN Ji Hyun Inc.

F/V LADY RIMA

F/V LEANN II

F/V NORTHWEST Harbor Refuse & Environm F/V PAGO NO 1 Samoa Enterprises Inc.

Jamil Shallout Steve Vaiau

F/V PAGO NO 2 Samoa Enterprises Inc.
F/V PAGO NO 3 Samoa Enterprises Inc.
F/V PENINA Longline Services Inc.

F/V PRINCESS DANIELA

F/V PRINCESS KARLINNA

F/V PRINCESS YASMINNA

F/V RJ

Lefanoga Eseroma

F/V SALVATION II

Tagialisi Misa

F/V SAMOAN BOY

Feli Fisheries Inc.

Gunn Sea Venture LLC

F/V SEA VENTURE

F/V SIVAIMOANA

F/V SKOOPY I

F/V SOUTH WIND I

F/V SOUTH WIND II

F/V SOUTH WIND III

F/V SOUTH WIND III

F/V SOUTH WIND IV

F/V SOUTH WIND IV

F/V TABITHA

Gunn Sea Venture I

Tuna Ventures Inc.

Tuna Venture I

Tuna Ve

F/V TAIMANE
Longline Services Inc.
F/V TELEFONI
Telefoni Sagapolutele
F/V THE MARIA J
Maria J Fishing Inc.
F/V TIFAIMOANA
Longline Services inc.
Tracey C Fishing LLC

<u>Guam</u>

VESSEL NAME HOLDER

[no name] Larry Taylor

Northern Mariana Islands

VESSEL NAME HOLDER

IL SIN HO Mariano Falig

#### **D. Protected Species Conservation**

This module was not available at the time of first publication of the 2003 Pelagic Annual Report (June 30, 2004). It will be included in future publications when it is made available.

#### **E. USCG Enforcement Activities**

The following is a summary of U. S. Coast Guard fisheries law enforcement activity in the western and central Pacific Region and covers the period from October 1, 2002, to September 30, 2003.

During the first three months of fiscal year 2003, the majority of our efforts continued to be focused on maritime homeland security. We were unable to conduct planned C-130 deployments to Guam and American Samoa due to unscheduled maintenance requirements, super typhoon Pongsona relief efforts, and a number of emergent, long-range search and rescue missions. Although initially limited by the availability of resources, as the year progressed we conducted aerial patrols of the exclusive economic zone (EEZs) surrounding the Main Hawaiian Islands, Kingman Reef, Palmyra Atoll, Jarvis Island, Howland Island, Baker Island, Guam, and the Northern Mariana Islands. We had twelve suspected foreign fishing vessel encroachments during the course of the year, but were unable to respond due to non-availability of resources.

Our surface assets patrolled in the vicinity of the Main Hawaiian Islands, conducting boardings and monitoring the activity of the domestic longline fleet. No significant violations were noted, though one domestic longliner was found to be in possession of eight shark fins, without corresponding carcasses in violation of the Shark Finning Prohibition Act.

We capitalized on patrol support available from out of area assets to the greatest extent possible. During this period, we tasked one of the Coast Guard's polar icebreakers transiting to and from Antarctica to patrol the Howland/Baker EEZ along her route. In May, we were able to get 20 additional surface patrol days from the high-endurance cutter HAMILTON. HAMILTON deployed from the mainland and was initially assigned to the Fourteenth Coast Guard District to support the homeland security mission. HAMILTON conducted boardings of the domestic longline fleet southwest of the Main Hawaiian Islands during this period. The most prevalent violations reported were vessels failing to carry a High Seas Fishing Act Compliance Permit and failure to properly mark their floats. All cases were turned over to NOAA Fisheries Enforcement for action. HAMILTON also patrolled the Johnston Island and Kingman Reef/Palmyra Atoll EEZ.

During the month of June, one of the mobile shoreside patrols from Marianas Section observed two foreign fishing vessels offloading shark fins in Apra Harbor, Guam. Upon investigation, the first vessel was determined to be in compliance with sufficient carcasses onboard to support the amount of fins they had. The second vessel was found to have 3,457 pounds of shark fins onboard with an insufficient amount of carcasses. The patrol also found a beaked whale onboard this vessel. Both cases were turned over to NOAA Fisheries Enforcement for further action. Guam-based cutters continued to board foreign fishing vessels inbound to Apra Harbor.

The Coast Guard conducted dedicated surface and aerial patrols of the Hawaiian Island Humpback Whale National Marine Sanctuary in concert with National Marine Fisheries Enforcement Officers from December through the end of May, with no significant violations noted during the season.

During the period from June through August we saw an unprecedented amount of illegal large-scale, high seas driftnet activity well to the north and west of the Northwestern Hawaiian Islands. Although in previous years, vessels were targeting salmon, this year all vessels found to be illegally engaged in driftnetting were targeting squid, with a resultant bycatch of tuna, shark, and marlin.

Responding to reports of illegal activity, the Coast Guard sortied the cutter RUSH in June to proceed and investigate, en route the cutter's scheduled patrol in the Bering Sea. RUSH intercepted and boarded a vessel from the People's Republic of China (PRC) engaged in illegal driftnet operations. Acting on behalf of the PRC government, RUSH rendered the vessel's fishing gear inoperable and ordered the vessel back to port in China for further action by the PRC government.

Later in July, the Coast Guard responded to additional sightings of foreign vessels illegally engaged in high seas driftnet activity. I credit some of these sightings to US fishermen working in the North Pacific, who reported the activity as it occurred to the Coast Guard. The Coast Guard responded by directing the cutter JARVIS to proceed and investigate. During their patrol, JARVIS' crew prosecuted a total of five foreign fishing vessels illegally engaged in driftnetting. JARVIS also provided information to the PRC government regarding two additional vessels suspected of driftnetting. While engaged in prosecuting two additional vessels engaged in illegal driftnet operations, JARVIS' embarked helicopter sighted a third vessel, this one Russian, outfitted for driftnetting. Although unable to pursue this vessel due to the cases in progress, information on this vessel was passed to the Russian Federal Border Service, who dispatched a patrol vessel to investigate. Additionally, during JARVIS' patrol, JARVIS freed a sperm whale that was entangled in driftnets and convinced one of the vessels being prosecuted for driftnetting to haul in approximately 30 nautical miles of driftnet that had been left behind to ghost fish. I am pleased to report that there was a significant amount of cooperation between the United States and the countries of Canada, Russia, Japan, and China to help remove vessels participating in this most environmentally destructive fishery.

#### F. NOAA Fisheries Office for Law Enforcement Pacific Islands Enforcement Division

Throughout this reporting period, random dockside compliance checks of Hawaii-based longliners were conducted. Minor technical violations were noted and addressed. In addition, several prominent investigations involving potential violations of the Western pacific Pelagic Regulations addressing the harvesting of swordfish were initiated. During the third quarter of 2003, there were four prominent enforcement actions resulting from violations of the MSFCMA which have resulted in financial penalties totaling \$143,817.81. Actionable conduct ranged from possession and use of float lines less than 20 meters in length, the direct targeting of swordfish, and various logbook and reporting infractions, to violation of the Shark Finning Prohibition Act.

Public education, deterrence, and intervention remain our primary focus with regards to averting marine mammal harassment within Hawaii. Moreover, coordination continues with volunteer organizations and local law enforcement agencies, in order to provide a timely response to marine mammal incidents. Joint patrols were conducted with personnel from the Hawaii Department of Conservation and Resources Enforcement on the Big Islands of Hawaii in order to assess and deter potential harassment of spinner dolphins. Enforcement personnel worked in partnership with researchers from the Pacific Islands Fisheries Science Center to resolve the status of land-locked sea turtles on private property. The turtles were listed as threatened or endangered. Strategies including returning the sea turtles to the open ocean.

The Pacific Islands Enforcement Division continues to provide enforcement support to the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve through the commitment of a special agent, full-time, to address the unique enforcement challenges of the reserve. The resident special agent in American Samoa attended the Coral Reef Advisory Group (CRAG) meeting and provided an enforcement assessment for the area.

To improve coral reef conservation in the Northwestern Hawaiian Islands, the VMS control center was modified to accept depth data that is transmitted automatically from VMS units. The project is ongoing, and the next phase will establish the transmission of depth data from vessel to shore side control center.

During the third quarter, there were two prominent enforcement actions resulting from violations of the Endangered Species Act, affecting sea turtles in Hawaii. Financial penalties totaling **\$9,600.00** have resulted. Violations ranged from failing to carry line clippers and dip nets, to illegal takes with prohibited fishing gear.

Public education, outreach, and enforcement efforts in conjunction with the Hawaiian Islands Humpback Whale National Marine Sanctuary continued during 2003. Consistent with previous years, public education, deterrence, and intervention strategies were maintained throughout the 2002/2003 whale watching season. The NOAA Fisheries Office for Law Enforcement participated in pre-season enforcement workshops during November and December of 2002. In addition, the NOAA Office for Law Enforcement responded to over 60 complaints involving potential violations of the humpback whale approach regulations by kayak enthusiasts, recreational water craft, swimmers, and aircraft from January though April of 2003.

The Pacific Islands Enforcement Division continues to provide technical and investigative support to the Forum Fisheries Agency and its member countries. To be specific, the resident special agent has conducted enforcement training and workshops for Forum member

The Vessel Monitoring System (VMW) continued to be an integral part of the Pacific Islands/Southwest Law Enforcement's Monitoring, Control, and Surveillance (MCS) program. The VMS continued to be an effective tool for monitoring compliance with closed area and seasonal restrictions in the region, and cooperation from the fishing community continued to remain at high levels.

The size of the VMS program is relatively stable. OLE continued to monitor the entire permitted Hawaii longline fleet. In addition, most former Hawaii-based vessels that conducted fishing operations in California and American Samoa still have the VMS units on board. To be specific, personnel from the Pacific Islands Enforcement Division traveled to Vigo, Spain to inspect the court-ordered VMS installation on two US vessels that will soon enter the CCAMLR toothfish fishery.

Throughout this reporting period, we have continued to coordinate efforts and to assist NOAA OLE Headquarters in the development of a national oversight strategy for the VMS Program, based upon regional emphasis. The United States Navy in conjunction with the Pacific Missile

Range Facility at Barking Sands, Kauai, relied on the NOAA OLE Hawaii Field Office to assist with the identification of fishing vessels in exclusion zone areas prior to missile test launches. In retrospect, the Hawaii VMS Program has clearly demonstrated that a fishing vessel monitoring system can be an effective use of technology to improve monitoring, control and surveillance of regulated fisheries. VMS, in conjunction with air and surface patrols, promotes and supports regional strategies for conservation and management of highly migratory species in the Central and Western Pacific.

#### Appendix 1

#### Territory of American Samoa

#### Introduction

The pelagic fishery in American Samoa has historically been an important component of the traditional domestic fisheries. Prior to 1995 the pelagic fishery was largely a troll-based fishery. The horizontal method of longlining was introduced to the Territory by Western Samoan fishermen in 1995. The local fishers have found longlining to be a worthwhile venture to engage in because they land more pounds with less effort and use less gas for trips. Almost all of the vessels used are "alias". These are locally built, twin-hulled (wood with fiberglass or aluminum) boats about 30 feet long, powered by 40HP gasoline outboard engines. Navigation on the alias is visual, using landmarks with the exception of a few modernized alias which have global positioning systems (GPS) for navigation. The gear is stored on deck attached to a hand-crank reel which can hold as much as 10 miles (25 miles for the jig-boat) of monofilament mainline. The gear is set by spooling the mainline off the reel and retrieved by hand pulling and cranking the mainline back onto the reel. Trips are one day long (about 8 hours) with the exception of 2 boats which go out fishing more than one day. These boats at 40 feet or so are slightly bigger than the regular alia (32+feet). Setting the equipment generally begins in the early morning. Haulback is generally in the mid-day to afternoon. The catch is stored in containers secured to the deck, or in the hulls. Albacore is the primary species caught, and is generally stored in personal freezers until a sufficient amount is accumulated to sell to the canneries. Some of the catch is also sometimes sold to stores, restaurants, local residents and donated for family functions.

In mid-1995 five alias began longlining. This number grew to 12 boats involved in longline fishing in 1996. In 1997, 33 vessels had permits to longline of which 21 of those were actively fishing on a monthly basis. Also, in 1997 the first longline vessel of 60 plus feet in length capable of making multi-day trips began operating in American Samoa. In 1998, 50 local vessels received federal permits to longline but only 25 did longline. Fifty-nine local vessels received federal permits in 1999 to longline but only 29 participated in the longline fishery. In 2000, 37 vessels were active in the longline fishery. In the last half of 2000 the number of larger multi-day longline boats operating in American Samoa grew dramatically to over a half a dozen. In 2001, the number of vessels participating in the longline fishery increased dramatically by 68%, whereas the number of vessels participating in the trolling fishery slightly decreased by 5%. In 2002, 66 boats registered and 60 participated in the longline fishery while in 2003 the number of boats which registered dropped to 57 and the number effectively fishing dropped to 51.

Prior to 1985, only commercial landings were monitored. From October 1985 to the present, data was collected through an offshore creel survey that included subsistence and recreational fishing as well as commercial fishing. In September, 1990 a Commercial Purchase (receipt book) System was instituted in which all businesses in Samoa, except for the canneries, that buy fish commercially were required by local law to submit to DMWR a copy of their purchase receipts. In January 1996, in response to the developing longline fishery a federal longline logbook system was implemented. All longline fishermen are required to obtain a federal permit which requires them to submit logs containing detailed data on each of their sets and the resulting catch. From 1996 to 1999, the logbooks submitted by the local longliners were edited in Samoa for any missing data and were then sent to the NMFS Honolulu Lab every

week for further editing and data processing. Starting with 2000, logbook data was entered and maintained in Samoa and downloaded to NMFS in Hawaii periodically.

On July of 1999, In response to a problem with delinquent longline logs, the Department of Marine and Wildlife initiated a Daily Effort Census (DEC) program to monitor the local longline fleet. Using the Daily Effort Census form, which contains all active longline vessels, data collectors go out on a daily basis, except on Sundays, Holidays, and off-duty days, to check which boats are out longlining and which boats are in port. The DEC form is returned to DMWR for data entry at the end of each working day. Federal logbooks are required to be submitted to DMWR by the following Monday after each fishing trip. If they are not, warnings are issued to the fishermen and more punitive measures are taken if these warnings are not heeded.

Toward the end of 2000 many new multi-day trip boats joined the longline fleet making it hard to tell what they were doing when they were not in port. To solve this problem the longline logbook data was compared with reports from the canneries of fish unloaded by these boats to identify which boats were delinquent in their longline logs and to take corrective action.

Newly discovered "peculiarities" in the historical data, the emergence of new, bigger boats that make multi-day trips required amending and supplementing the algorithms that expand American Samoa's offshore creel survey data. WPacFIN staff have completed modifications to the Visual FoxPro data processing system to address these data concerns to better reflect the status of the territory's pelagic fisheries. These changes are outlined below. The data from 1982-1985 has been left unchanged from the Dbase IV Commercial Catch Monitoring System but data from 1986-2003 in this report has been re-expanded with the new Visual FoxPro data processing system. These expansions are true annual expansions of the entire year's interviews across the entire year's sample days and are no longer sums of 12 monthly expansions. Note that there are some changes to the historical data due to the new re-expanded and adjusted data. As a result, the graph presentations have also changed.

Total landings data covers all fish caught and brought back to shore whether it enters the commercial market or not. Commercial Landings covers that portion of the Total Landings that was sold commercially in Samoa both to the canneries and other smaller local business that buy fish. Total landings include both the commercial and recreational/subsistence components of the fishery. Commercial Landings data from 1982-1985 was imported from the Commercial Catch Monitoring System without change. From 1986 to 1990, the estimated total landings and estimated commercial landings data was taken from the Offshore Creel Survey System expansion.

One of the problems with the offshore creel survey was that spear fishing and bottom fishing trips are usually done at night. These boats came in early in the morning before the interviewers were on duty resulting in very few interviews for these types of trips. These fishermen still had to sell their fish so starting in 1991 the Commercial Purchase System provided information on what they caught. From 1991 to present the Offshore Creel Survey landings were replaced by Commercial Purchase System landings for species where the Commercial Purchase System landings exceeded the Offshore Creel Survey landings. This happens most often for swordfish and dogtooth tuna.

Until 1995 all trips where interviews were not obtained were put in the "unknown" fishing method category. For all of the trips where interviews were obtained a percentage of trips by fishing method was calculated. The unknown trips were then divided up by this percentage and added to the interviewed trips. Since most of these unknown trips were bottomfishing and

spearfishing trips and very few real interviews for these fishing methods were obtained, these two fishing methods were under represented in the offshore creel survey expansion.

Since the vessels involved in these unknown trips was known and since certain boats only engaged in certain fishing methods, their fishing method could be changed from unknown to some known method. From 1995 and after this was done except for vessels engaging in multiple fishing methods at the same time. The fishing method for these remained unknown. The number of unknown fishing trips was greatly reduced and the bottomfishing and spearfishing trips became better represented in the offshore creel survey.

In 1997 the first vessel to make multi-day trips started operating in Samoa. It unloaded only at the canneries and if an interview could be obtained it would be hard to fit its data into the offshore creel survey system which was designed for vessels making one day trips. Toward the end of 2000 six more vessels joined this category known as non-interviewed vessels. Fortunately all of these larger non-interviewed vessels are required to submit longline logs. The longline log record of kept fish from these non-interviewed vessels was added to the longline total landings from interviewed vessels in the offshore creel survey system.

From 1997 to 2000, the entire logbook kept catch of wahoo, albacore, bigeye, skipjack and yellowfin tuna by the non-interviewed vessels was assumed to have been sold to the canneries and was added to the commercial landings at canneries prices obtained from the creel survey system. All other species of kept fish in the longline logs of non-surveyed vessels was treated as unsold and were only added to the total landings. Starting in 2001, the disposition of fish kept by the non-surveyed vessels became available from Cannery Sampling Forms. From these Cannery Sampling Forms a percentage of each species that were sold locally, sold to the canneries, or not sold could be calculated for the year and applied to the entire non-surveyed catch. This allowed the proper percentages of each species to be added to the commercial landings with either the canneries price/pound or the local price/pound.

These Cannery Sampling Forms also listed the lengths of individual fish from which their weights can be calculated. They started in 1998 listing only albacore lengths but in 2001 they listed lengths of other species as well. The weight per fish for the non-surveyed vessels was first taken as the monthly average of the cannery sampling data if there were at least 20 samples for a month. It was then taken as the annual average of the cannery sampling data if there were at least 20 samples for the year. If there wasn't enough cannery samples for a species, the weight per fish was calculated from the offshore creel survey data on a monthly basis where there were 20 or more samples or on a yearly basis. If there weren't 20 samples for a year a default value of weight per fish was obtained by averaging all of the offshore creel survey data or by manually entering a value.

In 1999 vessels emerged that made 3-5 day trips and could still be interviewed. Since the interview data is generally better than log data, these vessels are treated like normal interviewed vessels in the offshore creel survey system but their catch is divided by the number of sets they made during their multi-day trips.

Starting in 1999, many of the longline boats began landing their catches gilled and gutted to obtain higher prices at the canneries. The offshore creel survey system was modified to calculate appropriate round weights from the non-round weight using standard conversion factors for all species.

Starting in 2000, many interviewers started recording the length of the larger fish rather than trying to weigh them. The offshore creel survey system was modified to calculate appropriate round weights from the length measurements using a standard regression formula.

Starting in 2001 the method of determining price/pound was revised. Before 2001 price/pound was determined by averaging offshore creel survey data. This sometimes resulted in 4-5 samples, some of which were erroneous determining the price per pound for an entire species for a year. In 2001, the price per pound for fish sold locally in Tutuila was first determined by averaging the Commercial Purchase System (Receipt Book) data for each month. For months and species without any monthly data an annual average price/pound value from the receipt book data was used. If there was no annual average from the receipt book data a monthly average of the offshore creel survey data was calculated for each of three price/pound categories; Tutuila-Local, Manua\_local and Cannery. Again if there was no monthly samples available for a given month, species and category an annual average of creel survey data was used. In cases where there was no creel survey data for a species and category for a year a value was entered manually. Values were also entered manually to override calculated values that were determined to be erroneous.

The "other pounds" category in Table 1 includes pelagic species not caught by longlining or trolling. Examples are barracuda, rainbow runner and dogtooth tuna, caught with bottomfishing or spearfishing methods. In addition, "other sharks" as it is identified on Table 1, categorizes all species of sharks that could and could not be identified by the fishermen.

The Offshore Creel Survey System showed almost no By-Catch species during 2002 thus the bycatch for longlining was assumed to be the released species in the longline logbook system. In addition, the number of bycatch has impressively increased for this year. There were no fishing tournaments held during 2002.

The island of Tutuila is also a major base for the trans-shipment and processing of tuna taken by the distant-waters longliner and purse seine fleets. The domestic pelagic fishery is monitored by the Department of Marine and Wildlife Resources (DMWR), through a program established in conjunction with the Western Pacific Fishery Information Network (WPacFIN). This report was prepared by DMWR using information obtained and processed as explained above.

With the increase of the longline fishery since its development, many different-size vessel entered the fisheries, especially 2001. For this latest report (2001), the following tables have been included to better represent effort & catch, bycatch percentages, and CPUE for the different-size vessels:

- Table 3 & 4 represents longline effort and catch
- Table 5 represents longline bycatch percentages
- Table 7 represents longline catch per 1000 hooks
- Table 8 has been modified to include the cannery sampling average weight per fish.

#### Summary

**Landings (in pound, not number of fish) -** In the year 2003, there was a 28.7% decrease in the total landings for tuna and a 7% increase in the total landings for other pelagic species. Longlining constituted approximately 99.7 % of the total landings whereas trolling constituted 0.3 % of landings recorded. All in all, there has been a 27.3% decrease in the total landings for all tuna species and other pelagic species caught using the longline method. The total landings of albacore, which is the main target, has decreased by 32.8%.

**CPUE -** The CPUE for total catch has decreased by 22.5 % reflecting mainly the huge decreases of CPUE for Albacore (- 35.6% from 25.48 to 16.41 fish per 1000 hooks) and skipjack (-40.4 from 4.92 to 2.93 fish per 1000 hooks). CPUE for Mahimahi and for billfish decreased also, but their part in the fishery is minor. In contrast there was an increase of CPUE for Bigeye and Yellowfin while CPUE for Wahoo and sharks has changed very little.

**Fish Size -** The average size for all Tuna has dramatically decreased (e.g., from 2002 to 2003, the weight, in pound per fish, drop from 11.1 to 8.6 for Skipjack, from 45.5 to 38.6 for Albacore, from 28.0 to 17.8 for Yellowfin and from 67.6 to 37.2 for Bigeye), while for the mahimahi and the wahoo, the average weight has changed very little. For the majority of the remaining of the pelagic species, the reported catch is too small to come to any conclusion about the variability in the average size.

**Pelagic fishing revenues -** The total revenue of \$10,491,420.00 has decreased by 27.1% compared to last year (\$14,390,751.00) (Table 2). This reflects the decreased catch and the lower prices for the non Tuna PMUS, compensated to a small extent by the increase in the price per pound for the Tuna.

**Evolution of the longline fishery -** During 2003, 51 boats engaged in the longline fishery of American Samoa whereas 20 boats participated in the trolling fishery. This depicts a 15% decrease from the 60 boats that engaged in the longline fishery last year and a 25% increase from the 16 boats participating in the trolling fishery in 2002.

Changes in the longline fishery were significant this year, with a decrease of 44% in the Alia fleet (from 27 to 15), while the number of large vessels increased +10 % (from 29 to 32 boats). This change is reflected in the decrease in sets deployed (-9.4%) and by the larger number of hooks deployed (+8.2% according to the logbook data and +7.9% according to the creel survey data). Since 1997 and the first large vessel entered the longline fishery, it is the first year that the total tuna CPUE is lower for the vessels greater than 50 feet than for the Alia fleet. The decrease in CPUE is important for the large vessels (-30%) and for the monohull<50feet (-27.6%) while it increased for the Alia fleet (+19.9%).

**Evolution of the trolling fishery -** Trolling catch rates have varied since 1982, with a steady decrease between 1999 and 2002. This year we observed an important increase in the catch rate (+60.9%), but the total hours (1035 hours) spend trolling has decreased by 23 % compared to 2002 (1341 hours), close to its lowest level (1019 hours) in 1982. At the same time, more boats were trolling than last year. It is possible that the Alias which stopped longlining in 2002 now troll occasionally when the fishing conditions are very good. That could explain the high catch rates and the low average hours the boats were fishing.

**Conclusion -** Overall, the longline fishery has been growing from 1995 to 2002. At first the growth was mainly in the small scale fishery of the Alia fleet, now the growth is in the industrial

fishery and their large vessels. In 2003 the declining trend of the fishing, biological and commercial indicators is a strong warning for the pelagic fishery. This decline could be the result of an overfishing situation but the effect of a "mini El Nino" which occurred by the end of 2003 could possibly have affected the fishery. By the end of 2003, some large longliners have left the American Samoa fishery for the Hawaiian fishery, which may be more profitable.

## 2002 Recommendations and *current status*:

- The Pelagics Plan Team recommends that the National Marine Fisheries Service (NMFS) or the PFRP (Pelagic Fisheries Research Program) perform a study on the spatial and temporal dynamics of longline fishing around American Samoa. Some of the analyses in the American Samoa module suggest fishery interactions may be occurring, and the concentration of fishery effort in the American Samoa fishery now exceeds anything previously seen in Council managed fisheries. *A PFRP funded project will conduct the analyses outlined in this recommendation.*
- 2. The Pelagics Plan Team recommends that more collaborative research and management initiatives be developed between the American Samoa Department of Marine and Wildlife Resources (DMWR) and the Western Samoa Fisheries Division, given that the combined landings from both longline fisheries produce about 30% of the albacore caught in the southern Pacific Ocean, and may be representative of the stock as a whole. The Council contacted the Samoa Fisheries Division in August 2003 and received a favorable response in September 2003 about collaborative approach to longline research and management. Note also that the PFRP project mentioned above includes collaboration with Samoa's Fisheries Division.
- 3. The Pelagics Plan Team recommends holding informative workshops for boat-owners and fishermen explaining to them the importance of obtaining this information, how to accurately fill in the information and benefits they can receive through accurately filling out this information e.g longline logbook. NMFS-PIRO has conducted protected species workshops in American Samoa which included instruction on logbook completion.
- 4. The Pelagics Plan Team recommends that NMFS fund an observer program for the American Samoa longline fishery. A priority for the observer program in American Samoa should be the documentation of the condition and disposition of all fish released from longline fisheries. The Pelagics Plan Team recognizes that there may be an issue with the large percentage of releases of species in this expanding fishery. It will be important to document or estimate how many of these releases are alive. Although less reliable than observer data, logbook data could provide such information, especially if the observer program is slow to start. An observer program will be implemented when the American Samoa limited entry program is finalized in 2004. Trials with observers on three longline trips were completed by PIRO in 2003.
- 5. The Plan Team recommends NMFS or PFRP to conduct research on post-release mortality of bycatch species in the American Samoa longline fishery using archival tags.

  Some observations are being conducted with albacore caught by alia catamarans to assess the internal condition of albacore retrieved alive.

#### 2003 Recommendations:

- 1. The Pelagic Plan Team recommends that, pending the results of a re-analysis of the longline set data with the verified area closure coordinates, the Council send a letter to NMFS Office of Law Enforcement outlining concerns that large (>50ft) longline vessels may be fishing within the 50 nm closed area around the islands of American Samoa, and that NMFS OLE should conduct an investigation and take action to ensure that these violations are curtailed. [The letter should include the results of an investigation of a rerun of the data with the verified coordinates for the area closures].
- 2. The Pelagic Plan Team recommends that as the Council and DMWR move forward with the original recommendation for closer collaboration with neighboring Samoa that this be expanded to include broader cooperation with all the countries bordering the American Samoa EEZ, to collect and process regional data in order to have a regional view of the fisheries.
- 3. The Pelagic Plan Team recommend that DMWR seek grants to develop infrastructure and processes to utilize bycatch, which may require hiring a qualified contract grant writer.

## Plan Team Action Items

- 1. The Pelagic Plan Team recommends that DMWR continue to develop their GIS mapping capability of the American Samoa longline catch, effort and CPUE data
- 2. The Pelagic Plan Team recommend that WPacFIN develop a time series of vessels by size classes as per the four size classes used in the limited entry amendment for the 2005 Pelagic Plan Team annual meeting.

| Tables    |                                                                                                                                  |      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|------|
| Table 1   | American Samoa 2003 estimated total landings by pelagic species and by gear type                                                 | 1-9  |
| Table 2   | American Samoa 2003 commercial landings, value, and average price by pelagic species                                             | 1-10 |
| Table 3   | American Samoa 2003 longline effort, kept and released by the three sizes of longline vessels                                    | 1-11 |
| Table 4   | American Samoa 2003 longline effort and catch by boats < 50' long and > 50' long                                                 | 1-13 |
|           | inside and outside of the restricted areas less than 50 miles from shore                                                         |      |
| Table 5A  | American Samoa 2003 longline bycatch percentages for the three sizes of longline vessels                                         | 1-15 |
| Table 5B  | American Samoa 2003 trolling bycatch                                                                                             | 1-15 |
| Table 6   | American Samoa 1996-2003 catch per 1000 hooks by species for the alia longline fishery, comparing logbook and creel survey data. | 1-43 |
| Table 7   | American Samoa catch/1000 hooks for the three sizes of longline vessels for 2000-<br>2003                                        | 1-45 |
| Table 8   | American Samoa estimated average weight per fish by species from the Offshore Creel Survey Interviews and from Cannery Sampling  | 1-47 |
| Figures   |                                                                                                                                  |      |
| Figure 2  | American Samoa annual estimated total landings of Mahimahi by gear.                                                              | 1-18 |
| Figure 3  | American Samoa annual estimated total landings of Wahoo by gear.                                                                 | 1-19 |
| Figure 4  | American Samoa annual estimated total landings of Blue Marlin by gear.                                                           | 1-20 |
| Figure 5  | American Samoa annual estimated total landings of Sailfish by gear.                                                              | 1-21 |
| Figure 6  | American Samoa annual estimated total landings of Skipjack Tuna by gear.                                                         | 1-22 |
| Figure 7  | American Samoa annual estimated total landings of Yellowfin Tuna by gear.                                                        | 1-23 |
| Figure 8  | American Samoa annual estimated total landings of Bigeye Tuna by gear.                                                           | 1-24 |
| Figure 9  | American Samoa annual estimated total landings of Albacore by longlining.                                                        | 1-25 |
| Figure 10 | American Samoa annual commercial landings of Tunas and Non-Tuna PMUS.                                                            | 1-26 |
| Figure 11 | Number of American Samoa boats landing any pelagic species, tunas, and non-tuna PMUS.                                            | 1-27 |
| Figure 12 | Number of American Samoa boats landing any pelagic species, by longlining,                                                       |      |
| ga.o      | trolling, and all methods.                                                                                                       | 1-29 |
| Figure 13 | Number of American Samoa fishing trips or sets for all pelagic species by method.                                                | 1-31 |
| Figure 14 | Number of American Samoa hours fished for all pelagic species by longlining                                                      | 1-33 |
| Figure 15 | Thousands of American Samoa longline hooks set from logbook and creel survey data.                                               | 1-35 |
| Figure 16 | American Samoa pelagic catch per hour trolling and number of trolling hours                                                      | 1-37 |
| Figure 17 | American Samoa trolling catch rates for Blue marlin, Mahimahi, and Wahoo.                                                        | 1-39 |
| Figure 18 | American Samoa trolling catch rates for Skipjack and Yellowfin Tuna.                                                             | 1-41 |
| Figure 19 | American Samoa catch per 1000 hooks of Albacore for the Alia longline fishery,                                                   | 1-42 |
|           | Comparing Logbook and Creel Survey Data                                                                                          |      |
| Figure 20 | American Samoa annual inflation-adjusted revenue in 2003 dollars for Tuna and Non-Tuna PMUS                                      | 1-49 |
| Figure 21 | American Samoa average inflation-adjusted price per pound of Tunas and Non-Tuna                                                  | 1-51 |
| Figure 22 | PMUS.  American Samoa average inflation-adjusted revenue per trolling trip landing pelagic                                       | 1-53 |
| Figure 23 | species. American Samoa average inflation-adjusted revenue per longline set by alias landing pelagic species.                    | 1-56 |

Table 1. American Samoa 2003 estimated total landings by pelagic species by gear type.

| Species                  | LongLine<br>Pounds | Troll<br>Pounds | Other<br>Pounds | Total<br><u>Pounds</u> |
|--------------------------|--------------------|-----------------|-----------------|------------------------|
| Skipjack Tuna            | 257,676            | 19,374          | 120             | 277,170                |
| Albacore                 | 8,821,199          | 0               | 0               | 8,821,199              |
| Yellowfin Tuna           | 1,138,397          | 6,909           | 110             | 1,145,417              |
| Kawakawa                 | 0                  | 733             | 0               | 733                    |
| BigeyeTuna               | 557,557            | 0               | 0               | 557,557                |
| Tunas                    | 1,285              | 0               | 0               | 1,285                  |
| TUNAS SUBTOTALS          | 10,776,115         | 27,017          | 230             | 10,803,361             |
| Mahimahi                 | 80,994             | 1,411           | 0               | 82,406                 |
| Black marlin             | 4,487              | 0               | 0               | 4,487                  |
| Blue marlin              | 23,368             | 1,294           | 0               | 24,661                 |
| Striped Marlin           | 8,910              | 0               | 0               | 8,910                  |
| Wahoo                    | 434,221            | 603             | 13              | 434,837                |
| Sharks                   | 8,643              | 160             | 48              | 8,851                  |
| Swordfish                | 16,441             | 0               | 0               | 16,441                 |
| Sailfish                 | 6,858              | 0               | 0               | 6,858                  |
| Spearfish                | 5,102              | 0               | 0               | 5,102                  |
| Moonfish                 | 9,283              | 0               | 0               | 9,283                  |
| Oilfish                  | 1,490              | 0               | 0               | 1,490                  |
| Pomfret                  | 2,192              | 0               | 15              | 2,207                  |
| NON-TUNA PMUS SUBTOTALS  | 601,989            | 3,468           | 76              | 605,532                |
| Barracudas               | 2,367              | 431             | 351             | 3,149                  |
| Rainbow runner           | 0                  | 20              | 40              | 60                     |
| Dogtooth tuna            | 0                  | 177             | 1,070           | 1,246                  |
| Other Pelagic Fish       | 1,394              | 0               | 0               | 1,394                  |
| OTHER PELAGICS SUBTOTALS | 3,761              | 627             | 1,461           | 5,849                  |
| TOTAL PELAGICS           | 11,381,865         | 31,112          | 1,767           | 11,414,743             |

The "troll pounds" category includes the pelagic landings of combined troll/bottomfishing trips as well as the landings of purely troll trips. The "other pounds" category in Table 1 includes pelagic species not caught by longlining or trolling such as barracuda, rainbow runner and dogtooth tuna, caught with bottomfishing or spearfishing methods.

Table 2. American Samoa 2003 estimated commercial landings, value and average price by pelagic species.

| Species                  | Pounds     | \$/LB  | Value(\$)    |
|--------------------------|------------|--------|--------------|
| Skipjack Tuna            | 259,292    | \$0.60 | \$155,421    |
| Albacore                 | 8,819,677  | \$0.94 | \$8,333,515  |
| Yellowfin Tuna           | 1,118,398  | \$0.88 | \$979,223    |
| BigeyeTuna               | 542,788    | \$1.11 | \$600,868    |
| TUNAS SUBTOTALS          | 10,740,154 | \$0.94 | \$10,069,027 |
| Mahimahi                 | 17,250     | \$1.74 | \$29,997     |
| Black marlin             | 4,192      | \$1.00 | \$4,192      |
| Blue marlin              | 4,703      | \$1.05 | \$4,926      |
| Wahoo                    | 374,438    | \$0.96 | \$358,737    |
| Sharks                   | 129        | \$0.50 | \$65         |
| Swordfish                | 8,086      | \$2.25 | \$18,230     |
| Sailfish                 | 2,108      | \$0.94 | \$1,973      |
| Moonfish                 | 4,091      | \$1.00 | \$4,091      |
| Oilfish                  | 183        | \$1.00 | \$183        |
| NON-TUNA PMUS SUBTOTALS  | 415,181    | \$1.02 | \$422,393    |
| Barracudas               | 1,652      | \$2.37 | \$3,909      |
| Rainbow runner           | 32         | \$2.00 | \$65         |
| Dogtooth tuna            | 1,073      | \$1.47 | \$1,574      |
| OTHER PELAGICS SUBTOTALS | 2,757      | \$2.01 | \$5,548      |
| TOTAL PELAGICS           | 11,158,092 | \$0.94 | \$10,496,968 |

The price/pound of barracuda is high because most of the interviews with barracuda price/pound data are when they are caught by bottomfishing and sold at bottomfish prices with the rest of the bottomfish catch.

Table 3. American Samoa 2003 longline effort, kept and released by three sizes of longline vessels

## **EFFORT**

|             | Alias | Monohull<br>< 50' | Monohull > 50 ' |
|-------------|-------|-------------------|-----------------|
| Boats       | 15    | 4                 | 32              |
| Trips       | 650   | 39                | 243             |
| Sets        | 852   | 335               | 5,033           |
| 1000 Hooks  | 248   | 575               | 13,345          |
| Lightsticks | 149   | 553               | 3,567           |

# **KEPT (Number of Fish)**

| Species                  | Alias  | Monohull<br>< 50' | Monohull<br>> 50 ' | All<br>Vessels |
|--------------------------|--------|-------------------|--------------------|----------------|
| Skipjack Tuna            | 1,812  | 247               | 27,725             | 29,784         |
| Albacore                 | 5,097  | 8,921             | 218,310            | 232,328        |
| Yellowfin Tuna           | 2,046  | 912               | 25,878             | 28,836         |
| BigeyeTuna               | 291    | 629               | 13,970             | 14,890         |
| Tunas                    | 5      | 0                 | 78                 | 83             |
| TUNAS SUBTOTALS          | 9,251  | 10,709            | 285,961            | 305,921        |
| Mahimahi                 | 1,109  | 62                | 2,760              | 3,931          |
| Black marlin             | 0      | 0                 | 3                  | 3              |
| Blue marlin              | 64     | 7                 | 163                | 234            |
| Striped Marlin           | 4      | 3                 | 78                 | 85             |
| Wahoo                    | 742    | 283               | 13,213             | 14,238         |
| Sharks                   | 8      | 5                 | 124                | 137            |
| Swordfish                | 19     | 6                 | 224                | 249            |
| Sailfish                 | 21     | 1                 | 41                 | 63             |
| Spearfish                | 0      | 0                 | 111                | 111            |
| Moonfish                 | 24     | 0                 | 160                | 184            |
| Oilfish                  | 9      | 9                 | 84                 | 102            |
| Pomfret                  | 0      | 3                 | 266                | 269            |
| NON-TUNA PMUS SUBTOTALS  | 2,000  | 379               | 17,227             | 19,606         |
| Barracudas               | 5      | 0                 | 94                 | 99             |
| Other Pelagic Fish       | 8      | 2                 | 27                 | 37             |
| OTHER PELAGICS SUBTOTALS | 13     | 2                 | 121                | 136            |
| TOTAL PELAGICS           | 11,264 | 11,090            | 303,309            | 325,663        |

## **RELEASED** (Number of Fish)

|                          | Alias | Monohull | Monohull | All     |
|--------------------------|-------|----------|----------|---------|
| Species                  |       | < 50'    | > 50 '   | Vessels |
| Skipjack Tuna            | 0     | 546      | 11,192   | 11,738  |
| Albacore                 | 0     | 0        | 109      | 109     |
| Yellowfin Tuna           | 0     | 47       | 1,537    | 1,584   |
| BigeyeTuna               | 0     | 35       | 1,206    | 1,241   |
| Tunas                    | 0     | 3        | 4        | 7       |
| TUNAS SUBTOTALS          | 0     | 631      | 14,048   | 14,679  |
| Mahimahi                 | 0     | 28       | 2,305    | 2,333   |
| Black marlin             | 0     | 0        | 30       | 30      |
| Blue marlin              | 0     | 72       | 2,477    | 2,549   |
| Striped Marlin           | 0     | 6        | 204      | 210     |
| Wahoo                    | 0     | 90       | 1,723    | 1,813   |
| Sharks                   | 0     | 634      | 10,197   | 10,831  |
| Swordfish                | 0     | 1        | 189      | 190     |
| Sailfish                 | 0     | 15       | 469      | 484     |
| Spearfish                | 0     | 2        | 333      | 335     |
| Moonfish                 | 0     | 41       | 732      | 773     |
| Oilfish                  | 0     | 122      | 7,081    | 7,203   |
| Pomfret                  | 0     | 38       | 868      | 906     |
| NON-TUNA PMUS SUBTOTALS  | 0     | 1,049    | 26,608   | 27,657  |
| Barracudas               | 0     | 3        | 275      | 278     |
| Other Pelagic Fish       | 0     | 15       | 2,832    | 2,847   |
| OTHER PELAGICS SUBTOTALS | 0     | 18       | 3,107    | 3,125   |
| TOTAL PELAGICS           | 0     | 1,698    | 43,763   | 45,461  |

**Interpretation:** This table indicates the effort and catch data by three different types of vessels participating in the American Samoa longline fishery in the year 2003. Clearly it illustrates that the majority of the effort and catch is performed by the monohulls that are greater than 50 ft. in length. They account for 93.5% of the total pelagics caught, compared to the 3.5% by the monohulls less than 50 ft. and 3.0% by the alias. It also shows that 96.3% of the releases are made by the big boats while smaller monohull make the rest. It's important to note that the alias fleet don't release any fish.

**Calculation:** These values are sums of Longline Logbook data for the three types of longline vessels in Samoa. The kept values for sharks include those that were finned. All species of sharks entered in the Longline Logs are combined in the Other Sharks species. Rays and Sunfish are included in the Other Pelagic Fish species. A trip is a unique combination of boats and return dates where the return date is in the current year.

Table 4. American Samoa 2003 longline effort and catch by boats < 50' long and > 50' long inside and outside of restricted areas less than 50 miles from shore

|       | EFFORT                |                        |                       |                        |  |  |
|-------|-----------------------|------------------------|-----------------------|------------------------|--|--|
|       | Boats < 50'<br>Inside | Boats < 50'<br>Outside | Boats > 50'<br>Inside | Boats > 50'<br>Outside |  |  |
| Boats | 18                    | 7                      | 19                    | 32                     |  |  |
| Trips | 669                   | 20                     | 45                    | 198                    |  |  |
| Sets  | 1,008                 | 179                    | 98                    | 4,935                  |  |  |

542

1000 Hooks

## **CATCH (Number of Fish)**

280

236

13,108

| Species                  | Boats < 50'<br>Inside | Boats < 50'<br>Outside | Boats > 50'<br>Inside | Boats > 50'<br>Outside |
|--------------------------|-----------------------|------------------------|-----------------------|------------------------|
| Skipjack Tuna            | 1,818                 | 787                    | 328                   | 38,589                 |
| Albacore                 | 10,187                | 3,831                  | 4,447                 | 213,972                |
| Yellowfin Tuna           | 1,888                 | 1,117                  | 416                   | 26,999                 |
| BigeyeTuna               | 389                   | 566                    | 331                   | 14,845                 |
| Tunas                    | 5                     | 3                      | 0                     | 82                     |
| TUNAS SUBTOTALS          | 14,287                | 6,304                  | 5,522                 | 294,487                |
| Mahimahi                 | 1,027                 | 172                    | 58                    | 5,007                  |
| Black marlin             | 0                     | 0                      | 2                     | 31                     |
| Blue marlin              | 106                   | 37                     | 27                    | 2,613                  |
| Striped Marlin           | 6                     | 7                      | 2                     | 280                    |
| Wahoo                    | 832                   | 283                    | 203                   | 14,733                 |
| Sharks                   | 356                   | 291                    | 194                   | 10,127                 |
| Swordfish                | 21                    | 5                      | 7                     | 406                    |
| Sailfish                 | 20                    | 17                     | 10                    | 500                    |
| Spearfish                | 0                     | 2                      | 5                     | 439                    |
| Moonfish                 | 44                    | 21                     | 27                    | 865                    |
| Oilfish                  | 48                    | 92                     | 144                   | 7,021                  |
| Pomfret                  | 12                    | 29                     | 22                    | 1,112                  |
| NON-TUNA PMUS SUBTOTALS  | 2,472                 | 956                    | 701                   | 43,134                 |
| Barracudas               | 5                     | 3                      | 1                     | 368                    |
| Other Pelagic Fish       | 12                    | 13                     | 7                     | 2,852                  |
| OTHER PELAGICS SUBTOTALS | 17                    | 16                     | 8                     | 3,220                  |
| TOTAL PELAGICS           | 16,776                | 7,276                  | 6,231                 | 340,841                |

**Interpretation:** This table shows the longline effort and catch by boats less than and greater than 50 feet in length inside and outside the 50 miles from shore. Albacore continues to be the most commonly caught species inside and outside of the 50 mile areas regardless of boat size.

It is important to note that even though the percentage of fish caught by the boats > 50 feet illegally in the restricted areas is only 1.8% of the fish caught by them legally outside of the restricted areas 50 nm around Tutuila and Swains, that the boats > 50 feet catch almost 40% as much fish as the boats < 50 feet do inside of the restricted areas.

**Calculation:** These values are sums of Longline Logbook catch (kept + released + finned) data for longline vessels in Samoa that are less than 50 feet long and more than 50 feet long. The less than 50 foot category includes alias and monohulls less than 50 feet long. The 50 mile areas include one around Tutuila bounded by the following four points

```
13 deg 30 min S latitude x 170 deg 50 min W longitude
13 deg 30 min S latitude x 167 deg 25 min W longitude
15 deg 13 min S latitude x 167 deg 25 min W longitude
15 deg 13 min S latitude x 171 deg 39 min W longitude
```

and one around Swains's Atoll bounded by the following four points

```
10 deg 13 min 11 sec S latitude x 170 deg 20min W longitude
11 deg 48 min S latitude x 170 deg 20min W longitude
11 deg 48 min S latitude x 171 deg 50min W longitude
10 deg 23 min 30 sec S latitude x 171 deg 50min W longitude
```

A set is considered inside one of these areas if any of the begin set, end set, begin haul or end haul positions is inside one of these areas. All species of sharks entered in the Longline Logs are combined in the Sharks species. Rays and Sunfish are included in the Other Pelagic Fish species.

A trip is defined as a unique pair of boats and return dates where the return date is in the current year. A trip is considered inside of the 50 mile areas if any of its sets are in the 50 mile areas.

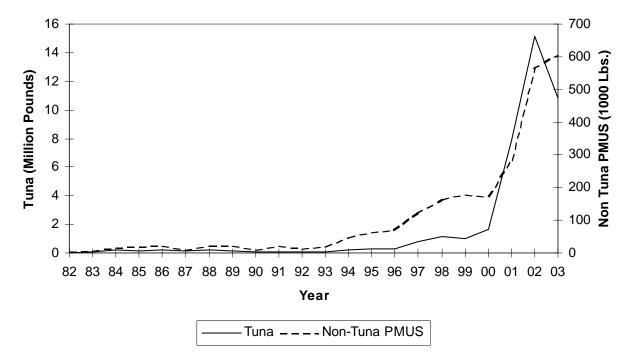
There are three vessels over fifty feet in length who are allowed to fish inside of the 50 mile restricted zones because they were longline fishing before 11/13/97 and are grandfathered in. Their sets are in the **Boats > 50' Outside** category regardless of where they actually fished.

Table 5A. American Samoa 2003 longline bycatch percentages for the three sizes of longline vessels

| Species                  | Alias  | Monohulls<br>< 50' | Monohulls'<br>> 50 ' | All Boats |
|--------------------------|--------|--------------------|----------------------|-----------|
| Skipjack Tuna            | 0.00 % | 68.85 %            | 28.76 %              | 28.27 %   |
| Albacore                 | 0.00 % | 0.00 %             | 0.05 %               | 0.05 %    |
| Yellowfin Tuna           | 0.00 % | 4.90 %             | 5.61 %               | 5.21 %    |
| BigeyeTuna               | 0.00 % | 5.27 %             | 7.95 %               | 7.69 %    |
| Tunas                    | 0.00 % | 100.0 %            | 4.88 %               | 7.78 %    |
| TUNAS SUBTOTALS          | 0.00%  | 5.56%              | 4.68%                | 4.58 %    |
| Mahimahi                 | 0.00 % | 31.11 %            | 45.51 %              | 37.24 %   |
| Black marlin             | 0.00 % | 0.00 %             | 90.91 %              | 90.91 %   |
| Blue marlin              | 0.00 % | 91.14 %            | 93.83 %              | 91.59 %   |
| Striped Marlin           | 0.00 % | 66.67 %            | 72.34 %              | 71.19 %   |
| Wahoo                    | 0.00 % | 24.13 %            | 11.54 %              | 11.30 %   |
| Sharks                   | 0.00 % | 99.22 %            | 98.80 %              | 98.75 %   |
| Swordfish                | 0.00 % | 14.29 %            | 45.76 %              | 43.28 %   |
| Sailfish                 | 0.00 % | 93.75 %            | 91.96 %              | 88.48 %   |
| Spearfish                | 0.00 % | 100.0 %            | 75.00 %              | 75.11 %   |
| Moonfish                 | 0.00 % | 100.0 %            | 82.06 %              | 80.77 %   |
| Oilfish                  | 0.00 % | 93.13 %            | 98.83 %              | 98.60 %   |
| Pomfret                  | 0.00 % | 92.68 %            | 76.54 %              | 77.11 %   |
| NON-TUNA PMUS SUBTOTALS  | 0.00%  | 73.46%             | 60.70%               | 58.52 %   |
| Barracudas               | 0.00 % | 100.0 %            | 74.53 %              | 73.74 %   |
| Other Pelagic Fish       | 0.00 % | 88.24 %            | 99.06 %              | 98.72 %   |
| OTHER PELAGICS SUBTOTALS | 0.00%  | 90.00%             | 96.25%               | 95.83 %   |
| TOTAL PELAGICS           | 0.00%  | 13.28%             | 12.61%               | 12.25 %   |

Table 5B. American Samoa 2003 Trolling Bycatch

|              | Bycatch |      |     | Interviews |       |      | <u> </u> |     |      |
|--------------|---------|------|-----|------------|-------|------|----------|-----|------|
|              |         | Dead |     |            |       |      | With     |     |      |
| Species      | Alive   | Inj  | Unk | Total      | Catch | %BC  | ВС       | All | %BC  |
| No Bycatch   |         |      |     |            |       |      | 0        | 389 | 0.00 |
| All Species  |         |      |     |            |       |      |          |     |      |
| (Comparison) |         |      |     |            | 3338  | 0.00 |          |     |      |


**Interpretation:** Table 5A shows longline and trolling bycatch percentages for the three different sizes of longline vessels in 2003. It shows that the fishery is mostly focused on one group of species (there was little bycatch for the tuna). The bycatch is far more important for the large industrial vessels than for the alias, which can sell their incidental catch locally keeping from becoming bycatch. Table 5B shows no bycatch for the trolling method during this period.

**Calculation:** The percentages in Table 5A are sums of the Longline Logbook numbers of released fish divided by the sums of the numbers of kept+released fish for each species and size of vessel. For shark species the numbers of fish kept includes those finned. The percentages for all boats is the sum of released species for all boats divided by the sum of kept plus the sum of released for all boats. The percentages in the SUBTOTALS and TOTALS row are similarly weighted percentages. All shark species in the Longline Logs are combined in the Other Sharks species. Rays and Sunfish are included in the Other Pelagic Fish species.

The Trolling Bycatch table is obtained from creel survey interviews. The Bycatch numbers are obtained by counting fish in the interviews for purely trolling trips with a disposition of bycatch. The catch for all species included for comparison is obtained by counting all species of fish caught by purely trolling interviews and the number of interviews is a count of purely trolling interviews

1-16

Figure 1. American Samoa annual estimated total landings of Tuna and Non-Tuna PMUS



**Interpretation:** Estimated total landings are variable in the 1980s up to 1993. However there was an increase in the number of total landings from 1993 to the present. This year there has been a 28.7% decrease in the total landings of tuna compared to the 92% increase from 2002. The total landing for other pelagic species also increase about 7% for 2003

**Calculation**: Estimated total landings for Tunas and Non-Tuna PMUS were calculated by summing the total landings for the species in these categories as defined by Table 1.

|           | Pounds Landed |          |  |  |
|-----------|---------------|----------|--|--|
| Year      | Tuna          | Non Tuna |  |  |
|           |               | PMUS     |  |  |
| 1982      | 23,042        | 2,106    |  |  |
| 1983      | 90,057        | 4,806    |  |  |
| 1984      | 198,961       | 15,121   |  |  |
| 1985      | 107,659       | 19,686   |  |  |
| 1986      | 187,909       | 23,415   |  |  |
| 1987      | 144,121       | 10,899   |  |  |
| 1988      | 207,083       | 23,462   |  |  |
| 1989      | 173,518       | 20,720   |  |  |
| 1990      | 78,827        | 9,848    |  |  |
| 1991      | 71,425        | 21,100   |  |  |
| 1992      | 92,600        | 11,893   |  |  |
| 1993      | 45,806        | 19,104   |  |  |
| 1994      | 187,459       | 47,418   |  |  |
| 1995      | 282,897       | 61,931   |  |  |
| 1996      | 315,320       | 67,946   |  |  |
| 1997      | 791,399       | 122,687  |  |  |
| 1998      | 1,160,079     | 163,953  |  |  |
| 1999      | 1,007,322     | 179,187  |  |  |
| 2000      | 1,668,188     | 172,252  |  |  |
| 2001      | 7,863,783     | 283,665  |  |  |
| 2002      | 15,152,595    | 566,075  |  |  |
| 2003      | 10,803,361    | 605,532  |  |  |
| Average   | 1,847,882     | 111,491  |  |  |
| Std. Dev. | 3,926,745     | 166,769  |  |  |

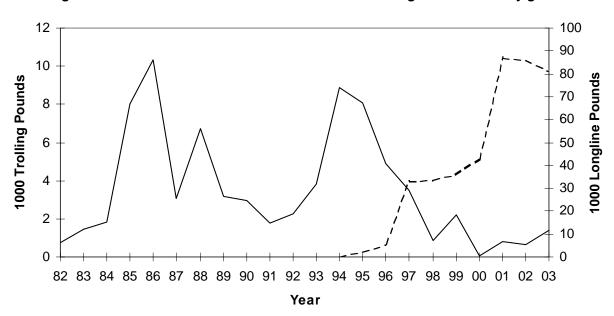



Figure 2. American Samoa annual estimated total landings of Mahimahi by gear.

———Trolling ———-Longline

Interpretation: Through the years, Mahimahi landings have been variable. From 1984-1988, American Samoan fishermen exported mahimahi to Hawaii so landings were unusually high and remained stable until 1995. After 8 years of increase in catch by longlining, 2003 is the second consecutive year of decrease (5.7% less since 2002). The number of pounds landed by trolling increased by 115.7 % this year. In 2003, longliners caught 98.3% of the mahimahi and trolling took in only 1.7%

**Calculation:** The estimated total annual landings of mahimahi is listed for longline and trolling fishing methods. The All methods landings may be greater than the sum of the longline and trolling landings when mahimahi are caught by other methods..

|           | Pounds Landed |          |  |  |
|-----------|---------------|----------|--|--|
| Year      | Longline      | Trolling |  |  |
| 1982      | 0             | 777      |  |  |
| 1983      | 0             | 1,443    |  |  |
| 1984      | 0             | 1,844    |  |  |
| 1985      | 0             | 8,011    |  |  |
| 1986      | 0             | 10,327   |  |  |
| 1987      | 0             | 3,051    |  |  |
| 1988      | 0             | 6,736    |  |  |
| 1989      | 0             | 3,201    |  |  |
| 1990      | 0             | 2,971    |  |  |
| 1991      | 74            | 1,748    |  |  |
| 1992      | 0             | 2,242    |  |  |
| 1993      | 215           | 3,809    |  |  |
| 1994      | 98            | 8,869    |  |  |
| 1995      | 2,301         | 8,052    |  |  |
| 1996      | 5,395         | 4,906    |  |  |
| 1997      | 33,031        | 3,517    |  |  |
| 1998      | 33,458        | 843      |  |  |
| 1999      | 35,909        | 2,193    |  |  |
| 2000      | 42,616        | 66       |  |  |
| 2001      | 87,114        | 786      |  |  |
| 2002      | 85,912        | 654      |  |  |
| 2003      | 80,994        | 1,411    |  |  |
| Average   | 31,317        | 3,521    |  |  |
| Std. Dev. | 32,969        | 2,931    |  |  |

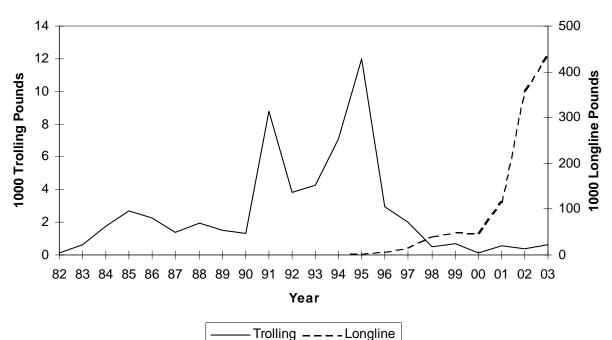
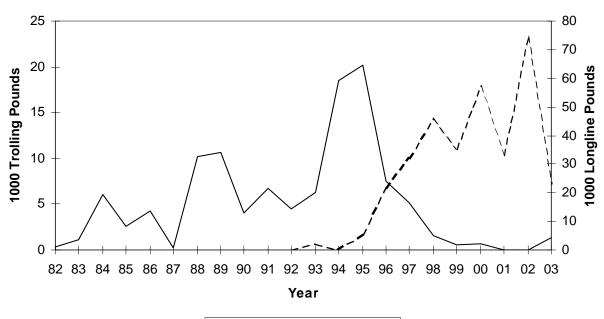


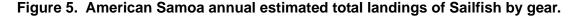

Figure 3. American Samoa annual estimated total landings of Wahoo by gear.

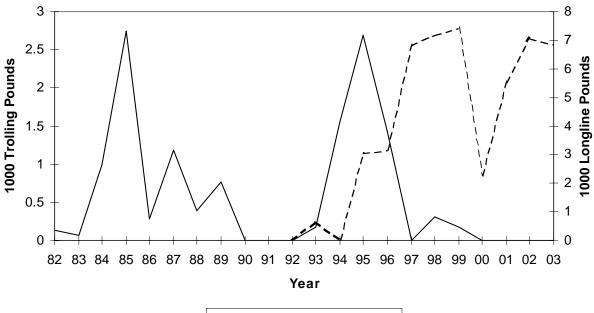
Interpretation: Although there is a decline in the number of trolling activities for wahoo, the number of total landings by longlining have been on an increasing trend since 1995. Longliners took in almost the rest of the landings this year for wahoo, the remaining 0.14 % is accounted for by trollers. The continuous increase in wahoo landings is primarily due to the increase in longline trips and effort. In 2003, we had a 21.3 % increase of catch compared to last year.

**Calculation**: The estimated total annual landings of wahoo is listed for longline and trolling fishing methods. The All methods landings may be greater than the sum of the longline and trolling landings when wahoo are caught by other methods.

|             | D             |          |  |
|-------------|---------------|----------|--|
| _           | Pounds Landed |          |  |
| <u>Year</u> | Longline      | Trolling |  |
| 1982        | 0             | 114      |  |
| 1983        | 0             | 632      |  |
| 1984        | 0             | 1,777    |  |
| 1985        | 0             | 2,678    |  |
| 1986        | 0             | 2,244    |  |
| 1987        | 0             | 1,395    |  |
| 1988        | 84            | 1,962    |  |
| 1989        | 0             | 1,489    |  |
| 1990        | 0             | 1,299    |  |
| 1991        | 369           | 8,764    |  |
| 1992        | 0             | 3,848    |  |
| 1993        | 557           | 4,250    |  |
| 1994        | 0             | 7,124    |  |
| 1995        | 1,576         | 11,986   |  |
| 1996        | 6,931         | 2,945    |  |
| 1997        | 15,620        | 2,001    |  |
| 1998        | 40,405        | 487      |  |
| 1999        | 48,303        | 685      |  |
| 2000        | 47,355        | 140      |  |
| 2001        | 114,517       | 588      |  |
| 2002        | 358,101       | 351      |  |
| 2003        | 434,221       | 603      |  |
| Average     | 66,752        | 2,607    |  |
| Std. Dev.   | 128,721       | 2,971    |  |





Figure 4. American Samoa annual estimated total landings of Blue Marlin by gear.


——— Trolling — — — Longline

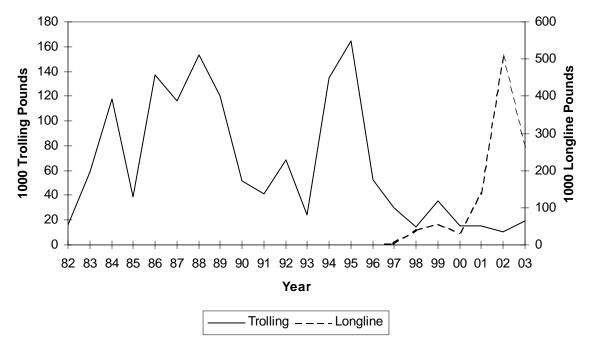
**Interpretation:** All of the blue marlin landings were caught by trolling method since 1982 until 1994, except in 1993 where blue marlin catches were recorded being caught by four vessels that were engaged in longline activities. A gradual increase in blue marlin landings by longline method since 1995 is primarily due to the influx in the longline fishery by the local fishermen, whereas catches by trolling method began to decline. Unlike 2002, the landings in 2003 included trolling pounds. After the large increase of 126% in 2002, we observed a large decrease of 68.5 % this year. This is the lowest level of catch since 1995. Over the years, the total landings for blue marlin is very erratic and since 1997 has been cyclic with a 2 year cycle.

Calculation: The estimated total annual landings of blue marlin is listed for longline and trolling fishing methods. The All methods landings may be greater than the sum of the longline and trolling landings when blue marlin are caught by other methods. The average and standard deviation for the Longline Method is calculated from 1993 onward.

| _         | Pounds La | Pounds Landed |  |
|-----------|-----------|---------------|--|
| Year      | Longline  | Trolling      |  |
| 1982      | 0         | 315           |  |
| 1983      | 0         | 1,083         |  |
| 1984      | 0         | 6,097         |  |
| 1985      | 0         | 2,574         |  |
| 1986      | 0         | 4,223         |  |
| 1987      | 0         | 265           |  |
| 1988      | 0         | 10,217        |  |
| 1989      | 0         | 10,680        |  |
| 1990      | 0         | 4,012         |  |
| 1991      | 0         | 6,726         |  |
| 1992      | 0         | 4,524         |  |
| 1993      | 2,193     | 6,331         |  |
| 1994      | 0         | 18,538        |  |
| 1995      | 5,267     | 20,196        |  |
| 1996      | 21,450    | 7,547         |  |
| 1997      | 31,869    | 5,160         |  |
| 1998      | 45,440    | 1,592         |  |
| 1999      | 34,981    | 590           |  |
| 2000      | 57,100    | 623           |  |
| 2001      | 32,836    | 0             |  |
| 2002      | 74,216    | 0             |  |
| 2003      | 23,368    | 1,294         |  |
| Average   | 29,884    | 5,118         |  |
| Std. Dev. | 22,087    | 5,507         |  |






——Trolling ———Longline

Interpretation: Sailfish landings are variable throughout the years. Initially trolling was the method fishing dominant of however longlining grew to be the popular fishing method. In 1990 to 1992, for unknown reasons, there were no sailfish recorded. Due to the continuous development of the longline fishery in 1995, there was a gradual increase in sailfish landings by longliners until 2000, where there was a 70% decrease. After that sailfish landings increased by 146% in 2001, by 27% in 2002 and by 27% this year.

**Calculation:** The estimated total annual landings of sailfish is listed for longline and trolling fishing methods. The All methods landings may be greater than the sum of the longline and trolling landings when sailfish are caught by other methods.

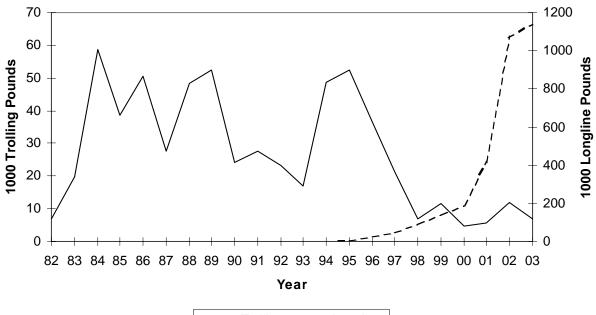
| _         | Pounds Landed |          |  |
|-----------|---------------|----------|--|
| Year      | Longline      | Trolling |  |
| 1982      | 0             | 127      |  |
| 1983      | 0             | 74       |  |
| 1984      | 0             | 989      |  |
| 1985      | 0             | 2,744    |  |
| 1986      | 0             | 279      |  |
| 1987      | 0             | 1,188    |  |
| 1988      | 0             | 394      |  |
| 1989      | 0             | 767      |  |
| 1990      | 0             | 0        |  |
| 1991      | 0             | 0        |  |
| 1992      | 0             | 0        |  |
| 1993      | 626           | 183      |  |
| 1994      | 0             | 1,561    |  |
| 1995      | 3,048         | 2,693    |  |
| 1996      | 3,146         | 1,420    |  |
| 1997      | 6,822         | 0        |  |
| 1998      | 7,185         | 314      |  |
| 1999      | 7,424         | 184      |  |
| 2000      | 2,245         | 0        |  |
| 2001      | 5,535         | 0        |  |
| 2002      | 7,060         | 0        |  |
| 2003      | 6,858         | 0        |  |
| Average   | 4,541         | 587      |  |
| Std. Dev. | 2,673         | 827      |  |

Figure 6. American Samoa annual estimated total landings of Skipjack Tuna by gear.



Interpretation: There was a gradual increase in skipjack landings for longlining since 1995,

except for a 43% decrease in 2000, and a notable decrease of 49.4% this year after a huge increase of 318% in 2002.


This species is characterized by a large stock size, fast growth, early maturity and high fecundity. The decline of landings can be explained by variation in the recruitment in the two last years.

Trolling has declined since 1995 as a result of an increase in longline activities, except in 1999 when skipjack landings increased by 137%. This reflects the increase in number of boats that were involved in trolling activities before obtaining their longline permit to begin longlining.

**Calculation:** The estimated total annual landings of skipjack tuna is listed for longline and trolling fishing methods. The All methods landings may be greater than the sum of the longline and trolling landings when skipjack tuna are caught by other methods.

|           | Pounds Landed |          |  |
|-----------|---------------|----------|--|
| Year      | Longline      | Trolling |  |
| 1982      | 0             | 15,877   |  |
| 1983      | 0             | 58,997   |  |
| 1984      | 0             | 117,693  |  |
| 1985      | 0             | 38,902   |  |
| 1986      | 0             | 137,180  |  |
| 1987      | 0             | 116,505  |  |
| 1988      | 0             | 153,671  |  |
| 1989      | 0             | 120,171  |  |
| 1990      | 0             | 51,650   |  |
| 1991      | 345           | 40,992   |  |
| 1992      | 0             | 68,977   |  |
| 1993      | 539           | 24,264   |  |
| 1994      | 101           | 134,955  |  |
| 1995      | 160           | 164,957  |  |
| 1996      | 434           | 52,562   |  |
| 1997      | 2,517         | 29,894   |  |
| 1998      | 40,596        | 14,822   |  |
| 1999      | 56,171        | 35,171   |  |
| 2000      | 31,871        | 15,477   |  |
| 2001      | 137,947       | 15,169   |  |
| 2002      | 509,426       | 10,803   |  |
| 2003      | 257,676       | 19,374   |  |
| Average   | 79,829        | 65,367   |  |
| Std. Dev. | 143,560       | 50,784   |  |





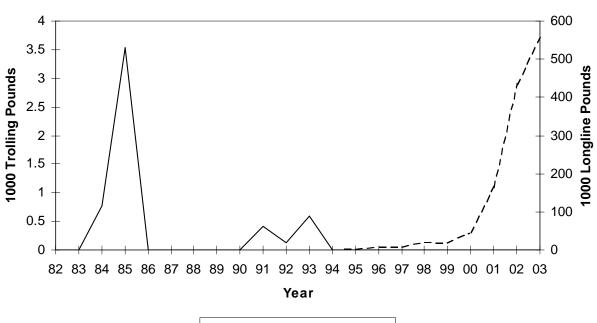
———Trolling ———-Longline

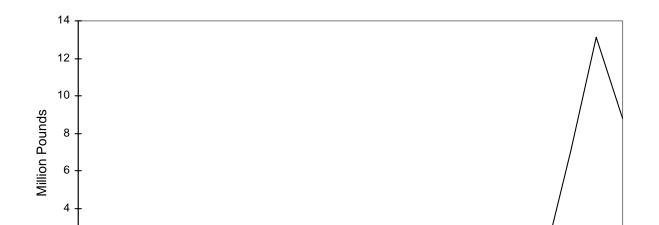
Interpretation: Trolling activities yielded all of the Yellowfin tuna landings in the 1980s until 1987 and the number of landings were variable until 1995 when trolling activities began to decline. With the increase in longline fishery in 1995, yellowfin landings began a rapid increase that escalated until 2002.

In 2003 the landings for longlining increased only by 6.5%, while landings for trolling decreased by 41.4%, but these erratic variations have happened often in the past.

Calculation: The estimated total annual landings of yellowfin tuna is listed for longline and trolling fishing methods. The All methods landings may be greater than the sum of the longline and trolling landings when yellowfin tuna are caught by other methods.

|           | Pounds Landed |          |
|-----------|---------------|----------|
| Year      | Longline      | Trolling |
| 1982      | 0             | 7,038    |
| 1983      | 0             | 19,789   |
| 1984      | 0             | 58,704   |
| 1985      | 0             | 38,586   |
| 1986      | 0             | 50,622   |
| 1987      | 0             | 27,467   |
| 1988      | 1,775         | 48,316   |
| 1989      | 129           | 52,350   |
| 1990      | 0             | 24,152   |
| 1991      | 262           | 27,525   |
| 1992      | 0             | 23,247   |
| 1993      | 2,225         | 16,990   |
| 1994      | 1,637         | 48,548   |
| 1995      | 4,022         | 52,428   |
| 1996      | 25,655        | 36,551   |
| 1997      | 47,996        | 21,219   |
| 1998      | 92,462        | 6,763    |
| 1999      | 140,061       | 11,566   |
| 2000      | 188,949       | 4,829    |
| 2001      | 413,986       | 5,573    |
| 2002      | 1,068,969     | 11,781   |
| 2003      | 1,138,397     | 6,909    |
| Average   | 195,408       | 27,316   |
| Std. Dev. | 359,334       | 17,626   |





Figure 8. American Samoa annual estimated total landings of Bigeye Tuna by gear.

——Trolling ———Longline

Interpretation: Before the Longline Fishery began, Bigeye tuna was sometimes caught by trolling. In 1985 there was a high peak of 3,527 pounds of Bigeye, however from 1995 to the present, there has been a steady increase in the number of total landings by longline fishermen. All 100% of the total landings of Bigeye caught from 1995 to 2003 was by longlining. This year, there is a significant increase of Bigeye landings by 29%.

Calculation: The estimated total annual landings of bigeye tuna is listed for longline and trolling fishing methods. The All methods landings may be greater than the sum of the longline and trolling landings when bigeye tuna are caught by other methods. The average and standard deviation for the Longline Method is calculated from 1991 onward.

|           | Pounds Landed     |       |
|-----------|-------------------|-------|
| Year      | Longline Trolling |       |
| 1982      | 0                 | 0     |
| 1983      | 0                 | 0     |
| 1984      | 0                 | 769   |
| 1985      | 0                 | 3,527 |
| 1986      | 0                 | 0     |
| 1987      | 0                 | 0     |
| 1988      | 0                 | 0     |
| 1989      | 0                 | 0     |
| 1990      | 0                 | 0     |
| 1991      | 18                | 417   |
| 1992      | 0                 | 126   |
| 1993      | 79                | 604   |
| 1994      | 0                 | 0     |
| 1995      | 2,191             | 0     |
| 1996      | 8,653             | 0     |
| 1997      | 8,355             | 0     |
| 1998      | 22,287            | 0     |
| 1999      | 19,254            | 0     |
| 2000      | 46,873            | 0     |
| 2001      | 165,420           | 0     |
| 2002      | 432,367           | 0     |
| 2003      | 557,557           | 0     |
| Average   | 97,158            | 247   |
| Std. Dev. | 176,651           | 746   |



91 92 93 94 95 96 97

Year

90

Figure 9. American Samoa annual estimated total landings of Albacore by longlining.

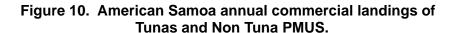
Interpretation: Since the Longline Fishery initially began, it has been the most commonly used method of fishing for pelagic species. Till this year, there has been a continuous increase since 1995 in the number of estimated albacore landings with exception of the landings in 1999 where there was a 24% decrease. Compared to the estimated number of landings in 2002, there has been a 32.8% decrease of albacore landings in 2003. In addition to being the dominant pelagic species caught in the fishery, 100% of the albacore landings in 2003 were caught by longlining and none by trolling (See Table 1).

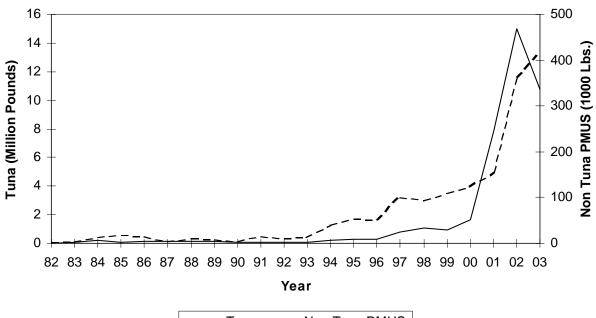
88 89

86

87

85


2


82 83 84

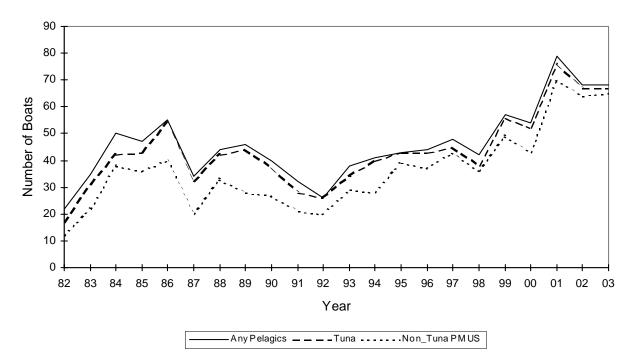
**Calculation:** The estimated total annual landings of albacore tuna is listed for the longline and trolling fishing methods. The All methods landings may be greater than the sum of longline and trolling landings when albacore are caught by other methods. The average and standard deviation is calculated from 1988 onward.

| Year      | Pounds     |
|-----------|------------|
| 1982      | 0          |
| 1983      | 0          |
| 1984      | 0          |
| 1985      | 0          |
| 1986      | 0          |
| 1987      | 0          |
| 1988      | 1,875      |
| 1989      | 244        |
| 1990      | 0          |
| 1991      | 1,730      |
| 1992      | 0          |
| 1993      | 35         |
| 1994      | 1,572      |
| 1995      | 58,446     |
| 1996      | 189,210    |
| 1997      | 680,806    |
| 1998      | 983,017    |
| 1999      | 744,980    |
| 2000      | 1,380,060  |
| 2001      | 7,125,536  |
| 2002      | 13,118,759 |
| 2003      | 8,821,199  |
| Average   | 2,069,217  |
| Std. Dev. | 3,841,474  |

98 99 00 01 02 03






— Tuna – – – Non-Tuna PMUS

Interpretation: Commercial landings for all pelagic species and tuna significantly varied throughout the 1980s until 1995 where a steady increase in landings began to appear. This was primarily due to a surge in longline effort. However, for unknown reasons, there was a 5% decrease in 1998 for other pelagic species. After a dramatic increase of 349% in commercial landings for tuna and a 135% increase of other pelagic species last year, we record a significant decrease of 28.3% in tuna and an increase of 14.4% of non-tuna PMUS.

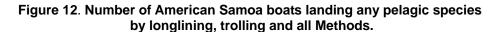
**Calculation**: Estimated commercial landings for Tunas and Non-Tuna PMUS were calculated by summing the commercial landings for the species these categories as defined by Table 2.

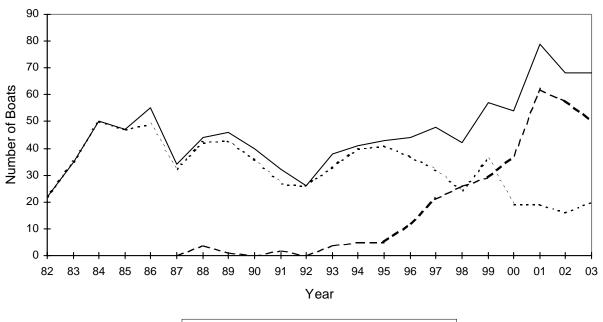
|           | Pounds Landed |          |
|-----------|---------------|----------|
| Year      | Tuna          | Non Tuna |
|           |               | PMUS     |
| 1982      | 22,065        | 1,515    |
| 1983      | 85,069        | 4,441    |
| 1984      | 196,100       | 13,458   |
| 1985      | 99,987        | 17,515   |
| 1986      | 167,791       | 14,995   |
| 1987      | 132,316       | 4,843    |
| 1988      | 172,788       | 12,110   |
| 1989      | 114,671       | 8,240    |
| 1990      | 55,420        | 3,564    |
| 1991      | 57,474        | 15,236   |
| 1992      | 88,953        | 10,698   |
| 1993      | 43,525        | 14,053   |
| 1994      | 186,199       | 40,708   |
| 1995      | 276,332       | 53,127   |
| 1996      | 309,147       | 50,781   |
| 1997      | 789,260       | 100,024  |
| 1998      | 1,114,702     | 94,933   |
| 1999      | 949,355       | 109,960  |
| 2000      | 1,630,410     | 122,511  |
| 2001      | 7,795,730     | 154,409  |
| 2002      | 14,978,767    | 363,014  |
| 2003      | 10,740,154    | 415,181  |
| Average   | 1,818,464     | 73,878   |
| Std. Dev. | 3,893,646     | 109,259  |

Figure 11. Number of American Samoa boats landing any pelagic species, tunas and non-tuna PMUS.



1982, the number of boats that landed any pelagic species, tuna and Non-Tuna **PMUS** varied. However in 2001, there was a dramatic increase in the number of boats landing pelagic fish in American Samoa. This is the highest number boats ever recorded participating in the pelagic fishery since 1982. year, and for the second consecutive year, there has been a decrease in the number of boats landing fish, probably due to the decrease in the prices at the canneries and the difficulty of exporting fresh


fish from American Samoa.


Since

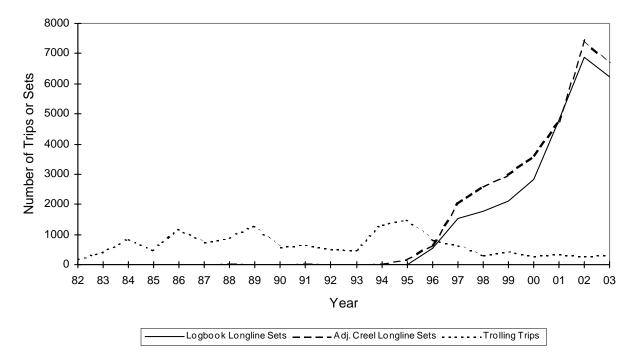
Interpretation:

|          | Number of Boats Landing |      |               |
|----------|-------------------------|------|---------------|
| Year     | Any Pelagics            | Tuna | Non-Tuna PMUS |
| 1982     | 22                      | 17   | 12            |
| 1983     | 35                      | 31   | 22            |
| 1984     | 50                      | 42   | 38            |
| 1985     | 47                      | 43   | 36            |
| 1986     | 55                      | 54   | 40            |
| 1987     | 34                      | 32   | 20            |
| 1988     | 44                      | 42   | 33            |
| 1989     | 46                      | 44   | 28            |
| 1990     | 40                      | 37   | 27            |
| 1991     | 32                      | 28   | 21            |
| 1992     | 26                      | 26   | 20            |
| 1993     | 38                      | 34   | 29            |
| 1994     | 41                      | 40   | 28            |
| 1995     | 43                      | 43   | 39            |
| 1996     | 44                      | 43   | 37            |
| 1997     | 48                      | 45   | 43            |
| 1998     | 42                      | 38   | 36            |
| 1999     | 57                      | 56   | 49            |
| 2000     | 54                      | 52   | 43            |
| 2001     | 79                      | 76   | 70            |
| 2002     | 68                      | 67   | 64            |
| 2003     | 68                      | 67   | 65            |
| Average  | 46                      | 44   | 36            |
| Std. Dev | 13                      | 14   | 15            |

**Calculation**: Prior to 1997, each boat counted in the Any Pelagics column made at least one landing in an offshore creel survey interview of at least one species in Table 2 in the given year. Likewise each boat counted in the other two columns made at least one landing in an offshore creel survey interview of at least one species in the corresponding subgroup of Table 2 in the given year. In 1997 and after the count of non-interviewed boats that made at least one landing of the appropriate species in a longline log was added to the count of interviewed boats from the offshore creel survey.






Any Method — — - Longlining - - - - Trolling

Interpretation: Since the longline fishery was introduced, there has been a continuous increase in the number of boats using this kind of fishing method till 2001. For the last 2 years, a decrease in the number of boats longlining shows a shift in the fishery. More large vessels that make multiple day trips with a large number of hooks are replacing small alias that make daily trips and set less hooks. Conversely, the number of boats fishing commercially by trolling have steadily decreased from 38 in 1994 to only 9 in 2003 due to development of the longline fishery.

|           | Number of Boats Using |            |          |
|-----------|-----------------------|------------|----------|
| Year      | Any Method            | Longlining | Trolling |
| 1982      | 22                    | 0          | 22       |
| 1983      | 35                    | 0          | 35       |
| 1984      | 50                    | 0          | 50       |
| 1985      | 47                    | 0          | 47       |
| 1986      | 55                    | 0          | 49       |
| 1987      | 34                    | 0          | 32       |
| 1988      | 44                    | 4          | 42       |
| 1989      | 46                    | 1          | 43       |
| 1990      | 40                    | 0          | 36       |
| 1991      | 32                    | 2          | 27       |
| 1992      | 26                    | 0          | 26       |
| 1993      | 38                    | 4          | 33       |
| 1994      | 41                    | 5          | 40       |
| 1995      | 43                    | 5          | 41       |
| 1996      | 44                    | 12         | 37       |
| 1997      | 48                    | 21         | 32       |
| 1998      | 42                    | 26         | 24       |
| 1999      | 57                    | 29         | 36       |
| 2000      | 54                    | 37         | 19       |
| 2001      | 79                    | 62         | 19       |
| 2002      | 68                    | 58         | 16       |
| 2003      | 68                    | 50         | 20       |
| Average   | 46                    | 20         | 33       |
| Std. Dev. | 13                    | 21         | 10       |

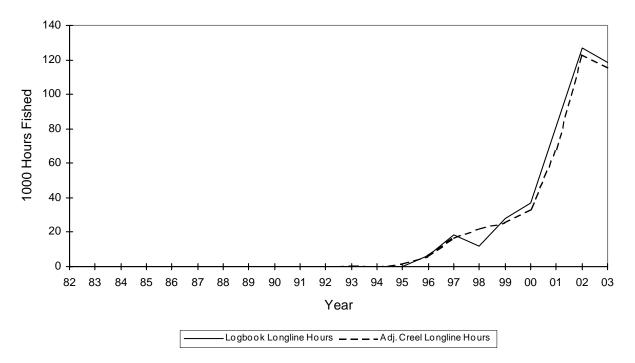
Calculation: Prior to 1997, each boat counted in the Any Method column made at least one landing in an offshore creel survey interview of at least one species in Table 2 in the given year. Each boat counted in the Longlining and Trolling columns made at least one landing in an offshore creel survey interview of at least one species in Table 2, using the longline or troll or combined troll/bottom fishing methods in the given year. In 1997 and after the count of non-interviewed boats that made at least one landing of the species in Table 2 in a longline log during the given year was added to the count of interviewed boats from the offshore creel survey in the Any Method and Longlining columns. The average and standard deviation for the number of boats using Longlining is calculated from 1988 onward.





**Interpretation:** Trolling varied from 1982 until 1997 when the number of boats decreased to a stable level of around 300 trips a year. Since 1996 and the establishment of the longline logbook system, the longline sets increased continuously until 2002. A first change occurred in the fishery during the first 3 years of this period, with a majority of the boats switching from trolling to longlining. Then the big vessels started to enter the fishery and represent a more and more important part of the sets deployed. This year is the first year that the number of sets have decreased (9.5%), while the total number of hooks still are increasing. This reflects the second change in the fishery, showing that the Alia fleet has became a minor part of the fishery.

|           | _           | Longlir | ne Sets     |
|-----------|-------------|---------|-------------|
| Year      | Troll Trips | Logbook | Creel (Adj) |
| 1982      | 177         | 0       | 0           |
| 1983      | 406         | 0       | 0           |
| 1984      | 853         | 0       | 0           |
| 1985      | 464         | 0       | 0           |
| 1986      | 1,208       | 0       | 0           |
| 1987      | 752         | 0       | 0           |
| 1988      | 875         | 0       | 31          |
| 1989      | 1,277       | 0       | 3           |
| 1990      | 587         | 0       | 0           |
| 1991      | 634         | 0       | 21          |
| 1992      | 506         | 0       | 0           |
| 1993      | 464         | 0       | 17          |
| 1994      | 1,330       | 0       | 19          |
| 1995      | 1,504       | 0       | 184         |
| 1996      | 834         | 528     | 650         |
| 1997      | 645         | 1,529   | 2,009       |
| 1998      | 316         | 1,754   | 2,582       |
| 1999      | 428         | 2,108   | 2,978       |
| 2000      | 285         | 2,814   | 3,598       |
| 2001      | 331         | 4,800   | 4,722       |
| 2002      | 289         | 6,872   | 7,428       |
| 2003      | 307         | 6,220   | 6,662       |
| Average   | 658         | 3,328   | 3,829       |
| Std. Dev. | 372         | 2,191   | 2,166       |


The number of longline sets reported in the Adjusted Creel Survey has always been more than that reported in the Longline Logbook System due to delinquency in turning in longline logs primarily by alias. The delinquency problem was almost eliminated in 2001 resulting in the logbook number of sets actually being more than those reported in the Adjusted Creel Survey Data.

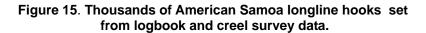
**Calculation** The number of Troll Trips is calculated by first subtracting the total longline pounds of Table 1 from the total pounds to get an estimate of the number of pounds caught by trolling and other fishing methods. This value is divided by the catch per hour for pure troll trips, from the offshore creel survey system expansion, to get the number of trolling hours. The number of trolling hours is then divided by the hours per trip for a purely trolling trip from the offshore creel survey system expansion to get the number of troll trips.

