Pelagic Fisheries of the Western Pacific Region

2012 Annual Report

Western Pacific Regional Fishery Management Council Honolulu, Hawaii Cover photo: Striped marlin off the coast of Carillo (Photo: Wikicommons)

A report of the Western Pacific Regional Fishery Management Council

Pelagic Fisheries of the Western Pacific Region 2012 Annual Report

October, 2014

Prepared by the Pelagics Plan Team and Council Staff

for the

Western Pacific Regional Fishery Management Council 1164 Bishop Street, Suite 1400, Honolulu, Hawaii 96813

Table of Contents

I. I	NTRODUCTION	1
	A. BACKGROUND TO THE ANNUAL REPORT	1
	B. THE PELAGIC SPECIES OF THE WESTERN PACIFIC REGION	
	C. PELAGIC GEAR TYPES AND FISHERIES OF THE WESTERN PACIFIC REGION	5
II.	DEVELOPMENT AND DESCRIPTION OF THE FISHERIES OF THE WESTERN PACIFIC RE	GION 6
	A. American Samoa	6
	Traditional and Historical Pelagic Fisheries	6
	2. Pelagic Fisheries Development	8
	3. Administrative or Management Actions to Date	10
	B. Guam	11
	Traditional and Historical Pelagic Fisheries	11
	2. Pelagic Fisheries Development	12
	3. Administrative or Management Actions to Date	12
	C. Hawaii	14
	Traditional and Historical Pelagic Fisheries	14
	2. Pelagic Fisheries Development	15
	3. Administrative or Management Actions to Date	15
	D. COMMONWEALTH OF THE NORTHERN MARIANAS ISLANDS	19
	Traditional and Historical Pelagic Fisheries	19
	2. Pelagic Fisheries Development	19
	3. Administrative or Management Actions to Date	
	E. PACIFIC REMOTE ISLAND AREAS	21
	Traditional and Historical Pelagic Fisheries	21
	2. Pelagic Fisheries Development	22
	3. Administrative or Management Actions to Date	22
Ш	. THE CURRENT STATUS OF PELAGIC FISHERIES OF THE WESTERN PACIFIC REGION .	24
V.	DATA MODULES	25
	A. American Samoa	25
	B. COMMONWEALTH OF THE NORTHERN MARIANA ISLANDS	
	C. Guam	
	D. HAWAII	
	E. International	
	1. The 2012 purse-seine fishery in the WCPFC Convention Area (WCP-CA)	
	2. The 2012 longline fishery in the WCP-CA.3. The 2012 pole-and-line fishery in the WCP-CA.	
	2. The 2012 pole and the honery in all West Off	200

F. MARINE RECREATIONAL FISHERIES OF THE WESTERN PACIFIC REGION	262
APPENDIX 1: 2012 PELAGIC PLAN TEAM MEMBERS	275
APPENDIX 2: GLOSSARY OF TERMS AND LIST OF ACRONYMS	276
F. MARINE RECREATIONAL FISHERIES OF THE WESTERN PACIFIC REGION	276
List of Tables	
	4
American Campa	
	20
	20
	30
	1
1 / 1	31
C 3	
	36
	46
Table 17. Number of American Samoa boats landing any pelagic species, tunas and non-	
trolling and all methods	58
Table 19. Number of permits and active permits by class	60
Table 20. Number of American Samoa troll trips and longline sets for all pelagic species	
by method	
Table 21. Number of American Samoa sample days, trolling interviews, and trolling trips	64
Table 22. American Samoa pelagic catch per hour of trolling and number of trolling	
hours	66
Table 23. American Samoa trolling CPUEs in pounds per hour fished for blue marlin,	
mahimahi, and wahoo	68

Table 24. American Samoa trolling CPUEs (lbs per hour fished) for skipjack and	
yellowfin tuna	70
Table 25. American Samoa catch/1000 hooks for two types of longline vessels from 1996 to 1999	72
Table 26. American Samoa catch/1000 hooks for two types of longline vessels from 2000	1 4
to 2002	73
Table 27. American Samoa catch/1000 hooks for two types of longline vessels from 2003 to 2005	74
Table 28. American Samoa catch/1000 hooks for two types of longline vessels from 2006	
to 2012	75
Table 29. Cannery sampled average weight per fish in pounds (1998-2002)	
Table 30. Cannery-sampled average weight per fish in pounds (2003-2008)	
Table 31. Cannery-sampled average weight per fish in pounds (2009-2012)	
Table 32. American Samoa commercial pelagic fishing revenues in unadjusted and	
inflation-adjusted dollars 1986-2012 including consumer price index (CPI)	81
Table 33. American Samoa average price per pound of tuna PMUS and non-tuna PMUS	01
in unadjusted and inflation-adjusted dollars 1986-2012	83
Table 34. American Samoa commercial pelagic revenues in unadjusted and inflation-	65
adjusted dollars per trip 1986-2012	85
adjusted definite per trip 1900 2012	05
CNMI	
Table 35. CNMI Creel Survey 2012 pelagic species composition	88
Table 36. CNMI 2012 estimated commercial pelagic landings, revenues and price (from	
Commercial Receipt invoices)	89
Table 37. Boat-based survey statistics: raw data	98
Table 38. CNMI consumer price index, consumer price index adjustment factor, and	
commercial receipt invoices data coverage	108
Table 39. CNMI trolling catch rates from commercial receipt invoices for mahimahi,	
wahoo, and blue marlin (pounds/trip)	110
Table 40. CNMI trolling catch rates from commercial receipt invoices for skipjack tuna,	
yellowfin tuna, and skipjack tuna from the Creel Survey (pounds/trip)	112
Table 41. CNMI estimated total commercial landings (lbs) from commercial receipt	
invoices for all pelagic, tuna, and non-tuna PMUS	114
Table 42. CNMI estimated commercial landings for mahimahi, wahoo, and blue marlin	
Table 43. CNMI estimated commercial purchase database landings for skipjack tuna and	
yellowfin tuna	118
Table 44. CNMI number of commercial vessels from commercial receipt invoices	120
Table 45. CNMI Number of fishing trips commercially landing any pelagic species	122
Table 46. CNMI annual adjusted commercial revenues from pelagic species	
Table 47. CNMI average adjusted price for commercially landed pelagic species (\$/lb)	126
Table 48. CNMI per-trip adjusted revenues for commercially sold pelagic species	128
Table 49. CNMI non-charter and charter trolling bycatch summary based on interview	
catch data, 2000-2012	129

<u>Guam</u>	
Table 50. Guam 2012 creel survey - pelagic species composition	133
Table 51. Guam 2012 average commercial price of pelagic species	134
Table 52. Annual consumer price indices (CPI) and CPI adjustment factors	135
Table 53. Guam estimated total pelagics landings: all pelagics landings, tuna PMUS	
landings, and non-tuna PMUS landings	137
Table 54. Guam annual boat-based creel estimated landings: total pelagics, non-charter	
landings, and charter landings	139
Table 55. Guam annual boat-based creel estimated tuna landings: total landings, non-	
charter landings, and charter landings	141
Table 56. Guam annual boat-based creel estimated non-tuna PMUS landings: total, non-	
charter vessels, and charter vessels (pounds)	143
Table 57. Guam annual estimated mahimahi landings: total, non-charter landings, and	
charter landings (pounds)	145
Table 58. Guam annual estimated wahoo landings: total landings, non-charter landings,	
and charter landings (pounds)	147
Table 59. Guam annual estimated blue marlin landings: total landings, non-charter	
landings, charter landings (pounds)	149
Table 60. Guam annual estimated skipjack tuna landings: total, non-charter, and charter	
landings (pounds)	151
Table 61. Guam annual estimated yellowfin tuna landings: total, non-charter, and charter	
landings (pounds)	153
Table 62. Guam annual estimated commercial landings: all pelagics, tuna PMUS, and	
non-tuna PMUS	155
Table 63. Guam estimated number of trolling vessels from boat-based creel surveys	
Table 64. Guam Estimated number of trolling trips	
Table 65. Guam estimated number of trolling hours	
Table 66. Guam estimated trip length (hours per trip)	163
Table 67. Guam estimated annual commercial revenues in inflation-adjusted dollars: all	
pelagics, tuna PMUS, and non-tuna PMUS	165
Table 68. Guam annual estimated inflation-adjusted average price of pelagics (\$/lb): all	
pelagics, tuna PMUS, and non-tuna PMUS	167
Table 69. Guam trolling CPUE (lbs/hr)	169
Table 70. Guam boat-based creel trolling CPUE (lbs/hr): mahimahi	
Table 71. Guam boat-based creel trolling CPUE (lbs/hr): wahoo	
Table 72. Guam boat-based creel trolling CPUE (lbs/hr): skipjack tuna	
Table 73. Guam boat-based creel trolling CPUE (lbs/hr): yellowfin tuna	
Table 74. Guam boat-based creel trolling CPUE (lbs/hr): blue marlin	179
Table 75. Guam annual inflation-adjusted revenue per trolling trip: all pelagics, tuna	
PMUS, and non-tuna PMUS	
Table 76. Guam foreign longline transshipment landings (mt)	
Table 77. Guam numbers of trips and interviews for the creel trolling method	
Table 78. Trolling bycatch annual summaries	185

<u>Hawaii</u>	
Table 79. Number of Hawaii licenses per fishing method in 2011-2012	189
Table 80. Hawaii commercial pelagic landings, revenue, and average price by species, 2011-2012	190
Table 81. Hawaii-based deep-set and shallow-set longline landings, ex-vessel value, and average price by species 2011-2012	192
Table 82. Hawaii commercial pelagic landings, revenue, and average price by fishery, 2011-2012	194
Table 83. Hawaii-based deep-set longline catch (number of fish) by area, 2002-2012	222
Table 84. Hawaii-based shallow-set longline catch (number of fish) by area, 2004-2012	223
Table 85. Average weight of the Hawaii-based longline fishery by species and sector, 2002-2012	225
Table 86. Numbers of released catch, retained catch, and total catch for the Hawaii-based longline fishery, 2012	227
Table 87. Average weight by species for the troll and handline landings, 2002-2012	245
<u>International</u>	
Table 88. Total reported purse seine catch (metric tonnes) of skipjack, yellowfin and bigeye tuna in the Pacific Ocean, 1993-2012	248
Table 89. Total reported longline catch (metric tonnes) of PMUS in the Pacific Ocean	251
Table 90. Total reported pole-and-line catch (metric tonnes) of skipjack in the Pacific Ocean.	254
Table 91. Estimated annual catch (metric tonnes) of tuna species in the Pacific Ocean	256
Table 92. Estimates of stock status in relation to overfishing and overfished reference points for WPRFMC PMUS	257
Table 93. U.S. and American Samoa longline landings in the North Pacific Ocean, American Samoa landings in the South Pacific Ocean, and total landings as	e ,
reported to WCPFC and IATTC, 2008-2012	258
Table 94. U.S. longline landings in the North Pacific and Eastern Pacific Oceans as reported to WCPFC and IATTC, 2008-2012	259
,	239
Recreational Title 05 February 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Table 95. Estimated boat-based recreational pelagic fish catches in the four principal island groups of the Western Pacific Region in 2012	266
Table 96. Estimated catches by pelagic charter fishing vessels in Guam, Hawaii and CNMI in 2012	266
Table 97. Comparison of species composition of landings made by Hawaii pelagic charter vessels versus commercial troll vessels, 2012	267
Table 98. Comparison of species composition of landings made by Guam pelagic charter vessels versus commercial troll vessels, 2012	267
Table 99. Comparison of species composition of landings made by CNMI pelagic charter	201
vessels versus commercial troll vessels, 2012	268
Table 100. Charter vessel catches in Hawaii by island, 2012	
Table 101. Composition of charter vessel catches in the Main Hawaiian Islands, 2012	

List of Figures	
Figure 1. Map of the Western Pacific Region	1
American Samoa	
Figure 2. Number of fish released by American Samoa longline vessels	33
Figure 3. American Samoa annual estimated total landings of tuna and non-tuna PMU	
Figure 4. American Samoa annual estimated total mahimahi landings by gear	
Figure 5. American Samoa annual estimated total wahoo landings (lbs) by gear	
Figure 6. American Samoa annual estimated total blue marlin landings (lbs) by gear	
Figure 7. American Samoa annual estimated total sailfish landings (lbs) by gear type	43
Figure 8. American Samoa annual estimated total skipjack tuna landings (lbs) by gear	
type	
Figure 9. American Samoa annual estimated total yellowfin tuna landings (lbs) by gea	r47
Figure 10. American Samoa annual estimated total bigeye tuna landings (lbs) by	40
	49
Figure 11. American Samoa annual estimated total albacore landings (lbs) by longlining	ıg51
Figure 12. American Samoa annual estimated total longline swordfish landings in	50
pounds	
Figure 13. American Samoa annual commercial landings of tunas and non-tuna PMUS	
Figure 14. Number of American Samoa vessels landing any pelagic species, tunas and non-tuna PMUS	55
Figure 15. Number of American Samoa boats landing any pelagic species by longlinin trolling and all methods	g, 57
Figure 16. Number of permitted and active longline fishing vessels in the A (\leq 40 foot	
	, 59
Figure 17. Number of permitted and active longline fishing vessels in the B (40.1 to 50)
foot) and C (50.1 to 70 foot) size classes	
Figure 18. Number of American Samoa troll trips and longline sets for all pelagic species by method	
Figure 19. Number of American Samoa sample days, trolling interviews, and trolling	01
trips	63
Figure 20. American Samoa pelagic catch per hour of trolling and number of trolling	
hours	65
Figure 21. American Samoa trolling CPUEs (lbs per hour fished) for blue marlin,	
mahimahi, and wahoo	67
Figure 22. American Samoa trolling CPUEs for skipjack and yellowfin tuna in pounds	
per hour fished	
Figure 23. American Samoa longline albacore tuna CPUE for alias and mono-hull	
vessels based on longline logbook data	71
reports outed on tonging togoth data	/ 1