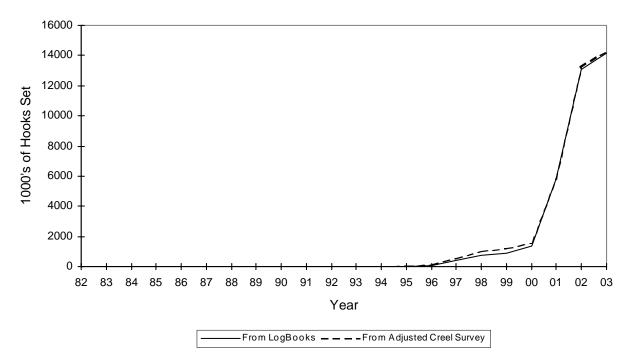
The number of longline sets using logbook data is obtained by counting all of the sets entered in the longline logbook system for the given year for interviewed and non-interviewed boats.

Prior to 1997, the number of longline sets using creel survey data is the expanded number of longline fishing trips from the offshore creel survey system. In 1997 and after this number is the expanded number of longline fishing trips from the offshore creel survey system for interviewed vessels plus the count of all of the sets entered in the longline logbook system for non-interviewed vessels. The average and standard deviation for Longline Sets from logbook data and creel data is calculated from 1996 onward for comparison.

Figure 14. Number of American Samoa hours fished for all pelagic species by longlining.




Interpretation: The combination of longline hours from Longline Logbooks and the Longline Creel Survey significantly shows a continuous increase in hours fished every year since the Longline Fishery was initially introduced, until 2002. This year, according to the longline creel survey, there was a 6.8% decrease in the number of hours spent fishing and according to the Logbook monitoring system, this decrease was 5.9%. This indicates that there is a decrease in the amount of effort put into the fishery.


The hours fished reported by the Longline Logbook system in the early years before the large boats dominated the fishery is usually larger than that reported by the adjusted Creel Survey System because the logbook hours are calculated from actual beginning of set times and end of haul times while many trips in the offshore creel survey system are entered as "8 hours"

| _         | Hours Fished |              |
|-----------|--------------|--------------|
| _         | Longline     | Longline     |
| Year      | Logbook      | Creel (Adj.) |
| 1982      | 0            | 0            |
| 1983      | 0            | 0            |
| 1984      | 0            | 0            |
| 1985      | 0            | 0            |
| 1986      | 0            | 0            |
| 1987      | 0            | 0            |
| 1988      | 0            | 198          |
| 1989      | 0            | 17           |
| 1990      | 0            | 0            |
| 1991      | 0            | 164          |
| 1992      | 0            | 0            |
| 1993      | 0            | 299          |
| 1994      | 0            | 156          |
| 1995      | 0            | 1,824        |
| 1996      | 6,403        | 5,877        |
| 1997      | 18,760       | 16,754       |
| 1998      | 11,981       | 21,953       |
| 1999      | 27,773       | 25,865       |
| 2000      | 36,973       | 33,288       |
| 2001      | 81,264       | 67,707       |
| 2002      | 127,023      | 123,088      |
| 2003      | 118,417      | 115,820      |
| Average   | 53,574       | 51,294       |
| Std. Dev. | 45,380       | 42,829       |

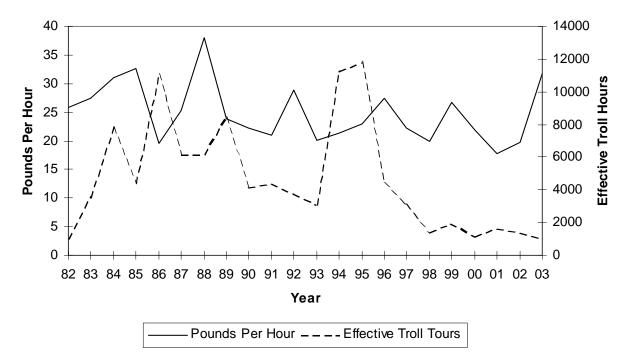
**Calculation**: The number of longline trip-hours using logbook data is obtained by summing the duration all of the sets entered in the longline logbook system for the given year for interviewed and non-interviewed boats. The duration of a set is defined as from beginning of set time to the end of haul time.

Prior to 1997, the number of longline trip-hours using creel survey data is the expanded number of longline fishing trip-hours from the offshore creel survey system. In 1997 and after this number is the expanded number of longline fishing trip-hours from the offshore creel survey system for interviewed vessels plus the sum of the duration of the sets entered in the longline logbook system for non-interviewed vessels. The average and standard deviation for Hours Fished from logbook data and creel data is calculated from 1996 onward for comparison.





**Interpretation:** Since the Longline Fishery began in 1995, the number hooks set has been increasing at a steady rate and became an explosion in 2000 with 10 times increase by 2002. This year, according to the Logbook data, the number of hooks increased by 8.2% and according to the creel survey by 7.9%. This continuous increase reveals the constant growth in the proportion of large vessels in the fishery.


**Calculation:** The number of longline hooks using logbook data is obtained by summing the number of hooks for sets entered in the longline logbook system for the given year for interviewed and non-interviewed boats and dividing by 1000.

Prior to 1997, the number of longline hooks using creel survey data is the expanded number of longline hooks from the offshore creel survey system. In 1997 and after this number is the expanded number of longline fishing hooks from the offshore creel survey system for interviewed vessels plus the sum of the number of hooks for the sets entered in the longline logbook system for

|             | 1000's of Hooks From |            |  |
|-------------|----------------------|------------|--|
| _           | Logbook Creel        |            |  |
| <u>Year</u> | Data                 | (Adjusted) |  |
| 1982        | 0                    | 0          |  |
| 1983        | 0                    | 0          |  |
| 1984        | 0                    | 0          |  |
| 1985        | 0                    | 0          |  |
| 1986        | 0                    | 0          |  |
| 1987        | 0                    | 0          |  |
| 1988        | 0                    | 1          |  |
| 1989        | 0                    | 0          |  |
| 1990        | 0                    | 0          |  |
| 1991        | 0                    | 0          |  |
| 1992        | 0                    | 0          |  |
| 1993        | 0                    | 2          |  |
| 1994        | 0                    | 0          |  |
| 1995        | 0                    | 45         |  |
| 1996        | 99                   | 157        |  |
| 1997        | 420                  | 512        |  |
| 1998        | 771                  | 1,042      |  |
| 1999        | 914                  | 1,229      |  |
| 2000        | 1,332                | 1,567      |  |
| 2001        | 5,794                | 5,806      |  |
| 2002        | 13,099               | 13,241     |  |
| 2003        | 14,168               | 14,292     |  |
| Average     | 4,575                | 4,731      |  |
| Std. Dev.   | 5,498                | 5,473      |  |

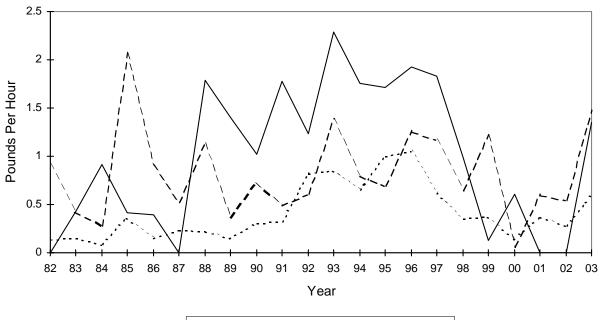
| non-interviewed vessels. The average and standard deviation for 1000's of Hooks from logbook data and creel data is calculated from 1996 onward for comparison. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                 |
|                                                                                                                                                                 |
|                                                                                                                                                                 |
|                                                                                                                                                                 |
|                                                                                                                                                                 |
|                                                                                                                                                                 |
|                                                                                                                                                                 |
|                                                                                                                                                                 |
|                                                                                                                                                                 |
|                                                                                                                                                                 |
|                                                                                                                                                                 |

Figure 16. American Samoa pelagic catch per hour of trolling and number of trolling hours.



**Interpretation:** The overall catch per hour for pelagic species by trolling is primarily the combined skipjack and yellowfin CPUE shown in Figure 18. These two species constituted 85% of the total pelagic troll catch this year.

The decline in trolling hours in 1996 was mainly due to the popularity of the longline fishery since it was introduced. However, 1999 was an exceptional year because of the number of new boats that entered the pelagic fishery and were involved in trolling before obtaining their longline permits. This year, the hours spent in trolling are the lowest since 1982, but at the same time the number of boats has increased by 25 % from last year. The result is that we have the lowest average hours spent on trolling since 1982 with only 51.75 hours per boat. Compared to last year, the CPUE has increased by 6%. The explanation may be in the fact that fishermen go to fish only when the conditions are very good, as trolling seems to be a less professional activity then before.


**Calculation:** For purely trolling trips where the number of hours was recorded, the total catch was divided by the total number of trolling hours to obtain CPUE.

The number of effective Trolling Trip Hours is

| Year      | CPUE  | Hours  |
|-----------|-------|--------|
| 1982      | 25.91 | 1,019  |
| 1983      | 27.41 | 3,513  |
| 1984      | 30.97 | 7,785  |
| 1985      | 32.59 | 4,394  |
| 1986      | 19.49 | 11,030 |
| 1987      | 25.34 | 6,182  |
| 1988      | 38.01 | 6,126  |
| 1989      | 23.87 | 8,425  |
| 1990      | 22.16 | 4,136  |
| 1991      | 20.93 | 4,407  |
| 1992      | 28.90 | 3,748  |
| 1993      | 20.17 | 3,065  |
| 1994      | 21.37 | 11,211 |
| 1995      | 23.01 | 11,781 |
| 1996      | 27.36 | 4,365  |
| 1997      | 22.29 | 3,089  |
| 1998      | 19.93 | 1,405  |
| 1999      | 26.81 | 1,977  |
| 2000      | 21.94 | 1,122  |
| 2001      | 17.72 | 1,661  |
| 2002      | 19.79 | 1,359  |
| 2003      | 31.78 | 1,035  |
| Average   | 24.90 | 4,674  |
| Std. Dev. | 5.04  | 3,350  |

calculated by first subtracting the total longline pounds of Table 1 from the total pounds to get an estimate of the number of pounds caught by trolling and other fishing methods. This value is divided by the catch per hour for pure troll trips, from the offshore creel survey system expansion, to get the number of trolling trip-hours

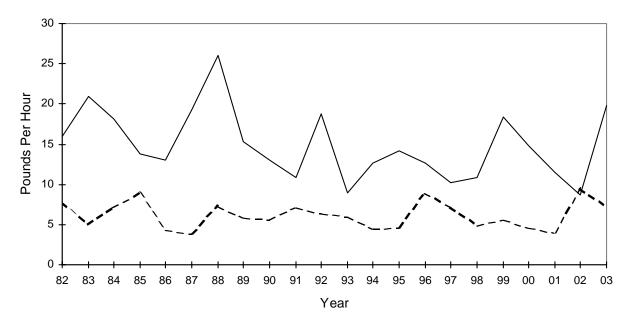
Figure 17. American Samoa trolling catch rates for Blue Marlin, Mahimahi, and Wahoo.



Blue Marlin — — — Mahimahi - - - - Waho o

Interpretation: Blue marlin CPUE is variable but generally increased over time until about 1997 when it began to decline. It is not known if this decrease has any relationship to the huge growth in the longline fishery during this time span.

Mahimahi CPUE is very erratic through the years. In 2003 it increased to it's highest level since 1985, with a increase of 172% from last year.


Since 1996 wahoo catch rates have dropped similar to blue marlin rates. This may be related to the increase in longline activity around the island. This year Wahoo CPUE has indeed increased by 107%.

|           | Pounds Caught Per Trolling Hour |          |       |
|-----------|---------------------------------|----------|-------|
| Year      | Blue Marlin                     | Mahimahi | Wahoo |
| 1982      | 0.00                            | 0.92     | 0.14  |
| 1983      | 0.43                            | 0.43     | 0.15  |
| 1984      | 0.91                            | 0.28     | 0.09  |
| 1985      | 0.41                            | 2.06     | 0.36  |
| 1986      | 0.39                            | 0.90     | 0.15  |
| 1987      | 0.00                            | 0.52     | 0.23  |
| 1988      | 1.79                            | 1.13     | 0.22  |
| 1989      | 1.40                            | 0.36     | 0.15  |
| 1990      | 1.02                            | 0.72     | 0.31  |
| 1991      | 1.78                            | 0.49     | 0.32  |
| 1992      | 1.23                            | 0.61     | 0.82  |
| 1993      | 2.29                            | 1.38     | 0.85  |
| 1994      | 1.76                            | 0.80     | 0.65  |
| 1995      | 1.71                            | 0.69     | 1.00  |
| 1996      | 1.93                            | 1.26     | 1.05  |
| 1997      | 1.83                            | 1.17     | 0.62  |
| 1998      | 0.99                            | 0.65     | 0.35  |
| 1999      | 0.13                            | 1.21     | 0.37  |
| 2000      | 0.61                            | 0.06     | 0.14  |
| 2001      | 0.00                            | 0.60     | 0.37  |
| 2002      | 0.00                            | 0.54     | 0.28  |
| 2003      | 1.35                            | 1.47     | 0.58  |
| Average   | 1.00                            | 0.83     | 0.42  |
| Std. Dev. | 0.73                            | 0.45     | 0.29  |

We can observe that the trends in CPUE are similar for mahi mahi and wahoo if we exclude 1983, 87, 88 and 95. However it is difficult to interpret the small amount of data we have this year.

**Calculation**: The values for each of the three species is obtained by dividing the Troll Pounds for each species in Table 1 by the expanded number of trip-hours for purely trolling trips from the offshore creel survey system.





Skipjack — — - Yellowfin

Interpretation: The values for Skipjack and Yellowfin CPUE has been variable through the years. During 1999, a couple of boats did some extensive trolling before obtaining their longline permits to longline. This however was contributing factor to the increase in the number of trolling activity at this time. CPUE for Skipjack increased by 128% this year from 2002 whereas the CPUE for Yellowfin experienced a 25% decrease this year.

**Calculation**: The values for each of the two species is obtained by dividing the Troll Pounds for each species in Table 1 by the expanded number of trip-hours for purely trolling trips from the offshore creel survey system.

|           | Pounds Caught Per Trolling Hour |           |  |
|-----------|---------------------------------|-----------|--|
| Year      | Skipjack                        | Yellowfin |  |
| 1982      | 15.90                           | 7.80      |  |
| 1983      | 21.00                           | 5.04      |  |
| 1984      | 18.10                           | 7.20      |  |
| 1985      | 13.80                           | 8.90      |  |
| 1986      | 13.00                           | 4.35      |  |
| 1987      | 19.30                           | 3.88      |  |
| 1988      | 26.00                           | 7.30      |  |
| 1989      | 15.30                           | 5.91      |  |
| 1990      | 13.00                           | 5.59      |  |
| 1991      | 10.80                           | 7.16      |  |
| 1992      | 18.80                           | 6.34      |  |
| 1993      | 8.94                            | 6.03      |  |
| 1994      | 12.70                           | 4.50      |  |
| 1995      | 14.20                           | 4.56      |  |
| 1996      | 12.70                           | 8.99      |  |
| 1997      | 10.20                           | 7.21      |  |
| 1998      | 10.80                           | 4.89      |  |
| 1999      | 18.40                           | 5.62      |  |
| 2000      | 14.80                           | 4.64      |  |
| 2001      | 11.50                           | 4.01      |  |
| 2002      | 8.67                            | 9.49      |  |
| 2003      | 19.80                           | 7.10      |  |
| Average   | 14.90                           | 6.21      |  |
| Std. Dev. | 4.28                            | 1.64      |  |

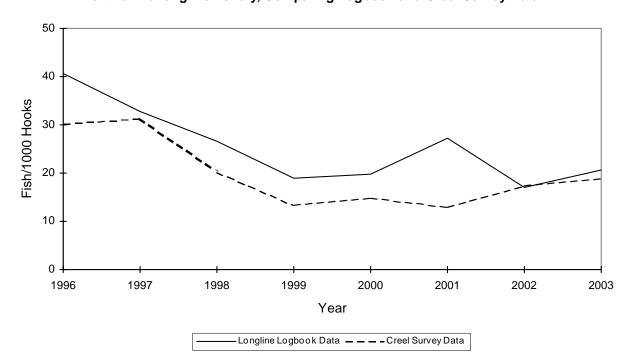



Figure 19. American Samoa catch per 1000 hooks of Albacore for the Alia longline fishery, Comparing Logbook and Creel Survey Data

Interpretation The longline fishery in American Samoa is a newly developed fishery that emerged in 1995. Both monitoring systems (Longline Logbook and Creel Survey) indicate similar fluctuations of the catch rates of albacore through this fishery since it first started. Alias are the most commonly used boats by the local fishermen in the fishery and albacore the primary target species. The value of albacore catch rate through the years since 1996 have been declining except for the peak in 2001. The dip in catch rate in 2001 in the Creel Survey data was due to poor data taking in the Creel Survey. During this period many longline interviews were missed and those that were done didn't weigh, measure and report on all of the albacore caught. In 2002, the Longline Logbook indicates a 60% decrease whereas the Offshore Creel Survey shows a slight increase of 36%. This decline may have been due to a stock problem or a background trend on a large scale. However, with the fishery expansion and the low price of fish, a further decrease could soon put the Alia fleet in trouble.

The global decrease of CPUE for the Alia longline fishery probably reflects their interaction with the large vessel activity around the island. The large vessels still catch 40% as much fish inside the 50 nm restricted areas as the alias do.

In 2003 the CPUE calculated by the two methods are close, but it's the first time that the CPUE calculated with the creel survey data is higher than by the logbook method. The difference between these two methods can be partially explained by considering different factors. Same big Alias have started to fish for multiples days and have reported their catch in only one log, increasing the CPUE. Also, the catches of multiple sets in one trip are often partially estimated as all the fish are stocked together in big coolers.

**Calculation:** These values compare the CPUE's of only the alias. For the longline logbook data, the total number of kept fish of each species is divided by the sum of the hooks in the sets of alias or surveyed vessels over the given year used to catch them. For the creel survey data

the expanded total landings for each species given in Table 1 is divided by the pounds/fish value obtained by averaging creel survey data over the year to find the number of pieces of each species. The number of pieces for each species caught during the year is divided by the expanded number of hooks for the given year.

Table 6A. American Samoa 1996-1999 catch per 1000 hooks by species for the alia longline fishery comparing logbook and creel survey Data

|                    | Number of Fish Per 1000 Hooks |       |       |       |       |       |       |       |
|--------------------|-------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                    | 19                            | 96    | 199   | 97    | 19    | 98    | 19    | 99    |
| Species            | Log                           | Creel | Log   | Creel | Log   | Creel | Log   | Creel |
| Skipjack Tuna      | 0.06                          | 0.29  | 1.15  | 0.60  | 3.71  | 4.01  | 4.97  | 4.77  |
| Albacore           | 40.60                         | 30.26 | 32.77 | 31.20 | 26.61 | 20.23 | 18.83 | 13.44 |
| Yellowfin Tuna     | 6.50                          | 4.32  | 2.73  | 2.48  | 2.18  | 2.27  | 6.73  | 4.49  |
| BigeyeTuna         | 1.33                          | 1.06  | 0.30  | 0.14  | 0.27  | 0.11  | 0.68  | 0.20  |
| Tunas              |                               |       |       |       | 0.01  |       |       |       |
| Mahimahi           | 2.29                          | 1.31  | 2.24  | 2.84  | 1.70  | 1.83  | 2.24  | 1.76  |
| Black marlin       |                               |       | 0.09  | 0.02  |       |       | 0.18  | 0.03  |
| Blue marlin        | 0.93                          | 0.90  | 0.65  | 0.61  | 0.55  | 0.49  | 0.50  | 0.38  |
| Striped Marlin     |                               |       | 0.02  |       | 0.03  |       | 0.02  |       |
| Wahoo              | 0.83                          | 0.52  | 0.90  | 0.85  | 2.20  | 2.03  | 2.03  | 1.57  |
| Sharks             | 0.28                          | 0.37  | 0.12  | 0.17  | 0.12  | 0.08  | 0.06  | 0.03  |
| Swordfish          | 0.03                          | 0.01  | 0.06  | 0.01  | 0.03  | 0.02  | 0.03  | 0.01  |
| Sailfish           | 0.18                          | 0.23  | 0.17  | 0.21  | 0.05  | 0.14  | 0.01  | 0.13  |
| Spearfish          |                               |       |       |       | 0.03  |       |       | 0.01  |
| Moonfish           |                               |       | 0.10  | 0.15  | 0.07  | 0.07  | 0.07  | 0.13  |
| Oilfish            |                               |       |       |       | 0.01  | 0.04  | 0.01  | 0.01  |
| Pomfret            |                               |       |       |       |       |       | 0.01  |       |
| Barracudas         |                               | 0.57  |       | 0.87  |       | 0.42  |       | 0.19  |
| Rainbow runner     |                               |       |       | 0.01  |       | 0.01  |       | 0.02  |
| Dogtooth tuna      |                               |       |       |       |       | 0.00  |       |       |
| Other Pelagic Fish |                               |       |       |       | 0.22  | 0.01  | 0.25  |       |

Table 6B. American Samoa 2000-2003 catch per 1000 hooks by species for the alia longline fishery, comparing logbook and creel survey data.

**Number of Fish Per 1000 Hooks** 2000 2001 2002 2003 Log Species Creel Log Creel Log Log Creel Creel Skipjack Tuna 2.02 1.95 3.01 3.35 5.94 5.44 7.31 3.92 Albacore 19.75 14.81 27.23 12.94 17.08 17.55 20.55 18.93 Yellowfin Tuna 6.22 3.25 4.19 7.04 10.65 8.25 6.98 3.27 BigeyeTuna 0.40 0.22 0.61 0.35 0.58 0.48 1.17 0.46 Tunas 0.02 Mahimahi 1.76 3.35 3.99 4.47 1.71 4.46 2.97 3.16 Black marlin 0.11 0.07 0.03 0.07 0.13 Blue marlin 0.46 0.47 0.38 0.26 0.23 0.35 0.26 0.13 Striped Marlin 0.06 0.03 0.05 0.02 Wahoo 0.90 1.43 1.44 2.64 2.37 2.99 1.15 2.63 Sharks 0.01 0.01 0.01 0.04 0.01 0.02 0.02 0.03 Swordfish 0.02 0.10 0.02 0.11 0.02 0.08 0.09 Sailfish 0.03 0.06 0.04 0.13 0.05 0.17 80.0 0.19 Spearfish 0.01 0.02 Moonfish 0.07 0.20 0.10 0.07 0.08 0.05 0.10 0.11 Oilfish 0.03 0.10 0.02 0.04 0.04 Pomfret 0.02 0.04 0.02 0.02 0.11 Barracudas 0.30 0.02 0.14 0.26 0.02 0.47 Rainbow runner 0.03 0.02 0.02 Dogtooth tuna Other Pelagic Fish 0.03 0.03

Table 7A. American Samoa catch/1000 Hooks for the three sizes of longline vessels for 2000 and 2001

|                          | 20    | 00    |       | 2001  |       |
|--------------------------|-------|-------|-------|-------|-------|
|                          | Alias | Mono- | Alias | Mono  | hull  |
| Species                  |       | hull  |       | < 50' | > 50' |
| Skipjack Tuna            | 2.02  | 1.70  | 3.11  | 1.74  | 2.21  |
| Albacore                 | 19.79 | 28.08 | 27.26 | 28.34 | 33.83 |
| Yellowfin Tuna           | 6.23  | 3.07  | 3.31  | 1.39  | 1.41  |
| BigeyeTuna               | 0.40  | 0.97  | 0.63  | 0.47  | 1.04  |
| TUNAS SUBTOTALS          | 28.44 | 33.82 | 34.31 | 31.94 | 38.49 |
|                          |       |       |       |       |       |
| Mahimahi                 | 1.71  | 0.36  | 3.36  | 0.60  | 0.50  |
| Black marlin             | 0.11  | 0.10  | 0.07  | 0.00  | 0.02  |
| Blue marlin              | 0.47  | 0.23  | 0.39  | 0.42  | 0.21  |
| Striped Marlin           | 0.06  | 0.32  | 0.03  | 0.02  | 0.08  |
| Wahoo                    | 1.15  | 1.06  | 1.45  | 0.42  | 0.67  |
| Sharks                   | 0.01  | 0.70  | 0.04  | 1.18  | 0.63  |
| Swordfish                | 0.02  | 0.01  | 0.10  | 0.04  | 0.03  |
| Sailfish                 | 0.03  | 0.04  | 0.05  | 0.02  | 0.03  |
| Spearfish                | 0.01  | 0.09  | 0.00  | 0.02  | 0.04  |
| Moonfish                 | 0.07  | 0.15  | 0.10  | 0.10  | 0.08  |
| Oilfish                  | 0.00  | 0.12  | 0.03  | 0.14  | 0.22  |
| Pomfret                  | 0.02  | 0.12  | 0.02  | 0.07  | 0.09  |
| NON-TUNA PMUS SUBTOTALS  | 3.66  | 3.31  | 5.64  | 3.03  | 2.60  |
|                          |       |       |       |       |       |
| Barracudas               | 0.00  | 0.00  | 0.02  | 0.01  | 0.03  |
| Rainbow runner           | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Other Pelagic Fish       | 0.00  | 0.00  | 0.03  | 0.00  | 0.05  |
| OTHER PELAGICS SUBTOTALS | 0.00  | 0.00  | 0.05  | 0.01  | 0.07  |
|                          |       |       |       |       |       |
| TOTAL PELAGICS           | 32.11 | 37.13 | 40.00 | 34.98 | 41.17 |

Table 7B. American Samoa catch/1000 Hooks for the three sizes of longline vessels for 2002 and 2003

|                             |       | 2002  |       |       | 2003  |       |
|-----------------------------|-------|-------|-------|-------|-------|-------|
|                             | Alias | Mono  | hull  | Alias | Mono  | hull  |
| Species                     |       | < 50' | > 50' |       | < 50' | > 50' |
| Skipjack Tuna               | 5.94  | 2.13  | 5.11  | 7.31  | 1.38  | 2.92  |
| Albacore                    | 17.08 | 23.18 | 25.97 | 20.55 | 15.51 | 16.37 |
| Yellowfin Tuna              | 7.04  | 0.99  | 1.32  | 8.25  | 1.67  | 2.05  |
| BigeyeTuna                  | 0.58  | 0.44  | 0.95  | 1.17  | 1.15  | 1.14  |
| Tunas                       | 0.00  | 0.02  | 0.00  | 0.02  | 0.01  | 0.01  |
| TUNAS SUBTOTALS             | 30.64 | 26.76 | 33.35 | 37.30 | 19.71 | 22.48 |
| Maliforni                   | 0.00  | 0.04  | 0.50  | 4 47  | 0.40  | 0.00  |
| Mahimahi                    | 3.99  | 0.91  | 0.56  | 4.47  | 0.16  | 0.38  |
| Blue marlin                 | 0.23  | 0.21  | 0.29  | 0.26  | 0.14  | 0.20  |
| Striped Marlin              | 0.05  | 0.00  | 0.03  | 0.02  | 0.02  | 0.02  |
| Wahoo                       | 2.64  | 1.04  | 1.01  | 2.99  | 0.65  | 1.12  |
| Sharks                      | 0.02  | 1.31  | 0.79  | 0.03  | 1.11  | 0.77  |
| Swordfish                   | 0.11  | 0.05  | 0.04  | 0.08  | 0.01  | 0.03  |
| Sailfish                    | 0.05  | 0.01  | 0.03  | 0.08  | 0.03  | 0.04  |
| Spearfish                   | 0.02  | 0.02  | 0.02  | 0.00  | 0.00  | 0.03  |
| Moonfish                    | 0.08  | 0.07  | 0.07  | 0.10  | 0.07  | 0.07  |
| Oilfish                     | 0.02  | 0.26  | 0.52  | 0.04  | 0.23  | 0.54  |
| Pomfret                     | 0.02  | 0.03  | 0.09  | 0.00  | 0.07  | 0.08  |
| NON-TUNA PMUS<br>SUBTOTALS  | 7.23  | 3.90  | 3.45  | 8.06  | 2.48  | 3.28  |
| Barracudas                  | 0.00  | 0.00  | 0.09  | 0.02  | 0.01  | 0.03  |
| Other Pelagic Fish          | 0.00  | 0.05  | 0.27  | 0.03  | 0.03  | 0.21  |
| OTHER PELAGICS<br>SUBTOTALS | 0.01  | 0.06  | 0.36  | 0.05  | 0.03  | 0.24  |
| TOTAL PELAGICS              | 37.88 | 30.72 | 37.17 | 45.42 | 22.23 | 26.00 |

**Interpretation:** Since the development of the longline fishery in 1995, a growing number of boats with a range of different sizes entered the fishery. These boats include alias, averaging around 28 to 30 feet, monohull less than 50 feet, and monohull greater than 50 feet in length. Table 7 has been included in this report to better represent the catch per 1000 hooks for each type of longline vessel. Additionally, total catch rates for pelagic species dropped this year for the monohulls compared to rates in 2001 and 2002 while the catch rates for alias increased. This indicates that the 50 mile closed areas around the islands for the monohulls is benefiting the alias. When compared to the albacore catch rate this shows that the fishery in American Samoa is becoming more diverse and not just all albacore catch.

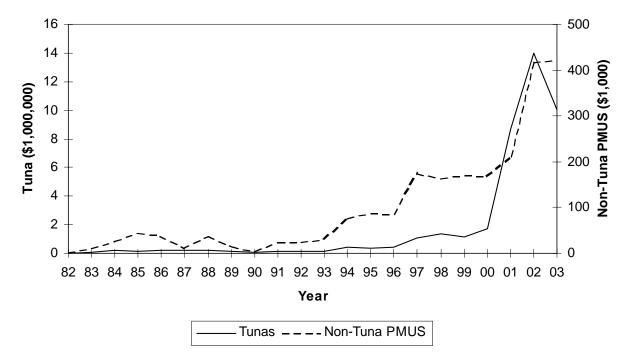
**Calculation:** These values are sums of the Longline Logbook catch (number of fish kept+released+finned) for the three types of longline vessels in Samoa divided by the total number of hooks set by each type of vessel. In 2000 there was only one monohull < 50' so its catch was combined with the rest of the monohulls. All species of sharks entered in the Longline Logs are combined in the Other Sharks species. Rays and Sunfish are included in the Other Pelagic Fish species.

Table 8. American Samoa estimated average weight per fish by species from the Offshore Creel Survey Interviews and from Cannery Sampling

**Creel Survey Annual Average Pounds per Fish Species** 1996 1997 1998 1999 2000 2001 2002 2003 Skipjack Tuna 9.6 8.4 12.5 9.7 11.6 14.8 11.1 8.6 Albacore 39.9 44.0 45.7 42.6 45.1 44.8 45.5 38.6 Yellowfin Tuna 37.9 44.2 45.9 33.1 38.1 31.3 28.0 17.8 52.3 82.8 79.2 57.1 61.1 67.6 37.2 BigeveTuna 69.2 Tunas Mahimahi 26.2 25.6 23.3 22.3 24.8 19.7 19.3 20.3 Black marlin 148.3 101.9 67.2 31.9 90.0 117.7 135.7 Blue marlin 151.8 119.9 101.9 70.9 190.4 98.8 Striped Marlin Wahoo 44.3 38.4 26.3 27.3 31.9 29.7 28.2 30.8 Sharks 112.3 96.8 69.3 38.0 39.5 68.8 68.5 62.4 Swordfish 150.0 100.0 212.6 12.0 59.4 23.4 117.4 Sailfish 88.4 70.7 67.0 61.8 39.1 42.0 33.8 57.6 Spearfish 46.0 Moonfish 70.3 33.5 57.7 30.9 102.5 78.3 107.1 Oilfish 12.7 10.0 23.9 11.1 Pomfret 16.5 8.2 Barracudas 13.5 14.6 15.3 11.0 13.1 7.6 9.2 8.8 Rainbow runner 14.0 17.5 6.5 16.1 10.0 40.8 Dogtooth tuna 15.6 Other Pelagic Fish 45.3

|                | Cannery Sampled Average Lbs. per Fish |      |      |       |       |      |
|----------------|---------------------------------------|------|------|-------|-------|------|
| Species        | 1998                                  | 1999 | 2000 | 2001  | 2002  | 2003 |
| Skipjack Tuna  |                                       |      |      | 15.7  | 10.7  | 9.4  |
| Albacore       | 41.0                                  | 47.2 | 40.7 | 39.8  | 39.1  | 37.8 |
| Yellowfin Tuna |                                       |      |      | 57.0  | 62.4  | 44.3 |
| BigeyeTuna     |                                       |      |      | 40.7  | 46.8  | 37.4 |
| Mahimahi       |                                       |      |      | 16.2  | 13.5  | 20.7 |
| Black marlin   |                                       |      |      | 36.3  |       |      |
| Wahoo          |                                       |      |      | 30.6  | 30.7  | 30.0 |
| Sailfish       |                                       |      |      |       | 34.0  |      |
| Moonfish       |                                       |      |      | 147.6 | 117.6 |      |
| Pomfret        |                                       |      |      | 2.2   | 2.2   |      |
| Rainbow runner |                                       |      |      |       | 9.4   |      |

**Interpretation:** The table for cannery data represents the portion of the catch unloaded by larger vessels fishing further away from Tutuila while the table from the Creel Survey represents fish caught by alias near Tutuila. We have observed an important decrease of average lb/fish for the main targeted species of albacore this year. The values recorded are the lowest ever obtained for all the tuna species for both the creel survey and cannery sampling.


The average size of fish reported in the creel survey of Alias is smaller than in the logbook data from the cannery. Two factors can help explain this difference. First, Alia fishermen retain small fish as well as large, while on the large vessels small fish are discarded. Second, only the Alias troll, and trolling near the surface catches more small fish of some species like yellowfin, than longlining in deeper water.

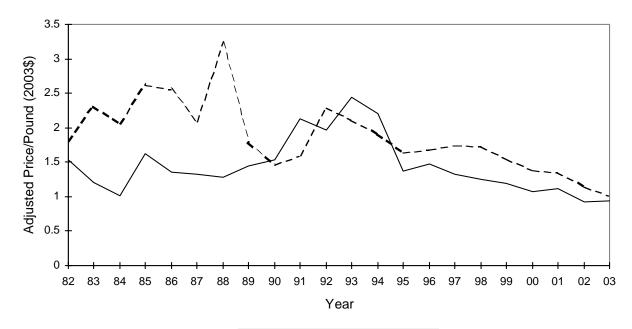
In 1999 longline boats began landing their catches gilled and gutted to obtain higher prices at the canneries. It is possible that this new method could have an impact on size variation for the longline fishery.

**Calculation:** The Creel Survey Annual Average Pounds/Fish for each species was calculated from the creel survey interviews by dividing the total pounds of each species sampled during the year by the number of fish of sampled during the year. If the fish were sampled as other than whole (ie Gilled and Gutted) the sampled weight is divided by the appropriate factor (less than 1) to get the whole weight. All weights were measured directly before 2000, but after that most weights were calculated from length measurements. Since these fish are caught by alias operating close to Tutuila this represents fish sizes close to shore.

The Cannery Sampled Annual Average Pounds/Fish for each species was calculated from the length measurements made at the canneries when the fish are unloaded there. The weight of each sampled fish is calculated from the length measurements. These weights are summed over the year for each species and are then divided by the number of fish of that species sampled during the year. Since these fish are caught by larger boats operating away from Tutuila this represents fish sizes further out to sea from Tutuila






**Interpretation:** Until 2002, there has been an increase in revenues for commercial landings for all pelagic species since 1995, a period of great influx in the longline fishery, with a significant increase of 305% in 2001. In 2003, there was a decrease of 27.1% of revenues for all landed pelagic species (-27.9% for tuna and +1.2% for others species). The estimated revenue generated from these total landings in 2003 was \$10,491,420.00 compared to \$14,390,751.00 in 2002. From the early 1980's to 1995, the primary gear type for the fishery was trolling, however from 1995 to the present the dominant form of fishing was longlining.

**Calculation**: The unadjusted revenues for Tunas and Other PPMUS were calculated by summing the values for the species in these categories as defined by Table 2. The unadjusted revenue for All Pelagics is the sum of the value for the Tuna, Other PPMUS and Miscellaneous categories as defined by Table 2.

The unadjusted revenues from commercial landings for the pelagic species subgroups above were adjusted for inflation by multiplying a given year's revenue by the 2000 consumer price index (CPI) divided by the CPI for that year.

|           |       | Revenue (\$) |              |           |           |
|-----------|-------|--------------|--------------|-----------|-----------|
|           |       | Tur          | Tunas        |           | PMUS      |
| Year      | CPI   | Unadjust     | Adjusted     | Unadjust. | Adjusted  |
| 1982      | 100.0 | \$18,990     | \$33,745     | \$1,534   | \$2,726   |
| 1983      | 100.8 | \$58,561     | \$103,302    | \$5,828   | \$10,281  |
| 1984      | 102.7 | \$114,981    | \$198,917    | \$15,938  | \$27,573  |
| 1985      | 103.7 | \$95,157     | \$163,098    | \$26,800  | \$45,936  |
| 1986      | 107.1 | \$137,143    | \$227,657    | \$23,151  | \$38,430  |
| 1987      | 111.8 | \$110,076    | \$175,021    | \$6,347   | \$10,092  |
| 1988      | 115.3 | \$143,613    | \$221,451    | \$25,372  | \$39,124  |
| 1989      | 120.3 | \$111,425    | \$164,798    | \$9,901   | \$14,644  |
| 1990      | 129.6 | \$61,918     | \$85,013     | \$3,795   | \$5,211   |
| 1991      | 135.3 | \$93,060     | \$122,281    | \$18,525  | \$24,342  |
| 1992      | 140.9 | \$138,179    | \$174,244    | \$19,390  | \$24,451  |
| 1993      | 141.1 | \$84,341     | \$106,270    | \$23,700  | \$29,862  |
| 1994      | 143.8 | \$332,860    | \$411,415    | \$62,579  | \$77,348  |
| 1995      | 147.0 | \$312,638    | \$377,979    | \$71,891  | \$86,916  |
| 1996      | 152.5 | \$391,211    | \$455,761    | \$73,455  | \$85,574  |
| 1997      | 156.4 | \$919,535    | \$1,045,511  | \$154,121 | \$175,235 |
| 1998      | 158.4 | \$1,240,618  | \$1,391,974  | \$146,630 | \$164,518 |
| 1999      | 159.9 | \$1,018,884  | \$1,132,999  | \$153,750 | \$170,970 |
| 2000      | 166.7 | \$1,639,341  | \$1,749,177  | \$158,053 | \$168,643 |
| 2001      | 168.8 | \$8,235,858  | \$8,672,359  | \$199,269 | \$209,830 |
| 2002      | 169.2 | \$13,295,392 | \$13,973,457 | \$397,045 | \$417,294 |
| 2003      | 177.5 | \$10,069,027 | \$10,069,027 | \$422,393 | \$422,393 |
| Average   | 136.8 | \$1,755,582  | \$1,866,157  | \$91,794  | \$102,336 |
| Std. Dev. | 24.90 | \$3,597,835  | \$3,713,801  | \$117,235 | \$118,878 |

Figure 21. American Samoa average inflation-adjusted price per pound of Tunas and Non-Tuna PMUS.



Tunas — — — Non-Tuna PM US

Interpretation: average inflation-adjusted price per pound varied since 1982 until 1992-1993 when a continuous decrease was seen. This gradual decrease may be due to the lower price that the canneries pay per pound of tuna compared to the price the local stores and restaurants The decreasing pay. percentage of longline catches that make it to the higher revenue local markets after 1993 probably contribute to this decline in prices for tuna. Additionally, this decline in prices could be due to competition from frozen purchased fish from foreign longline vessels moored in Pago Harbor and from fishes imported from neighboring islands.

|           | Average Price/Pound (\$) |          |           |          |  |
|-----------|--------------------------|----------|-----------|----------|--|
|           | Tun                      | as       | Non-Tuna  | a PMUS   |  |
| Year      | Unadjust.                | Adjusted | Unadjust. | Adjusted |  |
| 1982      | \$0.86                   | \$1.53   | \$1.01    | \$1.80   |  |
| 1983      | \$0.69                   | \$1.21   | \$1.31    | \$2.31   |  |
| 1984      | \$0.59                   | \$1.01   | \$1.18    | \$2.05   |  |
| 1985      | \$0.95                   | \$1.63   | \$1.53    | \$2.62   |  |
| 1986      | \$0.82                   | \$1.36   | \$1.54    | \$2.56   |  |
| 1987      | \$0.83                   | \$1.32   | \$1.31    | \$2.08   |  |
| 1988      | \$0.83                   | \$1.28   | \$2.10    | \$3.23   |  |
| 1989      | \$0.97                   | \$1.44   | \$1.20    | \$1.78   |  |
| 1990      | \$1.12                   | \$1.53   | \$1.06    | \$1.46   |  |
| 1991      | \$1.62                   | \$2.13   | \$1.22    | \$1.60   |  |
| 1992      | \$1.55                   | \$1.96   | \$1.81    | \$2.29   |  |
| 1993      | \$1.94                   | \$2.44   | \$1.69    | \$2.12   |  |
| 1994      | \$1.79                   | \$2.21   | \$1.54    | \$1.90   |  |
| 1995      | \$1.13                   | \$1.37   | \$1.35    | \$1.64   |  |
| 1996      | \$1.27                   | \$1.47   | \$1.45    | \$1.69   |  |
| 1997      | \$1.17                   | \$1.32   | \$1.54    | \$1.75   |  |
| 1998      | \$1.11                   | \$1.25   | \$1.54    | \$1.73   |  |
| 1999      | \$1.07                   | \$1.19   | \$1.40    | \$1.55   |  |
| 2000      | \$1.01                   | \$1.07   | \$1.29    | \$1.38   |  |
| 2001      | \$1.06                   | \$1.11   | \$1.29    | \$1.36   |  |
| 2002      | \$0.89                   | \$0.93   | \$1.09    | \$1.15   |  |
| 2003      | \$0.94                   | \$0.94   | \$1.02    | \$1.02   |  |
| Average   | \$1.10                   | \$1.44   | \$1.39    | \$1.87   |  |
| Std. Dev. | \$0.34                   | \$0.40   | \$0.26    | \$0.51   |  |

This year, even if the adjusted price per pound increased (+1.1%) it is still close to the lowest price ever obtained last year. The price per pound for non-tuna PMUS is the lowest ever obtained.

**Calculation:** The unadjusted price/pound for Tunas and Non-Tuna PMUS were calculated by dividing the sum of the values for the species in these categories as defined by Table 2 by the sum of their commercial landings or pounds.

The unadjusted price/pound values for the pelagic species subgroups above were adjusted for inflation by multiplying the given year's price/pound by the 2000 consumer price index (CPI) divided by the CPI for that year.

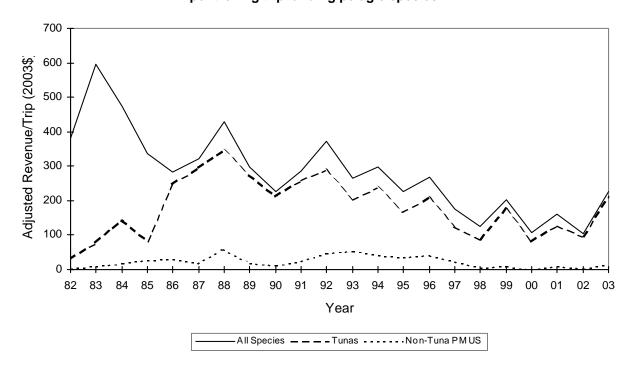



Figure 22. American Samoa average inflation-adjusted revenue per trolling trip landing pelagic species

**Interpretation:** Since 1992 there has been a gradual decrease in revenue per trolling trip to 28% of the 1992 value in 2002 with a 114% jump in 2003 due to a jump in CPUE. This gradual decrease in revenue per trip tracks a decrease in hours per trip from 7.40 in 1992 to 3.37 in 2003 as the troll fishery has become less of a commercial fishery and more of a recreational fishery. This transition to a recreational fishery is also seen in the number of trips that sell their fish commercially declining from 90% in 1992 to 19% in 2003.

**Calculation:** The purely trolling interviews in the offshore creel survey system landing any of the species listed in Table 1 and selling part or all of their catch are first counted for the given year to get the number of trips. The unadjusted revenue/trip for Tunas and Non-Tuna PMUS is calculated by first summing the value of the species in these pelagic subgroups caught and sold by purely trolling methods and then dividing this by the number of pure trolling trips. The unadjusted revenue/trip for all species is the sum of the value of all species, in Table 1 or not, caught by the purely trolling trips that sold all or part of their catch divided by the number of such trips.

The unadjusted revenue/trip values for the pelagic species subgroups above and for all species were adjusted for inflation by multiplying the given year's revenue/trip by the 2003 consumer price index (CPI) divided by the CPI for that year.

|           | All Species |        | Tunas |        | Non-Tuna PMUS |        |
|-----------|-------------|--------|-------|--------|---------------|--------|
| Year      | Adj.        | Unadj. | Adj.  | Unadj. | Adj.          | Unadj. |
| 1982      | \$381       | \$214  | \$28  | \$16   | \$2.3         | \$1.3  |
| 1983      | \$596       | \$338  | \$76  | \$43   | \$9.2         | \$5.2  |
| 1984      | \$474       | \$274  | \$142 | \$82   | \$18.2        | \$10.5 |
| 1985      | \$336       | \$196  | \$80  | \$47   | \$27.1        | \$15.8 |
| 1986      | \$284       | \$171  | \$249 | \$150  | \$29.5        | \$17.8 |
| 1987      | \$322       | \$203  | \$294 | \$185  | \$17.6        | \$11.1 |
| 1988      | \$429       | \$278  | \$347 | \$225  | \$60.0        | \$38.9 |
| 1989      | \$299       | \$202  | \$274 | \$185  | \$19.1        | \$12.9 |
| 1990      | \$228       | \$166  | \$211 | \$154  | \$10.7        | \$7.8  |
| 1991      | \$284       | \$217  | \$258 | \$196  | \$24.3        | \$18.5 |
| 1992      | \$371       | \$294  | \$288 | \$228  | \$46.9        | \$37.2 |
| 1993      | \$266       | \$211  | \$204 | \$162  | \$53.0        | \$42.1 |
| 1994      | \$298       | \$241  | \$239 | \$194  | \$42.6        | \$34.5 |
| 1995      | \$226       | \$187  | \$168 | \$139  | \$36.1        | \$29.9 |
| 1996      | \$269       | \$231  | \$210 | \$180  | \$40.8        | \$35.0 |
| 1997      | \$177       | \$155  | \$125 | \$110  | \$22.4        | \$19.7 |
| 1998      | \$126       | \$112  | \$87  | \$78   | \$6.8         | \$6.1  |
| 1999      | \$202       | \$182  | \$175 | \$158  | \$8.2         | \$7.4  |
| 2000      | \$107       | \$100  | \$81  | \$76   | \$0.9         | \$0.8  |
| 2001      | \$161       | \$153  | \$127 | \$121  | \$9.4         | \$8.9  |
| 2002      | \$106       | \$100  | \$96  | \$91   | \$4.0         | \$3.8  |
| 2003      | \$227       | \$227  | \$209 | \$209  | \$14.1        | \$14.1 |
| Average   | \$280       | \$202  | \$180 | \$138  | \$22.9        | \$17.2 |
| Std. Dev. | \$118       | \$59   | \$84  | \$61   | \$16.8        | \$12.8 |

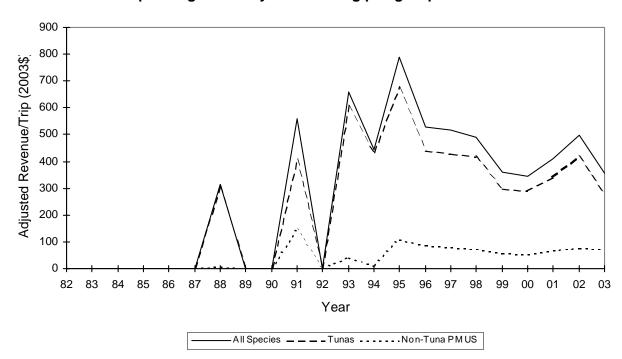



Figure 23. American Samoa average inflation-adjusted revenue per longline set by alias landing pelagic species.

**Interpretation:** The longline revenue per set has seen a gradual decrease since 1995 until 2001 and 2002. The decrease of revenue per set in 2003 (28.4% compared to 2002) was the result of the decrease in pounds landed this year.

**Calculation:** The longline interviews in the offshore creel survey system catching any of the species listed in Table 1 and selling all or part of their catch are counted and adjusted for multiset trips for the given year to get the number of sets. The unadjusted revenue/set for Tunas and Non-Tuna PMUS is calculated by first summing the value of the species in these pelagic subgroups caught by these sets and then dividing this by the number of sets. The unadjusted revenue/set for all species is the sum of the value of all species, listed in Table 1 or not, caught by these longline sets divided by the number of such sets.

The unadjusted revenue/set values for the pelagic species subgroups above and for all species were adjusted for inflation by multiplying the given year's revenue/set by the 2003 consumer price index (CPI) divided by the CPI for that year.

|           | All Species |        | Tuna  | Tunas  |        | Non-Tuna PMUS |  |
|-----------|-------------|--------|-------|--------|--------|---------------|--|
| Year      | Adj.        | Unadj. | Adj.  | Unadj. | Adj.   | Unadj.        |  |
| 1982      | \$0         | \$0    | \$0   | \$0    | \$0.0  | \$0.0         |  |
| 1983      | \$0         | \$0    | \$0   | \$0    | \$0.0  | \$0.0         |  |
| 1984      | \$0         | \$0    | \$0   | \$0    | \$0.0  | \$0.0         |  |
| 1985      | \$0         | \$0    | \$0   | \$0    | \$0.0  | \$0.0         |  |
| 1986      | \$0         | \$0    | \$0   | \$0    | \$0.0  | \$0.0         |  |
| 1987      | \$0         | \$0    | \$0   | \$0    | \$0.0  | \$0.0         |  |
| 1988      | \$314       | \$203  | \$305 | \$198  | \$8.3  | \$5.4         |  |
| 1989      | \$0         | \$0    | \$0   | \$0    | \$0.0  | \$0.0         |  |
| 1990      | \$0         | \$0    | \$0   | \$0    | \$0.0  | \$0.0         |  |
| 1991      | \$558       | \$424  | \$405 | \$308  | \$145  | \$110         |  |
| 1992      | \$0         | \$0    | \$0   | \$0    | \$0.0  | \$0.0         |  |
| 1993      | \$660       | \$524  | \$606 | \$481  | \$43.8 | \$34.8        |  |
| 1994      | \$443       | \$359  | \$432 | \$349  | \$11.4 | \$9.2         |  |
| 1995      | \$790       | \$653  | \$676 | \$559  | \$109  | \$90.1        |  |
| 1996      | \$530       | \$455  | \$440 | \$378  | \$87.3 | \$74.9        |  |
| 1997      | \$517       | \$455  | \$430 | \$378  | \$80.4 | \$70.7        |  |
| 1998      | \$490       | \$437  | \$417 | \$372  | \$71.0 | \$63.3        |  |
| 1999      | \$359       | \$323  | \$299 | \$269  | \$58.9 | \$53.0        |  |
| 2000      | \$345       | \$323  | \$290 | \$272  | \$54.3 | \$50.9        |  |
| 2001      | \$411       | \$390  | \$339 | \$322  | \$70.8 | \$67.2        |  |
| 2002      | \$497       | \$473  | \$418 | \$398  | \$77.8 | \$74.0        |  |
| 2003      | \$356       | \$356  | \$278 | \$278  | \$74.6 | \$74.6        |  |
| Average   | \$392       | \$336  | \$333 | \$285  | \$55.8 | \$48.6        |  |
| Std. Dev. | \$222       | \$187  | \$191 | \$160  | \$41.3 | \$34.7        |  |

#### Appendix 2

#### Guam

#### **Introduction and Summary**

Pelagic fishing vessels based on Guam are classified into two general groups: 1) distant-water purse seiners and longliners that fish a majority of the time outside Guam's EEZ (Economic Exclusive Zone) and transship through the island and 2) small, primarily recreational, trolling boats that are either towed to boat launch sites or berthed in marinas and fish only within local waters, either within Guam's EEZ or on some occasions in the adjacent EEZ of the Northern Mariana Islands. This report covers primarily the local, Guam-based, small-boat pelagic fishery.

The number of boats involved in Guam's pelagic or open ocean fishery gradually increased from 193 in 1983 to 469 in 1998 and has dropped since. A majority of the fishing boats are less than 10 meters (33 feet) in length and are usually owner-operated by fishermen who earn a living outside of fishing. Most fishermen sell a portion of their catch at one time or another and it is difficult to make a distinction between recreational, subsistence, and commercial fishers. A small, but significant, segment of the pelagic group is made up of marina-berthed charter boats that are operated primarily by full-time captains and crews. Data and graphs for non-charters, charters, and bycatch are represented in this report.

The estimated annual pelagic landings have varied widely, ranging between 322,000 and 937,000 pounds in the 22-year time series. The 2003 total pelagic landings was approximately 506,000 pounds, a decrease of 5% compared with 2002. Landings consisted primarily of five major species: mahimahi (*Coryphaena hippurus*), wahoo (*Acanthocybium solandri*), bonita or skipjack tuna (*Katsuwonus pelamis*), yellowfin tuna (*Thunnus albacares*), and Pacific blue marlin (*Makaira mazara*). Other minor pelagic species caught include rainbow runner (*Elagatis bipinnulatus*), great barracuda (*Sphyraena barracuda*), kawakawa (*Euthynnus affinis*), dogtooth tuna (*Gymnosarda unicolor*), double-lined mackerel (*Grammatorcynus bilineatus*), oilfish (*Ruvettus prediosus*), and three less common species of barracuda. Sailfish and sharks were also caught during 2003. However, these species were not encountered during offshore creel surveys and was not available for expansion for this year's report. While sailfish is kept, sharks are often discarded as bycatch. In addition to the above pelagic species, approximately half a dozen other species were landed incidentally this year.

There are general wide year-to-year fluctuations in the estimated landings of the five major pelagic species. Mahimahi and yellowfin tuna landings, however, have been showing more general decreasing trends since 1996 and 1998 respectively. Pacific blue marlin landings dramatically increased from 1982 and peaked in 1990 primarily from a growth in the charter boat industry. Charter boats actively target marlin during the summer, landing 20% of this year's marlin catch.

Aggregate landings of all pelagics, tuna, and non-tuna Pelagic Management Unit Species (PMUS) dropped slightly in 2003, but still show a general increase for the 22-year time series. Landings of all pelagics increased 5%, with tuna PMUS increasing 16% and non-tuna PMUS decreasing 29%. Supertyphoon Pongsona's direct hit on Guam in December 2002 caused significant damage to boats, the two major public boat ramps, an oil storage tank, the availability of adequate quantities of ice, and the island's infrastructure, which significantly decreased fishing activity for non-charter boats for the first few months of 2003. Charter fishing was impacted more severely since tourism,

2-1 *Guam* 

the primary source of income for charter fishing, did not begin picking up to near normal levels until after the first quarter of 2003. The decrease in trolling activity during the first quarter may have also decreased mahimahi landings, making skipjack tuna landings the top pelagic species landed in 2003. Overall Bonita, blue marlin, and yellowfin tuna landings increased 4%, 23%, and 51% respectively, while wahoo and mahimahi landings decreased 12% and 52% respectively. Blue marlin landings for charter boats showed the most significant increase compared with 2002, increasing 188%.

Participation and effort generally decreased in 2003. While the number of trolling boats decreased slightly, the number of trolling trips and hours spent trolling decreased over 20%. Charter trolling trips, however, decreased only 4% for the year as tourism recovered and charter trips by military personnel were more common. Charter trips, however, have steadily decreased ever year after peaking at 1996, from 5,781 trips to 1,368 trips in 2003.

Trolling catch rates (pounds per hour fished) showed a general increase compared with 2002, except for mahimahi, which decreased 38%. Wahoo, skipjack tuna, yellowfin tuna, and blue marlin catch rates increased 18%, 33%, 91%, and 62%. The catch rates for non-charter yellowfin tuna and charter blue marlin showed the most significant increases, 100% and 222% respectively.

Commercial landings and revenues decreased in 2003, with total, non-charter, and charter landings decreasing 15%, 13%, and 16%, and total, non-charter, and charter commercial revenues decreasing 19%, 12%, and 23%. The average price for all pelagics decreased 5%, with tuna PMUS prices increasing slightly (\$0.01), and non-tuna PMUS decreasing 8%. Adjusted revenue per trolling trip increased 15% for all pelagics, increased slightly (\$0.45) for tuna PMUS, and decreased 12% for non-tuna PMUS. Commercial landings show an overall increasing trend, although commercial revenues show a general decreasing trend but with more yearly fluctuations. The average price of tuna and revenue per trolling trip show a significant decrease from the early 1980's, but appear to be leveling off for the past five years. Despite decreasing revenues with increased commercial landings, pelagic fishing continues since a majority of trollers do not rely on the catch or selling of fish as their primary source of income. However, a downturn in Guam's economy in recent years has made it more costly for the average fishermen to purchase fuel, do boat maintenance and repair, and replace fishing gear.

Several factors in recent years may have negatively affected trolling activity and may affect fishing activity in the future. The downturn in Asia's economy compared from a decade ago had a significant negative impact on Guam's economy, decreasing the number of tourists to Guam, with the average visitor spending less. The decrease in tourism and related revenues, an increase in fuel and boat maintenance costs, El Nino events, and the local government's recent financial crisis have had negative impacts on commercial, subsistence, and recreational trolling. On the other hand, fishermen have used pelagic fishing to earn additional income, with local FADs and offshore banks being fished more regularly. An important factor for the local pelagic fishery is its fish markets, primarily the Guam's Fishermen's Coop, which serves as a reliable market for fish.

The collection and processing of data, and efforts to improve the quality of data is ongoing. Prospective vendors to participate in the voluntary receipt book program are regularly solicited for their participation, although numerous smaller vendors selling locally caught fish opt not to participate in the program, and have usually not provided data consistently over long periods of

time. Incentives to increase vendor coverage are currently being explored in order to capture these vendors into the receipt book program.

Ylig Bay is a non-surveyed port on the eastern side of Guam that is heavily fished during periods of calm weather, which occurs during the summer months but also during several days each month. Pelagic highliners have been regularly observed launching from this site. Problems with surveying Ylig, however, include a lack of lighting, no public phone to use in case of emergencies, and other safety issues for Fisheries staff. The Department of Agriculture's Fisheries section is currently exploring ways to do opportunistic surveying at Ylig in order to obtain an idea of fishing effort, participation, and catch at this port.

#### 2003 Recommendations

- 1. Explore the feasibility of drafting new legislation requiring local fish vendors to participate in the "Commercial Fish Receipt Book Program".
- 2. Explore the feasibility of collecting pelagic data from Ylig boat ramp in order to capture the pelagic fishing occurring there.

2-3 *Guam* 

# **Tables**

|     |                                                                                                                    | Page      |
|-----|--------------------------------------------------------------------------------------------------------------------|-----------|
| 1.  | Guam 2003 creel survey-pelagic species composition                                                                 | 6         |
| 2.  | Guam 2003 annual commercial average price of pelagic species                                                       | 7         |
| 3.  | Annual consumer price indexes and CPI adjustment factors                                                           | 7         |
| 4.  | Offshore creel survey bycatch number summary - trolling                                                            | 56        |
|     | Figures                                                                                                            |           |
| 1a  | Guam annual estimated total landings: All Pelagics, Tunas PMUS, and non-<br>Tuna PMUS                              | Page<br>8 |
| 1b  | Guam annual estimated total landings: All Pelagics, non-charter Pelagic, and charter Pelagic                       | 10        |
| 1c  | Guam annual estimated total landings: All Tunas, non-charter Tunas, and charter Tunas                              | 12        |
| 1d  | Guam annual estimated total landings: Total Non-Tuna PMUS, Non-charter PMUS, and Charter PMUS                      | 14        |
| 2a  | Guam annual estimated total landings: Total Mahimahi, Non-charter Mahimahi, and Charter Mahimahi                   | 16        |
| 2b  | Guam annual estimated total landings: Total Wahoo, Non-charter Wahoo, and Charter Wahoo                            | 18        |
| 3a  | Guam annual estimated total landings: Total Blue Marlin, Non-charter Blue Marlin, and Charter Blue Marlin          | 20        |
| 4a  | Guam annual estimated total landings: Total Skipjack Tuna, Non-charter Skipjack Tuna, and Charter Skipjack Tuna    | 22        |
| 4b  | Guam annual estimated total landings: Total Yellowfin Tuna, Non-charter Yellowfin Tuna, and Charter Yellowfin Tuna | 24        |
| 5   | Guam annual estimated commercial landings: All Pelagics, Tuna PMUS, and Non-Tuna PMUS                              | 26        |
| 6   | Guam estimated number of trolling boats                                                                            | 28        |
| 7a  | Guam annual estimated number of Total Troll trips, Non-Charter Troll trips, and Charter Troll trips                | 30        |
| 7b  | Guam annual estimated number of Total Troll hours, Non-Charter Troll hours, and Charter Troll hours                | 32        |
| 7c  | Guam annual estimated Overall Average Hours/Trip, Average Non-Charter Hours/Trip, and Average Charter Hours/Trip   | 34        |
| 8   | Guam annual estimated commercial inflated-adjusted total revenues                                                  | 36        |
| 9   | Guam annual price of All Pelagics, Tuna PMUS, Non-Tuna PMUS                                                        | 38        |
| 10a | Guam trolling catch rates: Overall Average CPH, Non-Charter CPH, and Charter CPH                                   | 40        |
| 10b | Guam trolling catch rates: All Mahimahi, Non-Charter Mahimahi, and Charter Mahimahi                                | 42        |
| 10c | Guam trolling catch rates: All Wahoo, Non-charter Wahoo, and Charter Wahoo                                         | 44        |
| 11a | Guam trolling catch rates: All Skipjack, Non-charter Skipjack, and Charter Skipjack                                | 46        |

| 11b | Guam trolling catch rates: All Yellowfin, Non-charter Yellowfin, and Charter Yellowfin       | 48 |
|-----|----------------------------------------------------------------------------------------------|----|
| 11c | Guam trolling catch rates: All Blue Marlin, Non-Charter Blue Marlin, and Charter Blue Marlin | 50 |
| 12  | Guam inflation-adjusted revenues per trolling trip: All Pelagics, Tuna PMUS, Non-Tuna PMUS   | 52 |
| 13  | Annual Guam longline landings from primarily foreign longliners fishing outside the Guam EEZ | 54 |

2-5 *Guam* 

Table 1. Guam 2003 Creel Survey - Pelagic Species Composition

| Species               | Total Landing (Lbs) | Non-Charter | Charter |
|-----------------------|---------------------|-------------|---------|
| Skipjack Tuna         | 182,726             | 167,614     | 15,112  |
| Yellowfin Tuna        | 67,690              | 64,635      | 3,055   |
| Kawakawa              | 7,920               | 4,685       | 3,235   |
| Albacore              | 0                   | 0           | 0       |
| Bigeye Tuna           | 0                   | 0           | 0       |
| Other Tuna PMUS       | 0                   | 0           | 0       |
| Tuna PMUS             | 258,336             | 236,934     | 21,402  |
| Mahimahi              | 83,730              | 73,767      | 9,963   |
| Wahoo                 | 63,285              | 52,528      | 10,757  |
| Blue Marlin           | 66,058              | 52,961      | 13,097  |
| Black Marlin          | 0                   | 0           | 0       |
| Striped Marlin        | 0                   | 0           | 0       |
| Sailfish              | 0                   | 0           | 0       |
| Shortbill Spearfish   | 0                   | 0           | 0       |
| Swordfish             | 0                   | 0           | 0       |
| Oceanic Sharks        | 0                   | 0           | 0       |
| Pomfrets              | 0                   | 0           | 0       |
| Oilfish               | 264                 | 264         | 0       |
| Moonfish              | 0                   | 0           | 0       |
| Non-tuna PMUS         | 213,337             | 179,520     | 33,817  |
| Dogtooth Tuna         | 7,573               | 7,521       | 52      |
| Rainbow Runner        | 18,383              | 17,628      | 755     |
| Barracudas            | 7,360               | 7,360       | 0       |
| Double-lined Mackerel | 1,321               | 1,321       | 0       |
| Misc. Troll Fish      | 0                   | 0           | 0       |
| Non-PMUS Pelagics     | 34,637              | 33,830      | 807     |
| Total Pelagics        | 506,310             | 450,284     | 56,026  |

**Source**: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel survey data. \*This table includes several species of barracuda and the double-lined mackerel, species that may not be included in other tables in this report. Pelagic totals, therefore, may slightly differ in those tables.

Table2: Guam 2003 Annual Commercial Average Price of Pelagic Species

| Species                   | Average Price (\$/Lb) |
|---------------------------|-----------------------|
| Misc. Tuna                | 2.00                  |
| Kawakawa                  | 1.18                  |
| Yellowfin Tuna            | 1.99                  |
| Bonita/skipjack Tuna      | 1.05                  |
| Tunas Subtotal            | 1.35                  |
|                           |                       |
| Monchong                  | 2.50                  |
| Spearfish                 | 1.06                  |
| Sailfish                  | 1.29                  |
| Marlin                    | 1.10                  |
| Wahoo                     | 1.98                  |
| Mahimahi                  | 1.63                  |
| Non-tuna PMUS Subtotal    | 1.55                  |
|                           |                       |
| Troll Fish                | 1.34                  |
| Barracuda                 | 1.96                  |
| Rainbow Runner            | 1.70                  |
| Dogtooth Tuna             | 1.26                  |
| Non-PMUS Pelagic Subtotal | 1.68                  |
| Pelagic Total             | 1.46                  |

**Source:** The WPacFIN-sponsored commercial landings system.

Table 3. Annual Consumer Price Indexes And CPI Adjustment Factors (For Reference Only)

| Year | Consumer Price Index | CPI Adjust Factor |
|------|----------------------|-------------------|
| 1980 | 134.0                | 3.79              |
| 1981 | 161.4                | 3.14              |
| 1982 | 169.7                | 2.99              |
| 1983 | 175.6                | 2.89              |
| 1984 | 190.9                | 2.66              |
| 1985 | 198.3                | 2.56              |
| 1986 | 203.7                | 2.49              |
| 1987 | 212.7                | 2.39              |
| 1988 | 223.8                | 2.27              |
| 1989 | 248.2                | 2.04              |
| 1990 | 283.5                | 1.79              |
| 1991 | 312.5                | 1.62              |
| 1992 | 344.2                | 1.47              |
| 1993 | 372.9                | 1.36              |
| 1994 | 436.0                | 1.16              |
| 1995 | 459.2                | 1.11              |
| 1996 | 482.0                | 1.05              |
| 1997 | 489.7                | 1.04              |
| 1998 | 487.1                | 1.04              |
| 1999 | 496.0                | 1.02              |
| 2000 | 505.9                | 1.00              |
| 2001 | 499.4                | 1.02              |
| 2002 | 502.0                | 1.01              |
| 2003 | 507.2                | 1.00              |

2-7 *Guam* 

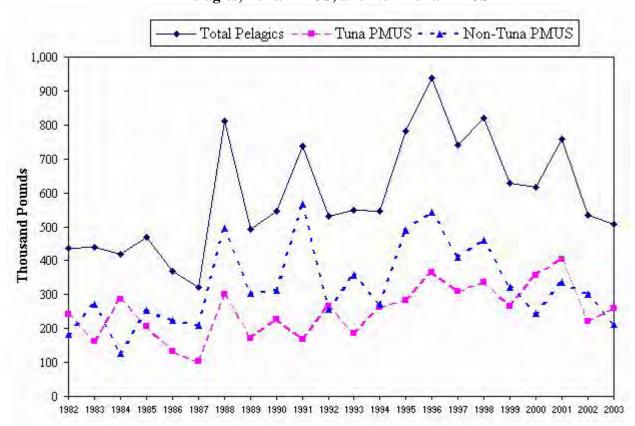



Figure 1a. Guam Annual Estimated Total Landings: All Pelagics, Tuna PMUS, and Non-Tuna PMUS

**Interpretation**: The estimated total pelagic, tuna, and non-tuna PMUS landings have shown a general increasing trend until 1996. Several factors relating to this trend may be the decrease in the number of trolling boats in the fishery since 1996, a downturn in the local economy making it more expensive for boat repair and maintenance for the average recreational fishermen, a decrease in fishing effort, a significant number of bad weather days in 2003, and anecdotal evidence from the average fishermen that pelagic fish is not caught consistently year round around Guam. Compared with 2002, total pelagics and non-tuna PMUS decreased 5% and 29% respectively, while tuna landings increased 17%. Generally, tuna species are consistently caught year round, with the other major pelagic species are seasonal. Except for tuna PMUS, total pelagics and non-tuna PMUS landings are below the 22-year average.

**Source**: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel survey.

Calculation: A 365-day (366 days during leap years) quarterly expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid overestimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

| Year                  | All Pelagics | Tuna PMUS | Non-Tuna PMUS |
|-----------------------|--------------|-----------|---------------|
| 1982                  | 435,648      | 243,184   | 182,782       |
| 1983                  | 440,319      | 162,334   | 270,536       |
| 1984                  | 418,010      | 284,871   | 127,711       |
| 1985                  | 468,917      | 207,027   | 253,551       |
| 1986                  | 368,355      | 133,570   | 224,390       |
| 1987                  | 321,846      | 104,534   | 210,663       |
| 1988                  | 810,303      | 301,785   | 494,864       |
| 1989                  | 491,694      | 170,722   | 303,357       |
| 1990                  | 544,457      | 225,926   | 311,622       |
| 1991                  | 737,898      | 168,800   | 566,353       |
| 1992                  | 529,634      | 264,392   | 256,282       |
| 1993                  | 547,240      | 184,532   | 356,682       |
| 1994                  | 544,922      | 261,665   | 272,697       |
| 1995                  | 780,727      | 282,587   | 489,614       |
| 1996                  | 937,450      | 365,855   | 541,991       |
| 1997                  | 740,790      | 308,538   | 410,487       |
| 1998                  | 820,007      | 334,991   | 460,380       |
| 1999                  | 627,928      | 265,941   | 320,802       |
| 2000                  | 615,724      | 355,710   | 243,470       |
| 2001                  | 756,851      | 404,990   | 337,093       |
| 2002                  | 533,850      | 221,396   | 300,841       |
| 2003                  | 506,118      | 258,340   | 213,324       |
| Average               | 589,940      | 250,531   | 324,977       |
| Standard<br>Deviation | 165,331      | 77,995    | 120,774       |

2-9 *Guam* 

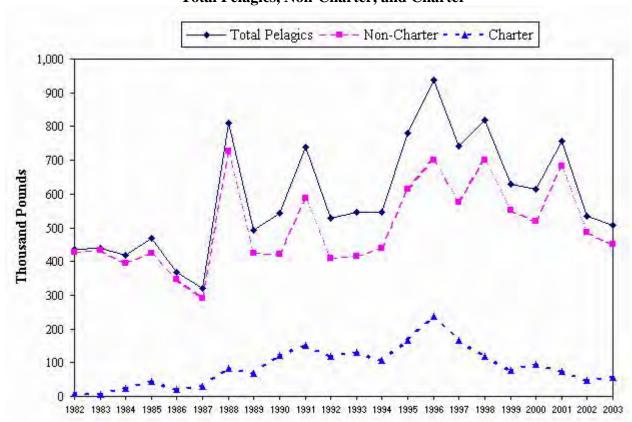



Figure 1b. Guam Annual Estimated Total Pelagic Landings: Total Pelagics, Non-Charter, and Charter

**Interpretation**: Non-charter trolling trips have always accounted for the bulk of the pelagic catch, although charter boats, which make up less than 5% of the troll fleet, account for a high proportion of trolling effort and catch. Prior to 1988, non-charter boats accounted for over 90% of the troll catch. Beginning in 1988, this percentage decreased due to an increase in charter boat activity, catering primarily to Asian tourists. From 1996, a downturn in Japan's economy caused a significant decrease in charter trips and subsequent landings, while no trend is observed for non-charters. In 2003, total pelagic and non-charter landings decreased 5% and 7% respectively, while charter landings increased 17%. Non-charter boats landed 89% of all pelagics. All landings still fall below the 22-year average.

Source: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel survey data.

Calculation: A 365-day (366 days during leap years) quarterly expansion is run for each calendar year of survey data to produce catch and effort estimates for trolling. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

| Year                  | Total Pelagics | Non-Charter | Charter |
|-----------------------|----------------|-------------|---------|
| 1982                  | 435,648        | 426,939     | 8,709   |
| 1983                  | 440,319        | 434,664     | 5,655   |
| 1984                  | 418,010        | 395,649     | 22,361  |
| 1985                  | 468,917        | 424,389     | 44,528  |
| 1986                  | 368,355        | 346,616     | 21,740  |
| 1987                  | 321,846        | 291,913     | 29,933  |
| 1988                  | 810,303        | 726,274     | 84,029  |
| 1989                  | 491,694        | 424,043     | 67,651  |
| 1990                  | 544,457        | 421,797     | 122,660 |
| 1991                  | 737,898        | 587,400     | 150,498 |
| 1992                  | 529,634        | 410,966     | 118,667 |
| 1993                  | 547,240        | 415,432     | 131,809 |
| 1994                  | 544,922        | 437,735     | 107,187 |
| 1995                  | 780,727        | 613,379     | 167,347 |
| 1996                  | 937,450        | 700,709     | 236,741 |
| 1997                  | 740,790        | 574,977     | 165,812 |
| 1998                  | 820,007        | 701,672     | 118,335 |
| 1999                  | 627,928        | 550,613     | 77,314  |
| 2000                  | 615,724        | 520,734     | 94,990  |
| 2001                  | 756,851        | 683,347     | 73,504  |
| 2002                  | 533,850        | 486,141     | 47,709  |
| 2003                  | 506,118        | 450,094     | 56,024  |
| Average               | 589,940        | 501,158     | 88,782  |
| Standard<br>Deviation | 165,331        | 123,715     | 59,439  |

2-11 *Guam* 



Figure 1c. Guam Annual Estimated Tuna PMUS Landings: Total, Non-Charter, and Charter

**Interpretation**: The general trend of the estimated total tuna landings shows an increasing trend between 1987 and 2001. Non-charter boats account for the bulk of the total tuna catch, up to 95% in the 1980's. This decreased when charter boat activity began increased from the late 1980's until the mid 1990's. In 2003, total tuna, non-charter, and charter tuna landings increased 17%, 15%, and 45% respectively. The 2003 estimated tuna PMUS landings were slightly higher than the 22-year average.

**Source**: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program, expanded with the assistance of NMFS.

Calculation: A 365-day (366 days during leap years) quarterly expansion is run for each calendar year of survey data to produce catch and effort estimates for trolling. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

| Year                  | Total Tunas | Non-Charter | Charter |
|-----------------------|-------------|-------------|---------|
| 1982                  | 243,184     | 239,082     | 4,102   |
| 1983                  | 162,334     | 160,613     | 1,721   |
| 1984                  | 284,871     | 283,312     | 1,559   |
| 1985                  | 207,027     | 196,020     | 11,007  |
| 1986                  | 133,570     | 128,201     | 5,369   |
| 1987                  | 104,534     | 98,820      | 5,714   |
| 1988                  | 301,785     | 286,974     | 14,811  |
| 1989                  | 170,722     | 154,355     | 16,366  |
| 1990                  | 225,926     | 197,255     | 28,672  |
| 1991                  | 168,800     | 149,735     | 19,065  |
| 1992                  | 264,392     | 237,257     | 27,135  |
| 1993                  | 184,532     | 165,705     | 18,827  |
| 1994                  | 261,665     | 232,747     | 28,918  |
| 1995                  | 282,587     | 249,901     | 32,686  |
| 1996                  | 365,855     | 316,394     | 49,462  |
| 1997                  | 308,538     | 271,288     | 37,250  |
| 1998                  | 334,991     | 302,903     | 32,089  |
| 1999                  | 265,941     | 242,440     | 23,501  |
| 2000                  | 355,710     | 322,057     | 33,652  |
| 2001                  | 404,990     | 381,583     | 23,407  |
| 2002                  | 221,396     | 206,677     | 14,719  |
| 2003                  | 258,340     | 236,938     | 21,401  |
| Average               | 250,531     | 230,012     | 20,520  |
| Standard<br>Deviation | 77,995      | 70,448      | 12,688  |

2-13 *Guam* 

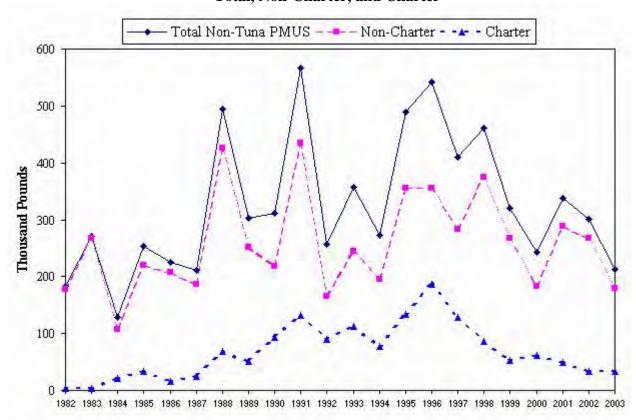



Figure 1d. Guam Annual Estimated Non-Tuna PMUS Landings: Total, Non-Charter, and Charter

**Interpretation**: The estimated total PMUS landings show a general increase since 1984, corresponding with an increase in boats entering the fishery. Non-charter trolling trips accounts for the bulk of the other PMUS catch. Up until the mid-1980's, non-charter boats accounted for up to 90% of the non-PMUS species, and began decreasing when charter fishing activity began significantly increasing, associated with an increase in tourism. Charter PMUS harvest began decreasing significantly after 1996, while non-charter PMUS landings show extreme yearly fluctuations. In 2003, total non-tuna PMUS and non-charter non-tuna PMUS decreased, 29% and 33% respectively. Charter non-tuna PMUS increased 4%. Non-charter boats harvested 84% of non-tuna PMUS species in 2003.

.

**Source**: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program, expanded with the assistance of NMFS.

Calculation: A 365-day (366 days during leap years) expansion is run for each calendar year of survey data to produce catch and effort estimates for each fishing method surveyed. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

| Year                  | Total Non-Tuna<br>PMUS | Non-Charter | Charter |
|-----------------------|------------------------|-------------|---------|
| 1982                  | 182,782                | 178,551     | 4,231   |
| 1983                  | 270,536                | 266,602     | 3,934   |
| 1984                  | 127,711                | 106,910     | 20,802  |
| 1985                  | 253,551                | 220,043     | 33,508  |
| 1986                  | 224,390                | 208,111     | 16,279  |
| 1987                  | 210,663                | 186,706     | 23,957  |
| 1988                  | 494,864                | 425,850     | 69,015  |
| 1989                  | 303,357                | 252,395     | 50,961  |
| 1990                  | 311,622                | 218,154     | 93,468  |
| 1991                  | 566,353                | 435,148     | 131,205 |
| 1992                  | 256,282                | 165,882     | 90,400  |
| 1993                  | 356,682                | 244,215     | 112,467 |
| 1994                  | 272,697                | 194,674     | 78,022  |
| 1995                  | 489,614                | 355,532     | 134,082 |
| 1996                  | 541,991                | 355,315     | 186,675 |
| 1997                  | 410,487                | 282,828     | 127,659 |
| 1998                  | 460,380                | 374,650     | 85,730  |
| 1999                  | 320,802                | 267,823     | 52,979  |
| 2000                  | 243,470                | 182,533     | 60,937  |
| 2001                  | 337,093                | 288,095     | 48,998  |
| 2002                  | 300,841                | 268,271     | 32,570  |
| 2003                  | 213,324                | 179,508     | 33,816  |
| Average               | 324,977                | 257,173     | 67,804  |
| Standard<br>Deviation | 120,774                | 86,806      | 48,354  |

2-15 *Guam* 

Total Mahimahi — Non-Charter - - - - Charter

450
400
350
100
100
50
1982 1983 1984 1995 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Figure 2a. Guam Annual Estimated Total Mahimahi Landings: Mahimahi: Total, Non-Charter, and Charter

Interpretations: The estimated total mahimahi landings appear to have increased up to 1995, and then appear to be generally decreasing. Non-charter trolling trips have generally always accounted for the bulk of the mahimahi catch, with charter activity harvesting proportionally more beginning in the late 1980's due to the economic boom in Japan. Charter catch then began dropping in the mid 1990's due to the downturn in Asia's economy. In 2003, mahimahi landings drastically decreased, with total, charter, and non-charter harvest decreasing 52%, 41%, and 53% respectively. Mahimahi season generally occurs during the first quarter of the year, and the after effects of Supertyphoon Pongsona in December 2002 and a significant number of bad weather days may contributed to this drastic decrease. The 2003 total and non-charter harvest are approximately half of the 22 year time series, with the charter harvest approximately a third of the 22-year average. The 2003 total mahimahi harvest is the lowest annual harvest since 1985.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS.

**Calculation:** Totals by species are summed across all fishing methods as described in Figures 1a to 1d.

| Year                  | Total Mahimahi | Non-Charter | Charter |
|-----------------------|----------------|-------------|---------|
| 1982                  | 105,503        | 101,348     | 4,155   |
| 1983                  | 152,678        | 149,531     | 3,147   |
| 1984                  | 25,420         | 16,739      | 8,681   |
| 1985                  | 71,569         | 64,619      | 6,951   |
| 1986                  | 101,487        | 94,646      | 6,841   |
| 1987                  | 76,129         | 69,326      | 6,803   |
| 1988                  | 333,393        | 296,937     | 36,456  |
| 1989                  | 93,709         | 83,069      | 10,640  |
| 1990                  | 134,747        | 102,838     | 31,910  |
| 1991                  | 416,053        | 341,358     | 74,695  |
| 1992                  | 89,115         | 63,259      | 25,856  |
| 1993                  | 234,522        | 169,200     | 65,322  |
| 1994                  | 137,768        | 103,448     | 34,320  |
| 1995                  | 326,868        | 251,367     | 75,501  |
| 1996                  | 327,635        | 234,575     | 93,060  |
| 1997                  | 254,806        | 191,864     | 62,942  |
| 1998                  | 255,814        | 198,425     | 57,389  |
| 1999                  | 160,150        | 136,229     | 23,921  |
| 2000                  | 85,827         | 66,798      | 19,029  |
| 2001                  | 184,011        | 158,409     | 25,601  |
| 2002                  | 172,673        | 155,798     | 16,874  |
| 2003                  | 83,734         | 73,771      | 9,963   |
| Average               | 173,801        | 141,980     | 31,821  |
| Standard<br>Deviation | 105,363        | 83,123      | 27,352  |

2-17 *Guam* 

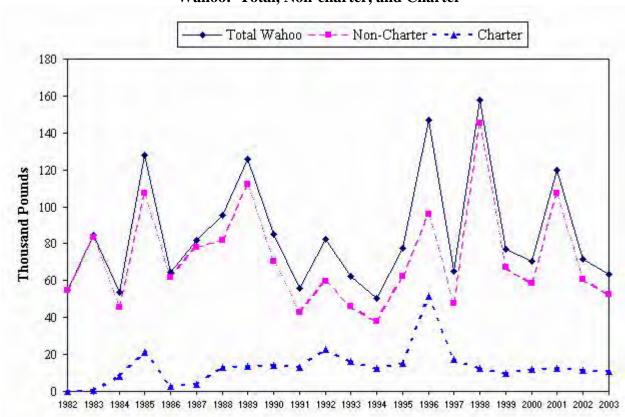



Figure 2b. Guam Annual Estimated Total Wahoo Landings: Wahoo: Total, Non-charter, and Charter

**Interpretations**: The wide fluctuations in wahoo landings are probably due to the high variability in the year-to-year abundance and availability of the stocks. Until 1987, most wahoo non-charter landings accounted for over 95% of the total catch. Beginning in 1988, this percentage decreased due to an increase in charter boat activity. From 1988 to 1998, wahoo non-charter landings have fluctuated, accounting for 65% - 92% of the total catch. The general trend of wahoo charter landings has slightly increased since 1986. In 1996, wahoo charter landings reached a high, accounting for 35% of the total catch, and have generally decreased since then. In 2003, total, non-charter, and charter harvest of wahoo decreased 12%, 13%, and 4% respectively. Non-charter boats harvested 83% of the total wahoo harvest. The 2003 harvest of wahoo still falls below the 22-year average harvest levels.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS.

**Calculation:** Totals by species are summed across all fishing methods as described in Figures 1a to 1d.

| Year                  | Total Wahoo | Non-Charter | Charter |
|-----------------------|-------------|-------------|---------|
| 1982                  | 54,976      | 54,900      | 75      |
| 1983                  | 84,349      | 83,562      | 786     |
| 1984                  | 53,490      | 45,424      | 8,066   |
| 1985                  | 128,209     | 107,275     | 20,934  |
| 1986                  | 64,756      | 61,985      | 2,771   |
| 1987                  | 82,024      | 78,000      | 4,024   |
| 1988                  | 95,180      | 82,107      | 13,073  |
| 1989                  | 125,720     | 112,006     | 13,714  |
| 1990                  | 84,873      | 70,698      | 14,176  |
| 1991                  | 55,952      | 42,681      | 13,270  |
| 1992                  | 82,238      | 59,675      | 22,563  |
| 1993                  | 62,373      | 46,318      | 16,055  |
| 1994                  | 50,390      | 37,712      | 12,677  |
| 1995                  | 77,325      | 62,224      | 15,102  |
| 1996                  | 147,181     | 95,884      | 51,297  |
| 1997                  | 64,956      | 47,538      | 17,418  |
| 1998                  | 157,947     | 145,524     | 12,424  |
| 1999                  | 76,958      | 67,170      | 9,788   |
| 2000                  | 70,614      | 58,436      | 12,178  |
| 2001                  | 119,603     | 107,186     | 12,417  |
| 2002                  | 71,809      | 60,654      | 11,155  |
| 2003                  | 63,287      | 52,530      | 10,757  |
| Average               | 85,191      | 71,795      | 13,396  |
| Standard<br>Deviation | 31,065      | 27,331      | 10,233  |

2-19 *Guam* 

Figure 3a. Guam Annual Estimated Total Blue Marlin Landings: Blue Marlin: Total, Non-charter, and Charter

Interpretations: During the 1980's, non-charter boats accounted for the bulk of the blue marlin catch. In the early 1990's, charters activity began to account for about 50% of the total catch, then began to accounting for most of the catch by the mid-1990's. The increases were due to an increase in charter boat activity and the active targeting of blue marlin by charter boats during the summer months. The decrease in charter landings after 1997 was due to the decrease in charter trips as the overall economy of Asia decreased, decreasing the number of Asian tourists and decreasing the number of tourists paying for higher priced activities such as charter fishing. In 2003, the overall, non-charter, and charter blue marlin landings increased 23%, 8%, and 188% respectively. Non-charter catch of blue marlin increased 8%. The wide fluctuations in blue marlin landings from non-charters are probably due to the high variability in the year-to-year abundance and availability of the stocks.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS.

**Calculation:** Totals by species are summed across all fishing methods as described in Figures 1a to 1d.

| Year                  | Total Blue Marlin | Non-Charter | Charter |
|-----------------------|-------------------|-------------|---------|
| 1982                  | 20,086            | 20,086      | 0       |
| 1983                  | 29,688            | 29,688      | 0       |
| 1984                  | 48,239            | 44,185      | 4,055   |
| 1985                  | 53,117            | 47,494      | 5,623   |
| 1986                  | 55,766            | 49,099      | 6,667   |
| 1987                  | 45,620            | 32,490      | 13,130  |
| 1988                  | 61,816            | 43,342      | 18,474  |
| 1989                  | 82,120            | 56,721      | 25,399  |
| 1990                  | 90,749            | 43,600      | 47,148  |
| 1991                  | 87,838            | 44,941      | 42,897  |
| 1992                  | 84,356            | 42,937      | 41,419  |
| 1993                  | 57,530            | 27,046      | 30,484  |
| 1994                  | 76,514            | 45,889      | 30,625  |
| 1995                  | 76,637            | 33,451      | 43,186  |
| 1996                  | 64,677            | 22,742      | 41,935  |
| 1997                  | 90,726            | 43,427      | 47,299  |
| 1998                  | 43,511            | 27,886      | 15,625  |
| 1999                  | 81,888            | 62,724      | 19,164  |
| 2000                  | 86,891            | 57,161      | 29,730  |
| 2001                  | 33,254            | 22,274      | 10,979  |
| 2002                  | 53,552            | 49,012      | 4,540   |
| 2003                  | 66,058            | 52,961      | 13,097  |
| Average               | 63,211            | 40,871      | 22,340  |
| Standard<br>Deviation | 21,034            | 12,173      | 16,310  |

2-21 *Guam* 

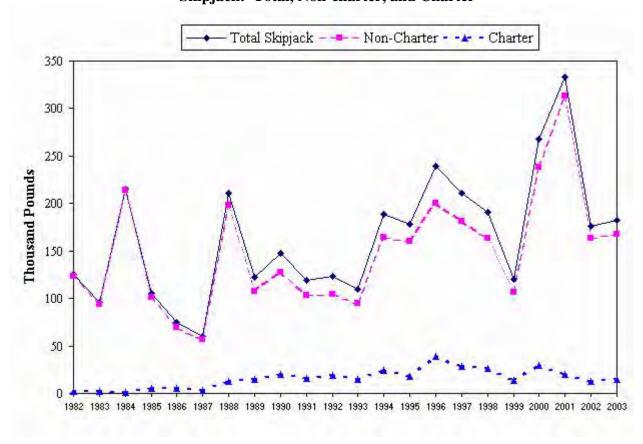



Figure 4a. Guam Annual Estimated Total Skipjack Landings: Skipjack: Total, Non-charter, and Charter

Interpretations: The estimated total landings have generally increased in the past 15 years, coinciding with an increase in trolling boat activity. A drop in skipjack tuna during 2002 may be due to direct hits by two supertyphoons, resulting in boat damage, lack of fish around Guam immediately after the storms, and infrastructure damage to the three major survey ports, and use of the survey ports by the Guam National Guard to disperse water. A direct hit by Supertyphoon Pongsona in December 2002 also caused a significant decrease in fishing activity during the month of January 2003. For 2003, however, skipjack tuna landings increased from 2002. Total skipjack tuna landings, non-charter landings, and charter landings, increased 4%, 3%, and 19% respectively. Despite a significant number of bad weather days, skipjack tuna is caught year-round, unlike other pelagics such as mahi and marlin that are more seasonal. During 2003, fishermen reported troll more often to several banks north and south of Guam than other years. This may have increased the catch of highliners which regularly fish, increasing the bonita catch this year despite the after effects of Supertyphoon Pongsona during the first few months of 2003.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS.

**Calculation:** Totals by species are summed across all fishing methods as described in Figures 1a to 1d.

## **Estimated Total Landings (Pounds)**

| Year                  | Total Skipjack | Non-Charter | Charter |
|-----------------------|----------------|-------------|---------|
| 1982                  | 125,472        | 123,247     | 2,225   |
| 1983                  | 95,449         | 93,796      | 1,652   |
| 1984                  | 215,102        | 213,937     | 1,165   |
| 1985                  | 105,754        | 100,732     | 5,022   |
| 1986                  | 74,450         | 69,642      | 4,808   |
| 1987                  | 59,569         | 56,908      | 2,661   |
| 1988                  | 211,014        | 198,085     | 12,929  |
| 1989                  | 122,588        | 107,678     | 14,910  |
| 1990                  | 147,702        | 127,870     | 19,832  |
| 1991                  | 118,799        | 102,967     | 15,832  |
| 1992                  | 123,731        | 104,504     | 19,227  |
| 1993                  | 109,244        | 94,713      | 14,532  |
| 1994                  | 188,408        | 163,937     | 24,471  |
| 1995                  | 178,404        | 160,052     | 18,353  |
| 1996                  | 239,006        | 199,958     | 39,048  |
| 1997                  | 210,535        | 181,605     | 28,930  |
| 1998                  | 190,466        | 163,858     | 26,609  |
| 1999                  | 120,137        | 106,199     | 13,938  |
| 2000                  | 267,562        | 238,529     | 29,033  |
| 2001                  | 332,680        | 313,176     | 19,504  |
| 2002                  | 175,834        | 163,118     | 12,716  |
| 2003                  | 182,728        | 167,617     | 15,112  |
| Average               | 163,392        | 147,824     | 15,569  |
| Standard<br>Deviation | 66,492         | 61,018      | 10,140  |

2-23 *Guam* 

Figure 4b. Guam Annual Estimated Total Yellowfin Landings: Yellowfin: Total, Non-charter, and Charter

**Interpretations:** The overall yellowfin landings showed wide fluctuations during the 22-year time series, although he total and non-charter estimated landings showed a significant decrease from 1998 to 2002. Charter landings of yellowfin tuna peaked in 1985, 1990, and 1995, and then showed a general decrease since. Between 2002 and 2003, total, non-charter, and charter landings have increased 51%, 50%, and 77% respectively, despite a significant number of bad weather days in 2003.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS.

**Calculation:** Totals by species are summed across all fishing methods for all years except 1992-93 as described in Figure 1.

## **Estimated Total Landings (Pounds)**

| Year                  | Total Yellowfin | Non-Charter | Charter |
|-----------------------|-----------------|-------------|---------|
| 1982                  | 112,287         | 110,410     | 1,877   |
| 1983                  | 64,684          | 64,684      | 0       |
| 1984                  | 67,463          | 67,207      | 256     |
| 1985                  | 91,560          | 85,813      | 5,748   |
| 1986                  | 54,781          | 54,297      | 485     |
| 1987                  | 39,766          | 37,061      | 2,705   |
| 1988                  | 82,549          | 81,985      | 565     |
| 1989                  | 39,967          | 39,048      | 920     |
| 1990                  | 69,952          | 62,519      | 7,433   |
| 1991                  | 44,073          | 41,865      | 2,208   |
| 1992                  | 133,397         | 127,508     | 5,889   |
| 1993                  | 49,973          | 46,053      | 3,920   |
| 1994                  | 71,081          | 66,899      | 4,183   |
| 1995                  | 93,329          | 83,703      | 9,626   |
| 1996                  | 107,244         | 99,343      | 7,901   |
| 1997                  | 91,455          | 83,982      | 7,474   |
| 1998                  | 137,395         | 132,388     | 5,008   |
| 1999                  | 126,858         | 121,398     | 5,460   |
| 2000                  | 76,528          | 72,828      | 3,700   |
| 2001                  | 58,446          | 55,208      | 3,238   |
| 2002                  | 44,932          | 43,202      | 1,730   |
| 2003                  | 67,691          | 64,636      | 3,055   |
| Average               | 78,428          | 74,638      | 3,790   |
| Standard<br>Deviation | 30,080          | 28,759      | 2,755   |

2-25 *Guam* 

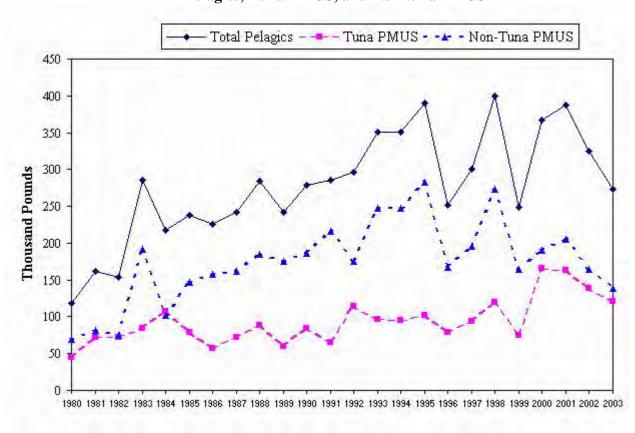



Figure 5. Guam Annual Estimated Commercial Landings: All Pelagics, Tuna PMUS, and Non-tuna PMUS

**Interpretations:** Commercial pelagic fishery landings have shown a general increase for the first 20 years in the 22-year time series. In 2002, the estimated commercial landings decreased overall by 17%, with a 15% decrease for tuna landings and a 20% decrease for landings of other PMUS, possibly due to direct hits by two supertyphoons, resulting in boat damage, lack of tourist for the commercial charter boats, and unavailability of ice for fishermen. A significant number of bad weather days preceding Supertyphoon Pongsona in December 2002 may have also affected fishing in the first quarter of 2003. In 2003,a significant number of bad weather days also occurred, especially during creel census survey days. Between 2002 and 2003, commercial landings for all pelagics, tuna PMUS, and non-tuna PMUS decreased 16%, 13%, and 16% respectively.

**Source:** The WPACFIN-sponsored commercial landings system.

Calculation: Total commercial landings were estimated by summing the weight fields in the commercial landings database from the principle fish wholesalers on Guam, and then multiplying by an estimated percent coverage expansion factor. The annual expansion factor was subjectively created based on as much information as possible depending on the year, including: an analysis of the "disposition of catch" data available from the DAWR offshore creel survey; an evaluation of the fishermen in the fishery and their entry/exit patterns; general "dock side" knowledge of the fishery and the status of the marketing conditions and structure; the overall number of records in the data base; and a certain measure of best guesses.

# **Estimated Commercial Landings (Pounds)**

| Year                  | All Pelagics | Tuna PMUS | Non-Tuna PMUS |
|-----------------------|--------------|-----------|---------------|
| 1980                  | 118,251      | 45,043    | 69,062        |
| 1981                  | 162,186      | 72,229    | 81,808        |
| 1982                  | 153,577      | 72,347    | 74,832        |
| 1983                  | 285,118      | 83,764    | 191,676       |
| 1984                  | 218,028      | 107,568   | 102,398       |
| 1985                  | 237,695      | 79,028    | 146,477       |
| 1986                  | 226,138      | 57,689    | 157,377       |
| 1987                  | 242,444      | 72,004    | 161,657       |
| 1988                  | 284,408      | 88,093    | 185,451       |
| 1989                  | 242,554      | 59,825    | 175,667       |
| 1990                  | 279,121      | 84,176    | 185,934       |
| 1991                  | 285,696      | 64,694    | 216,611       |
| 1992                  | 296,809      | 114,765   | 175,751       |
| 1993                  | 351,201      | 96,289    | 248,070       |
| 1994                  | 351,187      | 95,321    | 246,860       |
| 1995                  | 389,849      | 102,236   | 282,468       |
| 1996                  | 252,075      | 78,636    | 166,702       |
| 1997                  | 300,457      | 93,825    | 196,324       |
| 1998                  | 400,200      | 120,186   | 272,882       |
| 1999                  | 248,472      | 75,346    | 164,082       |
| 2000                  | 367,143      | 165,898   | 190,761       |
| 2001                  | 387,368      | 163,369   | 205,648       |
| 2002                  | 325,299      | 139,009   | 164,853       |
| 2003                  | 272,633      | 121,326   | 138,160       |
| Average               | 278,246      | 93,861    | 175,063       |
| Standard<br>Deviation | 74,522       | 31,167    | 56,598        |

2-27 *Guam* 

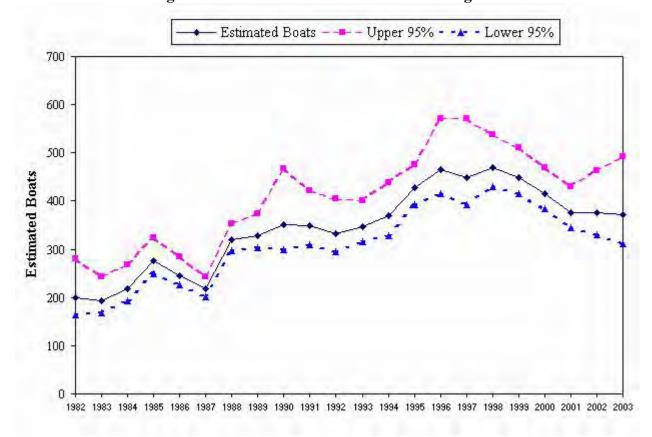



Figure 6. Guam Estimated Number of Trolling Boats

**Interpretations:** The number of trolling boats on Guam had been steadily increasing until 1998, partially due to the addition of two marinas to the offshore sampling program, but then declined for three consecutive years. The number of boats has been essentially the same for the past 3 years. In 2003, the number of estimated trolling boats decreased slightly (1%) to 371, with an upper 95% non-parametric confidence limit of 492 and a lower confidence limit of 312. The boat estimates in the fishery are above the 22-year average, but are about 17% less than the average for 1995-2000.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS.

**Calculation:** Since only a fraction of the days of the year are sampled, it is not possible to know the exact number of boats participating in the fishery. The 2003 trolling boat log was converted and processed through a boat estimator model 1,000 times.

## **Estimated Number of Trolling Boats**

| Year                  | Estimated<br>Boat | Upper 95% | Lower 95% |
|-----------------------|-------------------|-----------|-----------|
| 1982                  | 199               | 280       | 165       |
| 1983                  | 193               | 242       | 168       |
| 1984                  | 219               | 267       | 193       |
| 1985                  | 276               | 323       | 249       |
| 1986                  | 246               | 284       | 226       |
| 1987                  | 219               | 244       | 201       |
| 1988                  | 320               | 353       | 297       |
| 1989                  | 329               | 374       | 303       |
| 1990                  | 352               | 467       | 299       |
| 1991                  | 349               | 422       | 309       |
| 1992                  | 332               | 405       | 294       |
| 1993                  | 346               | 401       | 316       |
| 1994                  | 369               | 439       | 329       |
| 1995                  | 427               | 476       | 393       |
| 1996                  | 466               | 572       | 415       |
| 1997                  | 449               | 572       | 393       |
| 1998                  | 469               | 537       | 430       |
| 1999                  | 449               | 510       | 415       |
| 2000                  | 416               | 470       | 385       |
| 2001                  | 375               | 429       | 345       |
| 2002                  | 375               | 464       | 330       |
| 2003                  | 371               | 492       | 312       |
| Average               | 343               | 410       | 308       |
| Standard<br>Deviation | 87                | 103       | 80        |

2-29 *Guam* 

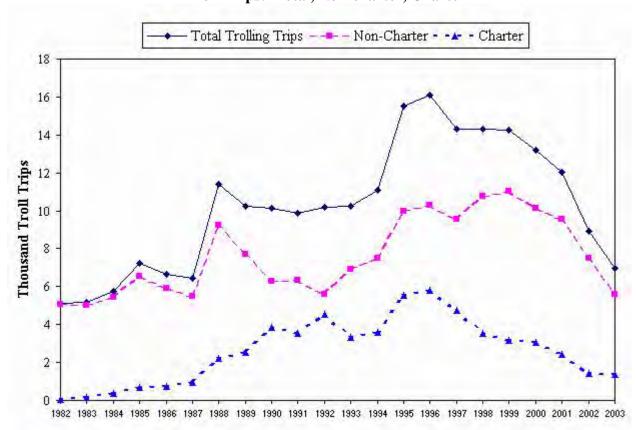



Figure 7a. Guam Annual Estimated Number of: Troll Trips: Total, Non-charter, Charter

Interpretations: Although, non-charter and charter troll trips have generally increased for the first 15 years of the 22-year time series, a general decrease in troll trips has been occurring since the mid 1990's. The decreases are most likely due to a continuing economic recession on the island, a decline in Asian visitors for charter boats, and an increase in cost to maintain, repair, and fuel boats for the average fishermen compared with fish caught for sale to make up for expenses. In 2002, a significant number of bad weather days and direct hits by two supertyphoons caused a significant decrease in troll trips. Compared with 2003, total, non-charter, and charter trips decreased 22%, 26%, and 4% respectively. Limited access to the two largest public boat launching ramps during the first quarter of 2003 and a significant number of bad weather days during 2003 may have added to this decrease.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files.

**Calculation:** The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated number of trips for the trolling method as taken directly from creel survey expansion system printouts.

## **Estimated Number of Trolling Trips**

| Year                  | Estimated Trips | Non-Charter | Charter |
|-----------------------|-----------------|-------------|---------|
| 1982                  | 5,138           | 5,078       | 60      |
| 1983                  | 5,187           | 5,039       | 148     |
| 1984                  | 5,763           | 5,411       | 353     |
| 1985                  | 7,209           | 6,544       | 665     |
| 1986                  | 6,677           | 5,932       | 744     |
| 1987                  | 6,458           | 5,513       | 945     |
| 1988                  | 11,412          | 9,221       | 2,192   |
| 1989                  | 10,230          | 7,714       | 2,515   |
| 1990                  | 10,130          | 6,264       | 3,865   |
| 1991                  | 9,870           | 6,325       | 3,545   |
| 1992                  | 10,165          | 5,614       | 4,551   |
| 1993                  | 10,247          | 6,931       | 3,316   |
| 1994                  | 11,103          | 7,497       | 3,606   |
| 1995                  | 15,528          | 10,000      | 5,528   |
| 1996                  | 16,098          | 10,317      | 5,781   |
| 1997                  | 14,279          | 9,528       | 4,751   |
| 1998                  | 14,295          | 10,758      | 3,537   |
| 1999                  | 14,233          | 11,053      | 3,180   |
| 2000                  | 13,204          | 10,152      | 3,052   |
| 2001                  | 12,016          | 9,563       | 2,453   |
| 2002                  | 8,933           | 7,512       | 1,421   |
| 2003                  | 6,962           | 5,594       | 1,368   |
| Average               | 10,234          | 7,616       | 2,617   |
| Standard<br>Deviation | 3,419           | 2,065       | 1,733   |

2-31 *Guam* 

Total Trolling Hours —— Non-Charter —— Charter

70
60
40
20
10
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Figure 7b. Guam Annual Estimated Number of: Troll Hours: Total, Non-charter, Charter

**Interpretations:** Trolling hours for non-charters and charters have generally increased over the past 20 years. From 1996, charter troll hours dropped due to a decrease in charter trolling activity from a downturn in the Asian economy, which also added to the decrease in total troll hours. In 2003, total hours, non-charter hours, and charter trolling hours decreased 22%, 24%, and 14% respectively. Lack of access to the two major boat launching ramps during the first quarter of 2003 and a significant number of bad weather days during 2003 may have caused this decrease.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files.

**Calculation:** The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated boat hours spent fishing for the trolling method as taken directly from creel survey expansion system printouts.

## **Estimated Number of Trolling Hours**

| Year                  | Estimated Hours | Non-Charter | Charter |
|-----------------------|-----------------|-------------|---------|
| 1982                  | 28,857          | 28,419      | 438     |
| 1983                  | 29,555          | 29,009      | 546     |
| 1984                  | 28,256          | 26,528      | 1,727   |
| 1985                  | 35,895          | 32,593      | 3,302   |
| 1986                  | 36,997          | 33,940      | 3,057   |
| 1987                  | 33,187          | 29,605      | 3,582   |
| 1988                  | 56,224          | 48,398      | 7,826   |
| 1989                  | 48,226          | 39,063      | 9,163   |
| 1990                  | 46,021          | 32,096      | 13,925  |
| 1991                  | 44,151          | 31,016      | 13,135  |
| 1992                  | 43,855          | 27,070      | 16,785  |
| 1993                  | 43,131          | 31,274      | 11,857  |
| 1994                  | 45,931          | 32,829      | 13,102  |
| 1995                  | 57,626          | 39,284      | 18,342  |
| 1996                  | 64,603          | 44,916      | 19,687  |
| 1997                  | 56,994          | 42,856      | 14,137  |
| 1998                  | 59,645          | 48,453      | 11,192  |
| 1999                  | 54,991          | 45,685      | 9,305   |
| 2000                  | 53,066          | 43,731      | 9,335   |
| 2001                  | 57,825          | 50,489      | 7,336   |
| 2002                  | 41,040          | 35,876      | 5,164   |
| 2003                  | 31,834          | 27,380      | 4,454   |
| Average               | 45,360          | 36,387      | 8,973   |
| Standard<br>Deviation | 11,185          | 7,853       | 5,749   |

2-33 *Guam* 



Figure 7c. Guam Annual Estimated Trip Length: Overall Average Hours/Trip, Non-charter, Charter

**Interpretations:** The overall average hours per trip remained the same for 2003. The average trip length did not change significantly for non-charter and charter trips, increasing 2% and decreasing 8% respectively. The redeployment of fish aggregating devices (FADs) during 2003 to replace those missing during 2002 still provide fishermen, charter and non-charter boats, with a prescribed route for trolling activity, although many trolling boats have been observed to be fishing banks located north and south of Guam. Overall trolling trip length appears to have remained constant throughout the 22-year time series, although the average charter trip has slightly declined to approximately three hours a trip.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files.

**Calculation:** The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated boat hours spent fishing and number of trips for the trolling method, as taken directly from creel survey, expansion system printouts.

## **Estimated Trip Length (Hours/trip)**

| Year                  | Average Length | Non-Charter | Charter |
|-----------------------|----------------|-------------|---------|
| 1982                  | 5.6            | 5.6         | 7.3     |
| 1983                  | 5.7            | 5.8         | 3.7     |
| 1984                  | 4.9            | 4.9         | 4.9     |
| 1985                  | 5.0            | 5.0         | 5.0     |
| 1986                  | 5.5            | 5.7         | 4.1     |
| 1987                  | 5.1            | 5.4         | 3.8     |
| 1988                  | 4.9            | 5.2         | 3.6     |
| 1989                  | 4.7            | 5.1         | 3.6     |
| 1990                  | 4.5            | 5.1         | 3.6     |
| 1991                  | 4.5            | 4.9         | 3.7     |
| 1992                  | 4.3            | 4.8         | 3.7     |
| 1993                  | 4.2            | 4.5         | 3.6     |
| 1994                  | 4.1            | 4.4         | 3.6     |
| 1995                  | 3.7            | 3.9         | 3.3     |
| 1996                  | 4.0            | 4.4         | 3.4     |
| 1997                  | 4.0            | 4.5         | 3.0     |
| 1998                  | 4.2            | 4.5         | 3.2     |
| 1999                  | 3.9            | 4.1         | 2.9     |
| 2000                  | 4.0            | 4.3         | 3.1     |
| 2001                  | 4.8            | 5.3         | 3.0     |
| 2002                  | 4.6            | 4.8         | 3.6     |
| 2003                  | 4.6            | 4.9         | 3.3     |
| Average               | 4.6            | 4.9         | 3.8     |
| Standard<br>Deviation | 0.6            | 0.5         | 0.9     |

2-35 *Guam* 

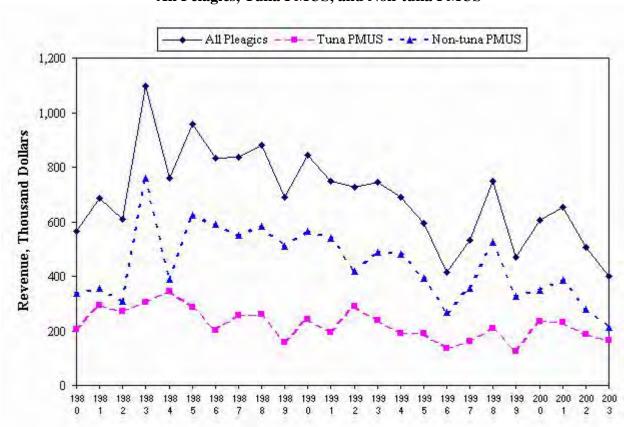



Figure 8. Guam Annual Estimated Inflation-Adjusted Commercial Revenues: All Pelagics, Tuna PMUS, and Non-tuna PMUS

**Interpretations:** The estimated inflation-adjusted commercial revenues for 2003 decreased for all pelagics (21%), for tunas PMUS (13%), and for other non-tuna PMUS (23%). Commercial revenues slightly increased in 2001, but two severe supertyphoons and a significant number of bad weather days may have been a factor in decreases in 2002 and 2003. Overall, commercial revenues have shown a gradual decrease since the early 1980's.

**Source:** The WPacFIN-sponsored commercial landings system.

**Calculation:** Commercial revenues were estimated by summing the revenue fields in the commercial landings database from the principle fish wholesalers on Guam, and then multiplying by the same percent coverage expansion factor, as in Figure 5. Inflation-adjusted total revenue per trip is derived from the Guam Annual Consumer Price Index (CPI).

## **Inflation-Adjusted Commercial Revenues (\$)**

| Year                  | All Pe     | lagics    | Tuna 1     | PMUS     | Non-Tun    | a PMUS   |
|-----------------------|------------|-----------|------------|----------|------------|----------|
| i ear                 | Unadjusted | Adjusted  | Unadjusted | Adjusted | Unadjusted | Adjusted |
| 1980                  | 149,124    | 564,434   | 54,353     | 205,724  | 88,775     | 336,015  |
| 1981                  | 218,384    | 686,382   | 92,914     | 292,030  | 113,212    | 355,826  |
| 1982                  | 203,847    | 609,300   | 90,719     | 271,159  | 103,459    | 309,239  |
| 1983                  | 380,231    | 1,098,106 | 105,308    | 304,130  | 262,817    | 759,015  |
| 1984                  | 286,490    | 761,204   | 129,389    | 343,787  | 146,339    | 388,824  |
| 1985                  | 373,796    | 956,169   | 112,286    | 287,226  | 244,423    | 625,235  |
| 1986                  | 334,955    | 834,038   | 81,299     | 202,435  | 237,826    | 592,187  |
| 1987                  | 350,828    | 836,724   | 107,642    | 256,727  | 231,451    | 552,010  |
| 1988                  | 388,630    | 880,635   | 115,243    | 261,141  | 258,203    | 585,089  |
| 1989                  | 337,586    | 690,026   | 76,865     | 157,113  | 249,421    | 509,816  |
| 1990                  | 471,241    | 843,051   | 136,321    | 243,878  | 316,491    | 566,202  |
| 1991                  | 462,191    | 750,135   | 119,640    | 194,176  | 333,096    | 540,615  |
| 1992                  | 492,707    | 726,251   | 195,547    | 288,236  | 284,546    | 419,421  |
| 1993                  | 547,835    | 745,056   | 175,360    | 238,490  | 358,592    | 487,685  |
| 1994                  | 593,838    | 690,634   | 165,296    | 192,239  | 411,832    | 478,960  |
| 1995                  | 537,889    | 594,367   | 173,629    | 191,860  | 356,256    | 393,663  |
| 1996                  | 392,442    | 412,849   | 127,375    | 133,999  | 254,063    | 267,274  |
| 1997                  | 515,007    | 533,547   | 154,819    | 160,392  | 344,972    | 357,391  |
| 1998                  | 718,169    | 747,614   | 201,639    | 209,906  | 502,801    | 523,416  |
| 1999                  | 458,638    | 469,186   | 122,023    | 124,830  | 319,342    | 326,687  |
| 2000                  | 603,370    | 605,180   | 234,735    | 235,440  | 349,312    | 350,360  |
| 2001                  | 643,219    | 653,510   | 228,652    | 232,310  | 379,174    | 385,241  |
| 2002                  | 500,777    | 505,784   | 184,705    | 186,552  | 274,929    | 277,679  |
| 2003                  | 399,989    | 399,989   | 163,423    | 163,423  | 214,143    | 214,143  |
| Average               | 431,716    | 691,424   | 139,549    | 224,050  | 276,478    | 441,750  |
| Standard<br>Deviation | 141,344    | 169,884   | 48,261     | 56,897   | 99,750     | 133,924  |

2-37 *Guam* 

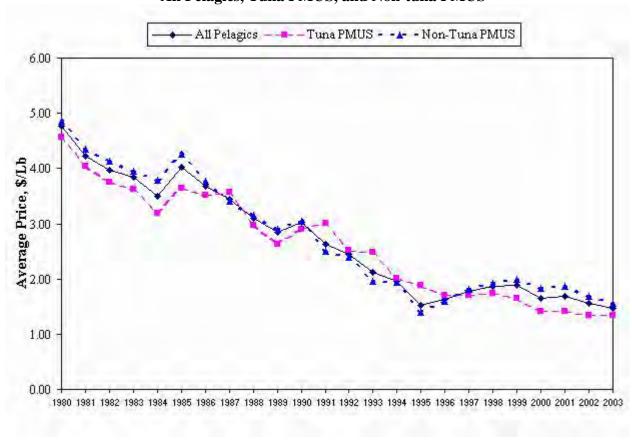



Figure 9. Guam Annual Estimated Inflation-Adjusted Average Prices: All Pelagics, Tuna PMUS, and Non-tuna PMUS

**Interpretations:** The inflation-adjusted price of tuna and other non-tuna PMUS has shown a dramatic decline since data on pelagic fish was collected in 1980. The average price for all pelagics, tuna PMUS, and non-tuna PMUS decreased 5%, increased slightly (\$0.01), and decreased 8% respectively. The sale of locally caught pelagic fish continues to compete with cheaper pelagic fish caught by longliners and sold at several roadside stands.

**Source:** The WPACFIN-sponsored commercial landings system.

Calculation: The average price of the Tunas and other PMUS groups are calculated by dividing the total revenue for each by the sold weight. The inflation adjustment is made by using the Consumer Price Index (CPI) for Guam and establishing the current year figure as the base from which to calculate expansion factors for all previous years (e.g., divide the current year CPI by the CPI of any given year), and then multiplying that factor by the unadjusted average price for the given year.

## Inflation-Adjusted Average Price (\$/Pounds)

| Year                  | All Pe     | lagics   | Tuna l     | PMUS     | Non-Tur    | na PMUS  |
|-----------------------|------------|----------|------------|----------|------------|----------|
| i ear                 | Unadjusted | Adjusted | Unadjusted | Adjusted | Unadjusted | Adjusted |
| 1980                  | 1.26       | 4.77     | 1.21       | 4.57     | 1.29       | 4.87     |
| 1981                  | 1.35       | 4.23     | 1.29       | 4.04     | 1.38       | 4.35     |
| 1982                  | 1.33       | 3.97     | 1.25       | 3.75     | 1.38       | 4.13     |
| 1983                  | 1.33       | 3.85     | 1.26       | 3.63     | 1.37       | 3.96     |
| 1984                  | 1.31       | 3.49     | 1.20       | 3.20     | 1.43       | 3.80     |
| 1985                  | 1.57       | 4.02     | 1.42       | 3.63     | 1.67       | 4.27     |
| 1986                  | 1.48       | 3.69     | 1.41       | 3.51     | 1.51       | 3.76     |
| 1987                  | 1.45       | 3.45     | 1.49       | 3.57     | 1.43       | 3.41     |
| 1988                  | 1.37       | 3.10     | 1.31       | 2.96     | 1.39       | 3.15     |
| 1989                  | 1.39       | 2.84     | 1.28       | 2.63     | 1.42       | 2.90     |
| 1990                  | 1.69       | 3.02     | 1.62       | 2.90     | 1.70       | 3.05     |
| 1991                  | 1.62       | 2.63     | 1.85       | 3.00     | 1.54       | 2.50     |
| 1992                  | 1.66       | 2.45     | 1.70       | 2.51     | 1.62       | 2.39     |
| 1993                  | 1.56       | 2.12     | 1.82       | 2.48     | 1.45       | 1.97     |
| 1994                  | 1.69       | 1.97     | 1.73       | 2.02     | 1.67       | 1.94     |
| 1995                  | 1.38       | 1.52     | 1.70       | 1.88     | 1.26       | 1.39     |
| 1996                  | 1.56       | 1.64     | 1.62       | 1.70     | 1.52       | 1.60     |
| 1997                  | 1.71       | 1.78     | 1.65       | 1.71     | 1.76       | 1.82     |
| 1998                  | 1.79       | 1.87     | 1.68       | 1.75     | 1.84       | 1.92     |
| 1999                  | 1.85       | 1.89     | 1.62       | 1.66     | 1.95       | 1.99     |
| 2000                  | 1.64       | 1.65     | 1.41       | 1.42     | 1.83       | 1.84     |
| 2001                  | 1.66       | 1.69     | 1.40       | 1.42     | 1.84       | 1.87     |
| 2002                  | 1.54       | 1.55     | 1.33       | 1.34     | 1.67       | 1.68     |
| 2003                  | 1.47       | 1.47     | 1.35       | 1.35     | 1.55       | 1.55     |
| Average               | 1.53       | 2.69     | 1.48       | 2.61     | 1.56       | 2.75     |
| Standard<br>Deviation | 0.17       | 1.03     | 0.20       | 0.98     | 0.19       | 1.07     |

2-39 *Guam* 

Average CPH ————Non-Charter

25

20

10

5 -

Figure 10a. Guam Trolling Catch Rates (Pounds/Hour): Average CPH, Non-charter, and Charter

Interpretations: The fluctuations in CPUE are probably due to variability in the year-to-year abundance and availability of the stocks. However, since it is not possible to allocate species-specific effort, effort used to target other species can also result in artificially high or low catch rates for a given species. This is especially true with charter boats targeting blue marlin during the summer months. In 2003, total overall, non-charter, and charter trolling catch rate increased 22%, 21%, and 38%. In general, trolling catch rates have not shown significant year-to-year fluctuations. Charter catch rates have generally been less than catch rates of non-charter boats, probably due to their shorter fishing time, and non-charter boats beginning earlier in the morning and ending as late as early evening.

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files.

**Calculation:** The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of all troll catch, divided by the total number of hours spent fishing (gear in use).

**Trolling Catch Rates (Pounds/Hour):** 

| Year                  | Catch Rate | Non-Charter | Charter |
|-----------------------|------------|-------------|---------|
| 1982                  | 15.1       | 15.0        | 19.9    |
| 1983                  | 14.8       | 14.9        | 10.4    |
| 1984                  | 14.8       | 14.9        | 12.9    |
| 1985                  | 13.1       | 13.1        | 13.5    |
| 1986                  | 10.0       | 10.2        | 7.5     |
| 1987                  | 9.7        | 9.9         | 8.4     |
| 1988                  | 14.4       | 15.0        | 10.7    |
| 1989                  | 10.0       | 10.6        | 7.4     |
| 1990                  | 11.8       | 13.1        | 8.8     |
| 1991                  | 16.9       | 19.2        | 11.5    |
| 1992                  | 12.0       | 15.0        | 7.1     |
| 1993                  | 12.3       | 12.8        | 11.1    |
| 1994                  | 11.8       | 13.2        | 8.2     |
| 1995                  | 13.4       | 15.5        | 8.9     |
| 1996                  | 14.3       | 15.3        | 11.9    |
| 1997                  | 13.1       | 13.6        | 11.6    |
| 1998                  | 13.8       | 14.5        | 10.5    |
| 1999                  | 11.3       | 12.0        | 8.2     |
| 2000                  | 11.5       | 11.8        | 10.1    |
| 2001                  | 12.9       | 13.4        | 9.9     |
| 2002                  | 13.0       | 13.5        | 9.1     |
| 2003                  | 15.8       | 16.3        | 12.6    |
| Average               | 13.0       | 13.8        | 10.5    |
| Standard<br>Deviation | 1.9        | 2.1         | 2.8     |

2-41 *Guam* 

Total Mahi CPH ——— Non-Charter ———— Charter

12
10
4
2
1382 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Figure 10b. Guam Trolling Catch Rates (Pounds/Hour): Mahimahi: All, Non-charter, and Charter

**Interpretations:** The wide fluctuations in mahimahi CPUE values are probably due to the high variability in the year-to-year abundance and availability of the stocks. It is not possible to allocate species-specific effort one particular species; effort used to target other species can result in artificially high or low catch rates for a given species. In 2003, the catch rate for total, non-charter, and charter mahimahi all decreased significantly, decreasing 38%, 37%, and 33% respectively.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files.

**Calculation:** The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of mahimahi divided by the total number of hours spent fishing (gear in use).

**Trolling Catch Rates (Pounds/Hour)** 

| Year                  | Total Mahimahi | Non-Charter | Charter |
|-----------------------|----------------|-------------|---------|
| 1982                  | 3.7            | 3.6         | 9.5     |
| 1983                  | 5.0            | 5.0         | 5.8     |
| 1984                  | 0.9            | 0.6         | 5.0     |
| 1985                  | 2.0            | 2.0         | 2.1     |
| 1986                  | 2.7            | 2.8         | 2.2     |
| 1987                  | 2.3            | 2.3         | 1.9     |
| 1988                  | 5.9            | 6.1         | 4.7     |
| 1989                  | 1.9            | 2.1         | 1.2     |
| 1990                  | 2.9            | 3.2         | 2.3     |
| 1991                  | 9.4            | 11.0        | 5.7     |
| 1992                  | 2.0            | 2.3         | 1.5     |
| 1993                  | 5.4            | 5.4         | 5.5     |
| 1994                  | 3.0            | 3.2         | 2.6     |
| 1995                  | 5.7            | 6.4         | 4.1     |
| 1996                  | 5.0            | 5.2         | 4.7     |
| 1997                  | 4.5            | 4.5         | 4.5     |
| 1998                  | 4.3            | 4.1         | 5.1     |
| 1999                  | 2.9            | 3.0         | 2.6     |
| 2000                  | 1.6            | 1.5         | 2.0     |
| 2001                  | 3.2            | 3.1         | 3.5     |
| 2002                  | 4.2            | 4.3         | 3.3     |
| 2003                  | 2.6            | 2.7         | 2.2     |
| Average               | 3.7            | 3.8         | 3.7     |
| Standard<br>Deviation | 1.9            | 2.2         | 2.0     |

2-43 *Guam* 

Total Wahoo CPH — Non-Charter — A - Charter

Total Wahoo CPH — Non-Charter — A - Charter

7
6
5
1
1
1

Figure 10c. Guam Trolling Catch Rates (Pounds/Hour): Wahoo: All, Non-charter, and Charter

**Interpretations:** The wide fluctuations in CPUE are probably due to the high variability in the year-to-year abundance and availability of the stocks. However, it is not possible to allocate species-specific effort, since effort used to target other species can result in artificially high or low catch rates for a given species. In 2003, the total non-charter, and charter catch rates for wahoo all increased, increasing, 18%, 12%, and 9% respectively.

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files.

**Calculation:** The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of wahoo divided by the total number of hours spent fishing (gear in use).

*Guam* 2-44

0

**Trolling Catch Rates (Pounds/Hour)** 

| Year                  | Total Wahoo | Non-Charter | Charter |
|-----------------------|-------------|-------------|---------|
| 1982                  | 1.9         | 1.9         | 0.2     |
| 1983                  | 2.9         | 2.9         | 1.4     |
| 1984                  | 1.9         | 1.7         | 4.7     |
| 1985                  | 3.6         | 3.3         | 6.3     |
| 1986                  | 1.8         | 1.8         | 0.9     |
| 1987                  | 2.5         | 2.6         | 1.1     |
| 1988                  | 1.7         | 1.7         | 1.7     |
| 1989                  | 2.6         | 2.9         | 1.5     |
| 1990                  | 1.8         | 2.2         | 1.0     |
| 1991                  | 1.3         | 1.4         | 1.0     |
| 1992                  | 1.9         | 2.2         | 1.3     |
| 1993                  | 1.4         | 1.5         | 1.4     |
| 1994                  | 1.1         | 1.1         | 1.0     |
| 1995                  | 1.3         | 1.6         | 0.8     |
| 1996                  | 2.3         | 2.1         | 2.6     |
| 1997                  | 1.1         | 1.1         | 1.2     |
| 1998                  | 2.6         | 3.0         | 1.1     |
| 1999                  | 1.4         | 1.5         | 1.0     |
| 2000                  | 1.3         | 1.3         | 1.3     |
| 2001                  | 2.1         | 2.1         | 1.7     |
| 2002                  | 1.7         | 1.7         | 2.2     |
| 2003                  | 2.0         | 1.9         | 2.4     |
| Average               | 1.9         | 2.0         | 1.7     |
| Standard<br>Deviation | 0.6         | 0.6         | 1.4     |

2-45 *Guam* 

Figure 11a. Guam Trolling Catch Rates (Pounds/Hour): Skipjack: All, Non-Charter, and Charter

**Interpretations:** The wide fluctuations in CPUE for skipjack tuna are probably due to the high variability in the year-to-year abundance and availability of the stocks, although skipjack tuna is caught year round. However, it is not possible to allocate species-specific effort, since effort used to target other species can result in an artificially high or low catch rate for a given species. In 2003, the catch rates for total, non-charter, and charter skipjack tuna increased 33%, 36%, and 42% respectively.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS.

**Calculation:** The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of skipjack divided by the total number of hours spent fishing (gear in use).

**Trolling Catch Rates (Pounds/Hour)** 

| Year                  | Total Skipjack | Non-Charter | Charter |
|-----------------------|----------------|-------------|---------|
| 1982                  | 4.3            | 4.3         | 5.1     |
| 1983                  | 3.1            | 3.1         | 3.0     |
| 1984                  | 7.6            | 8.1         | 0.7     |
| 1985                  | 2.9            | 3.1         | 1.5     |
| 1986                  | 2.0            | 2.1         | 1.6     |
| 1987                  | 1.8            | 1.9         | 0.7     |
| 1988                  | 3.8            | 4.1         | 1.7     |
| 1989                  | 2.5            | 2.8         | 1.6     |
| 1990                  | 3.2            | 4.0         | 1.4     |
| 1991                  | 2.7            | 3.3         | 1.2     |
| 1992                  | 2.8            | 3.9         | 1.1     |
| 1993                  | 2.5            | 3.0         | 1.2     |
| 1994                  | 4.1            | 5.0         | 1.9     |
| 1995                  | 3.1            | 4.1         | 1.0     |
| 1996                  | 3.7            | 4.5         | 2.0     |
| 1997                  | 3.7            | 4.2         | 2.0     |
| 1998                  | 3.2            | 3.4         | 2.4     |
| 1999                  | 2.2            | 2.3         | 1.4     |
| 2000                  | 5.0            | 5.5         | 3.1     |
| 2001                  | 5.8            | 6.2         | 2.6     |
| 2002                  | 4.3            | 4.5         | 2.4     |
| 2003                  | 5.7            | 6.1         | 3.4     |
| Average               | 3.6            | 4.1         | 2.0     |
| Standard<br>Deviation | 1.4            | 1.5         | 1.0     |

2-47 *Guam* 

Figure 11b. Guam Trolling Catch Rates (Pounds/Hour): Yellowfin: All, Non-charter, and Charter

**Interpretations:** The wide fluctuations in CPUE for yellowfin tunas are probably due to the high variability in the year-to-year abundance and availability of the stocks. It is not possible to allocate species-specific effort, since effort used to target other species can also result in an artificially high or low catch rate for a given species. In 2003, the yellowfin catch rates for total, non-charter, and charter catch increased 91%, 100%, and 133% respectively.

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS.

**Calculation:** The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of Yellowfin divided by the total number of hours spent fishing (gear in use).

**Trolling Catch Rates (Pounds/Hour)** 

| Year                  | Total Yellowfin | Non-Charter | Charter |
|-----------------------|-----------------|-------------|---------|
| 1982                  | 3.9             | 3.9         | 4.3     |
| 1983                  | 2.2             | 2.2         | 0.0     |
| 1984                  | 2.4             | 2.5         | 0.1     |
| 1985                  | 2.6             | 2.6         | 1.7     |
| 1986                  | 1.5             | 1.6         | 0.2     |
| 1987                  | 1.2             | 1.3         | 0.8     |
| 1988                  | 1.5             | 1.7         | 0.1     |
| 1989                  | 0.8             | 1.0         | 0.1     |
| 1990                  | 1.5             | 1.9         | 0.5     |
| 1991                  | 1.0             | 1.3         | 0.2     |
| 1992                  | 3.0             | 4.7         | 0.4     |
| 1993                  | 1.2             | 1.5         | 0.3     |
| 1994                  | 1.5             | 2.0         | 0.3     |
| 1995                  | 1.6             | 2.1         | 0.5     |
| 1996                  | 1.7             | 2.2         | 0.4     |
| 1997                  | 1.6             | 2.0         | 0.5     |
| 1998                  | 2.3             | 2.7         | 0.4     |
| 1999                  | 2.3             | 2.6         | 0.6     |
| 2000                  | 1.4             | 1.6         | 0.4     |
| 2001                  | 1.0             | 1.1         | 0.4     |
| 2002                  | 1.1             | 1.2         | 0.3     |
| 2003                  | 2.1             | 2.4         | 0.7     |
| Average               | 1.8             | 2.1         | 0.6     |
| Standard<br>Deviation | 0.7             | 0.9         | 0.9     |

2-49 *Guam* 

Figure 11c. Guam Trolling Catch Rates (Pounds/Hour): Blue Marlin: All, Non-charter, and Charter

**Interpretations:** The wide fluctuations in CPUE are probably due to the high variability in the year-to-year abundance and availability of the stocks. Since it is not possible to allocate species-specific effort, effort used to target other species can also result in an artificially high or low catch rate for a given species. Except for charter trolling, the blue marlin catch rates increased for a second year in a row. The catch rates for total, non-charter, and charter blue marlin increased 62%, 36%, and 222% respectively in 2003. All catch rates were above the 22-year average.

**Source:** The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS.

**Calculation:** The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of marlin divided by the total number of hours spent fishing (gear in use).

**Trolling Catch Rates (Pounds/Hour)** 

| Year                  | Total Blue Marlin | Non-Charter | Charter |
|-----------------------|-------------------|-------------|---------|
| 1982                  | 0.7               | 0.7         | 0.0     |
| 1983                  | 1.0               | 1.0         | 0.0     |
| 1984                  | 1.7               | 1.7         | 2.3     |
| 1985                  | 1.5               | 1.5         | 1.7     |
| 1986                  | 1.5               | 1.4         | 2.2     |
| 1987                  | 1.4               | 1.1         | 3.7     |
| 1988                  | 1.1               | 0.9         | 2.4     |
| 1989                  | 1.7               | 1.5         | 2.8     |
| 1990                  | 2.0               | 1.4         | 3.4     |
| 1991                  | 2.0               | 1.4         | 3.3     |
| 1992                  | 1.9               | 1.6         | 2.5     |
| 1993                  | 1.3               | 0.9         | 2.6     |
| 1994                  | 1.7               | 1.4         | 2.3     |
| 1995                  | 1.3               | 0.9         | 2.4     |
| 1996                  | 1.0               | 0.5         | 2.1     |
| 1997                  | 1.6               | 1.0         | 3.3     |
| 1998                  | 0.7               | 0.6         | 1.4     |
| 1999                  | 1.5               | 1.4         | 2.1     |
| 2000                  | 1.6               | 1.3         | 3.2     |
| 2001                  | 0.6               | 0.4         | 1.5     |
| 2002                  | 1.3               | 1.4         | 0.9     |
| 2003                  | 2.1               | 1.9         | 2.9     |
| Average               | 1.4               | 1.2         | 2.2     |
| Standard<br>Deviation | 0.4               | 0.4         | 1.0     |

2-51 *Guam* 

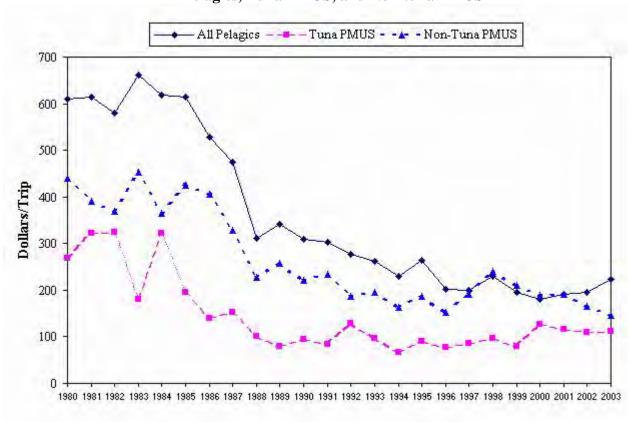



Figure 12. Guam Annual Estimated Inflation-Adjusted Revenue per Trolling Trip: All Pelagics, Tuna PMUS, and Non-tuna PMUS

**Interpretation:** There has been a general decrease from 1980 in the adjusted revenues per trolling trip for all pelagics, tunas and other PMUS, although the revenue values have remained fairly constant for past 7 years. In 2003, the adjusted revenue per trip increased 15% for all pelagics, increased <1% (\$0.45) for tuna PMUS, and decreased 12% for non-tuna PMUS. Despite overall declines in revenue, fishing effort still occur. Most charter and non-charter trolling boats do not rely on selling their fish for their primary source of income, and a reliable market for members of the local fishermen's cooperative provides additional income. Fishermen also combine trolling effort with other fishing methods, such as bottomfishing, spearfishing, and jigging to offset fishing-related expenses.

**Source:** The WPacFIN-sponsored commercial landings system.

Calculation: The average revenue per trip was calculated by summing the revenue of all species sold then dividing by the number of trips, and summing the revenue of tunas and other PMUS sold, and then dividing each by the number of trips, respectively, for any trip, which landed PMUS. Adjusted revenue per trip was derived from the Guam Annual Consumer Price Index (CPI).

## Inflation-Adjusted Revenues per Trolling Trip (\$/Trip)

| Year All Pelagics     |            | lagics   | Tuna 1     | PMUS                | Non-Tuna PMUS |          |  |
|-----------------------|------------|----------|------------|---------------------|---------------|----------|--|
| rear                  | Unadjusted | Adjusted | Unadjusted | Adjusted            | Unadjusted    | Adjusted |  |
| 1980                  | 161.31     | 610.56   | 71.14      | 269.26              | 116.20        | 439.82   |  |
| 1981                  | 195.29     | 613.80   | 102.24     | 321.34              | 124.58        | 391.55   |  |
| 1982                  | 194.29     | 580.73   | 108.45     | 08.45 324.16 123.68 |               | 369.68   |  |
| 1983                  | 229.26     | 662.10   | 62.81      | 181.40              | 156.75        | 452.69   |  |
| 1984                  | 233.01     | 619.11   | 121.56     | 322.98              | 137.48        | 365.28   |  |
| 1985                  | 240.34     | 614.79   | 76.21      | 194.95              | 165.90        | 424.37   |  |
| 1986                  | 212.25     | 528.50   | 55.68      | 138.64              | 162.89        | 405.60   |  |
| 1987                  | 199.18     | 475.04   | 64.07      | 152.81              | 137.77        | 328.58   |  |
| 1988                  | 137.30     | 311.12   | 44.98      | 101.92              | 100.78        | 228.37   |  |
| 1989                  | 166.79     | 340.92   | 38.89      | 79.49               | 126.20        | 257.95   |  |
| 1990                  | 172.68     | 308.92   | 53.19      | 95.16               | 123.50        | 220.94   |  |
| 1991                  | 185.96     | 301.81   | 51.79      | 84.06               | 144.20        | 234.04   |  |
| 1992                  | 188.33     | 277.60   | 86.72      | 127.83              | 126.18        | 185.99   |  |
| 1993                  | 191.92     | 261.01   | 70.60      | 96.02               | 144.36        | 196.33   |  |
| 1994                  | 197.09     | 229.22   | 56.32      | 65.50               | 140.32        | 163.19   |  |
| 1995                  | 239.79     | 264.97   | 82.55      | 91.22 169.38        |               | 187.16   |  |
| 1996                  | 191.10     | 201.04   | 72.55      | 76.32 144.71        |               | 152.23   |  |
| 1997                  | 192.95     | 199.90   | 82.74      | 85.72 184.35        |               | 190.99   |  |
| 1998                  | 221.01     | 230.07   | 92.81      | 96.62               | 231.44        | 240.93   |  |
| 1999                  | 190.05     | 194.42   | 78.35      | 80.15               | 205.04        | 209.76   |  |
| 2000                  | 179.42     | 179.96   | 127.01     | 127.39              | 189.00        | 189.57   |  |
| 2001                  | 188.68     | 191.70   | 113.92     | 115.74              | 188.92        | 191.94   |  |
| 2002                  | 193.42     | 195.35   | 109.41     | 110.50              | 162.85        | 164.48   |  |
| 2003                  | 223.73     | 223.73   | 110.95     | 110.95              | 145.38        | 145.38   |  |
| Average               | 196.88     | 359.02   | 80.62      | 143.76              | 152.16        | 264.03   |  |
| Standard<br>Deviation | 25.23      | 173.70   | 25.37      | 82.55               | 30.95         | 102.35   |  |

2-53 *Guam* 

Figure 13. Annual Guam Longline Landings from Primarily Foreign Longliners Fishing Outside the Guam EEZ

Interpretation: Annual landings from a primarily foreign longline fishing fleet have ranged from a low of 5,093 metric tons in 1997 to a high of 12,627 metric tons in 2001. These vessels fish primarily outside Guam's EEZ, but transship their catch through Guam. The dramatic drop observed in 1997 was due to foreign fleets leaving the western Pacific, usually due to available fish stocks and fishing licenses with neighboring Pacific island nations. Compared with 2002, the 2003 total longline landings decreased 9%, with bigeye landings decreasing 13% and yellowfin landings decreasing 7%. Landings from this fishery have declined 45% since 2001, with the Japanese fleet landings declining 39% and the Taiwanese landings declining 53%. Other pelagics, including marlin, swordfish, mahimahi and other species, are also caught and landed by this fishery but are not reported separately in this module.

**Source:** The Bureau of Statistics and Plans.

**Calculation:** Pre-1990 data was extracted directly from transshipment agents' files. Beginning in 1990, a mandatory data submission program was implemented.

**Foreign Longline Landings (Metric tons)** 

| Year                  | Total  | Bigeye | Yellowfin |
|-----------------------|--------|--------|-----------|
| 1990                  | 12,198 | 6,793  | 5,011     |
| 1991                  | 10,707 | 4,824  | 5,505     |
| 1992                  | 8,157  | 3,754  | 4,104     |
| 1993                  | 8,981  | 4,178  | 4,379     |
| 1994                  | 11,023 | 4,400  | 5,878     |
| 1995                  | 12,366 | 3,560  | 7,635     |
| 1996                  | 10,356 | 2,280  | 7,214     |
| 1997                  | 5,093  | 2,395  | 2,392     |
| 1998                  | 9,032  | 3,533  | 4,379     |
| 1999                  | 9,865  | 5,328  | 3,404     |
| 2000                  | 11,664 | 5,725  | 4,795     |
| 2001                  | 12,716 | 5,996  | 5,711     |
| 2002                  | 7,703  | 3,922  | 3,015     |
| 2003                  | 7,004  | 3,416  | 2,792     |
| Average               | 9,776  | 4,293  | 4,730     |
| Standard<br>Deviation | 2,241  | 1,317  | 1,572     |

2-55 *Guam* 

Table 4: Offshore Creel Survey Bycatch Number Summary-Trolling

|                   | Sh an ing                | N | Number Released |      |      | D.C. o. | Interviews |     |      |
|-------------------|--------------------------|---|-----------------|------|------|---------|------------|-----|------|
|                   | Species                  |   | Dead/Injd       | Both | ΑΠ   | BC %    | With BC    | ΑII | BC % |
| Method: Trolling  |                          |   |                 |      |      |         |            |     |      |
| Non Chart         | er                       |   |                 |      |      |         |            |     |      |
| 31501             | Coryphaena hippurus      | 5 |                 | 5    | 258  | 1.94    |            |     |      |
|                   | Total                    | 5 |                 | 5    | 258  | 1.94    | 2          | 178 | 1.12 |
|                   | Compare with All Species |   |                 |      | 2729 | 0.18    |            |     |      |
| Charter           |                          |   |                 |      |      |         |            |     |      |
|                   | Compare with All Species |   |                 |      | 297  | 0.00    |            |     |      |
| Total in Trolling |                          | 5 |                 | 5    | 258  | 1.94    | 2          | 178 | 1.12 |
| Compare with All  | l Species                |   |                 |      | 3026 | 0.17    |            |     |      |

**Interpretation**: For 2003, the total estimated number of pelagic by-catch was 5 pieces or 1.94% of the total number of trolling fish caught. The bycatch consisted only of five mahimahi's released alive on two interviews out of a total of 178 total trolling interviews. The number of pieces of pelagic bycatch is not an expanded value, but are taken directly from the actual interviews. In addition to the mahimahi reported during creel survey days, fishermen have told Fisheries staff of releasing sharks as bycatch, both alive and killed.

**Source**: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program.

#### Appendix 3

#### Hawaii

#### **Introduction**

Hawaii's pelagic fisheries, which include the longline, main Hawaiian Island (MHI) troll and handline, offshore handline, and the aku boat (pole and line) fisheries; are the state's largest and most valuable. The target species are tunas and billfish, but a variety of other species are also caught with some regularity. The longline, MHI troll and handline, and aku boat fisheries have a long history, whereas the offshore handline fishery is relatively new and dates back to only 1990. Collectively, these pelagic fisheries caught<sup>1</sup> an estimated 23 million pounds worth an estimated ex-vessel value of \$48 million in 2003.

The largest component of pelagic catch in 2003 was tunas. The trend for tuna catches is, in general, increasing and represented 65% of the total pelagic catch in 2003. Bigeye tuna was the largest component of the tuna and has increased almost five-fold from its catch in 1987. Billfish catch dominated catch in the early 1990s making up about half of the total pelagic catch during that period but has declined to represent only 15% of the total catch in 2003. Swordfish was the largest component of the billfish catch from 1990 through 2000, was replaced by blue marlin in the next two years, and followed by striped marlin in 2003. Other pelagic Management Unit Species (PMUS) catch rose from 970 thousand pounds in 1988 to 3.8 million pounds in 1999 and remained at about 3 million pounds in the following three years and rose to a record 4.2 milion pounds in 2003. Mahimahi was the largest component of other pelagic catch though ono (wahoo) and moonfish catches rose to comparable levels of mahimahi catch.

The longline catch was the largest of all pelagic fisheries in Hawaii and represented 77% of the total commercial pelagic catch in 2003. There were 110 active Hawaii-based longline vessels in 2003. Participation in the Hawaii-based longline fishery rose rapidly from 37 vessels in 1987 and peaked at 141 vessels in 1991 decreased to 103 vessels in 1996 as vessels left for the U.S. mainland (primarily California) and Fiji. The number of vessels gradually increased to 125 vessels in 2000 with the return of the vessels that had migrated to the mainland and the arrival of new participants from the U.S. west coast and Alaska. Court-ordered regulations limiting swordfish-directed effort implemented in 2000 and regulations in the Fishery Management Plan (FMP) for Pelagic Fisheries of the Western Pacific Region implemented in 2001 either forced vessels to convert and target tunas or leave Hawaii to fish for swordfish. Because the restriction prohibiting shallow sets (<15 hooks between floats) occurred in 2001 the only summary statistics were for deep set (≥ 15 hooks between floats) tuna fishing thereafter. Many of those longline vessels that left Hawaii continued to target swordfish out of California. Twenty-two California-based longline vessels submitted federal longline logbook data in 2003.

This module reports "catch", as opposed to "landings" in most cases. Catch is that identified as *Pounds Caught* on HDAR commercial catch reports or the volume estimated from the longline logbook's number caught (x estimated round weight of fish kept). In some cases *Pounds Sold* are used in a market sense (i.e., number kept x estimated round weight).

The total number of longline trips out of Hawaii has remained relatively stable over the past ten years. However, there has been a significant change with a shift of longline effort from swordfish to tunas. The number of swordfish-directed trips has declined from 319 in 1993 to 0 in 2003. In contrast, tuna-directed effort has increased during this period, from 458 trips in 1992 to 1,215 trips in 2003.

Pelagic landings of the main Hawaiian Islands (MHI) troll and handline fisheries were relatively stable throughout the late 1980s into 2003. Catch by the aku boat fleet (pole-and-line for skipjack tuna) has been on a declining trend down to a historic low in 2002 and increasing 50% in 2003. The offshore handline fishery has grown into a fishery with catches that rivals and often exceeds catches of the established aku boat fishery. However, the offshore handline landings were off by 70% in 2003.

#### **Information & Sources**

This report contains the most recently available information on Hawaii's commercial pelagic fisheries. Commercial fisheries reports are compiled from four data sources: The State of Hawaii's Division of Aquatic Resources (HDAR) commercial fish catch data, HDAR fish dealer data, the National Marine Fisheries Service (NMFS) Pacific Islands Fisheries Science Center's (PIFSC) longline logbook data, and joint NMFS and HDAR marketing monitoring data.<sup>2</sup> Detailed data are not available for recreational fishers because they are not required to file catch reports (if they sell no fish during the year) and there is no comprehensive creel survey of Hawaii anglers. Recent JIMAR research reports describe aspects of the relationship between commercial and recreational pelagic fishing, but accurate estimates of total recreational participation and catch remain absent.<sup>3</sup> The NMFS Marine Recreational Fisheries Statistical Survey (MRFSS) has reinitiated operations in Hawaii after a 20 year absence with the first full year of fielding in 2002. The combined telephone-creel intercept survey is being conducted in collaboration with the HDAR. In the interim, a summary of what is known about recreational fisheries, including preliminary estimates of recreational catch are included in Appendix 6.

The Council's annual report module for Hawaii was prepared using final 2001 and 2002 NMFS data tabulations and preliminary 2002 HDAR data. Final HDAR commercial catch reports for 2002, which include the troll, handline, pole-and-line, and other gears data, were not available when the bulk of this report was prepared. These data will be updated in the next annual report. Finally, total catch and CPUE analyses do not necessarily equal overall catch tables by fishery and species presented in this report due to compilations based on separate versions of the HDAR data sets.

Ito, Russell Y. and Machado, Walter A. 2001. Annual report of the Hawaii-based longline fishery for 2000. Southwest Fisheries Science Center administrative report H-01-07.

Hamilton, Marcia S and Stephen W. Huffman, 1997. Cost-earnings study of Hawaii's small boat fishery, 1995-96. University of Hawaii SOEST 97-06/JIMAR 97-314. 102 p. McConnell, Kenneth E. and Timothy C. Haab, 2001. Small boat fishing in Hawaii: choice and economic values. University of Hawaii SOEST 01-01, JIMAR 01-336, 62 p.

This module was prepared by Russell Ito of NMFS and reviewed by Bill Walsh PFRP, JIMAR. Information from NMFS longline logbooks was provided by Frederick Dowdell of NMFS. HDAR commercial catch and fish dealer data used in the NMFS time-series were compiled by Craig Graham from UH, JIMAR. Information on HDAR Commercial Marine Licenses (CMLs) was provided by Reginald Kokubun, HDAR.

### Hawaii commercial marine license information<sup>4</sup>

Any fisherman who takes marine species for commercial purposes is required by the State of Hawaii to have a Commercial Marine License (CML) and submit a monthly catch report to HDAR. An exception to this rule is that only one person per vessel is required to submit a catch report. This person is usually, but not necessarily, the captain. Crew members do not ordinarily submit catch reports. HDAR asks fishermen to identify their primary fishing gear or method on the Commercial Marine License at time of licensing. This does not preclude fishermen from using other gears or methods.

A total of 3,219 fishermen were licensed in 2003, including 2,037 (67%) who indicated that their primary fishing method and gear were intended to catch pelagic fish. Most licenses that indicated pelagic fishing as their primary method were issued to trollers (73%) and longline fishermen (17%). The remainder was issued to ika shibi and palu ahi (handline) (8%) and aku boat fishers (2%).

| Primary fishing method   | Number of licenses required to report |             |  |  |  |
|--------------------------|---------------------------------------|-------------|--|--|--|
|                          | <u>2002</u>                           | <u>2003</u> |  |  |  |
| Trolling                 | 1,451                                 | 1,494       |  |  |  |
| Longline                 | 367                                   | 356         |  |  |  |
| Ika Shibi & Palu Ahi     | 164                                   | 156         |  |  |  |
| Aku Boat (pole and line) | 43                                    | 31          |  |  |  |
| Total pelagic            | 2,025                                 | 2,037       |  |  |  |
| Total all methods        | 3,195                                 | 3,219       |  |  |  |

### **2003 Plan Team Recommendations**:

- 1. Develop compendium of configurations of Hawaii longline gears. Timing of sets and hauls maybe critical.
- 2. Workshop on HDAR data useage in fishery dynamics and analyses
- 3. Recommend review of commercial fisheries under-reporting with special focus on offshore handline fishery.

 $<sup>^{\</sup>rm 4}$  Information provided by the Hawaii Division of Aquatic Resources (HDAR).

# **Tables**

| 1. | Hawaii commercial pelagic catch, revenue, and average price by species, 2002-2003.   | 3-8  |  |  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------|------|--|--|--|--|--|--|--|
|    | Hawaii commercial pelagic catch, revenue, and average price by gear, 2002-2003       |      |  |  |  |  |  |  |  |
|    | Distance traveled to first set by the Hawaii-based longline fleet, 1991-2003         |      |  |  |  |  |  |  |  |
|    | Number of days fished per trip for the Hawaii-based longline fleet, 1991-2003        |      |  |  |  |  |  |  |  |
|    | Hawaii-based longline catch (number of fish) by area, 1991-2003                      |      |  |  |  |  |  |  |  |
|    | Average weight by species for longline catch, 1987-2003                              |      |  |  |  |  |  |  |  |
|    | Bycatch, retained catch, and total catch for the Hawaii-based longline fishery, 2003 |      |  |  |  |  |  |  |  |
|    | Average weight by species for troll and handline catch, 1987-2003                    |      |  |  |  |  |  |  |  |
|    |                                                                                      |      |  |  |  |  |  |  |  |
|    | <u>Figures</u>                                                                       |      |  |  |  |  |  |  |  |
| 1. | Hawaii total commercial catch and revenue, 1987-2003                                 | 3-11 |  |  |  |  |  |  |  |
|    | Hawaii commercial tuna billfish, shark, and other PMUS catch, 1987-2003              |      |  |  |  |  |  |  |  |
|    | Total commercial pelagic catch by gear type, 1987-2003.                              |      |  |  |  |  |  |  |  |
| 4. | Total commercial pelagic ex-vessel revenue by gear type 1987-2003                    | 3-16 |  |  |  |  |  |  |  |
|    | Hawaii commercial tuna catch by gear type, 1987-2003                                 |      |  |  |  |  |  |  |  |
| 6. | Species composition of the tuna catch, 1987-2003                                     | 3-19 |  |  |  |  |  |  |  |
| 7. | Hawaii bigeye tuna catch, 1987-2003                                                  | 3-20 |  |  |  |  |  |  |  |
|    | Hawaii yellowfin tuna catch, 1987-2003                                               |      |  |  |  |  |  |  |  |
|    | Hawaii skipjack tuna, 1987-2003                                                      |      |  |  |  |  |  |  |  |
|    | Hawaii albacore catch, 1987-2003.                                                    |      |  |  |  |  |  |  |  |
|    | . Hawaii commercial billfish catch by gear type, 1987-2003                           |      |  |  |  |  |  |  |  |
| 12 | Species composition of the billfish catch, 1987-2003                                 | 3-24 |  |  |  |  |  |  |  |
|    | . Hawaii swordfish catch, 1987-2003                                                  |      |  |  |  |  |  |  |  |
|    | Hawaii blue marlin catch, 1987-2003                                                  |      |  |  |  |  |  |  |  |
|    | . Hawaii striped marlin catch, 1987-2003                                             |      |  |  |  |  |  |  |  |
|    | . Hawaii commercial catch of other pelagic PMUS by gear type, 1987-2003              |      |  |  |  |  |  |  |  |
|    | . Species composition of other PMUS catch, 1987-2003                                 |      |  |  |  |  |  |  |  |
|    | . Hawaii mahimahi catch , 1987-2003                                                  |      |  |  |  |  |  |  |  |
| 19 | . Hawaii ono (wahoo) catch, 1987-2003                                                | 3-31 |  |  |  |  |  |  |  |
|    | . Hawaii moonfish catch, 1987-2003                                                   |      |  |  |  |  |  |  |  |
|    | . Hawaii shark catch, 1987-2003                                                      |      |  |  |  |  |  |  |  |
| 22 | . Number of Hawaii-based longline vessels, 1987-2003                                 | 3-34 |  |  |  |  |  |  |  |
|    | . Number of trips by Hawaii-based longline vessels, 1991-2003                        |      |  |  |  |  |  |  |  |
|    | . Number of hooks set by the Hawaii-based longline fishery, 1991-2003                |      |  |  |  |  |  |  |  |
|    | . Hawaii longline catch and revenue, 1987-2003                                       |      |  |  |  |  |  |  |  |
|    | . Hawaii longline tuna catch, 1987-2003                                              |      |  |  |  |  |  |  |  |
|    | . Hawaii longline billfish catch, 1987-2003                                          |      |  |  |  |  |  |  |  |
| 28 | . Hawaii longline of other pelagic PMUS catch, 1987-2003                             | 3-42 |  |  |  |  |  |  |  |

# **Figures (continued)**

| 29. | Hawaii longline shark catch, 1987-2003                                 | 3-43 |
|-----|------------------------------------------------------------------------|------|
| 30. | Hawaii longline CPUE for major tunas on tuna trips, 1991-2003          | 3-49 |
| 31. | Hawaii longline swordfish CPUE by trip type, 1991-2003                 | 3-50 |
| 32a | Longline blue marlin CPUE by trip type, 1992-2003                      | 3-52 |
| 32b | o. Longline striped marlin CPUE by trip type, 1992-2003                | 3-52 |
| 33. | Number of Main Hawaiian Islands troll trips, 1983-2003                 | 3-54 |
| 34. | Main Hawaiian Islands troll catch and revenue, 1983-2003               | 3-55 |
| 35. | Main Hawaiian Islands troll tuna catch, 1983-2003                      | 3-56 |
| 36. | Main Hawaiian Islands troll billfish catch, 1983-2003                  | 3-57 |
| 37. | Main Hawaiian Islands troll catch of other pelagic PMUS, 1983-2003     | 3-58 |
| 38. | Main Hawaiian Islands troll tuna catch per trip, 1983-2003             | 3-59 |
| 39. | Main Hawaiian Islands troll marlin catch per trip, 1983-2003           | 3-60 |
| 40. | Main Hawaiian Islands troll mahimahi and ono catch per trip, 1983-2003 | 3-61 |
| 41. | Number of Main Hawaiian Islands handline trips, 1983-2003              | 3-62 |
| 42. | Main Hawaiian Island handline catch and revenue, 1983-2003             | 3-63 |
| 43. | Main Hawaiian Island handline tuna catch, 1983-2003                    | 3-64 |
| 44. | Main Hawaiian Island handline tuna catch per trip, 1983-2003           | 3-65 |
| 45. | Number of offshore tuna handline trips, 1990-2003                      | 3-66 |
| 46. | Offshore tuna handline catch and revenue, 1990-2003                    | 3-67 |
| 47. | Offshore tuna handline catch, 1990-2003                                | 3-68 |
| 48. | Offshore tuna handline catch per trip, 1990-2003                       |      |
| 49. | Hawaii aku boat (pole and line) vessel and trip activity, 1983-2003    | 3-72 |
| 50. | Hawaii aku boat (pole and line) catch and revenue, 1983-2003           | 3-73 |
| 51. | Hawaii aku boat (pole and line) fishery catch, 1983-2003               | 3-74 |
| 52. | Hawaii aku boat (pole and line) fishery catch per trip, 1983-2003      | 3-75 |

3-5 Hawaii

Table 1. Hawaii commercial pelagic catch, revenue, and average price by species, 2002-2003.

| Pounds<br>caught<br>(1000 lbs)<br>1,670<br>10,970<br>2 | Ex-vessel<br>revenue<br>(\$1000)<br>\$1,930<br>\$28,480     | Average price (\$/lb)                                                                                                                                                          | Pounds<br>caught<br>(1000 lbs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ex-vessel<br>revenue<br>(\$1000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Average price (\$/lb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,670<br>10,970<br>2                                   | ( <b>\$1000</b> )<br>\$1,930                                | (\$/lb)                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1,670<br>10,970<br>2                                   | \$1,930                                                     | , ,                                                                                                                                                                            | (1000 lbs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (\$1000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (\$/lb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10,970                                                 |                                                             | \$1.17                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10,970                                                 |                                                             | \$1.17                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2                                                      | \$28 480                                                    |                                                                                                                                                                                | 1,340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$1,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _                                                      | Ψ20,100                                                     | \$2.68                                                                                                                                                                         | 8,350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$25,780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                        | \$4                                                         | \$8.22                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$9.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1,160                                                  | \$1,210                                                     | \$1.27                                                                                                                                                                         | 1,580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$1,330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2,680                                                  | \$5,960                                                     | \$2.27                                                                                                                                                                         | 3,420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$8,620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                                                     | \$9                                                         | \$1.01                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16,500                                                 | \$37,600                                                    | \$2.37                                                                                                                                                                         | 14,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$37,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                        |                                                             |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 720                                                    | \$1 380                                                     | \$1.96                                                                                                                                                                         | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                        |                                                             | ·                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ,                                                      |                                                             |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                             | -                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2,800                                                  | \$3,700                                                     | \$1.45                                                                                                                                                                         | 3,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$2,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                             |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.420                                                  | \$2,620                                                     | \$1.91                                                                                                                                                                         | 1.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$2.910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ,                                                      |                                                             | -                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                             |                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                             |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                             | -                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        |                                                             | -                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20                                                     | \$10                                                        | \$0.85                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4,100                                                  | \$6,400                                                     | \$1.63                                                                                                                                                                         | 4,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$7,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 23 400                                                 | \$47.700                                                    | ¢2 14                                                                                                                                                                          | 22 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                        | 720 1,040 610 390 <b>2,800</b> 1,420 690 920 500 200 350 20 | 10 \$9 16,500 \$37,600  720 \$1,380 1,040 \$1,020 610 \$980 390 \$290 2,800 \$3,700  1,420 \$2,620 690 \$1,450 920 \$1,220 500 \$680 200 \$290 350 \$110 20 \$10 4,100 \$6,400 | 10       \$9       \$1.01         16,500       \$37,600       \$2.37         720       \$1,380       \$1.96         1,040       \$1,020       \$1.17         610       \$980       \$1.60         390       \$290       \$0.88         2,800       \$3,700       \$1.45         1,420       \$2,620       \$1.91         690       \$1,450       \$2.20         920       \$1,220       \$1.34         500       \$680       \$1.38         200       \$290       \$1.43         350       \$110       \$0.41         20       \$10       \$0.85         4,100       \$6,400       \$1.63 | 10       \$9       \$1.01       10         16,500       \$37,600       \$2.37       14,700         720       \$1,380       \$1.96       320         1,040       \$1,020       \$1.17       1,160         610       \$980       \$1.60       1,370         390       \$290       \$0.88       580         2,800       \$3,700       \$1.45       3,400         1,420       \$2,620       \$1.91       1,340         690       \$1,450       \$2.20       1,000         920       \$1,220       \$1.34       1,090         500       \$680       \$1.38       460         200       \$290       \$1.43       280         350       \$110       \$0.41       340         20       \$10       \$0.85       20         4,100       \$6,400       \$1.63       4,500 | 10         \$9         \$1.01         10         \$4           16,500         \$37,600         \$2.37         14,700         \$37,300           720         \$1,380         \$1.96         320         \$690           1,040         \$1,020         \$1.17         1,160         \$820           610         \$980         \$1.60         1,370         \$1,160           390         \$290         \$0.88         580         \$270           2,800         \$3,700         \$1.45         3,400         \$2,900           1,420         \$2,620         \$1.91         1,340         \$2,910           690         \$1,450         \$2.20         1,000         \$1,900           920         \$1,220         \$1.34         1,090         \$1,510           500         \$680         \$1.38         460         \$780           200         \$290         \$1.43         280         \$420           350         \$110         \$0.41         340         \$110           20         \$10         \$0.85         20         \$20           4,100         \$6,400         \$1.63         4,500         \$7,700 |

<u>Interpretation</u>: The total commercial pelagic catch was 22.6 million pounds in 2003, down 3% (-800 thousand pounds) from 2002. Tunas represented 65% of the total catch. Although bigeye tuna catch was down 24% from a record catch observed in the previous year, it was still the largest component representing about 37% of the total catch. Yellowfin tuna was the next largest component. Striped marlin was the largest component of the billfish catch, while mahimahi, opah, and ono were the largest components of the other PMUS category in 2003.

Total Hawaii commercial ex-vessel revenue (\$47.9 million) was about the same in 2003 as in the previous year. Tunas comprised 78% of this total. Bigeye tuna alone accounted for 54% of the total revenue at \$25.8 million. Yellowfin tuna was the next highest contributor to total revenue at \$8.6 million. Billfish revenue decreased 22% in 2003. Other pelagic catch was up 20%, with the highest revenue coming from mahimahi.

The total pelagic fish price increased slightly in 2003. The average price for tuna was 10% higher in 2003. The overall increase in tuna price was related to a moderate gain in bigeye tuna and yellowfin tuna prices, the two largest components of the catch. Billfish prices dropped 36% due to lower marlin prices. The increase in other PMUS is attributed to higher mahimahi and pomfret prices in 2003.

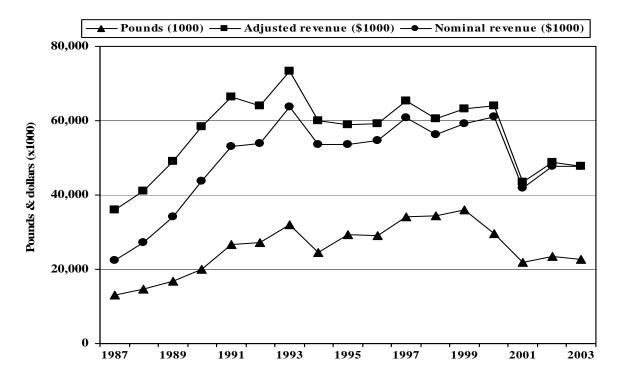
<u>Source and Calculations</u>: Longline logbook data are collected and processed by NMFS while longline market data are summarized from HDAR fish dealer reports. Total catch for the longline fishery was estimated by multiplying the number of fish kept from the NMFS longline logbook summaries with average weights from the fish dealer reports. Estimated total ex-vessel revenue was calculated by multiplying the estimated total catch by the average price from the fish dealer reports. Average weights and prices were used from HDAR fish dealer reports. Catch, revenue, and prices for the troll, handline, and aku boat fisheries were produced from HDAR commercial catch reports and fish dealer reports.

3-7 Hawaii

Table 2. Hawaii commercial pelagic catch, revenue, and average price by gear, 2002-2003.

|                   |            | 2002      |         | 2003       |           |         |  |
|-------------------|------------|-----------|---------|------------|-----------|---------|--|
|                   | Pounds     | Ex-vessel | Average | Pounds     | Ex-vessel | Average |  |
|                   | caught     | revenue   | price   | caught     | revenue   | price   |  |
| Gear              | (1000 lbs) | (\$1000)  | (\$/lb) | (1000 lbs) | (\$1000)  | (\$/lb) |  |
| Longline          | 17,500     | \$37,500  | \$2.26  | 17,400     | \$38,600  | \$2.31  |  |
| MHI trolling      | 2,390      | \$4,520   | \$1.97  | 2,690      | \$5,480   | \$2.05  |  |
| MHI handline      | 1,770      | \$3,010   | \$1.71  | 1,150      | \$2,200   | \$1.92  |  |
| Offshore handline | 990        | \$1,500   | \$1.62  | 300        | \$430     | \$1.45  |  |
| Aku boat          | 680        | \$880     | \$1.35  | 1,020      | \$1,000   | \$0.99  |  |
| Other gear        | 110        | \$240     | \$2.30  | 70         | \$140     | \$2.22  |  |
| Total             | 23,400     | \$47,700  | \$2.14  | 22,600     | \$47,900  | \$2.18  |  |

<u>Interpretation</u>: The longline fishery is the largest commercial fishery in Hawaii. Longline catch and revenue were 17.4 million pounds and \$38.6 million, respectively. Catch remained constant while revenue increased by \$1 million. Average price paid for longline catch increased by \$0.05 per pound in 2003.


The Main Hawaiian Island troll fishery is the second largest commercial fishery. It produced 2.7 million pounds worth \$5.5 million in 2003. Catch and revenue rose from 2002 by 300,000 pounds and \$800,000 in 2003. Average price paid for the troll catch increased by \$0.08 in 2003.

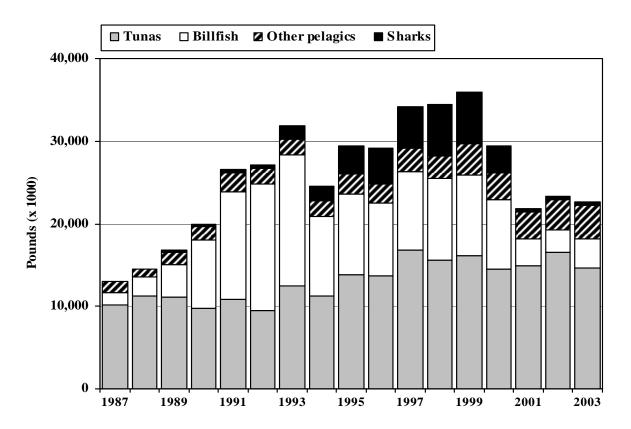
The Main Hawaiian Island handline fishery produced 1.2 million pounds of pelagic catch worth \$2.2 million while the offshore handline fishery total catch was 300,000 pounds worth \$430,000 in 2003. Catch and revenue for both these fisheries decreased in 2003.

Catch and revenue for the aku boat fishery increased to 1 million pounds worth \$1 million in 2003 and represents an increase of 340,000 pounds and \$120,000 from the record lows observed in the previous year. Average price was \$.036 lower than in 2002.

<u>Source and Calculations</u>: Longline logbook data is collected and processed by NMFS while longline market data is summarized from market sample data collected jointly by HDAR and NMFS. HDAR also collects fish dealer data. Total catch, revenue, and average price for the longline fishery were produced by the number of fish kept from the NMFS longline logbook summaries with average weights and prices from the market sampling data in 2001. Average weights and prices were used from HDAR fish dealer reports in 2002. Catch, revenue, and prices for the troll, handline, and aku boat fisheries were summarized from HDAR commercial catch reports and fish dealer reports. Some rounding errors may be apparent in the tables.

Figure 1. Hawaii total commercial catch and revenue, 1987-2003.




Interpretation: Pelagic catch and revenue grew from the late 1980s into the early 1990's. Revenue peaked at \$73 million in 1993 but the total catch peaked later at 36 million pounds in 1999. Both catch and revenue declined sharply in 2001 but remained stable in 2002 and 2003. Gear and species specific changes are explained in greater detail in the following figures and tables.

Source and Calculations: Longline catches and revenue were calculated by combining NMFS logbook data with market sample data or HDAR fish dealer data. Troll, handline, and aku boat catches and revenue were compiled from HDAR commercial catch reports and fish dealer data. Catches from these fisheries were then grouped into PMUS categories.

| Haw      | aii pelagic ca                                                                                                                                                                             | atch and revo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | enue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|          | Nominal                                                                                                                                                                                    | Adjusted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Pounds   | revenue                                                                                                                                                                                    | revenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Honolulu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| (1000)   | (\$1000)                                                                                                                                                                                   | (\$1000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 13,000   | 22,500                                                                                                                                                                                     | 36,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 14,600   | 27,100                                                                                                                                                                                     | 41,080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 16,800   | 34,200                                                                                                                                                                                     | 49,030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 19,900   | 43,800                                                                                                                                                                                     | 58,520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 138.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 26,600   | 53,200                                                                                                                                                                                     | 66,320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 148.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 27,200   | 53,800                                                                                                                                                                                     | 64,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 155.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 31,900   | 63,700                                                                                                                                                                                     | 73,410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 24,600   | 53,600                                                                                                                                                                                     | 60,120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 164.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 29,400   | 53,700                                                                                                                                                                                     | 58,940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 168.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 29,100   | 54,700                                                                                                                                                                                     | 59,120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 34,200   | 60,800                                                                                                                                                                                     | 65,260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 171.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 34,400   | 56,200                                                                                                                                                                                     | 60,460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 171.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 36,000   | 59,300                                                                                                                                                                                     | 63,130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 173.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 29,500   | 61,200                                                                                                                                                                                     | 64,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 176.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 21,800   | 42,000                                                                                                                                                                                     | 43,440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 23,400   | 47,700                                                                                                                                                                                     | 48,810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 22,700   | 47,800                                                                                                                                                                                     | 47,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 184.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 25,594.1 | 49,135.3                                                                                                                                                                                   | 56,446.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 6,906.0  | 11,880.3                                                                                                                                                                                   | 10,238.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|          | Pounds<br>(1000)<br>13,000<br>14,600<br>16,800<br>19,900<br>26,600<br>27,200<br>31,900<br>24,600<br>29,400<br>29,100<br>34,200<br>34,400<br>36,000<br>29,500<br>21,800<br>23,400<br>22,700 | Pounds (1000)         Nominal revenue (\$1000)           13,000         22,500           14,600         27,100           16,800         34,200           19,900         43,800           26,600         53,200           27,200         53,800           31,900         63,700           24,600         53,600           29,400         53,700           29,100         54,700           34,200         60,800           34,400         56,200           36,000         59,300           29,500         61,200           21,800         42,000           23,400         47,700           22,700         47,800           25,594.1         49,135.3 | Pounds (1000)         revenue (\$1000)         revenue (\$1000)           13,000         22,500         36,100           14,600         27,100         41,080           16,800         34,200         49,030           19,900         43,800         58,520           26,600         53,200         66,320           27,200         53,800         64,000           31,900         63,700         73,410           24,600         53,600         60,120           29,400         53,700         58,940           29,100         54,700         59,120           34,200         60,800         65,260           34,400         56,200         60,460           36,000         59,300         63,130           29,500         61,200         64,050           21,800         42,000         43,440           23,400         47,700         48,810           22,700         47,800         47,800           25,594.1         49,135.3         56,446.5 |  |  |  |  |

3-9 Hawaii

Figure 2. Hawaii commercial tuna, billfish, shark, and other pelagic PMUS catches, 1987-2003.



<u>Interpretation</u>: Pelagic catch grew from the late 1980s to a peak at 36 million pounds in 1999. Catches have since declined due to lower billfish and shark catches. Tuna catches grew by 45% compared to 1987 comprising 65% of the catch in 2003. They were the largest PMUS group during 1987-1990 and 1994-2003. Most of this increase results from increased catches by the longline fishery.

Billfish catches rose rapidly in the early 1990s due to increased longline catches of swordfish. Billfish catches dropped in 1994 and remained fairly constant until declining sharply again in 2000 due to regulations prohibiting targeting swordfish to reduce interactions between longline gear and sea turtles. Billfish catches have remained at relatively low levels since 2001.

Other pelagic PMUS included mahimahi, ono (wahoo), moonfish, pomfrets and other miscellaneous pelagic species. Catches from this category have quadrupled over the 15 year period to become the second largest PMUS group. However, catches of other PMUS are still relatively small to total catch.

Shark catches grew in the mid-1990s and peaked in 1999 as a result of the increasing practice of finning sharks by the longline fishery. This practice was prohibited by State and Federal law in 2000. Sharks catches dropped after these regulations were implemented.