Figure 25. Average weight per fish for other tuna and cannery species (cannery-sampled)	
Figure 26. American Samoa annual inflation-adjusted revenue in 2012 dollars for	80
Figure 27. American Samoa average inflation-adjusted price per pound of tunas and non-tuna PMUS	82
Figure 28. American Samoa average inflation-adjusted revenue per trolling trip landing	
pelagic species	84
<u>CNMI</u>	
Figure 29. Annual CNMI boat-based creel estimated total landings for all pelagics, tuna	
PMUS, and non-tuna PMUS	90
Figure 30. Annual CNMI boat-based creel estimated tuna landings for all, non-charter,	
and charter pelagics for 2000-2012	91
Figure 31. Annual CNMI boat-based creel estimated non-tuna PMUS landings for all,	
non-charter, and charter pelagics for 2000-2012	92
Figure 32. Annual CNMI boat-based creel estimated mahimahi landings	
Figure 33. Annual CNMI boat-based creel estimated wahoo landings	
Figure 34. Annual CNMI boat-based creel estimated blue marlin landings	
Figure 35. Annual CNMI boat-based creel estimated skipjack tuna landings	
Figure 36. Annual CNMI boat-based creel estimated yellowfin landings	
Figure 37. CNMI boat-based creel estimated number of trolling trips	
Figure 38. CNMI boat-based creel estimated number of trolling hours	
Figure 39. CNMI boat-based creel estimated average troll trip length (hours/trip)	
Figure 40. CNMI boat-based creel trolling CPUE (pounds/hour) for all pelagic species	
Figure 41. CNMI boat-based creel trolling CPUE (pounds/hour) for mahimahi	
Figure 42. CNMI boat-based creel trolling CPUE (pounds/hour) for wahoo	
Figure 43. CNMI boat-based creel trolling CPUE (pounds/hour) for skipjack tuna	
Figure 44. CNMI boat-based creel trolling CPUE (pounds/hour) for yellowfin tuna	
Figure 45. CNMI boat-based creel trolling CPUE (pounds per hour) for blue marlin	
Figure 46. CNMI trolling catch rates from commercial receipt invoices for mahimahi,	107
wahoo, and blue marlin (pounds/trip)	109
Figure 47. CNMI trolling catch rates from commercial receipt invoices for skipjack tuna,	107
yellowfin tuna, and skipjack tuna from the Creel Survey (pounds/trip)	111
Figure 48. CNMI estimated total commercial landings (lbs) from commercial receipt	111
invoices for tuna and non-tuna PMUS	113
Figure 49. CNMI estimated commercial landings from commercial receipt invoices for	113
mahimahi, wahoo, and blue marlin	115
Figure 50. CNMI estimated commercial purchase database landings from commercial	113
	117
receipt invoices for skipjack tuna and yellowfin tuna	11/
Figure 51. CNMI number of commercial vessels landing pelagic species from	119
commercial receipt invoices	119
Figure 52. CNMI number of fishing trips commercially landing any pelagic species from commercial receipt invoices	121
1	121
Figure 53. CNMI annual adjusted commercial revenues from pelagic species obtained	122
from commercial receipt invoices	123

Figure 54. CNMI average inflation-adjusted price for commercially landed pelagic species (dollars per pound)	125
Figure 55. CNMI per-trip adjusted revenues for commercially sold pelagic species from	120
commercial receipt invoices	127
Guam	
Figure 56. Guam annual estimated total landings: all pelagics landings, tuna PMUS	
landings, and non-tuna PMUS landings	136
Figure 57. Guam annual estimated total landings: total pelagics landings, non-charter	
landings, and charter landings	138
Figure 58. Guam annual tuna PMUS landings: total landings, non-charter landings, and	
charter landings	140
Figure 59. Guam estimated non-tuna PMUS landings: total landings, non-charter	
landings, and charter landings	142
Figure 60. Guam annual estimated mahimahi landings: total landings, non-charter	1 4 4
landings, and charter landings	144
Figure 61. Guam annual estimated wahoo landings: total landings, non-charter landings,	146
and charter landings.	146
Figure 62. Guam annual estimated blue marlin landings: total landings, non-charter	148
landings, charter landings	140
landings	150
Figure 64. Guam annual estimated yellowfin tuna landings: total, non-charter, and	150
charter landings	152
Figure 65. Guam annual estimated commercial landings: all pelagics, tuna PMUS, and	202
non-tuna PMUS	154
Figure 66. Guam estimated number of trolling vessels	156
Figure 67. Guam estimated number of trolling trips	
Figure 68. Guam estimated number of trolling hours	
Figure 69. Guam estimated trip length (hours per trip)	162
Figure 70. Guam estimated annual commercial revenues in inflation-adjusted dollars: all	
pelagics, tuna PMUS, and non-tuna PMUS	164
Figure 71. Guam annual estimated inflation-adjusted average price of pelagics (\$/lb): all	
pelagics, tuna PMUS, and non-tuna PMUS	
Figure 72. Guam trolling CPUE (lbs/hr)	
Figure 73. Guam trolling CPUE (lbs/hr): mahimahi	
Figure 74. Guam trolling CPUE (lbs/hr): wahoo	172
Figure 75. Guam trolling CPUE (lbs/hr): skipjack tuna	
Figure 76. Guam trolling CPUE (lbs/hr): yellowfin tuna	
Figure 77. Guam trolling CPUE (lbs/hr): blue marlin	178
Figure 78. Guam annual inflation-adjusted revenue per trolling trip: all pelagics, tuna	100
PMUS, and non-tuna PMUS	180
Figure 79. Guam foreign longline transshipment landings (mt) from vessels fishing	102
outside the Guam EEZ	182

Hawaii	
Figure 80. Hawaii total commercial landings and revenue, 2002-2012	195
Figure 81. Hawaii commercial tuna, billfish, shark, and other PMUS landings, 2002-	
2012	196
Figure 82. Hawaii total commercial pelagic landings by gear type 2002-2012	
Figure 83. Total commercial pelagic ex-vessel revenue by gear type 2002-2012	
Figure 84. Hawaii commercial tuna landings by gear type, 2002-2012	
Figure 85. Species composition of the tuna landings, 2002-2012	
Figure 86. Hawaii bigeye tuna landings by gear type, 2002-2012	
Figure 87. Hawaii yellowfin tuna landings by gear type, 2002-2012	
Figure 88. Hawaii skipjack tuna landings by gear type, 2002-2012	
Figure 89. Hawaii albacore landings by gear type, 2002-2012	
Figure 90. Hawaii commercial billfish landings by gear type, 2002-2012	
Figure 91. Species composition of the billfish landings, 2002-2012	
Figure 92. Hawaii swordfish landings, 2002-2012	
Figure 93. Hawaii blue marlin landings by gear type, 2002-2012	
Figure 94. Hawaii striped marlin landings by gear type, 2002-2012	
Figure 95. Hawaii commercial landings of other PMUS by gear type, 2002-2012	
Figure 96. Species composition of other PMUS landings, 2002-2012	
Figure 97. Hawaii mahimahi landings by gear type, 2002-2012	
Figure 98. Hawaii wahoo (ono) landings by gear type, 2002-2012	213
Figure 99. Hawaii moonfish landings, 2002-2012	
Figure 100. Hawaii pomfret landings, 2002-2012	
Figure 101. Hawaii PMUS shark landings, 2002-2012	
Figure 102. Number of Hawaii-based longline vessels, 2002-2012	217
Figure 103. Number of trips by the Hawaii-based longline fishery, 2002-2012	218
Figure 104. Number of hooks set by the Hawaii-based deep-set longline fishery, 2002-	
2012	219
Figure 105. Number of hooks set by the Hawaii-based shallow-set longline fishery,	
2004-2012	220
Figure 106. Hawaii longline CPUE for major tunas on tuna trips, 2002-2012	229
Figure 107. Hawaii longline swordfish CPUE by trip type, 2002-2012	230
Figure 108. Longline striped marlin CPUE by trip type, 2002-2012	231
Figure 109. Longline blue marlin CPUE by trip type, 2002-2012	231
Figure 110. Hawaii longline blue shark CPUE by trip type, 2002-2012	233
Figure 111. Number of Main Hawaiian Islands troll fishers and number of days fished,	
2002-2012	234
Figure 112. Main Hawaiian Islands troll landings and revenue, 2002-2012	235
Figure 113. Main Hawaiian Islands troll tuna CPUE, 2002-2012	
Figure 114. Main Hawaiian Islands troll marlin CPUE, 2002-2012	
Figure 115. Main Hawaiian Islands troll mahimahi and ono CPUE, 2002-2012	238

Figure 116. Number of Main Hawaiian Islands handline fishers and days fished, 2002-

Figure 117. Main Hawaiian Island handline landings and revenue, 2002-2012240

2012......239

Figure 118. Main Hawaiian Island handline tuna CPUE, 2002-2012	241
Figure 119. Number of offshore handline fishers and days fished, 2002-2012	242
Figure 120. Offshore handline landings and revenue, 2002-2012.	243
Figure 121. Offshore handline CPUE of bigeye and yellowfin tuna, 2002-2012	244
International	
Figure 122. The western and central Pacific Ocean (WCPO), the eastern Pacific Ocean	
(EPO) and the WCPFC Convention Area (WCP–CA in dashed lines)	246
Figure 123. Total purse seine catch of skipjack and yellowfin tuna in the Pacific Ocean,	2 . 0
1993-2012	248
Figure 124. Reported longline tuna catches in the Pacific Ocean	
Figure 125. Reported longline billfish catches in the Pacific Ocean	
Figure 126. Reported pole-and-line catch (metric tons) in the Pacific Ocean	
Figure 127. Estimated total annual catch of tuna species in the Pacific Ocean	
Figure 128. Annual number of small vessel fleet registrations in Hawaii, 1966-2012 -	
total fleet size and percentage of vessels being registered for commercial	
fishing	263
- θ	
Recreational	
Figure 129. Annual recreational fishery landings by number for six major pelagic	
species from 2003-2012	271
Figure 130. Annual recreational fishery landings by weight for six major pelagic fish	
species in Hawaii from 2003-2012	272
Figure 131. Average weight for six major pelagic fish species caught by recreational	
fishing in Hawaii from 2003-2012	272
Figure 132. Annual recreational catch per unit effort (lbs per trip) for six major pelagic	
species in Hawaii from 2003-2012	273
Figure 133. Boat fishing trip estimates (number of angler trips, 2003-2012)	273

Pelagic Fisheries of the Western Pacific Region — 2012 Annual Report

I. Introduction

A. Background to the Annual Report

The Fishery Management Plan (FMP) for Pelagic Fisheries of the Western Pacific Region was implemented by the National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NMFS) on 23 March 1987. The Western Pacific Regional Fishery Management Council (WPRFMC, or Council) developed the FMP to manage the pelagic resources that are covered by the Magnuson Fishery Conservation and Management Act of 1976 and that occur in the US Exclusive Economic Zone (EEZ) around American Samoa, Guam, Hawaii, the Commonwealth of the Northern Mariana Islands (CNMI), and the US possessions in the Western Pacific Region (Johnston Atoll, Kingman Reef and Palmyra, Jarvis, Howland, Baker, Midway, and Wake Islands). In 2010, the Council and NMFS implemented the Pelagics Fishery Ecosystem Plan (FEP) that manages the fisheries while taking ecosystem considerations into account.

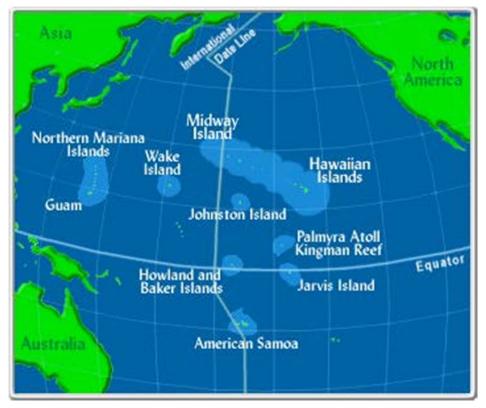


Figure 1. Map of the Western Pacific Region

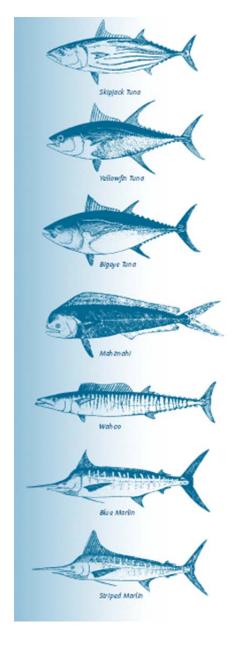
The abridged objectives of the Pelagics FEP are to:

• Utilize a science-based ecosystem approach to resource management in an ecologically and culturally-sensitive manner to maintain diverse, productive marine ecosystems.

- Flexible and adaptive management systems that respond quickly to new scientific information and changes in environmental conditions or human use patterns.
- Reduce unsustainable human impacts and foster stewardship through improving public and government awareness and understanding of marine environments.
- Encourage and provide for sustained and substantive participation of local communities in exploration, development, conservation, and management of marine resources.
- Minimize fishery bycatch and waste to the extent practicable.
- Manage and co-manage protected species, protected habitats, and protected areas.
- Promote safety of human life at sea.
- Encourage and support appropriate compliance and enforcement with local and federal fishery regulations.
- Increase collaboration with domestic and foreign regional fishery management organizations, communities, and public to successfully manage marine ecosystems.
- Improve quantity and quality of available information to support marine ecosystem management.

Non-tuna PMUS are sometimes referred to as "other PMUS" in this report. This term is equivalent to PMUS (Pelagic Management Unit Species) used in annual reports previous to 1992, before tunas were included in the management unit.