<u>Source and Calculations</u>: Longline catches were calculated on a species specific basis by multiplying the total number of fish kept by species from the NMFS logbook summaries by the corresponding average weights from the market sample data. Troll, handline, and aku boat catches were compiled from HDAR commercial catch reports and fish dealer data. Catches from these fisheries were then grouped into PMUS categories.

|         | Hawaii pelagic catch (1000 pounds) |          |          |         |          |  |  |  |  |
|---------|------------------------------------|----------|----------|---------|----------|--|--|--|--|
|         |                                    |          | Other    |         |          |  |  |  |  |
| Year    | Tunas                              | Billfish | pelagics | Sharks  | Total    |  |  |  |  |
| 1987    | 10,120                             | 1,560    | 1,290    | 40      | 13,000   |  |  |  |  |
| 1988    | 11,200                             | 2,300    | 970      | 90      | 14,600   |  |  |  |  |
| 1989    | 11,180                             | 3,880    | 1,530    | 200     | 16,800   |  |  |  |  |
| 1990    | 9,720                              | 8,280    | 1,650    | 220     | 19,900   |  |  |  |  |
| 1991    | 10,790                             | 13,130   | 2,300    | 320     | 26,500   |  |  |  |  |
| 1992    | 9,460                              | 15,360   | 1,930    | 410     | 27,200   |  |  |  |  |
| 1993    | 12,420                             | 15,920   | 1,850    | 1,740   | 31,900   |  |  |  |  |
| 1994    | 11,310                             | 9,530    | 1,970    | 1,760   | 24,600   |  |  |  |  |
| 1995    | 13,820                             | 9,730    | 2,420    | 3,470   | 29,400   |  |  |  |  |
| 1996    | 13,690                             | 8,790    | 2,340    | 4,330   | 29,200   |  |  |  |  |
| 1997    | 16,810                             | 9,490    | 2,830    | 5,010   | 34,100   |  |  |  |  |
| 1998    | 15,560                             | 9,930    | 2,750    | 6,210   | 34,500   |  |  |  |  |
| 1999    | 16,150                             | 9,760    | 3,800    | 6,270   | 36,000   |  |  |  |  |
| 2000    | 14,460                             | 8,480    | 3,240    | 3,300   | 29,500   |  |  |  |  |
| 2001    | 14,950                             | 3,220    | 3,270    | 330     | 21,800   |  |  |  |  |
| 2002    | 16,490                             | 2,770    | 3,690    | 350     | 23,300   |  |  |  |  |
| 2003    | 14,690                             | 3,430    | 4,150    | 340     | 22,600   |  |  |  |  |
| Average | 13,107.1                           | 7,974.1  | 2,469.4  | 2,022.9 | 25,582.4 |  |  |  |  |
| SD      | 2,489.1                            | 4,475.9  | 925.1    | 2,262.9 | 6,913.3  |  |  |  |  |

3-11 Hawaii

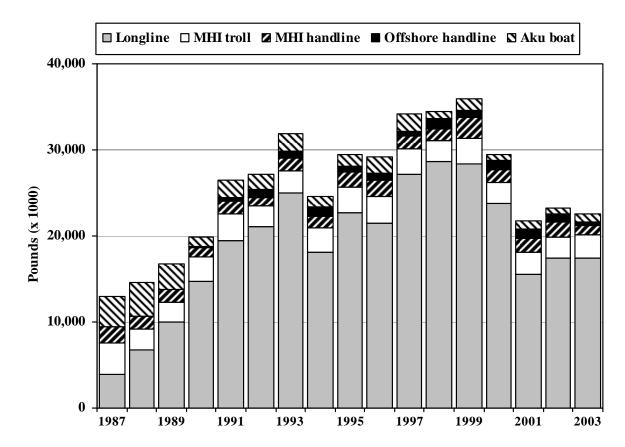



Figure 3. Total commercial pelagic catch by gear type 1987-2003.

<u>Interpretation</u>: Hawaii commercial pelagic catch was dominated by longline catch. This fishery was responsible for 77% of the catch in 2003. This began to rise in the late 1980s as the number of participants increased. Two additional factors contributed to growth in the 1990s. The first was caused by growing swordfish catches and the second was due to the increase practice of finning sharks. Prohibitions on finning sharks and targeting swordfish into 2000 are the reasons for the recent decline in this fishery. Catches by the MHI troll and MHI handline fisheries are the next two largest fisheries in Hawaii. Catch from these fisheries have remained relatively constant since 1987. The offshore handline fishery grew in the early 1990s with catches leveling off thereafter. In contrast, aku boat catches have declined from the late 1980s due to attrition of an aging fleet.

<u>Source and Calculations</u>: Longline catches were calculated on a species specific basis by multiplying the total number of fish kept from the NMFS logbook summaries by the corresponding average weights from the market sample data. Troll, handline, and aku boat catches were complied from HDAR commercial catch reports and fish dealer data.

|         | Hawaii pelagic total catch (1000 pounds) |              |                 |                      |          |          |  |  |  |
|---------|------------------------------------------|--------------|-----------------|----------------------|----------|----------|--|--|--|
| Year    | Longline                                 | MHI<br>troll | MHI<br>handline | Offshore<br>handline | Aku boat | Total    |  |  |  |
| 1987    | 3,890                                    | 3,710        | 1,910           | -                    | 3,500    | 13,000   |  |  |  |
| 1988    | 6,710                                    | 2,450        | 1,470           | -                    | 3,940    | 14,600   |  |  |  |
| 1989    | 9,940                                    | 2,400        | 1,490           | -                    | 2,960    | 16,800   |  |  |  |
| 1990    | 14,730                                   | 2,900        | 1,060           | 70                   | 1,120    | 19,900   |  |  |  |
| 1991    | 19,490                                   | 3,100        | 1,480           | 330                  | 2,150    | 26,600   |  |  |  |
| 1992    | 21,110                                   | 2,390        | 950             | 990                  | 1,730    | 27,200   |  |  |  |
| 1993    | 25,010                                   | 2,580        | 1,530           | 680                  | 2,140    | 31,900   |  |  |  |
| 1994    | 18,140                                   | 2,810        | 1,290           | 1,170                | 1,160    | 24,600   |  |  |  |
| 1995    | 22,730                                   | 2,970        | 1,730           | 710                  | 1,290    | 29,400   |  |  |  |
| 1996    | 21,550                                   | 2,990        | 1,960           | 790                  | 1,840    | 29,100   |  |  |  |
| 1997    | 27,150                                   | 3,020        | 1,480           | 560                  | 1,950    | 34,200   |  |  |  |
| 1998    | 28,630                                   | 2,470        | 1,370           | 1,130                | 840      | 34,400   |  |  |  |
| 1999    | 28,350                                   | 3,010        | 2,410           | 890                  | 1,310    | 36,000   |  |  |  |
| 2000    | 23,810                                   | 2,460        | 1,410           | 1,100                | 710      | 29,500   |  |  |  |
| 2001    | 15,560                                   | 2,610        | 1,600           | 1,010                | 990      | 21,800   |  |  |  |
| 2002    | 17,480                                   | 2,390        | 1,770           | 930                  | 680      | 23,400   |  |  |  |
| 2003    | 17,440                                   | 2,690        | 1,150           | 300                  | 1,020    | 22,700   |  |  |  |
| Average | 18,924.7                                 | 2,761.8      | 1,532.9         | 761.4                | 1,725.3  | 25,594.1 |  |  |  |
| SD      | 7,193.0                                  | 353.6        | 354.9           | 340.2                | 967.9    | 6,906.0  |  |  |  |

3-13 Hawaii

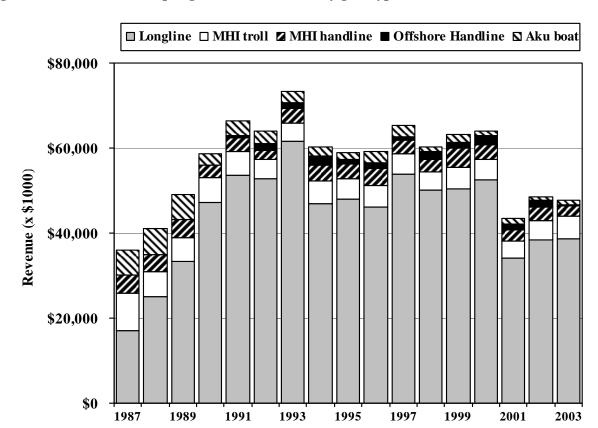



Figure 4. Total commercial pelagic ex-vessel revenue by gear type 1987-2003.

<u>Interpretation</u>: Ex-vessel revenue from Hawaii's pelagic fisheries was adjusted for inflation. Hawaii commercial pelagic catch is dominated by longline revenue. Longline revenue began to increase in the late 1980s as the fishery expanded. Longline revenue grew in the early 1990s due to growing swordfish catches peaking in 1993, dropping the next year, stabilizing up until restrictions and closure of the swordfish fishery in 2001. The MHI troll and MHI handline fisheries were ranked as the next two fisheries with the highest revenue. Revenue from these fisheries have remained relatively constant during the fifteen year period. The offshore handline fishery grew in the early 1990s with revenue leveling off thereafter. In contrast, aku boat revenue have declined from the late 1980s due fleet attrition and lower catches.

<u>Source and Calculations</u>: Longline revenue were calculated by multiplying the estimated total catch by the average price from the market sample data. Troll, handline, and aku boat revenue were summarized from HDAR commercial catch reports and fish dealer reports. Ex-vessel revenue was then adjusted for inflation using the Honolulu Consumer Price Index (HCPI).

|         |    | Hawaii pelagic total revenue (\$1000) |    |           |    |         |    |          |    |         |                |
|---------|----|---------------------------------------|----|-----------|----|---------|----|----------|----|---------|----------------|
|         |    |                                       |    |           |    | MHI     | C  | Offshore |    |         |                |
| Year    | L  | ongline                               | M  | IHI troll | h  | andline | Н  | andline  | A  | ku boat | Total          |
| 1987    | \$ | 17,000                                | \$ | 8,890     | \$ | 4,180   | \$ | -        | \$ | 6,020   | \$<br>36,100   |
| 1988    | \$ | 25,000                                | \$ | 5,870     | \$ | 4,020   | \$ | -        | \$ | 6,160   | \$<br>41,100   |
| 1989    | \$ | 33,300                                | \$ | 5,590     | \$ | 4,190   | \$ | -        | \$ | 5,940   | \$<br>49,000   |
| 1990    | \$ | 47,200                                | \$ | 6,000     | \$ | 2,780   | \$ | 130      | \$ | 2,500   | \$<br>58,600   |
| 1991    | \$ | 53,500                                | \$ | 5,610     | \$ | 3,160   | \$ | 660      | \$ | 3,370   | \$<br>66,300   |
| 1992    | \$ | 52,800                                | \$ | 4,480     | \$ | 2,090   | \$ | 1,760    | \$ | 2,870   | \$<br>64,000   |
| 1993    | \$ | 61,500                                | \$ | 4,400     | \$ | 3,370   | \$ | 1,300    | \$ | 2,780   | \$<br>73,400   |
| 1994    | \$ | 46,900                                | \$ | 5,490     | \$ | 3,520   | \$ | 2,180    | \$ | 2,060   | \$<br>60,200   |
| 1995    | \$ | 47,900                                | \$ | 4,910     | \$ | 3,450   | \$ | 1,060    | \$ | 1,700   | \$<br>59,000   |
| 1996    | \$ | 46,200                                | \$ | 5,030     | \$ | 3,970   | \$ | 1,410    | \$ | 2,580   | \$<br>59,200   |
| 1997    | \$ | 53,800                                | \$ | 4,820     | \$ | 3,270   | \$ | 870      | \$ | 2,570   | \$<br>65,300   |
| 1998    | \$ | 50,100                                | \$ | 4,320     | \$ | 2,970   | \$ | 1,820    | \$ | 1,190   | \$<br>60,400   |
| 1999    | \$ | 50,500                                | \$ | 4,990     | \$ | 4,580   | \$ | 1,340    | \$ | 1,780   | \$<br>63,200   |
| 2000    | \$ | 52,500                                | \$ | 4,890     | \$ | 3,470   | \$ | 2,030    | \$ | 1,140   | \$<br>64,000   |
| 2001    | \$ | 34,100                                | \$ | 3,980     | \$ | 2,830   | \$ | 1,110    | \$ | 1,410   | \$<br>43,400   |
| 2002    | \$ | 38,400                                | \$ | 4,620     | \$ | 3,080   | \$ | 1,540    | \$ | 900     | \$<br>48,800   |
| 2003    | \$ | 38,600                                | \$ | 5,480     | \$ | 2,200   | \$ | 430      | \$ | 1,000   | \$<br>47,900   |
| Average | \$ | 44,076.5                              | \$ | 5,257.1   | \$ | 3,360.6 | \$ | 1,260.0  | \$ | 2,704.1 | \$<br>56,464.7 |
| SD      | \$ | 11,808.0                              | \$ | 1,132.4   | \$ | 639.1   | \$ | 598.2    | \$ | 1,745.9 | \$<br>10,327.3 |

3-15 Hawaii

□ Longline □ MHI troll **②** MHI handline **■** Offshore handline **③** Aku boat 20,000 15,000 Pounds (x 1000)

Figure 5. Hawaii commercial tuna catch by gear type, 1987-2003.

Interpretation: Longline gear has been the largest single contributor to Hawaii commercial tuna catch since 1988 and was on a upward trend up until 1997. Tuna catch was steady thereafter with a peak in 2002. Tuna catches by the MHI troll fishery were highest in 1987 and were relatively stable from then on. The MHI handline fishery peaked in 1999 with fairly steady annual catches. Offshore handline tuna

1995

1993

1991

catches rose rapidly from 1990 to varied substantially 1992 and Offshore handline tuna thereafter. catch dropped substantially in 2003. The aku boat fishery was on a declining trend with its lowest catch in 2002. Aku boat catch rebounded in 2003

10,000

5,000

Source and Calculations: Longline tuna catches were calculated by multiplying the number of fish kept from NMFS logbook data and average weight summaries from market sample data. Troll, handline, and aku boat tuna catches were compiled from HDAR commercial catch reports and fish dealer data.

|         | Hawaii tuna catch by gear type (1000 pounds) |           |          |          |          |          |  |  |  |
|---------|----------------------------------------------|-----------|----------|----------|----------|----------|--|--|--|
|         |                                              |           | MHI      | Offshore |          |          |  |  |  |
| Year    | Longline                                     | MHI troll | handline | handline | Aku boat | Total    |  |  |  |
| 1987    | 2,705                                        | 2,136     | 1,782    | -        | 3,501    | 10,125   |  |  |  |
| 1988    | 4,725                                        | 1,141     | 1,395    | -        | 3,936    | 11,197   |  |  |  |
| 1989    | 5,921                                        | 904       | 1,393    | -        | 2,961    | 11,179   |  |  |  |
| 1990    | 6,162                                        | 1,401     | 981      | 66       | 1,116    | 9,725    |  |  |  |
| 1991    | 5,797                                        | 1,145     | 1,380    | 326      | 2,146    | 10,794   |  |  |  |
| 1992    | 4,908                                        | 980       | 885      | 967      | 1,721    | 9,461    |  |  |  |
| 1993    | 7,205                                        | 964       | 1,458    | 655      | 2,134    | 12,417   |  |  |  |
| 1994    | 6,540                                        | 1,239     | 1,213    | 1,157    | 1,158    | 11,307   |  |  |  |
| 1995    | 8,898                                        | 1,295     | 1,642    | 694      | 1,291    | 13,820   |  |  |  |
| 1996    | 8,074                                        | 1,146     | 1,845    | 776      | 1,844    | 13,685   |  |  |  |
| 1997    | 11,826                                       | 1,107     | 1,384    | 553      | 1,942    | 16,813   |  |  |  |
| 1998    | 11,359                                       | 933       | 1,298    | 1,121    | 845      | 15,555   |  |  |  |
| 1999    | 10,529                                       | 1,135     | 2,302    | 868      | 1,312    | 16,146   |  |  |  |
| 2000    | 10,534                                       | 845       | 1,324    | 1,050    | 707      | 14,460   |  |  |  |
| 2001    | 10,720                                       | 754       | 1,518    | 971      | 990      | 14,953   |  |  |  |
| 2002    | 12,368                                       | 810       | 1,665    | 904      | 677      | 16,488   |  |  |  |
| 2003    | 11,183                                       | 1,132     | 1,058    | 280      | 1,010    | 14,686   |  |  |  |
| Average | 8,203.2                                      | 1,121.6   | 1,442.5  | 611.1    | 1,723.0  | 13,106.5 |  |  |  |
| SD      | 2,948.5                                      | 315.3     | 343.1    | 418.8    | 967.9    | 2,487.8  |  |  |  |

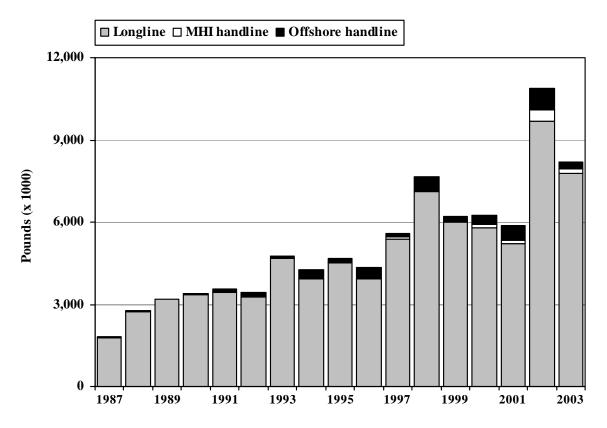
20,000 | Bigeye tuna | Yellowfin tuna | Skipjack tuna | Albacore |

15,000 | 10,000 | 5,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |

Figure 6. Species composition of the tuna catch, 1987-2003.

<u>Interpretation</u>: Bigeye tuna was the largest component of the tuna catch since 1996 and averaged about 39% of the tuna catch during 1987-2003. The bigeye tuna composition was higher than usual in the past two years (67% and 57% respectively) due to larger than average catches. The longline fishery accounted for majority of the bigeye tuna catches. The composition of yellowfin tuna averaged 30% over the 17 year period. The composition of yellowfin tuna declined due to growing catches of bigeye tuna. The MHI troll and handline (both MHI and offshore) fisheries accounted for most of the yellowfin tuna catch until

1999 with the longline fishery contributing the highest catches from 2000. Skipjack tuna made up 17% of the tuna catches with the highest composition in the late 1980s. The aku boat (pole and line) fishery was the largest skipjack tuna fishery in Hawaii. The composition of albacore grew rapidly peaking in 1999 and declining thereafter. The longline fishery was responsible for these rising catches.


<u>Source and Calculations</u>: Longline tuna catches were calculated by multiplying the number of fish kept from NMFS logbook data and average weight summaries from market sample data. Troll, handline, and aku boat tuna catches were compiled

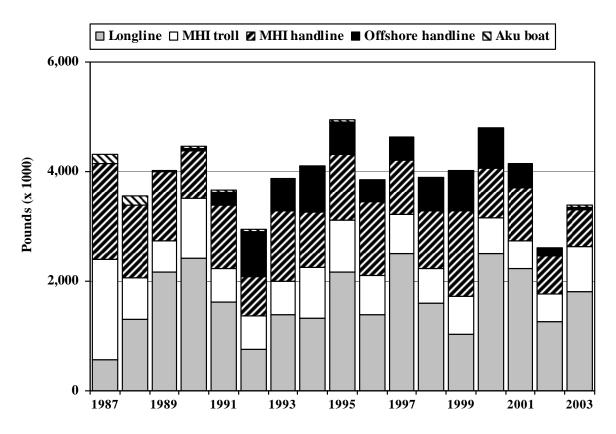
|         | Hawaii tuna catch (1000 pounds) |           |          |          |          |  |  |  |  |
|---------|---------------------------------|-----------|----------|----------|----------|--|--|--|--|
|         | Bigeye                          | Yellowfin | Skipjack |          |          |  |  |  |  |
| Year    | tuna                            | tuna      | tuna     | Albacore | Total    |  |  |  |  |
| 1987    | 1,814                           | 4,310     | 3,633    | 345      | 10,125   |  |  |  |  |
| 1988    | 2,770                           | 3,550     | 4,156    | 695      | 11,197   |  |  |  |  |
| 1989    | 3,208                           | 4,020     | 3,298    | 626      | 11,179   |  |  |  |  |
| 1990    | 3,425                           | 4,460     | 1,389    | 421      | 9,725    |  |  |  |  |
| 1991    | 3,572                           | 3,663     | 2,690    | 846      | 10,794   |  |  |  |  |
| 1992    | 3,455                           | 2,943     | 2,098    | 855      | 9,461    |  |  |  |  |
| 1993    | 4,768                           | 3,871     | 2,546    | 1,122    | 12,417   |  |  |  |  |
| 1994    | 4,279                           | 4,105     | 1,554    | 1,292    | 11,307   |  |  |  |  |
| 1995    | 4,667                           | 4,941     | 1,814    | 2,327    | 13,820   |  |  |  |  |
| 1996    | 4,331                           | 3,851     | 2,425    | 3,021    | 13,685   |  |  |  |  |
| 1997    | 5,596                           | 4,628     | 2,608    | 3,920    | 16,813   |  |  |  |  |
| 1998    | 7,641                           | 3,896     | 1,326    | 2,645    | 15,555   |  |  |  |  |
| 1999    | 6,212                           | 4,012     | 1,909    | 3,979    | 16,146   |  |  |  |  |
| 2000    | 6,243                           | 4,806     | 1,104    | 2,290    | 14,460   |  |  |  |  |
| 2001    | 5,873                           | 4,145     | 1,696    | 3,229    | 14,953   |  |  |  |  |
| 2002    | 10,968                          | 2,677     | 1,163    | 1,667    | 16,488   |  |  |  |  |
| 2003    | 8,346                           | 3,415     | 1,581    | 1,344    | 14,693   |  |  |  |  |
| Average | 5,127.5                         | 3,958.5   | 2,175.9  | 1,801.4  | 13,106.9 |  |  |  |  |
| SD      | 2,291.6                         | 602.9     | 889.2    | 1,208.7  | 2,488.1  |  |  |  |  |

3-17 Hawaii

from HDAR commercial catch reports and fish dealer data.

Figure 7. Hawaii bigeye tuna catch, 1987-2003.




<u>Interpretation</u>: Annual bigeye tuna catches have increased more than five-fold during 1987-2002. Bigeye catches by all fisheries in 2003 were down from record catches in 2002. The longline fishery typically produces more than 90% of the total bigeye tuna catch. Bigeye catch by this fishery was a record 9.7 million pounds in 2002 and decreased to 7.8 million pounds in 2003. The offshore handline fishery is currently the second largest producer of bigeye

tuna in Hawaii and was followed by the MHI handline and MHI troll fisheries, respectively. The MHI troll catches of bigeye tuna reached a record 145,000 pounds in 2003.

Source and Calculations: Longline bigeye tuna catches were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample data. Troll and handline bigeye tuna catches were compiled from HDAR commercial catch reports and fish dealer data.

|         | Hawaii bigeye tuna catch (1000 pounds) |           |          |          |         |  |  |  |  |
|---------|----------------------------------------|-----------|----------|----------|---------|--|--|--|--|
|         |                                        |           | MHI      | Offshore |         |  |  |  |  |
| Year    | Longline                               | MHI troll | handline | handline | Total   |  |  |  |  |
| 1987    | 1,796                                  | 11        | 6        | -        | 1,814   |  |  |  |  |
| 1988    | 2,732                                  | 10        | 28       | -        | 2,770   |  |  |  |  |
| 1989    | 3,178                                  | 11        | 19       | -        | 3,208   |  |  |  |  |
| 1990    | 3,338                                  | 15        | 41       | 31       | 3,425   |  |  |  |  |
| 1991    | 3,423                                  | 11        | 45       | 94       | 3,572   |  |  |  |  |
| 1992    | 3,277                                  | 9         | 19       | 151      | 3,455   |  |  |  |  |
| 1993    | 4,677                                  | 4         | 2        | 85       | 4,768   |  |  |  |  |
| 1994    | 3,940                                  | 6         | 10       | 324      | 4,279   |  |  |  |  |
| 1995    | 4,522                                  | 10        | 33       | 102      | 4,667   |  |  |  |  |
| 1996    | 3,940                                  | 4         | 11       | 375      | 4,331   |  |  |  |  |
| 1997    | 5,399                                  | 6         | 52       | 138      | 5,596   |  |  |  |  |
| 1998    | 7,113                                  | 5         | 15       | 508      | 7,641   |  |  |  |  |
| 1999    | 5,995                                  | 7         | 46       | 164      | 6,212   |  |  |  |  |
| 2000    | 5,788                                  | 6         | 133      | 317      | 6,243   |  |  |  |  |
| 2001    | 5,217                                  | 9         | 117      | 530      | 5,873   |  |  |  |  |
| 2002    | 9,679                                  | 100       | 427      | 762      | 10,968  |  |  |  |  |
| 2003    | 7,770                                  | 145       | 180      | 244      | 8,346   |  |  |  |  |
| Average | 4,810.8                                | 21.7      | 69.6     | 273.1    | 5,127.5 |  |  |  |  |
| SD      | 2,011.9                                | 38.9      | 104.7    | 210.5    | 2,291.6 |  |  |  |  |

Figure 8. Hawaii yellowfin tuna catch, 1987-2003.



<u>Interpretation</u>: Annual catches of yellowfin tuna averaged 4 millions pounds and varied from 2.7 million pounds to 4.9 million pounds during 1987-2003. The longline fishery typically had the highest yellowfin tuna catch. The MHI handline fishery usually was the second largest producer, followed by

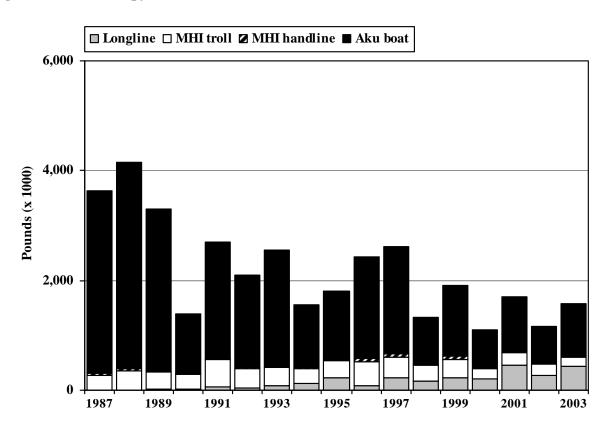
MHI troll and offshore handline fisheries, respectively. The aku boat fishery (pole and line) had small catches of yellowfin tuna. This species is usually caught by the aku boat fishery when catches of skipjack tuna are poor.

Year

1987

1988

1989


1989

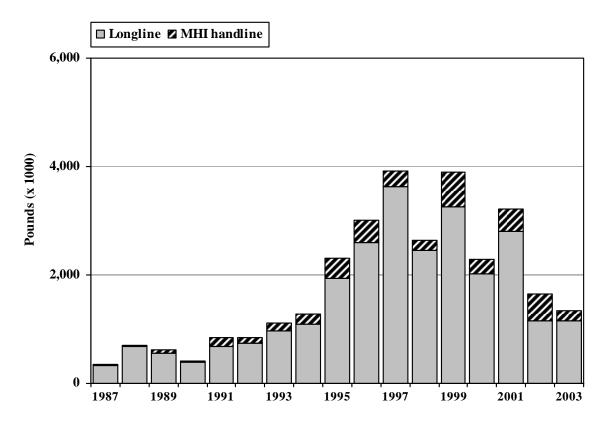
Source and Calculations: Longline yellowfin tuna catches were calculated by multiplying the number of fish kept from NMFS logbook data and average weight summaries from market sample data. Troll, handline, and aku boat yellowfin tuna catches were compiled from HDAR commercial catch reports and fish dealer data.

|         |          | Hawaii ye | llowfin tuna | a catch (100 | 0 pounds) |         |
|---------|----------|-----------|--------------|--------------|-----------|---------|
|         |          |           | MHI          | Offshore     |           |         |
| Year    | Longline | MHI troll | handline     | handline     | Aku boat  | Total   |
| 1987    | 575      | 1,828     | 1,734        |              | 173       | 4,310   |
| 1988    | 1,309    | 764       | 1,310        | -            | 168       | 3,550   |
| 1989    | 2,174    | 559       | 1,266        | -            | 21        | 4,020   |
| 1990    | 2,421    | 1,089     | 876          | 35           | 39        | 4,460   |
| 1991    | 1,617    | 615       | 1,154        | 232          | 44        | 3,663   |
| 1992    | 763      | 606       | 722          | 816          | 36        | 2,943   |
| 1993    | 1,392    | 616       | 1,283        | 571          | 10        | 3,871   |
| 1994    | 1,336    | 914       | 1,003        | 834          | 19        | 4,105   |
| 1995    | 2,159    | 949       | 1,207        | 591          | 34        | 4,941   |
| 1996    | 1,389    | 707       | 1,352        | 401          | 2         | 3,851   |
| 1997    | 2,515    | 712       | 986          | 415          | 0         | 4,628   |
| 1998    | 1,592    | 636       | 1,052        | 613          | 3         | 3,896   |
| 1999    | 1,042    | 687       | 1,559        | 703          | 21        | 4,012   |
| 2000    | 2,506    | 649       | 916          | 734          | 2         | 4,806   |
| 2001    | 2,233    | 514       | 952          | 442          | 4         | 4,145   |
| 2002    | 1,258    | 503       | 711          | 142          | 4         | 2,677   |
| 2003    | 1,820    | 805       | 687          | 36           | 50        | 3,415   |
| Average | 1,653.0  | 773.7     | 1,104.2      | 468.9        | 37.0      | 3,958.5 |
| SD      | 601.9    | 314.1     | 294.8        | 273.3        | 52.7      | 602.9   |

3-19 Hawaii

Figure 9. Hawaii skipjack tuna catch, 1987-2003.




<u>Interpretation</u>: The trend for skipjack tuna catch is declining. Skipjack tuna catch is dominated by the aku boat (pole and line) fishery. Though catches by this fishery have decreased, they accounted for 77% of the total skipjack tuna catch. The MHI troll fishery

was usually the second largest contributor to skipjack tuna catch but was replaced by the longline fishery from 2000.

Source and Calculations: Longline skipjack tuna catches were calculated by multiplying the number of fish kept from NMFS logbook data and average weight summaries from market sample data. Troll, handline, and aku boat skipjack tuna catches were compiled from HDAR commercial catch reports and fish dealer data.

|         | Hawaii skipjack tuna catch (1000 pounds) |           |          |          |         |  |
|---------|------------------------------------------|-----------|----------|----------|---------|--|
|         |                                          |           | MHI      |          |         |  |
| Year    | Longline                                 | MHI troll | handline | Aku boat | Total   |  |
| 1987    | 3                                        | 277       | 25       | 3,328    | 3,633   |  |
| 1988    | 8                                        | 351       | 29       | 3,768    | 4,156   |  |
| 1989    | 22                                       | 318       | 20       | 2,938    | 3,298   |  |
| 1990    | 12                                       | 278       | 26       | 1,073    | 1,389   |  |
| 1991    | 66                                       | 504       | 19       | 2,102    | 2,690   |  |
| 1992    | 49                                       | 347       | 21       | 1,682    | 2,098   |  |
| 1993    | 79                                       | 332       | 14       | 2,121    | 2,546   |  |
| 1994    | 116                                      | 283       | 21       | 1,133    | 1,554   |  |
| 1995    | 223                                      | 318       | 17       | 1,256    | 1,814   |  |
| 1996    | 91                                       | 424       | 69       | 1,842    | 2,425   |  |
| 1997    | 234                                      | 376       | 56       | 1,942    | 2,608   |  |
| 1998    | 168                                      | 278       | 38       | 842      | 1,326   |  |
| 1999    | 219                                      | 347       | 52       | 1,291    | 1,909   |  |
| 2000    | 206                                      | 181       | 13       | 704      | 1,104   |  |
| 2001    | 466                                      | 216       | 28       | 986      | 1,696   |  |
| 2002    | 276                                      | 195       | 18       | 672      | 1,163   |  |
| 2003    | 435                                      | 169       | 12       | 960      | 1,581   |  |
| Average | 157.2                                    | 305.5     | 28.0     | 1,684.7  | 2,175.9 |  |
| SD      | 141.6                                    | 87.3      | 16.5     | 928.6    | 889.2   |  |

Figure 10. Hawaii albacore catch, 1987-2003.



<u>Interpretation</u>: Albacore catch increased more than 11-fold from 1987 to 1999 and declined substantially thereafter. The longline fishery typically produces more than 80% of the albacore catch. Albacore catch by the MHI handline fishery was relatively small but grew over the 17-year period peaking at 642,000

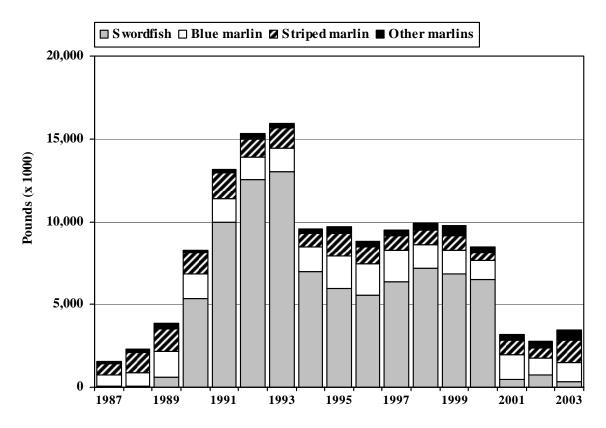
pounds in 1999. On rare occasions, the MHI troll fishery has encountered short "runs" of albacore but those catches were negligible in comparison.

<u>Source and Calculations</u>: Longline albacore catches were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample data. Troll and handline albacore catches were compiled from HDAR commercial catch reports and fish dealer data.

|         | Hawaii albacore catch (1000 pounds) |           |          |         |  |  |  |
|---------|-------------------------------------|-----------|----------|---------|--|--|--|
|         |                                     |           | MHI      |         |  |  |  |
| Year    | Longline                            | MHI troll | handline | Total   |  |  |  |
| 1987    | 331                                 | 1         | 12       | 345     |  |  |  |
| 1988    | 676                                 | 1         | 18       | 695     |  |  |  |
| 1989    | 547                                 | 1         | 78       | 626     |  |  |  |
| 1990    | 390                                 | 1         | 31       | 421     |  |  |  |
| 1991    | 687                                 | 2         | 157      | 846     |  |  |  |
| 1992    | 735                                 | 3         | 116      | 855     |  |  |  |
| 1993    | 965                                 | 3         | 154      | 1,122   |  |  |  |
| 1994    | 1,095                               | 22        | 176      | 1,292   |  |  |  |
| 1995    | 1,938                               | 10        | 380      | 2,327   |  |  |  |
| 1996    | 2,606                               | 5         | 409      | 3,021   |  |  |  |
| 1997    | 3,626                               | 7         | 287      | 3,920   |  |  |  |
| 1998    | 2,450                               | 4         | 191      | 2,645   |  |  |  |
| 1999    | 3,250                               | 87        | 642      | 3,979   |  |  |  |
| 2000    | 2,026                               | 4         | 260      | 2,290   |  |  |  |
| 2001    | 2,802                               | 10        | 417      | 3,229   |  |  |  |
| 2002    | 1,152                               | 8         | 507      | 1,667   |  |  |  |
| 2003    | 1,157                               | 8         | 179      | 1,344   |  |  |  |
| Average | 1,554.9                             | 10.4      | 236.1    | 1,801.4 |  |  |  |
| SD      | 1,058.9                             | 20.4      | 181.3    | 1,208.7 |  |  |  |

3-21 Hawaii

Figure 11. Hawaii commercial billfish catch by gear type, 1987-2003.


**Interpretation:** Billfish catch grew 10-fold from 1987 to 1993, but then dropped 40% the following year. Catch remained relatively unchanged through 2000, but then fell again by 602 in 2001, and remained low thereafter. The rapid rise and decline in billfish

catch by the longline fishery from 1987-1994 was directly attributed to swordfish catch. The decline in billfish catch in 2001 was due to lower swordfish catches from regulations imposed on the longline fishery prohibiting targeting swordfish. Billfish catches by the MHI troll fishery were relatively stable up to the 1990s, with a peak in 1996, and with lower catches in the 2000s. The MHI handline fishery consistently had relatively low catches. Most of the billfish caught by this fishery was blue marlin.

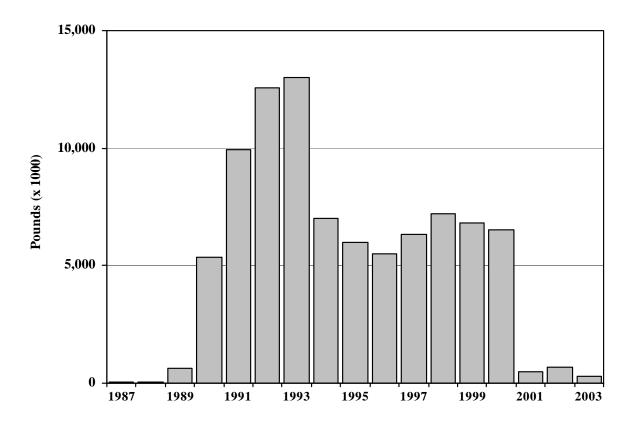
Source and Calculations: Longline billfish catches were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample data. Troll and handline billfish catches were compiled from HDAR commercial catch reports and fish dealer data.

|         | Hawaii billfish catch (1000 lbs) |           |          |         |  |  |  |
|---------|----------------------------------|-----------|----------|---------|--|--|--|
|         |                                  |           | MHI      |         |  |  |  |
| Year    | Longline                         | MHI troll | handline | Total   |  |  |  |
| 1987    | 860                              | 666       | 30       | 1,555   |  |  |  |
| 1988    | 1,540                            | 736       | 29       | 2,304   |  |  |  |
| 1989    | 3,040                            | 805       | 31       | 3,877   |  |  |  |
| 1990    | 7,520                            | 732       | 28       | 8,280   |  |  |  |
| 1991    | 12,210                           | 890       | 31       | 13,131  |  |  |  |
| 1992    | 14,660                           | 683       | 15       | 15,358  |  |  |  |
| 1993    | 15,030                           | 870       | 23       | 15,923  |  |  |  |
| 1994    | 8,740                            | 770       | 19       | 9,529   |  |  |  |
| 1995    | 8,840                            | 856       | 30       | 9,727   |  |  |  |
| 1996    | 7,720                            | 1,042     | 32       | 8,794   |  |  |  |
| 1997    | 8,520                            | 935       | 39       | 9,494   |  |  |  |
| 1998    | 9,280                            | 626       | 21       | 9,927   |  |  |  |
| 1999    | 8,960                            | 769       | 31       | 9,760   |  |  |  |
| 2000    | 7,970                            | 489       | 24       | 8,482   |  |  |  |
| 2001    | 2,440                            | 756       | 25       | 3,221   |  |  |  |
| 2002    | 2,210                            | 533       | 28       | 2,771   |  |  |  |
| 2003    | 2,930                            | 478       | 25       | 3,433   |  |  |  |
| Average | 7,204.1                          | 743.4     | 27.1     | 7,974.5 |  |  |  |
| SD      | 4,420.0                          | 155.0     | 5.7      | 4,475.9 |  |  |  |

Figure 12. Species composition of the billfish catch, 1987-2003.



Interpretation: The billfish catch consisted mostly of marlins and small catches of swordfish from 1987 through 1989. However, in 1990 the composition changed and catch more than doubled as longline vessels began to target swordfish. Swordfish catches continued to dominate billfish catch from 1990 through 2000 despite a 46% decrease in 1994. Swordfish catches dropped 92% in 2001 from regulatory actions and remained low through 2003. Billfish


actions and remained low through 2003. composition in 2001 and 2002 resembled the billfish composition of the late 1980s, with marlins as the largest component. Blue marlin composed 34% of the billfish catch in 2003 with the highest catches during 1995-1997. Striped marlin made up 40% of the billfish catch in 2003. Striped marlin catches peaked in 1991 and declined to a low in 2000 with above average catch in 2003.

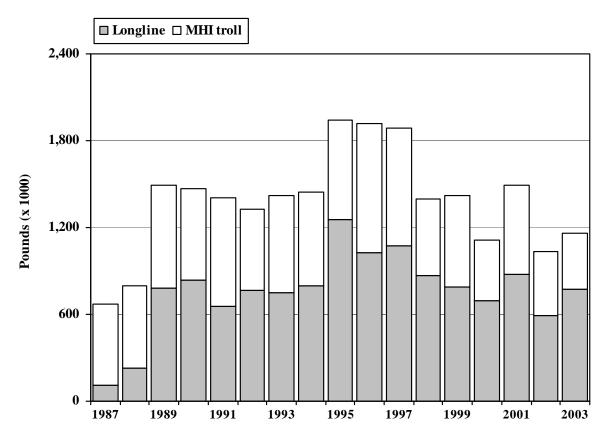
Source and Calculations: Longline billfish catches were calculated by multiplying the number of fish kept from NMFS logbook data and average weight summaries from market sample data. Troll and handline billfish catches were compiled from HDAR commercial catch reports and fish dealer data.

|         |           | Hawaii bi | llfish catch | (1000 lbs) |         |
|---------|-----------|-----------|--------------|------------|---------|
|         |           | Blue      | Striped      | Other      |         |
| Year    | Swordfish | marlin    | marlin       | marlins    | Total   |
| 1987    | 60        | 686       | 667          | 144        | 1,557   |
| 1988    | 65        | 812       | 1,231        | 194        | 2,301   |
| 1989    | 635       | 1,502     | 1,403        | 340        | 3,880   |
| 1990    | 5,383     | 1,485     | 1,247        | 164        | 8,279   |
| 1991    | 9,953     | 1,418     | 1,551        | 208        | 13,129  |
| 1992    | 12,569    | 1,339     | 1,097        | 349        | 15,354  |
| 1993    | 13,036    | 1,434     | 1,191        | 266        | 15,927  |
| 1994    | 7,010     | 1,454     | 796          | 267        | 9,526   |
| 1995    | 5,994     | 1,952     | 1,313        | 464        | 9,724   |
| 1996    | 5,529     | 1,931     | 1,044        | 292        | 8,797   |
| 1997    | 6,368     | 1,908     | 861          | 354        | 9,491   |
| 1998    | 7,208     | 1,403     | 891          | 421        | 9,924   |
| 1999    | 6,856     | 1,432     | 866          | 605        | 9,758   |
| 2000    | 6,520     | 1,121     | 472          | 371        | 8,482   |
| 2001    | 500       | 1,494     | 873          | 352        | 3,219   |
| 2002    | 725       | 1,043     | 614          | 387        | 2,768   |
| 2003    | 323       | 1,162     | 1,369        | 581        | 3,435   |
| Average | 5,219.7   | 1,386.8   | 1,028.6      | 338.6      | 7,973.7 |
| SD      | 4,270.2   | 353.1     | 305.7        | 131.2      | 4,475.6 |

3-23 Hawaii

Figure 13. Hawaii swordfish catch, 1987-2003.




<u>Interpretation</u>: The trend in swordfish catches reflected both an increase in the number of vessels in the longline fishery and widespread targeting of swordfish by the fishery. Swordfish catches rose rapidly from 1988, peaked in 1993, and fell the following year. Catches

remained relatively steady up to 2000 but dropped dramatically by 93% the following year and remained low through 2003. The low catch level reflected the aforementioned regulations on shallow-set longline gear. Swordfish catch by the MHI handline fishery was low and probably caught on ika shibi handliners (night handline).

Source and Calculations: Longline swordfish catches were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample data. Troll and handline swordfish catches were compiled from HDAR commercial catch reports and fish dealer data.

|         | Swordfish catch (1000 lbs) |           |          |         |  |  |  |
|---------|----------------------------|-----------|----------|---------|--|--|--|
|         |                            |           | MHI      |         |  |  |  |
| Year    | Longline                   | MHI troll | handline | Total   |  |  |  |
| 1987    | 52                         | 1         | 7        | 60      |  |  |  |
| 1988    | 52                         | 2         | 11       | 65      |  |  |  |
| 1989    | 619                        | 2         | 14       | 635     |  |  |  |
| 1990    | 5,372                      | 1         | 10       | 5,383   |  |  |  |
| 1991    | 9,939                      | 1         | 13       | 9,953   |  |  |  |
| 1992    | 12,566                     | 0         | 3        | 12,569  |  |  |  |
| 1993    | 13,027                     | 0         | 9        | 13,036  |  |  |  |
| 1994    | 7,002                      | 1         | 7        | 7,010   |  |  |  |
| 1995    | 5,981                      | 1         | 12       | 5,994   |  |  |  |
| 1996    | 5,517                      | 1         | 11       | 5,529   |  |  |  |
| 1997    | 6,352                      | 1         | 15       | 6,368   |  |  |  |
| 1998    | 7,193                      | 1         | 14       | 7,208   |  |  |  |
| 1999    | 6,835                      | 1         | 19       | 6,856   |  |  |  |
| 2000    | 6,502                      | 1         | 16       | 6,520   |  |  |  |
| 2001    | 485                        | 1         | 14       | 500     |  |  |  |
| 2002    | 699                        | 5         | 21       | 725     |  |  |  |
| 2003    | 301                        | 1         | 21       | 323     |  |  |  |
| Average | 5,205.5                    | 1.3       | 12.8     | 5,219.7 |  |  |  |
| SD      | 4,272.8                    | 1.0       | 4.9      | 4,270.2 |  |  |  |

Figure 14. Hawaii blue marlin catch, 1987-2003.



<u>Interpretation</u>: Total blue marlin catch rose from 1987 to a peak in 1995, and has since been on a generally declining trend. The MHI troll fishery had the largest catches early in the 17-year period but longline catches have consistently been the largest from 1992.

Both fisheries had high blue marlin catches during 1989-90, 1995-97, and in 2001 (see below regarding species ID problems).

Source and Calculations: Longline blue marlin catches were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample data. These marlin catches by the longline fishery are nominal estimates which do not account for marlin ID problems (Walsh et al., in press Fisheries Research) Troll and handline blue marlin catches were compiled from HDAR commercial catch reports and fish dealer data.

|         | Blue marlin catch (1000 lbs) |           |          |         |  |  |  |
|---------|------------------------------|-----------|----------|---------|--|--|--|
|         |                              |           | MHI      |         |  |  |  |
| Year    | Longline                     | MHI troll | handline | Total   |  |  |  |
| 1987    | 112                          | 557       | 18       | 686     |  |  |  |
| 1988    | 225                          | 575       | 12       | 812     |  |  |  |
| 1989    | 784                          | 704       | 14       | 1,502   |  |  |  |
| 1990    | 834                          | 638       | 12       | 1,485   |  |  |  |
| 1991    | 654                          | 749       | 14       | 1,418   |  |  |  |
| 1992    | 765                          | 565       | 9        | 1,339   |  |  |  |
| 1993    | 748                          | 675       | 11       | 1,434   |  |  |  |
| 1994    | 798                          | 648       | 8        | 1,454   |  |  |  |
| 1995    | 1,257                        | 684       | 11       | 1,952   |  |  |  |
| 1996    | 1,030                        | 885       | 16       | 1,931   |  |  |  |
| 1997    | 1,074                        | 814       | 20       | 1,908   |  |  |  |
| 1998    | 870                          | 527       | 6        | 1,403   |  |  |  |
| 1999    | 787                          | 635       | 10       | 1,432   |  |  |  |
| 2000    | 692                          | 423       | 5        | 1,121   |  |  |  |
| 2001    | 879                          | 610       | 5        | 1,494   |  |  |  |
| 2002    | 594                          | 443       | 6        | 1,043   |  |  |  |
| 2003    | 771                          | 387       | 4        | 1,162   |  |  |  |
| Average | 757.3                        | 618.9     | 10.6     | 1,386.8 |  |  |  |
| SD      | 274.2                        | 132.9     | 4.7      | 353.1   |  |  |  |

3-25 Hawaii

2,400

1,800

1,200

600

Figure 15. Hawaii striped marlin catches, 1987-2003.

<u>Interpretation</u>: Total catch of striped marlin has been on a declining trend since the early 1990's with a significantly high catch in 2003. The longline fishery typically produces more than 90% of the total striped marlin catch. The MHI troll fishery was the second largest

1997

1999

2001

2003

1993

producer of striped marlin in Hawaii. There was no clear trend in catches of striped marlin by the MHI troll fishery.

1989

1987

Source and Calculations: Longline striped marlin catches were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample data. These marlin catches by the longline fishery are nominal estimates which do not account for marlin ID problems. The latter is currently being studied in a Pelagic Fisheries Research Project (PFRP) project (see PFRP newsletter 7(10), 1-4). Troll and handline striped marlin catches were compiled from HDAR commercial catch reports and fish dealer data.

|         | Striped mariin catch (1000 lbs) |           |          |         |  |  |  |
|---------|---------------------------------|-----------|----------|---------|--|--|--|
|         |                                 |           | MHI      |         |  |  |  |
| Year    | Longline                        | MHI troll | handline | Total   |  |  |  |
| 1987    | 599                             | 66        | 2        | 667     |  |  |  |
| 1988    | 1,110                           | 118       | 2        | 1,231   |  |  |  |
| 1989    | 1,350                           | 52        | 1        | 1,403   |  |  |  |
| 1990    | 1,186                           | 59        | 1        | 1,247   |  |  |  |
| 1991    | 1,462                           | 89        | 1        | 1,551   |  |  |  |
| 1992    | 1,013                           | 83        | 2        | 1,097   |  |  |  |
| 1993    | 1,039                           | 150       | 2        | 1,191   |  |  |  |
| 1994    | 719                             | 76        | 1        | 796     |  |  |  |
| 1995    | 1,198                           | 114       | 1        | 1,313   |  |  |  |
| 1996    | 923                             | 119       | 2        | 1,044   |  |  |  |
| 1997    | 775                             | 83        | 3        | 861     |  |  |  |
| 1998    | 834                             | 57        | 0        | 891     |  |  |  |
| 1999    | 803                             | 62        | 1        | 866     |  |  |  |
| 2000    | 441                             | 30        | 1        | 472     |  |  |  |
| 2001    | 775                             | 94        | 5        | 873     |  |  |  |
| 2002    | 549                             | 64        | 1        | 614     |  |  |  |
| 2003    | 1,306                           | 63        | 0        | 1,369   |  |  |  |
| Average | 946.0                           | 81.1      | 1.5      | 1,028.6 |  |  |  |
| SD      | 295.5                           | 30.3      | 1.1      | 305.7   |  |  |  |
|         | •                               |           |          |         |  |  |  |

Figure 16. Hawaii commercial catch of other pelagic PMUS by gear type, 1987-2003.

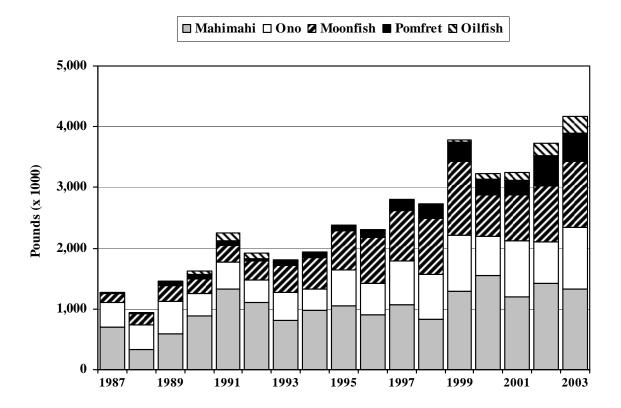
<u>Interpretation</u>: The total commercial catch of other pelagic PMUS showed an upward trend over the 17-year period, with more than a 4-fold increase from 1987 through 2003. The MHI troll fishery was the second largest producer, with catches exceeding 1 million pounds consistently from 1999. The MHI handline, offshore handline and aku boat fishery had relatively small catches of other pelagic PMUS.

1993

Source and Calculations: Longline catches of other PMUS were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample data. Catch of other pelagic PMUS by the troll, handline, and aku boat fisheries were compiled from HDAR commercial catch reports and fish dealer data.

1987

1989


|         |          | Catch of other pelagic PMUS (1000 lbs) |          |          |          |         |  |  |
|---------|----------|----------------------------------------|----------|----------|----------|---------|--|--|
|         |          |                                        | MHI      | Offshore |          |         |  |  |
| Year    | Longline | MHI troll                              | handline | handline | Aku boat | Total   |  |  |
| 1987    | 280      | 907                                    | 102      | -        | 2        | 1,289   |  |  |
| 1988    | 350      | 569                                    | 48       | -        | 4        | 967     |  |  |
| 1989    | 780      | 691                                    | 63       | -        | 1        | 1,534   |  |  |
| 1990    | 830      | 768                                    | 51       | 0        | 0        | 1,650   |  |  |
| 1991    | 1,160    | 1,067                                  | 66       | 5        | 0        | 2,298   |  |  |
| 1992    | 1,130    | 731                                    | 46       | 21       | 14       | 1,927   |  |  |
| 1993    | 1,030    | 744                                    | 51       | 23       | 3        | 1,849   |  |  |
| 1994    | 1,100    | 800                                    | 55       | 18       | 0        | 1,973   |  |  |
| 1995    | 1,520    | 815                                    | 61       | 20       | 0        | 2,416   |  |  |
| 1996    | 1,430    | 806                                    | 85       | 17       | 0        | 2,338   |  |  |
| 1997    | 1,790    | 974                                    | 56       | 9        | 5        | 2,830   |  |  |
| 1998    | 1,780    | 912                                    | 49       | 13       | 0        | 2,753   |  |  |
| 1999    | 2,590    | 1,109                                  | 82       | 20       | 0        | 3,801   |  |  |
| 2000    | 2,010    | 1,122                                  | 64       | 46       | 0        | 3,243   |  |  |
| 2001    | 2,070    | 1,104                                  | 61       | 36       | 0        | 3,271   |  |  |
| 2002    | 2,550    | 1,043                                  | 71       | 21       | 0        | 3,686   |  |  |
| 2003    | 2,990    | 1,082                                  | 62       | 19       | 2        | 4,153   |  |  |
| Average | 1,400.0  | 885.1                                  | 63.2     | 15.6     | 1.9      | 2,363.9 |  |  |
| SD      | 697.4    | 170.3                                  | 15.5     | 13.2     | 3.6      | 844.5   |  |  |

1999

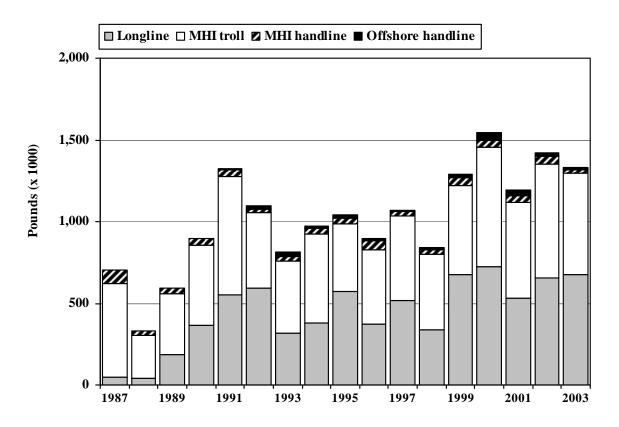
2003

3-27 Hawaii

Figure 17. Species composition of other PMUS catch, 1987-2003.



<u>Interpretation</u>: Mahimahi was the largest component of other pelagic catch at 42%. Although mahimahi catch was consistently above 1 million pounds from 1999, the relative composition was usually lower than the long-term average. To a lesser extent, the pattern of ono composition was similar to mahimahi. Although ono catches increased over the time period, the relative composition was lower. In contrast, catch and composition of moonfish and miscellaneous pelagic catch (primarily pomfrets) was generally


higher in the latter years of the time

series.

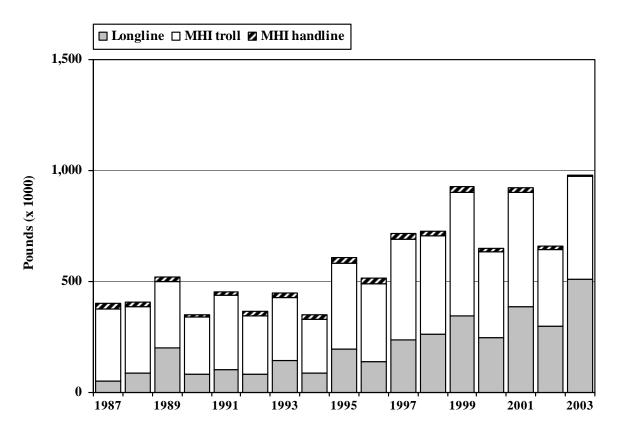
**Calculations: Source** and Longline catches of other **PMUS** were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample Catch of other pelagic PMUS by the troll, handline, and aku boat fisheries were compiled from **HDAR** commercial catch reports and fish dealer data.

|         |          | Catch of other pelagic PMUS (1000 lbs) |          |         |         |      |         |
|---------|----------|----------------------------------------|----------|---------|---------|------|---------|
| Year    | Mahimahi | Ono                                    | Moonfish | Pomfret | Oilfish | Misc | Total   |
| 1987    | 704      | 400                                    | 152      | 23      | 2       | 11   | 1,292   |
| 1988    | 332      | 406                                    | 182      | 18      | 3       | 34   | 975     |
| 1989    | 596      | 522                                    | 274      | 49      | 24      | 64   | 1,529   |
| 1990    | 894      | 352                                    | 253      | 66      | 52      | 32   | 1,649   |
| 1991    | 1,321    | 456                                    | 270      | 75      | 130     | 41   | 2,293   |
| 1992    | 1,113    | 365                                    | 320      | 37      | 85      | 22   | 1,942   |
| 1993    | 814      | 451                                    | 454      | 92      | 0       | 42   | 1,852   |
| 1994    | 974      | 351                                    | 524      | 85      | 8       | 31   | 1,973   |
| 1995    | 1,044    | 606                                    | 629      | 93      | 10      | 34   | 2,416   |
| 1996    | 899      | 514                                    | 760      | 121     | 11      | 31   | 2,337   |
| 1997    | 1,077    | 715                                    | 823      | 178     | 15      | 29   | 2,837   |
| 1998    | 839      | 725                                    | 922      | 225     | 26      | 18   | 2,754   |
| 1999    | 1,293    | 929                                    | 1,210    | 313     | 29      | 26   | 3,800   |
| 2000    | 1,543    | 650                                    | 693      | 257     | 85      | 17   | 3,245   |
| 2001    | 1,191    | 922                                    | 756      | 255     | 119     | 26   | 3,270   |
| 2002    | 1,425    | 687                                    | 916      | 496     | 201     | 23   | 3,747   |
| 2003    | 1,335    | 1,001                                  | 1,092    | 458     | 278     | 21   | 4,185   |
| Average | 1,003.6  | 565.8                                  | 571.1    | 148.9   | 50.0    | 29.9 | 2,369.4 |
| SD      | 316.3    | 190.6                                  | 315.0    | 130.6   | 58.4    | 12.3 | 849.9   |

Figure 18. Hawaii mahimahi catch, 1987-2003.



<u>Interpretation</u>: Total catch of mahimahi varied substantially over the 17-year period. The MHI troll fishery usually had the highest mahimahi catches,


although this fishery showed no clear trend. In contrast, catches by the longline fishery were much higher from 1999. There were also small catches of mahimahi by the MHI handline, offshore handline, and aku boat fisheries.

Source and Calculations: Longline mahimahi catches were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample data. Mahimahi catch by the troll, handline, and aku boat fisheries were compiled from HDAR commercial catch reports and fish dealer data.

|         | Mahimahi catch (1000 lbs) |           |          |          |          |         |  |
|---------|---------------------------|-----------|----------|----------|----------|---------|--|
|         |                           |           | MHI      | Offshore |          |         |  |
| Year    | Longline                  | MHI troll | handline | handline | Aku boat | Total   |  |
| 1987    | 45                        | 579       | 78       | -        | 2        | 704     |  |
| 1988    | 39                        | 264       | 25       | -        | 4        | 332     |  |
| 1989    | 183                       | 379       | 34       | -        | 1        | 596     |  |
| 1990    | 366                       | 491       | 37       | 0        | 0        | 894     |  |
| 1991    | 555                       | 718       | 44       | 5        | 0        | 1,321   |  |
| 1992    | 593                       | 461       | 24       | 21       | 14       | 1,113   |  |
| 1993    | 316                       | 444       | 27       | 23       | 3        | 814     |  |
| 1994    | 377                       | 546       | 33       | 18       | 0        | 974     |  |
| 1995    | 570                       | 419       | 35       | 20       | 0        | 1,044   |  |
| 1996    | 375                       | 451       | 56       | 17       | 0        | 899     |  |
| 1997    | 518                       | 517       | 27       | 9        | 5        | 1,077   |  |
| 1998    | 336                       | 464       | 26       | 13       | 0        | 839     |  |
| 1999    | 679                       | 545       | 49       | 20       | 0        | 1,293   |  |
| 2000    | 721                       | 731       | 45       | 46       | 0        | 1,543   |  |
| 2001    | 530                       | 584       | 42       | 36       | 0        | 1,191   |  |
| 2002    | 655                       | 695       | 49       | 21       | 0        | 1,425   |  |
| 2003    | 675                       | 621       | 24       | 10       | 1        | 1,335   |  |
| Average | 428.6                     | 518.0     | 39.3     | 19.2     | 1.9      | 1,003.6 |  |
| SD      | 211.5                     | 125.5     | 14.2     | 12.0     | 3.6      | 316.3   |  |

3-29 Hawaii

Figure 19. Hawaii ono catch, 1987-2003.

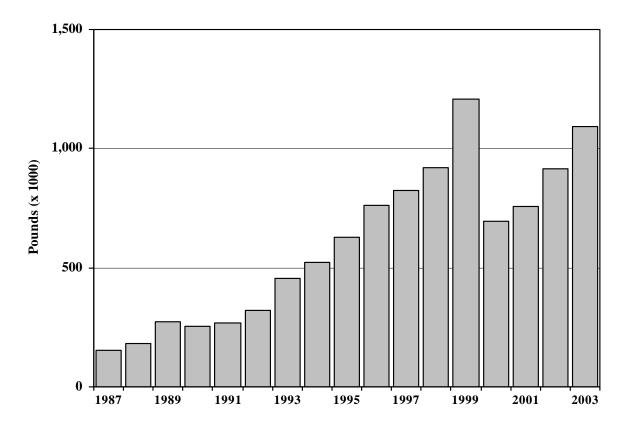


<u>Interpretation</u>: One catches were consistently above 500,000 pounds from 1995 with a record catch above 1 million pounds in 2003. Most of the one catch was attributed to the longline and MHI troll

fisheries. Ono catch by these two fisheries were almost always above their respective the long-term averages from 1997.

Ono catch by the MHI troll fishery consistently had the largest catches up to 2002 and was replaced by the longline fishery as the largest contributor in 2003.

Year


1987

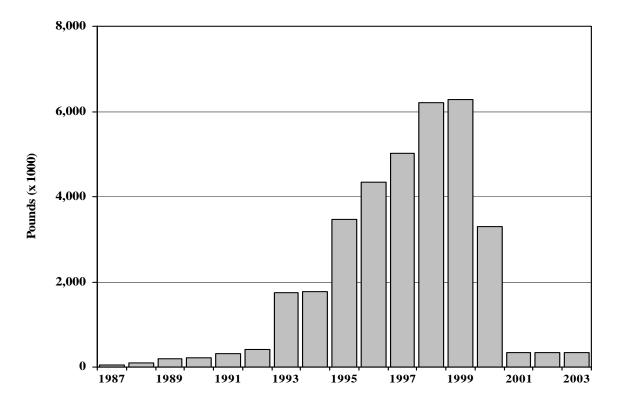
1988

Source and Calculations: Longline ono catches were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample data. Ono catch by the troll and handline fisheries were compiled from HDAR commercial catch reports and fish dealer data.

|         | Ono catch (1000 lbs) |           |          |       |  |  |  |
|---------|----------------------|-----------|----------|-------|--|--|--|
|         |                      |           | MHI      |       |  |  |  |
| Year    | Longline             | MHI troll | handline | Total |  |  |  |
| 1987    | 53                   | 324       | 23       | 400   |  |  |  |
| 1988    | 90                   | 298       | 18       | 406   |  |  |  |
| 1989    | 202                  | 298       | 22       | 522   |  |  |  |
| 1990    | 80                   | 262       | 11       | 352   |  |  |  |
| 1991    | 101                  | 337       | 18       | 456   |  |  |  |
| 1992    | 85                   | 262       | 18       | 365   |  |  |  |
| 1993    | 142                  | 286       | 22       | 451   |  |  |  |
| 1994    | 87                   | 245       | 19       | 351   |  |  |  |
| 1995    | 195                  | 388       | 23       | 606   |  |  |  |
| 1996    | 140                  | 347       | 27       | 514   |  |  |  |
| 1997    | 239                  | 451       | 25       | 715   |  |  |  |
| 1998    | 262                  | 442       | 21       | 725   |  |  |  |
| 1999    | 343                  | 558       | 28       | 929   |  |  |  |
| 2000    | 246                  | 387       | 17       | 650   |  |  |  |
| 2001    | 388                  | 516       | 17       | 922   |  |  |  |
| 2002    | 298                  | 346       | 15       | 687   |  |  |  |
| 2003    | 511                  | 461       | 10       | 1,001 |  |  |  |
| Average | 184.4                | 359.3     | 20.3     | 565.8 |  |  |  |
| SD      | 103.2                | 92.4      | 4.5      | 190.6 |  |  |  |

Figure 20. Hawaii moonfish catch, 1987-2003.




<u>Interpretation</u>: Moonfish catches rose and peaked at 1.2 million pounds in 1999; almost 8 times more than the catch observed in 1987. Moonfish catch exceeded 1 million pounds again in 2003. Moonfish is caught exclusively on longline gear.

<u>Source and Calculations</u>: Longline moonfish catches were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample data.

|         | Moonfish catch |       |  |  |  |
|---------|----------------|-------|--|--|--|
|         | (1000 lbs)     |       |  |  |  |
| Year    | Longline       | Total |  |  |  |
| 1987    | 152            | 152   |  |  |  |
| 1988    | 182            | 182   |  |  |  |
| 1989    | 274            | 274   |  |  |  |
| 1990    | 253            | 253   |  |  |  |
| 1991    | 270            | 270   |  |  |  |
| 1992    | 320            | 320   |  |  |  |
| 1993    | 454            | 454   |  |  |  |
| 1994    | 524            | 524   |  |  |  |
| 1995    | 629            | 629   |  |  |  |
| 1996    | 760            | 760   |  |  |  |
| 1997    | 823            | 823   |  |  |  |
| 1998    | 922            | 922   |  |  |  |
| 1999    | 1,210          | 1,210 |  |  |  |
| 2000    | 693            | 693   |  |  |  |
| 2001    | 756            | 756   |  |  |  |
| 2002    | 916            | 916   |  |  |  |
| 2003    | 1,092          | 1,092 |  |  |  |
| Average | 571.1          | 571.1 |  |  |  |
| SD      | 315.0          | 315.0 |  |  |  |

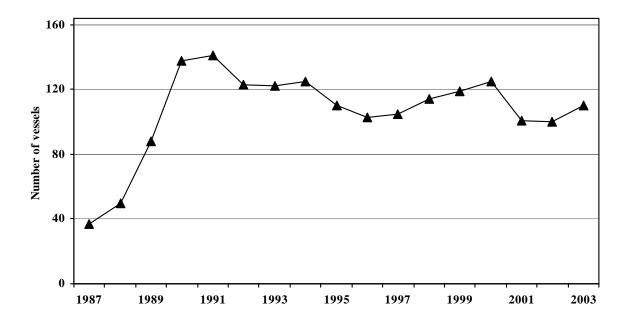
3-31 Hawaii

Figure 21. Hawaii shark catch, 1987-2003.



Interpretation: Sharks were caught and landed exclusively by the longline fishery. Shark catch increased dramatically from 1987 to a peak of 6.3 million pounds in 1999. Sharks were landed headed and gutted in the late 1980's but a market for shark fins began in the early 1990's. Finning sharks then became widespread throughout the longline fishery. Shark catch dropped by 47% in 2000 in response to a state law that prohibited finning. This was followed by the federal Shark Finning

Prohibition Act which was passed shortly thereafter. These regulatory measures caused a 90% decline in shark landings observed in 2001 with landings remaining low thereafter.


Source and Calculations: Mako and thresher shark catches were calculated by multiplying the number of fish kept from NMFS logbook data by the average weight summaries from market sample data. When the practice was allowed, blue and other sharks were finned. Although their carcasses were discarded at sea, these still represented a kept and landed fish. These finned shark catches were also extrapolated to whole weight by multiplying the number of sharks finned by an average weight from the observer data as a crude method to estimate shark biomass.

|        | (1000 lbs) |         |  |  |  |
|--------|------------|---------|--|--|--|
| Year   | Longline   | Total   |  |  |  |
| 1987   | 40         | 40      |  |  |  |
| 1988   | 90         | 90      |  |  |  |
| 1989   | 200        | 200     |  |  |  |
| 1990   | 220        | 220     |  |  |  |
| 1991   | 320        | 320     |  |  |  |
| 1992   | 410        | 410     |  |  |  |
| 1993   | 1,740      | 1,740   |  |  |  |
| 1994   | 1,760      | 1,760   |  |  |  |
| 1995   | 3,470      | 3,470   |  |  |  |
| 1996   | 4,330      | 4,330   |  |  |  |
| 1997   | 5,010      | 5,010   |  |  |  |
| 1998   | 6,210      | 6,210   |  |  |  |
| 1999   | 6,270      | 6,270   |  |  |  |
| 2000   | 3,300      | 3,300   |  |  |  |
| 2001   | 330        | 330     |  |  |  |
| 2002   | 350        | 353     |  |  |  |
| 2003   | 340        | 341     |  |  |  |
| verage | 2,128.1    | 2,128.3 |  |  |  |
| D      | 2,293.8    | 2,293.6 |  |  |  |

Shark catch

3-32 Hawaii

Figure 22. Number of Hawaii-based longline vessels, 1987-2003.



<u>Interpretation</u>: The number of active Hawaii-based longline vessels rose rapidly from 37 in 1987 to a peak at 141 vessels in 1991, followed by a decline to 103 vessels in 1996. The number of vessels then increased again to 125 in 2000 then dropped suddenly to 101 the following year. The drop observed in 2001 was due to Hawaii-based longline vessels leaving the fishery due to the prohibition of shallow-set gear, which caused vessels to move California, where they continued to target swordfish. Other vessels

converted their gear and techniques to deep-set longline in order to target tuna.

There were 110 active Hawaii-based longline vessels in 2003.

<u>Source and Calculations</u>: The number of Hawaii-based longline vessels was compiled from the NMFS marketing monitoring data from 1987-1990 and the NMFS longline logbook data from 1991-2003.

| Year    | Vessels |
|---------|---------|
| 1987    | 37      |
| 1988    | 50      |
| 1989    | 88      |
| 1990    | 138     |
| 1991    | 141     |
| 1992    | 123     |
| 1993    | 122     |
| 1994    | 125     |
| 1995    | 110     |
| 1996    | 103     |
| 1997    | 105     |
| 1998    | 114     |
| 1999    | 119     |
| 2000    | 125     |
| 2001    | 101     |
| 2002    | 100     |
| 2003    | 110     |
| Average | 106.5   |
| SD      | 27.5    |

3-33 Hawaii

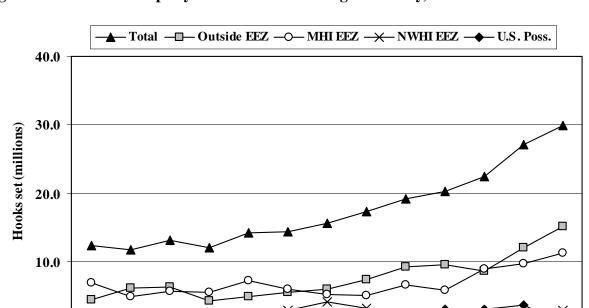
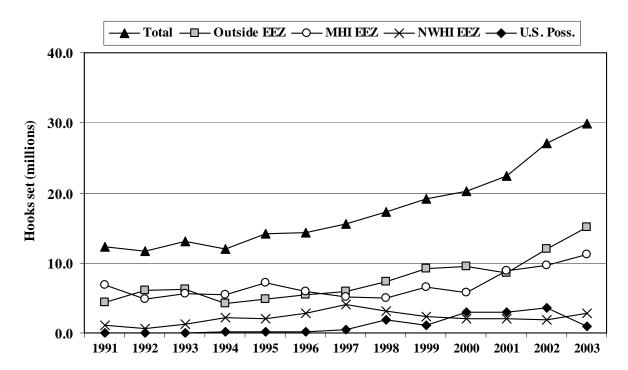



Figure 23. Number of trips by the Hawaii-based longline fishery, 1991-2003.

<u>Interpretation</u>: The first year in this 13-year time series, 1991, had significantly more trips than all subsequent years. The total number of Hawaii-based longline trips declined sharply in 1992 because a moratorium on new vessels from entering the fishery was implemented. Trip activity stabilized thereafter but there was a shift in effort from swordfish- and mixed- target trips toward tuna-targeted trips. The number of swordfish- and mixed-target trips was highest in 1991 and declined slowly thereafter through 2000. Swordfish- and mixed-target trips then dropped dramatically in 2001 due to the prohibition on shallow-set longline gear in that year. There were no swordfish trips in 2002 and 2003. In contrast, tuna trips increased from a low of 458 trips in 1992 to a record

1,215 trips made in 2003.


0.0

Source and Calculations: Number of trips was compiled from NMFS federal longline logbook data collected from 1991 to 2003. The trip type was determined by an interview with the vessel captain or assigned by FMEP staff on the basis of gear configuration, fishing locations, catch composition, and past targeting strategy.

|         | Hawaii longline trip activity |       |       |           |  |  |
|---------|-------------------------------|-------|-------|-----------|--|--|
|         | Total                         | Tuna  | Mixed | Swordfish |  |  |
| Year    | trips                         | trips | trips | trips     |  |  |
| 1991    | 1,671                         | 556   | 823   | 292       |  |  |
| 1992    | 1,266                         | 458   | 531   | 277       |  |  |
| 1993    | 1,192                         | 542   | 331   | 319       |  |  |
| 1994    | 1,106                         | 568   | 228   | 310       |  |  |
| 1995    | 1,125                         | 682   | 307   | 136       |  |  |
| 1996    | 1,100                         | 657   | 351   | 92        |  |  |
| 1997    | 1,125                         | 745   | 302   | 78        |  |  |
| 1998    | 1,140                         | 760   | 296   | 84        |  |  |
| 1999    | 1,138                         | 776   | 297   | 65        |  |  |
| 2000    | 1,103                         | 814   | 252   | 37        |  |  |
| 2001    | 1,034                         | 987   | 43    | 4         |  |  |
| 2002    | 1,165                         | 1,163 | 2     |           |  |  |
| 2003    | 1,215                         | 1,215 |       |           |  |  |
| Average | 1,183.1                       | 763.3 | 313.6 | 154.0     |  |  |
| SD      | 157.7                         | 234.2 | 211.2 | 120.3     |  |  |

Uavvaji langlina trin activity

Figure 24. Number of hooks set by the Hawaii-based longline fishery, 1991-2003.



<u>Interpretation</u>: The total number of hooks set by the Hawaii-based longline fishery increased steadily from 12.0 million hooks in 1994 to a record 29.9 million hooks in 2003. Much of the increase is due to the shift in effort from swordfish and mixed target to tuna. Tuna sets typically set more hooks per day than swordfish or mixed target set types. Most of the hooks set were in the areas outside the EEZ (50%) and MHI EEZ (37%) in 2003. Effort in the NWHI EEZ (9%), in the EEZ of U.S. possessions (3%) including the areas of Johnston Atoll, Kingman Reef and Palmyra Atoll was relatively low.

Source and Calculations: Number of hooks set
was compiled from NMFS federal
longline logbook data which were
collected from 1991 to 2003.

Year
1991

| OOKS SEL | Number of hooks set by area (milions) |      |      |            |       |  |
|----------|---------------------------------------|------|------|------------|-------|--|
|          | Outside                               | MHI  | NWHI |            |       |  |
| Year     | EEZ                                   | EEZ  | EEZ  | U.S. Poss. | Total |  |
| 1991     | 4.4                                   | 6.9  | 1.1  | 0.1        | 12.3  |  |
| 1992     | 6.1                                   | 4.9  | 0.7  | 0.0        | 11.7  |  |
| 1993     | 6.2                                   | 5.6  | 1.3  | 0.0        | 13.0  |  |
| 1994     | 4.1                                   | 5.5  | 2.2  | 0.2        | 12.0  |  |
| 1995     | 4.9                                   | 7.1  | 2.0  | 0.2        | 14.2  |  |
| 1996     | 5.4                                   | 5.9  | 2.9  | 0.2        | 14.4  |  |
| 1997     | 6.0                                   | 5.1  | 4.1  | 0.4        | 15.6  |  |
| 1998     | 7.4                                   | 5.0  | 3.1  | 1.9        | 17.4  |  |
| 1999     | 9.1                                   | 6.6  | 2.4  | 1.1        | 19.1  |  |
| 2000     | 9.5                                   | 5.7  | 2.1  | 3.0        | 20.3  |  |
| 2001     | 8.6                                   | 8.8  | 2.0  | 2.9        | 22.4  |  |
| 2002     | 12.0                                  | 9.7  | 1.8  | 3.5        | 27.0  |  |
| 2003     | 15.0                                  | 11.2 | 2.7  | 0.9        | 29.9  |  |
| Average  | 7.6                                   | 6.8  | 2.2  | 1.1        | 17.6  |  |
| SD       | 3.2                                   | 2.0  | 0.9  | 1.3        | 5.9   |  |

3-35 Hawaii

Table 3. Distance traveled to first set by the Hawaii-based longline fleet, 1991-2003.

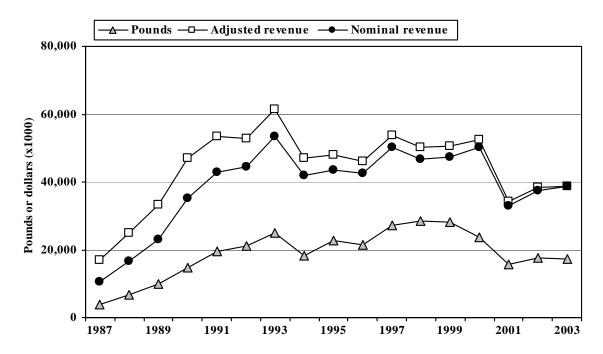
|         | Distance to first set (miles) |                |                |               |               |                |                |                  |
|---------|-------------------------------|----------------|----------------|---------------|---------------|----------------|----------------|------------------|
|         | Average                       |                |                |               | Maximum       |                |                |                  |
| Year    | Tuna<br>trips                 | Mixed<br>trips | Sword<br>trips | Fleet<br>mean | Tuna<br>trips | Mixed<br>trips | Sword<br>trips | Fleet<br>maximum |
| 1991    | 240                           | 276            | 585            | 318           | 1,508         | 1,408          | 1,792          | 1,792            |
| 1992    | 260                           | 404            | 733            | 424           | 1,156         | 1,543          | 1,871          | 1,871            |
| 1993    | 222                           | 522            | 820            | 465           | 1,432         | 1,616          | 2,122          | 2,122            |
| 1994    | 252                           | 323            | 833            | 430           | 945           | 1,298          | 2,814          | 2,814            |
| 1995    | 273                           | 397            | 884            | 441           | 945           | 1,609          | 2,097          | 2,097            |
| 1996    | 284                           | 410            | 790            | 367           | 1,866         | 1,547          | 2,037          | 2,037            |
| 1997    | 288                           | 365            | 623            | 332           | 1,002         | 1,323          | 1,973          | 1,973            |
| 1998    | 384                           | 439            | 708            | 422           | 1,154         | 1,611          | 1,522          | 1,611            |
| 1999    | 313                           | 490            | 821            | 388           | 1,160         | 1,723          | 1,791          | 1,791            |
| 2000    | 472                           | 674            | 879            | 557           | 1,461         | 1,747          | 1,945          | 1,949            |
| 2001    | 345                           | 408            | 1,295          | 353           | 1,357         | 1,451          | 1,546          | 1,546            |
| 2002    | 370                           |                |                | 370           | 1,378         |                |                | 1,378            |
| 2003    | 330                           |                |                | 330           | 2,412         |                |                | 2,412            |
| Average | 310.2                         | 428.0          | 815.5          | 399.8         | 1,367.4       | 1,534.2        | 1,955.5        | 1,953.3          |
| SD      | 69.5                          | 106.6          | 186.6          | 66.5          | 407.9         | 149.2          | 347.6          | 374.3            |

<u>Interpretation</u>: The average distance miles to first set traveled by the Hawaii-based longline fleet in 2003 was the second shortest distance during the 13-year period. Tuna trips showed a general increase with longest average distance traveled to first set at 472 miles in 2000 then declining to 330 miles in 2003. When longlining for swordfish was allowed, swordfish trips usually traveled the farthest average distance before making their first set while tuna trips traveled the shortest average distance.

The farthest distance traveled to first set for the Hawaii-based longline fleet was 2,814 miles in 1994. The maximum distance traveled to first set was in excess of 2000 miles from 1993 to 1996 due to the long distances traveled by vessels making swordfish trips. Maximum distance decreased thereafter but rose to 2,412 miles in 2003. In general, swordfish trips had the highest maximum distance to first set while tuna trips usually had the shortest maximum distance to first set.

<u>Source and Calculation</u>: The distance traveled to first set was calculated as the location of the first set on a trip recorded in the federal longline logbook from Honolulu. The average and maximum miles to first set must be interpreted with caution because they may include atypical trips such as those that departed from California and landed in Hawaii. This type of trip activity was included since these vessels were permitted to operate in the Hawaii-based longline fishery. In contrast, trips which vessels departed from Hawaii and landed in California were not included.

Table 4. Number of days fished per trip for the Hawaii-based longline fleet, 1991-2003.


|         | Days fished per trip |                |                |               |               |                |                |                  |
|---------|----------------------|----------------|----------------|---------------|---------------|----------------|----------------|------------------|
|         | Average              |                |                |               | Maximum       |                |                |                  |
| Year    | Tuna<br>trips        | Mixed<br>trips | Sword<br>trips | Fleet<br>mean | Tuna<br>trips | Mixed<br>trips | Sword<br>trips | Fleet<br>maximum |
| 1991    | 7.7                  | 6.3            | 10.7           | 7.6           | 18            | 22             | 26             | 22               |
| 1992    | 8.4                  | 7.8            | 12.7           | 9.1           | 14            | 21             | 26             | 26               |
| 1993    | 8.8                  | 9.6            | 13.7           | 10.3          | 14            | 23             | 29             | 29               |
| 1994    | 8.9                  | 8.0            | 13.4           | 10.0          | 16            | 19             | 26             | 26               |
| 1995    | 10.0                 | 9.3            | 13.2           | 10.3          | 20            | 26             | 27             | 27               |
| 1996    | 10.3                 | 10.3           | 12.7           | 10.5          | 28            | 30             | 28             | 30               |
| 1997    | 10.1                 | 10.6           | 14.1           | 10.5          | 19            | 36             | 27             | 36               |
| 1998    | 10.3                 | 11.9           | 14.5           | 10.9          | 17            | 24             | 24             | 24               |
| 1999    | 11.1                 | 11.7           | 12.5           | 11.4          | 19            | 26             | 22             | 26               |
| 2000    | 11.0                 | 13.3           | 15.5           | 11.7          | 19            | 29             | 25             | 29               |
| 2001    | 11.8                 | 10.7           | 10.0           | 11.7          | 20            | 19             | 18             | 20               |
| 2002    | 12.1                 |                |                | 12.1          | 21            |                |                | 21               |
| 2003    | 12.1                 |                |                | 12.1          | 22            |                |                | 22               |
| Average | 10.2                 | 10.0           | 13.0           | 10.6          | 19.0          | 25.0           | 25.3           | 26.0             |
| SD      | 1.4                  | 2.0            | 1.6            | 1.3           | 3.7           | 5.2            | 3.1            | 4.4              |

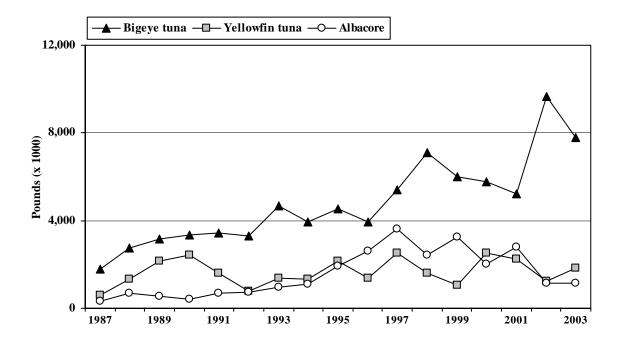
<u>Interpretation</u>: There was an increasing trend for average number of days fished per trip for the Hawaii-based longline fleet. The average number of days fished per trip increased from 7.6 days per trip to a record 12.1 days fished per trip in 2002 and 2003. This represents almost a 60% increase over the 13-year period. Swordfish trips or mixed target trips had the highest maximum number of fishing days per trip up to 2000.

<u>Source and Calculation</u>: Average and maximum number of days fished per trip were compiled from federal longline logbook data. The number of days fished per trip is a summary of number of sets and hauls occurred on an individual trip and does not include travel days or otherwise not fishing.

3-37 Hawaii

Figure 25. Hawaii longline catch and revenue, 1987-2003.




Interpretation: Total catch by the Hawaii-based longline fishery rose six-fold from 1987 to 1993. This was caused by increases in the number of vessels participating in the fishery and by growth in longline effort directed toward swordfish. Catch remained relatively stable until 1999 but decreased 45% over the next two years due to lower shark and swordfish catches. Catch increased 12% in 2002 and remained the same in 2003.

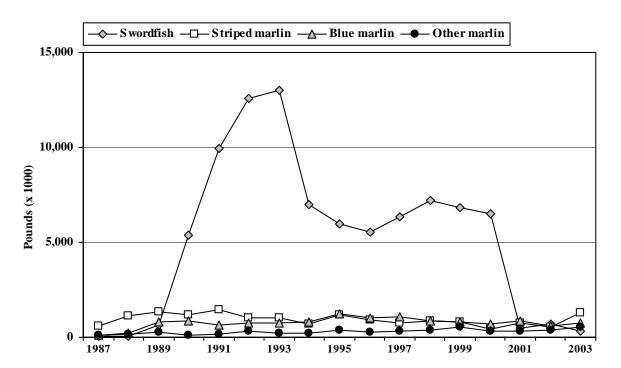
The pattern for revenue was similar to catch; it showed a rapid increase in the late 1980s and early 90s followed by a period of stability through 2000 and a 35% decline in 2001 largely due to lower swordfish revenue. Revenue in 2003 was up 13% from 2001.

Source and Calculations: Longline catch and ex-vessel revenue estimates were compiled by the NMFS Honolulu Laboratory. The catch and revenue estimates were calculated by extrapolating NMFS and HDAR market sampling data from 1987 through 1991, combining the number of fish from the federal logbook catch data with the average weight per fish and average price per pound from the market sample data during 1992 to 2001, and State electronic dealer data in 2002 and 2003.

|         |          |    | Rev      | ent | ue       |  |  |
|---------|----------|----|----------|-----|----------|--|--|
|         |          | Α  | Adjusted | 1   | Nominal  |  |  |
| Year    | Pounds   | ]  | revenue  | ]   | revenue  |  |  |
| 1987    | 3,900    | \$ | 17,000   | \$  | 10,600   |  |  |
| 1988    | 6,700    | \$ | 25,000   | \$  | 16,500   |  |  |
| 1989    | 9,900    | \$ | 33,300   | \$  | 23,200   |  |  |
| 1990    | 14,700   | \$ | 47,200   | \$  | 35,300   |  |  |
| 1991    | 19,500   | \$ | 53,500   | \$  | 42,900   |  |  |
| 1992    | 21,100   | \$ | 52,800   | \$  | 44,400   |  |  |
| 1993    | 25,000   | \$ | 61,500   | \$  | 53,400   |  |  |
| 1994    | 18,100   | \$ | 46,900   | \$  | 41,800   |  |  |
| 1995    | 22,700   | \$ | 47,900   | \$  | 43,600   |  |  |
| 1996    | 21,600   | \$ | 46,200   | \$  | 42,700   |  |  |
| 1997    | 27,100   | \$ | 53,800   | \$  | 50,100   |  |  |
| 1998    | 28,600   | \$ | 50,100   | \$  | 46,600   |  |  |
| 1999    | 28,300   | \$ | 50,500   | \$  | 47,400   |  |  |
| 2000    | 23,800   | \$ | 52,500   | \$  | 50,200   |  |  |
| 2001    | 15,600   | \$ | 34,100   | \$  | 33,000   |  |  |
| 2002    | 17,500   | \$ | 38,400   | \$  | 37,500   |  |  |
| 2003    | 17,400   | \$ | 38,600   | \$  | 38,600   |  |  |
| Average | 18,910.0 | \$ | 44,080.0 | \$  | 38,690.0 |  |  |
| SD      | 7,190.0  | \$ | 11,520.0 | \$  | 11,950.0 |  |  |
|         |          |    |          |     |          |  |  |

Figure 26. Hawaii longline tuna catch, 1987-2003.




<u>Interpretation</u>: The three major tuna species caught by the Hawaii-based longline fishery are bigeye tuna, yellowfin tuna, and albacore. Bigeye tuna was the largest component of the longline catch and made up 69% of the tuna catch in 2003. Catches for bigeye tuna and albacore exhibited an upward trend during the late 1990s due to increased effort directed towards tunas, but then declined in the early 2000s. Bigeye tuna catch then rose to a record level in 2002 while albacore continued on a downward trend. Yellowfin catch increased from 1987 through 1990 and fluctuated thereafter. The longline fishery also caught small amounts of skipjack tuna and bluefin tuna.

Source and Calculations: Longline tuna catch estimates were compiled by the NMFS Honolulu Laboratory. The catch estimates were calculated by extrapolating NMFS and HDAR market sample data during 1987 through 1991 or combining number of fish from the federal logbook catch data with average weight per fish from the market sample data during 1992 to 2001, and State electronic dealer data in 2002 and 2003.

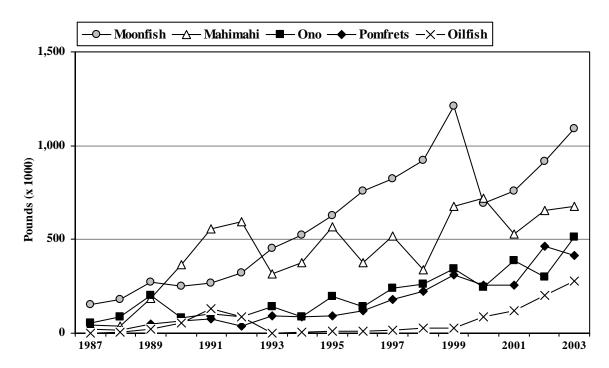
|         |         | Hawaii longline tuna catch (1000 lbs) |          |          |         |         |  |  |  |
|---------|---------|---------------------------------------|----------|----------|---------|---------|--|--|--|
|         | Bigeye  | Yellowfin                             |          | Skipjack | Bluefin |         |  |  |  |
| Year    | tuna    | tuna                                  | Albacore | tuna     | tuna    | Total   |  |  |  |
| 1987    | 1,796   | 575                                   | 331      | 3        | 0       | 2,705   |  |  |  |
| 1988    | 2,732   | 1,309                                 | 676      | 8        | 0       | 4,725   |  |  |  |
| 1989    | 3,178   | 2,174                                 | 547      | 22       | 0       | 5,921   |  |  |  |
| 1990    | 3,338   | 2,421                                 | 390      | 12       | 1       | 6,162   |  |  |  |
| 1991    | 3,423   | 1,617                                 | 687      | 66       | 4       | 5,797   |  |  |  |
| 1992    | 3,277   | 763                                   | 735      | 49       | 84      | 4,908   |  |  |  |
| 1993    | 4,677   | 1,392                                 | 965      | 79       | 92      | 7,205   |  |  |  |
| 1994    | 3,940   | 1,336                                 | 1,095    | 116      | 53      | 6,540   |  |  |  |
| 1995    | 4,522   | 2,159                                 | 1,938    | 223      | 56      | 8,898   |  |  |  |
| 1996    | 3,940   | 1,389                                 | 2,606    | 91       | 48      | 8,074   |  |  |  |
| 1997    | 5,399   | 2,515                                 | 3,626    | 234      | 52      | 11,826  |  |  |  |
| 1998    | 7,113   | 1,592                                 | 2,450    | 168      | 36      | 11,359  |  |  |  |
| 1999    | 5,995   | 1,042                                 | 3,250    | 219      | 23      | 10,529  |  |  |  |
| 2000    | 5,788   | 2,506                                 | 2,026    | 206      | 8       | 10,534  |  |  |  |
| 2001    | 5,217   | 2,233                                 | 2,802    | 466      | 2       | 10,720  |  |  |  |
| 2002    | 9,679   | 1,258                                 | 1,152    | 276      | 2       | 12,368  |  |  |  |
| 2003    | 7,770   | 1,820                                 | 1,157    | 435      | 1       | 11,183  |  |  |  |
| Average | 4,810.8 | 1,653.0                               | 1,554.9  | 157.2    | 27.2    | 8,203.2 |  |  |  |
| SD      | 2,011.9 | 601.9                                 | 1,058.9  | 141.6    | 31.5    | 2,948.5 |  |  |  |

3-39 Hawaii

Figure 27. Hawaii longline billfish catch, 1987-2003.



<u>Interpretation</u>: Swordfish was the dominant component of the billfish catch by the Hawaii-based longline fishery from 1990 through 2000. This catch rose rapidly in the early 1990s to a peak in 1993 as a result of increased effort directed towards swordfish. Swordfish catch dropped the following year and remained relatively stable through 2000 but decreased substantially in 2001 and remained low the following two years. The decrease in swordfish catch was caused by the prohibition of targeting swordfish to reduce the turtle interactions.


Marlins are caught incidentally by the longline fishery, but are retained because they sell for a moderate

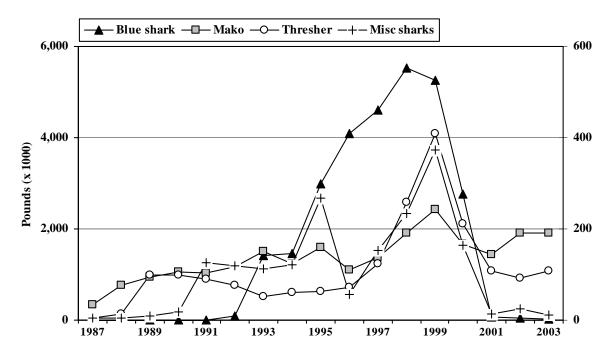
market price. Longline catch of blue marlin remained stable from 1989 with slightly higher catches in 1995 through 1997. Blue marlin was the largest component of the longline catch in 2001. Striped marlin catch has been on a downward trend with a record low catch in 2001 but was significantly higher in 2003.

Source and Calculations: Longline billfish catch estimates were compiled by the NMFS Honolulu Laboratory. The catch estimates were calculated by extrapolating NMFS and HDAR market sample data during 1987 through 1991 or combining number of fish from the federal logbook catch data with average weight per fish from the market sample data during 1992 to 2001, and State electronic dealer data in 2002 and 2003.

|         | Hawaii longline billfish catch (1000 lbs) |         |         |        |         |  |  |  |  |
|---------|-------------------------------------------|---------|---------|--------|---------|--|--|--|--|
|         |                                           | Striped | Blue    | Other  |         |  |  |  |  |
| Year    | Swordfish                                 | marlin  | marlin  | marlin | Total   |  |  |  |  |
| 1987    | 52                                        | 599     | 112     | 99     | 862     |  |  |  |  |
| 1988    | 52                                        | 1,110   | 225     | 150    | 1,537   |  |  |  |  |
| 1989    | 619                                       | 1,350   | 784     | 290    | 3,043   |  |  |  |  |
| 1990    | 5,372                                     | 1,186   | 834     | 127    | 7,519   |  |  |  |  |
| 1991    | 9,939                                     | 1,462   | 654     | 153    | 12,208  |  |  |  |  |
| 1992    | 12,566                                    | 1,013   | 765     | 312    | 14,656  |  |  |  |  |
| 1993    | 13,027                                    | 1,039   | 748     | 220    | 15,034  |  |  |  |  |
| 1994    | 7,002                                     | 719     | 798     | 218    | 8,737   |  |  |  |  |
| 1995    | 5,981                                     | 1,198   | 1,257   | 401    | 8,837   |  |  |  |  |
| 1996    | 5,517                                     | 923     | 1,030   | 253    | 7,723   |  |  |  |  |
| 1997    | 6,352                                     | 775     | 1,074   | 316    | 8,517   |  |  |  |  |
| 1998    | 7,193                                     | 834     | 870     | 380    | 9,277   |  |  |  |  |
| 1999    | 6,835                                     | 803     | 787     | 533    | 8,958   |  |  |  |  |
| 2000    | 6,502                                     | 441     | 692     | 335    | 7,970   |  |  |  |  |
| 2001    | 485                                       | 775     | 879     | 299    | 2,438   |  |  |  |  |
| 2002    | 699                                       | 549     | 594     | 365    | 2,207   |  |  |  |  |
| 2003    | 301                                       | 1,306   | 771     | 554    | 2,932   |  |  |  |  |
| Average | 757.3                                     | 294.4   | 7,203.2 | 294.4  | 7,203.2 |  |  |  |  |
| SD      | 274.2                                     | 130.0   | 4,419.7 | 130.0  | 4,419.7 |  |  |  |  |

Figure 28. Hawaii longline of other pelagic PMUS catch, 1987-2003.




<u>Interpretation</u>: Longline landings of other pelagic species show a general increase. Moonfish was the dominant component in this category from 1993 peaking at 1.2 million pounds in 1999. Mahimahi was the second largest component and was followed by miscellaneous pelagic species (primarily pomfrets). Miscellaneous pelagics and ono increased to a record high in 2003.

Source and Calculations: Longline catches of other pelagic PMUS estimates were compiled by the NMFS Honolulu Laboratory. The catch estimates were calculated by extrapolating NMFS and HDAR market sample data during 1987 through 1991 or combining number of fish from the federal logbook catch data with average weight per fish from the market sample data during 1992 to 2001, and State electronic dealer data in 2002 and 2003.

| e       | Hav      | waii longlin | e catch of o | ther pelagic | fish (1000 | lbs)    |
|---------|----------|--------------|--------------|--------------|------------|---------|
| Year    | Mahimahi | Moonfish     | Ono          | Pomfrets     | Oilfish    | Total   |
| 1987    | 45       | 152          | 53           | 23           | 2          | 275     |
| 1988    | 39       | 182          | 90           | 18           | 3          | 332     |
| 1989    | 183      | 274          | 202          | 49           | 24         | 708     |
| 1990    | 366      | 253          | 80           | 66           | 52         | 817     |
| 1991    | 555      | 270          | 101          | 75           | 130        | 1,131   |
| 1992    | 593      | 320          | 85           | 37           | 85         | 1,120   |
| 1993    | 316      | 454          | 142          | 92           | 0          | 1,004   |
| 1994    | 377      | 524          | 87           | 85           | 8          | 1,081   |
| 1995    | 570      | 629          | 195          | 93           | 10         | 1,497   |
| 1996    | 375      | 760          | 140          | 121          | 11         | 1,407   |
| 1997    | 518      | 823          | 239          | 178          | 15         | 1,773   |
| 1998    | 336      | 922          | 262          | 225          | 26         | 1,771   |
| 1999    | 679      | 1,210        | 343          | 313          | 29         | 2,574   |
| 2000    | 721      | 693          | 246          | 257          | 85         | 2,002   |
| 2001    | 530      | 756          | 388          | 255          | 119        | 2,048   |
| 2002    | 655      | 916          | 298          | 466          | 200        | 2,535   |
| 2003    | 675      | 1,092        | 511          | 416          | 277        | 2,971   |
| Average | 443.1    | 601.8        | 203.6        | 162.9        | 63.3       | 1,473.3 |
| SD      | 213.3    | 330.1        | 127.5        | 137.9        | 78.8       | 780.5   |

3-41 Hawaii

Figure 29. Hawaii longline shark catch, 1987-2003.



<u>Interpretation</u>: Blue shark catch increased in the 1990s due to retention for fins only. Blue shark catch dropped significantly from 1999 to 2001 after State and Federal laws prohibited the practice of finning and landing sharks without the associated carcass. Blue shark landings remained at negligible levels through 2003. Mako and thresher sharks were retained for their flesh as well as their fins. Catches of mako and thresher sharks were an order of magnitude lower, although also increasing in the 1990s (Y-2 axis). Like blue sharks, miscellaneous shark catches (Y-2 axis) were also retained for fins only. Miscellaneous shark catches increased as the practice of finning sharks became widespread in the longline fleet decreased when regulations prohibited finning.

Source and Calculations: Mako and thresher shark catches were calculated by multiplying the number of fish kept from NMFS logbook data and average weight summaries from market sample data. When the practice was allowed, blue and other sharks were finned. Although their carcasses were discarded at sea, these still represented a kept and landed fish. These finned shark catches were also extrapolated to whole weight by multiplying the number of sharks finned by an average weight from the observer data as a crude method to estimate shark biomass.

|         | Hawaii longline shark catch (1000 lbs) |       |          |        |         |  |  |  |  |
|---------|----------------------------------------|-------|----------|--------|---------|--|--|--|--|
|         | Blue                                   |       |          | Misc   |         |  |  |  |  |
| Year    | shark                                  | Mako  | Thresher | sharks | Total   |  |  |  |  |
| 1987    | 0                                      | 33    | 5        | 5      | 43      |  |  |  |  |
| 1988    | 0                                      | 77    | 13       | 4      | 94      |  |  |  |  |
| 1989    | 2                                      | 95    | 98       | 8      | 203     |  |  |  |  |
| 1990    | 0                                      | 105   | 98       | 19     | 222     |  |  |  |  |
| 1991    | 0                                      | 104   | 89       | 125    | 318     |  |  |  |  |
| 1992    | 97                                     | 117   | 76       | 120    | 410     |  |  |  |  |
| 1993    | 1,423                                  | 150   | 51       | 112    | 1,736   |  |  |  |  |
| 1994    | 1,454                                  | 124   | 61       | 122    | 1,761   |  |  |  |  |
| 1995    | 2,978                                  | 160   | 62       | 268    | 3,468   |  |  |  |  |
| 1996    | 4,088                                  | 110   | 73       | 56     | 4,327   |  |  |  |  |
| 1997    | 4,598                                  | 137   | 123      | 152    | 5,010   |  |  |  |  |
| 1998    | 5,527                                  | 192   | 259      | 234    | 6,212   |  |  |  |  |
| 1999    | 5,249                                  | 242   | 409      | 372    | 6,272   |  |  |  |  |
| 2000    | 2,756                                  | 166   | 212      | 163    | 3,297   |  |  |  |  |
| 2001    | 62                                     | 143   | 108      | 14     | 327     |  |  |  |  |
| 2002    | 46                                     | 190   | 93       | 24     | 353     |  |  |  |  |
| 2003    | 24                                     | 192   | 107      | 12     | 335     |  |  |  |  |
| Average | 1,664.9                                | 137.5 | 113.9    | 106.5  | 2,022.8 |  |  |  |  |
| SD      | 2,083.4                                | 50.6  | 98.1     | 107.2  | 2,262.7 |  |  |  |  |

Table 5. Hawaii-based longline catch (number of fish) by area, 1991-2003.

|                  |                         | Tunas                  |                  |                  | Bill           |                   |                       | M                      | iscellaneou    | us                    |                   |
|------------------|-------------------------|------------------------|------------------|------------------|----------------|-------------------|-----------------------|------------------------|----------------|-----------------------|-------------------|
| \$7              | Bigeye<br>tuna          | Yellowfin<br>tuna      | Albacore         | Swordfish        | Blue<br>marlin | Striped<br>marlin | Other<br>billfish     | Mahimahi               | Ono<br>(wahoo) | Moonfish              | Sharks            |
| Year<br>Main Ha  | tuna<br>awaiian Isla    |                        | Albacore         | Swordish         | mariin         | тагип             | DIIIISII              | Manimani               | (wanoo)        | Moonfish              | Snarks            |
| 1991             | 22,517                  | 7,150                  | 5,763            | 13,598           | 2,881          | 18,117            | 8,197                 | 17,672                 | 1,885          | 2,569                 | 13,295            |
| 1992             | 22,982                  | 3,846                  | 3,979            | 7,102            | 2,761          | 9,838             | 3,368                 | 13,313                 | 1,194          |                       | 11,748            |
| 1993<br>1994     | 25,031<br>27,022        | 8,895                  | 6,496            | 4,388            | 2,720          | 10,426<br>6,494   | 3,440                 | 9,366                  | 2,641          | 3,261                 | 12,955            |
| 1994             | 31,899                  | 6,815<br>13,018        | 10,833<br>18,271 | 2,842<br>5,262   | 3,344<br>4,168 | 12,472            | 3,213<br>6,900        | 17,660<br>30,410       | 1,332<br>2,656 | 3,626<br>4,041        | 14,455<br>22,560  |
| 1996             | 29,803                  | 7,715                  | 19,259           | 4,634            | 3,556          | 7,163             | 3,404                 | 11,676                 | 1,527          | 3,094                 | 19,418            |
| 1997             | 21,397                  | 10,982                 | 19,025           | 4,873            | 4,085          | 4,193             | 3,662                 | 11,660                 | 2,525          | 2,847                 | 16,476            |
| 1998<br>1999     | 26,723<br>29,203        | 4,678<br>4,835         | 12,482<br>23,805 | 4,721<br>2,357   | 1,698<br>1,709 | 4,856<br>5,607    | <b>4,254</b> 6,691    | 7,664<br>11,654        | 2,305<br>2,579 | <b>3,585</b> 5,161    | 14,685<br>17,449  |
| 2000             | 21,546                  | 5,240                  | 5,952            | 2,510            | 1,557          | 2,438             | 3,486                 | 17,586                 | 1,201          | 2,759                 | 16,561            |
| 2001             | 36,928                  | 5,671                  | 10,448           | 1,027            | 2,151          | 7,651             | 4,029                 | 21,608                 | 3,223          | 3,404                 | 16,086            |
| 2002             | 51,177                  | 2,463                  | 2,706            | 752              | 873            | 3,449             | 3,761                 | 21,374                 | 1,345          | 3,373                 | 14,810            |
| 2003<br>Northw   | 39,901                  | 10,058<br>aiian Island | 2,593            | 1,421            | 1,770          | 12,207            | 8,288                 | 25,233                 | 4,748          | 3,467                 | 25,856            |
| 1991             | 4,473                   | 1,375                  | 481              | 9,472            | 342            | 3,845             | 1,082                 | 2,003                  | 134            | 70                    | 10,604            |
| 1992             | 2,624                   | 396                    | 311              | 5,228            | 244            | 1,776             | 330                   | 2,321                  | 77             | 187                   | 9,042             |
| 1993             | 7,760                   | 2,019                  | 1,413            | 9,565            | 509            | 2,861             | 754                   | 2,279                  | 198            | 398                   | 17,507            |
| 1994<br>1995     | 10,726<br>9,011         | 2,015<br>3,630         | 5,592<br>5,097   | 9,752<br>8,400   | 554<br>1,379   | 2,679<br>5,076    | 719<br>1,557          | 3,037<br>5,836         | 227<br>902     | 707<br>939            | 28,346<br>19,915  |
| 1995             | 15,409                  | 2,451                  | 12,738           | 3,987            | 1,379          | 4,184             | 1,651                 | 1,995                  | 659            | 2,388                 | 16,539            |
| 1997             | 30,168                  | 5,139                  | 17,118           | 5,148            | 1,519          | 4,109             | 2,250                 | 6,321                  | 1,789          | 2,887                 | 17,921            |
| 1998             | 16,629                  | 2,713                  | 6,802            | 10,611           | 1,217          | 5,757             | 2,927                 | 3,527                  | 761            | 1,862                 | 20,152            |
| 1999<br>2000     | 9,672<br>7,660          | 1,581<br>1,395         | 6,261<br>2,969   | 6,182<br>6,679   | 1,053<br>418   | 3,515<br>2,309    | 2,400<br>1,082        | 4,316<br>6,458         | 763<br>224     | 1,431<br>750          | 15,150<br>11,446  |
| 2000             | 8,521                   | 1,169                  | 2,969<br>3,648   | 373              | 761            | 2,528             | 882                   | 3,923                  | 783            | 1,030                 | 5,478             |
| 2002             | 9,492                   | 806                    | 1,897            | 109              | 295            | 1,352             | 1,339                 | 3,485                  | 313            | 882                   | 4,950             |
| 2003             | 8,929                   | 2,522                  | 2,286            | 259              | 1,035          | 4,686             | 2,614                 | 3,559                  | 1,596          | 1,372                 | 11,871            |
| U.S. Pos<br>1991 | ssessions<br>374        | 439                    | 30               | 25               | 17             | 60                | 45                    | 84                     | 21             | 0                     | 237               |
| 1991             | 70                      | 439                    | 0                | 16               | 7              | 1                 | 43<br>7               | 64                     | 8              |                       | 223               |
| 1993             | 0                       | 0                      | 0                | 0                | 0              | 0                 | 0                     | 0                      | 0              |                       | 0                 |
| 1994             | 1,127                   | 1,649                  | 151              | 53               | 37             | 173               | 55                    | 37                     | 77             | 24                    | 705               |
| 1995<br>1996     | 460<br>766              | 583<br>1,184           | 296<br>1,612     | 21<br>17         | 94<br>86       | 121<br>192        | 94<br>93              | 252<br>49              | 206<br>155     | 5<br>57               | 895<br>756        |
| 1997             | 2,070                   | 1,932                  | 4,054            | 33               | 194            | 255               | 293                   | 591                    | 328            | 206                   | 1,503             |
| 1998             | 17,666                  | 6,313                  | 3,784            | 174              | 308            | 307               | 450                   | 831                    | 1,127          | 258                   | 5,892             |
| 1999             | 4,514                   | 5,737                  | 1,575            | 102              | 315            | 438               | 619                   | 542                    | 1,499          | 179                   | 3,463             |
| 2000<br>2001     | 7,483<br>5,563          | 21,788<br>20,777       | 8,766<br>9,493   | 234<br>224       | 762<br>1,072   | 733<br>1,047      | 916<br>683            | 1,202<br>1,705         | 1,916<br>2,150 | 448<br>277            | 8,307<br>5,195    |
| 2002             | 18,110                  | 12,826                 | 6,342            | 532              | 778            | 1,015             | 765                   | 957                    | 2,429          | 377                   | 7,660             |
| 2003             | 2,106                   | 2,392                  | 2,202            | 83               | 443            | 572               | 490                   | 842                    | 1,058          | 117                   | 2,606             |
| Outside          |                         |                        |                  |                  | 1 000          |                   |                       | 40 = 44                |                |                       | 45.045            |
| 1991<br>1992     | 13,559<br>18,228        | 4,305<br>3,595         | 7,777<br>15,523  | 43,194<br>61,968 | 1,008<br>1,506 | 6,730<br>4,434    | 3,511<br>1,963        | 19,766<br>41,044       | 695<br>1,169   | 440<br>719            | 47,047<br>73,884  |
| 1993             | 22,008                  | 5,147                  | 22,551           | 65,601           | 1,895          | 4,920             | 1,486                 | 14,367                 | 1,600          | 856                   | 124,139           |
| 1994             | 9,227                   | 3,037                  | 14,553           | 30,698           | 742            | 1,946             | 1,130                 |                        | 877            | 733                   | 71,150            |
| 1995             | 18,577                  | 6,419                  | 22,125           | 23,745           | 3,165          | 4,885             | 3,220                 |                        | 2,801          | 1,382                 | 57,922            |
| 1996<br>1997     | 17,588<br>26,149        | 6,227<br><b>10,990</b> | 23,719<br>30,887 | 29,495<br>29,627 | 1,878<br>2,457 | 4,250<br>4,080    | 2,658<br>2,819        | 9,507<br><b>30,730</b> | 2,116<br>3,668 | 1,776<br>2,314        | 64,081<br>49,935  |
| 1998             | 37,762                  | 8,004                  | 25,621           | 28,269           | 2,125          | 3,408             | 3,872                 |                        | 4,068          | 3,462                 | 59,180            |
| 1999             | 36,883                  | 4,817                  | 35,659           | 29,323           | 1,857          | 4,857             | 7,401                 | 27,743                 | 5,435          | 5,628                 | 51,475            |
| 2000             | 37,804                  | 9,956                  | 22,088           | 27,600           | 1,772          | 2,459             | 3,527                 |                        | 4,410          |                       | 43,049            |
| 2001<br>2002     | 27,712<br><b>62,068</b> | 9,460<br>4,278         | 27,841<br>9,643  | 2,545<br>2,275   | 2,440<br>2,025 | 5,209<br>3,076    | 3,414<br><b>4,215</b> |                        | 7,225<br>4,791 | 3,068<br><b>4,658</b> | 20,152<br>23,196  |
| 2002             | 56,173                  | 12,942                 | 13,778           | 1,777            | 2,437          | 8,417             | 7,075                 | 25,691                 | 10,963         | 6,943                 | 29,085            |
| Total ca         | atch                    |                        |                  |                  |                |                   |                       |                        |                |                       |                   |
| 1991             | 40,923                  | 13,269                 | 14,051           | 66,289           | 4,248          | 28,752            | 12,835                |                        | 2,735          | 3,079                 | 71,183            |
| 1992<br>1993     | 43,904<br>54,799        | 7,879<br>16,061        | 19,813<br>30,460 | 74,314<br>79,554 | 4,518<br>5,124 | 16,049<br>18,207  | 5,668<br>5,680        |                        | 2,448<br>4,439 |                       | 94,897<br>154,601 |
| 1993             | 48,102                  | 13,516                 | 31,129           | 43,345           | 3,124<br>4,677 | 11,292            | 5,117                 |                        | 2,513          | 5,090                 | 114,656           |
| 1995             | 59,947                  | 23,650                 | 45,789           | 37,428           | 8,806          | 22,554            | 11,771                | 59,813                 | 6,565          | 6,367                 | 101,292           |
| 1996             | 63,566                  | 17,577                 | 57,328           | 38,133           | 6,634          | 15,789            | 7,806                 |                        | 4,457          | 7,315                 | 100,794           |
| 1997<br>1998     | 79,784<br>98,780        | 29,043<br>21,708       | 71,084<br>48,689 | 39,681<br>43,775 | 8,255<br>5,348 | 12,637<br>14,328  | 9,024<br>11,503       |                        | 8,310<br>8,261 | 8,254<br>9,167        | 85,835<br>99,909  |
| 1998             | 80,272                  | 16,970                 | 67,300           | 37,964           | 5,348<br>4,934 | 14,328            | 17,111                | 44,255                 | 10,276         |                       | 99,909<br>87,537  |
| 2000             | 74,493                  | 38,379                 | 39,775           | 37,023           | 4,509          | 7,939             | 9,011                 | 57,775                 | 7,751          | 7,036                 | 79,363            |
| 2001             | 78,724                  | 37,077                 | 51,430           | 4,169            | 6,424          | 16,435            | 9,008                 | 44,951                 | 13,381         | 7,779                 | 46,911            |
| 2002             | 140,847                 | 20,373                 | 20,588           | 3,668            | 3,971          | 8,892             | 10,080                |                        | 8,878          |                       | 50,616            |
| 2003             | 107,109                 | 27,914                 | 20,859           | 3,540            | 5,685          | 25,882            | 18,467                | 55,325                 | 18,365         | 11,899                | 69,418            |

3-43 Hawaii

<u>Interpretation</u>: The bolded numbers in Table 5 show the areas with the highest catches. The highest bigeye tuna catches were observed in the MHI EEZ from 1991 to 1996. Catches remained high thereafter but bigeye tuna catch outside the EEZ was the most productive area for five of the past six years. A similar pattern occurred for yellowfin tuna catch also except the highest catches typically occur in the EEZ of U.S. possessions, primarily Kingman Reef and Palmyra Atoll. Albacore catches were consistently highest outside the EEZ.

Swordfish catch from outside the EEZ was consistently the predominant area of capture over the past thirteen years. Blue marlin catches was highest in the MHI EEZ up to 1997 and was replaced by outside the EEZ for the past six years. Striped marlin catch was highest in the MHI EEZ.

In general, high catches of mahimahi, ono, and moonfish were in the MHI EEZ but shifted outside the EEZ in the two most recent years. The highest catches of sharks always occurred outside the EEZ.

<u>Source and Calculations</u>: Catches by area were compiled from NMFS federal longline logbook data collected from 1991 to 2003.

Table 6. Average weight of the Hawaii-based longline catch by species, 1987-2003.

| SPECIES        | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | Average | SD    |
|----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|-------|
| <b>TUNAS</b>   |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |       |
| Albacore       | 63   | 60   | 62   | 61   | 52   | 45   | 44   | 41   | 51   | 53   | 55   | 55   | 52   | 55   | 55   | 56   | 56   | 53.8    | 6.1   |
| Bigeye tuna    | 77   | 83   | 77   | 81   | 85   | 77   | 88   | 81   | 79   | 64   | 71   | 74   | 75   | 80   | 69   | 71   | 77   | 76.9    | 6.2   |
| Bluefin tuna   |      |      |      | 638  | 185  | 192  | 203  | 190  | 271  | 223  | 239  | 177  | 202  | 165  | 169  | 151  | 273  | 234.1   | 122.0 |
| Skipjack tuna  | 18   | 19   | 19   | 21   | 20   | 17   | 17   | 18   | 18   | 17   | 20   | 20   | 20   | 17   | 18   | 16   | 19   | 18.3    | 1.3   |
| Yellowfin tuna | 82   | 103  | 104  | 122  | 118  | 99   | 93   | 97   | 95   | 80   | 89   | 76   | 62   | 67   | 63   | 62   | 68   | 87.0    | 19.1  |
| BILLFISH       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |       |
| Blue marlin    | 161  | 157  | 165  | 199  | 173  | 175  | 157  | 171  | 156  | 154  | 134  | 165  | 164  | 158  | 139  | 149  | 144  | 159.9   | 15.1  |
| Striped marlin | 66   | 57   | 62   | 62   | 58   | 66   | 64   | 64   | 58   | 58   | 66   | 60   | 55   | 59   | 48   | 55   | 49   | 59.1    | 5.3   |
| Black marlin   | 208  | 151  | 191  | 204  | 184  | 155  | 136  | 167  | 72   |      | 190  | 167  | 131  | 136  | 633  | 222  | 154  | 193.8   | 122.7 |
| Sailfish       | 52   | 51   | 55   | 55   | 51   | 45   | 49   | 55   | 47   | 40   | 46   | 43   | 45   | 56   | 45   | 59   | 56   | 49.9    | 5.5   |
| Spearfish      | 34   | 31   | 31   | 35   | 32   | 34   | 34   | 33   | 33   | 31   | 31   | 32   | 29   | 35   | 31   | 33   | 31   | 32.2    | 1.5   |
| Swordfish      | 129  | 119  | 130  | 152  | 153  | 178  | 171  | 163  | 171  | 157  | 163  | 176  | 188  | 185  | 133  | 146  | 141  | 156.1   | 20.7  |
| OTHER PMUS     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |       |
| Mahimahi       | 21   | 20   | 23   | 19   | 15   | 11   | 13   | 12   | 10   | 17   | 13   | 16   | 16   | 14   | 12   | 14   | 13   | 15.1    | 3.7   |
| Ono (wahoo)    | 33   | 32   | 35   | 36   | 32   | 35   | 33   | 34   | 31   | 31   | 30   | 32   | 34   | 32   | 29   | 33   | 29   | 32.3    | 2.0   |
| Moonfish       | 111  | 108  | 104  | 98   | 97   | 98   | 101  | 103  | 101  | 105  | 103  | 101  | 98   | 100  | 99   | 98   | 93   | 101.0   | 4.3   |
| Oilfish        | 20   | 22   | 23   | 22   | 23   | 22   | 21   | 13   | 23   |      |      |      |      | 18   | 16   | 17   | 16   | 19.7    | 3.4   |
| Pomfrets       | 15   | 18   | 18   | 18   | 17   | 16   | 16   | 17   | 16   | 15   | 17   | 15   | 14   | 14   | 13   | 13   | 12   | 15.5    | 1.8   |
| SHARKS         |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |       |
| Mako shark     | 124  | 137  | 161  | 162  | 135  | 144  | 147  | 153  | 178  | 177  | 161  | 177  | 177  | 182  | 181  | na   | 185  | 161.2   | 19.5  |
| Thresher shark | 97   | 122  | 158  | 167  | 180  | 176  | 199  | 164  | 172  | 156  | 160  | 171  | 202  | 162  | 171  | na   | 197  | 165.8   | 26.7  |

3-45 Hawaii

<u>Interpretation</u>: Longline fishing effort can cover a large area within a trip. The market data on individual fish cannot be directly linked to the exact area of capture, therefore, the average weight by location was referenced in general terms.

The three main tuna species, albacore, bigeye tuna, and yellowfin tuna, exhibited changes throughout 1987-2003. The average weight of albacore was about 60 pounds until 1990 then declined to less than 50 pounds during 1992-94. This decline was related to increasing incidental catches of small albacore north of the Hawaiian Islands by longliners targeting swordfish. The average weight of albacore then increased as a greater proportion of longline effort shifted further south to target tunas. The average weight of albacore was 56 pounds in 2003. The average weight of bigeye tuna showed the least amount of change of the three main tuna species, ranging from 64 pounds to 88 pounds. Bigeye tuna average weight was 77 pounds in 2003. In contrast, yellowfin tuna average weight showed the most variation ranging from 62 pounds to 122 pounds. The average weight of yellowfin tuna was more than 100 pounds during 1988-1991 and decreased to less than 70 pounds from 1999 with average weight at 67 pounds in 2003. This probably reflects a trend of increasing effort in the EEZ of Kingman Reef and Palmyra Atoll where relatively small yellowfin tuna are caught.

Swordfish caught on tuna target trips are biased towards small swordfish in comparison to swordfish target trips. Average weight for swordfish was lowest in the late 1980s when the longline fishery targeted tunas only. The average weight increased in the early 1990s with as the number of swordfish target trips grew. Average weight peaked at 188 pounds in 1999 and was about the same in the following year. Swordfish effort (shallow-set longlining) was restricted in 2001 and prohibited altogether in 2002 and 2003. As a result, effort was almost exclusively directed towards tuna target (deep-set longline) and swordfish average weight then dropped to 133 pounds in 2001 and was 141 pounds in 2003.

Average weight of blue marlin ranged from 199 pounds in 1990 to 134 pounds in 1997 and was 144 pounds in 2003. Average weight of striped marlin show very little variation over the 17-year period ranging from 48 pounds in 2001 to 66 pounds in 1987, 1992 and 1997 and was 49 pounds in 2003.

<u>Source and Calculations</u>: Average weight of the longline catch was summarized from the NMFS, Honolulu Laboratory and HDAR market sampling data. With the exception of swordfish and sharks, most of the longline catch was landed whole. When fish were processed prior to sale, e.g., headed and gutted, gilled and gutted, a conversion factor was applied to convert it to an estimated whole weight. Discarded fish and sharks that were retained for fins only were not represented in these size summaries.

Table 7. Bycatch, retained catch, and total catch for the Hawaii-based longline fishery, 2003.

**Interpretation:** Bycatch of the Hawaii-based longline fishery was measured in number of fish released. The total bycatch for all species combined was 20% in 2003. Sharks accounted for 75% of the total longline bycatch and 97% percent of all sharks caught were released. Mako and thresher sharks are kept for their flesh but almost all other species of sharks are not marketable and therefore discarded. Tunas, which are the primary target species of the longline fleet, had the lowest release rate (8%). Skipjack tuna made up 60% of the tuna released. Although billfish and other miscellaneous pelagic catch are not targeted, these species are highly marketable and also have low rates of discards (6% and 3%, respectively).

Source and Calculations: Longline bycatch totals and percentages were compiled from Federal daily longline logbooks. Longline bycatch was summarized as number of fish released.

|                    | Number<br>released | Percent<br>released | Kept    | Caught  |
|--------------------|--------------------|---------------------|---------|---------|
| Tuna               | Teleasea           | Tereasea            | Кері    | Caught  |
| Albacore           | 340                | 1.6                 | 20,520  | 20,860  |
| Bigeye tuna        | 4,258              | 4.0                 | 102,872 | 107,130 |
| Bluefin tuna       | 0                  | 0.0                 | 2       | 2       |
| Skipjack tuna      | 9,135              | 27.9                | 23,550  | 32,685  |
| Yellowfin tuna     | 1,422              | 5.1                 | 26,494  | 27,916  |
| Other tuna         | 18                 | 31.6                | 39      | 57      |
| Billfish           |                    |                     |         |         |
| Blue marlin        | 81                 | 1.4                 | 5,604   | 5,685   |
| Spearfish          | 943                | 5.3                 | 16,976  | 17,919  |
| Striped marlin     | 853                | 3.3                 | 25,033  | 25,886  |
| Other marlin       | 1,222              | 34.5                | 2,318   | 3,540   |
| Swordfish          | 25                 | 4.5                 | 527     | 552     |
| Other pelagic fish |                    |                     |         |         |
| Mahimahi           | 1,994              | 3.6                 | 53,337  | 55,331  |
| Moonfish           | 136                | 1.1                 | 11,765  | 11,901  |
| Oilfish            | 320                | 1.9                 | 16,869  | 17,189  |
| Pomfret            | 485                | 1.4                 | 33,363  | 33,848  |
| Wahoo              | 195                | 1.1                 | 18,172  | 18,367  |
| Miscellanous fish  | 1,352              | 58.6                | 956     | 2,308   |
| Sharks             |                    |                     |         |         |
| Blue shark         | 61,054             | 99.4                | 393     | 61,447  |
| Mako shark         | 931                | 46.6                | 1,065   | 1,996   |
| Thresher shark     | 2,913              | 83.7                | 567     | 3,480   |
| Other sharks       | 2,391              | 95.5                | 112     | 2,503   |
| Total              | 90,068             | 20.0                | 360,534 | 450,602 |

3-47 Hawaii

Bigeye tuna —— Albacore —— Yellowfin tuna

8.0

4.0

2.0

Figure 30. Hawaii longline CPUE for major tunas on tuna trips, 1991-2003.

<u>Interpretation</u>: Tuna-target trips usually had the highest catch rate for bigeye tuna, as expected because it is the primary target species. Bigeye tuna catch-per-unit-effort (CPUE) was consistently higher than those for albacore or yellowfin tuna. Bigeye tuna CPUE peaked at 6.1 in 1998 and was 3.6 in 2003. Bigeye tuna CPUE was highest in the MHI EEZ.

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Since the average price for albacore is substantially lower than those for bigeye and yellowfin tuna, it is targeted only infrequently and is more often caught incidentally. Albacore CPUE rose rapidly in the early 1990s, peaked in 1997, then declined to a record low of 0.7 fish per 1000 hooks in 2003. Albacore CPUE is usually higher outside of the U.S. EEZ.

CPUE for yellowfin tuna was usually the lowest of the three major tuna species. Yellowfin tuna CPUE was lowest in 1992, increased slightly the following year, remained relatively stable until 1999, peaked in 2000 and then declined thereafter. The higher than usual yellowfin tuna CPUEs were observed in 2000 and 2001 due to high catches in the EEZ of Kingman Reef and Palmyra Atoll.

<u>Source and Calculation</u>: Longline tuna catch rates were compiled from federal daily longline logbooks. CPUE was based on number of fish caught per 1,000 hooks set.

|         | Tuna trip CPUE |            |           |  |  |  |  |  |  |
|---------|----------------|------------|-----------|--|--|--|--|--|--|
|         | (fish )        | per 1000 h | ooks)     |  |  |  |  |  |  |
|         | Bigeye         |            | Yellowfin |  |  |  |  |  |  |
| Year    | tuna           | Albacore   | tuna      |  |  |  |  |  |  |
| 1991    | 3.7            | 1.1        | 0.7       |  |  |  |  |  |  |
| 1992    | 4.7            | 0.9        | 0.5       |  |  |  |  |  |  |
| 1993    | 4.7            | 1.6        | 1.5       |  |  |  |  |  |  |
| 1994    | 5.5            | 2.0        | 1.2       |  |  |  |  |  |  |
| 1995    | 4.4            | 3.2        | 1.4       |  |  |  |  |  |  |
| 1996    | 4.7            | 4.0        | 1.1       |  |  |  |  |  |  |
| 1997    | 5.7            | 5.1        | 1.6       |  |  |  |  |  |  |
| 1998    | 6.1            | 3.0        | 1.3       |  |  |  |  |  |  |
| 1999    | 4.4            | 3.5        | 0.9       |  |  |  |  |  |  |
| 2000    | 3.8            | 2.0        | 2.1       |  |  |  |  |  |  |
| 2001    | 3.5            | 2.3        | 1.7       |  |  |  |  |  |  |
| 2002    | 5.2            | 0.8        | 0.8       |  |  |  |  |  |  |
| 2003    | 3.6            | 0.7        | 0.9       |  |  |  |  |  |  |
| Average | 4.6            | 2.3        | 1.2       |  |  |  |  |  |  |
| SD      | 0.8            | 1.4        | 0.4       |  |  |  |  |  |  |

20.0

Swordfish trips — Mixed trips — Tuna trips

15.0

10.0

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Figure 31. Hawaii longline swordfish CPUE by trip type, 1991-2003.

<u>Interpretation</u>: Swordfish CPUE varies considerably depending upon the target species, and for this reason average swordfish CPUE for the longline fleet was not an accurate measurement of fishery performance. Effort with "shallow" longline gear, which is the typical method of fishing for swordfish and mixed trips, was drastically reduced in 2001 and prohibited beginning in 2002 due to sea turtle conservation measures. Therefore, swordfish CPUE for these trips types was unavailable for 2002 and 2003.

Swordfish-targeted trips had the highest swordfish CPUE of all trip types. Swordfish CPUE on swordfish target trips declined to a low in 1994 but returned to typical swordfish catch rates from 1996 through 2000. Swordfish target effort was curtailed substantially in 2001, leading to a 19% decrease in CPUE.

Mixed-target trips had intermediate swordfish catch rates. Mixed-target trips also exhibited a record low swordfish CPUE in 1994, and this decline was greater than that of the swordfish-target trips. The CPUE for this trip type then increased from this record low to peak catch rates in 2000 and 2001. Tuna-target trips had very low swordfish CPUEs throughout the monitoring period.

Source and Calculation: Longline swordfish catch rates were compiled from federal daily longline logbooks. CPUE (catch-per-unit-effort) was based on number of fish caught per 1,000 hooks set. Trips were categorized by longline captains or, if the captain could not be contacted, NMFS staff categorized the trip based on the vessels' fishing history and gear configuration. Trips were categorized as targeting swordfish, tuna, or mixed species (mixed in reference to targeting both tunas and swordfish on each set or switching from one target species to a different species within a trip).

|         | Swordfish CPUE |            |            |  |  |  |  |  |
|---------|----------------|------------|------------|--|--|--|--|--|
| Ī       | (fish )        | per 1000 h | ooks)      |  |  |  |  |  |
|         | Swordfish      | Mixed      |            |  |  |  |  |  |
| Year    | trips          | trips      | Tuna trips |  |  |  |  |  |
| 1991    | 15.4           | 5.8        | 0.4        |  |  |  |  |  |
| 1992    | 14.8           | 8.6        | 0.3        |  |  |  |  |  |
| 1993    | 13.0           | 10.4       | 0.2        |  |  |  |  |  |
| 1994    | 10.3           | 4.1        | 0.2        |  |  |  |  |  |
| 1995    | 12.9           | 6.5        | 0.2        |  |  |  |  |  |
| 1996    | 14.2           | 7.6        | 0.2        |  |  |  |  |  |
| 1997    | 15.4           | 10.0       | 0.1        |  |  |  |  |  |
| 1998    | 14.5           | 9.2        | 0.2        |  |  |  |  |  |
| 1999    | 14.6           | 8.5        | 0.2        |  |  |  |  |  |
| 2000    | 14.5           | 11.0       | 0.1        |  |  |  |  |  |
| 2001    | 11.7           | 11.0       | 0.1        |  |  |  |  |  |
| 2002    |                |            | 0.1        |  |  |  |  |  |
| 2003    |                |            | 0.1        |  |  |  |  |  |
| Average | 13.8           | 8.4        | 0.2        |  |  |  |  |  |
| SD      | 1.6            | 2.2        | 0.1        |  |  |  |  |  |

3-49 Hawaii

Figure 32a. Longline blue marlin CPUE by trip type, 1992-2003.

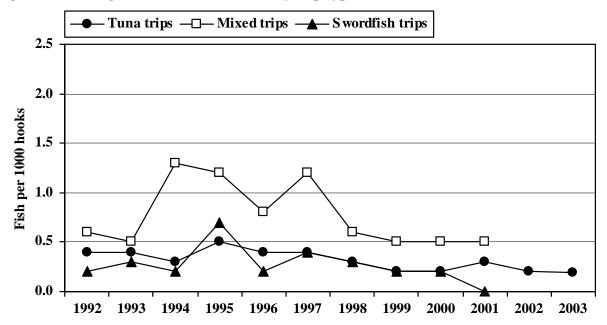
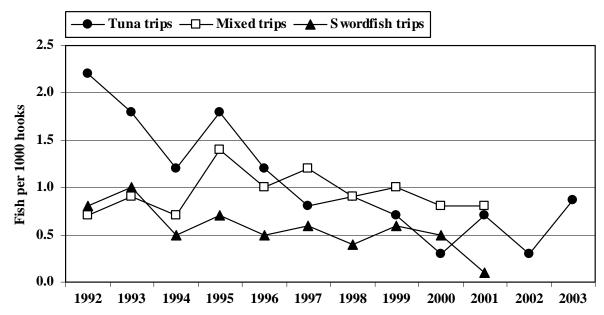




Figure 32b. Longline striped marlin CPUE by trip type, 1992-2003.



<u>Interpretation</u>: Blue and striped marlin were caught incidentally by the longline fishery. Therefore, catch rates for these two species were significantly lower than CPUE for target species such as swordfish and bigeye tuna. There were differences in marlin CPUE among trip types. Blue marlin CPUE was noticeably higher on mixed-target trips. The highest blue marlin CPUE on mixed trips occurred between 1994 and 1997; catch rates remained stable at slightly lower lower levels from 1998 thorough 2001. Striped marlin CPUE was usually higher on tuna-target trips and appeared to be on the decline.

<u>Source and Calculation</u>: Longline blue and striped marlin catch rates were compiled from federal daily longline logbooks. CPUE (catch-per-unit-effort) was based on number of fish caught per 1,000 hooks set. Trips were categorized by longline captains or, if the captain could not be contacted, NMFS staff categorized the trip based on the vessel's fishing history and gear configuration. Trips were categorized as targeting swordfish, tuna, or mixed species (mixed in reference to targeting both tunas and swordfish on each set or switching from one target species to a different species within a trip).

|         | В          | lue marli     | n             | St            | riped marl    | lin       |
|---------|------------|---------------|---------------|---------------|---------------|-----------|
|         |            | Mixed         | Swordfish     |               | Mixed         | Swordfish |
| Year    | Tuna trips | trips         | trips         | Tuna trips    | trips         | trips     |
| 1991    | Poo        | r species ide | ntification p | recluded quan | tification in | 1991      |
| 1992    | 0.4        | 0.6           | 0.2           | 2.2           | 0.7           | 0.8       |
| 1993    | 0.4        | 0.5           | 0.3           | 1.8           | 0.9           | 1.0       |
| 1994    | 0.3        | 1.3           | 0.2           | 1.2           | 0.7           | 0.5       |
| 1995    | 0.5        | 1.2           | 0.7           | 1.8           | 1.4           | 0.7       |
| 1996    | 0.4        | 0.8           | 0.2           | 1.2           | 1.0           | 0.5       |
| 1997    | 0.4        | 1.2           | 0.4           | 0.8           | 1.2           | 0.6       |
| 1998    | 0.3        | 0.6           | 0.3           | 0.9           | 0.9           | 0.4       |
| 1999    | 0.2        | 0.5           | 0.2           | 0.7           | 1.0           | 0.6       |
| 2000    | 0.2        | 0.5           | 0.2           | 0.3           | 0.8           | 0.5       |
| 2001    | 0.3        | 0.5           | 0.0           | 0.7           | 0.8           | 0.1       |
| 2002    | 0.2        |               |               | 0.3           |               |           |
| 2003    | 0.2        |               |               | 0.9           |               |           |
| Average | 0.3        | 0.8           | 0.3           | 1.1           | 0.9           | 0.6       |
| SD      | 0.1        | 0.3           | 0.2           | 0.6           | 0.2           | 0.2       |

3-51 Hawaii

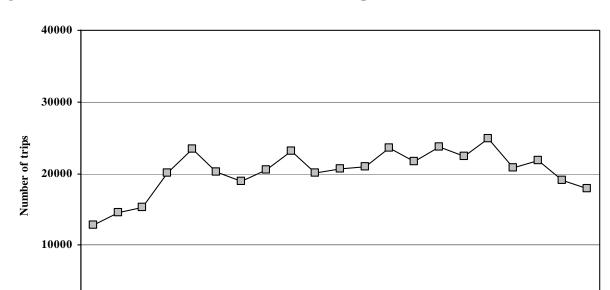



Figure 33. Number of Main Hawaiian Islands troll trips, 1983-2003.

<u>Interpretation</u>: Main Hawaiian Islands (MHI) troll trips almost doubled from 12,842 in 1983 to 24,884 in 1987 but then remained at approximately stable levels until 2001. Reported trip activity decreased in both 2003 and 2003; the total in the latter year (17,904) was the lowest value since 1985.

<u>Source and Calculations</u>: The number of MHI troll trips was compiled from HDAR commercial fish catch reports by counting the unique number of commercial marine license numbers using trolling gear

that fished in HDAR statistical areas 100 to 699. Trips with zero catches were not included in this caluculation. The 2002 trip summary was updated with data that became available in 2003 and the 2003 summary was based on preliminary data.

|         | MHI troll |
|---------|-----------|
| Year    | trips     |
| 1983    | 12,842    |
| 1984    | 14,556    |
| 1985    | 15,291    |
| 1986    | 20,139    |
| 1987    | 23,391    |
| 1988    | 20,202    |
| 1989    | 18,924    |
| 1990    | 20,468    |
| 1991    | 23,184    |
| 1992    | 20,109    |
| 1993    | 20,647    |
| 1994    | 20,905    |
| 1995    | 23,527    |
| 1996    | 21,611    |
| 1997    | 23,674    |
| 1998    | 22,403    |
| 1999    | 24,884    |
| 2000    | 20,855    |
| 2001    | 21,814    |
| 2002    | 19,029    |
| 2003    | 17,904    |
| Average | 20,302.8  |
| SD      | 3,106.2   |
| -       | -         |

Hawaii 3-52

Total catch - Adjusted revenue Nominal revenue 10,000 8,000 Pounds or dollars (x1000) 6,000 4,000 2,000 0 1985 1993 1983 1987 1989 1991 1995 1997 1999 2001 2003

Figure 34. Main Hawaiian Islands troll catch and revenue, 1983-2003.

<u>Interpretation</u>: The MHI troll catch grew from 1.5 million pounds in 1983 to a peak of 3.7 million pounds in 1987. Catch decreased to 2.4 million pounds the following year and had remained above 2.3 million pounds. The catch total was 2.7 million pounds in 2003.

The pattern for MHI troll ex-vessel inflation adjusted revenue was similar to catch; it increased in the early 1980s to a peak of \$8.9 million in 1987, followed by a drop the following year, and relatively stable levels thereafter. MHI troll revenue was \$5.5 million in 2003.

Source and Calculations: MHI troll catch and revenue were summarized from HDAR commercial fish catch reports. Total catch and nominal revenue were summed from the "pounds caught" and "value" fields for trolling gear that fished in HDAR statistical areas 100 to 699. The catch and revenue summary for 2003 was compiled with preliminary data and will be updated with final data in the report for 2004.

|         | Total      | A  | djusted         | N        | ominal  |          |
|---------|------------|----|-----------------|----------|---------|----------|
|         | catch      | re | evenue          | revenue  |         | Honolulu |
| Year    | (1000 lbs) | (5 | <b>\$1000</b> ) | (\$1000) |         | CPI      |
| 1983    | 1,493      | \$ | 3,874           | \$       | 2,085   | 99.3     |
| 1984    | 1,675      | \$ | 4,524           | \$       | 2,538   | 103.5    |
| 1985    | 2,049      | \$ | 6,010           | \$       | 3,479   | 106.8    |
| 1986    | 2,842      | \$ | 6,761           | \$       | 4,009   | 109.4    |
| 1987    | 3,709      | \$ | 8,889           | \$       | 5,536   | 114.9    |
| 1988    | 2,445      | \$ | 5,875           | \$       | 3,875   | 121.7    |
| 1989    | 2,401      | \$ | 5,589           | \$       | 3,899   | 128.7    |
| 1990    | 2,901      | \$ | 6,004           | \$       | 4,494   | 138.1    |
| 1991    | 3,102      | \$ | 5,606           | \$       | 4,497   | 148.0    |
| 1992    | 2,395      | \$ | 4,475           | \$       | 3,762   | 155.1    |
| 1993    | 2,578      | \$ | 4,398           | \$       | 3,816   | 160.1    |
| 1994    | 2,833      | \$ | 5,492           | \$       | 4,897   | 164.5    |
| 1995    | 2,966      | \$ | 4,907           | \$       | 4,471   | 168.1    |
| 1996    | 2,994      | \$ | 5,026           | \$       | 4,650   | 170.7    |
| 1997    | 3,016      | \$ | 4,816           | \$       | 4,487   | 171.9    |
| 1998    | 2,470      | \$ | 4,315           | \$       | 4,011   | 171.5    |
| 1999    | 3,002      | \$ | 4,988           | \$       | 4,685   | 173.3    |
| 2000    | 2,456      | \$ | 4,890           | \$       | 4,673   | 176.3    |
| 2001    | 2,614      | \$ | 3,975           | \$       | 3,844   | 178.4    |
| 2002    | 2,387      | \$ | 4,620           | \$       | 4,515   | 180.3    |
| 2003    | 2,692      | \$ | 5,475           | \$       | 5,475   | 184.5    |
| Average | 2,620.0    | \$ | 5,262.4         | \$       | 4,176.1 |          |
| SD      | 494.1      | \$ | 1,109.3         | \$       | 820.5   |          |

-□— Yellowfin tuna —+— Skipjack tuna —•— Albacore 2000 1500 Pounds (x 1000)

Figure 35. Main Hawaiian Islands troll tuna catch, 1983-2003.

<u>Interpretation</u>: The MHI troll tuna catch was composed predominantly of yellowfin tuna. Yellowfin tuna catch increased more than three-fold between 1983 and 1987, but then declined by 58% in 1988. Yellowfin tuna catch remained below 1 million pounds since 1991, with a minimum of 500,000 pounds in 2002. Skipjack tuna was the second largest component of the MHI troll catch. Skipjack tuna catches were relatively stable though somewhat lower in the past four years with a record low of 170,000 in 2003. Small quantities of bigeye tuna, albacore, and other tunas were also caught by this fishery.

1991

1993

1995

1997

2001

**Source and Calculations:** MHI troll tuna catches were compiled from **HDAR** commercial catch reports during 1983-2001 and fish dealer reports in 2002 and 2003. These data reflect catches using trolling gear in HDAR statistical areas from 100 to 699. Catch from the distant-water troll albacore fishery was excluded.

1000

500

0

1983

1985

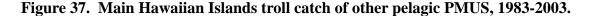
1987

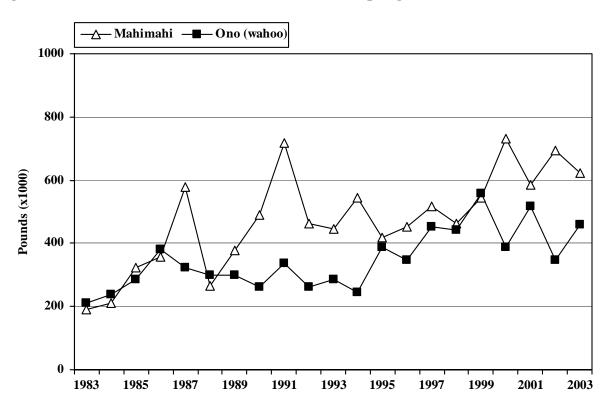
1989

|         |           | MHI troll tuna catch (1000 pounds) |        |          |       |         |  |
|---------|-----------|------------------------------------|--------|----------|-------|---------|--|
|         | Yellowfin | Skipjack                           | Bigeye |          | Other | Total   |  |
| Year    | tuna      | tuna                               | tuna   | Albacore | tunas | tunas   |  |
| 1983    | 492       | 174                                | 6      | 6        | 5     | 683     |  |
| 1984    | 547       | 241                                | 6      | 4        | 11    | 808     |  |
| 1985    | 844       | 207                                | 6      | 1        | 4     | 1,062   |  |
| 1986    | 1,308     | 241                                | 10     | 0        | 8     | 1,567   |  |
| 1987    | 1,828     | 277                                | 11     | 1        | 19    | 2,136   |  |
| 1988    | 764       | 351                                | 10     | 1        | 16    | 1,141   |  |
| 1989    | 559       | 318                                | 11     | 1        | 14    | 904     |  |
| 1990    | 1,089     | 278                                | 15     | 1        | 18    | 1,401   |  |
| 1991    | 615       | 504                                | 11     | 2        | 13    | 1,145   |  |
| 1992    | 606       | 347                                | 9      | 3        | 15    | 980     |  |
| 1993    | 616       | 332                                | 4      | 3        | 9     | 964     |  |
| 1994    | 914       | 283                                | 6      | 22       | 15    | 1,263   |  |
| 1995    | 949       | 318                                | 10     | 10       | 9     | 1,295   |  |
| 1996    | 707       | 424                                | 4      | 5        | 6     | 1,146   |  |
| 1997    | 712       | 376                                | 6      | 7        | 6     | 1,107   |  |
| 1998    | 636       | 278                                | 5      | 4        | 10    | 933     |  |
| 1999    | 687       | 347                                | 7      | 87       | 7     | 1,124   |  |
| 2000    | 649       | 181                                | 6      | 4        | 6     | 845     |  |
| 2001    | 514       | 216                                | 9      | 10       | 5     | 754     |  |
| 2002    | 503       | 195                                | 100    | 8        | 4     | 810     |  |
| 2003    | 805       | 169                                | 145    | 8        | 5     | 1,132   |  |
| Average | 778.3     | 288.4                              | 18.9   | 8.9      | 9.7   | 1,104.8 |  |
| SD      | 316.2     | 86.9                               | 35.3   | 18.6     | 4.8   | 322.7   |  |

3-54 Hawaii

| 1000 | 800 | 800 | 400 | 200 | 200 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000


Figure 36. Main Hawaiian Islands troll billfish catch, 1983-2003.


<u>Interpretation</u>: MHI troll catch for billfish was composed primarily of blue marlin. The blue marlin catch increased from 300,000 pounds in the early 1980s to approximately 900,000 pounds in 1996 and declined to 400,000 pounds in 2003. In contrast to the longline fishery, the striped marlin catch in this fishery was quite low with catches typically below 100,000 pounds. The MHI troll fishery also yielded

small catches of other billfish, e.g., including short-bill spearfish, sailfish, and swordfish.

Source and Calculations: MHI troll billfish catches were compiled from HDAR commercial catch reports during 1983-2001 and fish dealer reports in 2002 and 2003. These data reflect catches using trolling gear in HDAR statistical areas 100 to 699. Catch from the distant-water troll albacore fishery was excluded.

|         | MHI troll billfish catch (1000 pounds) |         |          |           |            |
|---------|----------------------------------------|---------|----------|-----------|------------|
|         | Blue                                   | Striped | Other    |           | Total      |
| Year    | marlin                                 | marlin  | billfish | Swordfish | billfishes |
| 1983    | 314                                    | 36      | 53       | 1         | 404        |
| 1984    | 332                                    | 51      | 34       | 1         | 418        |
| 1985    | 311                                    | 39      | 24       | 1         | 375        |
| 1986    | 463                                    | 40      | 29       | 0         | 533        |
| 1987    | 557                                    | 66      | 42       | 1         | 666        |
| 1988    | 575                                    | 118     | 41       | 2         | 736        |
| 1989    | 704                                    | 52      | 47       | 2         | 805        |
| 1990    | 638                                    | 59      | 33       | 1         | 732        |
| 1991    | 749                                    | 89      | 52       | 1         | 890        |
| 1992    | 565                                    | 83      | 35       | 0         | 683        |
| 1993    | 675                                    | 150     | 44       | 0         | 870        |
| 1994    | 648                                    | 76      | 46       | 1         | 770        |
| 1995    | 684                                    | 114     | 57       | 1         | 856        |
| 1996    | 885                                    | 119     | 37       | 1         | 1,042      |
| 1997    | 814                                    | 83      | 36       | 1         | 935        |
| 1998    | 527                                    | 57      | 41       | 1         | 626        |
| 1999    | 635                                    | 62      | 71       | 1         | 769        |
| 2000    | 423                                    | 30      | 34       | 1         | 489        |
| 2001    | 610                                    | 94      | 51       | 1         | 756        |
| 2002    | 443                                    | 64      | 22       | 5         | 533        |
| 2003    | 387                                    | 63      | 27       | 1         | 478        |
| Average | 568.6                                  | 73.6    |          |           | 684.1      |
| SD      | 161.8                                  | 31.6    | 11.8     | 0.9       | 188.7      |



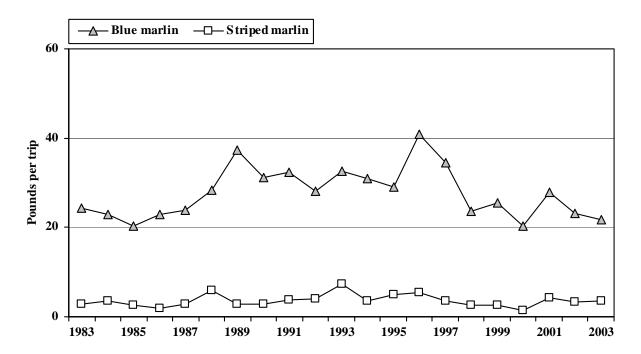


<u>Interpretation</u>: Mahimahi and one comprised most of the MHI troll catch of other pelagic management unit species (PMUS). Mahimahi catches were usually higher than those for one. Mahimahi catch peaked in 2000 while one catch peaked in 1999. Catch for both species seemed to be on a gradually increasing

trend over the 21-year period.

**Source and Calculations:** MHI troll catches of other PMUS were compiled from HDAR commercial catch reports during 1983-2001 and fish dealer reports in 2002 and 2003. These data reflect catches using trolling gear in HDAR statistical areas from 100 to 699. Catch from the distant-water troll albacore fishery was excluded.

|         | MHI troll other pelagics catch (1000 pounds |         |          |          |  |  |
|---------|---------------------------------------------|---------|----------|----------|--|--|
| ·       |                                             |         |          |          |  |  |
|         |                                             |         | 3.71     | Total    |  |  |
|         |                                             | Ono     | Misc     | other    |  |  |
| Year    | Mahimahi                                    | (wahoo) | pelagics | pelagics |  |  |
| 1983    | 191                                         | 210     | 5        | 406      |  |  |
| 1984    | 210                                         | 236     | 2        | 449      |  |  |
| 1985    | 323                                         | 287     | 2        | 612      |  |  |
| 1986    | 358                                         | 381     | 3        | 742      |  |  |
| 1987    | 579                                         | 324     | 3        | 907      |  |  |
| 1988    | 264                                         | 298     | 6        | 569      |  |  |
| 1989    | 379                                         | 298     | 14       | 691      |  |  |
| 1990    | 491                                         | 262     | 16       | 768      |  |  |
| 1991    | 718                                         | 337     | 12       | 1,067    |  |  |
| 1992    | 461                                         | 262     | 8        | 731      |  |  |
| 1993    | 444                                         | 286     | 13       | 744      |  |  |
| 1994    | 546                                         | 245     | 9        | 800      |  |  |
| 1995    | 419                                         | 388     | 8        | 815      |  |  |
| 1996    | 451                                         | 347     | 7        | 806      |  |  |
| 1997    | 517                                         | 451     | 5        | 974      |  |  |
| 1998    | 464                                         | 442     | 6        | 912      |  |  |
| 1999    | 545                                         | 558     | 6        | 1,109    |  |  |
| 2000    | 731                                         | 387     | 5        | 1,122    |  |  |
| 2001    | 584                                         | 516     | 4        | 1,104    |  |  |
| 2002    | 695                                         | 346     | 3        | 1,043    |  |  |
| 2003    | 621                                         | 461     | 0        | 1,082    |  |  |
| Average | 475.8                                       | 348.7   | 6.5      | 831.1    |  |  |
| SD      | 154.0                                       | 94.6    | 4.3      | 215.3    |  |  |

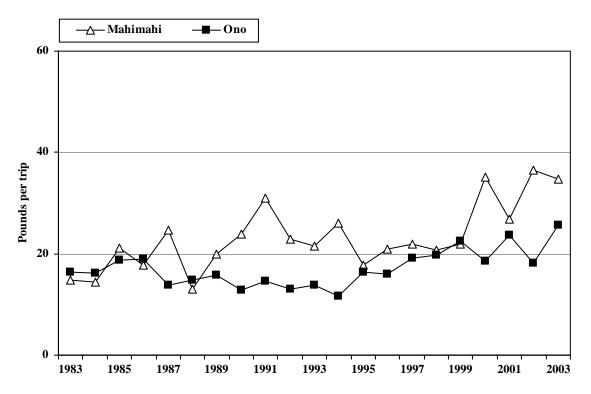

Figure 38. Main Hawaiian Islands troll tuna catch per trip, 1983-2003.

<u>Interpretation</u>: MHI troll yellowfin tuna CPUE showed substantial variability from 1980 until 1990. It then remained fairly constant thereafter. CPUE was 45 pounds per trip in 2003. Skipjack tuna CPUE was relatively stable throughout the 21-year period, with CPUE at 11 pounds per trip in 2003.

Source and Calculations: MHI troll tuna CPUE was measured as pounds of tuna caught per trip. Tuna catches were compiled from HDAR commercial catch reports during 1983-2001 and fish dealer reports in 2002 and 2003. These data reflect only trolling gear codes in area codes within the MHI including seamounts located within HDAR statistical areas codes 100 to 699. These catches were then divided by the number of MHI troll trips. The calculation for CPUE did not include zero catch trips.

|         | MHI troll tuna |           |  |  |  |
|---------|----------------|-----------|--|--|--|
|         | CPUE (p        | ounds per |  |  |  |
|         | Yellowfin      | Skipjack  |  |  |  |
| Year    | tuna           | tuna      |  |  |  |
| 1983    | 38             | 14        |  |  |  |
| 1984    | 38             | 17        |  |  |  |
| 1985    | 55             | 14        |  |  |  |
| 1986    | 65             | 12        |  |  |  |
| 1987    | 78             | 12        |  |  |  |
| 1988    | 38             | 17        |  |  |  |
| 1989    | 30             | 17        |  |  |  |
| 1990    | 53             | 14        |  |  |  |
| 1991    | 27             | 22        |  |  |  |
| 1992    | 30             | 17        |  |  |  |
| 1993    | 30             | 16        |  |  |  |
| 1994    | 44             | 14        |  |  |  |
| 1995    | 40             | 14        |  |  |  |
| 1996    | 33             | 20        |  |  |  |
| 1997    | 30             | 16        |  |  |  |
| 1998    | 28             | 12        |  |  |  |
| 1999    | 28             | 14        |  |  |  |
| 2000    | 31             | 9         |  |  |  |
| 2001    | 24             | 10        |  |  |  |
| 2002    | 26             | 10        |  |  |  |
| 2003    | 45             | 9         |  |  |  |
| Average | 38.6           | 14.2      |  |  |  |
| SD      | 14.1           | 3.4       |  |  |  |

Figure 39. Main Hawaiian Island troll marlin catch per trip, 1983-2003.




<u>Interpretation</u>: Blue marlin CPUE ranged from 20 to 41 pounds per trip throughout 1983-2003 with peaks in 1989 and 1996. Striped marlin CPUE was substantially lower and peaked at only 7 pounds in 1993. CPUE for striped marlin also seemed to be stable.

Source and Calculations: MHI troll marlin CPUE was measured as pounds of marlin caught per trip. Marlin catches were compiled from HDAR commercial catch reports during 1983-2001 and fish dealer reports in 2002 and 2003. These data reflect only trolling gear codes in area codes within the MHI, including seamounts located within HDAR statistical areas codes of less than 1000. These catches were then divided by the number of MHI troll trips. The calculation for CPUE did not include zero catch trips.

|         | MHI troll marlin CPUE |         |  |  |  |  |
|---------|-----------------------|---------|--|--|--|--|
|         | (pounds per trip)     |         |  |  |  |  |
|         | Blue                  | Striped |  |  |  |  |
| Year    | marlin                | marlin  |  |  |  |  |
| 1983    | 24                    | 3       |  |  |  |  |
| 1984    | 23                    | 3       |  |  |  |  |
| 1985    | 20                    | 3       |  |  |  |  |
| 1986    | 23                    | 2       |  |  |  |  |
| 1987    | 24                    | 3       |  |  |  |  |
| 1988    | 28                    | 6       |  |  |  |  |
| 1989    | 37                    | 3       |  |  |  |  |
| 1990    | 31                    | 3       |  |  |  |  |
| 1991    | 32                    | 4       |  |  |  |  |
| 1992    | 28                    | 4       |  |  |  |  |
| 1993    | 33                    | 7       |  |  |  |  |
| 1994    | 31                    | 4       |  |  |  |  |
| 1995    | 29                    | 5       |  |  |  |  |
| 1996    | 41                    | 6       |  |  |  |  |
| 1997    | 34                    | 3       |  |  |  |  |
| 1998    | 24                    | 3       |  |  |  |  |
| 1999    | 26                    | 3       |  |  |  |  |
| 2000    | 20                    | 1       |  |  |  |  |
| 2001    | 28                    | 4       |  |  |  |  |
| 2002    | 23                    | 3       |  |  |  |  |
| 2003    | 22                    | 4       |  |  |  |  |
| Average | 27.7                  | 3.6     |  |  |  |  |
| SD      | 5.7                   | 1.4     |  |  |  |  |

Figure 40. Main Hawaiian Island troll mahimahi and ono catch per trip, 1983-2003.



<u>Interpretation</u>: Mahimahi CPUE was greater than or equal to that for one every year since 1990. Mahimahi CPUE peaked at 37 pounds per trip in 2002 while one CPUE was highest at 26 pounds per trip

in 2003. However, CPUE for both species were on an upward trend from the mid-1990s.

Source and Calculations: MHI troll mahimahi and ono CPUE were measured as pounds caught per trip. Mahimahi and ono catches were compiled from HDAR commercial catch reports during 1983-2001 and fish dealer reports in 2002 and 2003. These data reflect only trolling gear codes in area codes within the MHI and included seamounts located within HDAR statistical areas codes of less than 1000. These catches were then divided by the number of MHI troll trips. The calculation for CPUE did not include zero catch trips.

| MHI troll mahimahi and ono |             |        |  |  |
|----------------------------|-------------|--------|--|--|
| catch                      | per trip (p | ounds) |  |  |
|                            |             |        |  |  |
| Year                       | Mahimahi    | Ono    |  |  |
| 1983                       | 15          | 16     |  |  |
| 1984                       | 14          | 16     |  |  |
| 1985                       | 21          | 19     |  |  |
| 1986                       | 18          | 19     |  |  |
| 1987                       | 25          | 14     |  |  |
| 1988                       | 13          | 15     |  |  |
| 1989                       | 20          | 16     |  |  |
| 1990                       | 24          | 13     |  |  |
| 1991                       | 31          | 15     |  |  |
| 1992                       | 23          | 13     |  |  |
| 1993                       | 22          | 14     |  |  |
| 1994                       | 26          | 12     |  |  |
| 1995                       | 18          | 16     |  |  |
| 1996                       | 21          | 16     |  |  |
| 1997                       | 22          | 19     |  |  |
| 1998                       | 21          | 20     |  |  |
| 1999                       | 22          | 22     |  |  |
| 2000                       | 35          | 19     |  |  |
| 2001                       | 27          | 24     |  |  |
| 2002                       | 37          | 18     |  |  |
| 2003                       | 35          | 26     |  |  |
| Average                    | 23.2        | 17.2   |  |  |
| SD                         | 6.6         | 3.7    |  |  |

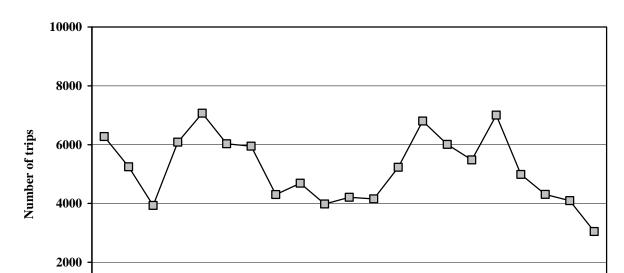
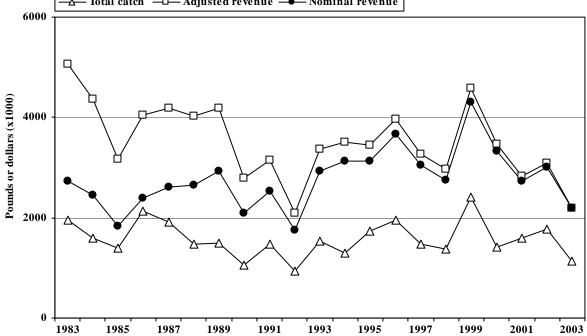



Figure 41. Number of Main Hawaiian Islands handline trips, 1983-2003.

<u>Interpretation</u>: The number of Main Hawaiian Islands (MHI) handline trips ranged between 3,043 in 2003 and 7,069 trips in 1987. Although handline trip activity varied substantially, there was no clear long-term trend. New commercial fish catch forms were implemented in 2002 and reporting and processing were delayed. Thus, it is unclear how much of the apparent decrease in 2003 reflects reporting problems, lower trip activity, or both.


<u>Source and Calculations</u>: The number of MHI handline trips was compiled from HDAR commercial fish catch reports. MHI handline trips were summarized by counting unique commercial marine license number and date combinations when catches were greater than zero. The latter were excluded because there was no way to determine if a zero catch trip report represented unsuccessful fishing operations or no fishing effort, the trip summary does not include zero catch trips. The 2002 trip summary was updated with data that became available in 2003.

|         | MHI      |
|---------|----------|
|         | handline |
| Year    | trips    |
| 1983    | 6,275    |
| 1984    | 5,248    |
| 1985    | 3,929    |
| 1986    | 6,087    |
| 1987    | 7,069    |
| 1988    | 6,032    |
| 1989    | 5,947    |
| 1990    | 4,300    |
| 1991    | 4,688    |
| 1992    | 3,981    |
| 1993    | 4,209    |
| 1994    | 4,157    |
| 1995    | 5,230    |
| 1996    | 6,801    |
| 1997    | 6,010    |
| 1998    | 5,481    |
| 1999    | 7,004    |
| 2000    | 4,985    |
| 2001    | 4,307    |
| 2002    | 4,095    |
| 2003    | 3,043    |
| Average | 5,184.7  |
| SD      | 1,144.5  |
|         |          |

Hawaii 3-60

Total catch - Adjusted revenue Nominal revenue 6000

Figure 42. Main Hawaiian Island handline catch and revenue, 1983-2003.



**Interpretation:** The MHI handline total ranged from 940,000 pounds in 1992 to 2.5 million pounds in 1999. Although handline catches varied substantially year to year, the long-term trend seemed to be stable over the 21-year period. Handline catch was 1.1 million pounds in 2003, down 35% from the

previous year and the third lowest total in the time series.

The MHI handline ex-vessel revenue ranged from \$2.1 million in 1992 to \$5.1 million in 1983. MHI handline revenue varied substantially throughout the time series with no clear trend.

MHI handline catch and **Source and Calculations:** revenue were summarized from HDAR commercial fish catch reports. Total catch and nominal revenue were summed from the pounds caught and value fields, respectively. The catch and revenue summary for 2003 was compiled with preliminary data and will be updated with final data in next years report.

|         | Total      | Adjusted |         | Nominal  |         |          |
|---------|------------|----------|---------|----------|---------|----------|
|         | catch      | r        | evenue  | re       | evenue  | Honolulu |
| Year    | (1000 lbs) | (5       | \$1000) | (\$1000) |         | CPI      |
| 1983    | 1,949      | \$       | 5,059   | \$       | 2,723   | 99.3     |
| 1984    | 1,591      | \$       | 4,366   | \$       | 2,449   | 103.5    |
| 1985    | 1,391      | \$       | 3,172   | \$       | 1,836   | 106.8    |
| 1986    | 2,136      | \$       | 4,046   | \$       | 2,399   | 109.4    |
| 1987    | 1,914      | \$       | 4,185   | \$       | 2,606   | 114.9    |
| 1988    | 1,471      | \$       | 4,024   | \$       | 2,654   | 121.7    |
| 1989    | 1,487      | \$       | 4,189   | \$       | 2,922   | 128.7    |
| 1990    | 1,060      | \$       | 2,784   | \$       | 2,084   | 138.1    |
| 1991    | 1,477      | \$       | 3,156   | \$       | 2,532   | 148.0    |
| 1992    | 946        | \$       | 2,086   | \$       | 1,754   | 155.1    |
| 1993    | 1,532      | \$       | 3,370   | \$       | 2,924   | 160.1    |
| 1994    | 1,287      | \$       | 3,516   | \$       | 3,135   | 164.5    |
| 1995    | 1,733      | \$       | 3,445   | \$       | 3,139   | 168.1    |
| 1996    | 1,962      | \$       | 3,966   | \$       | 3,669   | 170.7    |
| 1997    | 1,479      | \$       | 3,267   | \$       | 3,044   | 171.9    |
| 1998    | 1,368      | \$       | 2,968   | \$       | 2,759   | 171.5    |
| 1999    | 2,414      | \$       | 4,579   | \$       | 4,301   | 173.3    |
| 2000    | 1,412      | \$       | 3,474   | \$       | 3,320   | 176.3    |
| 2001    | 1,604      | \$       | 2,825   | \$       | 2,732   | 178.4    |
| 2002    | 1,767      | \$       | 3,081   | \$       | 3,011   | 180.3    |
| 2003    | 1,146      | \$       | 2,195   | \$       | 2,195   | 184.5    |
| Average | 1,577.5    | \$       | 3,512.1 | \$       | 2,770.9 |          |
| SD      | 357.6      | \$       | 758.3   | \$       | 589.5   |          |

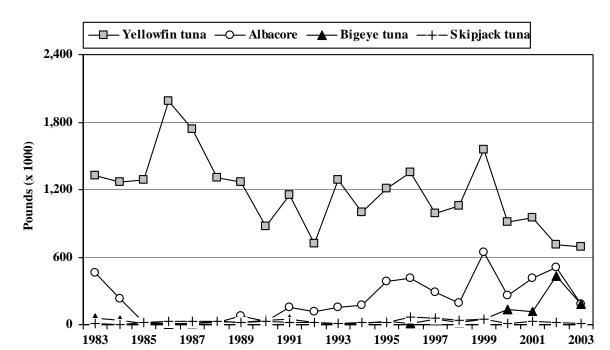



Figure 43. Main Hawaiian Island handline tuna catch, 1983-2003.

<u>Interpretation</u>: Yellowfin tuna was the dominant component of the MHI handline tuna catch. Yellowfin tuna catch peaked at almost 2 million pounds in 1986, dropped the following two years and remained low thereafter. Yellowfin tuna catches were below the long-term average during the past four years. Albacore catch increased from 11,000 pounds in 1985 and peaked at 642,000 pounds in 1999. Albacore catch has

been above 110,000 pounds from 1991. Bigeye tuna catch was usually small but increased to a record 427,000 pounds in 2002. Small catches of skipjack tuna and other tunas by the handline fishery represented about 2% of the total catch.

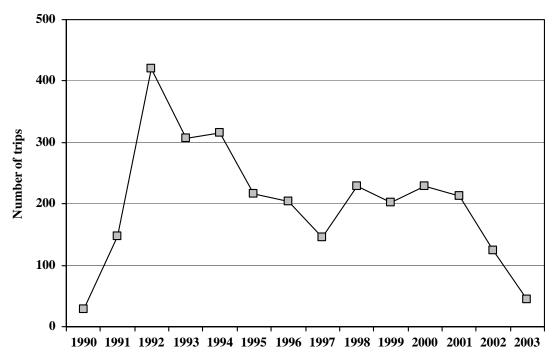
Source and Calculations: MHI handline tuna catches were compiled from HDAR commercial catch reports during 1983-2001 and fish dealer reports in 2002 and 2003. These data reflect catches using handline gear in HDAR statistical areas from 100 to 699. Catch from the distantwater troll albacore fishery was excluded.

|         |           | MHI handline tuna catch (1000 lbs) |        |          |       |         |
|---------|-----------|------------------------------------|--------|----------|-------|---------|
|         | Yellowfin |                                    | Bigeye | Skipjack | Other |         |
| Year    | tuna      | Albacore                           | tuna   | tuna     | tunas | Total   |
| 1983    | 1,323     | 457                                | 59     | 14       | 26    | 1,879   |
| 1984    | 1,264     | 230                                | 42     | 2        | 2     | 1,540   |
| 1985    | 1,287     | 15                                 | 11     | 16       | 1     | 1,330   |
| 1986    | 1,984     | 11                                 | 2      | 24       | 1     | 2,023   |
| 1987    | 1,734     | 12                                 | 6      | 25       | 5     | 1,782   |
| 1988    | 1,310     | 18                                 | 28     | 29       | 9     | 1,395   |
| 1989    | 1,266     | 78                                 | 19     | 20       | 11    | 1,393   |
| 1990    | 876       | 31                                 | 41     | 26       | 7     | 981     |
| 1991    | 1,154     | 157                                | 45     | 19       | 6     | 1,380   |
| 1992    | 722       | 116                                | 19     | 21       | 7     | 885     |
| 1993    | 1,283     | 154                                | 2      | 14       | 5     | 1,458   |
| 1994    | 1,003     | 176                                | 10     | 21       | 3     | 1,213   |
| 1995    | 1,207     | 380                                | 33     | 17       | 6     | 1,642   |
| 1996    | 1,352     | 409                                | 11     | 69       | 4     | 1,845   |
| 1997    | 986       | 287                                | 52     | 56       | 3     | 1,384   |
| 1998    | 1,052     | 191                                | 15     | 38       | 3     | 1,298   |
| 1999    | 1,559     | 642                                | 46     | 52       | 2     | 2,302   |
| 2000    | 916       | 260                                | 133    | 13       | 2     | 1,324   |
| 2001    | 952       | 417                                | 117    | 28       | 3     | 1,518   |
| 2002    | 711       | 507                                | 427    | 18       | 2     | 1,665   |
| 2003    | 687       | 179                                | 180    | 12       | 0     | 1,058   |
| Average | 1,172.8   | 225.1                              | 61.8   | 25.4     | 5.1   | 1,490.2 |
| SD      | 329.6     | 183.3                              | 95.7   | 16.2     | 5.5   | 345.3   |

400

Albacore Bigeye tuna

200


Figure 44. Main Hawaiian Island handline tuna catch per trip, 1983-2003.

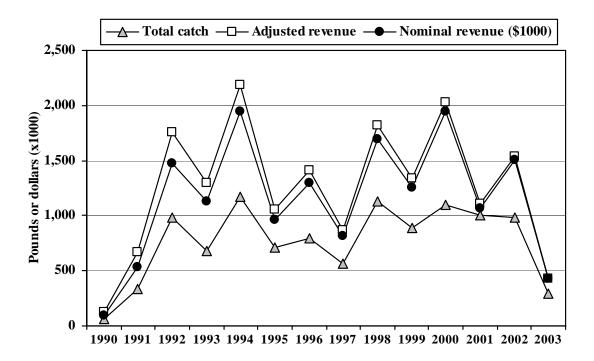
<u>Interpretation</u>: MHI handline yellowfin tuna CPUE was usually close to 200 pounds per trip with spikes above 300 pounds on three occasions (1985, 1986, and 1993) over the 21-year period. There was no obvious trend. Albacore CPUE was a record 124 pounds per trip in 2002 on what appears to be a upward trend. Bigeye tuna CPUE was also reached a record high in 2002. Catch rates for bigeye tuna have increased from 1999.

Source and Calculations: MHI handline tuna CPUE was measured as pounds of tuna caught per trip. Tuna catches were compiled from HDAR commercial catch reports during 1983-2001 and fish dealer reports in 2002 and 2003. These data reflect only handline gear codes in area codes within the MHI and included seamounts located within HDAR statistical areas codes 100 to 699. These catches were then divided by the number of MHI handline trips. Since there was no way to determine if a zero catch trip report represented unsuccessful fishing operations or no fishing effort, the CPUE does not include zero catch trips.

|         | MHI handline catch per trip (pounds) |          |        |       |  |
|---------|--------------------------------------|----------|--------|-------|--|
|         | Yellowfin                            |          | Bigeye |       |  |
| Year    | tuna                                 | Albacore | tuna   | Total |  |
| 1983    | 211                                  | 73       | 9      | 311   |  |
| 1984    | 241                                  | 44       | 8      | 303   |  |
| 1985    | 328                                  | 4        | 3      | 354   |  |
| 1986    | 326                                  | 2        | 0      | 351   |  |
| 1987    | 245                                  | 2        | 1      | 271   |  |
| 1988    | 217                                  | 3        | 5      | 244   |  |
| 1989    | 213                                  | 13       | 3      | 250   |  |
| 1990    | 204                                  | 7        | 9      | 246   |  |
| 1991    | 246                                  | 33       | 10     | 315   |  |
| 1992    | 181                                  | 29       | 5      | 238   |  |
| 1993    | 305                                  | 37       | 1      | 364   |  |
| 1994    | 241                                  | 42       | 2      | 310   |  |
| 1995    | 231                                  | 73       | 6      | 331   |  |
| 1996    | 199                                  | 60       | 2      | 289   |  |
| 1997    | 164                                  | 48       | 9      | 246   |  |
| 1998    | 192                                  | 35       | 3      | 250   |  |
| 1999    | 223                                  | 92       | 7      | 345   |  |
| 2000    | 184                                  | 52       | 27     | 283   |  |
| 2001    | 221                                  | 97       | 27     | 372   |  |
| 2002    | 174                                  | 124      | 104    | 432   |  |
| 2003    | 226                                  | 59       | 59     | 377   |  |
| Average | 227.2                                | 44.2     | 14.2   | 308.6 |  |
| SD      | 45.3                                 | 34.1     | 24.6   | 54.3  |  |

Figure 45. Number of offshore tuna handline trips, 1990-2003.