The PMUS are caught in the troll, longline, handline and pole-and-line (baitboat) fisheries. They are caught in oceanic as well as insular pelagic waters. Most of these species are considered to be epipelagic because they occupy the uppermost layers of the pelagic zone. All are trophically high-level predators. Pelagic fisheries for PMUS are among the most important, if not the dominant, Pacific Island fisheries.

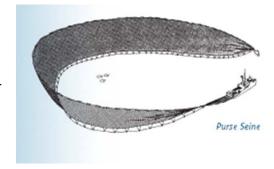

This report contains fishery performance data from each of the four island groups through 2012, and interpretations of trends or important events occurring in the fisheries and recommendations. The Hawaii report is an integration of State of Hawaii Division of Aquatic Resources and NMFS summaries. This report was prepared using reports submitted by the following agencies:

- Territory of American Samoa, Department of Marine and Wildlife Resources
- Territory of Guam, Division of Aquatic and Wildlife Resources
- Territory of Guam, Department of Commerce
- State of Hawaii, Division of Aquatic Resources
- Commonwealth of the Northern Mariana Islands, Division of Fish and Wildlife
- NMFS, Pacific Islands Region (including Pacific Islands Fisheries Science Center, Pacific Islands Regional Office, and Office for Law Enforcement)
- US Coast Guard. District 14
- Pelagic Fisheries Research Program, University of Hawaii

A list of the Pelagic Plan Team members during 2012 and persons responsible for compilation of this report are included in Appendix 1.

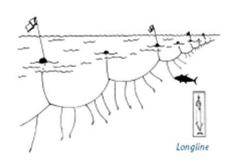
B. The Pelagic Species of the Western Pacific Region

The Management Unit Species (MUS) managed under the Pelagic FEP excludes dogtooth tuna (*Gymnosarda unicolor*) and all sharks except the following nine species: pelagic thresher shark (*Alopias pelagicus*), bigeye thresher shark (*Alopias superciliosus*), common thresher shark (*Alopias vulpinus*), silky shark (*Carcharhinus falciformis*), oceanic whitetip shark, (*Carcharhinus longimanus*), blue shark (*Prionace glauca*), shortfin mako shark (*Isurus oxyrinchus*), longfin mako shark (*Isurus paucus*), and salmon shark (*Lamna ditropis*) (Table 1).


Table 1. Names of Pacific Pelagic Management Unit Species

English Common Name	Scientific Name	Samoan or AS local	Hawaiian or HI local	Chamorroan or Guam local	S. Carolinian or NMI local	N. Carolinian or NMI local
Mahimahi (dolphinfishes)	Coryphaena spp.	Masimasi	Mahimahi	Botague	Sopor	Habwur
Wahoo	Acanthocybium solandri	Paala	Ono	Toson	Ngaal	Ngaal
Indo-Pacific blue marlin Black marlin	Makaira mazara: M. indica	Sa'ula	A'u, Kajiki	Batto'	Taghalaar	Taghalaar
Striped marlin	Tetrapturus audax		Nairagi			
Shortbill spearfish	T. angustirostris	Sa'ula	Hebi	Spearfish		
Swordfish	Xiphias gladius	Sa'ula malie	A'u kū, Broadbill, Shutome	Swordfish	Taghalaar	Taghalaar
Sailfish	Istiophorus platypterus	Sa'ula	A'u lepe	Guihan layak	Taghalaar	Taghalaar
Pelagic thresher shark Bigeye thresher shark Common thresher shark Silky shark Oceanic whitetip shark Blue shark Shortfin mako shark Longfin mako shark Salmon shark	Alopias pelagicus Alopias superciliosus Alopias vulpinus Carcharhinus falciformis Carcharhinus longimanus Prionace glauca Isurus oxyrinchus Isurus paucus Lamna ditropis	Malie	Mano	Halu'u	Paaw	Paaw
Albacore	Thunnus alalunga	Apakoa	'Ahi palaha, Tombo	Albacore	Angaraap	Hangaraap
Bigeye tuna	T. obesus	Asiasi, To'uo	'Ahi po'onui, Mabachi	Bigeye tuna	Toghu, Sangir	Toghu, Sangir
Yellowfin tuna	T. albacares	Asiasi, To'uo	'Ahi shibi	'Ahi, Shibi	Yellowfin tuna	Toghu
Northern bluefin tuna	T. thynnus		Maguro			
Skipjack tuna	Katsuwonus pelamis	Atu, Faolua, Ga'oga	Aku	Bunita	Angaraap	Hangaraap
Kawakawa	Euthynnus affinis	Atualo, Kavalau	Kawakawa	Kawakawa	Asilay	Hailuway
Moonfish	Lampris spp	Koko	Opah		Ligehrigher	Ligehrigher
Oilfish family	Gempylidae	Palu talatala	Walu, Escolar		Tekiniipek	Tekiniipek
Pomfret	family Bramidae	Manifi moana	Monchong		-	-
Other tuna relatives	Auxis spp, Scomber spp; Allothunus spp	(various)	Ke'o ke'o, saba (various)	(various)	(various)	(various)

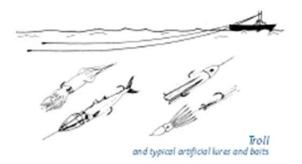
C. Pelagic Gear Types and Fisheries of the Western Pacific Region


U.S. pelagic fisheries in the Western Pacific Region are, with the exception of purse seining, primarily variations of hook-and-line fishing. These include longlining, trolling, handlining, and pole-and-line fishing.

The largest fishery in terms of tonnage of fish landed is the U.S. purse-seine fishery, with catches of skipjack, yellowfin and bigeye tuna amounting to 87,994 mt. However, this fleet has decreased in size from a peak in 1984 of 61 vessels to 14 vessels in 2004, but rebuilt after 2006 to 39 vessels as of 2012.

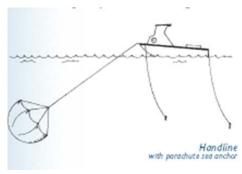
The U.S. fleet of albacore trollers, based at West Coast ports, amounts to about 400 vessels, fishing primarily in

the temperate waters of the North Pacific and landing in 2003 about 17,000 mt of fish. Some vessels from this fleet also fish seasonally for albacore in the South Pacific. In the past catches by this fishery reached about 4,900 mt (in 1991) but more recently catches have amounted to between 200-300 mt. In 2012, 9 trollers fished the South Pacific landing 198 mt of albacore.



U.S. longline vessels in the Western Pacific Region are based primarily in Hawaii and American Samoa, although Hawaii-based vessels targeting swordfish have also fished seasonally out of California. The Hawaii fishery, with 128 vessels, targets a range of species, with vessels setting shallow longlines to catch swordfish or fishing deep to maximize catches of bigeye tuna. Catches by the Hawaii fleet also include yellowfin tuna, mahimahi (dolphinfish, dorado), wahoo, blue and striped marlins, opah (moonfish) and

monchong (pomfret). The Hawaii fishery does not freeze its catch, which is sold to the fresh fish and sashimi markets in Hawaii, Japan, and the U.S. mainland.


The American Samoa fleet of about 25 active vessels, down from a peak of 70 active vessels in 2001, fishes almost exclusively for albacore tuna, which is landed to two tuna canneries in American Samoa. The combined landings from the tuna and non-tuna pelagic fisheries in 2012 amounted to 9.1 million pounds. In 2012, the combined landings of blue and striped marlins from the longline fishery amounted to 1.5 million pounds, 99% of which were landed in Hawaii.

Trolling and, to lesser extent, handline fishing for pelagics is the largest commercial fishery in terms of participation, although it catches annually a relative modest volume of fish amounting to about 4.6 million lbs in 2012. Part of this catch is made by charter or for-hire fishing vessels. In 2012, there were 1,698 troll vessels and 565 handline vessels in Hawaii, 35 troll vessels in CNMI, 351 troll vessels in

Guam, and 9 troll vessels in American Samoa. Troll and handline catches are dominated by yellowfin tuna in Hawaii, by skipjack tuna in Guam and CNMI, and skipjack and yellowfin tuna in American Samoa. Other commonly caught troll catches include mahimahi, wahoo, and blue marlin. About 93 percent of the troll and handline landings are made by Hawaii vessels.

Troll fishing for pelagics is the commonest recreational fishery in the islands of the Western Pacific Region. The definition of recreational fishing, however, continues to be problematic in a region where many fishermen who are fishing primarily for recreation may sell their fish to cover their expenses. Hawaii's 2012 recreational fishery landings amounted to about 44.4 million lbs, based on surveys of fishermen, with yellowfin tuna landings at about 159,500 lbs (34%). Recreational or non-commercial landings from boats in Guam were about 233,800 lbs in 2012, 40% of which was mahimahi. Recreational or non-commercial landings from boats in CNMI were about 178,400 lbs in 2012, 44% of which was wahoo. Recreational or non-commercial landings from boats in American Samoa were about 8.9 million lbs in 2012, although there is no breakout by species.

In 2012, tuna fisheries in the Western Pacific Ocean as a whole catch about 2.6 million mt of fish, with U.S. fisheries in the Western Pacific Region catching about 10.5% of the total. Most of the catch is taken by fleets of high seas longliners and purse seiners from countries such as Japan, Taiwan, Korea and the nations of Central and South America. More recently, Pacific Island countries such as Papua New Guinea have grown in importance in terms of their large scale purse-seine and

longline fisheries. Small scale artisanal longlining is also conducted in Pacific Island countries like Samoa and in South America, where there are thousands of small scale longline vessels fishing in coastal waters.

II. Development and Description of the Fisheries of the Western Pacific Region

A. American Samoa

The islands of American Samoa are an area of modest productivity relative to areas to the north and west. The region is traversed by two main currents: the southern branch of the westward-flowing South Equatorial Current during June - October and the eastward-flowing South Equatorial Counter Current during November - April. Surface temperatures vary between 27°-29° C and are highest in the January - April period. The upper limit of the thermocline in ocean areas is relatively shallow (27° C isotherm at 100m depth) but the thermocline itself is diffuse (lower boundary at 300m depth).

1. Traditional and Historical Pelagic Fisheries

Small-scale longline: This fishery is almost defunct with only one vessel still operating. Most participants in the small-scale domestic longline fishery were indigenous American Samoans with vessels under 50 ft in length, most of which are alia boats under 40 ft in length. The stimulus for American Samoa's commercial fishermen to shift from troll or handline gear to

longline gear in the mid-1990s was the fishing success of 28' alia catamarans that engaged in longline fishing in the EEZ around Independent Samoa. Following this example, the fishermen in American Samoa deployed a short monofilament longline, with an average of 350 hooks per set, from a hand-powered reel (WPRFMC, 2000). An estimated 90 percent of the crews working in the American Samoa small-scale alia longline fleet were from Independent Samoa. Like the conventional monohull longline fishery (see below) the predominant catch from the small scale fishery albacore tuna, which is marketed to the local tuna canneries.

Large-scale longline: American Samoa's domestic longline fishery expanded rapidly in 2001. Much of the recent (and anticipated future) growth is due to the entry of monohull vessels larger than 50 ft in length. The number of permitted longline vessels in this sector increased from seven in 2000 to 38 by 2003. Of these, five permits for vessels between 50.1 ft - 70 ft and five permits for vessels larger than 70 ft were believed to be held by indigenous American Samoans as of March 21, 2002. Economic barriers have prevented more substantial indigenous participation in the large-scale sector of the longline fishery. The lack of capital appears to be the primary constraint to substantial indigenous participation in this sector. In 2012, although there are still 38 permitted vessels greater than 50 feet length, only 22 are active compared to the 31 active vessels in 2003.

While the smallest (less than or equal to 40 ft) vessels average 350 hooks per set, a vessel over 50 ft can set 5-6 times more hooks and has a greater fishing range and capacity for storing fish (8-40 mt as compared to 0.5-2 mt on a small-scale vessel). Larger vessels are also outfitted with hydraulically-powered reels to set and haul mainline, and modern electronic equipment for navigation, communications and fish finding. Most are presently being operated to freeze albacore onboard, rather than to land chilled fish. Three vessels that left Hawaii after the swordfish longline fishery closure are operating in the American Samoa tuna longline fishery under new ownership. It does not appear that large numbers of longliners from Hawaii are relocated in American Samoa. Instead, large vessels have participated in the American Samoa longline fishery from diverse ports and fisheries, including the US west coast (6), Gulf of Mexico (3), and foreign countries (4 now under U.S. ownership).

Distant-water purse seine fishery: The US purse seine fleet operating in the central and western Pacific uses large nets to capture skipjack, yellowfin and bigeye tuna near the ocean surface, in free-swimming schools and around fish aggregation devices (FADs) deployed by the fleet. These vessels often land their catches at canneries based in American Samoa. These large vessels (200-250 ft length) could not be economically operated for longline fishing but some former participants in the U.S. purse seine fishery have acquired more suitable vessels and participated in the American Samoa-based longline fishery.

Distant-water jig albacore fishery: Domestic albacore jig vessels also supply tuna to the canneries in American Samoa. Between 1988 and 2001 about 30-55 US vessels participated in the high-seas troll fishery for albacore. This fishery occurs seasonally (December through April) in international waters at 35°-40° S latitude. The vessels range in length from 50 to 120 feet, with the average length about 75 feet. They operate with crews of 3-5 and are capable of freezing 45-90 tons of fish. Currently (2007-2011), only 3-6 vessels have operated in this fishery and catch between 150 and 300 mt of fish annually.

Troll and handline fishery: From October 1985 to the present, catch and effort data in American Samoa fisheries have been collected through a creel survey that includes subsistence and recreational fishing, as well as commercial fishing. However, differentiating commercial troll fishing activity from non-commercial activity can be difficult.