<u>Interpretation</u>: The number of offshore tuna handline trips dropped to 44 in 2003, a 35% decrease from the previous year. Trips by offshore tuna handline vessels peaked in 1992 and remained at about 200 trips from 1995 though trip activity declined for the past three years. Reporting and processing the offshore handline data was delayed due to the implementation of new commercial fish report forms in 2002.

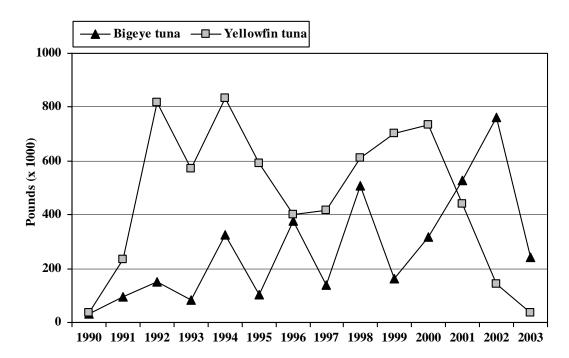
**Source and Calculation:** The number of offshore handline trips was compiled from HDAR commercial fish catch reports. Offshore handline trips were summarized by counting unique commercial marine license number and date combinations, when catches were greater than zero (i.e., this excludes zero catch trips). Since there was no way to determine if a zero catch trip report represented unsuccessful fishing

operations or no fishing effort, the trip summary does not include zero catch trips. In addition to the above set of conditions, the HDAR fishery statistical areas 16223 (NOAA weather buoy (W)1), 15717 (W 2), 16019 (W 3), 15217 (W 4), and 15818 (Cross Seamount) and other offshore areas were selected out for this fishery. There were no catch reports from this fishery prior to 1990. The number of trips for 2002 was updated with data which became available in 2003.

|         | Offshore |
|---------|----------|
|         | handline |
| Year    | trips    |
| 1990    | 29       |
| 1991    | 148      |
| 1992    | 420      |
| 1993    | 307      |
| 1994    | 316      |
| 1995    | 216      |
| 1996    | 204      |
| 1997    | 145      |
| 1998    | 228      |
| 1999    | 202      |
| 2000    | 228      |
| 2001    | 212      |
| 2002    | 125      |
| 2003    | 44       |
| Average | 201.7    |
| SD      | 103.8    |

Figure 46. Offshore tuna handline catch and revenue, 1990-2003.




<u>Interpretation</u>: The preliminary offshore handline fishery catch and revenue was 296,000 pounds worth \$427,000 in 2003. These values represented decreases of 70% and 72%, respectively, from 2002. Catch and revenue grew rapidly in the early 1990s. Though there was substantial year to year variation, catch and revenue exhibited no apparent trend during the past decade. Reporting and processing the offshore handline data was delayed due to the implementation of new HDAR commercial catch report forms in 2002.

<u>Source and Calculation</u>: Offshore handline catch and revenue were summarized from HDAR commercial fish catch reports. Total catch and nominal revenue were summed from the pounds caught and value fields, respectively. The offshore handline data are a subset of the combined tuna handline data

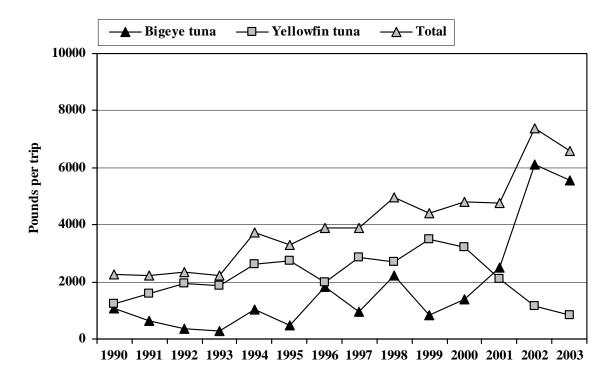
for HDAR fishery statistical areas 16223 (NOAA weather buoy (W)1), 15717 (W 2), 16019 (W 3), 15217 (W 4), and 15818 (Cross Seamount) and other offshore areas. The Honolulu CPI was applied to nominal revenue to derive inflation-adjusted revenue. The catch and revenue summaries for 2002 were updated with data which became available in 2003.

|         | Total      | A  | Adjusted        |    | ominal  |          |
|---------|------------|----|-----------------|----|---------|----------|
|         | catch      | r  | revenue         |    | evenue  | Honolulu |
| Year    | (1000 lbs) | (  | <b>\$1000</b> ) | (5 | \$1000) | CPI      |
| 1990    | 66         | \$ | 130             | \$ | 97      | 138.1    |
| 1991    | 331        | \$ | 664             | \$ | 533     | 148.0    |
| 1992    | 987        | \$ | 1,757           | \$ | 1,477   | 155.1    |
| 1993    | 679        | \$ | 1,296           | \$ | 1,125   | 160.1    |
| 1994    | 1,175      | \$ | 2,184           | \$ | 1,947   | 164.5    |
| 1995    | 714        | \$ | 1,058           | \$ | 964     | 168.1    |
| 1996    | 793        | \$ | 1,407           | \$ | 1,302   | 170.7    |
| 1997    | 563        | \$ | 870             | \$ | 811     | 171.9    |
| 1998    | 1,134      | \$ | 1,825           | \$ | 1,696   | 171.5    |
| 1999    | 888        | \$ | 1,337           | \$ | 1,256   | 173.3    |
| 2000    | 1,096      | \$ | 2,034           | \$ | 1,944   | 176.3    |
| 2001    | 1,007      | \$ | 1,106           | \$ | 1,069   | 178.4    |
| 2002    | 987        | \$ | 1,539           | \$ | 1,504   | 180.3    |
| 2003    | 296        | \$ | 427             | \$ | 427     | 184.5    |
| Average | 765.4      |    | 1,259.6         |    | 1,153.7 |          |
| SD      | 343.6      |    | 599.2           |    | 554.6   |          |

Figure 47. Offshore handline catch, 1990-2003.



<u>Interpretation</u>: Yellowfin tuna was the largest component of the offshore handline fishery from 1990 through 2000; bigeye tuna then became the dominant species. Bigeye tuna composed 83% of the catch and was followed by yellowfin tuna (12%), and small catches of mahimahi. In general, bigeye tuna catch has been on a increasing trend. This may reflect better species identification by fishermen (small bigeye tuna and yellowfin tuna can be very difficult to distinguish).


Most of the tunas caught by the offshore handline fishery are smaller than those taken by the inshore handline fishery. It should be noted that many of the reported yellowfin tuna catch may actually be bigeye tuna; knowledgeable observers have reported that the small tunas caught by this fishery (up to 70%) are predominantly bigeye tuna (David Itano, pers. comm.). As standard practice, tuna catch

reported by fishermen as "ahi" are coded by the HDAR Fisheries Statistics Unit as yellowfin tuna. Though these tunas may indeed be bigeye tuna, the Statistics Unit must record the species as reported by fishermen unless they have evidence or confirmation to make changes to the data. Therefore, the total tuna catch by the offshore handline fishery are almost certainly more accurate than the catch for individual species. HDAR is making an effort to help educate fishermen and fish dealers correctly ID small tunas.

|         | Offshore handline catch (1000 pounds) |           |          |       |  |  |  |  |  |  |
|---------|---------------------------------------|-----------|----------|-------|--|--|--|--|--|--|
|         | Bigeye                                | Yellowfin |          |       |  |  |  |  |  |  |
| Year    | tuna                                  | tuna      | Mahimahi | Total |  |  |  |  |  |  |
| 1990    | 31                                    | 35        | 0        | 66    |  |  |  |  |  |  |
| 1991    | 94                                    | 232       | 5        | 331   |  |  |  |  |  |  |
| 1992    | 151                                   | 816       | 21       | 987   |  |  |  |  |  |  |
| 1993    | 85                                    | 571       | 23       | 679   |  |  |  |  |  |  |
| 1994    | 324                                   | 834       | 18       | 1,175 |  |  |  |  |  |  |
| 1995    | 102                                   | 591       | 20       | 714   |  |  |  |  |  |  |
| 1996    | 375                                   | 401       | 17       | 793   |  |  |  |  |  |  |
| 1997    | 138                                   | 415       | 9        | 563   |  |  |  |  |  |  |
| 1998    | 508                                   | 613       | 13       | 1,134 |  |  |  |  |  |  |
| 1999    | 164                                   | 703       | 20       | 888   |  |  |  |  |  |  |
| 2000    | 317                                   | 734       | 46       | 1,096 |  |  |  |  |  |  |
| 2001    | 530                                   | 442       | 36       | 1,007 |  |  |  |  |  |  |
| 2002    | 762                                   | 142       | 21       | 956   |  |  |  |  |  |  |
| 2003    | 244                                   | 36        | 10       | 293   |  |  |  |  |  |  |
| Average | 273.1                                 | 468.9     | 18.5     | 762.9 |  |  |  |  |  |  |
| SD      | 210.5                                 | 273.3     | 11.8     | 342.5 |  |  |  |  |  |  |

Source and Calculation: Offshore handline tuna catches were compiled from HDAR commercial catch reports during 1990-2001 and fish dealer reports in 2002. The offshore handline data are a subset of the combined tuna handline data for HDAR fishery statistical areas 16223 (NOAA weather buoy (W)1), 15717 (W 2), 16019 (W 3), 15217 (W 4), and 15818 (Cross Seamount) and other HDAR offshore statistical areas. The catch summary for 2002 was updated with data which became available in 2003.

Figure 48. Offshore tuna handline catch per trip, 1990-2003.



<u>Interpretation</u>: Catch per trip was the unit of measurement for offshore handline CPUE. This was based on multi-day trips. CPUE for the offshore handline fishery was down 11% in 2003. Generally, catch rates for both bigeye and yellowfin tunas increased though the 1990s. Bigeye tuna CPUE, however, exhibited a large increase from 1999 to 2002 (almost 7-fold) whereas yellowfin tuna CPUE decreased 77% at the same time.

<u>Source and Calculations</u>: Offshore handline tuna CPUE was measured as pounds of tuna caught per trip. Tuna catches were compiled from HDAR commercial catch reports during 1990-2001 and fish dealer

reports in 2002 and 2003. The offshore handline data are a subset of the combined tuna handline data for HDAR fishery statistical areas 16223 (NOAA weather buoy (W)1), 15717 (W 2), 16019 (W 3), 15217 (W 4), and 15818 (Cross Seamount) and other HDAR offshore statistical areas. These catches were then divided by the number of offshore handline trips. Since there was no way to determine if a zero catch trip report represented unsuccessful fishing operations or no fishing effort, the CPUE does not include zero catch trips.

|         | Offshore handline catch per trip (pounds) |           |          |         |  |  |  |  |  |
|---------|-------------------------------------------|-----------|----------|---------|--|--|--|--|--|
|         | Bigeye                                    | Yellowfin |          |         |  |  |  |  |  |
| Year    | tuna                                      | tuna      | Mahimahi | Total   |  |  |  |  |  |
| 1990    | 1,052                                     | 1,217     | 2        | 2,271   |  |  |  |  |  |
| 1991    | 634                                       | 1,569     | 31       | 2,234   |  |  |  |  |  |
| 1992    | 359                                       | 1,942     | 49       | 2,350   |  |  |  |  |  |
| 1993    | 276                                       | 1,858     | 76       | 2,210   |  |  |  |  |  |
| 1994    | 1,024                                     | 2,638     | 56       | 3,718   |  |  |  |  |  |
| 1995    | 473                                       | 2,738     | 94       | 3,305   |  |  |  |  |  |
| 1996    | 1,840                                     | 1,966     | 82       | 3,888   |  |  |  |  |  |
| 1997    | 954                                       | 2,862     | 65       | 3,881   |  |  |  |  |  |
| 1998    | 2,227                                     | 2,688     | 57       | 4,972   |  |  |  |  |  |
| 1999    | 814                                       | 3,482     | 101      | 4,397   |  |  |  |  |  |
| 2000    | 1,388                                     | 3,218     | 201      | 4,808   |  |  |  |  |  |
| 2001    | 2,498                                     | 2,084     | 169      | 4,751   |  |  |  |  |  |
| 2002    | 6,096                                     | 1,136     | 168      | 7,400   |  |  |  |  |  |
| 2003    | 5,545                                     | 818       | 227      | 6,591   |  |  |  |  |  |
| Average | 1,798.6                                   | 2,158.3   | 98.5     | 4,055.5 |  |  |  |  |  |
| SD      | 1,833.3                                   | 807.2     | 67.2     | 1,597.3 |  |  |  |  |  |

Table 8. Average weight by species for troll and handline catch, 1987-2003.

| SPECIES                                                  | 1987             | 1988             | 1989             | 1990            | 1991 | 1992            | 1993 | 1994            | 1995             | 1996            | 1997            | 1998            | 1999            | 2000 | 2001 | 2002 | 2003 | Average | S.D.                |
|----------------------------------------------------------|------------------|------------------|------------------|-----------------|------|-----------------|------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|------|------|------|------|---------|---------------------|
| <b>TUNAS</b>                                             |                  |                  |                  |                 |      |                 |      |                 |                  |                 |                 |                 |                 |      |      |      |      |         |                     |
| Albacore                                                 | 33               | 64               | 55               | 58              | 53   | 53              | 55   | 53              | 22               | 42              | 40              | 21              | 48              | 47   | 47   | 45   | 39   | 45.6    | 11.9                |
| Bigeye tuna                                              | 14               | 34               | 24               | 25              | 29   | 28              | 22   | 30              | 18               | 24              | 19              | 21              | 24              | 25   | 21   | 30   | 20   | 24.0    | 5.1                 |
| Skipjack tuna                                            | 7                | 7                | 11               | 7               | 9    | 6               | 7    | 9               | 7                | 12              | 11              | 5               | 7               | 7    | 8    | 7    | 6    | 7.8     | 1.9                 |
| Yellowfin tuna                                           | 32               | 32               | 44               | 41              | 34   | 27              | 44   | 37              | 30               | 42              | 34              | 28              | 31              | 43   | 34   | 39   | 28   | 35.3    | 5.9                 |
| BILLFISH Blue marlin Striped marlin Swordfish OTHER PMUS | 215<br>66<br>126 | 181<br>64<br>124 | 188<br>68<br>107 | 248<br>76<br>97 |      | 215<br>70<br>75 |      | 233<br>67<br>95 | 204<br>61<br>110 | 195<br>65<br>86 | 175<br>68<br>96 | 201<br>58<br>85 | 211<br>55<br>88 | 53   | 51   | 60   |      | 62.4    | 22.3<br>7.3<br>17.0 |
| Mahimahi                                                 | 21               | 18               | 21               | 20              | 15   | 14              | 14   | 14              | 16               | 16              | 16              | 18              | 18              | 15   | 16   | 16   | 16   | 16.7    | 2.3                 |
| Ono (wahoo)                                              | 24               | 25               | 25               | 25              | 23   | 26              | 24   | 27              | 24               | 23              | 21              | 25              | 27              | 26   | 24   | 26   | 22   | 24.5    | 1.7                 |

<u>Interpretation</u>: Average weight for most species caught by troll and handline gear in 2003 was lower compared to both the previous year and the long-term average. Mean weight for albacore was 6 pounds less than in 2002. Bigeye and yellowfin tuna mean weight were about 10 pounds less in 2003. Blue marlin had the highest mean weight of all species for troll and handline caught fish. Striped marlin mean weight was at a record low while swordfish changed little. Mahimahi and ono were close to the long-term average.

<u>Source and Calculations</u>: The average weights were calculated from HDAR commercial catch reports. Total pounds caught was divided by the total number caught when number of fish caught was greater than zero. Catch by the troll and handline fishery is usually landed whole, however, average weight calculations were based on reported weight and may include catch that was processed, i.e., headed and gutted, gilled and gutted.

Figure 49. Hawaii aku boat (pole and line) vessel and trip activity, 1983-2003.

**Interpretation:** There were six aku boat vessels fishing in 2003. The participation in this fleet has declined slowly from the 1990s and was much lower than in the 1980s. The number of aku boat trips during 1983-2003 follows the same pattern as vessel participation with a steep decline from 1984 to 1990 followed by a gradual decrease since 2000. The steep decline of the 1980s can be attributed partly to the closure of the tuna cannery. Attrition of vessels, many which were built in the 1940s, and poor skipjack

tuna catches are other reasons for the long-term decline in this fishery. Preliminary data show that six vessels made 223 trips in 2003. Reporting and processing 2002 data have been slow because fishermen and HDAR staff have begun using a new, more detailed, and unfamiliar aku boat catch form. Thus, it is unclear how much of the apparent decrease in aku boat trips reflects reporting problems, lower trip activity, or both.

<u>Source and Calculations</u>: The aku boat trip summary was compiled from Hawaii Division of Aquatic Resources (HDAR) commercial fish catch reports for records that designated pole and line as the type of gear used. A unique combination of license number, month, day, and year was used to define an aku boat trip. Zero catch trips from the aku boat fish report data were included in this summary.

|         |         | Akuboat |
|---------|---------|---------|
| Year    | Vessels | trips   |
| 1983    | 14      | 1,070   |
| 1984    | 13      | 1,264   |
| 1985    | 18      | 927     |
| 1986    | 16      | 943     |
| 1987    | 13      | 958     |
| 1988    | 13      | 945     |
| 1989    | 10      | 757     |
| 1990    | 8       | 541     |
| 1991    | 7       | 561     |
| 1992    | 7       | 621     |
| 1993    | 9       | 528     |
| 1994    | 7       | 425     |
| 1995    | 7       | 460     |
| 1996    | 8       | 530     |
| 1997    | 8       | 540     |
| 1998    | 7       | 341     |
| 1999    | 8       | 466     |
| 2000    | 6       | 290     |
| 2001    | 6       | 301     |
| 2002    | 6       | 197     |
| 2003    | 6       | 223     |
| Average | 9.4     | 613.7   |
| SD      | 3.6     | 299.9   |

Total catch ---- Adjusted revenue -Nominal revenue 8,000 Pounds or dollars (x1000) 6,000

Figure 50. Hawaii aku boat (pole and line) catch and revenue, 1983-2003.

**Interpretation:** Catch and revenue by the aku boat fishery in 2003 increased to 1,018,000 pounds worth an estimated ex-vessel value of \$1.0 million in 2003. Aku boat catch and revenue peaked in 1988, declined sharply in 1990, and continued to decline slowly thereafter. The closure of the tuna cannery in 1985 was followed by a decrease in vessels participating in this fishery. The decreases in catch and revenue were a result of these events.

1991

1993

1995

1997

1999

2001

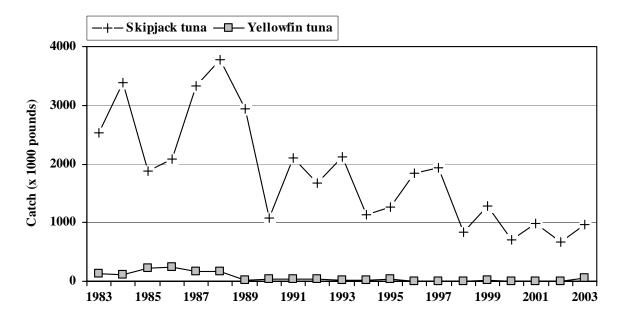
2003

Source and Calculation: The aku boat catch and nominal revenue were compiled from Hawaii Division of Aquatic Resources (HDAR) commercial fish catch reports for records that designated pole and line as the type of gear used. The Honolulu Consumer Price Index (CPI) was applied to the nominal revenue to derive inflation-adjusted revenue.

1985

1987

1989


1983

4,000

2,000

|            | Total               |     | Adjusted            |          | ominal  |                 |
|------------|---------------------|-----|---------------------|----------|---------|-----------------|
| <b>X</b> 7 | catch<br>(1000 lbs) |     | revenue<br>(\$1000) |          | evenue  | Honolulu<br>CPI |
| Year       | ` ,                 | _ ` |                     | (\$1000) |         |                 |
| 1983       | 2,681               | \$  | 4,835               | \$       | 2,602   | 99.3            |
| 1984       | 3,527               | \$  | 5,082               | \$       | 2,851   | 103.5           |
| 1985       | 2,114               | \$  | 4,089               | \$       | 2,367   | 106.8           |
| 1986       | 2,351               | \$  | 3,990               | \$       | 2,366   | 109.4           |
| 1987       | 3,503               | \$  | 6,023               | \$       | 3,751   | 114.9           |
| 1988       | 3,940               | \$  | 6,160               | \$       | 4,063   | 121.7           |
| 1989       | 2,962               | \$  | 5,944               | \$       | 4,146   | 128.7           |
| 1990       | 1,116               | \$  | 2,502               | \$       | 1,873   | 138.1           |
| 1991       | 2,146               | \$  | 3,373               | \$       | 2,706   | 148.0           |
| 1992       | 1,735               | \$  | 2,873               | \$       | 2,415   | 155.1           |
| 1993       | 2,137               | \$  | 2,783               | \$       | 2,415   | 160.1           |
| 1994       | 1,159               | \$  | 2,058               | \$       | 1,835   | 164.5           |
| 1995       | 1,291               | \$  | 1,701               | \$       | 1,550   | 168.1           |
| 1996       | 1,844               | \$  | 2,582               | \$       | 2,389   | 170.7           |
| 1997       | 1,947               | \$  | 2,568               | \$       | 2,393   | 171.9           |
| 1998       | 845                 | \$  | 1,190               | \$       | 1,106   | 171.5           |
| 1999       | 1,312               | \$  | 1,782               | \$       | 1,674   | 173.3           |
| 2000       | 707                 | \$  | 1,145               | \$       | 1,094   | 176.3           |
| 2001       | 990                 | \$  | 1,412               | \$       | 1,365   | 178.4           |
| 2002       | 677                 | \$  | 900                 | \$       | 880     | 180.3           |
| 2003       | 1,018               | \$  | 1,005               | \$       | 1,005   | 184.5           |
| Average    | 1,900.0             | \$  | 3,050.0             | \$       | 2,230.0 |                 |
| SD         | 980.0               | \$  | 1,730.0             | \$       | 950.0   |                 |

Figure 51. Hawaii aku boat (pole and line) fishery catch, 1983-2003.



<u>Interpretation</u>: The aku boat fishery catches primarily skipjack tuna (aku); this single species typically represented over 95% of the total catch. There were also small catches of yellowfin tuna. Skipjack tuna catch varied annually with a overall downward trend throughout 1982-2003. Part of the reason for the decline in catch from this fishery was the closure of the tuna cannery in 1985. After the closure of the

cannery, the aku boat fishery was left with only

the fresh fish market.

Source and Calculations: The aku boat catch summary was compiled from Hawaii Division of Aquatic Resources (HDAR) commercial fish catch reports for records that designated pole and line as the type of gear used.

|         | Akuboat catch (x 1000 pounds) |           |       |          |         |  |  |  |  |  |  |
|---------|-------------------------------|-----------|-------|----------|---------|--|--|--|--|--|--|
|         | Skipjack                      | Yellowfin | Other |          |         |  |  |  |  |  |  |
| Year    | tuna                          | tuna      | tunas | Mahimahi | Total   |  |  |  |  |  |  |
| 1983    | 2,539                         | 121       | 12    | 9        | 2,681   |  |  |  |  |  |  |
| 1984    | 3,387                         | 119       | 16    | 5        | 3,527   |  |  |  |  |  |  |
| 1985    | 1,881                         | 227       | 6     | 0        | 2,114   |  |  |  |  |  |  |
| 1986    | 2,075                         | 251       | 17    | 7        | 2,351   |  |  |  |  |  |  |
| 1987    | 3,328                         | 173       | 0     | 2        | 3,503   |  |  |  |  |  |  |
| 1988    | 3,768                         | 168       | 0     | 4        | 3,940   |  |  |  |  |  |  |
| 1989    | 2,938                         | 21        | 2     | 1        | 2,962   |  |  |  |  |  |  |
| 1990    | 1,073                         | 39        | 4     | 0        | 1,116   |  |  |  |  |  |  |
| 1991    | 2,102                         | 44        | 1     | 0        | 2,146   |  |  |  |  |  |  |
| 1992    | 1,682                         | 36        | 4     | 14       | 1,735   |  |  |  |  |  |  |
| 1993    | 2,121                         | 10        | 3     | 3        | 2,137   |  |  |  |  |  |  |
| 1994    | 1,133                         | 19        | 6     | 0        | 1,159   |  |  |  |  |  |  |
| 1995    | 1,256                         | 34        | 0     | 0        | 1,291   |  |  |  |  |  |  |
| 1996    | 1,842                         | 2         | 0     | 0        | 1,844   |  |  |  |  |  |  |
| 1997    | 1,942                         | 0         | 0     | 5        | 1,947   |  |  |  |  |  |  |
| 1998    | 842                           | 3         | 0     | 0        | 845     |  |  |  |  |  |  |
| 1999    | 1,291                         | 21        | 0     | 0        | 1,312   |  |  |  |  |  |  |
| 2000    | 704                           | 2         | 1     | 0        | 707     |  |  |  |  |  |  |
| 2001    | 986                           | 4         | 0     | 0        | 990     |  |  |  |  |  |  |
| 2002    | 672                           | 4         | 1     | 0        | 677     |  |  |  |  |  |  |
| 2003    | 960                           | 50        | 0     | 1        | 1,018   |  |  |  |  |  |  |
| Average | 1,834.4                       |           | 3.4   |          | 1,904.8 |  |  |  |  |  |  |
| SD      | 925.9                         | 78.9      | 5.2   | 3.7      | 975.5   |  |  |  |  |  |  |

6000 di 4000 d

Figure 52. Hawaii aku boat (pole and line) fishery catch per trip, 1983-2003.

<u>Interpretation</u>: CPUE for the aku boat fishery was measured as catch (in pounds) per trip. The aku boat skipjack tuna catch per trip increased to a record 4,305 pounds per trip in 2003 for the 21-year time series. There was no clear long-term trend for aku boat catch per trip though CPUE has consistently for the most recent four years.

**Source and Calculations:** The aku boat catch summary was compiled from Hawaii Division of Aquatic Resources (HDAR) commercial fish catch reports for records that designated pole and line as the type of gear used. Catch per trip was then calculated by dividing the catch by the total number of trips.

|         | Aku boat CPUE     |         |  |  |  |  |  |  |  |
|---------|-------------------|---------|--|--|--|--|--|--|--|
|         | (pounds per trip) |         |  |  |  |  |  |  |  |
|         | Skipjack          | Total   |  |  |  |  |  |  |  |
| Year    | tuna              | catch   |  |  |  |  |  |  |  |
| 1983    | 2,373             | 2,505   |  |  |  |  |  |  |  |
| 1984    | 2,680             | 2,790   |  |  |  |  |  |  |  |
| 1985    | 2,029             | 2,280   |  |  |  |  |  |  |  |
| 1986    | 2,201             | 2,493   |  |  |  |  |  |  |  |
| 1987    | 3,474             | 3,657   |  |  |  |  |  |  |  |
| 1988    | 3,988             | 4,169   |  |  |  |  |  |  |  |
| 1989    | 3,882             | 3,913   |  |  |  |  |  |  |  |
| 1990    | 1,984             | 2,062   |  |  |  |  |  |  |  |
| 1991    | 3,746             | 3,826   |  |  |  |  |  |  |  |
| 1992    | 2,708             | 2,794   |  |  |  |  |  |  |  |
| 1993    | 4,018             | 4,048   |  |  |  |  |  |  |  |
| 1994    | 2,667             | 2,726   |  |  |  |  |  |  |  |
| 1995    | 2,731             | 2,806   |  |  |  |  |  |  |  |
| 1996    | 3,475             | 3,479   |  |  |  |  |  |  |  |
| 1997    | 3,596             | 3,606   |  |  |  |  |  |  |  |
| 1998    | 2,468             | 2,477   |  |  |  |  |  |  |  |
| 1999    | 2,770             | 2,816   |  |  |  |  |  |  |  |
| 2000    | 2,429             | 2,438   |  |  |  |  |  |  |  |
| 2001    | 3,274             | 3,289   |  |  |  |  |  |  |  |
| 2002    | 3,411             | 3,437   |  |  |  |  |  |  |  |
| 2003    | 4,305             | 4,565   |  |  |  |  |  |  |  |
| Average | 3,057.5           | 3,151.3 |  |  |  |  |  |  |  |
| SD      | 709.6             | 706.2   |  |  |  |  |  |  |  |

3-52 Hawaii

## Appendix 4

## Commonwealth of the Northern Mariana Islands

#### Introduction

The Northern Mariana Islands pelagic fishery occurs primarily from the island of Farallon de Medinilla south to the island of Rota. The fishery is characterized using data in the Commercial Purchase Data Base. The collection system for the data is dependent upon first-level purchasers of local fresh fish to accurately record all fish purchases by species categories on specially designed invoices. Staff from the Department of Lands and Natural Resources, Division of Fish and Wildlife (DFW) routinely distributes and collects invoice books from 30 participating local fish purchasers on Saipan. Purchasers include practically all fish markets, stores, restaurants, hotels and roadside vendors ("fish-mobiles").

The current commercial purchase database collection system only documents landings on Saipan. The establishment of a data collection system for the islands of Tinian and Rota are in the process. It is believed that the commercial purchase database landings include around 80% of all commercial landings on Saipan. There is also a subsistence fishery on Saipan were profit making is made by selling a small portion of their catch to cover fishing expense. Some fishermen sell their catch going "door to door" which results in around 20% of the unreported commercial landings.

Although the Saipan data collection system has been in operation since the mid-1970s, only data collected since 1983 are considered accurate enough to be used. It is assumed that data in this report are credible.

This database lacks information concerning fishing method, location, and effort because previous data generated from Creel Survey are believed to be unreliable.

### **Summary**

Trolling is the primary fishing method utilized in the pelagic fishery. The pelagic fishing fleet, other than charter boats, consists primarily of vessels less than 24 ft in length which usually have a limited 20-mile travel radius from Saipan. In 2003 about 55 vessels were identified as involved in full-time commercial fishing and 41 vessels were classified as part-time. No fishing and/or recreational usage included 312 vessels.

Twenty-six vessels were registered with the Boating Safety Office as charter vessels for 2003. Charter vessels generally retain their catches, selling half or more to local markets. While the general magnitude of charter boat sales is unknown, it is questionable whether the local market can absorb these catches without impacting commercial fishermen. No logbook system is currently in effect.

The primary target and most marketable species for the pelagic fleet are skipjack tuna. Yellowfin tuna and mahimahi are also easily marketable species but are seasonal. During their seasonal runs, these fish are usually found close to shore and provide easy targets for the local fishermen. In

addition to the economic advantages of being near shore and their relative ease of capture, these species are widely accepted by all ethnic groups. This has kept market demand fairly high due to the continuing immigrant population growth on Saipan (over half of the population on Saipan is nonnative).

## 2002 Recommendations

1) To work closely with WPacFIN in developing a data collection system for the new longline fishery that is beginning to develop in the CNMI.

## **2002 Status**

CNMI received IFA funds to monitor this fishery. However permit holder has not conducted any lonlining.

## **Table**

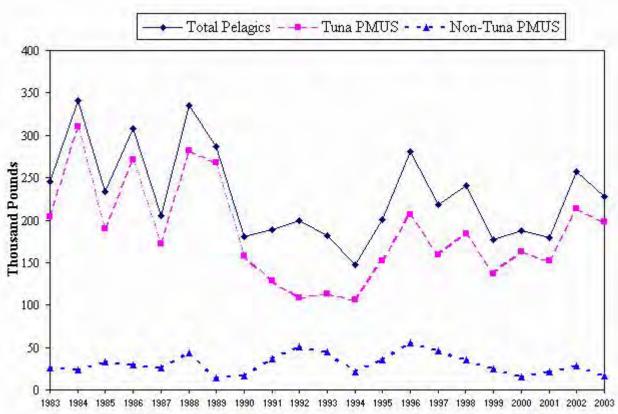
|     |                                                                           | page |
|-----|---------------------------------------------------------------------------|------|
| 1.  | NMI 2003 commercial pelagic landings, revenues and price                  | 4-4  |
| 2.  |                                                                           |      |
|     | Figures                                                                   |      |
|     |                                                                           | page |
| 1.  | NMI annual commercial landings: all pelagics, tuna PMUS and non-tuna PMUS | 4-5  |
| 2.  | NMI annual commercial landings: mahimahi, wahoo, and marlin               | 4-6  |
| 3.  | NMI annual commercial landings: skipjack and yellowfin tuna               | 4-8  |
| 4.  | Number of NMI fishermen (boats) making commercial pelagic landings        | 4-10 |
| 5.  | NMI number of trips catching any pelagic fish                             |      |
| 6.  | NMI average inflation-adjusted price of tunas and Non-Tuna PMUS           |      |
| 7.  | NMI annual commercial adjusted revenues                                   |      |
| 8.  | NMI annual commercial adjusted revenue for PMUS trips only                |      |
| 9.  | NMI trolling catch rates of mahimahi, wahoo and marlin                    |      |
| 10. | NMI trolling catch rates of skipjack and yellowfin tuna                   |      |
|     | NMI trolling Creel Survey bycatch summary                                 |      |

**Table 1.—CNMI Consumer Price Indices (CPIs)** 

| Year | СРІ    | CPI Adjusted Factor |
|------|--------|---------------------|
| 1983 | 140.90 | 1.92                |
| 1984 | 153.20 | 1.77                |
| 1985 | 159.30 | 1.70                |
| 1986 | 163.50 | 1.66                |
| 1987 | 170.70 | 1.59                |
| 1988 | 179.60 | 1.51                |
| 1989 | 190.20 | 1.43                |
| 1990 | 199.33 | 1.36                |
| 1991 | 214.93 | 1.26                |
| 1992 | 232.90 | 1.16                |
| 1993 | 243.18 | 1.11                |
| 1994 | 250.00 | 1.08                |
| 1995 | 254.48 | 1.07                |
| 1996 | 261.98 | 1.03                |
| 1997 | 264.95 | 1.02                |
| 1998 | 264.18 | 1.03                |
| 1999 | 267.80 | 1.01                |
| 2000 | 273.23 | 0.99                |
| 2001 | 270.98 | 1.00                |
| 2002 | 271.53 | 1.00                |
| 2003 | 271.05 | 1.00                |

**Calculation:** The Commonwealth of the Northern Mariana Islands' Consumer Price Index is computed by the CNMI Department of Commerce using the Laspeyres' formula.

Table 2. NMI 2003 Commercial Pelagic Landings, Revenues and Price


| Species                  | Landing (Lbs) | Value (\$) | Avg Price (\$/Lb) |
|--------------------------|---------------|------------|-------------------|
| Skipjack Tuna            | 171,312       | 332,181    | 1.94              |
| Yellowfin Tuna           | 25,500        | 53,714     | 2.11              |
| Saba (kawakawa)          | 1,228         | 2,183      | 1.78              |
| Tuna PMUS                | 198,040       | 388,078    | 1.94              |
|                          |               |            |                   |
| Mahimahi                 | 7,173         | 16,186     | 2.26              |
| Wahoo                    | 7,803         | 15,848     | 2.03              |
| Blue Marlin              | 1,130         | 1,929      | 1.71              |
| Sailfish                 | 137           | 214        | 1.56              |
| Sickle Pomfret (w/woman) | 722           | 1,666      | 2.31              |
| Non-tuna PMUS            | 16,966        | 35,842     | 1.97              |
| Dogtooth Tuna            | 7,842         | 12,369     | 1.58              |
| Rainbow Runner           | 4,353         | 8,336      | 1.91              |
| Non-PMUS Pelagics        | 12,196        | 20,705     | 1.75              |
| Total Pelagics           | 227,203       | 444,625    | 1.92              |

**Interpretation**: Skipjack landings decreased 4% or more than 7,000 pounds in 2003. Skipjack tuna continues to dominate the pelagic landings, comprising around 87 % of the (commercially receipted) industry's pelagic catch. Yellowfin tuna and wahoo ranked second and third in total landings during 2003. Wahoo landings surpassed mahimahi landings for 2003, however it decreased by 4% in comparison to the 2002 landings. Yellowfin landings also decreased 15%. Increase in yellowfin landings in 2002 is partly due to landings from the Northern Islands and by a longline experiment conducted by a fishing company. Skipjack tunas are easily caught in near shore waters throughout the year. Mahimahi is seasonal with peak catch usually from February through April. Yellowfin season usually runs from April to September. The overall pelagic catch decreased by 11% in 2003.

The highest average price of identified pelagic species was \$2.31/lb for Sickle Pomfret. The lowest priced species is Dogtooth. In 2002, Dogtooth tuna increased in landings by 73% partly due to the bottom fishing in Northern Islands. However in 2003, limited activity from the Northern Islands Bottomfishing Boats caused the decrease of Dogtooth landings by 40%. The average price per pound for Skipjack tuna, the species with the greatest landings, remained around \$1.93/lb.

The recorded Blue Marlin landing for 2003 is 1,130 pounds. The low ex-vessel price may be partially related to the manner in which the fish is kept prior to sale. Blue Marlin is rarely a target by commercial fishermen except during fishing tournaments and by Charter boats.

Figure 1. NMI Annual Commercial Landings: All Pelagics, Tuna PMUS, and Non-Tuna PMUS



**Source and Calculation**: Annual summaries for each species are from the Commercial Purchase Data Base invoices.

**Interpretation**: Total weight of pelagics landed in 2003 decreased 11% from 2002 level. Tuna landings also decreased by 6%. Landings recorded in the "Non-Tuna PMUS" category decreased significantly by 24,000 pounds or 58% from 2002 figures.

**Source and Calculation**: All pelagics, tuna and Non-Tuna PMUS landings were summed from the Commercial Purchase Data Base.

**Total Commercial Landings (Lb)** 

| <u> </u>              |              |           | _             |
|-----------------------|--------------|-----------|---------------|
| Year                  | All Pelagics | Tuna PMUS | Non-Tuna PMUS |
| 1983                  | 245,985      | 204,692   | 26,544        |
| 1984                  | 341,136      | 310,424   | 23,244        |
| 1985                  | 234,178      | 189,809   | 33,143        |
| 1986                  | 307,459      | 271,279   | 29,626        |
| 1987                  | 205,068      | 171,957   | 25,450        |
| 1988                  | 334,523      | 281,872   | 43,805        |
| 1989                  | 286,784      | 267,811   | 14,595        |
| 1990                  | 180,450      | 158,430   | 15,936        |
| 1991                  | 188,561      | 128,848   | 36,975        |
| 1992                  | 199,228      | 108,314   | 50,159        |
| 1993                  | 181,328      | 113,207   | 44,518        |
| 1994                  | 147,329      | 105,942   | 21,657        |
| 1995                  | 200,180      | 152,756   | 35,759        |
| 1996                  | 281,277      | 206,247   | 55,712        |
| 1997                  | 218,873      | 159,626   | 46,049        |
| 1998                  | 240,263      | 184,450   | 35,979        |
| 1999                  | 177,031      | 136,907   | 24,768        |
| 2000                  | 187,295      | 162,747   | 15,551        |
| 2001                  | 179,181      | 152,144   | 21,198        |
| 2002                  | 256,982      | 213,565   | 27,876        |
| 2003                  | 227,203      | 198,040   | 16,966        |
| Average               | 229,539      | 184,717   | 30,739        |
| Standard<br>Deviation | 54,502       | 58,374    | 12,070        |

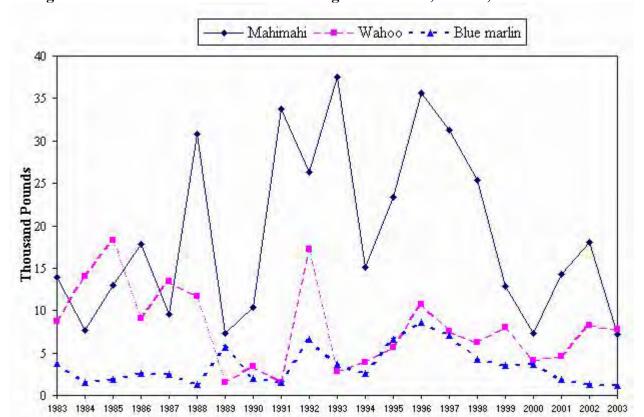



Figure 2. NMI Annual Commercial Landings: Mahimahi, Wahoo, and Blue Marlin.

Interpretation: Mahimahi landings decreased by 61% from 17,937 pounds in 2002 to just 7,075 pounds in 2003. It is noteworthy that the NMI and Guam mahimahi catches have been fluctuating similarly since 1987, which may indicate a strong biological influence in local landing patterns.

From 1983 to 1988, wahoo landings were somewhat consistent and did not fall below 7,000 lbs., but in 1989 landings notably declined by 86% and remained at depressed levels until the dramatic increase in landings during 1992. Following the near-record 1992 landings, the 1993 wahoo landings again decreased by 84%, falling below the mean. Wahoo landings in 2001 increased by 362 pounds or 11% over the 2000 landings. Wahoo landings continued to increase in 2002 by 44% over the previous year but drop slightly in 2003.

The Blue Marlin landing decreased 10% from the 2002 figures. Blue marlin is rarely a target by the commercial fishermen except for charter boats and during fishing tournaments. If blue marlins are landed, they are often kept by the fishermen and therefore rarely ever recorded in the Commercial Purchase Data Base.

**Source and Calculation**: The annual commercial landings of the three major PMUS species (mahimahi, wahoo and blue marlin) were summed directly from the Commercial Purchase Data Base.

**Total Commercial Landings (Lb)** 

|                       |          |        | -           |
|-----------------------|----------|--------|-------------|
| Year                  | Mahimahi | Wahoo  | Blue Marlin |
| 1983                  | 13,939   | 8,760  | 3,787       |
| 1984                  | 7,614    | 14,087 | 1,544       |
| 1985                  | 12,955   | 18,251 | 1,860       |
| 1986                  | 17,796   | 9,062  | 2,654       |
| 1987                  | 9,502    | 13,404 | 2,460       |
| 1988                  | 30,799   | 11,697 | 1,309       |
| 1989                  | 7,320    | 1,571  | 5,704       |
| 1990                  | 10,439   | 3,462  | 2,034       |
| 1991                  | 33,756   | 1,521  | 1,568       |
| 1992                  | 26,257   | 17,172 | 6,603       |
| 1993                  | 37,545   | 2,779  | 3,687       |
| 1994                  | 15,063   | 3,863  | 2,635       |
| 1995                  | 23,321   | 5,722  | 6,619       |
| 1996                  | 35,655   | 10,783 | 8,593       |
| 1997                  | 31,277   | 7,580  | 7,068       |
| 1998                  | 25,375   | 6,299  | 4,201       |
| 1999                  | 12,882   | 8,063  | 3,541       |
| 2000                  | 7,324    | 4,097  | 3,608       |
| 2001                  | 14,229   | 4,550  | 1,924       |
| 2002                  | 18,042   | 8,212  | 1,261       |
| 2003                  | 7,173    | 7,803  | 1,130       |
| Average               | 18,965   | 8,035  | 3,514       |
| Standard<br>Deviation | 10,215   | 4,808  | 2,195       |

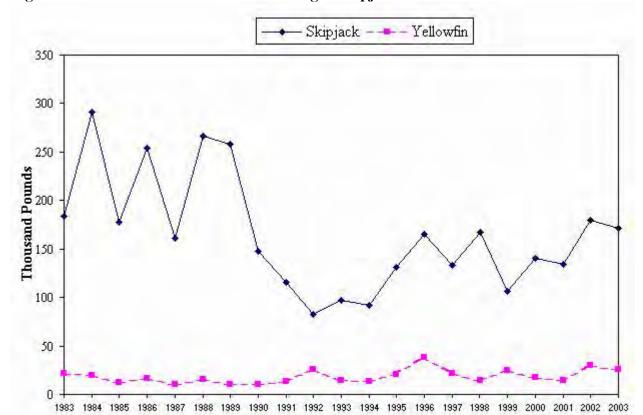



Figure 3. NMI Annual Commercial Landings: Skipjack and Yellowfin Tuna.

**Interpretation**: Historically, skipjack landings exhibited an alternating two-year cycle from 1983 to 1988 and comprised more than 73% by weight of the total pelagic landings each year from 1983 to 1989 (data taken from Table 1 and Fig. 3). Skipjack tuna landings declined after that, reaching record lows from 1990 through 1994. In 1993 and 1994 skipjack landings showed signs of stabilizing at about half of their respective eleven and twelve year means, while the nearly 32,000 pounds increase in 1995 landings attained 61% of the 1983-1990 averages of 174,020 pounds. Skipjack landings for the year 2002 increased by 25% or over 43,000 pounds. For 2003 Skipjack landings dipped slightly by 4% possibly due to a series of bad weather.

Schools of skipjack tuna have historically been common in near shore waters, providing an opportunity to catch numerous fish with a minimum of travel time and fuel costs. Skipjack is readily consumed by the local populace, primarily as sashimi.

Although more highly prized than skipjack, yellowfin tuna are not as common, and therefore not landed as often. The average fish size tends to be smaller when compared with yellowfin tuna from other geographic areas. The total landings for yellowfin tuna increased in 2002 by 51% from the 2001 figures. This increase is partly due to landings from the Northern Islands bottom fishing fleet and a long lining experiment by one fishing company whom recently applied and received a federal long lining permit. However due to the high cost associated with lonlining, permit holder did not continue longlining in 2003, therefore causing a decrease in landings by 15% for 2003.

**Source and Calculation**: Landings were summed directly from the Commercial Purchase Data Base.

**Total Commercial Landings (Lb)** 

| Year                  | Skipjack Yellowfin |        |
|-----------------------|--------------------|--------|
| 1983                  | 183,411            | 21,281 |
| 1984                  | 290,843            | 19,580 |
| 1985                  | 177,344            | 12,466 |
| 1986                  | 254,362            | 16,917 |
| 1987                  | 161,504            | 10,454 |
| 1988                  | 266,497            | 15,375 |
| 1989                  | 257,703            | 10,109 |
| 1990                  | 147,962            | 10,468 |
| 1991                  | 115,802            | 13,042 |
| 1992                  | 82,280             | 25,687 |
| 1993                  | 97,268             | 14,898 |
| 1994                  | 92,212             | 13,445 |
| 1995                  | 131,377            | 20,918 |
| 1996                  | 165,037            | 38,043 |
| 1997                  | 133,446            | 21,352 |
| 1998                  | 167,114            | 14,570 |
| 1999                  | 106,297            | 24,419 |
| 2000                  | 140,389            | 17,673 |
| 2001                  | 133,769            | 14,543 |
| 2002                  | 179,966            | 30,017 |
| 2003                  | 171,312            | 25,500 |
| Average               | 164,566            | 18,607 |
| Standard<br>Deviation | 59,194             | 7,146  |

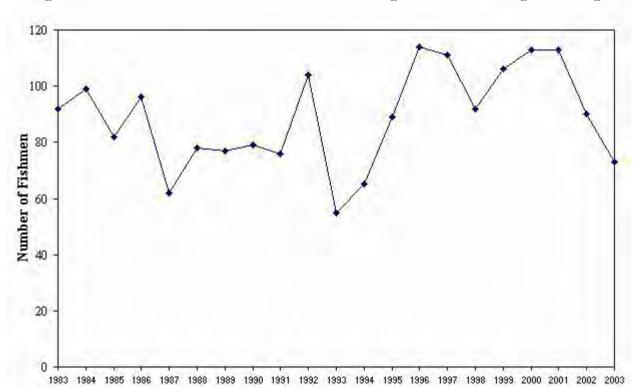



Figure 4. Number of NMI Fishermen (Boats) Making Commercial Pelagic Landings

**Interpretation**: The number of fishers (boats) making commercial pelagic landings was relatively constant from 1988-91 compared to earlier years, but a record high number was recorded for 1992. Part of the increase in 1992 was attributable to the influx of new fishing boats as a result of money obtained by leasing property. In addition, it was discovered that some fishermen were using several different boats, thus artificially inflating the total number of boats making pelagic landings.

Many of the 1992's "new" fishermen, with their new boats, are believed to have left the fishery during 1993. It has been suggested that the increase from 1994 to 1997 might be due to the reentry of repaired and refurbished boats from the 1992 fleet.

The number of fishermen making pelagic landings decreased 20% from 113 in 2001 to 90 in 2002. Data indicates a continued decline of 19% in 2003. The decrease is partly due to vendors whom own multiple fishing boats entering all their landings on a single receipt and at times combining monthly total landings onto a single receipt. Other factors that may have influenced a drop in fishermen making pelagic landings are the bad weather that plagued the Marianas throughout 2003 and the continued increase in fuel price.

**Source and Calculation**: Each invoice from the Commercial Purchase Data Base records the fisherman's name from which the fish were purchased. The number of fishermen who sold any pelagic species was calculated directly from the data invoices.

# Fishermen Landing any Pelagic Species

|                       | T               |
|-----------------------|-----------------|
| Year                  | Num. of Fishmen |
| 1983                  | 92              |
| 1984                  | 99              |
| 1985                  | 82              |
| 1986                  | 96              |
| 1987                  | 62              |
| 1988                  | 78              |
| 1989                  | 77              |
| 1990                  | 79              |
| 1991                  | 76              |
| 1992                  | 104             |
| 1993                  | 55              |
| 1994                  | 65              |
| 1995                  | 89              |
| 1996                  | 114             |
| 1997                  | 111             |
| 1998                  | 92              |
| 1999                  | 106             |
| 2000                  | 113             |
| 2001                  | 113             |
| 2002                  | 90              |
| 2003                  | 73              |
| Average               | 89              |
| Standard<br>Deviation | 18              |

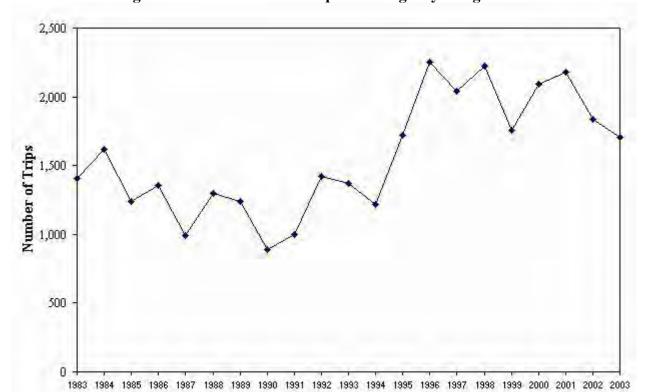



Figure 5. NMI Number of Trips Catching Any Pelagic Fish.

**Interpretation**: The number of pelagic trips decreased in 2002 by 16% from 2,179 to 1835 and continued to decline in 2003 by 9%. Several typhoons hit the Marianas region, which attributed to decline in fishing trips. The number of pelagic trips rose in 1998, the decrease in 1999 figures may be caused by the refusal of vendors to participate in the Ticket System.

**Source and Calculation**: The total trips for all pelagic species were summed from the Commercial Purchase Data Base. Trips were calculated based on the assumptions that no fisherman makes more than one trip per day, and that all sales from a single trip are made on a single day.

NMI Numbers Of Trips Catching Any Pelagic Fish

|                       | 1            |
|-----------------------|--------------|
| Year                  | Num. of Trip |
| 1983                  | 1,408        |
| 1984                  | 1,621        |
| 1985                  | 1,240        |
| 1986                  | 1,356        |
| 1987                  | 992          |
| 1988                  | 1,298        |
| 1989                  | 1,242        |
| 1990                  | 888          |
| 1991                  | 999          |
| 1992                  | 1,419        |
| 1993                  | 1,372        |
| 1994                  | 1,218        |
| 1995                  | 1,721        |
| 1996                  | 2,249        |
| 1997                  | 2,042        |
| 1998                  | 2,223        |
| 1999                  | 1,759        |
| 2000                  | 2,095        |
| 2001                  | 2,178        |
| 2002                  | 1,835        |
| 2003                  | 1,704        |
| Average               | 1,565        |
| Standard<br>Deviation | 423          |

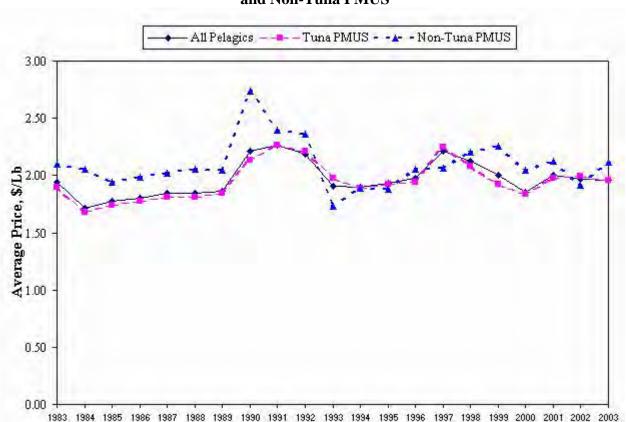



Figure 6. NMI Average Inflation-Adjusted Price of All Pelagics, Tuna PMUS, and Non-Tuna PMUS

Interpretation: The inflation-adjusted average price of tuna was stable from 1983 until 1989, when an obvious rise was observed. The 1990-92 increase in price corresponds with the notable decrease in Skipjack tuna landings (Fig. 3) during the same period of time. In 1994 commercially receipted tunas commanded a lower price than in recent years. However, considering the inflation-adjusted prices from 1983 to 1996, it would appear that tuna prices have, on the whole, kept pace with inflation. The average price of tuna has continued to decrease since 1997. The inflation-adjusted average price of tuna increased by 7% from 2000 to 2001 and increased less than 2% for 2002. However inflation adjusted average price for tuna decreased by 4% in 2003.

The average price of "Non-Tuna PMUS" increased 19% in 2003 on the inflation-adjusted price.

Although in 2001 there was a loss of the large Korean tourist market in the CNMI, there appears to be no substantial loss to revenue. This may be attributed to a redirection of the market toward the local community.

**Source and Calculation**: The unadjusted average price is calculated by dividing the total revenues generated by the total weight sold. The inflation adjustment is made using the 1998 NMI Consumer Price Index (CPI) as the basis by which calculations of previous years' prices are made.

# Inflation-Adjusted Average Price (\$/Lb)

| ***                   | All Pe     | All Pelagics Tuna PMUS |            | PMUS     | Non-Tuna PMUS |          |
|-----------------------|------------|------------------------|------------|----------|---------------|----------|
| Year                  | Unadjusted | Adjusted               | Unadjusted | Adjusted | Unadjusted    | Adjusted |
| 1983                  | 1.01       | 1.94                   | 0.99       | 1.90     | 1.09          | 2.10     |
| 1984                  | 0.97       | 1.71                   | 0.95       | 1.68     | 1.16          | 2.06     |
| 1985                  | 1.04       | 1.77                   | 1.02       | 1.74     | 1.14          | 1.94     |
| 1986                  | 1.09       | 1.80                   | 1.07       | 1.77     | 1.20          | 1.99     |
| 1987                  | 1.16       | 1.84                   | 1.14       | 1.81     | 1.27          | 2.02     |
| 1988                  | 1.22       | 1.85                   | 1.20       | 1.81     | 1.36          | 2.06     |
| 1989                  | 1.30       | 1.86                   | 1.29       | 1.85     | 1.43          | 2.05     |
| 1990                  | 1.63       | 2.22                   | 1.57       | 2.13     | 2.01          | 2.74     |
| 1991                  | 1.80       | 2.26                   | 1.80       | 2.27     | 1.90          | 2.39     |
| 1992                  | 1.88       | 2.18                   | 1.91       | 2.22     | 2.04          | 2.36     |
| 1993                  | 1.72       | 1.91                   | 1.78       | 1.97     | 1.56          | 1.74     |
| 1994                  | 1.76       | 1.90                   | 1.75       | 1.89     | 1.75          | 1.89     |
| 1995                  | 1.81       | 1.93                   | 1.80       | 1.93     | 1.76          | 1.88     |
| 1996                  | 1.92       | 1.98                   | 1.88       | 1.94     | 1.99          | 2.05     |
| 1997                  | 2.17       | 2.21                   | 2.20       | 2.25     | 2.03          | 2.07     |
| 1998                  | 2.07       | 2.13                   | 2.02       | 2.08     | 2.14          | 2.20     |
| 1999                  | 1.98       | 2.00                   | 1.91       | 1.93     | 2.24          | 2.26     |
| 2000                  | 1.87       | 1.85                   | 1.86       | 1.84     | 2.07          | 2.05     |
| 2001                  | 2.00       | 2.00                   | 1.97       | 1.97     | 2.12          | 2.12     |
| 2002                  | 1.97       | 1.97                   | 1.99       | 1.99     | 1.92          | 1.92     |
| 2003                  | 1.96       | 1.96                   | 1.96       | 1.96     | 2.11          | 2.11     |
| Average               | 1.63       | 1.97                   | 1.62       | 1.95     | 1.73          | 2.10     |
| Standard<br>Deviation | 0.40       | 0.15                   | 0.41       | 0.16     | 0.39          | 0.21     |

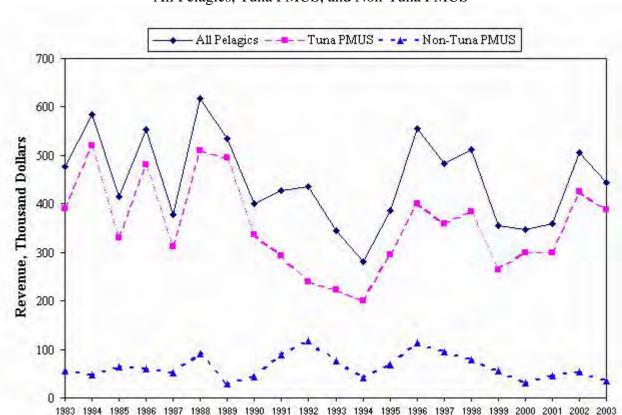



Figure 7. NMI Annual Commercial Inflation-Adjusted Revenues for All Pelagics, Tuna PMUS, and Non-Tuna PMUS

**Interpretation**: The erratic fluctuations of the inflation-adjusted revenues for Tunas and for All Pelagics prior to 1990 is most likely due to the annual variations in skipjack tuna landings (see Fig. 3) which completely dominated the tuna category and the "All Pelagic" category.

The tunas' inflation-adjusted revenues decreased 10% from the 2002 figures. This is possibly due to the decrease in price per pound and landings of Skipjack tuna, which comprises 87% of the total pelagic landings. Data also indicates a drop of 34% for the "Non-Tuna PMUS" inflation-adjusted revenues for the year 2003.

**Source and Calculation**: Annual revenue in dollars was summed separately for all pelagic fish, tunas and Non-Tuna PMUS. Inflation-adjusted revenues were calculated using the Consumer Price Index, with 1998 as a base by which previous years' nominal prices are adjusted.

## **Inflation-Adjusted Commercial Revenues (\$)**

| Year All Pelagics Tu  |            | Tuna l   | una PMUS Non-Tuna PMUS |          |            |          |
|-----------------------|------------|----------|------------------------|----------|------------|----------|
| Year                  | Unadjusted | Adjusted | Unadjusted             | Adjusted | Unadjusted | Adjusted |
| 1983                  | 159        | 305      | 202,800                | 389,376  | 29,059     | 55,793   |
| 1984                  | 185        | 327      | 294,077                | 520,516  | 27,044     | 47,868   |
| 1985                  | 214        | 364      | 193,920                | 329,664  | 37,882     | 64,399   |
| 1986                  | 262        | 435      | 289,681                | 480,870  | 35,488     | 58,910   |
| 1987                  | 290        | 461      | 195,793                | 311,311  | 32,344     | 51,427   |
| 1988                  | 318        | 480      | 338,348                | 510,905  | 59,701     | 90,149   |
| 1989                  | 312        | 446      | 345,839                | 494,550  | 20,917     | 29,911   |
| 1990                  | 327        | 445      | 248,144                | 337,476  | 32,102     | 43,659   |
| 1991                  | 302        | 381      | 232,077                | 292,417  | 70,235     | 88,496   |
| 1992                  | 231        | 268      | 206,950                | 240,062  | 102,133    | 118,474  |
| 1993                  | 195        | 216      | 201,350                | 223,499  | 69,592     | 77,247   |
| 1994                  | 200        | 216      | 185,381                | 200,211  | 37,818     | 40,843   |
| 1995                  | 193        | 207      | 275,080                | 294,336  | 62,920     | 67,324   |
| 1996                  | 261        | 269      | 388,691                | 400,352  | 110,939    | 114,267  |
| 1997                  | 245        | 250      | 351,492                | 358,522  | 93,306     | 95,172   |
| 1998                  | 234        | 241      | 372,142                | 383,306  | 77,011     | 79,321   |
| 1999                  | 246        | 248      | 261,394                | 264,008  | 55,404     | 55,958   |
| 2000                  | 172        | 170      | 302,473                | 299,448  | 32,186     | 31,864   |
| 2001                  | 219        | 219      | 300,154                | 300,154  | 44,987     | 44,987   |
| 2002                  | 339        | 339      | 425,961                | 425,961  | 53,468     | 53,468   |
| 2003                  | 275        | 275      | 388,078                | 388,078  | 35,842     | 35,842   |
| Average               | 247        | 313      | 285,706                | 354,525  | 53,351     | 64,066   |
| Standard<br>Deviation | 54         | 96       | 74,591                 | 93,938   | 25,873     | 25,649   |

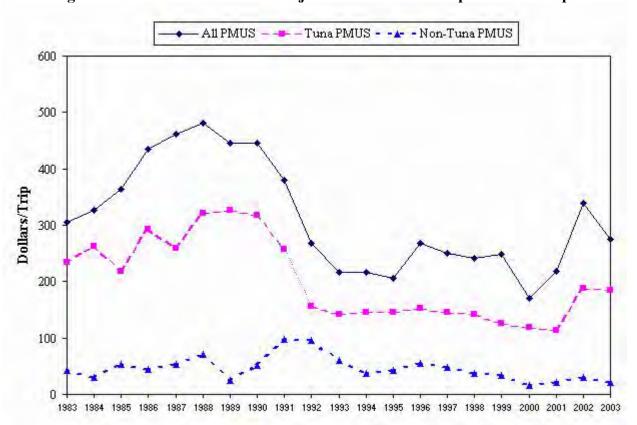



Figure 8. NMI Annual Inflation-Adjusted Revenue Per Trip for PMUS trips

**Interpretation**: The inflation-adjusted revenue per trip for "All Species" indicates a slight decrease of 4% while "Non-Tuna PMUS" decreased 27% and "Tunas" remained relatively stable in comparison to 2002 at 188 \$/Trip. The current year values for all categories were below their respective 20-year means.

**Source and Calculation:** Values were obtained by selecting, from the Commercial Purchase Data Base, all trips which landed at least one PMUS, and then calculating a) the average revenue of all species combined, b) the average revenue of Non-Tuna PMUS only, and c) the average revenue of tuna only.

# Commercial Adjusted Revenues Per Trip (\$/Trip)

| Year                  | All PMUS Tuna PMUS |          | Non-Tun    | a PMUS   |            |          |
|-----------------------|--------------------|----------|------------|----------|------------|----------|
| 1 6 a1                | Unadjusted         | Adjusted | Unadjusted | Adjusted | Unadjusted | Adjusted |
| 1983                  | 141.00             | 270.72   | 122.00     | 234.24   | 22.00      | 42.24    |
| 1984                  | 163.00             | 288.51   | 148.00     | 261.96   | 17.00      | 30.09    |
| 1985                  | 158.00             | 268.60   | 128.00     | 217.60   | 31.00      | 52.70    |
| 1986                  | 197.00             | 327.02   | 176.00     | 292.16   | 27.00      | 44.82    |
| 1987                  | 192.00             | 305.28   | 163.00     | 259.17   | 34.00      | 54.06    |
| 1988                  | 252.00             | 380.52   | 213.00     | 321.63   | 47.00      | 70.97    |
| 1989                  | 241.00             | 344.63   | 228.00     | 326.04   | 17.00      | 24.31    |
| 1990                  | 265.00             | 360.40   | 233.00     | 316.88   | 38.00      | 51.68    |
| 1991                  | 271.00             | 341.46   | 204.00     | 257.04   | 77.00      | 97.02    |
| 1992                  | 211.00             | 244.76   | 135.00     | 156.60   | 83.00      | 96.28    |
| 1993                  | 182.00             | 202.02   | 128.00     | 142.08   | 55.00      | 61.05    |
| 1994                  | 170.00             | 183.60   | 135.00     | 145.80   | 35.00      | 37.80    |
| 1995                  | 168.00             | 179.76   | 136.00     | 145.52   | 39.00      | 41.73    |
| 1996                  | 192.00             | 197.76   | 148.00     | 152.44   | 53.00      | 54.59    |
| 1997                  | 186.00             | 189.72   | 143.00     | 145.86   | 47.00      | 47.94    |
| 1998                  | 179.00             | 184.37   | 138.00     | 142.14   | 36.00      | 37.08    |
| 1999                  | 160.00             | 161.60   | 125.00     | 126.25   | 33.00      | 33.33    |
| 2000                  | 134.00             | 132.66   | 121.00     | 119.79   | 16.00      | 15.84    |
| 2001                  | 132.00             | 132.00   | 113.00     | 113.00   | 21.00      | 21.00    |
| 2002                  | 221.00             | 221.00   | 189.00     | 189.00   | 30.00      | 30.00    |
| 2003                  | 209.00             | 209.00   | 185.00     | 185.00   | 21.00      | 21.00    |
| Average               | 191.62             | 244.07   | 157.67     | 202.39   | 37.10      | 45.98    |
| Standard<br>Deviation | 40.64              | 76.62    | 37.18      | 72.20    | 18.29      | 22.00    |

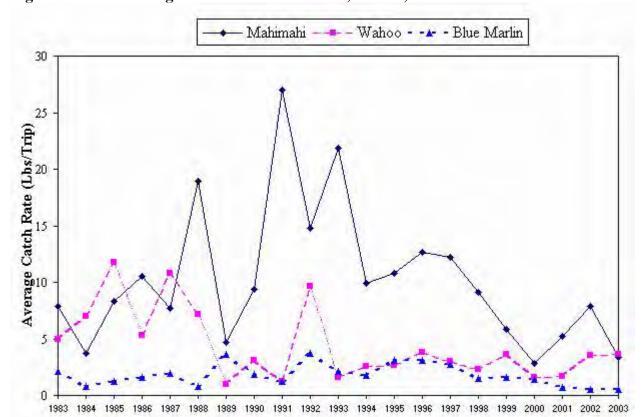



Figure 9. NMI Trolling Catch Rate of Mahimahi, Wahoo, and Blue Marlin

**Interpretation**: The 2003 mahimahi catch rate drop significantly by 57% from 2002, which also fell 67% below the twenty-year mean. It may also be biological because it appears that the trolling catch rates of Guam and the NMI have fluctuated similarly over the last eighteen years.

Prior to the 1989 record low, wahoo catch rates rivaled those for mahimahi. Wahoo catch rates have generally never regained those historical levels. The 2002 catch rate increased by 54% from 2001, and again increased 4% for 2003.

Blue Marlin catch rates decreased by less than 1% from 2002 level. Marlins are not a marketable species and is rarely a target by fishermen except during fishing tournaments. When landed, it is rarely sold to vendors participating in the Commercial Purchase Data Collection Program; therefore it would not be recorded in the Commercial Purchase Data Base used to generate these reports. During the 2000 Saipan International Fishing Derby a 996-pound blue marlin was landed.

**Source and Calculation**: Annual catch rates for selected species were obtained by calculating the average weight per trip for each year. Trips were assumed to be one day in length and each commercial invoice assumed to represent one trip.

Trolling Catch Rate (Lb/Trip)

|                       | 8        | ` 1,  |             |
|-----------------------|----------|-------|-------------|
| Year                  | Mahimahi | Wahoo | Blue Marlin |
| 1983                  | 7.92     | 4.98  | 2.15        |
| 1984                  | 3.76     | 6.95  | 0.76        |
| 1985                  | 8.36     | 11.77 | 1.20        |
| 1986                  | 10.50    | 5.35  | 1.57        |
| 1987                  | 7.66     | 10.81 | 1.98        |
| 1988                  | 18.98    | 7.21  | 0.81        |
| 1989                  | 4.71     | 1.01  | 3.67        |
| 1990                  | 9.40     | 3.12  | 1.83        |
| 1991                  | 27.03    | 1.22  | 1.26        |
| 1992                  | 14.80    | 9.68  | 3.72        |
| 1993                  | 21.89    | 1.62  | 2.15        |
| 1994                  | 9.89     | 2.54  | 1.73        |
| 1995                  | 10.84    | 2.66  | 3.08        |
| 1996                  | 12.68    | 3.84  | 3.06        |
| 1997                  | 12.25    | 2.97  | 2.77        |
| 1998                  | 9.13     | 2.27  | 1.51        |
| 1999                  | 5.86     | 3.67  | 1.61        |
| 2000                  | 2.80     | 1.56  | 1.38        |
| 2001                  | 5.23     | 1.67  | 0.71        |
| 2002                  | 7.87     | 3.58  | 0.55        |
| 2003                  | 3.37     | 3.66  | 0.53        |
| Average               | 10.23    | 4.39  | 1.81        |
| Standard<br>Deviation | 6.20     | 3.17  | 0.98        |

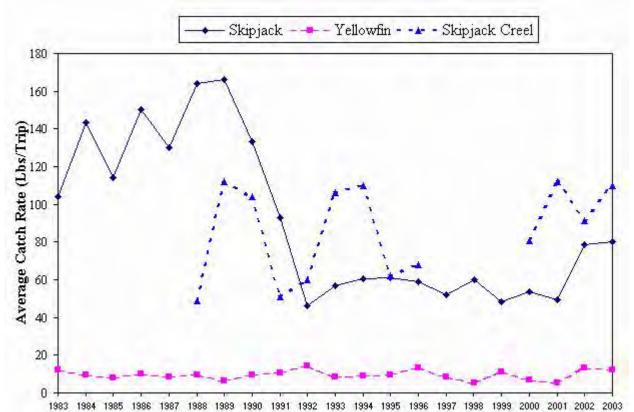



Figure 10. NMI Trolling Catch Rates of Skipjack and Yellowfin Tuna.

Interpretation: Catch rates for Skipjack tuna decreased dramatically commencing in 1990. The 1992 through 1997 catch rates have appeared to stabilize around the six-year mean of 55.7lb/trip. The Creel Survey data on skipjack tuna catch rates show a very different pattern from the Commercial Purchase data. Creel survey catch rates show catch rates oscillating between 50 and 100 lb/trip both before and after 1991 whereas, the Commercial Purchase data indicate sustained high catch rates before, and low catch rates after 1991. Reason for pattern remains obscure despite several attempts to clarify. Catch rate based on the Commercial Purchase Data Base for 2003 of 82 lbs/trip is a continued increase of 5% in comparison with the 2002 catch rate of 78. Skipjack tuna is the preferred species in the troll fishery of the NMI because of their relative ease of capture and local popularity. Previous discussions have suggested that non-tuna PMUS may be increasing in value and a slight shift in target troll fish may be occurring. Catch rates of yellowfin tuna per trip more than doubled from 1998 levels. However, 2000 catch rates declined by 39% and continued to decline 21% in 2001. Yellowfin catch rates in 2002 increased by 59% partly due to landings from the Northern Islands Bottom fishing feet and a

**Source and Calculation**: Data were summarized from the Commercial Purchase Data Base, which provides average pounds caught per trip. Annual catch rates for selected species were obtained by calculating the average weight per trip for each year. Trips were assumed to be one day in length and each commercial invoice represents one trip.

longline experiment with gear less than 1 mile long conducted by a fishing company whom recently applied and received a federal longline permit. In 2003 Yellowfin catch rates remain relatively stable at 12 lbs/trip despite bad weather that plagued through the Marianas for nearly

the entire 2003.

# Trolling Catch Rate (Lb/Trip)

| Year                  | Skipjack | Yellowfin | Skipjack Creel |
|-----------------------|----------|-----------|----------------|
| 1983                  | 104      | 12        |                |
| 1984                  | 144      | 10        |                |
| 1985                  | 114      | 8         |                |
| 1986                  | 150      | 10        |                |
| 1987                  | 130      | 8         |                |
| 1988                  | 164      | 9         | 49             |
| 1989                  | 166      | 7         | 112            |
| 1990                  | 133      | 9         | 104            |
| 1991                  | 93       | 10        | 51             |
| 1992                  | 46       | 14        | 60             |
| 1993                  | 57       | 9         | 106            |
| 1994                  | 61       | 9         | 110            |
| 1995                  | 61       | 10        | 62             |
| 1996                  | 59       | 14        | 68             |
| 1997                  | 52       | 8         |                |
| 1998                  | 60       | 5         |                |
| 1999                  | 48       | 11        |                |
| 2000                  | 54       | 7         | 81             |
| 2001                  | 49       | 5         | 112            |
| 2002                  | 78       | 13        | 91             |
| 2003                  | 80       | 12        | 110            |
| Average               | 91       | 10        | 86             |
| Standard<br>Deviation | 42       | 3         | 25             |

## Offshore Daytime Creel Survey Bycatch Summary Based on the Interview Catch Data in Year 2000-2003 Method: Trolling

**.** 

|                |                           |          | Number Caught |      |        |      |         | Trip |      |
|----------------|---------------------------|----------|---------------|------|--------|------|---------|------|------|
|                | Species                   | Released | Dead/Injd     | Both | All    | BC%  | With BC | All  | BC%  |
| Non<br>Charter |                           |          |               |      |        |      | 2       | 626  | 0.32 |
|                | Mahimahi                  | 3        |               | 3    | 570    | 0.53 |         |      |      |
|                | Yellowfin<br>Tuna         |          | 1             | 1    | 400    | 0.25 |         |      |      |
|                | Total                     |          |               | 4    | 970    | 0.41 |         |      |      |
|                | Compared With All Species |          |               | 4    | 15,589 | 0.03 |         |      |      |
| Charter        |                           |          |               |      |        |      | 0       | 90   | 0.00 |
|                | Compared With All Species |          |               | 0    | 442    | 0.00 |         |      |      |

**Interpretation**: With the assistance of NMFS staff, the implementation of an Offshore Day Time Creel Survey program began on April 2000. One of the main purposes of reimplementing the Offshore Creel Survey was to address the issue of bycatch.

A summary report from the year 2000 to 2003 by both non-charter and charter boats indicates less than 1% or 4 out of 15,589 of the total pelagic species landed is released. The only two species reported as bycatch was Mahimahi and Yellowfin Tuna. 3 out of 570 Mahimahi or .53% landed was released. And 1 out of 400 Yellowfin Tuna or .25% landed was released. Charter boats had no bycatch reported.

Bycatch in the CNMI has been believed in the past not to exist, which is further supported by the results of the Offshore Creel Survey. The CNMI will continue sampling in order to monitor this issue however it is a common practice by fishermen to keep all species caught regardless of size or condition.

**Source:** Offshore Daytime Creel Survey Expansion Program.

## Appendix 5

#### International Module

The areas administered by the Council are surrounded by large and diverse fisheries targeting pelagic species. The International Module contains reported catches of pelagic species in the entire Pacific Ocean by fleets of various nations and a Stock Assessment and Fishery Evaluation (SAFE) report that includes the most recent assessment information in relation to status determination criteria. The spatial distribution of catch is illustrated in 2002 for the purse seine fishery, longline and pole-and-line fisheries.

Fishery trends in the Pacific Ocean for the purse seine, longline and pole-and-line fisheries.

The 2003 purse-seine fishery in the western and central Pacific Ocean (WCPO)

#### Vessels

The majority of the WCPO purse seine catch is taken by the four main DWFN fleets – Japan, Korea, Taiwan and USA, which currently number around 140 vessels, but with an increasing contribution from the Pacific Islands domestic fleets in recent years (and in particular, the PNG–flagged purse seine fleet). The balance of the regional purse-seine fleet include vessels in the Philippines fisheries and a variety of other fleets, including a small seasonally active Spanish fleet.

#### Catch

The purse-seine fishery has accounted for around 55-60% of the WCPO total catch since the early 1990s, with annual catches in the range 790,000-1,200,000 mt. The provisional 2003 purse-seine catch of 1,172,780 mt was the second highest on record and maintained the catch in excess of 1,000,000 mt since the record year attained in 1998. The purse seine skipjack catch for 2003 (937,929 mt -80%) was 34,000 mt less that the record for this fishery (in 2002-971,849 mt). The purse seine yellowfin catch for 2003 (214,535 mt -18%) rebounded from relatively poor catches experienced in 2002 (only 174,366 mt). The estimated purse seine bigeye catch for 2003 (20,316 mt -2%) continues the declining trend in catches since the record 1999 catch (34,634 mt), primarily due to the gradual reduction in fishing effort on drifting FADs over recent years.

Taiwan has been the highest producer in the tropical purse seine fishery since 1996; the 2003 provisional catch estimate (201,317 mt.) for this fleet is 50,000 mt lower than in 2002, although the final 2003 estimate is expected to be higher. The PNG purse seine fleet constitutes the largest Pacific-island domestic fleet and is now made up of 17 domestically-based vessels fishing in joint-venture arrangements in PNG waters and another 15 vessels that fish over a wider area under the FSM Arrangement. The steady increase in the annual catch by the PNG fleet in recent years is noteworthy; this fleet now catches more than the US fleet and is on par with recent annual (tropical waters) catch by the Japanese fleet

# Fleet distribution

Catch distribution in tropical areas of the WCPO is strongly influenced by El Nino–Southern Oscillation Index (ENSO) events. Fishing effort is typically distributed further to the east during El Nino years and contracts westwards during La Nina periods. The WCPO experienced an ENSO-transitional (or neutral) period during 2001, an El Nino period during 2002 and into the first quarter of 2003, then a return to an ENSO-transitional (netural) period for the remainder of 2003. There was a significant westwards shift in purse seine effort during 2003 (compared to previous years) despite it not being a La Nina year.

Table 1. Total reported purse seine catch (metric tonnes) of skipjack, yellowfin and bigeye tuna in the Pacific Ocean. Source: SCTB17 report.

| Year          | Skipjack  | Yellowfin | Bigeye  | Total     |
|---------------|-----------|-----------|---------|-----------|
| 1967          | 108,916   | 76,583    | 976     | 186,475   |
| 1968          | 61,848    | 100,829   | 2,679   | 165,356   |
| 1969          | 45,279    | 123,179   | 624     | 169,082   |
| 1970          | 52,652    | 155,240   | 2,058   | 209,950   |
| 1971          | 102,191   | 125,664   | 3,371   | 231,226   |
| 1972          | 46,286    | 182,755   | 3,054   | 232,095   |
| 1973          | 56,657    | 217,564   | 2,926   | 277,147   |
| 1974          | 86,350    | 220,330   | 2,323   | 309,003   |
| 1975          | 129,265   | 210,877   | 5,247   | 345,389   |
| 1976          | 143,057   | 249,002   | 11,506  | 403,565   |
| 1977          | 117,210   | 214,897   | 8,636   | 340,743   |
| 1978          | 205,149   | 189,000   | 12,678  | 406,827   |
| 1979          | 189,797   | 215,598   | 9,564   | 414,959   |
| 1980          | 206,230   | 192,495   | 17,480  | 416,205   |
| 1981          | 207,803   | 242,238   | 14,405  | 464,446   |
| 1982          | 269,180   | 196,928   | 9,492   | 475,600   |
| 1983          | 378,195   | 195,177   | 12,544  | 585,916   |
| 1984          | 387,880   | 253,290   | 14,766  | 655,936   |
| 1985          | 353,492   | 318,934   | 11,369  | 683,795   |
| 1986          | 431,096   | 370,232   | 9,448   | 810,776   |
| 1987          | 432,896   | 423,147   | 12,166  | 868,209   |
| 1988          | 570,089   | 383,526   | 8,355   | 961,970   |
| 1989          | 566,069   | 449,085   | 14,121  | 1,029,275 |
| 1990          | 674,352   | 444,210   | 16,843  | 1,135,405 |
| 1991          | 832,830   | 446,456   | 17,145  | 1,296,431 |
| 1992          | 787,745   | 473,975   | 24,923  | 1,286,643 |
| 1993          | 661,804   | 466,651   | 22,331  | 1,150,786 |
| 1994          | 791,499   | 438,106   | 39,928  | 1,269,533 |
| 1995          | 853,786   | 407,607   | 50,192  | 1,311,585 |
| 1996          | 845,596   | 368,054   | 67,979  | 1,281,629 |
| 1997          | 821,821   | 512,073   | 82,126  | 1,416,020 |
| 1998          | 1,088,344 | 530,482   | 53,341  | 1,672,167 |
| 1999          | 1,054,684 | 514,562   | 75,266  | 1,644,512 |
| 2000          | 1,078,699 | 474,352   | 100,866 | 1,653,917 |
| 2001          | 978,249   | 606,344   | 66,882  | 1,651,475 |
| 2002          | 1,131,627 | 594,859   | 56,015  | 1,782,501 |
| 2003          | 1,197,091 | 613,323   | 61,036  | 1,871,450 |
| Average       | 465,240   | 321,786   | 23,990  | 811,015   |
| STD Deviation | 363,580   | 151,041   | 26,674  | 528,980   |

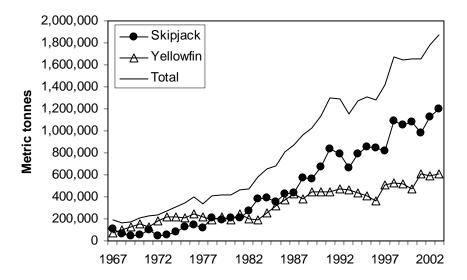



Figure 1. Total purse seine catch of skipjack and yellowfin tuna in the Pacific Ocean, 1967–2002. Source: SCTB17 report.

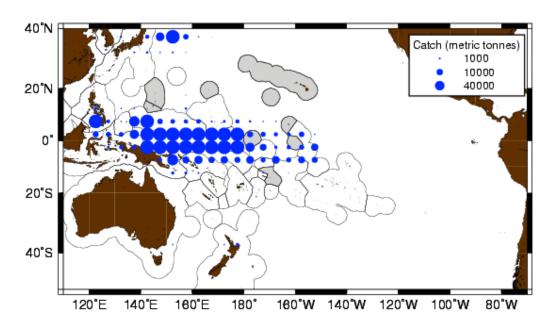



Figure 2. Distribution of total purse seine WCPO skipjack catch in 2002. Source: SPC public domain data.

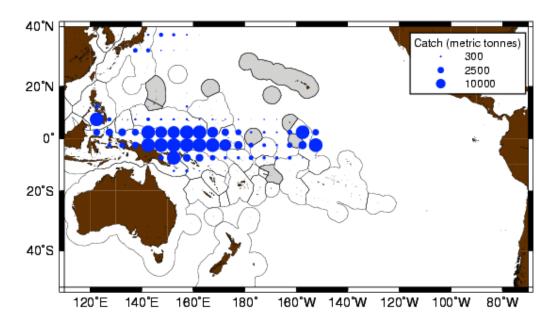



Figure 3. Distribution of total purse seine WCPO yellowfin catch in 2002. Source: SPC public domain data.

#### The 2003 longline fishery in the WCPO

#### Vessels

The diverse longline fleet in the WCPO was composed of roughly 5,000 vessels in 2003. These vessels can be divided into four components largely based on the area of fishing operations:

- Over 500 vessels are domestically-based in the Pacific Islands with the Samoa alia fleet representing half of these vessels.
- approximately 3,000 vessels are **domestically-based in non-Pacific Island** countries such as Japan and Taiwan,
- about 1,000 large **distant-water** freezer vessels from Japan, Korea and Taiwan that operate over large areas in the region, and
- about 500 **offshore vessels based in Pacific Island countries**. The offshore fleet is composed of equal numbers of vessels from mainland China, Japan and Taiwan.

#### Catch

The provisional WCPO longline catch (213,259 mt) for 2003 was around 18,000 mt lower that the highest on record, which was attained in 2002 (231,968 mt). The south Pacific albacore catch of 49,899 mt was the second highest on record after the 2002 catch. The bigeye catch (56,578 mt) for 2003 was the lowest for seven years, and the yellowfin catch (67,490 mt) was the lowest since 1999. The yellowfin catch (59,056 mt) in 1999 was the lowest for nearly 30 years, and is understood to be related to the age class showing poor recruitment into the purse seine fishery in 1996.

The most significant change in the WCPO longline fishery over the past 5 years has been the growth of Pacific-Islands domestic albacore fisheries, which went from taking 30% of the total south Pacific albacore longline catch in 1999, to accounting for around 50% of the catch for the past three years. The Taiwanese distant-water longline fleet has been the dominant fleet in the south Pacific albacore fishery for more than two decades, but there have been recent changes in the species and areas targeted by this fleet (more vessels are now targeting bigeye in the eastern equatorial waters of the WCPO), which has resulted in a reduced contribution to the overall albacore catch in recent years. Domestic fleet sizes continue to increase at the expense of foreign-offshore and distant-water fleets, although the Taiwanese distant-water longline fleet has increased by 70% (to 142 vessels in 2003) over the past two years. The evolution in fleet dynamics no doubt has some effect on the species composition of the catch. For example, the increase in Pacific Islands domestic fleets has primarily been in albacore fisheries; while the decrease in vessel numbers from distant-water fleets (e.g. Japan) has principally been in yellowfin and bigeye fisheries.

# Fleet distribution

Effort by the large-vessel, distant-water fleets of Japan, Korea and Taiwan account for most of the effort but this has declined to some extent over the past decade. Effort is widespread as sectors of these fleets target bigeye and yellowfin for the frozen sashimi market, and albacore in the more temperate waters for canning. Activity by the foreign-offshore fleets from Japan, mainland China and Taiwan are restricted to the tropical waters, targeting bigeye and yellowfin for the fresh sashimi market; these fleets have limited overlap with the distant-water fleets. The substantial "offshore" effort in the west of the region is primarily by Indonesian and Taiwanese domestic fleets targeting yellowfin and bigeye. The growth in domestic fleets in the South Pacific over recent years has been noted; the most significant examples are the increases in the American Samoan, Fijian and French Polynesian fleets and the recent establishment of the Cook Islands fleet. As noted above, some vessels in the distant-water Taiwanese longline fleet are now targeting bigeye in the eastern equatorial areas of the WCPO.