Recreational fishing underwent a renaissance in American Samoa with the establishment of the Pago Pago Game Fishing Association (PPGFA), founded in 2003 by a group of recreational anglers. The motivation to form the PPGFA was the desire to host regular fishing competitions. There are about 15 recreational fishing vessels ranging from 10 ft single engine dinghies to 35 ft twin diesel engine cabin cruisers. The PPGFA has annually hosted international tournaments over the past 15 years, including the Steinlager I'a Lapo'a Game Fishing Tournament (a qualifying event for the International Game Fish Association's Offshore World Championship in Cabo San Lucas, Mexico). The recreational vessels use anchored fish aggregating devices (FADs) extensively, and on tournaments venture to the various outer banks which include the South Bank (35 miles), North East Bank (40 miles NE), South East bank (37 miles SE), 2% bank (40 miles), and East Bank (24 miles East). Several recreational fishermen have aspirations to become charter vessels and are in the process of obtaining captains (6 pack) licenses.

There was no full-time regular charter fishery in American Samoa similar to those in Hawaii or Guam. However, Pago Pago Marine Charters, which is concerned primarily with industrial work such as underwater welding, construction, and salvage, now operates a full-time charter fishery.

Estimation of the volume and value of recreational fishing in American Samoa is not known with any precision. A volume approximation of boat based recreational fishing is generated in the Council's Pelagics Annual Report, based on the annual sampling of catches conducted under the auspices of WPacFIN. Boat-based recreational catches have ranged from 857 to 46,462 lb between 2002 and 2012, with an average of about 14,000 lbs; recreational catch in 2012 was approximately 2,253 lbs.

2. Pelagic Fisheries Development

American Samoan dependence on fishing undoubtedly goes back as far as the peopled history of the islands of the Samoan archipelago, about 3,500 years ago. Many aspects of the culture have changed in contemporary times but American Samoans have retained a traditional social system that continues to strongly influence and depend upon the culture of fishing. Centered around an extended family ('aiga) and allegiance to a hierarchy of chiefs (matai), this system is rooted in the economics and politics of communally-held village land. It has effectively resisted Euro-American colonial influence and has contributed to a contemporary cultural resiliency unique in the Pacific islands region.

The small economy in American Samoa continues to develop. Its two most important sectors are the American Samoa Government (ASG), which receives income and capital subsidies from the federal government, and tuna canning (BOH 1997). In 2011, total export value of commodities was about \$17 million; \$13.4 million is attributed to canned tuna (ASG DOC Statistical Yearbook, pg. 203, 2011). Private businesses and commerce comprise a smaller third sector.

Unlike some of its South Pacific neighbors, American Samoa has never had a robust tourist industry.

The excellent harbor at Pago Pago, 390,000 square kilometers of EEZ, and certain special provisions of U.S. law form the basis of American Samoa's decades-old fish processing industry (BOH 1997). The territory is exempt from the Nicholson Act, which prohibits foreign ships from landing their catches in U.S. ports. American Samoan products with less than 50 percent market value from foreign sources enter the United States duty free (Headnote 3(a) of the U.S. Tariff Schedule). In 1997 tuna processing directly and indirectly generated about 15 percent of current money wages, 10 to 12 percent of aggregate household income, and 7 percent of government receipts in the territory (BOH 1997) and these numbers are thought to be fairly reliable up until Chicken-of-the-Sea (COS) closed. Prior to the COS tuna cannery closure, canning provided 8,118 jobs (5,538 direct 2,580 indirect) in American Samoa – 45.6 percent of total employment (McPhee and Associates 2008). The COS closure resulted in the loss of approximately 2,000 of those jobs. Cannery exports accounted for the majority of total exports of goods and services (BEA 2011) in 2008-2009, and still do in 2011 (DOC SD 2011). In 2011, 618,000 cases of tuna were exported from American Samoa with a value of approximately \$13.4 million (DOC SD 2011).

In 2012, the ASG employed 5,258 people (35 percent of total employment; DOC Statistical Yearbook, pg. 114, 2012), and the private sector employed 7,721 people. Canneries employed only 1,827 people, which is 12% of the people employed. As of 2010, there were 34,767 people 16 years and older in the labor force (statistic is updated every 5 years).

Harsh working conditions, low wages and long fishing trips have discouraged American Samoans from working on foreign longline vessels delivering tuna to the canneries. American Samoans prefer employment on the U.S. purse seine vessels, but the capital-intensive nature of purse seine operations limits the number of job opportunities for locals in that sector as well. However, the presence of the industrial tuna fishing fleet has had a positive economic effect on the local economy as a whole. Ancillary businesses involved in re-provisioning the fishing fleet generate a significant number of jobs and amount of income for local residents.

The tuna processing industry has had a mixed effect on the commercial fishing activities undertaken by American Samoans. The canneries often buy fish from the small-scale domestic longline fleet based in American Samoa, although the quantity of this fish is insignificant compared to cannery deliveries by the U.S. purse seine, U.S. albacore and foreign longline fleets. The ready market provided by the canneries is attractive to the small boat fleet, and virtually all of the albacore caught by the domestic longline fishery is sold to the canneries.

Local fishermen have indicated an interest in participating in the far more lucrative overseas market for fresh fish. To date, however, inadequate shore-side ice and cold storage facilities in American Samoa and infrequent and expensive air transportation links have been restrictive factors.

American Samoa's position in the industry is being eroded by forces at work in the world economy and in the tuna canning industry itself. Whereas wage levels in American Samoa are

the US minimum wage, they are considerably higher than in other canned tuna production centers around the world. To remain competitive, U.S. tuna producers are purchasing more raw materials, especially pre-cooked loins, from foreign manufacturers. Tax benefits to US canneries operating in American Samoa have also been tempered by the removal of a provision in the US tax code that previously permitted the tax-free repatriation of corporate income in US territories. Trends in world trade, specifically reductions in tariffs, are reducing the competitive advantage of American Samoa's duty-free access to the US canned tuna market.

3. Administrative or Management Actions to Date

Along with the original measures placed into the Pelagics FMP, the following amendments were made which affected the pelagic fisheries of American Samoa:

FMP AMENDMENT 1 (effective March 1, 1991) defined recruitment overfishing and optimum yield for each PMUS.

FMP AMENDMENT 2 (effective May 26, 1991) implemented permitting and logbook requirements for domestic pelagic longline fishing and transshipment vessel operators.

FMP AMENDMENT 8 (effective Feb. 3, 1999, and July 3, 2003) addressed new requirements under the 1996 Sustainable Fisheries Act, included designations of essential fish habitat, descriptions of fishing communities, overfishing definitions and bycatch.

FMP AMENDMENT 10 (prepared and transmitted to the NMFS for approval in parallel with the

FMP for Coral Reef Ecosystems of the Western Pacific Region) clarified the PMUS by removing all but truly oceanic sharks to the Coral Reef Ecosystems FMP along with dogtooth tuna.

FMP AMENDMENT 11 (effective May 24, 2005) established a limited access system for pelagic longlining in EEZ waters around American Samoa with initial entry criteria based on historical participation in the fishery.

In 2006 NMFS notified the Council that overfishing of Western and Central Pacific yellowfin tuna was occurring and requested the Council to take appropriate action to end the overfishing. The Council was informed that the entire U.S. harvest of yellowfin tuna in the Western and Central Pacific was only about 4 percent of the total area's catch and that NMFS welcomed the Council's participation as a member in international fishery management organizations.

FMP AMENDMENT 14 (partially approved by NMFS on May 16, 2007) was developed in response to NMFS' notifications that Pacific-wide bigeye and Western and Central Pacific yellowfin tuna were subject to overfishing. It contained recommendations regarding both international and domestic management, including a mechanism by which the Council could participate in international negotiations regarding these stocks.

FMP REGULATORY AMENDMENT 7 (effective May 17, 2007) provided pelagic fishery participants the option of using NMFS approved electronic logbooks in lieu of paper logbooks. This measure was implemented to improve the efficiency and accuracy of catch reporting.

FRAMEWORK MEASURE 1 (effective March 1, 2002) established an area seaward of 3 nm out to approximately 50 nm around the islands of American Samoa in which fishing for PMUS is prohibited by vessels greater than 50 feet in length overall that did not land PMUS in American Samoa under a federal longline general permit prior to Nov. 13, 1997.

FMP AMENDMENT 15 (effective December 22, 2008) designated three species of pelagic squid as management unit species, and established permitting, reporting, and observer requirements for squid jig fishing vessels over 50ft (15.4 m) in length.

FEP AMENDMENT 1 (effective September 3, 2010) established eligibility requirements and procedures for reviewing and approving community development plans for Western Pacific fisheries.

FEP AMENDMENT 2 was disapproved on July 11, 2011. The intent was to establish a purse seine area closure in American Samoa.

FEP AMENDMENT 4 (effective June 27, 2011) established a mechanism for specifying annual catch limits for Western Pacific fisheries.

FEP AMENDMENT 5 (effective August 24, 2011) modified gear configurations for the American Samoa longline fishery to reduce sea turtle interactions.

B. Guam

Generally, the major surface current affecting Guam is the North Equatorial Current, which flows westward through the islands. Sea surface temperatures off Guam vary between $80.9^{\circ} - 84.9^{\circ}$ F, depending on the season. The mixed layer extends to depths between 300 and 400 ft.

1. Traditional and Historical Pelagic Fisheries

Guam's pelagic fisheries consist of primarily small, recreational, trolling boats that are either towed to boat launch sites or berthed in marinas and fish only within local waters, either within the EEZ around Guam or on some occasions in the adjacent EEZ waters around the Northern Mariana Islands.

Landings consisted primarily of five major species: mahimahi (*Coryphaena hippurus*), wahoo (*Acanthocybium solandri*), bonita or skipjack tuna (*Katsuwonus pelamis*), yellowfin tuna (*Thunnus albacares*), and Pacific blue marlin (*Makaira mazara*). Other minor pelagic species caught include rainbow runner (*Elagatis bipinnulatus*), great barracuda (*Sphyraena barracuda*), kawakawa (*Euthynnus affinis*), dogtooth tuna (*Gymnosarda unicolor*), double-lined mackerel (*Grammatorcynus bilineatus*), oilfish (*Ruvettus pretiosus*), and three less common species of barracuda.

The number of boats involved in Guam's pelagic or open ocean fishery gradually increased from about 200 vessels in 1982. There were 351 boats active in Guam's domestic pelagic fishery in 2012. A majority of the fishing boats are less than 10 meters (33 feet) in length and

are usually owner-operated by fishermen who earn a living outside of fishing. Most fishermen sell a portion of their catch at one time or another and it is difficult to make a distinction between recreational, subsistence, and commercial fishers. A small, but significant, segment of Guam's pelagic fishery is made up of marina-berthed charter boats that are operated primarily by full-time captains and crews.

2. Pelagic Fisheries Development

Fishing in Guam continues to be important not only in terms of contributing to the subsistence needs of the Chamorro people but also in terms of preserving their history and identity. Fishing assists in perpetuating traditional knowledge of marine resources and maritime heritage of the Chamorro culture.

The importance of commercial fishing in Guam lies mainly in the territory's status as a major regional fish transshipment center and re-supply base for domestic and foreign tuna fishing fleets. Among Guam's advantages as a home port are well-developed and highly efficient port facilities in Apra Harbor; an availability of relatively low-cost vessel fuel; a well-established marine supply/repair industry; and recreational amenities for crew shore leave. In addition, the territory is exempt from the Nicholson Act, which prohibits foreign ships from landing their catches in U.S. ports. Initially, the majority of vessels calling in Apra Harbor to discharge frozen tuna for transshipment were Japanese purse seine boats and carrier vessels. In the late 1980s, Guam became an important port for Japanese and Taiwanese longline fleets, but port calls have steadily declined and the transshipment volume has also declined accordingly.

By the early 1990s, an air transshipment operation was also established on Guam. Fresh tuna was flown into Guam from the Federated States of Micronesia and elsewhere on air cargo planes and out of Guam to the Japanese market on wide-body passenger planes. Further, vessels from Japan and Taiwan also landed directly into Guam where their fish was packed and transshipped by air to Japan. A second air transshipment operation began in the mid-1990s; it was transporting to Europe fish that did not meet Japanese sashimi market standards, but this has since ceased operations. Moreover, the entire transshipment industry has contracted markedly with only a few operators still making transshipments to Japan. Annual volumes of tuna transshipped of between 2007 and 2011 averages about 3,400 mt, with a 2012 estimate of 2,222 mt, compared to over 12,000 mt at the peak of operations between 1995 and 2001.

3. Administrative or Management Actions to Date

Along with the original measures placed into the Pelagics FMP, the following amendments were made which affected the pelagic fisheries of Guam:

FMP AMENDMENT 1 (effective March 1, 1991) defined recruitment overfishing and optimum yield for each PMUS.

FMP AMENDMENT 2 (effective May 26, 1991) implemented permitting and logbook requirements for domestic pelagic longline fishing and transshipment vessel operators.

FMP AMENDMENT 5 (effective March 2, 1992) created domestic longline vessel exclusion zones around the Main Hawaiian Islands (MHI) ranging from 50 to 75 nm and a similar 50 nm exclusion zone around Guam and its offshore banks.

FMP AMENDMENT 6 (effective Nov. 27, 1992) specified that all tuna species are designated as fish under U.S. management authority and included tunas and related species as PMUS under the FMP. It also applied the longline exclusion zones of 50 nm around the island of Guam and the 25-75 nm zone around the MHI to foreign vessels.

AMENDMENT 8 (effective Feb. 3, 1999, and July 3, 2003) addressed new requirements under the 1996 Sustainable Fisheries Act, included designations of essential fish habitat, descriptions of fishing communities, overfishing definitions and bycatch.

FMP AMENDMENT 10 (prepared and transmitted to the NMFS for approval in parallel with the FMP for Coral Reef Ecosystems of the Western Pacific Region) clarified the PMUS by removing all but truly oceanic sharks to the Coral Reef Ecosystems FMP along with dogtooth tuna. In 2006 NMFS notified the Council that overfishing of Western and Central Pacific yellowfin tuna was occurring and requested the Council to take appropriate action to end the overfishing. The Council was informed that the entire U.S. harvest of yellowfin tuna in the Western and Central Pacific was only about 4 percent of the total area's catch and that NMFS welcomed the Council's participation as a member in international fishery management organizations.

FMP AMENDMENT 14 (partially approved by NMFS on May 16, 2007) was developed in response to NMFS' notifications that Pacific-wide bigeye and Western and Central Pacific yellowfin tuna were subject to overfishing. It contained recommendations regarding both international and domestic management, including a mechanism by which the Council could participate in international negotiations regarding these stocks.

FMP REGULATORY AMENDMENT 7 (effective May 17, 2007) provided pelagic fishery participants the option of using NMFS approved electronic logbooks in lieu of paper logbooks. This measure was implemented to improve the efficiency and accuracy of catch reporting.

FMP AMENDMENT 15 (effective December 22, 2008) designated three species of pelagic squid as management unit species, and established permitting, reporting, and observer requirements for squid jig fishing vessels over 50ft (15.4 m) in length.

FEP AMENDMENT 1 (effective September 3, 2010) established eligibility requirements and procedures for reviewing and approving community development plans for Western Pacific fisheries.

FEP AMENDMENT 4 (effective June 27, 2011) established a mechanism for specifying annual catch limits for Western Pacific fisheries.

C. Hawaii

The archipelago's position in the Pacific Ocean lies within the clockwise rotating North Pacific Subtropical Gyre, extending from the northern portion of the North Equatorial Current into the region south of the Subtropical High, where the water moves eastward in the North Pacific Current. At the pass between the MHI and the NWHI there is often a westward flow from the region of Kauai along the lee side of the lower NWHI. This flow, the North Hawaiian Ridge Current (NHRC), is extremely variable and can also be absent at times. The analysis of 10 years of shipboard acoustic Doppler current profiler data collected by the NOAA Ship Townsend Cromwell shows mean flow through the ridge between Oahu and Nihoa, and extending to a depth of 200 m.

Imbedded in the mean east-to-west flow are an abundance of mesoscale eddies created from a mixture of wind, current, and sea floor interactions. The eddies, which can rotate either clockwise or counter clockwise, have important biological impacts. For example, eddies create vertical fluxes, with regions of divergence (upwelling) where the thermocline shoals and deep nutrients are pumped into surface waters enhancing phytoplankton production, and also regions of convergence (downwelling) where the thermocline deepens. Sea surface temperatures around the Hawaiian Archipelago experience seasonal variability, but generally vary between 18°-28° C (64°-82° F) with the colder waters occurring more often in the NWHI.

A significant source of inter-annual physical and biological variation around Hawaii are El Niño and La Niña events. During an El Niño, the normal easterly trade winds weaken, resulting in a weakening of the westward equatorial surface current and a deepening of the thermocline in the central and eastern equatorial Pacific. Water in the central and eastern equatorial Pacific becomes warmer and more vertically stratified with a substantial drop in surface chlorophyll.

Physical and biological oceanographic changes have also been observed on decadal time scales. These low frequency changes, termed regime shifts, can impact the entire ocean ecosystem. Recent regime shifts in the North Pacific have occurred in 1976 and 1989, with both physical and biological (including fishery) impacts. In the late 1980's an ecosystem shift from high carrying capacity to low carrying capacity occurred in the NWHI. The shift was associated with the weakening of the Aleutian Low Pressure System (North Pacific) and the Subtropical Counter Current. The ecosystem effects of this shift were observed in lower nutrient and productivity levels and decreased abundance of numerous species in the NWHI including the spiny lobster, the Hawaiian monk seal, various reef fish, the red-footed booby, and the red-tailed tropic bird.

1. Traditional and Historical Pelagic Fisheries

Hawaii's pelagic fisheries, which include the longline, Main Hawaiian Islands troll and handline, offshore handline, and the aku boat (pole and line) fisheries, are the state's largest and most valuable fishery sector. The target species are tunas and billfish, but a variety of other species are also important. Collectively, these pelagic fisheries made approximately 32 million lbs of commercial landings with a total ex-vessel value of \$106 million in 2012.

The largest component of pelagic catch in 2012 was tunas. Bigeye tuna was the largest component, both in lbs and revenue. Swordfish was the largest component of the billfish catch. Mahimahi was the traditionally largest component of the non-tuna and non-billfish catch, but is now about equal to moonfish (opah) (1,628 lbs and 1,622 lbs respectively).

2. Pelagic Fisheries Development

Fishermen in Hawai'i earned \$112.4 million from their commercial harvest in 2012, landing 31 million pounds of finfish and shellfish. The Hawaii longline fishery is by far the most important economically, accounting for about 82 percent of the estimated ex-vessel value of the total commercial fish landings in the state. In 2012, it is estimated that the commercial seafood industry in Hawaii generated sales impacts of \$855 million and income impacts of \$262 million while supporting approximately 11,000 full and part time jobs jobs in the State of Hawaii. The commercial harvest sector generated 3,800 jobs, \$196 million in sales, \$71 million in income, and \$102 million in value added impacts (NMFS 20121).

Recreational fisheries are also extremely important in the State of Hawaii economically, socially, and culturally. The total estimated pelagic recreational fisheries production in 2011 and 2012 was 10.6 and 12.3 million pounds, respectively. The resident angler population in 2009 was estimated to be 140,000 residents, supplemented by an additional 106,000 visitors who went fishing in Hawaii. These anglers took 2.2 million fishing trips in 2009 (80% were shore-based trips). In 2009, it is estimated that the recreational and charter fisheries in Hawaii generated sales impacts of \$460 million, income impacts of \$150 million, and value-added impacts of \$228 million while supporting approximately 4,300 jobs in the State of Hawaii.

3. Administrative or Management Actions to Date

Along with the original measures placed into the Pelagics FMP, the following amendments were made which affected the pelagic fisheries of Hawaii:

FMP AMENDMENT 1 (effective March 1, 1991) defined recruitment overfishing and optimum yield for each PMUS.

FMP AMENDMENT 2 (effective May 26, 1991) implemented permitting and logbook requirements for domestic pelagic longline fishing and transshipment vessel operators.

FMP AMENDMENT 3 (effective Oct. 14, 1991) created a 50 nm longline exclusion zone around the Northwestern Hawaiian Islands (NWHI) to protect endangered Hawaiian monk seals and also implemented framework provisions for establishing a mandatory observer program to collect information on interactions between longline fishing and sea turtles.

15

¹ National Marine Fisheries Service. 2014. Fisheries Economics of the United States, 2012. US Dept. Commerce, NOAA Tech. Memo. NMFS-F/SPO-137, 175p.

FMP AMENDMENT 4 (effective Oct. 10, 1991, through April 22, 1994) established a three-year moratorium on new entry into the Hawaii-based domestic longline fishery and required Hawaii-based longline vessels to carry and use a National Marine Fisheries Service (NMFS)-owned vessel monitoring system (VMS) transmitter to ensure that they do not fish within prohibited areas.

FMP AMENDMENT 5 (effective March 2, 1992) created domestic longline vessel exclusion zones around the Main Hawaiian Islands (MHI) ranging from 50 to 75 nm and a similar 50 nm exclusion zone around Guam and its offshore banks.

FMP AMENDMENT 6 (effective Nov. 27, 1992) specified that all tuna species are designated as fish under U.S. management authority and included tunas and related species as PMUS under the FMP. It also applied the longline exclusion zones of 50 nm around the island of Guam and the 25-75 nm zone around the MHI to foreign vessels.

FMP AMENDMENT 7 (effective June 24, 1994) instituted a limited entry program for the Hawaii-based domestic longline fishery with transferable permits, a limit of 164 vessels, and a maximum vessel size of 101 feet in length overall.

FMP AMENDMENT 8 (effective Feb. 3, 1999, and July 3, 2003) addressed new requirements under the 1996 Sustainable Fisheries Act, included designations of essential fish habitat, descriptions of fishing communities, overfishing definitions and bycatch.

FMP AMENDMENT 9 (under development since early 2000) would manage the harvest and retention of sharks in the Hawaii-based longline fishery.

FMP AMENDMENT 10 (prepared and transmitted to the NMFS for approval in parallel with the FMP for Coral Reef Ecosystems of the Western Pacific Region) clarified the PMUS by removing all but truly oceanic sharks to the Coral Reef Ecosystems FMP along with dogtooth tuna.

In 2006 NMFS notified the Council that overfishing of Western and Central Pacific yellowfin tuna was occurring and requested the Council to take appropriate action to end the overfishing. The Council was informed that the entire U.S. harvest of yellowfin tuna in the Western and Central Pacific was only about 4 percent of the total area's catch and that NMFS welcomed the Council's participation as a member in international fishery management organizations.

FMP AMENDMENT 14 (partially approved by NMFS on May 16, 2007) was developed in response to NMFS' notifications that Pacific-wide bigeye and Western and Central Pacific yellowfin tuna were subject to overfishing. It contained recommendations regarding both international and domestic management, including a mechanism by which the Council could participate in international negotiations regarding these stocks. Amendment 14 also contained measures to implement control dates for Hawaii's non-longline commercial pelagic vessels (70 FR 47781, see above) and purse seine and longline vessels (70 FR 47782, see above), as well as requirements for federal permits and reporting for Hawaii-based non-longline commercial pelagic vessels. NMFS disapproved the Amendment's international measures as premature given ongoing international negotiations as well as the development of a memorandum of

understanding by the Councils and the Secretary of Commerce, in consultation with the Secretary of State, regarding participation in U.S. delegations and other issues. NMFS disapproved Amendment 14's domestic permit and reporting requirements as duplicative of existing requirements imposed by the State of Hawaii and stated that they were working with the State to improve their data collection and processing system. NMFS also noted that Amendment 14 met the requirements of the Magnuson-Act regarding overfishing of fisheries that have been determined to be subject to overfishing due to excessive international fishing pressure.

At the request of the Council NMFS issued a control date of March 16, 2007 to notify persons who entered the Hawaii-based pelagic charter fishery after that date that they would not necessarily be assured of continuing participation if a limited entry program was subsequently implemented for their fishery. The control date was issued in response to concerns regarding significant expansion of the charter vessel fleet and its potential to impact billfishes and other pelagic species.

FMP AMENDMENTS 9, 12 and 13 were intended to address issues which have now become moot due to changing circumstances, thus these amendment numbers may be used to designate future amendments.

FMP FRAMEWORK MEASURE 2 (effective June 13, 2002) incorporated the terms and conditions of a Nov. 28, 2000, Biological Opinion issued by the U.S. Fish and Wildlife Service under section 7 of the Endangered Species Act to protect seabirds from longline fishing. These measures require Hawaii-based pelagic longline vessel operators to use blue-dyed bait, strategic offal discards and line shooters with weighted branch lines to mitigate seabird interactions when fishing north of 23° N. Also included was a requirement that all Hawaii-based longline vessel owners and operators annually attend a protected species workshop conducted by NMFS.

FMP REGULATORY AMENDMENT 1 (effective June 9, 2002) incorporated the reasonable and prudent alternative of a March 2001 Biological Opinion issued by NMFS under section 7 of the Endangered Species Act. To mitigate interactions with sea turtles, this amendment prohibits shallow set pelagic longlining north of the equator by vessels managed under the FMP and closed waters between 0° and 15°N from April through May of each year to longline fishing. It also institutes sea turtle handling requirements for all vessels using hooks to target pelagic species in the region's EEZ waters.

FMP REGULATORY AMENDMENT 2 (effective Oct. 4, 2002) established federal permit and reporting requirements for any vessel using troll or handline gear to catch PMUS in EEZ waters around the Pacific Remote Island Areas of Kingman Reef; Howland, Baker, Jarvis, Johnston and Wake Islands; and Palmyra and Midway Atolls.

FMP REGULATORY AMENDMENT 3 (effective April 1, 2005) reopened swordfish longline fishing in Hawaii. The amendment requires vessels targeting swordfish to use mackerel type bait and 18/0 circle hooks. It also set an effort limit of 2,120 set per year and hard caps on loggerhead and leatherback turtles takes, which if reached would close the fishery for the remainder to the year.

FMP REGULATORY AMENDMENT 5 (effective January 18, 2006) allowed operators of Hawaii-based longline vessels fishing north of 23 degrees north latitude, as well as those targeting swordfish south of 23 degrees north, to utilize side-setting to reduce seabird interactions in lieu of the seabird mitigation measures required by Framework Measure 1. Sidesetting was tested on Hawaii-based longline vessels and found to be highly effective in reducing seabird interactions.

At the request of the Council NMFS published a temporary rule removing the delay in effectiveness for closing the Hawaii-based longline shallow-set swordfish fishery as a result of it having reached one of its turtle interaction limits (71 FR 14416). This rule was implemented as vessel communications had improved to the point that vessel operators could be immediately notified of a closure, thus removing the possibility of exceeding a turtle limit during the notification period. This rule was effective March 20, 2006 through September 18, 2006.

FMP REGULATORY AMENDMENT 6 (effective March 28, 2007) made the above temporary rule permanent.

FMP REGULATORY AMENDMENT 7 (effective May 17, 2007) provided pelagic fishery participants the option of using NMFS approved electronic logbooks in lieu of paper logbooks. This measure was implemented to improve the efficiency and accuracy of catch reporting.

NMFS published a temporary rule effective March 20, 2006 through December 31, 2006 closing the Hawaii-based longline swordfish fishery for the remainder of the calendar year due to its having reached its annual limit of 17 interactions with loggerhead turtles.

CONTROL DATE of June 19, 2008 set for Hawaii-based pelagic charter fishery. Anyone who enters this fishery after this control date is not guaranteed future participation in the fishery if the Western Pacific Regional Fishery Management Council recommends, and NMFS approves, management measures for this fishery (e.g. limited entry).

FMP AMENDMENT 15 (effective December 22, 2008) designated three species of pelagic squid as management unit species, and established permitting, reporting, and observer requirements for squid jig fishing vessels over 50ft (15.4 m) in length.