Table 2. Total reported longline catch (metric tonnes) of PMUS in the Pacific Ocean. Source: SCTB17 report and SPC public domain data.

| Year          | Albacore | Yellowfin | Bigeye  | Striped | Black  | Blue   | Swordfish | Total   |
|---------------|----------|-----------|---------|---------|--------|--------|-----------|---------|
|               |          |           |         | Marlin  | Marlin | Marlin |           |         |
| 1962          | 50,990   | 68,260    | 79,256  | 22,507  | 2,229  | 18,797 | 11,216    | 253,255 |
| 1963          | 44,566   | 74,646    | 107,344 | 26,602  | 2,342  | 19,032 | 11,414    | 285,946 |
| 1964          | 38,418   | 64,960    | 75,595  | 39,524  | 1,876  | 13,989 | 8,615     | 242,977 |
| 1965          | 39,803   | 64,915    | 57,483  | 32,794  | 2,375  | 11,084 | 9,665     | 218,119 |
| 1966          | 64,442   | 75,337    | 65,562  | 27,351  | 2,172  | 10,497 | 11,615    | 256,976 |
| 1967          | 69,834   | 44,620    | 66,231  | 31,827  | 1,825  | 9,702  | 12,041    | 236,079 |
| 1968          | 53,721   | 57,907    | 58,761  | 39,418  | 1,883  | 9,469  | 11,477    | 232,636 |
| 1969          | 43,014   | 61,990    | 80,911  | 25,564  | 2,073  | 10,348 | 14,358    | 238,257 |
| 1970          | 50,398   | 65,712    | 67,230  | 35,416  | 1,605  | 12,686 | 10,329    | 243,376 |
| 1971          | 48,001   | 57,687    | 64,463  | 30,975  | 2,127  | 8,058  | 9,410     | 220,721 |
| 1972          | 49,985   | 67,949    | 81,457  | 20,922  | 1,884  | 9,334  | 9,102     | 240,634 |
| 1973          | 54,586   | 68,525    | 86,254  | 18,603  | 1,935  | 9,964  | 9,604     | 249,470 |
| 1974          | 44,973   | 61,292    | 75,990  | 18,559  | 1,620  | 8,946  | 8,693     | 220,074 |
| 1975          | 40,439   | 71,212    | 94,567  | 15,181  | 1,845  | 7,962  | 9,124     | 240,330 |
| 1976          | 42,063   | 86,336    | 118,746 | 16,197  | 1,056  | 8,694  | 11,350    | 284,442 |
| 1977          | 52,247   | 100,330   | 137,021 | 9,325   | 936    | 8,523  | 10,927    | 319,309 |
| 1978          | 48,447   | 120,219   | 120,052 | 9,973   | 1,624  | 10,090 | 10,930    | 321,335 |
| 1979          | 43,400   | 116,425   | 112,184 | 15,694  | 1,950  | 10,439 | 11,189    | 311,282 |
| 1980          | 46,631   | 130,895   | 118,292 | 17,594  | 1,652  | 10,988 | 17,714    | 343,767 |
| 1981          | 51,377   | 100,549   | 94,815  | 20,840  | 2,067  | 13,409 | 22,791    | 305,848 |
| 1982          | 46,158   | 94,882    | 98,051  | 20,980  | 2,277  | 13,401 | 19,248    | 294,996 |
| 1983          | 40,380   | 94,498    | 101,107 | 14,480  | 1,916  | 10,997 | 20,730    | 284,108 |
| 1984          | 36,009   | 80,135    | 92,509  | 11,726  | 1,524  | 13,298 | 16,366    | 251,566 |
| 1985          | 41,889   | 86,754    | 117,327 | 12,494  | 1,234  | 11,589 | 18,849    | 290,136 |
| 1986          | 45,810   | 84,848    | 148,798 | 17,322  | 1,250  | 14,278 | 20,905    | 333,212 |
| 1987          | 42,278   | 92,918    | 160,846 | 20,241  | 1,896  | 18,196 | 25,506    | 361,881 |
| 1988          | 47,017   | 95,748    | 122,998 | 18,264  | 2,752  | 15,858 | 24,332    | 326,968 |
| 1989          | 36,285   | 81,238    | 123,081 | 12,520  | 1,515  | 13,125 | 16,542    | 284,306 |
| 1990          | 38,882   | 107,066   | 165,797 | 9,072   | 1,880  | 12,157 | 15,226    | 350,080 |
| 1991          | 42,422   | 91,172    | 155,521 | 10,518  | 2,180  | 14,539 | 18,265    | 334,617 |
| 1992          | 49,947   | 89,000    | 147,842 | 8,753   | 2,103  | 14,400 | 19,091    | 331,136 |
| 1993          | 60,919   | 88,598    | 129,563 | 10,359  | 1,707  | 15,603 | 19,065    | 325,814 |
| 1994          | 64,007   | 102,855   | 138,442 | 10,372  | 1,834  | 17,389 | 15,754    | 350,652 |
| 1995          | 58,568   | 100,110   | 112,996 | 11,233  | 1,370  | 17,685 | 14,053    | 316,015 |
| 1996          | 63,448   | 92,843    | 95,630  | 8,196   | 864    | 13,329 | 15,477    | 289,788 |
| 1997          | 80,367   | 90,677    | 109,196 | 9,314   | 1,554  | 14,583 | 15,788    | 321,479 |
| 1998          | 88,027   | 78,996    | 118,540 | 6,093   | 1,827  | 13,868 | 14,987    | 322,339 |
| 1999          | 82,111   | 72,586    | 97,152  | 5,455   | 1,682  | 12,741 | 14,412    | 286,139 |
| 2000          | 83,397   | 98,828    | 109,379 | 4,519   | 2,220  | 5,809  | 17,686    | 321,838 |
| 2001          | 87,324   | 98,913    | 128,498 | 4,146   | 1,320  | 7,649  | 17,505    | 345,356 |
| 2002          | 89,197   | 94,305    | 148,686 | 3,989   | 1,342  | 4,184  | 17,475    | 359,178 |
| Average       | 53,702   | 84,798    | 106,931 | 17,193  | 1,788  | 12,114 | 14,849    | 291,376 |
| STD deviation | 15,394   | 18,498    | 29,527  | 9,670   | 407    | 3,477  | 4,520     | 43,682  |

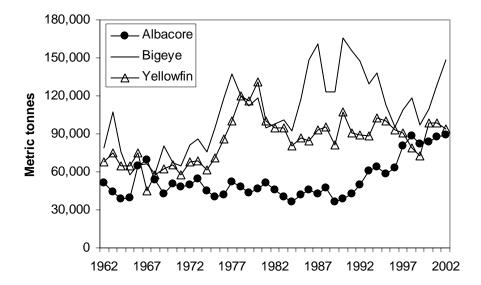



Figure 4. Reported longline tuna catches in the Pacific Ocean. Source: SPC public domain data.

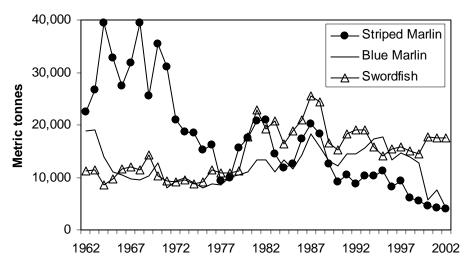



Figure 5. Reported longline billfish catches in the Pacific Ocean. Source: SPC public domain data.

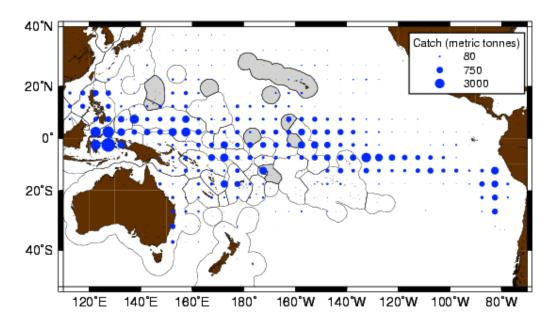



Figure 6. Distribution of longline catches of yellowfin tuna reported in 2002. Source: SPC public domain data.

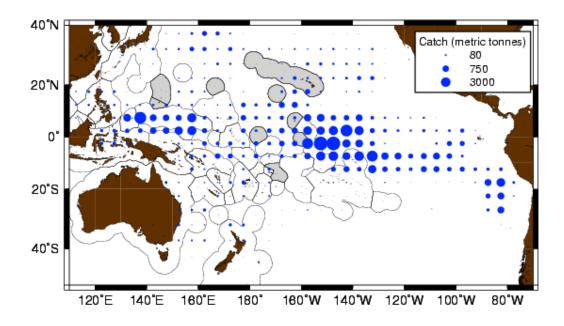



Figure 7. Distribution of longline catches of bigeye tuna reported in 2002. Source: SPC public domain data.

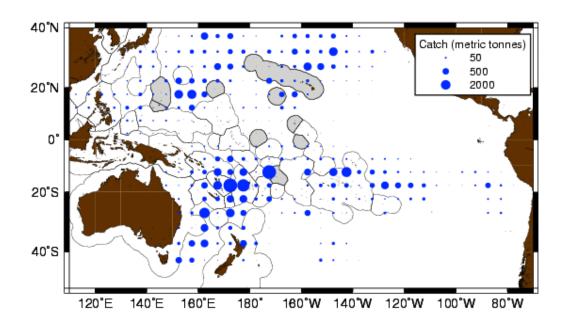



Figure 8. Distribution of longline catches of albacore tuna reported in 2002. Source: SPC public domain data.

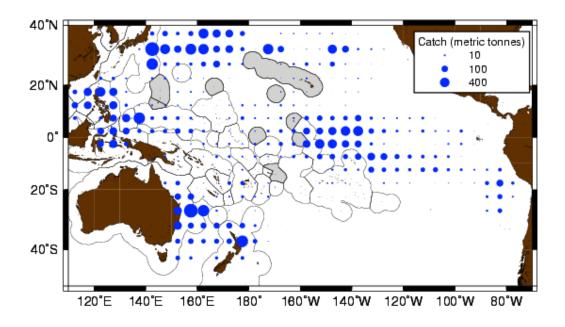



Figure 9. Distribution of longline catches of swordfish reported in 2002. Source: SPC public domain data.

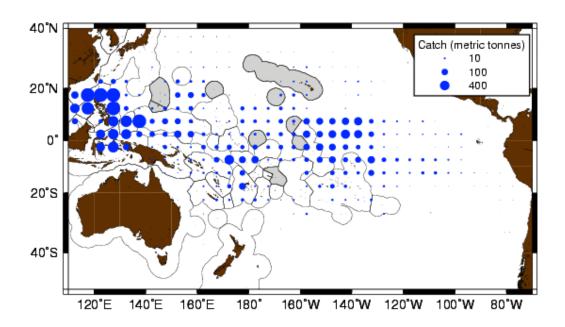



Figure 10. Distribution of longline catches of blue marlin reported in 2002. Source: SPC public domain data.

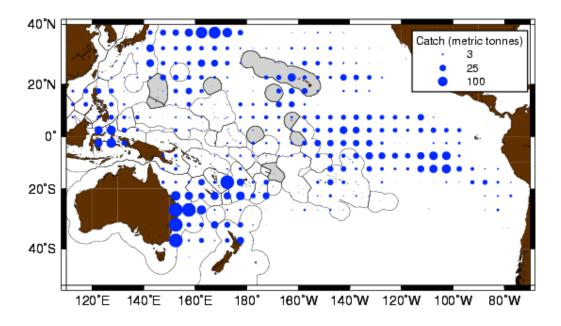



Figure 11. Distribution of longline catches of striped marlin reported in 2002. Source: SPC public domain data.

## The 2003 pole-and-line fishery in the WCPO

#### Vessels

The pole-and-line fleet was composed of approximately 1,400 vessels in the 2003 WCPO fishery. Most of the vessels operated in the domestic fisheries in Indonesia and Japan. Over 100 vessels operate in Pacific Island countries and there are 160 vessels in the Japanese distant-water fleet.

#### Catch

The preliminary pole-and-line catch estimate for 2003 (294,752 mt–15% of total WCPO catch) is lower than the 2002 catch (303,933 mt), although the Japanese fleet catch estimate for 2003 has yet to be provided. As in previous years, skipjack accounts for the vast majority of the catch (82%); albacore taken by the Japanese coastal and offshore fleets in the temperate waters of the north Pacific (12%), yellowfin (5%) and a small component of bigeye (1%) make up the remainder of the catch. The Japanese distant-water and offshore (144,638 mt in 2002) and the Indonesian fleets (145,597 mt in 2003) typically account for most of the WCPO pole-and-line catch. The Solomon Islands fleet (9,652 mt in 2002) continues to recover from low catch levels experienced in recent years (only 2,692 mt in 2000), but was still far from the level (of over 20,000 mt annually) experienced in most years during the 1990s.

# Fleet distribution

The WCPO pole-and-line fishery has several components:

- the year-round tropical skipjack fishery, mainly involving the domestic fleets of Indonesia, Solomon Islands
- and French Polynesia, and the distant water fleet of Japan
- seasonal sub-tropical skipjack fisheries in the home waters of Japan, Australia, Hawaii and Fiji
- a seasonal albacore/skipjack fishery east of Japan (largely a subset of the Japan home-water fishery).

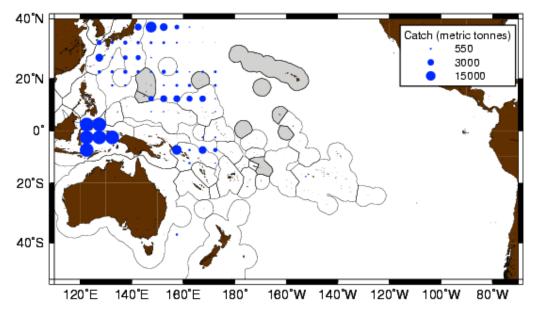



Figure 12. Distribution of pole-and-line catch of skipjack reported in 2002. Source: SPC public domain data.

Table 3. Total reported pole-and-line catch (metric tonnes) of skipjack in the Pacific Ocean. Source: SCTB16 report.

| <u>Year</u>   | Skipjack |  |  |
|---------------|----------|--|--|
| 1970          | 197,873  |  |  |
| 1971          | 180,945  |  |  |
| 1972          | 172,871  |  |  |
| 1973          | 253,065  |  |  |
| 1974          | 289,202  |  |  |
| 1975          | 218,271  |  |  |
| 1976          | 276,581  |  |  |
| 1977          | 294,641  |  |  |
| 1978          | 331,401  |  |  |
| 1979          | 283,494  |  |  |
| 1980          | 332,465  |  |  |
| 1981          | 294,187  |  |  |
| 1982          | 262,233  |  |  |
| 1983          | 299,762  |  |  |
| 1984          | 379,474  |  |  |
| 1985          | 250,010  |  |  |
| 1986          | 336,694  |  |  |
| 1987          | 262,467  |  |  |
| 1988          | 301,031  |  |  |
| 1989          | 289,706  |  |  |
| 1990          | 224,591  |  |  |
| 1991          | 282,397  |  |  |
| 1992          | 226,589  |  |  |
| 1993          | 270,670  |  |  |
| 1994          | 231,385  |  |  |
| 1995          | 267,421  |  |  |
| 1996          | 229,891  |  |  |
| 1997          | 249,421  |  |  |
| 1998          | 285,718  |  |  |
| 1999          | 291,696  |  |  |
| 2000          | 295,336  |  |  |
| 2001          | 233,290  |  |  |
| 2002          | 238,537  |  |  |
| 2003          | 242,255  |  |  |
| Average       | 266,929  |  |  |
| STD deviation | 44,705   |  |  |

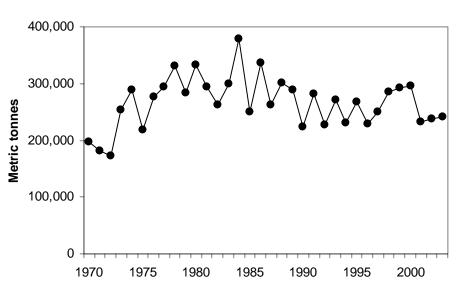



Figure 13. Reported pole-and-line catch (metric tonnes) of skipjack in the Pacific Ocean. Source: SCTB17 report.

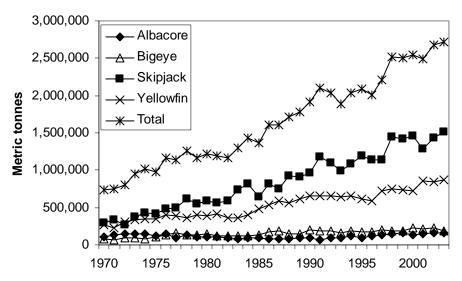



Figure 14. Estimated total annual catch of tuna species in the Pacific Ocean. Source: SCTB16 report.

Table 4. Estimated annual catch (metric tonnes) of tuna species in the Pacific Ocean. Source: SCTB17.

| 1970         102,244         73,708         298,233         262,158         736,33           1971         127,786         71,866         331,355         225,645         756,68           1972         143,853         89,837         269,574         301,579         804,84           1973         145,238         94,787         371,083         340,320         951,42           1974         147,889         84,071         434,614         345,174         1,011,68           1975         116,827         106,119         413,421         345,077         981,44           1976         149,611         137,862         484,385         397,250         1,169,10           1977         98,670         154,621         490,542         387,966         1,131,75           1978         135,744         140,310         620,393         365,263         1,261,7           1980         107,791         142,260         589,115         382,979         1,222,14           1981         105,960         116,736         557,727         415,122         1,955,4           1982         99,261         116,412         589,685         355,681         1,161,01           1983         80,125                                                                                                          |               |          |         |           |           |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|---------|-----------|-----------|-----------|
| 1971         127,786         71,866         331,355         225,645         756,66           1972         143,853         89,837         269,574         301,579         804,8           1973         145,238         94,787         371,083         340,320         951,43           1974         147,889         84,071         434,614         345,077         981,4           1975         116,827         106,119         413,421         345,077         981,4           1976         149,611         137,862         484,385         397,250         1,169,10           1977         98,670         154,621         490,542         387,966         1,317,7           1978         135,744         140,310         620,393         365,263         1,261,7           1979         100,763         128,830         543,362         395,299         1,168,25           1980         107,791         142,260         589,115         382,979         1,222,14           1981         105,960         116,736         557,727         415,122         1,195,54           1982         99,261         116,412         589,685         355,681         1,161,0           1983         80,125                                                                                                             | Year          | Albacore | Bigeye  | Skipjack  | Yellowfin | Total     |
| 1972         143,853         89,837         269,574         301,579         804,88           1973         145,238         94,787         371,083         340,320         951,43           1974         147,889         84,071         434,614         345,114         1,011,61           1975         116,827         106,119         413,421         345,077         981,44           1976         149,611         137,862         484,385         397,250         1,169,10           1977         98,670         154,621         490,542         387,966         1,131,73           1978         135,744         140,310         620,393         365,263         1,261,77           1979         100,763         128,830         543,362         395,299         1,168,23           1980         107,791         142,260         589,115         382,979         1,222,14           1981         105,960         116,736         557,727         415,122         1,195,54           1982         99,261         116,412         589,685         355,681         1,161,03           1983         80,125         122,809         742,045         359,262         1,304,24           1984         95,433 <td>1970</td> <td>102,244</td> <td>73,708</td> <td>298,233</td> <td>262,158</td> <td>736,343</td> | 1970          | 102,244  | 73,708  | 298,233   | 262,158   | 736,343   |
| 1973         145,238         94,787         371,083         340,320         951,43           1974         147,889         84,071         434,614         345,114         1,011,61           1975         116,827         106,119         413,421         345,077         981,44           1976         149,611         137,862         484,385         397,250         1,169,10           1977         98,670         154,621         490,542         387,966         1,131,75           1978         135,744         140,310         620,393         365,263         1,261,77           1979         100,763         128,830         543,362         395,299         1,168,21           1980         107,791         142,260         589,115         382,979         1,222,14           1981         105,960         116,736         557,727         415,122         1,195,54           1982         99,261         116,412         589,685         355,681         1,161,03           1983         80,125         122,809         742,045         359,262         1,304,24           1984         95,433         115,933         816,122         404,099         1,431,53           1986         81,934<                                                                                                | 1971          | 127,786  | 71,866  | 331,355   | 225,645   | 756,652   |
| 1974         147,889         84,071         434,614         345,114         1,011,61           1975         116,827         106,119         413,421         345,077         981,44           1976         149,611         137,862         484,385         397,250         1,169,10           1977         98,670         154,621         490,542         387,966         1,131,73           1978         135,744         140,310         620,393         365,263         1,261,73           1979         100,763         128,830         543,362         395,299         1,168,29           1980         107,791         142,260         589,115         382,979         1,222,14           1981         105,960         116,736         557,727         415,122         1,195,54           1982         99,261         116,412         589,685         355,681         1,161,03           1983         80,125         122,809         742,045         359,262         1,304,24           1984         95,433         115,933         816,122         404,099         1,431,51           1985         90,607         139,177         649,289         486,319         1,365,33           1987         78,93                                                                                                | 1972          | 143,853  | 89,837  | 269,574   | 301,579   | 804,843   |
| 1975         116,827         106,119         413,421         345,077         981,44           1976         149,611         137,862         484,385         397,250         1,169,10           1977         98,670         154,621         490,542         387,966         1,131,73           1978         135,744         140,310         620,393         365,263         1,261,77           1979         100,763         128,830         543,362         395,299         1,168,29           1980         107,791         142,260         589,115         382,979         1,222,14           1981         105,960         116,736         557,727         415,122         1,195,54           1982         99,261         116,412         589,685         355,681         1,161,03           1983         80,125         122,809         742,045         359,262         1,304,24           1984         95,433         115,933         816,122         404,099         1,431,53           1986         81,934         167,591         820,457         535,628         1,605,61           1987         78,936         181,714         747,947         592,785         1,601,38           1988         86,70                                                                                                | 1973          | 145,238  | 94,787  | 371,083   | 340,320   | 951,428   |
| 1976         149,611         137,862         484,385         397,250         1,169,10           1977         98,670         154,621         490,542         387,966         1,131,75           1978         135,744         140,310         620,393         365,263         1,261,77           1979         100,763         128,830         543,362         395,299         1,168,29           1980         107,791         142,260         589,115         382,979         1,222,14           1981         105,960         116,736         557,727         415,122         1,195,54           1982         99,261         116,412         589,685         355,681         1,161,02           1983         80,125         122,809         742,045         359,262         1,304,24           1984         95,433         115,933         816,122         404,099         1,431,51           1985         90,607         139,177         649,289         486,319         1,365,33           1986         81,934         167,591         820,457         535,628         1,605,63           1987         78,936         181,714         747,947         592,785         1,601,38           1988         86,7                                                                                                | 1974          | 147,889  | 84,071  | 434,614   | 345,114   | 1,011,688 |
| 1977         98,670         154,621         490,542         387,966         1,131,73           1978         135,744         140,310         620,393         365,263         1,261,77           1979         100,763         128,830         543,362         395,299         1,168,23           1980         107,791         142,260         589,115         382,979         1,222,14           1981         105,960         116,736         557,727         415,122         1,195,54           1982         99,261         116,412         589,685         355,681         1,161,03           1983         80,125         122,809         742,045         359,262         1,304,24           1984         95,433         115,933         816,122         404,099         1,431,56           1985         90,607         139,177         649,289         486,319         1,365,33           1986         81,934         167,591         820,457         535,628         1,605,66           1987         78,936         181,714         747,947         592,785         1,601,33           1988         86,702         141,919         927,116         563,127         1,718,86           1989         97,21                                                                                                | 1975          | 116,827  | 106,119 | 413,421   | 345,077   | 981,444   |
| 1978         135,744         140,310         620,393         365,263         1,261,7*           1979         100,763         128,830         543,362         395,299         1,168,29           1980         107,791         142,260         589,115         382,979         1,222,14           1981         105,960         116,736         557,727         415,122         1,195,54           1982         99,261         116,412         589,685         355,681         1,161,03           1983         80,125         122,809         742,045         359,262         1,304,24           1984         95,433         115,933         816,122         404,099         1,431,51           1985         90,607         139,177         649,289         486,319         1,365,33           1986         81,934         167,591         820,457         535,628         1,605,6*           1987         78,936         181,714         747,947         592,785         1,601,38           1988         86,702         141,919         927,116         563,127         1,718,86           1989         97,219         148,637         910,673         620,113         1,776,64           1990         91,34                                                                                                | 1976          | 149,611  | 137,862 | 484,385   | 397,250   | 1,169,108 |
| 1979         100,763         128,830         543,362         395,299         1,168,25           1980         107,791         142,260         589,115         382,979         1,222,14           1981         105,960         116,736         557,727         415,122         1,195,54           1982         99,261         116,412         589,685         355,681         1,161,03           1983         80,125         122,809         742,045         359,262         1,304,24           1984         95,433         115,933         816,122         404,099         1,431,53           1985         90,607         139,177         649,289         486,319         1,365,33           1986         81,934         167,591         820,457         535,628         1,605,63           1987         78,936         181,714         747,947         592,785         1,601,33           1988         86,702         141,919         927,116         563,127         1,718,86           1989         97,219         148,637         910,673         620,113         1,776,64           1990         91,347         195,420         963,865         659,032         1,909,66           1991         71,608                                                                                                | 1977          | 98,670   | 154,621 | 490,542   | 387,966   | 1,131,799 |
| 1980         107,791         142,260         589,115         382,979         1,222,14           1981         105,960         116,736         557,727         415,122         1,195,54           1982         99,261         116,412         589,685         355,681         1,161,03           1983         80,125         122,809         742,045         359,262         1,304,24           1984         95,433         115,933         816,122         404,099         1,431,58           1985         90,607         139,177         649,289         486,319         1,365,33           1986         81,934         167,591         820,457         535,628         1,605,60           1987         78,936         181,714         747,947         592,785         1,601,38           1988         86,702         141,919         927,116         563,127         1,718,86           1989         97,219         148,637         910,673         620,113         1,776,64           1990         91,347         195,420         963,865         659,032         1,909,66           1991         71,608         185,483         1,184,353         661,273         2,102,7           1992         91,997                                                                                                | 1978          | 135,744  | 140,310 | 620,393   | 365,263   | 1,261,710 |
| 1981         105,960         116,736         557,727         415,122         1,195,54           1982         99,261         116,412         589,685         355,681         1,161,03           1983         80,125         122,809         742,045         359,262         1,304,24           1984         95,433         115,933         816,122         404,099         1,431,58           1985         90,607         139,177         649,289         486,319         1,365,33           1986         81,934         167,591         820,457         535,628         1,605,60           1987         78,936         181,714         747,947         592,785         1,601,33           1988         86,702         141,919         927,116         563,127         1,718,86           1989         97,219         148,637         910,673         620,113         1,776,64           1990         91,347         195,420         963,865         659,032         1,909,66           1991         71,608         185,483         1,184,353         661,273         2,102,7           1992         91,997         182,715         1,095,336         661,829         2,031,83           1993         88,98                                                                                                | 1979          | 100,763  | 128,830 | 543,362   | 395,299   | 1,168,254 |
| 1982       99,261       116,412       589,685       355,681       1,161,03         1983       80,125       122,809       742,045       359,262       1,304,24         1984       95,433       115,933       816,122       404,099       1,431,58         1985       90,607       139,177       649,289       486,319       1,365,33         1986       81,934       167,591       820,457       535,628       1,605,63         1987       78,936       181,714       747,947       592,785       1,601,33         1988       86,702       141,919       927,116       563,127       1,718,86         1989       97,219       148,637       910,673       620,113       1,776,64         1990       91,347       195,420       963,865       659,032       1,909,66         1991       71,608       185,483       1,184,353       661,273       2,102,77         1992       91,997       182,715       1,095,336       661,829       2,031,83         1993       88,983       161,302       994,954       646,271       1,891,57         1994       114,301       191,356       1,078,905       652,322       2,036,88         1995 </td <td>1980</td> <td>107,791</td> <td>142,260</td> <td>589,115</td> <td>382,979</td> <td>1,222,145</td>                                                              | 1980          | 107,791  | 142,260 | 589,115   | 382,979   | 1,222,145 |
| 1983       80,125       122,809       742,045       359,262       1,304,24         1984       95,433       115,933       816,122       404,099       1,431,58         1985       90,607       139,177       649,289       486,319       1,365,38         1986       81,934       167,591       820,457       535,628       1,605,69         1987       78,936       181,714       747,947       592,785       1,601,38         1988       86,702       141,919       927,116       563,127       1,718,86         1989       97,219       148,637       910,673       620,113       1,776,64         1990       91,347       195,420       963,865       659,032       1,909,66         1991       71,608       185,483       1,184,353       661,273       2,102,7         1992       91,997       182,715       1,095,336       661,829       2,031,81         1993       88,983       161,302       994,954       646,271       1,891,55         1994       114,301       191,356       1,078,905       652,322       2,036,88         1995       100,038       177,394       1,188,626       618,844       2,084,90         1996                                                                                                                                                                      | 1981          | 105,960  | 116,736 | 557,727   | 415,122   | 1,195,545 |
| 1984       95,433       115,933       816,122       404,099       1,431,58         1985       90,607       139,177       649,289       486,319       1,365,38         1986       81,934       167,591       820,457       535,628       1,605,66         1987       78,936       181,714       747,947       592,785       1,601,38         1988       86,702       141,919       927,116       563,127       1,718,86         1989       97,219       148,637       910,673       620,113       1,776,64         1990       91,347       195,420       963,865       659,032       1,909,66         1991       71,608       185,483       1,184,353       661,273       2,102,77         1992       91,997       182,715       1,095,336       661,829       2,031,83         1993       88,983       161,302       994,954       646,271       1,891,57         1994       114,301       191,356       1,078,905       652,322       2,036,88         1995       100,038       177,394       1,188,626       618,844       2,084,90         1997       138,869       206,124       1,134,980       729,299       2,209,29                                                                                                                                                                               | 1982          | 99,261   | 116,412 | 589,685   | 355,681   | 1,161,039 |
| 1985       90,607       139,177       649,289       486,319       1,365,39         1986       81,934       167,591       820,457       535,628       1,605,69         1987       78,936       181,714       747,947       592,785       1,601,38         1988       86,702       141,919       927,116       563,127       1,718,86         1989       97,219       148,637       910,673       620,113       1,776,64         1990       91,347       195,420       963,865       659,032       1,909,66         1991       71,608       185,483       1,184,353       661,273       2,102,77         1992       91,997       182,715       1,095,336       661,829       2,031,83         1993       88,983       161,302       994,954       646,271       1,891,57         1994       114,301       191,356       1,078,905       652,322       2,036,86         1995       100,038       177,394       1,188,626       618,844       2,084,90         1996       114,163       178,716       1,138,974       583,745       2,015,59         1997       138,869       206,124       1,134,980       729,299       2,209,29         <                                                                                                                                                                  | 1983          | 80,125   | 122,809 | 742,045   | 359,262   | 1,304,241 |
| 1986       81,934       167,591       820,457       535,628       1,605,66         1987       78,936       181,714       747,947       592,785       1,601,38         1988       86,702       141,919       927,116       563,127       1,718,86         1989       97,219       148,637       910,673       620,113       1,776,64         1990       91,347       195,420       963,865       659,032       1,909,66         1991       71,608       185,483       1,184,353       661,273       2,102,77         1992       91,997       182,715       1,095,336       661,829       2,031,87         1993       88,983       161,302       994,954       646,271       1,891,57         1994       114,301       191,356       1,078,905       652,322       2,036,88         1995       100,038       177,394       1,188,626       618,844       2,084,96         1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07                                                                                                                                                                         | 1984          | 95,433   | 115,933 | 816,122   | 404,099   | 1,431,587 |
| 1987       78,936       181,714       747,947       592,785       1,601,38         1988       86,702       141,919       927,116       563,127       1,718,86         1989       97,219       148,637       910,673       620,113       1,776,64         1990       91,347       195,420       963,865       659,032       1,909,66         1991       71,608       185,483       1,184,353       661,273       2,102,77         1992       91,997       182,715       1,095,336       661,829       2,031,87         1993       88,983       161,302       994,954       646,271       1,891,57         1994       114,301       191,356       1,078,905       652,322       2,036,88         1995       100,038       177,394       1,188,626       618,844       2,084,90         1996       114,163       178,716       1,138,974       583,745       2,015,55         1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07                                                                                                                                                                      | 1985          | 90,607   | 139,177 | 649,289   | 486,319   | 1,365,392 |
| 1988       86,702       141,919       927,116       563,127       1,718,86         1989       97,219       148,637       910,673       620,113       1,776,64         1990       91,347       195,420       963,865       659,032       1,909,66         1991       71,608       185,483       1,184,353       661,273       2,102,77         1992       91,997       182,715       1,095,336       661,829       2,031,87         1993       88,983       161,302       994,954       646,271       1,891,57         1994       114,301       191,356       1,078,905       652,322       2,036,86         1995       100,038       177,394       1,188,626       618,844       2,084,90         1996       114,163       178,716       1,138,974       583,745       2,015,59         1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07         2001       142,421       210,641       1,279,404       852,237       2,484,70 <tr< td=""><td>1986</td><td>81,934</td><td>167,591</td><td>820,457</td><td>535,628</td><td>1,605,610</td></tr<>                                                   | 1986          | 81,934   | 167,591 | 820,457   | 535,628   | 1,605,610 |
| 1989       97,219       148,637       910,673       620,113       1,776,64         1990       91,347       195,420       963,865       659,032       1,909,66         1991       71,608       185,483       1,184,353       661,273       2,102,77         1992       91,997       182,715       1,095,336       661,829       2,031,81         1993       88,983       161,302       994,954       646,271       1,891,57         1994       114,301       191,356       1,078,905       652,322       2,036,88         1995       100,038       177,394       1,188,626       618,844       2,084,90         1996       114,163       178,716       1,138,974       583,745       2,015,59         1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07         2000       131,302       227,385       1,455,558       728,322       2,542,56         2001       142,421       210,641       1,279,404       852,237       2,484,70                                                                                                                                                                | 1987          | 78,936   | 181,714 | 747,947   | 592,785   | 1,601,382 |
| 1990       91,347       195,420       963,865       659,032       1,909,66         1991       71,608       185,483       1,184,353       661,273       2,102,77         1992       91,997       182,715       1,095,336       661,829       2,031,87         1993       88,983       161,302       994,954       646,271       1,891,57         1994       114,301       191,356       1,078,905       652,322       2,036,86         1995       100,038       177,394       1,188,626       618,844       2,084,90         1996       114,163       178,716       1,138,974       583,745       2,015,50         1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07         2000       131,302       227,385       1,455,558       728,322       2,542,56         2001       142,421       210,641       1,279,404       852,237       2,484,70         2002       166,487       222,252       1,438,058       845,659       2,672,48                                                                                                                                                             | 1988          | 86,702   | 141,919 | 927,116   | 563,127   | 1,718,864 |
| 1991       71,608       185,483       1,184,353       661,273       2,102,77         1992       91,997       182,715       1,095,336       661,829       2,031,87         1993       88,983       161,302       994,954       646,271       1,891,57         1994       114,301       191,356       1,078,905       652,322       2,036,88         1995       100,038       177,394       1,188,626       618,844       2,084,90         1996       114,163       178,716       1,138,974       583,745       2,015,59         1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07         2000       131,302       227,385       1,455,558       728,322       2,542,56         2001       142,421       210,641       1,279,404       852,237       2,484,70         2002       166,487       222,252       1,438,058       845,659       2,672,48         2003       157,363       181,293       1,512,633       873,794       2,725,08 <td>1989</td> <td>97,219</td> <td>148,637</td> <td>910,673</td> <td>620,113</td> <td>1,776,642</td>                                                      | 1989          | 97,219   | 148,637 | 910,673   | 620,113   | 1,776,642 |
| 1992       91,997       182,715       1,095,336       661,829       2,031,83         1993       88,983       161,302       994,954       646,271       1,891,53         1994       114,301       191,356       1,078,905       652,322       2,036,88         1995       100,038       177,394       1,188,626       618,844       2,084,90         1996       114,163       178,716       1,138,974       583,745       2,015,59         1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07         2000       131,302       227,385       1,455,558       728,322       2,542,56         2001       142,421       210,641       1,279,404       852,237       2,484,70         2002       166,487       222,252       1,438,058       845,659       2,672,48         2003       157,363       181,293       1,512,633       873,794       2,725,08                                                                                                                                                                                                                                               | 1990          | 91,347   | 195,420 | 963,865   | 659,032   | 1,909,664 |
| 1993       88,983       161,302       994,954       646,271       1,891,57         1994       114,301       191,356       1,078,905       652,322       2,036,88         1995       100,038       177,394       1,188,626       618,844       2,084,90         1996       114,163       178,716       1,138,974       583,745       2,015,59         1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07         2000       131,302       227,385       1,455,558       728,322       2,542,56         2001       142,421       210,641       1,279,404       852,237       2,484,70         2002       166,487       222,252       1,438,058       845,659       2,672,48         2003       157,363       181,293       1,512,633       873,794       2,725,08                                                                                                                                                                                                                                                                                                                                    | 1991          | 71,608   | 185,483 | 1,184,353 | 661,273   | 2,102,717 |
| 1994       114,301       191,356       1,078,905       652,322       2,036,88         1995       100,038       177,394       1,188,626       618,844       2,084,90         1996       114,163       178,716       1,138,974       583,745       2,015,59         1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07         2000       131,302       227,385       1,455,558       728,322       2,542,56         2001       142,421       210,641       1,279,404       852,237       2,484,70         2002       166,487       222,252       1,438,058       845,659       2,672,48         2003       157,363       181,293       1,512,633       873,794       2,725,08                                                                                                                                                                                                                                                                                                                                                                                                                       | 1992          | 91,997   | 182,715 | 1,095,336 | 661,829   | 2,031,877 |
| 1995       100,038       177,394       1,188,626       618,844       2,084,90         1996       114,163       178,716       1,138,974       583,745       2,015,59         1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07         2000       131,302       227,385       1,455,558       728,322       2,542,56         2001       142,421       210,641       1,279,404       852,237       2,484,70         2002       166,487       222,252       1,438,058       845,659       2,672,48         2003       157,363       181,293       1,512,633       873,794       2,725,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1993          | 88,983   | 161,302 | 994,954   | 646,271   | 1,891,510 |
| 1996       114,163       178,716       1,138,974       583,745       2,015,59         1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07         2000       131,302       227,385       1,455,558       728,322       2,542,56         2001       142,421       210,641       1,279,404       852,237       2,484,70         2002       166,487       222,252       1,438,058       845,659       2,672,48         2003       157,363       181,293       1,512,633       873,794       2,725,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1994          | 114,301  | 191,356 | 1,078,905 | 652,322   | 2,036,884 |
| 1997       138,869       206,124       1,134,980       729,299       2,209,27         1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07         2000       131,302       227,385       1,455,558       728,322       2,542,56         2001       142,421       210,641       1,279,404       852,237       2,484,70         2002       166,487       222,252       1,438,058       845,659       2,672,48         2003       157,363       181,293       1,512,633       873,794       2,725,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1995          | 100,038  | 177,394 | 1,188,626 | 618,844   | 2,084,902 |
| 1998       140,674       186,661       1,446,265       747,464       2,521,06         1999       161,127       188,052       1,419,723       739,175       2,508,07         2000       131,302       227,385       1,455,558       728,322       2,542,56         2001       142,421       210,641       1,279,404       852,237       2,484,70         2002       166,487       222,252       1,438,058       845,659       2,672,48         2003       157,363       181,293       1,512,633       873,794       2,725,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1996          | 114,163  | 178,716 | 1,138,974 | 583,745   | 2,015,598 |
| 1999     161,127     188,052     1,419,723     739,175     2,508,07       2000     131,302     227,385     1,455,558     728,322     2,542,56       2001     142,421     210,641     1,279,404     852,237     2,484,70       2002     166,487     222,252     1,438,058     845,659     2,672,48       2003     157,363     181,293     1,512,633     873,794     2,725,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1997          | 138,869  | 206,124 | 1,134,980 | 729,299   | 2,209,272 |
| 2000       131,302       227,385       1,455,558       728,322       2,542,56         2001       142,421       210,641       1,279,404       852,237       2,484,76         2002       166,487       222,252       1,438,058       845,659       2,672,48         2003       157,363       181,293       1,512,633       873,794       2,725,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1998          | 140,674  | 186,661 | 1,446,265 | 747,464   | 2,521,064 |
| 2001       142,421       210,641       1,279,404       852,237       2,484,70         2002       166,487       222,252       1,438,058       845,659       2,672,48         2003       157,363       181,293       1,512,633       873,794       2,725,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1999          | 161,127  | 188,052 | 1,419,723 | 739,175   | 2,508,077 |
| 2002       166,487       222,252       1,438,058       845,659       2,672,45         2003       157,363       181,293       1,512,633       873,794       2,725,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000          | 131,302  | 227,385 | 1,455,558 | 728,322   | 2,542,567 |
| 2003 157,363 181,293 1,512,633 873,794 2,725,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2001          | 142,421  | 210,641 | 1,279,404 | 852,237   | 2,484,703 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2002          | 166,487  | 222,252 | 1,438,058 | 845,659   | 2,672,456 |
| Average 113 512 151 173 831 095 521 402 1 617 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2003          | 157,363  | 181,293 | 1,512,633 | 873,794   | 2,725,083 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average       | 113,512  | 151,173 | 831,095   | 521,402   | 1,617,182 |
| STD deviation 26,320 43,250 367,027 175,974 579,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STD deviation | 26,320   | 43,250  | 367,027   | 175,974   | 579,179   |

## Stock status and WPRFMC reference points

This section contains a brief review of the stock status for several pelagic species and the status of these stocks in relation to WPRFMC reference points. Stock assessments are presented annually at the Standing Committee on Tuna and Billfish (SCTB) and biennially at the Interim Scientific Committee for Tuna and Tuna-like Species in the North Pacific (ISC). In August 2004, the SCTB17 reviewed assessments for yellowfin and bigeye tuna in the WCPO. In addition, recent assessments from previous SCTB fora are available for Pacific blue marlin, north Pacific blue shark, south Pacific albacore and WCPO skipjack (Table 5 and 6). Stock status for the four tuna species are summarized from the SCTB species summary statements (<a href="http://www.spc.int/OceanFish/Html/SCTB/SCTB16/Execsum.pdf">http://www.spc.int/OceanFish/Html/SCTB/SCTB16/Execsum.pdf</a> and <a href="http://www.spc.int/OceanFish/Html/SCTB/SCTB17/Execsum.pdf">http://www.spc.int/OceanFish/Html/SCTB/SCTB17/Execsum.pdf</a>), which also contains additional information on recent developments in the fishery, sizes of fish and trends in CPUE, recruitment, biomass and fishing mortality. In February 2004, the fourth meeting of the ISC reviewed assessments for Pacific bluefin tuna and north Pacific swordfish. Summary statements were produced for these species and north Pacific albacore (<a href="http://isc.ac.affrc.go.jp/">http://isc.ac.affrc.go.jp/</a>).

Amendment 10 of the WPRFMC Pelagic FMP provided new specifications of overfishing criteria and control rules that trigger Council action based on the status of pelagic stocks. Amendment 10 defined Maximum Sustainable Yield (MSY) as a control rule that specifies the relationship of Fishing Mortality (F) to Biomass (B) and other indicators of productive capacity under a MSY harvest policy. Because fisheries must be managed to achieve optimum yield, not MSY, the MSY control rule is a benchmark control rule rather than an operational one. However, the MSY control rule is useful for specifying the "objective and measurable criteria for identifying when the fishery to which the plan applies is overfished" that are required under the MSA. The National Standard Guidelines (50 CFR 600.310) refer to these criteria as "status determination criteria" and state that they must include two limit reference points, or thresholds; one for F that identifies when overfishing is occurring and a second for B or its proxy that indicates when the stock is overfished (Figure 14). The status determination criterion for F is the maximum fishing mortality threshold (MFMT). Minimum stock size threshold (MSST) is the criterion for B. If fishing mortality exceeds the MFMT for a period of one year or more, overfishing is occurring. If stock biomass falls below MSST in a given year, the stock or stock complex is overfished. A Council must take remedial action in the form of a new FMP, an FMP amendment, or proposed regulations when it has been determined by the Secretary of Commerce that overfishing is occurring, a stock or stock complex is overfished, either of the two thresholds is being approached, or existing remedial action to end previously identified overfishing has not resulted in adequate progress.

Table 5. Schedule of completed and anticipated stock assessments for WPRFMC PMUS

| Albacore Tuna (S. Pacific)       | 2003 | Swordfish (N. Pacific)  | 2004 |
|----------------------------------|------|-------------------------|------|
| Albacore Tuna (N. Pacific)       | 2004 | Wahoo                   |      |
| Other tuna relatives (Auxis sp.) |      | Yellowfin Tuna (WCPO)   | 2004 |
| (allothunnus sp., Scomber sp.)   |      | Kawakawa                |      |
| Bigeye Tuna (WCPO)               | 2004 | Bluefin Tuna (Pacific)  | 2004 |
| Black Marlin                     |      | Common Thresher Shark   |      |
| Blue Marlin                      | 2002 | Pelagic Thresher Shark  |      |
| Mahimahi                         |      | Bigeye Thresher Shark   |      |
| Oilfishes                        |      | Shortfin Mako Shark     |      |
| Opah                             |      | Longfin Mako Shark      |      |
| Pomfrets                         |      | Blue Shark (N. Pacific) | 2001 |
| Sailfish                         |      | Silky Shark             |      |
| Shortbill Spearfish              |      | Oceanic Whitetip Shark  |      |
| Skipjack Tuna (WCPO)             | 2003 | Salmon Shark            |      |
| Striped Marlin                   | 2005 |                         |      |

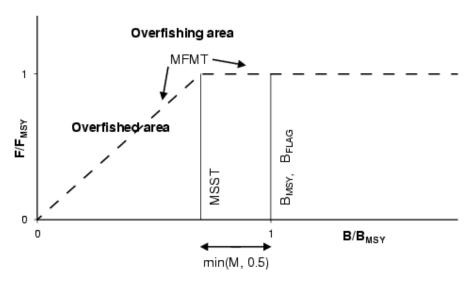



Figure 15. Specification of reference points MFMT and MSST in the WPRFMC Pelagic FMP.

## Stock status – WCPO skipjack tuna

No formal stock assessment of skipjack was conducted in 2004 and there was no additional information relating to fisheries indicators that could be used to update last year's stock assessment (Langley et al. 2003). Estimated biological reference points, particularly  $B/B_{MSY}$  and  $F/F_{MSY}$ , indicate that the skipjack tuna stock of the WCPO is not overfished owing to recent high levels of recruitment and a modest level of exploitation relative to the stock's biological potential (Figure 16, Table 6). Continued catches at the 1.2 million mt level are sustainable with continued high levels of recruitment, which are believed to be determined by principally environmental factors and not owing to a strong spawner-recruit relationship.

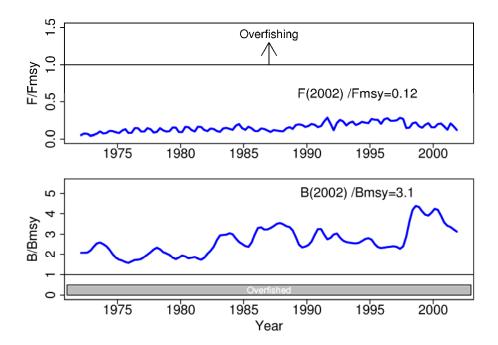



Figure 16. Ratios of F/F<sub>MSY</sub> (top) and B/B<sub>MSY</sub> (bottom) for skipjack tuna in the WCPO. The horizontal line at 1.0 in the F/F<sub>MSY</sub> figure indicates an overfishing reference point. The shaded area in the B/B<sub>MSY</sub> figure indicates an overfished reference point .

## Stock status – WCPO yellowfin tuna

The assessment (Hampton et al. 2004a) reviewed by SCTB17 reaffirms the result of the previous assessment that the yellowfin stock in the WCPO is probably not being overfished ( $F/F_{MSY} < 1$ ) and that it is not in an overfished state ( $B/B_{MSY} > 0.5$ , Figure 17, Table 6). However, the stock is likely to be nearing full exploitation and any future increases in fishing mortality would not result in any long-term increase in yield and may move the yellowfin stock to an overfished state. While biomass based reference points indicate that the long-term average biomass should remain above that capable of producing MSY if present catches are maintained, yield estimates indicate that there may be limited potential to expand long-term catches from the fishery at the current pattern of age-specific selectivity. The assessment also indicates that the equatorial regions are likely to be fully exploited, while the temperate regions are likely to be lightly exploited. Furthermore, the attribution of depletion to various fisheries or groups of fisheries indicates that the Indonesian fishery has the greatest impact, particularly in its home region, but is also impacting other regions, as the assessment model indicates that Region 2 is a source of recruits for other regions. The purse seine fishery also has moderate impact, particularly in the equatorial regions.

It is important to note that the key reference points are sensitive to initial assumptions regarding the nature of the stock-recruitment relationship (Figure 18). The assumed prior distribution for the steepness parameter is highly influential and a relaxation of this assumption results in a more pessimistic assessment despite the lack of any evidence of a strong relationship between spawning stock biomass and recruitment (steepness is a parameter that describes the slope of the ascending limb of the relationship between spawning biomass and recruitment). For future assessments, a comprehensive review of appropriate values of SRR steepness for yellowfin is required to determine appropriate values for inclusion in a range of sensitivity analyses. The other main source of uncertainty is the historical and current levels of catch from the Indonesian fishery.

While recognizing continuing uncertainties associated with the present stock assessment, the SCTB reiterates the previous recommendation that there be no further increases in fishing mortality (particularly on juvenile yellowfin) in the WCPO. If future evidence supports a shift to a lower productivity regime, a decrease in total catch would be anticipated in order to maintain the stock at sustainable levels.

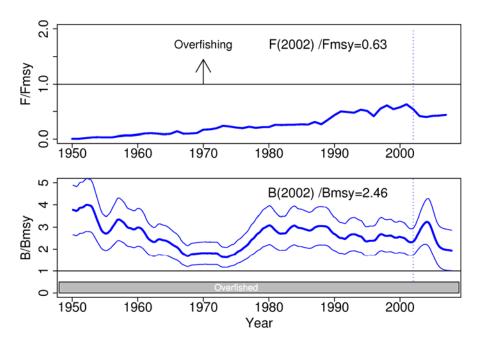



Figure 17. Ratios of F/F<sub>MSY</sub> (top) and B/B<sub>MSY</sub> (bottom) for yellowfin tuna in the WCPO. The horizontal line at 1.0 in the F/F<sub>MSY</sub> figure indicates an overfishing reference point. The shaded area in the B/B<sub>MSY</sub> figure indicates an overfished reference point (MSST) and thin lines indicate approximate 95% confidence intervals. The dotted vertical line delineates data-supported model estimates from projections.

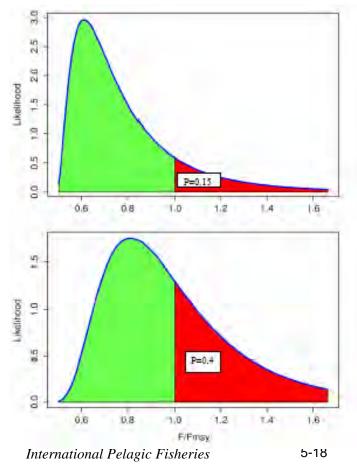



Figure 18. Probability distribution of F/ FMSY for yellowfin tuna in the WCPO based on the likelihood profile method with steepness priors of mode = 0.9 and sd = 0.1 (upper panel) and mode = 0.75 and sd = 0.1 (lower panel).

## Stock status – WCPO bigeye tuna

The 2004 assessment results (Hampton et al. 2004b) were reviewed and confirmed as consistent with the 2003 assessment, although the point estimates of some reference points were slightly more optimistic in this assessment (Figure 19, Table 6). The current fishing mortality (i.e. the average for 1999-2001) is estimated to be close to MSY level ( $F/F_{MSY}$ ) and the current biomass to be above the MSY level ( $B>B_{MSY}$ ) and above the MSST (not in an overfished state). This result is common for all runs. Probability distributions for  $F/F_{MSY}$  and  $B/B_{MSY}$  were developed by the likelihood profile method. These distributions (Figure 20) indicate that the current levels of fishing mortality carry high risks of overfishing but the probability that the stock is in an overfished state is close to zero.

The future stock status of WCPO bigeye will depend both on future fishing mortality and future recruitment. Recent recruitment has been estimated to be well above average, and if it falls to the long term average or lower, current catch levels would result in stock reductions to near and possibly below MSY-based reference points. Lower future recruitment is a possibility if the recruitment trends for bigeye in the EPO are mirrored in the WCPO, and if the hypothesis concerning the impact of large-scale ocean climate on tropical tuna recruitment, which was suggested in the paper presented to SCTB17 (ECO-5), proves to be correct.

According to the information provided by the IATTC, the spawning stock biomass of bigeye tuna in the eastern Pacific Ocean (EPO) has now declined below the MSY level. The stock will likely remain in an overfished condition for some time because of high fishing mortality and low recent recruitment. The annual meeting of the IATTC adopted several management measures aimed at preventing further decline and promoting recovery of the stock. It was noted that the longline fishery operates continuously across the tropical Pacific (Figure 7) and that collaborative research with the IATTC on Pacific-wide bigeye assessment should continue.

Taking all above information into consideration, it is recommended that, as a minimum measure, there be no further increase in the fishing mortality rate for bigeye tuna from  $F_{\text{current}}$ . If future evidence supports a shift to a lower productivity regime, a decrease in total catch would be anticipated in order to maintain the stock at sustainable levels. The SCTB participants recognize there are still large uncertainties associated with the stock assessment of this species and recommend that the stock assessment be conducted again next year.

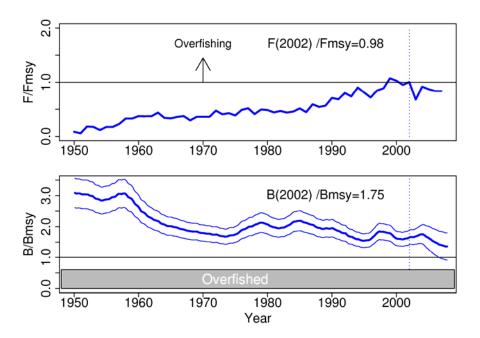



Figure 19. Ratios of F/F<sub>MSY</sub> (top) and B/B<sub>MSY</sub> (bottom) for bigeye tuna in the WCPO. The horizontal line at 1.0 in the F/F<sub>MSY</sub> figure indicates an overfishing reference point. The shaded area in the B/B<sub>MSY</sub> figure indicates an overfished reference point and thin lines indicate approximate 95% confidence intervals. The dotted vertical line delineates data-supported model estimates from projections.

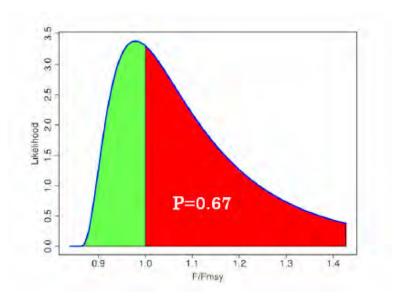



Figure 20. Probability distribution of F/ FMSY for bigeye tuna in the WCPO based on the likelihood profile method (base case with steepness of mode = 0.9 and sd = 0.1)

#### Stock status - south Pacific albacore tuna

No formal stock assessment of South Pacific albacore was conducted in 2004 and there was no additional information relating to fisheries indicators that could be used to update last year's stock assessment (Labelle and Hampton 2003). The meeting therefore had no basis for altering the main features of last year's assessment, namely that it is unlikely that the South Pacific albacore stock is being overfished or that it is in an overfished state (Figure 21). The meeting did, however, consider further analyses of the declines in CPUE in some Pacific Island states in 2003. Results indicated that much of this decline is a consequence of changed oceanographic conditions, though high levels of localized effort may also be impacting on CPUE in these fisheries. Catch rates for most fleets have recovered over the last 12 months.

The current (2003) stock assessment was conducted with MULTIFAN–CL. The fishery for albacore is unique in that it has exhibited no significant trend in catches over the period of 1960 – 1995. Due to the problems faced by all assessments conducted with limited data on stocks, which have been apparently exploited at only low exploitation rates over the period of the fishery, the results obtained provide little information on the biomass of the stock. Improved results from this model would be expected if there were better return rates of tags placed on albacore.

The 2003 assessment gave similar results to the 2002 assessment, with a low impact of fishing on biomass, and indicated that the current biomass is at about 60% of unfished levels. It is therefore unlikely that the stock is being overfished or is in an overfished state.

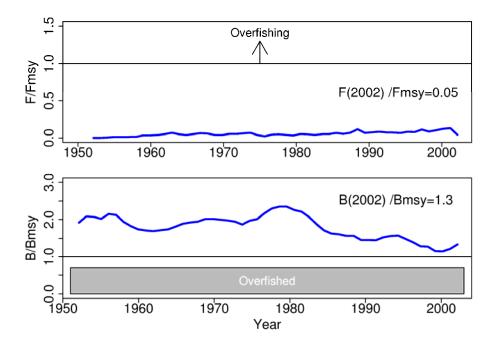



Figure 21. Ratios of F/F<sub>MSY</sub> (top) and B/B<sub>MSY</sub> (bottom) for south Pacific albacore tuna. The horizontal line at 1.0 in the F/F<sub>MSY</sub> figure indicates an overfishing reference point. The shaded area in the B/B<sub>MSY</sub> figure indicates an overfished reference point.

#### Stock status - north Pacific albacore

The status of north Pacific albacore was reviewed at the fourth meeting of the ISC. The North Pacific Albacore Workshop reviewed the methods and results generated from length-based, agestructured stock assessments, including virtual population analysis (VPA) based on ADAPT models and preliminary, fully-integrated statistical models based on MULTIFAN-CL software. Results from the ADAPT models indicated that annual estimates of biomass over the last decade were relatively 'high' (i.e., compared with estimated biomass in the mid 1970s through the late 1980s); however, very recent population estimates suggest a 'leveling off' of the stock at large. Estimated recruitment is quite variable and suggests two oceanographic regimes: a low 'productivity' period from 1975 to 1989; and a higher 'productivity' period since that time. Based on recent and forecasted catch and recruitment levels, fishing mortality is relatively high (roughly, F 20%), either in excess of that required to produce MSY assuming a low productivity scenario or roughly at the MSY level assuming a high productivity scenario and proxy biological reference points for this species.

### Stock status - Pacific bluefin tuna

A complicating factor in a 2004 Pacific bluefin stock assessment was that some of the fishery statistics are substandard. MULTIFAN-CL and ADAPT VPA assessments show similar biomass trends, though some combinations of various size weightings of the MULTIFAN-CL analysis result in different long-term trends. Biomass was high in the mid 1950s, 1979, and mid-1990s. Recruitment has fluctuated with a large pulse in 1994 and very low recruitment in 1992. Changes in biomass and spawning stock biomass have been driven by recruitment. Yield per recruit estimates from the ADAPT modeling showed recent fishing mortality (F) exceeding Fmax. The status of the stock may be characterized as: 1) biomass appears to have recovered from a record low level in the late 1980s to a more intermediate level in recent years, largely due to better than average recruitment during the 1990s; 2) the SSB has generally declined since 1995 despite good recruitment and will likely continue to decline if recent fishing mortality rates continue: 3) recent fishing mortality is greater than Fmax, which has both economic implications and is an indicator of biological concern; and 4) the high fishing mortality on young fish (ages 0-2) and older fish (ages 6+) may be cause for concern with respect to maintaining a sustainable fishery in future years. Implications of the stock status include: 1) no further increases in fishing mortality (F) for any of the fisheries taking PBF; and 2) reduce the uncertainty associated with the assessment results by undertaking improvement in the data collection, data analyses, and assessment models used.

#### Stock status - north Pacific swordfish

Assessments of north Pacific swordfish in 2004 included: 1) three different analyses for standardizing CPUE – generalized linear model (GLM) and habitat-based both showing declining CPUE trend, with greater decreases in NW, 2) a MULTIFAN-CL modeling effort – difficulty with size sampling protocols that ignore small fish (e.g., in Japan) complicate the analysis; overall impact of the fishery is minor at worst; use of a simulation data set to test MULTIFAN-CL indicated a significant tendency to overestimate natural mortality (M) and thus underestimate stock levels.

Conclusions reached by the Working Group on the status of swordfish in the North Pacific are: 1) GLM and habitat-based standardization of CPUE based data from Japanese longline vessels show declining trends mainly driven by declines in CPUE in the northwest portion of the study area; 2) a MULTIFAN-CL assessment also detected such a decline in the northwest region of the fishery; and 3) in all MULTIFAN-CL model runs, the model showed fisheries as playing no more than a modest role in causing declines in abundance.

Table 6. Estimates of stock status in relation to overfishing and overfished reference points for WPRFMC PMUS.

|                                     | Overfishing                               | Is overfishing                                                                  | Overfished                                | Is the stock | Assessment             | Natural                  |                                 |
|-------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|--------------|------------------------|--------------------------|---------------------------------|
| Stock                               | reference point                           | occurring?                                                                      | reference point                           | overfished?  | results                | mortality <sup>1</sup>   | MSST                            |
| Skipjack Tuna (WCPO)                | F <sub>2002</sub> /F <sub>MSY</sub> =0.12 | No                                                                              | B <sub>2002</sub> /B <sub>MSY</sub> =3.1  | No           | Langley et al. 2003    | >0.5 yr <sup>-1</sup>    | 0.5 B <sub>MSY</sub>            |
| Yellowfin Tuna (WCPO) <sup>2</sup>  | F <sub>2002</sub> /F <sub>MSY</sub> =0.63 | No, probability that $F_{2002}/F_{MSY}$ is >1 is ~15%                           | B <sub>2002</sub> /B <sub>MSY</sub> =2.46 | No           | Hampton et al. 2004a   | 0.8-1.6 yr <sup>-1</sup> | 0.5 B <sub>MSY</sub>            |
| Albacore Tuna (S. Pacific)          | F <sub>2002</sub> /F <sub>MSY</sub> =0.05 | No                                                                              | $B_{2002}/B_{MSY}=1.3$                    | No           | Labelle & Hampton 2003 | 0.3 yr <sup>-1</sup>     | $0.7~B_{MSY}$                   |
| Albacore Tuna (N. Pacific)          | Un                                        | known                                                                           | Unkno                                     | own          |                        | 0.3 yr <sup>-1</sup>     | $0.7~\mathrm{B}_{\mathrm{MSY}}$ |
| Bigeye Tuna (WCPO) <sup>2</sup>     | F <sub>2002</sub> /F <sub>MSY</sub> =0.98 | Yes, probability that F <sub>2002</sub> /F <sub>MSY</sub> is >1 is at least 67% | B <sub>2002</sub> /B <sub>MSY</sub> =1.75 | No           | Hampton et al. 2004b   | 0.4 yr <sup>-1</sup>     | 0.6 B <sub>MSY</sub>            |
| Blue Marlin (Pacific)               | F <sub>1997</sub> /F <sub>MSY</sub> =0.50 | No                                                                              | $B_{1997}/B_{MSY}=1.4$                    | No           | Kleiber et al. 2002    | 0.2 yr <sup>-1</sup>     | $0.8~B_{MSY}$                   |
| Swordfish (N. Pacific) <sup>3</sup> | F <sub>2002</sub> /F <sub>MSY</sub> =0.33 | No                                                                              | B <sub>2002</sub> /B <sub>MSY</sub> =1.75 | No           | Kleiber & Yokawa 2004  | 0.3 yr <sup>-1</sup>     | $0.7~B_{MSY}$                   |
| Blue Shark (N. Pacific)             | F <sub>1999</sub> /F <sub>MSY</sub> =0.01 | No                                                                              | B <sub>1999</sub> /B <sub>MSY</sub> =1.9  | No           | Kleiber et al. 2001    | Unknown                  |                                 |
|                                     |                                           |                                                                                 |                                           |              |                        |                          |                                 |
| Other Billfishes                    | Unknown                                   |                                                                                 | Unknown                                   |              |                        | Unknown                  |                                 |
| Other Pelagic Sharks                | Unknown                                   |                                                                                 | Unknown                                   |              |                        | Unknown                  |                                 |
| Other PMUS                          | Un                                        | known                                                                           | Unknown                                   |              |                        | Unknown                  |                                 |

Estimates based on Boggs et. al 2000
 Assessment results based on statistical habitat-based standardized (SHBS) effort time-series and a SRR steepness assumption of 0.75
 Assessment results based on natural mortality fixed at 0.2 yr<sup>-1</sup>

### Literature cited

Boggs, C., Dalzell, P., Essington, T., Labelle, M., Mason, D., Skillman, R., and J. Wetherall. 2000. Recommended overfishing definitions and control rules for the western Pacific regional fishery management council's pelagic fishery management plan. Administrative Report H-00-05, Honolulu Laboratory, SWFSC, NMFS, NOAA.

Hampton, J., Kleiber. P., Langley, and K. Hiramatsu. 2004a. Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WP SA–1, SCTB 17, Majuro, Marshall Islands, 9–18 August 2004.

Hampton, J., Kleiber. P., Langley, and K. Hiramatsu. 2004b. Stock assessment of bigeye tuna in the western and central Pacific Ocean. WP SA–2, SCTB 17, Majuro, Marshall Islands, 9–18 August 2004.

Kleiber, P., Hampton, J., Hinton, M., and Y. Uozumi. 2002. Update on blue marlin stock assessment. WP BBRG–10, SCTB 15, Honolulu, Hawaii, 22–27 July 2002.

Kleiber, P., Takeuchi, Y., and H. Nakano. 2001. Calculation of plausible maximum sustainable yield (MSY) for blue sharks (*Prionace glauca*) in the North Pacific. Administrative Report H-01-02, Honolulu Laboratory, SWFSC, NMFS, NOAA.

Kleiber, P., and K. Yokawa. 2004. MULTIFAN-CL assessment of swordfish in the North Pacific. SWO-WG WP-7, ISC4, Honolulu, Hawaii, 26 January – 4 February 2004.

Labelle, M., and J. Hampton. 2003. Stock assessment of albacore tuna in the South Pacific Ocean. WP ALB-1, SCTB 16, Mooloolaba, Australia, 9-16 July 2003.

Langley, A., Ogura, M., and J. Hampton. 2003. Stock assessment of skipjack tuna in the western and central Pacific Ocean. WP SKJ-1, SCTB 16, Mooloolaba, Australia, 9-16 July 2003.

## Appendix 6

## Marine Recreational Fisheries of the Western Pacific Region

#### Introduction

Fishing, either for subsistence or recreation continues to be an extremely important activity throughout the Western Pacific Region in the four major populated island areas of the Western Pacific Region, Hawaii, American Samoa, Guam and the Commonwealth of the Northern Mariana Islands (CNMI). Fish consumption in Micronesia and Polynesia typically averages about 130 lb/per capita/yr (Dalzell et al 1996) and even in more culturally diverse Hawaii, fish consumption is almost three times the US national average at about 42 lb/person/yr (Dalzell & Paty 1996).

## Recreational fisheries in the Western Pacific Region

In Hawaii, recreational shoreline fishing was more popular than boat fishing up to and after WW II. Boat fishing during this period referred primarily to fishing from traditional canoes (Glazier 2000). All fishing was greatly constrained during WW II through time and area restrictions, which effectively stopped commercial fishing and confined recreational fishing to inshore areas (Brock 1947). Following WWII, the advent of better fishing equipment and new small boat hulls and marine inboard and outboard engines led to a growth in small vessel-based recreational fishing.

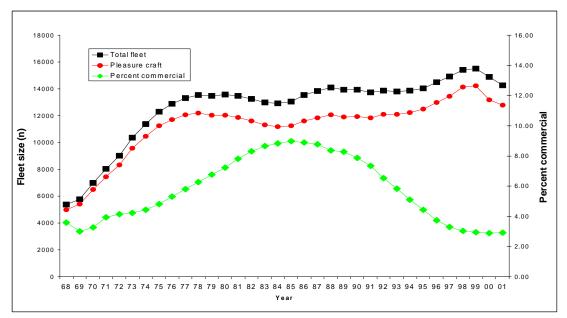



Figure 1. Annual number of small vessel fleet registrations in Hawaii. Figure shows total fleet size, and percentage of vessels being registered for commercial fishing (Source: Hawaii Division of Boating and Ocean Resources)

6-1 Recreational

A major period of expansion of small vessel recreational fishing occurred between the late 1950s and early 1970s, through the introduction of fibreglass technology to Hawaii and the further refinement of marine inboard and outboard engines (Figure 1). By the early 1960s there were an estimated 5,300 small boats in the territory being used for recreational fishing. By the 1980s the number of recreational or pleasure craft had risen to almost 13,000 vessels and to about 15,000 vessels in the 1990s. There are presently some 26 fishing clubs in Hawaii, and a variety of different recreational fishing tournaments organized both by clubs and independent tournament organizers. Hawaii also hosts between 150 to 200 boat based fishing tournaments, about 30 of which are considered major competitions, with over 20 boats and entry fees of ≥\$100. This level of interest in recreational fishing is sufficient to support a local fishing magazine, Hawaii Fishing News, which besides articles of interest to recreational fishermen, includes a monthly roundup of the fishing activity and conditions at the major small boat harbors in the State. Further, a directory of the State's small boat harbors and launching ramps is published annually by Hawaii Ocean Industry and Shipping news (see December 2002/January 2003 issue).

Elsewhere in the region, recreational fishing is less structured. In Guam fishing clubs have been founded along ethnic lines by Japanese and Korean residents. These clubs had memberships of 10-15 people, along with their families. Four such clubs were founded in Guam during the past 20 years, but none lasted for more than a 2-3 years (Gerry Davis, Guam DAWR pers. comm.). These was also a Guam Boating Association comprising mostly fishermen, with several hundred members. This organization functioned as a fishing club for about 10 years and then disbanded. Some school groups and the boy scouts have formed fishing clubs focused on rod and reel fishing, and there is still one spearfishing club that has only a handful of members, but appears to be still be active. There are also some limited fishing tournaments on Guam, including a fishing derby for children organized by the local Aquatic and Wildlife Resources Division (Anon 2000). There are few fishing clubs in the in the Northern Mariana Islands. The Saipan Sportfishing Association (SSA) has been in existence for at least 16 years, and is the sponsor of the annual Saipan International Fishing Tournament, which is usually held in August or September. In 1997, the SSA listed approximately 40 members. There is also a Tinian Sportfishing Association, but the status of this club is unknown at this time.

The founding of the American Samoa Game Fishing Association in 1974 in Pago Pago led to fishing tournaments being held on a regular basis in the territory (Tulafono 2001). A total of 64 tournaments, averaging two to three tournaments per year and 10 to 20 vessels in each competition, were conducted in Pago Pago between 1974 and 1998. However interest in fishing tournaments waned during the late 1990s, with only three vessels participating in the last tournament held in 1998. The reason for this decline was not entirely clear, but may be related to the expansion of the longline fishery in American Samoa and the shift from commercial trolling to longlining. According to Tulafono, fishermen were more interested in earning income and it was time consuming to switch from longline to troll gear for a weekend of tournament fishing. Tulafono (2001) noted that tag and release programs, which are gaining popularity with recreational and charter-vessel fishermen elsewhere in the U.S., would not be popular in

American Samoa. In common with many Pacific islands, fish were caught to keep for food in American Samoa, and fish landings and their distribution through the community were important in order to meet social obligations. Releasing fish would be considered a failure to meet these obligations (Tulafono 2001).

There is also some recreational fishing activity at some of the Pacific Remote Island Areas (PRIAs), namely at Midway, Wake, Johnston and Palmyra Islands. There are no resident populations at Howland & Baker and Jarvis Islands and fishing activity at these locations is likely minimal. There was a tourist facility at Midway until 2002, which operated a charter boat fishery targeting primarily pelagic fish at Midway Atoll. The company operated five vessels using for charter fishing at Midway: three 22-26 ft catamarans for lagoon and nearshore fishing operations and two 38 ft sportfishing vessels used for blue water trolling. In addition there were approximately seven small vessels maintained and used by Midway residents for recreational fishing. Of this total, three vessels engaged primarily in offshore trolling for PMUS including yellowfin tuna, one and marlin. All vessels fishing at Midway were required to file a float plan prior to a fishing trip and complete the "Midway Sports Fishing Boat Trip Log" upon completion of each trip. The US Fish and Wildlife Service was responsible for compiling these catch data.

At Palmyra Atoll, an island privately owned by The Nature Conservancy, a 22 ft catamaran is used for offshore trolling and four small boats operated within the lagoon used for bonefish angling. There are several craft used for recreational fishing at the two military bases on Johnson and Wake Islands. These include eight Boston whalers, two cabin cruisers and a landing craft at Johnson, and two landing craft and two small vessels at Wake.

## **Recreational fisheries in the Western Pacific Region**

Estimates of recreational catch for the Western Pacific are given in Table 1. The data for Guam, Northern Mariana Islands and American Samoa are based on the proportion of catches landed for sale and catches retained and not sold, in all landings sampled by creel surveys in each area. The ratio of unsold to sold catch in the samples was used in conjunction with the total catch estimate expanded from the creel survey data. This was adjusted downwards based on the creel surveys by the ratio of landings by vessels retaining 100 % of their catch to the total unsold catch. This accounts for that fraction of the catch not sold by commercial fishing vessels. The volume of fish landed by vessels retaining all their catch was labeled the nominal recreational catch. A similar exercise is conducted by the Honolulu Laboratory to generate recreational catch figures for Hawaii.

6-3 Recreational

Table 1. Estimated recreational fish catches in the four principal island groups of the Western Pacific Region

| Location                           | Year                 | Total catch (lbs) | Unsold catch (lb)       | Nominal recreational catch (lb) | Recr. catch<br>as % of<br>total catch | Total<br>trips <sup>3</sup> | Recr.<br>fishing<br>trips | Recr. trips<br>as % of<br>total trips |
|------------------------------------|----------------------|-------------------|-------------------------|---------------------------------|---------------------------------------|-----------------------------|---------------------------|---------------------------------------|
| American<br>Samoa <sup>1</sup>     | 2003                 | 57,351            | 10,291                  | 7,892                           | 13.8                                  | 597                         | 272                       | 45.6                                  |
| Guam<br>Hawaii <sup>2</sup><br>NMI | 2003<br>2003<br>2003 | 42,300,194        | 365,163<br>NA<br>39,162 | 18,938,550                      | 48.8<br>9.1                           | 13,290<br>509,417<br>1,078  | 10,328<br>378,729<br>340  | 77.7<br>93.1<br>31.5                  |

<sup>1.</sup>Small boat troll and bottomfish catch. Total commercial catch for American Samoa in 2003 was 11.2 million lbs

## **Charter vessel sportsfishing**

Tables 2-6 present summaries of the charter vessel sportsfishing in the Western Pacific. Most charter fishing in Hawaii is focused on catching blue marlin, which in 2002 formed about 50 % of the total annual charter vessel catch by weight (Table 3). Although commercial troll vessels also take blue marlin, these only form about a quarter of their catch, with the majority of the target species being yellowfin, mahimahi, aku and ono (Table 3). Unlike other parts of the US, there is little recreational fishery interest in catching sharks in Hawaii.

Guam has a charter fishing sector, which unlike Hawaii caters for both pelagic and bottomfish fishing. Until recently the troll charter fishery was expanding, but, over the past three years the number of vessels involved, and level of fishing, has decreased in response to lower tourist volume from Japan due to the Asian economic recession in the late 1990s. Nonetheless, although compromising only 5 % of Guam's commercial troll fleet, the Guam troll charter industry accounts for 11% of the troll catch and 25 and 20% of the Guam blue marlin and mahi mahi catch respectively. (See Guam module in this volume). The Guam bottomfish charter fishery has continued to increase despite the drop in tourist volume from Japan, and accounts for about 10% of Guam's bottomfish fishing effort. The primary catch of the bottomfish charter fishery are goatfish and triggerfish, which are mostly released.

Charter fishing in NMI is limited, with about ten boats operating on Saipan, and a few vessels on Tinian conducting occasional fishing charters. Tourism is not a significant component of the American Samoa economy, and hence there is little charter fishing activity. There are few vessels suitable for charter-type operations and the American Samoa government does not actively promote tourism and sportfishing as the local infrastructure for this is limited (Tulafono 2001).

<sup>2.</sup>Hawaii recreational catch from Hawaii Marine Recreational Fisheries Survey. Recreational fishing trips as a percent of total trips based on Hamilton & Huffman 1997

<sup>3.</sup> Boat based fishing only

Table 2. Estimated catches by pelagic charter fishing vessels in Guam, Hawaii and Northern Mariana Islands in 2003

| Location            | Catch (lb) | Effort (trips) | Species                                 |
|---------------------|------------|----------------|-----------------------------------------|
| Guam                | 56,026     | 1,368          | blue marlin, skipjack, mahimahi, wahoo  |
| Hawaii              | 380,740    | 6,852          | mahimahi, yellowfin, wahoo, blue marlin |
| Northern Mariana Is | 11,690     | 297            | mahimahi, yellowfin, skipjack, wahoo    |

Charter vessel fishing in the Western Pacific Region has elements of both recreational and commercial fishing. The primary motivation for charter patrons is recreational fishing, with the possibility of catching large game fish such as blue marlin. The charter vessel skipper and crew receive compensation in the form of the patrons fee, but are also able to dispose of fish on local markets, as is the case in Hawaii. The catch composition of charter vessel catch versus conventional commercial trolling in Hawaii, reflects the different targeting in the two fisheries. Blue marlins are the dominant feature of charter vessels in Hawaii, while in Guam (Tables 3 & 4), composition of the charter cath is being broadly similar to the mix of species in the commercial troll catches

Table 3. Comparison of species composition of landings made by Hawaii pelagic charter vessels versus commercial troll vessels. 2003

| Species              | Chai          | ter vessels | Commercial tr | ollers  |
|----------------------|---------------|-------------|---------------|---------|
|                      | Landings (lb) | Percent La  | andings (lb)  | Percent |
| Blue marlin          | 129,677       | 34.06       | 183,834       | 11.57   |
| Yellowfin tuna       | 82,822        | 21.75       | 412,356       | 25.95   |
| Mahimahi             | 47,788        | 12.55       | 348,974       | 21.96   |
| Wahoo                | 37,324        | 9.80        | 379,800       | 23.90   |
| Skipjack tuna        | 18,017        | 4.73        | 161,283       | 10.15   |
| Short-nose spearfish | 16,661        | 4.38        | 10,904        | 0.69    |
| Striped marlin       | 13,927        | 3.66        | 26,031        | 1.64    |
| Others               | 34,526        | 9.07        | 65,720        | 4.14    |
| Total                | 380,740       | 100.00      | 1,588,902     | 100.00  |

Table 4. Comparison of species composition of landings made by Guam pelagic charter vessels versus commercial troll vessels, 2003

| Species        | Charter vess  | Charter vessels |             | ollers  |
|----------------|---------------|-----------------|-------------|---------|
|                | Landings (lb) | Percent La      | ndings (lb) | Percent |
| Skipjack tuna  | 15,112        | 26.97           | 167,614     | 37.22   |
| Blue marlin    | 13,097        | 23.38           | 52,961      | 11.76   |
| Wahoo          | 10,575        | 19.20           | 52,528      | 11.67   |
| Mahimahi       | 9,963         | 17.78           | 73,767      | 16.38   |
| Yellowfin tuna | 3,055         | 5.45            | 64,635      | 14.35   |
| Others         | 4,042         | 7.21            | 38,779      | 8.61    |
| Total Pelagics | 56,026        | 100.00          | 450,284     | 100.00  |

6-5 Recreational

In Hawaii there is considerable variation in charter vessel catches between the various islands (Table 5), with the largest charter vessel fishery based on the island of Hawaii. In 2001, charter vessel catches on the island of Hawaii accounted for over half of the total charter vessel landings within the state, with Maui and Oahu charter vessels forming most of the remaining catch. The islands of Kauai and Molokai make minor contributions to the charter vessel catch, with no charter fishing on Lanai.

Table 5. Charter vessel catches in Hawaii by island, 2003

| Island      | Catch (lb) | Percent | Trips | Percent | CPUE (lb/trip) |
|-------------|------------|---------|-------|---------|----------------|
| Hawaii      | 220,262    | 57.85   | 4,214 | 61.50   | 52.27          |
| Oahu        | 37,239     | 9.78    | 533   | 7.78    | 68.87          |
| Maui County | 48,626     | 12.77   | 1,383 | 20.18   | 35.16          |
| Kauai       | 74,613     | 19.60   | 722   | 10.54   | 103.34         |
| Molokai*    |            |         |       |         |                |
| Lanai*      |            |         |       |         |                |
| Total       | 380,740    | 100.00  | 6,852 | 100.00  | 55.57          |

<sup>\*</sup> DAR confidentiality protocols prevent reporting 2002 charter vessel activity for Molokai and Lanai separately, and these are aggregated with data for Maui, reported collectively as Maui County.

Most charter vessel fishing on the island of Hawaii is conducted from Kona's small boat harbor at Honokohau, and about two thirds of the charter vessel catch comprises blue marlin (Table 6). Elsewhere, mahimahi dominate charter vessel landings, with blue marlin comprising between 2% and 30% of catches. Other important species in the charter vessel catches, depending on location, comprise yellowfin, wahoo, spearfish and skipjack.

Table 6. Composition of charter vessel catches in the Main Hawaiian Islands, 2003

| Hawaii<br>Species | Landings (lb) | Percent | Kauai<br>Species     | Landings (lb) | Percent |
|-------------------|---------------|---------|----------------------|---------------|---------|
| Blue marlin       | 102,234       | 46.41   | Yellowfin tuna       | 11,692        | 31.40   |
| Yellowfin tuna    | 55,947        | 25.40   | Ono                  | 7,335         | 19.70   |
| Ono               | 20,033        | 9.10    | Mahimahi             | 6,253         | 16.79   |
| Mahimahi          | 16,677        | 7.57    | Aku                  | 5,895         | 15.83   |
| Striped marlin    | 9,331         | 4.24    | Blue marlin          | 3,505         | 9.41    |
| Others            | 16,042        | 7.28    | Others               | 2559          | 6.87    |
| Total             | 220,262       | 100.00  | Total                | 37,239        | 100.00  |
| Oahu              |               |         | Maui County          |               |         |
| Species           | Landings (lb) | Percent | Species              | Landings (lb) | Percent |
| Mahimahi          | 26,153        | 35.05   | Mahimahi             | 17,532        | 36.05   |
| Yellowfin tuna    | 14,332        | 19.21   | Blue marlin          | 10,603        | 21.81   |
| Blue marlin       | 13,335        | 17.87   | Ono                  | 8,391         | 17.26   |
| Ono               | 7,326         | 9.82    | Striped marlin       | 3,807         | 7.83    |
| Striped marlin    | 6,438         | 8.63    | Short-nose spearfish | 1,926         | 3.96    |
| Others            | 7029          | 9.42    | Others               | 6367.5        | 13.09   |
| Total             | 74,613        | 100.00  | Total                | 48,626        | 100.00  |

## **Recreational Fishing Data Collection in Hawaii**

## The Hawaii Marine Recreational Fishing Survey Project

Mike Nelson (HDAR) and Maury Osborn, (NMFS Office of Science and Technology) assisted by Walter Ikehara (HDAR), developed a cooperative agreement with NMFS to initiate the Hawaii Marine Recreational Fishing Survey (HMRFS) in 2001. NMFS and HDAR contributed joint funding for intercept surveys and charter boat surveys on the islands of Oahu, Hawaii, and Maui. NMFS also funded the Random Digit Dialing household telephone survey via their national contractor beginning in January 2001. The HMRFS project commenced in July 2001, with Walter Ikehara as the HDAR coordinator and Mike Nelson as survey manager. Four surveyors were hired in the first year (July 2001 - June 2002) and began surveys of private boat and charter boat fishermen in late 2001. In December 2002 Dr. Matthew Parry took over as the HMRFS survey manager. The HMRFS continued to expand its efforts in 2003 and 2004 and now consists of 11 surveyors (3 on Oahu, 2 on Maui, and 3 on Hawaii, 2 on Kauai, and 1 on Molokai) and 1 data worker. The HMRFS expanded in 2004 to surveying Kauai and Molokai.

The MRFSS program uses a triple survey approach that has been developed over the 20+ years of its history. For each two-month survey period (wave) a random sample of households is called by telephone to determine how many have done any fishing in the ocean, their mode of fishing (private boat, rental boat, charter boat, or shoreline), what methods were used, and how much effort (number of trips and hours) was expended. Concurrently, surveyors are sent out to boat launch ramps, small boat harbors, and shoreline fishing sites to interview fishermen to fill out intercept survey forms. The intercept survey collects data on fishing area, fishing methods, trip/effort, species caught, and lengths and weights of fish. The sites are randomly selected, but stratified by fishing pressure so that the sites with the highest pressures are likely to be surveyed more often. In addition the charter boat operators are surveyed by a separate survey. This additional survey of the charter fleet serves the same function as the random digit dialing household survey and is necessary because out of town fishers that charter vessels wouldn't be covered by randomly calling the Hawaiian populace. The telephone and charter survey data are used to estimate total statewide fishing effort and the intercept surveys provide detailed catch and trip information. Data from the three surveys are combined and expanded by computer to yield statewide estimates of total effort and catch by species, mode, and county. For more information on the MRFSS program and survey methods, please go to the MRFSS web site (http://www.st.nmfs.gov/st1/recreational/).

MRFSS weight estimates are calculated by multiplying the estimated number harvested in a cell (year/wave/state/mode/area/species) by the mean weight of the measured fish in that cell. Sometimes we have an estimate of harvest but no mean weight, either because

- the harvest is all reported by the anglers (B1), or
- because for some reason the interviewers couldn't weigh any fish (fish too big, already

6-7 Recreational

gutted and gilled, etc.).

If a cell is missing a mean weight OR the variance of the mean weight = 0 (e.g. only 2 weights & they are same), and if we have at least two fish measured in the state (all fishing areas and modes combined),

- We substitute the mean for the whole state for that wave.
- · We need two measured fish to get a variance estimate.

After state substitution, if the mean weight is still missing,

- · We use the mean from the whole <u>subregion</u> for that wave.
- · The "two fish rule" still applies.
- · Hawaii is only state in subregion, hence if state pooling results in missing mean weight then we give up (as below) and leave a missing weight estimate.

After subregional substitution, if the mean weight is STILL missing, we give up and leave a missing weight estimate. At that point,

- · It is up to the user to determine whether to substitute, and
- · What substitution is most appropriate to use (a mean from the preceding and following waves, the whole year, same wave over years, whole Atlantic & Gulf coast, some complicated regression model, whatever).
- We don't make those decisions because the information needs and sensitivity of the data vary among species.

The phenomenon of missing weights is more widespread with rarely caught species and with large fish (i.e. tunas). The existence and/or extent of missing weights for your query can be examined by requesting data at the cell level: (by year/wave/state/by mode/by area/by species (time series)).

## Results

A synopsis of the results of the HMRFS project for the year 2003 is shown in Tables 7 and 8 and Figures 2 - 6, which also show the 2002 data points. The total recreational catch for Hawaii was estimated to be 18,938,550 lbs, of which about 96% in terms of weight was caught from boats (Table 1). In terms of numbers of fish, about 80% of the catch came from boat-based recreational fishing, with 20% from shore line fishing Interestingly, in 2003 pelagics comprise the largest volume of fish landed by weight by shoreline fishing. Most of this volume of shoreline pelagic catch was mahimahi. Pelagic fish are caught from shore in Hawaii, particularly in locations where there is a steep drop-off. The HMRFS project also gives some insights into the volume of bycatch in recreational fishing. Live discards from pelagic fishing are small ranging from zero for shore-based fishing to one percent for boat based fishing. The discard rate for pelagic fish taken from boats was quite high in 2003, amounting to about 41% of all fish caught. By contrast, relatively little (about 4%) of the other species catch from boat-based fishing was discarded, with an overall discard rate of about 18%. The discard rate for shore based fishing was much higher, with about

45% of pelagic fish and 62% of other species being discarded.

The contributions by the six major pelagic fishes caught by boat-based recreational fishing are shown in Figures 2 and 3. Skipjack was the most commonly caught pelagic taken by recreational fishermen in terms of numbers in 2002 and dominated catches in 2003. Other important components of the boat based recreational catch in 2003 were yellowfin tuna, wahoo and mahimahi. Skipjack made a more modest contribution to the recreational boat catch by weight in 2003 with yellowfin tuna dominating catches. As might be expected the yellowfin CPUE was considerably higher in 2003 compared with 2002 (Figure 6). The CPUEs of wahoo, skipjack and mahi were all higher in 2002 compared with 2003. By contrast blue marlin and striped marlin CPUEs were lower in 2003 compared to the previous year. Recreational fishing activity in 2002 ranged from between 55,000 to 133,000 recreational trips per two month period (Figure 5), with a peaks in fishing activity between May and August, and between November to December.