FEP AMENDMENT 1 (effective September 3, 2010) established eligibility requirements and procedures for reviewing and approving community development plans for Western Pacific fisheries.

FEP AMENDMENT 4 (effective June 27, 2011) established a mechanism for specifying annual catch limits for Western Pacific fisheries.

D. Commonwealth of the Northern Marianas Islands

Generally, the major surface current affecting CNMI is the North Equatorial Current, which flows westward through the islands, however the Subtropical Counter Current affects the Northern Islands and generally flows in a easterly direction. Depending on the season, sea surface temperatures near the Northern Mariana Islands vary between 80.9° – 84.9° F. The mixed layer extends to between depths of 300-400 ft.

1. Traditional and Historical Pelagic Fisheries

The CNMI's pelagic fisheries occur primarily from the island of Farallon de Medinilla south to the island of Rota. Trolling is the primary fishing method utilized in the pelagic fishery. The pelagic fishing fleet consists primarily of vessels less than 24 ft in length, which usually have a limited 20-mile travel radius from Saipan.

The primary target and most marketable species for the pelagic fleet is skipjack tuna (>60% of 2012 commercial landings). Yellowfin tuna and mahimahi are also easily marketable species but are seasonal. During their runs, these fish are usually found close to shore and provide easy targets for the local fishermen. In addition to the economic advantages of being near shore and their relative ease of capture, these species are widely accepted by all ethnic groups which has kept market demand fairly high.

2. Pelagic Fisheries Development

Fishery resources have played a central role in shaping the social, cultural and economic fabric of the CNMI. The aboriginal peoples indigenous to these islands relied on seafood as their principal source of protein and developed exceptional fishing skills. Later immigrants to the islands from East and Southeast Asia also possessed a strong fishing tradition. Under the MSA, the CNMI is defined as a fishing community.

In the early 1980s, U.S. purse seine vessels established a transshipment operation at Tinian Harbor. The CNMI is exempt from the Jones Act, which requires the use of U.S.-flag and U.S.-built vessels to carry cargo between U.S. ports. The U.S. purse seiners took advantage of this exemption by offloading their catch at Tinian onto foreign vessels for shipment to tuna canneries in American Samoa; however this operation closed in the 1990s. Over the past ten years a small 2-4 vessel longline fishing operation has operated in the CNMI but this ceased in 2012.

3. Administrative or Management Actions to Date

Along with the original measures placed into the Pelagics FMP, the following amendments were made which affected the pelagic fisheries of CNMI:

FMP AMENDMENT 1 (effective March 1, 1991) defined recruitment overfishing and optimum yield for each PMUS.

FMP AMENDMENT 2 (effective May 26, 1991) implemented permitting and logbook requirements for domestic pelagic longline fishing and transshipment vessel operators.

FMP AMENDMENT 8 (effective Feb. 3, 1999, and July 3, 2003) addressed new requirements under the 1996 Sustainable Fisheries Act, included designations of essential fish habitat, descriptions of fishing communities, overfishing definitions and bycatch.

FMP AMENDMENT 10 (prepared and transmitted to the NMFS for approval in parallel with the FMP for Coral Reef Ecosystems of the Western Pacific Region) clarified the PMUS by removing all but truly oceanic sharks to the Coral Reef Ecosystems FMP along with dogtooth tuna.

In 2006 NMFS notified the Council that overfishing of Western and Central Pacific yellowfin tuna was occurring and requested the Council to take appropriate action to end the overfishing. The Council was informed that the entire U.S. harvest of yellowfin tuna in the Western and Central Pacific was only about 4 percent of the total area's catch and that NMFS welcomed the Council's participation as a member in international fishery management organizations.

FMP AMENDMENT 14 (partially approved by NMFS on May 16, 2007) was developed in response to NMFS' notifications that Pacific-wide bigeye and Western and Central Pacific yellowfin tuna were subject to overfishing. It contained recommendations regarding both international and domestic management, including a mechanism by which the Council could participate in international negotiations regarding these stocks.

FMP REGULATORY AMENDMENT 7 (effective May 17, 2007) provided pelagic fishery participants the option of using NMFS approved electronic logbooks in lieu of paper logbooks. This measure was implemented to improve the efficiency and accuracy of catch reporting.

CONTROL DATE of June 19, 2008 was set for the CNMI pelagic longline fishery. Anyone who enters this fishery after this control date is not guaranteed future participation in the fishery if the Western Pacific Regional Fishery Management Council recommends, and NMFS approves, management measures for this fishery (e.g. limited entry).

FMP AMENDMENT 15 (effective December 22, 2008) designated three species of pelagic squid as management unit species, and established permitting, reporting, and observer requirements for squid jig fishing vessels over 50ft (15.4 m) in length.

FEP AMENDMENT 1 (effective September 3, 2010) established eligibility requirements and procedures for reviewing and approving community development plans for Western Pacific fisheries.

FEP AMENDMENT 3 (effective June 27, 2011) established a purse seine area closure and longline area closure in CNMI, of which only the longline closure was approved.

FEP AMENDMENT 4 (effective June 27, 2011) established a mechanism for specifying annual catch limits for Western Pacific fisheries.

E. Pacific Remote Island Areas

Baker Island lies within the westward flowing South Equatorial Current. Baker Island also experiences an eastward flowing Equatorial Undercurrent that causes upwelling of nutrient and plankton rich waters on the west side of the island (Brainard et. al 2005). Sea surface temperatures of pelagic EEZ waters around Baker Island are often near 30° C. Although the depth of the mixed layer in the pelagic waters around Baker Island is seasonally variable, average mixed layer depth is around 100 m.

Howland Island lies within the margins of the eastward flowing North Equatorial Counter Current and the margins of the westward flowing South Equatorial Current. Sea surface temperatures of pelagic EEZ waters around Baker Island are often near 30° C. Although the depth of the mixed layer in the pelagic waters around Howland Island is seasonally variable, average mixed layer depth is around 70 m - 90 m.

Jarvis Island lies within the South Equatorial Current which runs in a westerly direction. Sea surface temperatures of pelagic EEZ waters around Jarvis Island are often 28°- 30° C. Although depth of the mixed layer in the pelagic waters around Jarvis Island is seasonally variable, average mixed layer depth is around 80 m.

Palmyra Atoll and Kingman Reef lie in the North Equatorial Counter-current, which flow in a west to east direction. Sea surface temperatures of pelagic EEZ waters around Palmyra Atoll are often 27°- 30° C. Although the depth of the mixed layer in the pelagic waters around Kingman Reef is seasonally variable, average mixed layer depth is around 80 m.

Sea surface temperatures of pelagic EEZ waters around Johnston Atoll are often 27° - 30° C. Although the depth of the mixed layer in the pelagic waters around Johnston Atoll is seasonally variable, average mixed layer depth is around 80 m.

Sea surface temperatures of pelagic EEZ waters around Wake Island are often 27°- 30° C. Although the depth of the mixed layer in the pelagic waters around Wake Atoll is seasonally variable, average mixed layer depth is around 80 m.

1. Traditional and Historical Pelagic Fisheries

As many tropical pelagic species (e.g. skipjack tuna) are highly migratory, the fishing fleets targeting them often travel great distances. Although the EEZ waters around Johnston Atoll and Palmyra Atoll are over 750 nm and 1000 nm (respectively) away from Honolulu, the Hawaii longline fleet does seasonally fish in those areas. For example, the EEZ around Palmyra is visited by Hawaii-based longline vessels targeting yellowfin tuna, whereas at Johnston Atoll, albacore tuna is often caught in greater numbers than yellowfin or bigyeye tuna. Similarly, the U.S. purse seine fleet also targets pelagic species (primarily skipjack tuna) in the EEZs around some PRIA, specifically, the equatorial areas of Howland, Baker, and Jarvis Islands. The combined amount of fish harvested from these areas from the U.S. purse seine on average is less than 5 percent of their total annual harvest.

2. Pelagic Fisheries Development

The USFWS prohibits fishing within the Howland Island, Jarvis Island, and Baker Island National Wildlife Refuge (NWR) boundaries. Currently, Howland Island and Baker Island are uninhabited. The USFWS manages Johnston Atoll as a National Wildlife Refuge, but does allow some recreational fishing within the Refuge boundary.

3. Administrative or Management Actions to Date

Along with the original measures placed into the Pelagics FMP, the following amendments were made which affected the pelagic fisheries of the PRIAs:

FMP AMENDMENT 1 (effective March 1, 1991) defined recruitment overfishing and optimum yield for each PMUS.

FMP AMENDMENT 2 (effective May 26, 1991) implemented permitting and logbook requirements for domestic pelagic longline fishing and transshipment vessel operators.

FMP AMENDMENT 8 (effective Feb. 3, 1999, and July 3, 2003) addressed new requirements under the 1996 Sustainable Fisheries Act, included designations of essential fish habitat, descriptions of fishing communities, overfishing definitions and bycatch.

FMP AMENDMENT 10 (prepared and transmitted to the NMFS for approval in parallel with the FMP for Coral Reef Ecosystems of the Western Pacific Region) clarified the PMUS by removing all but truly oceanic sharks to the Coral Reef Ecosystems FMP along with dogtooth tuna.

In 2006 NMFS notified the Council that overfishing of Western and Central Pacific yellowfin tuna was occurring and requested the Council to take appropriate action to end the overfishing. The Council was informed that the entire U.S. harvest of yellowfin tuna in the Western and Central Pacific was only about 4 percent of the total area's catch and that NMFS welcomed the Council's participation as a member in international fishery management organizations.

FMP AMENDMENT 14 (partially approved by NMFS on May 16, 2007) was developed in response to NMFS' notifications that Pacific-wide bigeye and Western and Central Pacific yellowfin tuna were subject to overfishing. It contained recommendations regarding both international and domestic management, including a mechanism by which the Council could participate in international negotiations regarding these stocks.

FMP REGULATORY AMENDMENT 7 (effective May 17, 2007) provided pelagic fishery participants the option of using NMFS approved electronic logbooks in lieu of paper logbooks. This measure was implemented to improve the efficiency and accuracy of catch reporting.

FMP REGULATORY AMENDMENT 2 (effective Oct. 4, 2002) established federal permit and reporting requirements for any vessel using troll or handline gear to catch PMUS in EEZ waters around the Pacific Remote Island Areas of Kingman Reef; Howland, Baker, Jarvis, Johnston and Wake Islands; and Palmyra and Midway Atolls.

FMP AMENDMENT 15 (effective December 22, 2008) designated three species of pelagic squid as management unit species, and established permitting, reporting, and observer requirements for squid jig fishing vessels over 50ft (15.4 m) in length.

FEP AMENDMENT 1 (effective September 3, 2010) established eligibility requirements and procedures for reviewing and approving community development plans for Western Pacific fisheries.

FEP AMENDMENT 4 (effective June 27, 2011) established a mechanism for specifying annual catch limits for Western Pacific fisheries.

III. The Current Status of Pelagic Fisheries of the Western Pacific Region

A summary of the total pelagic landings during 2011 in the Western Pacific and the percentage change between 2011 and 2012 is shown in Table 2.

Table 2. Total pelagic landings in lbs in the Western Pacific Region in 2012

	America	n Samoa	Gu	am	CN	MI	Hav	vaii
Species	Lbs	% change	Lbs	% change	Lbs	% change	Lbs	% change
Swordfish	31,179	11.37%					3,094,000	-13.31%
Blue marlin	80,471	-7.06%	12,718	-32.69%	9,751	86.44%	951,000	-23.74%
Striped marlin	16,306	163.34%					648,000	-22.40%
Other billfish	10,800	27.81%	3614				416,000	-29.61%
Mahimahi	22,802	4.26%	84,504	-7.02%	39,235	-28.58%	2,007,000	23.28%
(dolphinfish)								
Wahoo	187851	-32.51%	44,642	19.51%	18,456	60.26%	809,000	19.85%
Opah (moonfish)	7,507	28.81%					1,593,000	-1.79%
Pomfrets (monchong)	977	-5.88%	113	100.00%			710,000	68.25%
Sharks (whole wt)	7,150	5.77%		-100.00%			181,000	-4.74%
Albacore tuna	7,054,206	42.93%					2,009,000	15.86%
Bigeye tuna	383,023	9.77%					14,022,000	3.90%
Bluefin tuna							1000	100.00%
Skipjack tuna	637,461	167.19%	313,277	-10.54%	288,642	30.27%	907,000	-17.92%
Yellowfin tuna	824,424	-18.70%	29,609	-63.81%	73,707	79.75%	4,098,000	5.70%
Other pelagics	385	-83.58%	6,707	-9.09%	2,756	-70.16%	656,000	786.49%
Total	9,264,542	36.67%	495,184	-15.61%	457,227	32.47%	32,102,000	3.34%

Note: Total Pelagic Landings are based on commercial reports and/or creel surveys. "Other pelagics" may include Dogtooth Tuna, Rainbow Runner, Barracudas, Kawakawa, Pomfrets, Oilfish, and Misc Pelagic Fish categories

IV. 2012 International and Region-wide Pelagics Plan Team Recommendations

There were no recommendations made by the Pelagics Plan Team in 2012, other than content edits to this report.

V. Data Modules

A. American Samoa

Introduction

The pelagic fishery in American Samoa is, and has been, an important component of the American Samoan domestic economy. Prior to 1995, the pelagic fishery was largely a troll fishery. Horizontal longlining was introduced to the Territory by Western Samoan fishermen in 1995. Local fishers have found longlining worthwhile because they land more pounds with less effort and use less gasoline for trips. Initially the vessels used in longlining were "alias," which are locally built, twin-hulled (wood with fiberglass or aluminum) vessels about 30 feet long. powered by 40HP gasoline outboard engines. Larger monohull vessels capable of longer multiday trips began joining the longline fleet soon after the alias. Monohull vessels now dominate the fleet and landings. There are presently only a few alias participating in the fishery. Commercial troll vessels have also declined. Federal longline logbooks were implemented during 1996. Two 50-mile area closures for vessels longer than 50 feet were implemented by WPRFMC and NMFS during 2002; one surrounding Swains Island and one surrounding Tutuila and Aunu'u Islands. Federal longline limited entry permits were issued during December of 2005. Albacore is the primary species caught longlining; the bulk of the longline catch is sold to the Pago Pago canneries. Some of the catch is sold to stores, restaurants and local residents, and some is donated for family functions.

Pago Pago Harbor on the island of Tutuila is a regional base for the trans-shipment and processing of tuna taken by domestic fleets from other South Pacific nations, the distant-waters longline fleets, and purse seine fleets. Purse seine vessels land skipjack, yellowfin and other tunas, with little albacore. Purse seine and non-US vessel landings are not included in this report.

Fishery Data History

Prior to 1985, only commercial landings were monitored. From October 1985 to the present, data was collected through a boat-based creel survey including subsistence, recreational, and commercial fishing sectors. In September 1990, a Commercial Purchase (receipt book) System was instituted requiring all businesses in Samoa that buy fish commercially, except for the canneries, to submit a copy of their purchase receipts to Department of Marine and Wildlife Resources (DMWR). In January 1996, in response to the developing longline fishery, a federal longline logbook system was implemented. All longline fishermen are required to obtain a federal permit and submit logs containing detailed data on each set including catch composition. From 1996 through 1999, logbooks submitted by local longliners were edited in American Samoa and sent to the NMFS Honolulu Lab weekly for further editing and data processing. Beginning in 2000, logbook data has been electronically entered and maintained in American Samoa and periodically uploaded to NMFS servers in Hawaii.

Changes to the algorithms for expanding the boat-based creel survey data were described in the 2008 Pelagics Annual Report. These changes were necessary due to peculiarities in the historical data and the emergence of multi-day trips. Data from 1982-1985 were left unchanged; data from 1986-2006 were re-expanded. This recalculation accounts for differences in figures and tables between annual reports issued prior 2008 and subsequent reports. Additionally, in 2000, larger

fish began to be measured rather than weighed, and the creel survey system was modified to calculate and incorporate length to weight conversions. Issuance of cannery sampling forms began in 2001. Cannery sampling forms allow fishery managers to determine, for each species, whether catch was sold to small local vendors, to the canneries, or was unsold. Lastly, the method for determining price per pound was revised in 2001.

2012 Summary - American Samoa Pelagic Fishery

Total landings: This category refers to all fish returned to shore for commercial, recreational, or subsistence use.

Commercial landings: This category refers to that portion of the total landings that was sold commercially in American Samoa to canneries and other local businesses. Subsistence and recreational landing are excluded.

Landings (pounds): The estimated annual pelagic landings have varied widely, ranging from 1 to 15 million pounds between 1998 and 2011. Approximately 8.9 million pounds of pelagic species are estimated to have been landed in American Samoa in 2012, an increase of about 27% from 2011. Landings consisted mainly of wahoo and four major tuna species – albacore, yellowfin, bigeye, and skipjack. Other species that made up most of the total landings are blue marlin, swordfish and mahimahi. Tuna species made up 96% of the total landings; albacore tuna comprised 80% of the tuna landings, while yellowfin contributed 9% and skipjack comprised 6%. Non-tunas and other pelagic species made up 4% of the landings.

Effort: The number of longline boats landing any pelagic species gradually decreased from 62 in 2001 to 22 in 2012. These 22 boats deployed 4,068 sets with over 11.7 million hooks. The longline boats landing pelagic species decreased by two in 2012, continuing the declining trend over the past ten years. Two longline alias in the longline fishery are very active. One participates 100% in the longline fishery and the other sometimes participates in the bottomfish fishery. Hardly any interviews were collected from these longline alias because their returning time was always at midnight or early morning before the creel survey begins.

Longline CPUE: The longline CPUE for albacore varied from 18 to 12 fish per 1000 hooks between 2006 and 2011. The 2012 catch rate for albacore increased by 23% from 2011. In 2012, the skipjack CPUE increased by 72%, while yellowfin CPUE decreased by 40%. Bigeye tuna CPUE remained constant at 0.7. CPUE for all tunas increased by 22% in 2012 (Table 5C).

Pounds-Per-Hour Trolling: Average pelagic catch pounds-per-hour trolling increased 0.8% from 2011. This is the highest rate in the fishery history at 52 pounds. The number of hour spent trolling dropped by 45% in 2012.

Fish Size: Average weight-per-fish from the cannery samples for albacore remained relatively stable through the years. The weight per fish for skipjack increased, yellowfin and wahoo remained the same, and bigeye slightly decreased

Revenues: Inflation-adjusted revenues for tunas increased in 2012, but decreased for non-tuna PMUS. Adjusted revenue for tunas increased by 23%, recovering from a slump in 2011 – the

lowest adjusted revenue for tuna since 2000. Non-tuna adjusted revenues decreased by 44% from 2011. The adjusted revenue for tuna species peaked in 2002 at \$21.5 million and peaked for non-tuna at \$809,000 in 2006.

Bycatch: The 2012 longline bycatch by all boats totaled 31,930 fishes. 21% were tunas, 47% were non-tuna PMUS, and other pelagics and sharks accounted for 32%.

Plan Team Recommendations

There were no plan team recommendations for 2012.

Table 3. American Samoa 2012 estimated total landings of pelagic species by gear type

	Longline	Troll	Other	Total
Species	Pounds	Pounds	Pounds	Pounds
Skipjack tuna	637,461	9,703	0	647,163
Albacore tuna	7,054,206	0	0	7,054,206
Yellowfin tuna	828,424	8,479	0	836,903
Kawakawa	0	144	289	433
Bigeye tuna	383,023	0	0	383,023
Tunas (unknown)	1,131	0	0	1,131
TUNAS				
SUBTOTALS	8,904,245	18,326	289	8,922,860
Mahimahi	22,645	157	0	22,802
Black marlin	4,615	0	0	4,615
Blue marlin	80,471	0	$\overset{\circ}{0}$	80,471
Striped marlin	16,306	0	0	16,306
Wahoo	187,851	597	0	188,448
Sharks (all)	7,150	7	0	7,157
Swordfish	31,179	0	0	31,179
Sailfish	3,333	0	0	3,333
Spearfish	2,852	0	0	2,852
Moonfish	7,507	0	0	7,507
Oilfish	454	0	23	478
Pomfret	977	0	0	977
NON-TUNA PMUS				
SUBTOTALS	365,339	760	23	366,123
Pelagic fishes				
(unknown)	385	0	0	385
OTHER PELAGICS				
SUBTOTAL	385	0	0	385
TOTAL PELAGICS	9,269,968	19,086	313	9,289,367

Interpretation: About 9.3 million pounds of pelagic species were landed by all methods in American Samoa during 2012. Longline fishing topped (99.8%) the pelagic landings. Albacore tuna comprised 79% of the tuna landings (76% of all pelagic landings), followed by yellowfin at 9%; bigeye, skipjack and unknown tunas comprised the rest of the total tuna landing. Wahoo topped the non-tuna PMUS all-methods total landings with 51%, followed by blue marlin, swordfish, and mahimahi.

Calculations: "Longline Pounds" total landing estimates are from the boat-creel survey for the alia longliners. These boat-creel survey landing estimates are augmented with longline logbook data from the larger longliners. The "Troll Pounds" category includes the pelagic landings of combined troll/bottomfishing trips as well as the landings of purely troll trips. The "Other

Pounds" category includes pelagic species not caught by longlining or trolling such as barracuda, rainbow runner and dogtooth tuna, caught with bottomfishing or spearfishing methods. In addition, the "All Sharks Species" categorizes all species of sharks that could and could not be identified by the fishermen.

Table 4. American Samoa 2012 estimated commercial landings, value and average price by pelagic species

		Longline			Troll	
Species	Pounds	Value(\$)	Price(\$)/lb	Pounds	Value(\$)	Price/lb
Skipjack tuna	637,461	\$465,746	\$0.73	8,811	\$23,689	\$3.26
Albacore tuna	7,054,206	\$7,689,085	\$1.09	0	\$0	
Yellowfin tuna	828,424	\$819,969	\$0.99	8,315	\$29,475	\$3.54
Kawakawa	0	\$0		321	\$943	\$2.93
Bigeye tuna	383,023	\$478,778	\$1.25	0	\$0	
TUNAS						
SUBTOTAL	8,903,113	\$9,453,579	\$1.06	17,447	\$59,106	\$3.39
Mahimahi	6,291	\$17,036	\$2.71	122	\$336	\$2.75
Blue marlin	1,124	\$1,231	\$1.09	0	\$0	
Striped marlin	952	\$809	\$0.85	0	\$0	
Wahoo	187,851	\$170,580	\$0.91	280	\$917	\$3.28
Sharks (all)	0	\$0	\$	7	\$3	\$0.50
Swordfish	2,344	\$5,561	\$2.37	0	\$0	
NON-TUNA	·					
PMUS						
SUBTOTAL	198,562	\$195,218	0.98	409	\$1,257	\$3.08
PELAGICS						
TOTALS	9,101,675	\$9,648,796	1.06	17,856	\$60,363	\$3.38

Interpretation: About 9.1 million pounds of tuna and non-tuna PMUS species by all methods are estimated to have been sold in 2012, which is estimated to be 98% of the estimated total pelagic landings, earning an estimated revenue of \$9.7 million.

Calculation: Estimated commercial landings, value, and price per pound calculations are the same as those described for Table 3 and in greater detail in the Fishery Data History section above. The Troll/Non-Longline category in Table 3 includes pelagic species not caught by longlining such as barracuda, rainbow runner and dogtooth tuna, that were caught with bottomfishing or spearfishing methods.

Table 5. Longline effort by American Samoan vessels during 2012

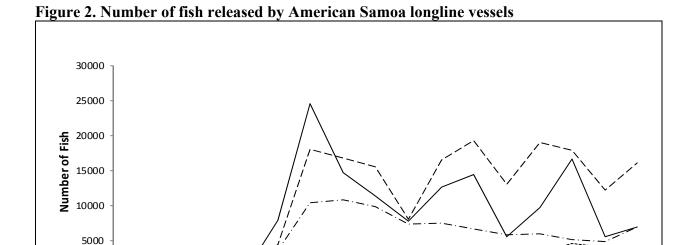
Boats	25
Trips	195
Sets	4,208
Hooks x 1000	12,109
Lightsticks	1,272

Table 6. Number of fish kept, released and percent released for all American Samoa longline vessels during 2012

	Number	Number	Percent
Species	Kept	Released	Released
Skipjack tuna	46,614	5,380	10%
Albacore tuna	178,774	508	0%
Yellowfin tuna	13,907	684	5%
Bigeye tuna	7,491	335	4%
Tuna unknown	63	17	21%
Tunas subtotals	246,849	6,924	3%
Mahimahi	1,046	379	27%
Black marlin	41	3	7%
Blue marlin	592	1,188	67%
Striped marlin	237	188	44%
Wahoo	6,169	1,774	22%
Sharks (all)	110	6,932	98%
Swordfish	245	68	22%
Sailfish	47	314	87%
Spearfish	62	901	94%
Moonfish	153	463	75%
Oilfish	24	9,891	100%
Pomfret	111	893	89%
Non-tuna PMUS			
subtotals	8,837	22,994	72%
Pelagic fishes (unknown)	8	3,441	100%
Other pelagic subtotals	8	3,441	100%
TOTAL PELAGICS	255,694	33,359	12%

Interpretation: Table 5 lists 25 vessels landed pelagic species in American Samoa during 2012. The vessels conducted 195 fishing trips deploying 4,208 longline sets, using 12.1 million hooks

and 1,272 lightsticks. Table 5 values are used to calculate average trip, set, hooks etc. for each longline vessel based in American Samoa.


7.8 trips and 168 sets were made per boat 484,360 hooks and 51 lightsticks were used per boat 2883 hooks were used per set

More than 255,000 pelagic species were caught, of which 12% were released by the longline fishery during 2012.

Tuna species accounted for about 21% of total releases, while non-tuna and other pelagic made up 79%. Oilfish, sharks, blue marlins and unknown pelagics topped the list of released species.

Fish can be released for various reasons including quality, handling and storage difficulties, and marketing problems. Investigation into the reasons for releasing of pelagic species are recommended because of the high release rate for many non-tuna PMUS and releases of some tuna.

Calculation: These values are sums or the number of fish kept and the number of fish released from Longline Logbook data for all of the longline vessels in Samoa. The percent released is calculated as the number released divided by the sum of the number released and the number kept. The percentages for subtotals and totals are the sum of released species for the subtotal or total divided by the sum of kept plus the sum of released for the subtotal or total. The kept values for sharks include those that were finned. All species of sharks entered in the Longline Logs are combined in the All Sharks species. Rays and Sunfish are included in the Misc Pelagic Fish species. A completed trip is denoted when a vessel makes a landing within a given calendar year.

Year

----- Other Pelagic

Interpretation: The number of sharks released over the years has declined from 10,831 to 3,572 between 2003 and 2012. Tuna released in 2012 is higher than 2011, but is the third lowest since 2001. Non-tuna PMUS released also increased.

- Non_Tuna PMUS

Calculation: These values are sums of Longline Logbook number released data for each year. They are summed according to the species groups in Table 3 with Sharks separated out of the "Non-Tuna PMUS" species group.