Table 7. Hawaii recreational catch in weight from boat-based and shoreline fishing, 2003

| Fish          | Catch (lb)          |                   |  |  |  |
|---------------|---------------------|-------------------|--|--|--|
|               | <b>Boat fishing</b> | Shoreline fishing |  |  |  |
| Pelagics      | 17,199,469          | 515,371           |  |  |  |
| Other species | 1,013,591           | 210,119           |  |  |  |
| Total         | 18,213,060          | 725,490           |  |  |  |

Table 8. Hawaii recreational catch and live discards by number, 2003

|               | Boa       |                       |          | Shoreline |                       |          |
|---------------|-----------|-----------------------|----------|-----------|-----------------------|----------|
|               | Catch     | Discards <sup>1</sup> | <b>%</b> | Catch     | Discards <sup>1</sup> | <b>%</b> |
| Pelagics      | 831,284   | 341,264               | 41.1     | 34,344    | 15,369                | 44.7     |
| Other species | 1,397,031 | 57,335                | 4.1      | 883,700   | 551,385               | 62.3     |
| Total         | 2,228,315 | 398,599               | 17.9     | 918,044   | 556,754               | 60.6     |

<sup>1.</sup> Discard category may include fishes that are filleted and identified by fishermen

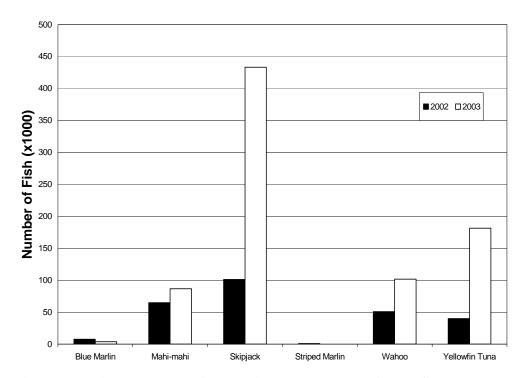



Figure 2. Estimated recreational private boat catch of PMUS by number, 2002 & 2003.

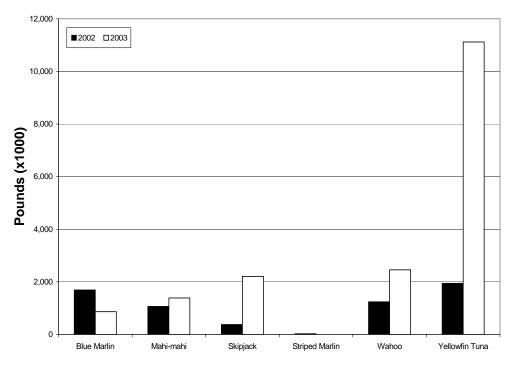



Figure 3. Estimated recreational private boat catch of PMUS by weight, 2002 & 2003.

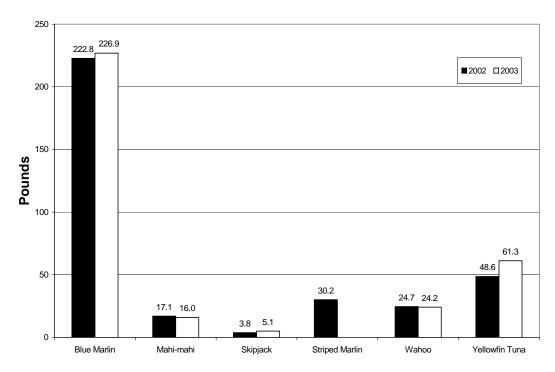



Figure 4. Average weight of PMUS catch taken by recreational private boats, 2002 & 2003.

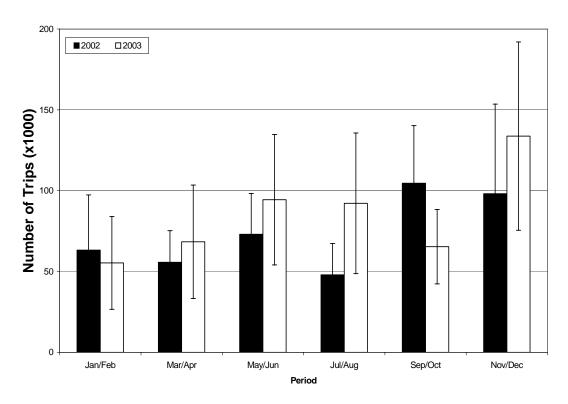



Figure 5. Recreational boat trips for all waters within EEZ boundary

6-11 Recreational

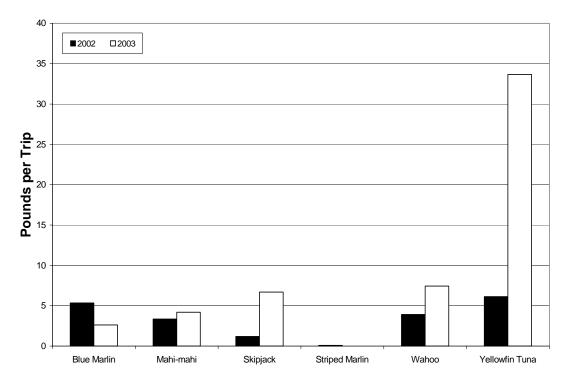



Figure 6. CPUE for PMUS in waters between 3 miles offshore and EEZ boundary

# The NMFS/Council Pelagic Fisheries Research Program Recreational Fisheries Meta Data Project

The Recreational Meta Data Project was initiated to document and compile into database formats sources of Hawaii's pelagic recreational and sports fishing information from the past 50 years. Recreational fishery data has not been routinely collected in the State of Hawaii over the past 50 years, although there are several sources of information including previous recreational and small fishing boat surveys, boating registration data, angling club records, fishing tournament records, newspapers, and fishermen logbooks. Much of the existing literature is unpublished or "gray literature", and difficult for fishery scientists and researchers to obtain. This project has collected over 80 papers and reports and incorporated them as part of the database files. Further, the data tabulated therein has been re-entered into spreadsheet files so as to make them available to other researchers.

The project has also received information on 27 different fishing tournaments from 7 different angling and boat clubs and expects to obtain information covering an additional four more tournaments. Several of these tournaments are well documented and the project has amassed annual information covering over 40 years of catch and effort in Hawaiian waters. The number of boats participating in different tournaments has ranged from 6 to 260 boats. The majority of tournament catch is caught by fishing in association with Fish Aggregating Devices (FADs), which may provide valuable feedback to the Hawaii Division of Aquatic Resources (HDAR) in

monitoring the success of its FAD deployment program, Pervious attempts by HDAR to monitor FAD performance through voluntary recreational fishery reporting have been unsuccessful.

Information on effort, catch, and tournament totals reflect the unique nature of each tournament's reporting procedures. Most tournaments do not differentiate between bigeye tuna (*Thunnus obesus*) and yellowfin tuna (*T. albacares*) and these species are listed simply as "ahi". Marlin reports can also be comprised of one or more billfish species, and skipjack tuna (*Katsuwonus pelamis*) may or may not be included in the radio logs and weigh in slips. The potential for constructing weight frequency charts from tournament radio logs to monitor size trends in tournament catches was investigated, but was confounded by the practice of rounding estimated weights in conjunction with species identification problems. Despite these limitations, this information does provide insight into hook up rates, catch composition, and average weight of catch. Time series catch rate data from a single tournament are also useful in elucidating cyclical peaks in species catch abundance. Although catching a thousand pound marlin continues to be a major goal of most tournament participants, catches of mahimahi (*Coryphaena hippurus*) and ahi are the mainstay of the tournament catches in Hawaii.

The project terminated in 2004 and the following two reports are currently in preparation:

- 1. Pelagic fishing tournaments, clubs and organizations throughout the State of Hawaii, 2003.
- 2. Recreational metadata: using tournament data to describe a poorly documented pelagic fishery.

Both reports will be published in the University of Hawaii's School of Oceanography and Earth Science and Technology (SOEST) technical report series in 2005.

### References

Brock, V.E. Report of the Director, Division of Fish and Game. Report of the Board of Commissioners of Agriculture and Forestry of the Territory of Hawaii. Honolulu.

Dalzell, P., T. Adams, & N. Polunin, 1996. Coastal fisheries in the South Pacific. Oceanography and Marine Biology Annual Review 33, 395-531.

Dalzell, P. & W. Paty, 1996. The importance and uniqueness of fisheries in the Western Pacific Region. Paper presented at the 91<sup>st</sup> Western Pacific Fishery Council Meeting, 18-21 November 1996, Honolulu, 10 p.

Glazier, E.W. 1999. Social aspects of Hawaii's small vessel troll fishery. Phase II of the Social Aspects of Pacific Pelagic Fisheries Program, Univ. Hawaii, JIMAR, 287 pp.

Hamilton, Marcia S. and S.W. Huffman, 1997. Cost-earnings study of Hawaii's small boat fishery. University of Hawaii, Pelagic Fisheries Research Program SOEST Publication 97-06.

6-13 Recreational

Tulafono, R. 2001. Gamefishing and tournaments in American Samoa. In, Proceedings of the 1998 Pacific Island Gamefish Symposium: Facing the Challenges of Resource Conservation, Sustainable Development, and the Sportfishing Ethic, 29 July-1 August, 1998, Kailua-Kona, Hawaii, Western Pacific Regional Fishery Management Council.

WPRFMC. 1998. Amendment Addressing Magnuson-Stevens Act Definitions and Required Provisions Amendment 8 to the Pelagic Fisheries Management Plan Amendment 10 to the Crustaceans Fisheries Management Plan Amendment 4 to the Precious Corals Fisheries Management Plan Amendment 6 to the Bottomfish and Seamount Groundfish Fisheries Management Plan. Western Pacific Regional Fishery Management Council, Honolulu, 99 pp + apps.

## Appendix 7

## Pelagic fisheries production from the Pacific West Coast States

## Introduction

The following tables include time series for pelagic fisheries production along the US West Coast between the early 1980s to 2003. The 1997 annual report discusses these trends in some detail and these explanations remain current.

Table 1. Annual West Coast highly migratory species landings (mt) by species

| Year | Albacore | Yellowfin | Skipjack | Bigeye | Bluefin | Swordfish | Common<br>Thresher | Big-eye<br>Thresher | Pelagic<br>Thresher | Shortfin<br>Mako | Blue<br>shark |
|------|----------|-----------|----------|--------|---------|-----------|--------------------|---------------------|---------------------|------------------|---------------|
| 1983 | 9,574    | 55,741    | 44,995   | 21     | 764     | 1,758     | 1,331              | 9                   | 96                  | 217              | 7             |
| 1984 | 12,657   | 35,063    | 31,251   | 126    | 635     | 2,890     | 1,279              | 9                   | 57                  | 160              | 2             |
| 1985 | 7,301    | 15,025    | 2,977    | 7      | 3,254   | 3,418     | 1,190              | <.05                | 95                  | 149              | 1             |
| 1986 | 5,243    | 21,517    | 1,361    | 29     | 4,731   | 2,530     | 974                | <.05                | 48                  | 312              | 2             |
| 1987 | 3,160    | 23,201    | 5,724    | 50     | 823     | 1,803     | 562                | 2                   | 20                  | 403              | 2             |
| 1988 | 4,908    | 19,520    | 8,863    | 6      | 804     | 1,636     | 500                | 1                   | 9                   | 322              | 3             |
| 1989 | 2,214    | 17,615    | 4,505    | 1      | 1,019   | 1,357     | 504                | <.05                | 17                  | 255              | 6             |
| 1990 | 3,030    | 8,509     | 2,256    | 2      | 925     | 1,236     | 357                | 1                   | 31                  | 373              | 20            |
| 1991 | 1,676    | 4,178     | 3,407    | 7      | 104     | 1,029     | 584                | 0                   | 32                  | 219              | 1             |
| 1992 | 4,885    | 3,350     | 2,586    | 7      | 1,087   | 1,546     | 292                | <.05                | 22                  | 142              | 1             |
| 1993 | 6,151    | 3,795     | 4,539    | 26     | 559     | 1,771     | 275                | 1                   | 44                  | 122              | 0             |
| 1994 | 10,686   | 5,056     | 2,111    | 47     | 916     | 1,700     | 330                | <.05                | 37                  | 128              | 12            |
| 1995 | 6,528    | 3,038     | 7,037    | 49     | 714     | 1,161     | 270                | 5                   | 31                  | 95               | 5             |
| 1996 | 14,173   | 3,347     | 5,455    | 62     | 4,688   | 1,191     | 319                | 1                   | 20                  | 96               | 1             |
| 1997 | 11,292   | 4,774     | 6,070    | 82     | 2,251   | 1,448     | 319                | 35                  | 32                  | 132              | 1             |
| 1998 | 13,785   | 5,799     | 5,846    | 53     | 1,949   | 1,378     | 326                | 2                   | 11                  | 98               | 3             |
| 1999 | 9,629    | 1,353     | 3,759    | 105    | 179     | 1,992     | 320                | 10                  | 5                   | 6                | 0             |
| 2000 | 9041     | 1148      | 780      | 87     | 312     | 2652      | 295                | 5                   | 3                   | 80               | 1             |
| 2001 | 11,183   | 655       | 58       | 53     | 196     | 2195      | 373                | 2                   | 2                   | 46               | 2             |
| 2002 | 10,028   | 544       | 236      | 10     | 11      | 1697      | 315                | 0                   | 0                   | 82               | 42            |
| 2003 | 16,643   | 465       | 349      | 35     | 36      | 2126      | 294                | 5                   | 4                   | 69               | <1            |

Table 2. Annual value (\$) of West Coast highly migratory landings by species

| Yea | ar Albacore   | Yellowfin  | Skipjack   | Bigeye  | Bluefin   | Swordfish  | Common    | Pelagic  | Bigeye   | Shortfin | Blue   |
|-----|---------------|------------|------------|---------|-----------|------------|-----------|----------|----------|----------|--------|
|     |               |            |            |         |           |            | Thresher  | Thresher | Thresher | Mako     | Shark  |
| 198 | 33 19,142,864 | 92,971,187 | 57,729,430 | 72,202  | 1,670,878 | 10,729,636 | 2,301,209 | 13,282   | 142,526  | 360,974  | 7,201  |
| 198 | 34 26,146,708 | 56,409,588 | 37,467,700 | 264,792 | 1,395,492 | 17,701,329 | 2,485,275 | 11,649   | 71,349   | 287,733  | 3,572  |
| 198 | 35 12,214,354 | 18,206,638 | 2,826,414  | 25,900  | 4,127,982 | 19,538,942 | 2,660,903 | 843      | 140,433  | 283,043  | 3,319  |
| 198 | 86 8,895,672  | 25,475,289 | 1,367,387  | 129,108 | 6,618,473 | 18,256,026 | 2,412,160 | 277      | 95,181   | 611,399  | 1,886  |
| 198 | 7,085,992     | 33,183,108 | 5,982,568  | 244,701 | 2,902,340 | 15,405,478 | 1,638,772 | 2,560    | 30,721   | 989,632  | 2,566  |
| 198 | 12,280,116    | 34,161,742 | 12,618,821 | 33,772  | 4,445,064 | 13,007,930 | 1,310,935 | 1,097    | 13,328   | 868,676  | 2,923  |
| 198 | 39 4,873,362  | 24,112,994 | 5,086,365  | 3,004   | 1,684,134 | 10,579,050 | 1,202,991 | 191      | 31,313   | 707,408  | 4,631  |
| 199 | 6,911,021     | 10,485,225 | 2,361,619  | 10,928  | 1,433,788 | 8,811,042  | 786,534   | 2,067    | 42,599   | 909,368  | 15,834 |
| 199 | 3,349,988     | 4,721,908  | 3,130,649  | 50,650  | 137,612   | 7,497,271  | 1,145,001 | 0        | 28,944   | 491,477  | 892    |
| 199 | 2 13,214,373  | 4,412,452  | 1,606,563  | 51,444  | 1,360,230 | 8,709,765  | 521,922   | 693      | 17,108   | 266,344  | 2,056  |
| 199 | 3 13,001,721  | 6,440,417  | 3,498,178  | 238,527 | 841,129   | 10,062,551 | 520,120   | 509      | 32,498   | 248,651  | 681    |
| 199 | 22,293,343    | 4,947,988  | 1,916,462  | 336,130 | 1,834,094 | 10,504,630 | 632,555   | 46       | 37,579   | 270,088  | 17,572 |
| 199 | 95 12,377,227 | 3,260,929  | 5,125,387  | 268,465 | 1,129,006 | 7,013,279  | 510,733   | 9,389    | 26,730   | 177,076  | 2,994  |
| 199 | 28,583,043    | 3,388,536  | 4,185,411  | 273,321 | 4,238,678 | 6,363,798  | 634,493   | 1,635    | 18,591   | 174,621  | 616    |
| 199 | 20,529,493    | 5,254,042  | 5,639,463  | 370,331 | 2,896,450 | 6,297,358  | 609,285   | 64,543   | 35,781   | 232,737  | 287    |
| 199 | 98 19,068,271 | 5,976,102  | 5,322,183  | 277,238 | 3,058,769 | 6,052,792  | 574,795   | 2,635    | 9,513    | 173,349  | 6,094  |
| 199 | 99 17,515,551 | 1,468,743  | 2,748,208  | 639,668 | 961,423   | 8,309,539  | 616,407   | 18,424   | 5,876    | 109,767  | 83     |
| 200 | 00 17,154,639 | 1,294,388  | 483,242    | 579,384 | 577,095   | 11,772,245 | 587,702   | 2,738    | 4,636    | 132,970  | 909    |
| 200 | 20,687,195    | 465,558    | 33,633     | 320,855 | 473,821   | 8,696,689  | 595,542   | 2,767    | 8,428    | 75,780   | 1,501  |
| 200 | 14,291,939    | 588,677    | 128,425    | 87,304  | 43,512    | 6,320,439  | 517,715   | N.A.     | N.A.     | 124,522  | 18,598 |
| 200 | 24,424,823    | 450,925    | 159,961    | 262,768 | 75,396    | 7,797,738  | 476,067   | 2,907    | 3,463    | 113,689  | 714    |

<sup>&</sup>lt;sup>1</sup>Real values are current values adjusted to eliminate the effects of inflation by dividing current values by the current year GDP implicit price deflator, with a base year of 1999.

Table 3. Pacific coast commercial landings of highly migratory species by state, 1982-2003

| Landings (mt)     |          |                  |                |              |              |                |                    |                     |                    |                  |               |
|-------------------|----------|------------------|----------------|--------------|--------------|----------------|--------------------|---------------------|--------------------|------------------|---------------|
| Year              | Albacore | Yellowfin        | Skipjack       | Bigeye       | Bluefin      | Swordfish      | Common<br>Thresher | Pelagic<br>Thresher | Bigeye<br>Thresher | Shortfin<br>Mako | Blue<br>Shark |
| Washi             |          |                  |                |              |              |                |                    |                     |                    |                  |               |
| 1983              |          | N.A.             | 0              | N.A.         | 0            | 0              | 0                  | N.A.                | N.A.               | N.A.             | <.05          |
| 1984              |          | N.A.             | 0              | N.A.         | 0            | 0              | 0                  | N.A.                | N.A.               | N.A.             | <.05          |
| 1985              |          | N.A.             | 0              | N.A.         | 0            | 0              |                    | N.A.                | N.A.               | N.A.             | <.05          |
| 1986<br>1987      |          | N.A.<br>N.A.     | 0              | N.A.<br>N.A. | 0            | 0              | 82<br>65           | N.A.<br>N.A.        | N.A.<br>N.A.       | N.A.<br>N.A.     | <.05          |
| 1988              |          | N.A.             | 0              | N.A.         | 0            | 2              |                    | N.A.                | N.A.               | N.A.             | <.05<br><.05  |
| 1989              |          | N.A.             | 0              | N.A.         | 0            | 0              |                    | N.A.                | N.A.               | N.A.             | 0             |
| 1990              |          | N.A.             | 0              | N.A.         | 0            | 0              | <.05               | N.A.                | N.A.               | N.A.             | 0             |
| 1991              |          | N.A.             | <.05           | N.A.         | 0            | 0              | <.05               | N.A.                | N.A.               | N.A.             | <.05          |
| 1992              |          | N.A.             | <.05           | N.A.         | 0            | 0              | 1                  | N.A.                | N.A.               | N.A.             | <.05          |
| 1993              | 2,167    | N.A.             | 0              | N.A.         | 0            | 1              | <.05               | N.A.                | N.A.               | N.A.             | <.05          |
| 1994              | 5,377    | N.A.             | 0              | N.A.         | 0            | 0              | <.05               | N.A.                | N.A.               | N.A.             | 0             |
| 1995              | 3,413    | N.A.             | 0              | N.A.         | 0            | <.05           | 5                  | N.A.                | N.A.               | N.A.             | <.05          |
| 1996              |          | N.A.             | 0              | N.A.         | 0            | 0              | 4                  | N.A.                | N.A.               | N.A.             | <.05          |
| 1997              |          | N.A.             | 0              | N.A.         | 0            | 0              | 2                  | N.A.                | N.A.               | N.A.             | <.05          |
| 1998              |          | N.A.             | 0              | N.A.         | 0            | 0              | 6                  | N.A.                | N.A.               | N.A.             | <.05          |
| 1999              |          | N.A.             | 0              | N.A.         | 12           | 4              |                    | N.A.                | N.A.               | N.A.             | 0             |
| 2000              |          | N.A.             | 0              | N.A.         | 0            | 0              | 0                  | N.A.                | N.A.               | N.A.             | < 0.5         |
| 2001<br>2002      |          | N.A.<br>N.A.     | 0              | N.A.<br>N.A. | 0            | 0              |                    | N.A.<br>N.A.        | N.A.               | N.A.             | 0             |
| 2002              |          | N.A.             | 0              | N.A.         | 0            | 0              | 0                  | N.A.                | N.A.<br>N.A.       | N.A.<br>N.A.     | 0             |
| Oregon            | U        | N.A.             | U              | N.A.         | U            | Ü              | U                  | IV.A.               | N.A.               | N.A.             | U             |
| 1983              | 1,541    | <.05             | <.05           | N.A.         | 0            | 0              | 0                  | N.A.                | N.A.               | 0                | 0             |
| 1984              |          | <.05             | 0              | N.A.         | 0            | 0              | 0                  | N.A.                | N.A.               | 0                | 0             |
| 1985              |          | 0                | 0              | N.A.         | 0            | 0              |                    | N.A.                | N.A.               | 0                | 0             |
| 1986              |          | <.05             | <.05           | N.A.         | 0            | 0              | 424                | N.A.                | N.A.               | 0                | 0             |
| 1987              | 1,038    | 0                | 0              | N.A.         | <.05         | 0              | 92                 | N.A.                | N.A.               | 0                | 0             |
| 1988              | 1,799    | 0                | 0              | N.A.         | 0            | 0              | 81                 | N.A.                | N.A.               | 0                | 0             |
| 1989              | 490      | 0                | 0              | N.A.         | 0            | 0              | <.05               | N.A.                | N.A.               | 0                | 0             |
| 1990              |          | 0                | 0              | N.A.         | 0            | 0              | <.05               | N.A.                | N.A.               | 0                | <.05          |
| 1991              |          | 0                | 0              | N.A.         | 0            | 0              | 0                  | N.A.                | N.A.               | 0                | <.05          |
| 1992              |          | 0                | 0              | N.A.         | 0            | 0              | 1                  | N.A.                | N.A.               | 0                | <.05          |
| 1993<br>1994      |          | 0                | 0              | N.A.         | 0            | 0              | <.05<br>0          | N.A.                | N.A.               | 0                | <.05          |
| 1994              |          | <.05             | <.05           | N.A.<br>N.A. | <.05         | 3              | 1                  | N.A.<br>N.A.        | N.A.<br>N.A.       | 0                | <.05<br><.05  |
| 1996              |          | <.05             | 0              | N.A.         | <.05         | 16             | <.05               | N.A.                | N.A.               | 0                | 1             |
| 1997              |          | <.05             | <.05           | N.A.         | 1            | 6              | <.05               | N.A.                | N.A.               | 0                | <.05          |
| 1998              |          | 0                | 0              | N.A.         | 3            | 35             | <.05               | N.A.                | N.A.               | 1                | 2             |
| 1999              |          | <.05             | 0              | N.A.         | 6            | 6              |                    | N.A.                | N.A.               | <.05             | <.05          |
| 2000              |          | 0                | 0              | N.A.         | 0            | 0              | 0                  | N.A.                | N.A.               | 0                | 1             |
| 2001              | 4,058    | 0                | 0              | N.A.         | 0            | 0              | 0                  | N.A.                | N.A.               | 0                | 2             |
| 2002              | 1,979    | 0                | 0              | N.A.         | 0            | 0              | 0                  | N.A.                | N.A.               | 0                | < 0.5         |
| 2003              | 4,139    | 0                | 0              | N.A.         | 0            | 0              | 0                  | N.A.                | N.A.               | 0                | <1            |
| <u>California</u> | _        |                  |                |              |              |                |                    |                     |                    |                  |               |
| 1983              |          | 55,740           | 44,995         | 21           | 764          | 1,758          | 1,331              | 9                   | 96                 | 217              | 7             |
| 1984              |          | 35,063           | 31,251         | 126          | 635          | 2,890          | 1,279              | 9                   | 57                 | 160              | 2             |
| 1985              |          | 15,025           | 2,977          | 7            | 3,254        | 3,418          | 1,188              | <.05                | 95                 | 149<br>312       | 1             |
| 1986<br>1987      |          | 21,517<br>23,201 | 1,361<br>5,724 | 29<br>50     | 4,731<br>823 | 2,530<br>1,803 | 468<br>405         | <.05<br>2           | 48<br>20           | 403              | 2 2           |
| 1987              |          | 19,520           | 8,863          | 6            | 804          | 1,634          |                    | 1                   | 9                  | 322              | 3             |
| 1989              |          | 17,615           | 4,505          | 1            | 1,019        | 1,357          | 501                | <.05                | 17                 | 255              | 6             |
| 1990              |          | 8,509            | 2,256          | 2            | 925          | 1,236          | 356                | 1                   | 31                 | 373              | 20            |
| 1991              |          | 4,178            | 3,407          | 7            | 104          | 1,029          | 584                | 0                   | 32                 | 219              | 1             |
| 1992              |          | 3,350            | 2,586          | 7            | 1,087        | 1,546          |                    | <.05                | 22                 | 142              | 1             |
| 1993              |          | 3,795            | 4,539          | 26           | 559          | 1,770          | 275                | 1                   | 44                 | 122              | <.05          |
| 1994              |          | 5,056            | 2,111          | 47           | 916          | 1,700          | 330                | <.05                | 37                 | 128              | 12            |
| 1995              | 832      | 3,038            | 7,037          | 49           | 714          | 1,159          | 264                | 5                   | 31                 | 95               | 5             |
| 1996              | 5,146    | 3,347            | 5,455          | 62           | 4,687        | 1,175          | 316                | 1                   | 20                 | 96               | <.05          |
| 1997              |          | 4,774            | 6,070          | 82           | 2,250        | 1,442          | 317                | 35                  | 32                 | 132              | <.05          |
| 1998              |          | 5,799            | 5,846          | 53           | 1,946        | 1,343          | 319                | 2                   | 11                 | 97               | 1             |
| 1999              |          | 1,353            | 3,759          | 105          | 161          | 1,982          | 253                | 10                  | 5                  | 62               | <.05          |
| 2000              |          | 1,148            | 780            | 87           | 312          | 2,612          | 250                | 3                   |                    | 80               | < 0.5         |
| 2001              |          | 642              | 57             | 53           | 196          | 2,194          |                    | 2                   | 2                  | 46               | 0             |
| 2002              |          | 544              | 236            | 10           | 9.7          | 1,697          | 315                |                     | N.A.               | 82               | 41            |
| 2003              | 1,711    | 465              | 349            | 35           | 36           | 2,126          | 294                | 4                   | 5                  | 68               | 0             |

Table 4. Pacific coast real commercial ex-vessel revenues  $(1999)^1$  from highly migratory species by state, 1982-2003

| Revenues (\$) |              |              |            |              |           |             |                    |                     |                    |                  |               |
|---------------|--------------|--------------|------------|--------------|-----------|-------------|--------------------|---------------------|--------------------|------------------|---------------|
| Year          | Albacore     | Yellowfin    | Skipjack   | Bigeye       | Bluefin   | Swordfish   | Common<br>Thresher | Pelagic<br>Thresher | Bigeye<br>Thresher | Shortfin<br>Mako | Blue<br>Shark |
| Washington    |              |              |            |              |           |             |                    |                     |                    |                  |               |
| 198           |              | N.A.         | 0          | N.A.         | 0         | 0           | 0                  |                     | N.A.               | N.A.             | 201           |
| 198           |              | N.A.         | 0          | N.A.         | 0         | 0           | 0                  | N.A.                | N.A.               | N.A.             | 11            |
| 198           |              | N.A.         | 0          | N.A.         | 0         | 0           | 0                  | N.A.                | N.A.               | N.A.             | 183           |
| 198           |              | N.A.         | 0          | N.A.         | 0         | 0           | 303,270            | N.A.                | N.A.               | N.A.             | 170           |
| 198           |              | N.A.         | 0          | N.A.         | 0         | 0           | 298,466            | N.A.                | N.A.               | N.A.             | 580           |
| 198           |              | N.A.         | 0          | N.A.         | 0         | 13,526      | 31,385             | N.A.                | N.A.               | N.A.             | 65            |
| 198           |              | N.A.         | 0          | N.A.         | 0         | 0           | 10,541             | N.A.                | N.A.               | N.A.             | 0             |
| 199           |              | N.A.         | 0          | N.A.         | 0         | 0           | 33                 | N.A.                | N.A.               | N.A.             | 0             |
| 199           |              | N.A.         | 17         | N.A.         | 0         | 0           | 287                | N.A.                | N.A.               | N.A.             | 52            |
| 199           |              | N.A.         | 82         | N.A.         | 0         | 5 007       | 655                | N.A.                | N.A.               | N.A.             | 39            |
| 199           |              | N.A.         | 0          | N.A.         | 0         | 5,907       | 953                | N.A.                | N.A.               | N.A.             | 34            |
| 199<br>199    |              | N.A.<br>N.A. | 0          | N.A.         | 0         | 0           | 102                | N.A.                | N.A.               | N.A.             | 0             |
| 199           |              |              | 0          | N.A.<br>N.A. | 0         | 328<br>0    | 16,541             | N.A.                | N.A.<br>N.A.       | N.A.             | 16<br>44      |
| 199           |              | N.A.<br>N.A. | 0          | N.A.         | 0         | 0           | 11,619<br>10,922   | N.A.<br>N.A.        | N.A.               | N.A.<br>N.A.     | 10            |
| 199           |              | N.A.<br>N.A. | 0          | N.A.<br>N.A. | 0         | 0           | 19,243             | N.A.<br>N.A.        | N.A.<br>N.A.       | N.A.<br>N.A.     | 71            |
| 199           |              | N.A.         | 0          | N.A.         | 27,772    | 9,445       | 144,232            | N.A.                | N.A.               | N.A.             | 0             |
| 200           |              | N.A.         | 0          | N.A.         | 0         | 9,443       | 0                  |                     | N.A.               | N.A.             | 9             |
| 200           |              | N.A.         | 0          | N.A.         | 0         | 0           | 0                  | N.A.                | N.A.               | N.A.             | 0             |
| 200           |              | N.A.         | 0          | N.A.         | 0         | 0           | 0                  | N.A.                | N.A.               | N.A.             | 0             |
| 200           |              | N.A.         | 0          | N.A.         | 0         | 0           | 0                  | N.A.                | N.A.               | N.A.             | 0             |
| Oregon        | 5 0          | 14.24.       | Ü          | 14.71.       | Ü         | Ü           | Ü                  | 14.21.              | 14.71.             | 14.21.           | Ü             |
| 198           | 3 2,961,338  | 118          | 13         | N.A.         | 0         | 0           | 0                  | N.A.                | N.A.               | 0                | 0             |
| 198           | 4 1,367,247  | 277          | 0          | N.A.         | 0         | 0           | 0                  | N.A.                | N.A.               | 0                | 0             |
| 198           |              | 0            | 0          | N.A.         | 0         | 0           | 3,064              | N.A.                | N.A.               | 0                | 0             |
| 198           | 6 1,891,052  | 173          | 4          | N.A.         | 0         | 0           | 874,406            | N.A.                | N.A.               | 0                | 0             |
| 198           |              | 0            | 0          | N.A.         | 9         | 0           | 214,998            | N.A.                | N.A.               | 0                | 0             |
| 198           |              | 0            | 0          | N.A.         | 0         | 0           | 180,477            | N.A.                | N.A.               | 0                | 0             |
| 198           |              | 0            | 0          | N.A.         | 0         | 0           | 19                 | N.A.                | N.A.               | 0                | 0             |
| 199           |              | 0            | 0          | N.A.         | 0         | 0           | 664                | N.A.                | N.A.               | 0                | 69            |
| 199           |              | 0            | 0          | N.A.         | 0         | 0           | 0                  | N.A.                | N.A.               | 0                | 73            |
| 199           |              | 0            | 0          | N.A.         | 0         | 0           | 1,228              | N.A.                | N.A.               | 0                | 99            |
| 199           |              | 0            | 0          | N.A.         | 0         | 0           | 498                | N.A.                | N.A.               | 0                | 130           |
| 199           |              | 0            | 0          | N.A.         | 0         | 0           | 0                  |                     | N.A.               | 0                | 93            |
| 199           |              | 336          | 9          | N.A.         | 454       | 25,141      | 1,681              | N.A.                | N.A.               | 0                | 192           |
| 199           |              | 9            | 0          | N.A.         | 1,203     | 125,422     | 234                | N.A.                | N.A.               | 0                | 438           |
| 199           |              | 536<br>0     | 424<br>0   | N.A.         | 3,332     | 51,790      | 199                | N.A.                | N.A.               | 2.726            | 209           |
| 199           |              |              |            | N.A.         | 15,783    | 263,820     | 114                | N.A.                | N.A.               | 2,726            | 5,628         |
| 199           |              | 198<br>0     | 0          | N.A.         | 38,117    | 46,955<br>0 | 2,588              | N.A.                | N.A.               | 787<br>0         | 48            |
| 200<br>200    |              | 0            | 0          | N.A.<br>N.A. | 0         | 0           | 1,190<br>0         | N.A.<br>N.A.        | N.A.<br>N.A.       | 0                | 529<br>1,211  |
| 200           |              | 0            | 0          | N.A.         | 0         | 0           | 0                  | N.A.                | N.A.               | 0                | 244           |
| 200           |              | 0            | 0          | N.A.         | 0         | 0           | 0                  | N.A.                | N.A.               | 0                | 677           |
| California    | 3 0,123,400  | O            | · ·        | 14.21.       | · ·       | Ü           | Ü                  | 11.71.              | 11.71.             | · ·              | 077           |
| 198           | 3 15,179,240 | 92,971,069   | 57,729,417 | 72,202       | 1,670,878 | 10,729,636  | 2,301,209          | 13,282              | 142,526            | 360,974          | 7,001         |
| 198           |              | 56,409,311   | 37,467,700 | 264,792      | 1,395,492 | 17,701,329  | 2,485,275          | 11,649              | 71,349             | 287,733          | 3,561         |
| 198           | 5 10,717,987 | 18,206,638   | 2,826,414  | 25,900       | 4,127,982 | 19,538,942  | 2,657,839          | 843                 | 140,433            | 283,043          | 3,136         |
| 198           | 6 5,656,107  | 25,475,116   | 1,367,383  | 129,108      | 6,618,473 | 18,256,026  | 1,234,483          | 277                 | 95,181             | 611,399          | 1,716         |
| 198           | 7 3,606,229  | 33,183,108   | 5,982,568  | 244,701      | 2,902,331 | 15,405,478  | 1,125,308          | 2,560               | 30,721             | 989,632          | 1,986         |
| 198           | 8 3,168,789  | 34,161,742   | 12,618,821 | 33,772       | 4,445,064 | 12,994,405  | 1,099,073          | 1,097               | 13,328             | 868,676          | 2,858         |
| 198           | 9 2,000,622  | 24,112,994   | 5,086,365  | 3,004        | 1,684,134 | 10,579,050  | 1,192,430          | 191                 | 31,313             | 707,408          | 4,631         |
| 199           | 0 2,050,187  | 10,485,225   | 2,361,619  | 10,928       | 1,433,788 | 8,811,042   | 785,836            | 2,067               | 42,599             | 909,368          | 15,765        |
| 199           | 1 1,365,494  | 4,721,908    | 3,130,632  | 50,650       | 137,612   | 7,497,271   | 1,144,714          | 0                   | 28,944             | 491,477          | 767           |
| 199           | 2 3,645,713  | 4,412,452    | 1,606,481  | 51,444       | 1,360,230 | 8,709,765   | 520,038            | 693                 | 17,108             | 266,344          | 1,918         |
| 199           | 3 4,048,179  | 6,440,417    | 3,498,178  | 238,527      | 841,129   | 10,056,643  | 518,669            | 509                 | 32,498             | 248,651          | 517           |
| 199           | 4 7,580,459  | 4,947,988    | 1,916,462  | 336,130      | 1,834,094 | 10,504,630  | 632,452            | 46                  | 37,579             | 270,088          | 17,479        |
| 199           | 5 1,615,269  | 3,260,593    | 5,125,378  | 268,465      | 1,128,552 | 6,987,810   | 492,511            | 9,389               | 26,730             | 177,076          | 2,785         |
| 199           |              | 3,388,527    | 4,185,411  | 273,321      | 4,237,475 | 6,238,375   | 622,640            | 1,635               | 18,591             | 174,621          | 135           |
| 199           | 7 5,961,123  | 5,253,506    | 5,639,039  | 370,331      | 2,893,118 | 6,245,568   | 598,164            | 64,543              | 35,781             | 232,737          | 67            |
| 199           | 8 3,440,213  | 5,976,102    | 5,322,183  | 277,238      | 3,042,986 | 5,788,972   | 555,437            | 2,635               | 9,513              | 170,623          | 395           |
| 199           | 9 10,102,663 | 1,468,544    | 2,748,208  | 639,668      | 895,534   | 8,253,140   | 469,587            | 18,424              | 5,876              | 108,980          | 35            |
| 200           | 0 3,829,200  | 1,294,388    | 483,242    | 579,384      | 576,439   | 11,770,080  | 485,073            | 2,736               | 4,636              | 136,698          | 294           |
| 200           | 1 5,191,333  | 445,861      | 32,878     | 320,753      | 472,785   | 8,695,855   | 584,636            | 2,767               | 8,428              | 75,572           | 0             |
| 200           | 2 3,899,203  | 588,677      | 128,245    | 87,304       | 33,148    | 6,320,439   | 517,427            | N.A.                | N.A.               | 124,522          | 18,351        |
|               | 3 2,600,649  | 450,925      | 159,961    | 262,768      | 73,863    | 7,796,022   | 475,014            | 2,907               | 3,463              | 113,502          | 0             |

## Appendix 8

NMFS Pacific Island Fisheries Science Center 2003 Publications

In April 2003, NMFS created a new region, the Pacific Islands Region. This new region created a Regional Office and a Regional Science Center. The Honolulu Laboratory was then changed to the new Pacific Islands Fisheries Science Center (PIFSC).

At the Pacific Island Fisheries Science Center (PIFSC), scientists assess and investigate the dynamics of various tuna and billfish species in the central Pacific Ocean as well as Pacific island resources such as bottomfish, lobster, deep sea shrimp, and other fishery resources associated with deep-sea seamounts. This work contributes to basic fisheries science and supports the Western Pacific Regional Fishery Management Council. PIFSC scientists conduct research and recovery work on the threatened green sea turtle and the endangered Hawaiian monk seal and increasingly have focused on issues concerning fisher-protected species interactions. Staff scientists study the effects of environmental changes and human activities on fisheries and marine animal habitats and ecosystems and there is a new research emphasis oriented towards coral reef ecosystems.

This research collectively supports two primary goals of NMFS: to build sustainable fisheries and to recover protected species. These goals support the Magnuson-Stevens Fishery Conservation and Management Act, the Marine Mammal Protection Act, and the Endangered Species Act. Geographic areas of study are wide ranging, from the mid-Pacific pelagic oceanic environment, to the Northwestern Hawaiian Islands and the main Hawaiian Islands, to other central and western Pacific islands, including American Samoa, Guam, and the Northern Mariana Islands. Key programs include ecosystem and environment, stock assessment, fish biology and ecology, fishery management and performance, and protected species.

The following list of publications (both formal and informal) summarizes the basic science and statistics work pertaining to pelagic fisheries and related issues conducted by the Honolulu Laboratory over the past year, and as it became the Pacific Island Fisheries Science Center. The publications listed for 2003 are separated as coming from the SWFSC/Honolulu Laboratory (pre-April 2003) and PIFSC (after April 2003).

## SOUTHWEST FISHERIES SCIENCE CENTER HONOLULU LABORATORY

#### **Publications**

Baker, J. D., and T. C. Johanos.

2003. Abundance of the Hawaiian monk seal in the main Hawaiian Islands. Biol. Conserv. 116:103-110.

Bidigare, R. R., C. Benitez-Nelson, C. L. Leonard, P. D. Quay, M. L. Parsons, D. G. Foley, and M. P. Seki.

2003. Influence of a cyclonic eddy on microheterotroph biomass and carbon export in the lee of Hawaii. Geophysical Research Letters, Vol. 30, No. 6.

DeMartini, E. E., G. T. DiNardo, and H. A. Williams.

2003. Temporal changes in population density, fecundity, and egg size of the Hawaiian spiny lobster (*Panulirus marginatus*) at Necker Bank, Northwestern Hawaiian Islands. Fish. Bull. 101:22-31.

DeMartini, E. E., F. A. Parrish, and R. C. Boland.

2002. Comprehensive evaluation of shallow reef fish populations at French Frigate Shoals and Midway Atoll, Northwestern Hawaiian Islands (1992/93, 1995-2000). U.S. Dep. Commer., NOAA Tech. Memo. NOAA-TM-NMFS-SWFSC-347, 68 p.

Kleiber, P., M. G. Hinton, and Y. Uozumi.

2003. Stock assessment of blue marlin (*Makaira nigricans*) in the Pacific using MULTIFAN-CL. Marine and Freshwater Research 54:349-360.

- Musyl, M. K., R. W. Brill, C. H. Boggs, D. S. Curran, T. K. Kazama, and M. P. Seki. 2003. Vertical movements of bigeye tuna (*Thunnus obesus*) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data. Fish. Oceanogr. 12:3, 152-169.
- Olson, K. R., H. Dewar, J. B. Graham, and R. W. Brill. 2003. Vascular anatomy of the gills in a high energy demand teleost, the skipjack tuna (*Katsuwonus pelamis*). J. Exp. Zool. 297A:17-31.
- O'Malley, J. M., and S. G. Pooley

2002. Economic and operational characteristics of the Hawaii-based longline fleet in 2000. SOEST (University of Hawaii) Report 03-348.

- Polovina, J. J., E. Howell, D. M. Parker, and G. H. Balazs.
  - 2003. Dive-depth distribution of loggerhead (*Carretta carretta*) and olive ridley (*Lepidochelys olivacea*) sea turtles in the central North Pacific: Might deep longline sets catch fewer turtles? Fish. Bull. 101(1):189-193.
- Russell, D. J., G. H. Balazs, R. C. Phillips, and A. K. H. Kam. 2003. Discovery of the sea grass *Halophila decipiens* (Hydrocharitaceae) in the diet of the Hawaiian green turtle, *Chelonia mydas*. Pac. Sci. 57(4):393-397.
- Sibert, J. R., M. K. Musyl, and R. W. Brill. 2003. Horizontal movements of bigeye tuna (*Thunnus obesus*) near Hawaii determined by Kalman filter analysis of archival tagging data. Fish. Oceanogr. 12:3, 141-151.
- Vaillancourt, R. D., J. Marra, M. P. Seki, M. L. Parsons, and R. R. Bidigare. 2003. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean. Deep-Sea Research Part I 50:829-847.
- Vroom, P. S., and C. M. Smith. 2003. Life without cells. Biologist 50:222-226.
- Work, T. M., G. H. Balazs, M. Wolcott, R. Morris. 2003. Bacteraemia in free-ranging Hawaiian green turtles *Chelonia mydas* with fibropapillomatosis. Dis. Aquat. Org, 53:41-46.

#### **Abstracts**

- Antonelis, G. A.
  - 2003. Hawaiian monk seal (*Monachus schauinslandi*): status and conservation issues. [Abstr.] To be presented at the annual meeting of the International Association for Aquatic Animal Medicine (IAAAM), Kohala, Hawaii, May 10-14, 2003.
- Asher, J. M., M. Timmers, and M. Donohue.
  - 2003. The occurrence of live corals on derelict fishing gear in the Northwestern Hawaiian Islands. [Abstr.] PACON (Pacific Congress on Marine Science and Technology), Kaohsiung, Taiwan, June 19-July 2, 2003.
- Goldstein, T., F. M. D. Gulland, R. C. Braun, G. A. Antonelis, T. Rowles, J. A. K. Mazet, J. L. Scott, and B. M. Aldridge.
  - 2003. Molecular identification of a novel gamma herpesvirus isolate in Hawaiian monk seals (*Monachus schauinslandi*). [Abstr.] IAAAM Meeting, Hilton Waikaloa Village, Island of Hawaii, May 10-14, 2003.

Hawn, D. R., M. P. Seki, and R. Nishimoto.

2003. An update on opah and monchong life history and ecology studies. [Abstr.] Tuna Conference, Lake Arrowhead, California, May 13-16, 2003.

Howell, E. A., and J. J. Polovina.

2003. Recent changes in the central North Pacific monitored using remotely sensed oceanographic data. [Abstr.] For the 30<sup>th</sup> International Symposium on Remote Sensing of Environment, Honolulu, Hawaii, November 10-14, 2003.

Howell, E. A., and J. J. Polovina.

2003. Assessing interannual variability in catch of tuna around the Palmyra Fishing Grounds from 1991 to 2002. [Abstr.] Annual Tuna Conference, Lake Arrowhead, California, May 13-16, 2003.

Ito, R. Y., W. A. Machado, and F. Dowdell.

2003. The Hawaii-based longline logbook collection program. [Abstr.] Annual Tuna Conference, Lake Arrowhead, California, May 13-16, 2003.

Timmers, M., and M. Donohue.

2003. Challenges in identifying putative source fisheries from derelict fishing gear recovered in the Northwestern Hawaiian Islands. [Abstr.] PACON (Pacific Congress on Marine Science and Technology) meeting, Kaohsiung, Taiwan, June 19-July 2, 2003.

#### PACIFIC ISLAND FISHERIES SCIENCE CENTER

#### **Publications**

Vroom, P. S., and C. M. Smith.

2003. Reproductive features of Hawaiian *Halimeda velasquezii* (Bryopsidales, Chlorophyta), and an evolutionary assessment of reproductive characters in *Halimeda*. Cryptogamie, Algol. 24(4):355-370.

## **Administrative Reports**

Hamm, D. C., N. T. S. Chan, and C. J. Graham.

2003. Fishery Statistics of the Western Pacific. Volume 18. Pacific Islands Fish. Sci. Cent., Natl. Mar. Fish. Serv., NOAA, Honolulu, HI 96822-2396. Pacific Islands Fish. Sci. Cent. Admin. Rep. H-03-02.

Uchiyama, J. H., T. K. Kazama.

2003. Updated weight-on-length relationships for pelagic fishes caught in the central North Pacific Ocean and bottomfishes from the Northwestern Hawaiian Islands. Pacific Islands Fish. Sci. Cent., Natl. Mar. Fish. Serv., NOAA, Honolulu, HI 96822-2396. Pacific Islands Fish. Sci. Cent. Admin Rep. H-03-01, 40 p.

#### Abstracts

Abernathy, K., and F. A. Parrish.

2003. Movements of monk seals relative to ecological depth zones in the lower Northwestern Hawaiian Islands. [Abstr.] NWHI Symposium, Convention Center, Honolulu, Hawaii, April 2004.

Antonelis, G. A., J. D. Baker, and T. C. Johanos.

2003. Hawaiian monk seal (*Monachus schauinslandi*): status and conservation issues. [Abstr.] 15<sup>th</sup> Biennial Conference on the Biology of Marine Mammals, Johnathon S. Coury Convention Center, Greensboro, North Carolina, December 14-19, 2003.

## Baker, J. D.

2003. Evaluation of closed capture-recapture methods to estimate abundance of Hawaiian monk seals, *Monachus schauinslandi*. [Abstr.] 15<sup>th</sup> Biennial Conference on the Biology of Marine Mammals, Johnathon S. Coury Convention Center, Greensboro, North Carolina, December 14-19, 2003.

Becker, B. L., A. Harting, J. D. Baker, and T. C. Johanos.

2003. Non-metrical photo identification system for the Hawaiian monk seals, *Monachus schauinslandi*. [Abstr.] 15<sup>th</sup> Biennial Conference on the Biology of Marine Mammals, Johnathon S. Coury Convention Center, Greensboro, North Carolina, December 14-19, 2003.

Boland, R. C., and F. Parrish.

2003. A description of the fish assemblages in the black coral beds off Lahaina, Maui. [Abstr.] American Geophysics Union, January 26-30, 2004, Portland, Oregon.

#### DeMartini, E. E.

2003. Patterns and processes in shallow-water reef fishes of the NWHI. [Abstr.] NWHI Symposium, Convention Center, Honolulu, Hawaii, April 2004.

#### DeMartini, E. E.

2003. Recent life-history research on lobsters in the NWHI. [Abstr.] NWHI Symposium, Convention Center, Honolulu, Hawaii, April 2004.

DeMartini, E. E., and P. Sikkel.

2003. Reproductive ecology. [Abstr.] To be presented at the Ecology of California Marine Fishes' Symposium, 84<sup>th</sup> Annual Meeting of the Western Society of Naturalists, Long Beach, California, November 7-10, 2003.

Firing, J., R. Hoeke, and R. Brainard.

2003. Surface velocity and profiling drifters track potential larval pathways, Northwestern Hawaiian Islands. [Abstr.] For presentation at the 2004 Ocean Research Conference, February 15-20, 2004, Honolulu, Hawaii.

Howell, E. A., and J. J. Polovina.

2003. Recent changes in the central North Pacific monitored using remotely sensed oceanographic data. [Abstr.] 30<sup>th</sup> International Symposium on Remote Sensing of Environment, November 10-14, 2003, Honolulu, Hawaii.

Hyder, P., and K. Bigelow.

2003. Migration and abundance of bigeye tuna (*Thunnus obesus*) inferred from catch rates and their relation to variations in the ocean environment. [Abstr.] 2004 Ocean Research Conference, February 15-20, 2004, Hawaii Convention Center, Honolulu, Hawaii.

Kenyon, J. C., G. S. Aeby, R. E. Brainard, J. D. Chojnacki, M. J. Dunlap, and C. B. Wilkinson.

2003. Mass coral bleaching on high-latitude reefs in the Hawaiian Archipelago. [Abstr.] For presentation at the Third Scientific Symposium on Resource Investigations in the Northwestern Hawaiian Islands, April 5-9, 2004, Honolulu, Hawaii.

Littnan, C., F. Parrish, J. Baker, and G. Marshall.

2003. Assessment of immature Hawaiian monk seals' foraging behavior, habitat use and prey type using crittercam [Abstr.] 15<sup>th</sup> Biennial Conference on the Biology of Marine Mammals, Johnathon S. Coury Convention Center, Greensboro, North Carolina, December 14-19, 2003.

Liu, G., A. E. Strong, W. Skirving, R. Brainard, J. Kenyon, K. B. Wong.
2003. Satellite detection of 2002 coral bleaching in the Hawaiian Archipelago.
[Abstr.] For presentation at the 2004 Ocean Research Conference, February 15-20, 2004, Honolulu, Hawaii.

#### Parrish, F. A.

2003. The association of subphotic fish assemblages with precious corals in the Hawaiian Archipelago. [Abstr.] American Geophysics Union, January 26-30, 2004, Portland Oregon.

#### Parrish. F. A.

2003. The association of subphotic fish assemblages with precious corals in the Hawaiian Archipelago. [Abstr.] NWHI Symposium, Convention Center, Honolulu, Hawaii, April 2004.

## **Approved by Science and Research Director**

Aeby, G. S., J. C. Kenyon, J. E. Maragos, and D. C. Potts. 2002. First record of mass coral bleaching in the Northwestern Hawaiian Islands. Coral Reefs.

### Baker, J. D.

2003. Evaluation of closed capture-recapture methods to estimate abundance of Hawaiian monk seals, *Monachus schauinslandi*. Ecological Applications.

#### Balazs, G. H.

2002. Thirty-year recovery trend in Hawaiian green sea turtle nesting abundance. Science.

## Boland, R. C., and M. J. Donohue.

2003. Marine debris accumulation in the nearshore marine habitat of the endangered Hawaiian monk seal, *Monachus schauinslandi*, 1991-2001. Marine Pollution Bulletin.

### Brill, R. W., Y. Swimmer, and A. Southwood.

2003. Investigations of sea turtle and pelagic fish sensory physiology and behavior, with the aim of developing techniques that reduce or eliminate the interactions of sea turtles with fishing gear. Proceedings of Longline-Turtle Bycatch Workshop.

## Chaloupka, M., D. Parker, and G. Balazs.

2003. Modeling post-release mortality of pelagic loggerhead sea turtles exposed to the Hawaii-based longline fishery. Fishery Bulletin.

#### Craig, P., D. Parker, R. Brainard, M. Rice, and G. Balazs.

2003. Regional migration patterns of green turtles in the central South Pacific. Biological Conservation.

#### DeMartini, E. E., and P. C. Sikkel.

2003. Reproductive ecology. Book chapter.

## DeMartini, E. E., M. L. McCracken, R. B. Moffitt, and J. A. Wetherall.

2003. Relative pleopod length as indicator of size at sexual maturity in two lobsters (*Scyllarides squammosus*, *Panulirus marginatus*). Marine Ecology Progress Series.

## Harting, A., J. Baker, and B. Becker.

2003. Nonmetrical digital photo identification system for the Hawaiian monk seal. Marine Mammal Science.

Humphreys, R. L. Jr., S. E. Campana, and E. E. DeMartini.

2002. Otolith elemental fingerprints of juvenile Pacific swordfish (*Xiphias gladius*). Marine Ecology Progress Series.

Mundy, B. C., and F. A. Parrish.

2003. Hawaiian Islands records of a spectacular fish in the genus *Grammatonotus*) (Callanthiidae, Percoidei; Perciformes; Teleostei). Pacific Science.

Parrish, F. A., G. J. Marshall, M. Heithaus, S. Canja, B. Becker, R. Braun, and G. A. Antonelis.

2003. Comparison of immature and adult male Hawaiian monk seals foraging behavior and prey assessment at French Frigate Shoals, Hawaii. Marine Mammal Science.

Preskitt, L. B., P. S. Vroom, and C. M. Smith.

2003. A rapid ecological assessment (REA) quantitative survey method for benthic algae using photo quadrants with scuba. Pacific Science.

Reif, J. S., A. M. Bachand, A. A. Aguirre, L. Kashinsky, D. L. Borjesson, R. Braun, and G. A. Antonelis.

2003. Morphometry, hematology, and serum chemistry in the Hawaiian monk seal (*Monachus schauinslandi*).

Vroom, P. S., and I. A. Abbott.

2002. *Acrosymphyton brainardii* sp. nov. (Gigartinales, Rhodophyta) from French Frigate Shoals, Northwestern Hawaiian Islands. Phycologia.

Vroom, P. S., and I. A. Abbott.

2003. *Scinaia huismanii* sp. nov. (Nemaliales, Rhodophyta) from French Frigate Shoals, Northwestern Hawaiian Islands. Phycologia.

Walsh, W. A.

2002. Integrated use of observer and logbook data sets to enhance fisheries monitoring. North American Journal of Fisheries Management.

Work, T. M., G. H. Balazs, M. Wolcott, and R. Morris.

2003. Bacteraemia in free-ranging Hawaiian green turtles, *Chelonia mydas*, with fibropapillomatosis.

# Appendix 9

# The Pelagic Fisheries Research Program

The Pelagic Fisheries Research Program (PFRP) was established in 1992 after the Magnuson Fishery Conservation and Management Act (1976) was amended to include "highly migratory fish." The PFRP was created to provide scientific information on pelagic fisheries to the Council for use in development of fisheries management policies

The PFRP is located at the Joint Institute for Marine and Atmospheric Research (JIMAR), under the University of Hawaii's School of Ocean and Earth Science and Technology (SOEST). The first PFRP projects were established in late 1993, and work on these projects began in 1994. In order for the Council to determine "optimum use" of these valuable fishery resources, information is required from a broad spectrum of research disciplines, e.g., biology, genetics, statistics, socio-cultural. The PFRP has funded more than 75 research projects and solicits for new research proposals as federal funding permits. Most project investigators are affiliated with regional research institutes, such as the National Marine Fisheries Service (NMFS), Secretariat of the Pacific Community (SPC), and other universities.

### PPFRP Projects receiving funding in calendar year 2003:

(A= Administration, S=Statistics & Modeling, E=Economics, O=Oceanography, B=Biology, P=Protected Species)

- A JIMAR Visiting Scientist Program
- A Pelagic Fisheries Research Program, Management Portion
- S Pelagic Fisheries Research Program, Modeling Portion
- S- Incorporating Oceanographic Data in Stock Assessment of Blue Sharks and Other Species Incidentally Caught in the Hawaii-Based Longline Fishery
- S Mixed Resolution Models for Investigating Individual to Population Scale Spatial Dynamics
- S Comparisons of Catch Rates for Target and Incidentally Taken Fishes in Widely Separated Areas of the Pacific Ocean
- E Economic Fieldwork on Pelagic Fisheries in Hawaii
- E- Regulatory Impact Analyses Framework for Hawaii Pelagic Fishery Management a Multilevel and Multiobjective programming model
- O The Role of Oceanography in Bigeye Tuna Aggregation and Vulnerability in the Hawaii Longline Fishery from Satellite, Moored and Shipboard Time Series
- O Development of Oceanographic Atlases for Fisheries and Resource Management of the Exclusive Economic Zones of the U.S. Pacific Islands
- O Trophic Structure and Tuna Movement in the Cold Tongue-Warm Pool Pelagic Ecosystem of the Equatorial Pacific
- O Oceanographic Characterization of the American Samoa Longline B Survivorship, Migrations, and Diving Patterns of Sea Turtles Released from Commercial Longline Fishing Gear, Determined with Pop-Up Satellite Archival Transmitters
- B Pop-Off Satellite Archival Tags to Chronicle the Survival and Movements of Blue Shark Following Release from Longline Gear

- B- Investigating the Life History and Ecology of Opah and Monchong in the North Pacific
- B Describing the Vertical Habitat of Bigeye and Albacore Tunas and Post Release Survival for Marlins in the Central Pacific Longline Fisheries with Pop-Up Archival Transmitting Tags
- B Evaluating Biochemical and Physiological Predictors of Long Term Survival in Released Pacific Blue Marlin Tagged with Pop-Up Satellite Archival Transmitters (PSATs)

Fishing Grounds for Albacore, Thunnus alalunga.

- B Instrumented Buoys as Autonomous Observatories of Pelagic Ecosystems
- P A General Bayesian Integrated Population Dynamics Model for Protected Species
- P Integrated Statistical Model for Hawaiian Albatross Populations
- P Development of a Hierarchical Model to Estimate Sea Turtle Rookery Contributions to Mixed Stocks in Foraging Habitats

### PFRP Publications List for FY 2003

## **Publications in Refereed Journals**

Adam, M. S., J. R. Sibert, D. Itano and K. Holland, 2003. Dynamics of bigeye (Thunnus obesus) and yellowfin tuna (T. albacares) in Hawaii's pelagic fishery: analysis of tagging data with a bulk transfer model incorporating size specific attrition. *Fishery Bulletin* 101(2): 215-228.

Bidigare, Robert R., Carrie L. Leonard, Paul Quay, David G. Foley, and Michael P. Seki, 2003. Influence of a cyclonic eddy on microheterotroph biomass and carbon export in the lee of Hawaii. *Geophys. Res. Letters*.

Bolker, B., T. Okuyama, K. Bjorndal, and A. Bolten, 2003. Stock estimation for sea turtle populations using genetic markers: accounting for sampling error of rare genotypes. Ecological Applications, 13(3): 763-775.

Gillis T.E., C.D. Moyes and G.F. Tibbits, 2003. Sequence mutations in teleost cardiac troponin C that are permissive of high Ca<sup>2+</sup> affinity of site II. *Am. J. Physiol.* 284: C1176-C1184, 2003.

Leary S.C., C.N. Lyons, A.G. Rosenberger, J.S. Ballantyne, J. Stillman and C.D. Moyes, 2003. Fiber-type differences in muscle mitochondrial profiles. *Am. J. Physiol.* 285: R817-R826, 2003.

McClelland, G.B., C.S. Kraft, D. Michaud, J.C. Russell, C.R. Mueller and C.D. Moyes, 2004. Leptin and the control of respiratory gene expression in muscle. *Biochiim. Biophys. Acta*, 1688: 86-93.

Moyes, C.D, 2004. Controlling muscle mitochondrial content. *J. Exp. Biol.*, 206: 4385-439.

Moyes C.D., and D.L. Hood, 2003. Origins and consequences of mitochondrial variation. *Ann. Rev. Physiol.* 65:177-201.

Musyl, M.K., R.W. Brill, C.H. Boggs, D.S. Curran, M.P. Seki and T.K. Kazama, 2003. Vertical movements of bigeye tuna (*Thunnus obesus*) associated with islands, buoys, and seamounts of the Hawaiian Archipelago from archival tagging data. *Fisheries Oceanography* 12, 152-169.

Pradhan, N.C. and P.S. Leung, 2004. Modeling entry, stay, and exit decisions of the longline fishers in Hawaii. *Marine Policy*, 28:311-324.

Pradhan, N.C., K.R. Sharma and P.S. Leung, 2003. Analyzing technological and economic Interrelationships in Hawaii's longline fishery. *Marine Resource Economics*, 18:167-193.

Seki, Michael P., Rick Lumpkin, and Pierre Flament. 2002. Hawaiian eddies: the case study of the 1995 Hawaiian International Billfish Tournament. *J. Oceanogr.* 58(5):739-745.

Sibert, J. M. Musyl, R. Brill, 2003. Horizontal movements of bigeye tuna (Thunnus obesus) near Hawaii determined by Kalman filter analysis of archival tagging data. *Fish Oceanog* 12(3).

Sharma, K.R., N.C. Pradhan, and P.S. Leung, 2003. Technological and economic interrelationships in Hawaii's troll and handline fisheries. *North American Journal of Fisheries Management*, 23:869-882.

#### Other Papers, Reports, and Manuscripts Submitted

Bigelow, K., M. Musyl, and F. Poisson. Manuscript detailing the effects of current vectors on predicting catenary depths for over 600 longline sets instrumented with TDRs. (manuscript in prep).

Bolker, Ben, and Toshinori Okuyama. Using ecological covariates to strengthen sea turtle mixed stock analysis. Presentation at the 24th Annual Symposium on Sea Turtle Biology and Conservation, San Jose, Costa Rica 22-29 February 2004 (runner-up student prize awarded to Toshinori Okuyama).

Bolker, B., T. Okuyama, K. Bjorndal, and A. Bolten, 2003. Accounting for sampling error of rare genotypes in sea turtle stock estimation. Page 252 in: J.A. Seminoff, compiler. Proceedings of the 22nd Annual Symposium on Sea Turtle Biology and Conservation. NOAATechnical Memorandum NMFS-SEFSC-503.

Brill, R. and M. Musyl. Movements and habitat preferences of swordfish in the Pacific Ocean. (manuscript in prep).

Brill, R.W. K.A. Bigelow, M.K. Musyl, K.A. Fritsches, and E.J. Warrant. Bigeye tuna behavior and physiology: their relevance to stock assessments and fishery biology. ICCAT SCRS Report. (submitted)

Dalziel, A.C., S.E. Moore, C.D. Moyes. Control Of Mitochondrial Enzyme Content In the Muscles of High Performance Fish. Submitted to *Am J Physiol* March 2004. (Fish samples were collected during PFRP cruises and PFRP support is acknowledged)

Gillis T.E., C.D. Moyes and G.F. Tibbits. Sequence mutations in teleost cardiac troponin C that are permissive of high  $Ca^{2+}$  affinity of site II. *Am. J. Physiol.* (in press 2003).

Hoyle, Simon D., and Maunder, Mark N. A Bayesian integrated population dynamics model to analyze data for protected species. *Animal Biology and Conservation*. (in press)

Humphreys, Robert L., Michael Musyl and Edward E. DeMartini. SC/04/SWO-WG/02 Biological Research Conducted During 2002-2003 in Support of Swordfish Stock Assessment

Leung, PingSun, Cai, J., Pooley, Samuel. G., and Pan, Minling, 2004. Linkages of Fishing Sectors to Hawaii's Economy and Economic Impacts of Hawaii's Longlining Regulations (under review)

Malte, H., C. Larsen, M.K. Musyl, and R.W. Brill. Differential heating and cooling rates in bigeye tuna (*Thunnus obesus*); a model of non-steady state heat exchange. *American Journal of Physiology*. (submitted).

Moyes, C.D., N. Fragoso, M. Musyl, and R. Brill. Evaluating predictors of post-release survival of large pelagics. In preparation for submission to *Science* 6/04 (Funded in whole by PFRP)

Musyl, M. and R. Brill. Post release mortality and movements in blue shark identified with PSATs. (manuscript in prep).

Nielsen, A., K. Bigelow, J. Sibert, M. Musyl, et al. Manuscript detailing results of PSAT-GPS double tagging studies with incorporation of SST into the Kalman filter. (manuscript in prep).

Pan, Minling, 2003. Quantitative Measurement of Fishing Capacity for the Western Pacific Fisheries (under review).

Pan, Minling, and Samuel G. Pooley, 2004. Tuna Price in Relation to Economic Factors and Sea Surface Temperature (submitted for publication).

Pan, Minling, and SMS Research Inc., 2004. Fishery Input-Output Model & Methodology I/O paper (working paper – prepared for JIMAR publication)

Pradhan, N.C. and P.S. Leung. Modeling trip choice behavior of the longline fishers in Hawaii. *Fisheries Research* (forthcoming).

Pradhan, N.C. and P.S. Leung. A Poisson and negative binomial regression model of sea turtle interactions in Hawaii's longline fishery. *Ecological Economics* (under review).

Swimmer, Y., R. Arauz, M. Musyl, J. Ballestero, L. McNaughton, and R. Brill, 2004. Survivorship and dive behaviour of olive ridley sea turtles after their release from longline fishing gear off Coasta Rica. (manuscript in preparation).

## **Conference Presentations**

Allen, Stewart, and Amy Gough. Progress on the Sociological Baseline of Hawaii-Based Longline Fishery Project. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Allen, Stewart, and Amy Gough. Sociological baseline of Hawaii's longline industry. Poster presentation for the JIMAR Program Review, March 4-5, 2004.

Allen, Stewart, and Amy Gough. Monitoring Environmental Justice Issues of Fishery Regulations. Paper accepted for presentation at Fourth World Fisheries Congress, Vancouver, B.C., May 2-6, 2004.

Bolker, Ben. Bayesian Hierarchical Methods for Mixed Stock Analysis of Sea Turtles. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Brill, Richard, and Michael Musyl. Use of pop-up satellite archival tags (PSATS) to determine the movements and post release survivability of swordfish, marlins, sharks and tunas in the central North Pacific Ocean. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Brill, R. and Y. Swimmer. 2003. Laboratory Experiments Aimed at Reducing Pelagic Longline Interactions with Marine Turtles. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Brill, Richard, and Michael Musyl. Fishery Interaction and Movements of Swordfish as Determined with PSATs. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Brill, R.W. K.A. Bigelow, M.K. Musyl, K.A. Fritsches, and E.J. Warrant. Bigeye tuna behavior and physiology: Their relevance to stock assessments and fishery biology. Invited presentation at the Second World Meeting on Bigeye Tuna, Madrid, Spain. March 2004.

Curran, Daniel, Jennifer Schulz, Paul Dalzell, and Stewart Allen. History and importance of fish aggregating devices in Hawaii's recreational tournament fisheries. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Dagorn, Laurent, Kim Holland, and David Itano. Movement Patterns of Tunas in a Network of FADs around Oahu. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Graham, Brittany, Kim Holland, Brian Popp, V. Allain, Robert Olson, F. Galvan, B. Fry, and Dean Grubbs. Tuna trophic dynamics in the western and central tropical Pacific. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Graham, Brittany, Valerie Allain, Brian Fry, Robert Olson, Felipe Galvan Magana, and Brian Popp. Trophic Structure and Tuna Movement in the Cold Tongue-Warm Pool Pelagic Ecosystem of the Equatorial Pacific. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Grubbs, Dean, and Kim Holland. Yellowfin and bigeye tuna in Hawai'i: Dietary overlap, prey diversity and the trophic cost of associating with natural and man-made structures. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Hawn, Donald R., Michael P. Seki, and Robert Nishimoto. Investigating the life history of opah and monchong in the north Pacific. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Hawn, Donald, Michael Seki, Robert Nishimoto, Evan Howell, and Jeffrey Polovina. Status of Research on the Biology and Ecology of Opah, Lampris guttatus. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Holland, Kim, Laurent Dagorn, and David Itano. Temporal characteristics of FAD-associated behavior of tuna. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Holland, K., D. Grubbs, B. Graham, D. Itano and L. Dagorn. The biology of FAD-associated tuna: Temporal dynamics of associated and feeding ecology. Presentation at the 16<sup>th</sup> Standing Committee on Tuna and Billfish Meeting (SCTB 16), July 9-16, 2003, Mooloolaba, Australia.

Holland, Kim, and Laurent Dagorn. Fish aggregating devices as autonomous observatories of pelagic ecosystems: A research project. Poster presentation for the JIMAR Program Review, March 4-5, 2004.

Hoyle, Simon D. Modeling dolphins. Presentation to SWFSC methods working group. Hoyle, Simon D. Statistical and simulation modeling of population dynamics for management - 3 examples. Presentation at University of Arizona.

Hoyle, Simon D., and Mark N. Maunder. A Bayesian integrated population dynamics model to analyze data for the eastern Pacific Ocean spotted dolphin. Presentation at the EURING technical meeting in Radolfzell, Germany, October 2003.

Hoyle, Simon D. Integrated Population modeling for the northeastern offshore spotted dolphin (*Stenella attenuata*). Presentation to be made at the 55<sup>th</sup> Annual Tuna Conference, Lake Arrowhead, California, May 24-27, 2004.

Hyder, Patrick. Migration and Abundances of Bigeye Tuna (Thunnus obesus) Inferred from Catch Rates and their Relation to Variations in the Ocean Environment. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Itano, David, Kim Holland, Shiham Adam, and John Sibert. Hawaii tuna tagging: Analyses and results. Poster presentation for the JIMAR Program Review, March 4-5, 2004.

Kaneko, John, and Paul Bartram. A Self-Portrait of American Samoa's Alia Albacore Longline Fishery. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Kaneko, John, and Paul Bartram. Measuring the "Environmental Baggage" in Global Marketing of Pelagic Longline Fishery Products. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Kerstetter, David. Comparison of four closed-area management regimes in the western North Atlantic and central Pacific highly migratory species longline fisheries: Effective marine policy implementation or limited alternatives? In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Kleiber, Pierre, and Keith Bigelow. Incorporating Oceanographic Data into Stock Assessments of Longline-caught Fishes. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Lehodey, Patrick. Mixed-resolution models for investigating individual to population scale spatial dynamics. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Leung, P.S., and N. Pradhan. A Poisson Regression Model of Sea Turtle Interactions in Hawaii's Longline Fishery (preliminary analysis of the sea turtle interaction with the longline fishery). Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Leung, P.S., and N. Pradhan. Modeling entry, stay, and exit decisions of the longline fishers in Hawaii. To be presented at the International Fishery Economics and Trade Conference, Tokyo, Japan, July 21-30, 2004.

Leung, P.S. and N. Pradhan. A Poisson and negative binomial regression model of sea turtle interactions in Hawaii's longline fishery. To be presented at the American Fisheries Society 134<sup>th</sup> Annual Meeting, Madison, Wisconsin, August 22-26, 2004.

Mailloux, Lianne, and Yonat Swimmer. Bait modification research: Reducing incidental interactions between sea turtles and longline fishing gear. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Maunder, Mark N. Is Bayesian analysis redundant? Presentation at San Diego Chapter American Statistical Association One-day Conference, February 27, 2004.

Maunder, Mark N. A general model for protected species: information and uncertainty. Presentation to be made at the 55<sup>th</sup> Annual Tuna Conference, Lake Arrowhead, California, May 24-27, 2004.

Maunder, Mark N., and Simon D. Hoyle. AD Model Builder: a tool for fitting custom-built highly-parameterized nonlinear models. Poster at EURING technical meeting in Radolfzell, Germany, October 2003.

Moffitt, Russ. An Oceanographic Atlas of the Pacific and Selected Island Regions - a Tool for Resource Management. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Moyes, Christopher, Michael Musyl, and Richard Brill. Physiological Predictors of Blue Shark Survival. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Moyes, Christopher, Nuno Fragoso, Michael Musyl, and Richard Brill. Predicting post-release survival in blue sharks. Poster presentation for the JIMAR Program Review, March 4-5, 2004.

Moyes, Christopher, Michael Musyl, Richard Brill, Andrew West, and Lianne McNaughton. Predicting Post-release Survivability in Blue Marlin using PSATs and Biochemical Assays. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Musyl, M., Moyes, C., Brill, R. and West, A. Predicting post-release survival in blue marlin. SSC Meetings, Honolulu, HI, 15 October 2003.

Musyl, Michael and Rich Brill. Results of PSAT attachments to swordfish. ISC Meeting, 29 January 2004, Honolulu, HI, USA.

Musyl, Michael, Chris Moyes, Rich Brill and Andrew West. Predicting post-release survival of blue marlin. ISC Meeting, 29 January 2004, Honolulu, HI, USA.

Musyl, Michael, and Richard Brill. Movements and Post-release Mortality in Oceanic Sharks tagged with PSATs. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Musyl, Michael, Chris Moyes, Rich Brill and Andrew West. Evaluating biochemical and physiological predictors of long-term survival in released Pacific Blue Marlin tagged with PSATs. ISC Meeting, Marlin Working Group, Honolulu, Hawaii, 30 January 2004.

Musyl, Michael, Lianne McNaughton, Richard Brill, John Sibert, Anders Nielsen, and Andrew West. Predicting post-release survival of blue marlin. Poster presentation for the JIMAR Program Review, March 4-5, 2004.

Musyl, Michael, Yonat Swimmer, Lianne McNaughton, Richard Brill, John Sibert, and Anders Nielsen. Pop-up satellite archival tag (PSAT) studies of pelagic fishes and turtles in the Pacific Ocean. Poster presentation for the JIMAR Program Review, March 4-5, 2004.

Nemoto, Keiichi and Samuel G. Pooley. Regulatory impact analysis framework for Hawaii pelagic fishery management. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Nemoto, Keiichi, Minling Pan and Sam Pooley. Regulatory Impact Analysis Framework for Hawaii Pelagic Fishery Management. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Nemoto, Keiichi, and Samuel Pooley. Regulatory impact analysis framework for Hawaii pelagic fishery management. Poster presentation for the JIMAR Program Review, March 4-5, 2004.

Pan, Minling, and Sam Pooley. Bigeye Prices and Oceanographic Factors. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Polovina, Jeffrey, Donald Hawn, Evan Howell, and Michael Seki. Results from PSAT Tags Attached to Large Pelagics. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Schultz, Jennifer, and Paul Dalzell. Recreational Fisheries Meta-data Project. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Seki, Michael, Donald Hawn, and Robert Nishimoto. Status of Research on the Biology and Ecology of the Monchong, Taractichthys steindachneri. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Seki, Michael, Donald Hawn, and Robert Nishimoto. Studies on the biology and ecology of Opah (*Lampus guttatus*) and Monchong (*Taractichthys steindachneri*) in the North Pacific. Poster presentation for the JIMAR Program Review, March 4-5, 2004.

Sibert, John. Parametric representation of animal trajectories. Poster presentation for the JIMAR Program Review, March 4-5, 2004.

Sibert, John, John Gunn, Naomi Clear, and John Hampton. Movement and site fidelity of geolocation error of bigeye tuna in the Coral Sea as determined by archival tags – Preliminary results. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Swimmer, Y, R. Brill, R. Arauz, L. Mailloux, M. Musyl, K. Bigelow, A. Nielsen, and J. Sibert, 2003. Survivorship and Behaviors of Sea Turtles after their release from Longline Fishing Gear. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16. 2003.

Swimmer, Yonat, Michael Musyl, Lianne McNaughton, Anders Nielson, Richard Brill, Randall Arauz. Sea Turtles and Longline Fisheries: Impacts and Mitigation Experiments. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

Swimmer, Y., Arauz, R., Musyl, M., Ballestero, J., McNaughton, L. and R. Brill, 2004. Survivorship and behavior of olive ridley turtles off the coast of Costa Rica following interactions with longline fishing gear. Poster presented at the 24th Annual Symposium on Sea Turtle Conservation and Biology22 - 29 February 2004, San Jose, Costa Rica.

Swimmer, Yonat, Randall Arauz, Michael Musyl, Jorge Ballestero, Lianne McNaughton, Richard Brill. Survivorship and behavior of olive ridley turtles off the coast of Costa Rica following interactions with longline fishing gear. Poster presentation for the JIMAR Program Review, March 4-5, 2004.

Walsh, William A., Russell Itok, and Kurt E. Kawamoto Analysis of blue marlin (*Makaira mazara*) catch rates in the Hawaii-based longline fishery by application of a generalized additive model, with comparisons to official fishery statistics. In: Proceedings of the 54<sup>th</sup> Annual Tuna Conference. Lake Arrowhead, California, May 13-16, 2003.

Walsh, William A. Analysis of blue marlin (*Makaira nigricans*) catch rates in the Hawaii-based longline fishery with a generalized additive model and commercial sales data. Presentation to the 4<sup>th</sup> Meeting of the Interim Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC), 26 January-4 February, 2004, Honolulu, Hawaii, USA.

Walsh, William A. Analysis of Blue Marlin (*Makaira nigricans*) Catch Rates in the Hawaii-based Longline Fishery with a Generalized Additive Model and Commercial Sales Data. Poster presentation for the JIMAR Program Review, March 4-5, 2004.

Ward, Peter. Causes of Rapid Declines in World Billfish Catch Rates. Presentation at the PFRP Principal Investigators Meeting, Honolulu, Hawaii, December 9-11, 2003.

# Appendix 10

### **GLOSSARY**

<u>TERM</u> <u>DEFINITION</u>

Alia Samoan fishing catamaran, about 30 feet long, constructed of aluminum or wood with fiberglass.

Used for various fisheries including trolling, longline, and bottomfishing

AP Advisory Panel. Appointed industry/government/educational representatives functioning in an

advisory capacity to the Council.

AS American Samoa. Includes the islands of Tutuila, Manua, Rose and Swains Atolls.

**ASDPW** Department of Public Works, American Samoa. Also, DPW.

**Bycatch** Fish caught in a fishery but discarded or released, except in a recreational fisheries catch and

release program.

**Commercial** Commercial fishing, where the catch is intended to be sold, bartered, or traded.

**CNMI** Commonwealth of the Northern Mariana Islands. Also, Northern Mariana Islands, Northern

Marianas, and NMI. Includes the islands of Saipan, Tinian, Rota, and many others in the Marianas

Archipelago.

**CPUE** Catch-Per-Unit-Effort. A standard fisheries index usually expressed as numbers of fish caught per

unit of gear per unit of time, eg., number of fish per hook per line-hour or number of fish per 1,000 hooks. The term catch rate is sometimes used when data are insufficiently detailed to calculate an

accurate CPUE.

**DAWR** Division of Aquatic & Wildlife Resources, Territory of Guam.

**DBEDT** Department of Business, Economic Development & Tourism, State of Hawaii.

**DFW** Division of Fish & Wildlife, Northern Mariana Islands.

**DLNR** Department of Land & Natural Resources, State of Hawaii. Parent agency for Division of Aquatic

Resources (HDAR).

**DMWR** Department of Marine & Wildlife Resources, American Samoa. Also, MWR.

**EEZ** Exclusive Economic Zone, refers to the sovereign waters of a nation, recognized internationally

under the United Nations Convention on the Law of the Sea as extending out 200 nautical miles from shore. Within the U.S., the EEZ typically is between three and 200 nautical miles from

shore.

**ESA** Endangered Species Act. An Act of Congress passed in 1966 that establishes a federal program to

protect species of animals whose survival is threatened by habitat destruction, overutilization,

disease etc.

**FAD** Fish Aggregating Device; a raft or pontoon, usually tethered, and under which, pelagic fish will

concentrate.

**FDCC** Fishery Data Coordinating Committee, WPRFMC.

**FFA** Forum Fisheries Agency. An agency of the South Pacific Forum, which comprises the

independent island states of the South Pacific, Australia and New Zealand. The FFA formed to negotiated access agreements between FFA member countries and distant water fishing nations

such as Japan and the USA.

**FMP** Fishery Management Plan.

Guam A U.S. territory in the Marianas Archipelago. South of and adjacent to the Commonwealth of

Northern Marianas Islands.

10-1 Glossary

Hawaii U.S. state. See MHI, NWHI. Composed of the islands, atolls and reefs of the Hawaiian

Archipelago from Hawai'i to Kure Atoll, except Midway Islands. Capitol - Honolulu.

**HDAR** Hawaii Division of Aquatic Resources. Also, DAR.

**HIMB** Hawaii Institute of Marine Biology, University of Hawaii.

**HURL** Hawaii Undersea Research Lab.

JIMAR Joint Institute of Marine and Atmospheric Research, University of Hawaii.

IATTC Inter-American Tropical Tuna Commission.

Ika-shibi Hawaiian term for nigh tuna handline fishing method. Fishing for tuna using baited handlines at

night with a nightlight and chumming to attract squid and tuna.

**Incidental Catch** Fish caught that are retained in whole or part, though not necessarily the targeted species.

Examples include monchong, opah and sharks.

**Interaction** Catch of protected species, which is required to be released. Examples: Hawaiian monk seals,

marine turtles and albatrosses.

**Logbook** Journal kept by fishing vessels for each fishing trip; records catch data, including bycatch and

incidental catch. Required in the federally regulated longline and crustacean fisheries in the

Hawaiian EEZ.

**Longline** Fishing method utilizing a horizontal mainline stretching from several hundred yards to many

miles in length, suspended for the surface by floats, to which droppers with baited hooks are

attached.

**Longliner** Fishing vessel specifically adapted to use the longline fishing method.

MFCMA Magnuson Fishery Conservation and Management Act of 1976. Also, Magnuson-Stevens Fishery

Conservation and Management Act of 1996. Sustainable Fisheries Act.

MHI Main Hawaiian Islands (comprising the islands of Hawai'i, Mau'i, Lana'i, Moloka'i, Kaho'olawe,

O'ahu, Kauai', Ni'ihau and Ka'ula).

MSY Maximum Sustainable Yield.

NMFS National Marine Fisheries Service, National Oceanic and Atmospheric Administration,

Department of Commerce. Also NOAA Fisheries.

NOAA National Oceanic and Atmospheric Administration, Department of Commerce.

NWHI Northwestern Hawaiian Islands. All islands in the Hawaiian Archipelago, other than the Main

Hawaiian Islands (MHI).

**OFP** Oceanic Fisheries Program of the South Pacific Commission.

OY Optimum Yield.

Palu-ahi Hawaiian term for day tuna handline fishing. Fishing for tuna using baited handlines and

chumming with cut bait in a chum bag or wrapped around a stone. Also, drop-stone, make-dog,

etc.

**PAO** Pacific Area Office, National Marine Fisheries Service. Also, NMFS/PAO.

**Pelagic** The pelagic habitat is the upper layer of the water column from the surface to the thermocline. The

pelagic species include all commercially targeted highly migratory species such as tuns, billfish and some incidental-catch species such as sharks, as well as coastal pelagic species such as akule

and opelu.

**PFRP** Pacific Pelagic Fisheries Research Program, JIMAR, University of Hawaii. Also PPFRP.

Glossary 10-2

PMUS Pacific Pelagic Management Unit Species. Also, PPMUS. Species managed under the Pelagics

FMP.

**Pole-and-Line** Fishing for tuna using poles and fixed leaders with barbless lures and chumming with live baitfish.

Poles can be operated manually or mechanically. Also, fishing vessels called baitboats or aku-

boats (Hawaii).

**Protected** Refers to species which are protected by federal legislation such as the Endangered Species Act,

Marine Mammal Protection Act, and Migratory Bird Treaty Act. Examples: Black-footed and

Laysan albatrosses, marine turtles, dolphins.

PT or PPT Pelagic Plan Team. Advisory body to the Council composed of scientists and fishermen who

monitor and manage the fisheries under the jurisdiction of the Pelagics FMP.

**Purse seine** Fishing for tuna by surrounding schools of fish with a very large net and trapping them by closing

the bottom of the net.

**Recreational** Recreational fishing for sport or pleasure, where the catch is not sold, bartered or traded.

**SAFE** Stock Assessment and Fishery Evaluation, NMFS.

**Sanctuary** Protected area. Commercial/recreational fishing may be restricted.

**Secretary** When capitalized and used in reference to fisheries within the U.S. EEZs, it refers to the U.S.

Secretary of Commerce.

Small pelagics Species such as akule (big-eye scad - Selar spp.) And opelu (mackerel scad - Decapterus spp).

These fish occur mainly in shallow inshore waters but may also be found in deeper offshore

waters. Not part of the PMUS.

SPC South Pacific Commission. A technical assistance organization comprising the independent island

states of the tropical Pacific Ocean, dependant territories and the metropolitan countries of

Australia, New Zealand, USA, France and Britain.

**SPR** Spawning Potential Ratio. A term for a method to measure the effects of fishing pressure on a

stock by expressing the spawning potential of the fished biomass as a percentage of the unfished

virgin spawning biomass. Stocks are deemed to be overfished when the SPR<20%.

SSC Scientific & Statistical Committee, an advisory body to the Council comprising experts in

fisheries, marine biology, oceanography, etc.

**Trolling** Fishing by towing lines with lures or live-bait from a moving vessel.

**USCG** U.S. Coast Guard, 14<sup>th</sup> District, Department of Transportation.

**USFWS** U.S. Fish & Wildlife Service, Department of Interior. Also, FWS.

VMS Vessel Monitoring System. A satellite based system for locating and tracking fishing vessels.

Fishing vessels carry a transponder which can be located by overhead satellites. Two-way

communication is also possible via most VMS systems.

**WPacFIN** Western Pacific Fishery Information Network, NMFS.

WPRFMC Also, the Council. Western Pacific Regional Fishery Management Council. One of eight

nationwide fishery management bodies created by the Magnuson Fisheries Conservation and Management Act pf 1976 to develop and manage domestic fisheries in the U.S. EEZ. Composed

of American Samoa, Guam, Hawaii, and Commonwealth of Northern Mariana Islands.

10-3 Glossary