		Non-		
		Tuna		Other
Year	Tunas	PMUS	Sharks	Pelagics
1996	0	0	37	0
1997	50	36	19	1
1998	71	29	28	0
1999	492	438	37	43
2000	371	815	386	0
2001	7,888	4,457	3,648	239
2002	24,601	18,100	10,459	4,183
2003	14,679	16,826	10,831	3,125
2004	11,323	15,481	9,918	1,521
2005	7,830	8,039	7,318	1,057
2006	12,609	16,498	7,487	842
2007	14,418	19,350	6,667	3,308
2008	5,542	13,039	5,833	2,274
2009	9,698	19,022	5,930	3,291
2010	16,695	17,935	5,108	4,575
2011	5,567	12,161	4,035	4,835
2012	6,924	16,062	3,572	6,932

Table 7. American Samoa 2012 trolling bycatch

	<u>Bycatch</u>]	Interview	<u>'S</u>		
Catch	Alive	Injured	Dead	Unknown	Total	%BC	BC	All	%BC
1527	0	0	0	0	0	0	0	59	0

Interpretation: There was no bycatch recorded for 2012 from trolling only; 59 interviews were conducted with 1,527 pelagic fish landed. Using fishermen's reports at the dock may not accurately reflect the number of fish returned at sea.

Calculation: The trolling bycatch table is obtained from creel survey interviews. The bycatch numbers are obtained by counting fish on interview forms for purely troll trips with a disposition of bycatch. Bycatch is reported by fishermen when interviewed at the landing site in response to questions from the data collector; bycatch are fish thrown back at sea by the fishermen. The catch for all species is included for comparison and is obtained by counting all fish listed on the same interview forms. The number of interviews is a count of the purely trolling interview forms.

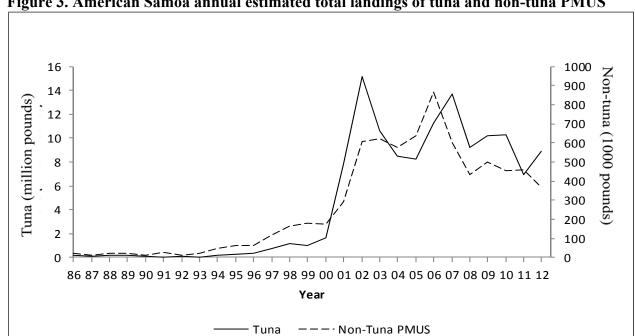


Figure 3. American Samoa annual estimated total landings of tuna and non-tuna PMUS

Interpretation: Total tuna landings increased 23% in 2012 from the lowest seen since 1997. Non-tuna (PMUS) declined in 2012 by 22% after a steady trend from 2008 through 2011.

Calculation: Estimated total landings for Tunas and Non-Tuna PMUS were calculated by summing the total landings for the species in these categories as defined by Table 3.

Table 8. American Samoa annual estimated total landings (lbs) of tuna and non-tuna PMUS from 1986 through 2012

		Non Tuna
Year	Tuna	PMUS
1986	190,967	23,899
1987	144,037	10,894
1988	207,095	23,462
1989	171,809	20,534
1990	81,736	10,494
1991	72,645	28,092
1992	94,060	12,328
1993	47,815	21,736
1994	190,262	48,146
1995	288,667	64,329
1996	317,601	64,473
1997	802,077	119,961
1998	1,160,724	163,726
1999	1,004,615	178,648
2000	1,685,591	175,061
2001	7,870,925	292,699
2002	15,169,356	606,670
2003	10,617,519	621,523
2004	8,489,580	575,669
2005	8,204,994	639,043
2006	11,242,553	865,217
2007	13,731,224	601,292
2008	9,252,262	433,255
2009	10,214,177	497,872
2010	10,305,460	453,461
2011	6,957,377	459,699
2012	8,922,860	366,123
Average	4,720,198	273,271
Std. Dev	5,048,233	256,602

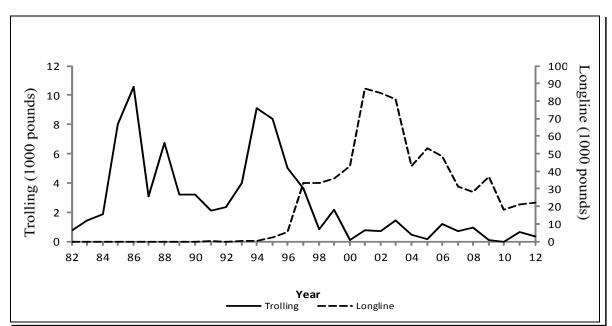


Figure 4. American Samoa annual estimated total mahimahi landings by gear

Interpretation: Estimated landings of mahimahi by longline gear increased by 4% to 22,138 lbs in 2012. Longline gear landed more mahimahi than trolling. Trolling mahimahi landings decreased in 2012 by 43% from 2011.

Calculation: The estimated total annual landings of mahimahi are listed for longline and trolling fishing methods as explained in Table 3.

Table 9. American Samoa annual estimate total mahimahi landings (lbs) by gear

	Pounds	Landed
Year	Longline	Trolling
1982	0	777
1983	0	1,443
1984	0	1,844
1985	0	8,011
1986	0	10,542
1987	0	3,049
1988	0	6,736
1989	0	3,170
1990	0	3,169
1991	61	2,090
1992	0	2,325
1993	212	4,000
1994	101	9,086
1995	2,373	8,393
1996	5,395	5,022
1997	33,412	3,623
1998	33,484	843
1999	35,779	2,193
2000	42,857	66
2001	87,037	782
2002	84,603	720
2003	81,022	1,434
2004	42,718	469
2005	53,078	161
2006	48,705	1,164
2007	31,415	684
2008	28,027	931
2009	36,799	113
2010	18,049	0
2011	21,260	611
2012	22,645	157
Average	32,229	2,649
Std. Dev	26,343	2,890

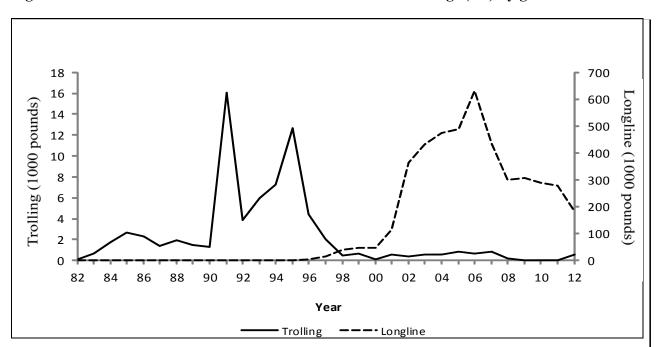


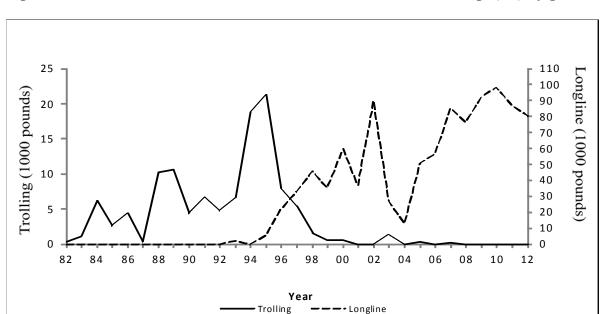
Figure 5. American Samoa annual estimated total wahoo landings (lbs) by gear

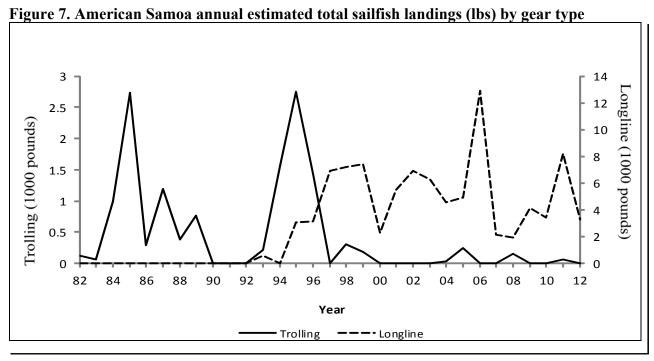
Interpretation: Estimated landings of wahoo showed an increasing trend from 1999 and peaked in 2006; landings gradually decreased from 2007 to 2012. Longline gear landed more wahoo. 2012 longline landings decreased by 34% from 2011, while troll landings increased by 985% to 597 lbs from a low of 55 lbs in 2011.

Calculation: The estimated total annual landings of wahoo are listed for longline and trolling fishing methods as explained in Table 3.

Table 10. American Samoa annual estimated total wahoo landings (lbs) by gear

	Pounds	Landed
Year	Longline	Trolling
1982	0	114
1983	0	632
1984	0	1,777
1985	0	2,678
1986	0	2,282
1987	0	1,395
1988	84	1,962
1989	0	1,476
1990	0	1,333
1991	0	16,081
1992	0	3,904
1993	1,227	5,977
1994	0	7,261
1995	1,642	12,625
1996	3,570	4,399
1997	15,807	2,074
1998	40,439	487
1999	48,181	685
2000	47,330	140
2001	114,219	587
2002	362,689	351
2003	431,531	612
2004	475,032	537
2005	487,394	828
2006	630,329	696
2007	436,921	889
2008	299,481	165
2009	305,835	0
2010	289,545	64
2011	278,296	55
2012	187,851	597
Average	178,296	2,499
Std. Dev	197,358	3,829




Figure 6. American Samoa annual estimated total blue marlin landings (lbs) by gear

Interpretation: Estimated blue marlin landings for longline and trolling gears total 79,927 pounds, with longline comprising 100% of the landings. 2012 longline landing decreased by 7% from 2011, while troll landings remained the same at zero.

Calculation: The estimated total annual landing of blue marlin is listed for longline and trolling fishing methods as explained in Table 3. The average and standard deviation for the Longline Method is calculated from 1993 onward.

Table 11. American Samoa annual estimated total blue marlin landings (lbs) by gear

	Pounds	Landed
Year	Longline	Trolling
1982	0	315
1983	0	1,083
1984	0	6,097
1985	0	2,574
1986	0	4,327
1987	0	265
1988	0	10,217
1989	0	10,590
1990	0	4,339
1991	0	6,669
1992	0	4,807
1993	2,168	6,545
1994	0	18,661
1995	5,338	21,272
1996	21,576	7,867
1997	32,434	5,379
1998	45,475	1,592
1999	34,883	590
2000	59,505	623
2001	36,792	0
2002	89,825	0
2003	26,994	1,344
2004	12,314	0
2005	50,584	300
2006	56,047	0
2007	84,970	204
2008	76,297	0
2009	91,753	0
2010	98,141	0
2011	86,587	0
2012	80,471	0
Average	49,608	3,911
Std. Dev	31,800	5,606

Interpretation: Estimated landings of sailfish by longline gear decreased by 60% to 3,262 pounds in 2012. Troll landings returned to zero, which is consistent from 1997 through 2012.

Calculation: The estimated total annual landings of sailfish are listed for longline and trolling fishing methods as explained in Table 3.

Table 12. American Samoa annual estimated total sailfish landing (lbs) by gear type

	Pounds	Landed
Year	Longline	Trolling
1982	0	127
1983	0	74
1984	0	989
1985	0	2,744
1986	0	294
1987	0	1,187
1988	0	394
1989	0	757
1990	0	0
1991	0	0
1992	0	0
1993	618	218
1994	0	1,561
1995	3,078	2,751
1996	3,130	1,444
1997	6,921	0
1998	7,191	314
1999	7,391	184
2000	2,257	0
2001	5,498	0
2002	6,932	0
2003	6,268	0
2004	4,598	32
2005	4,959	248
2006	12,933	0
2007	2,167	0
2008	1,931	148
2009	4,184	0
2010	3,404	0
2011	8,226	73
2012	3,333	0
Average	4,751	356
Std. Dev	2,953	643

Year

Longline

Figure 8. American Samoa annual estimated total skipjack tuna landings (lbs) by gear type

Interpretation: Estimated 2012 longline landings of skipjack tuna increased by 162% to 637,461 pounds. Estimated troll landings decreased by 51%.

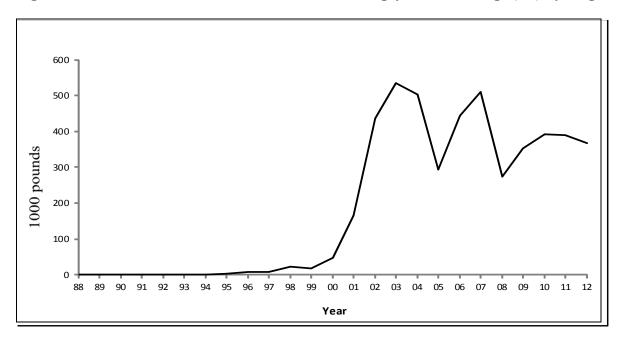
Trolling

Calculation: The estimated total annual landings of skipjack tuna are listed for longline and trolling fishing methods as explained in Table 3.

Table 13. American Samoa annual estimated total skipjack tuna landings (lbs) by gear type

	Pounds	Landed
Year	Longline	Trolling
1982	0	15,877
1983	0	58,997
1984	0	117,693
1985	0	38,902
1986	0	139,421
1987	0	116,436
1988	0	153,903
1989	0	118,948
1990	0	53,423
1991	345	42,137
1992	0	69,901
1993	533	25,356
1994	103	136,762
1995	160	168,389
1996	438	53,149
1997	2,546	30,430
1998	40,625	14,822
1999	56,014	35,171
2000	32,153	16,211
2001	149,565	15,086
2002	538,700	11,376
2003	264,414	19,464
2004	519,129	20,728
2005	312,055	10,845
2006	470,166	13,040
2007	365,220	12,255
2008	359,568	16,294
2009	343,586	2,775
2010	245,572	2,043
2011	243,284	19,862
2012	637,461	9,703
Average	208,256	49,183
Std. Dev	205,455	51,127

Figure 9. American Samoa annual estimated total yellowfin tuna landings (lbs) by gear

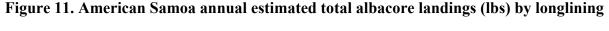

Interpretation: Estimated landings of yellowfin tuna decreased in both fisheries in 2012. Troll landing decreased 30% and longline landings decreased 32%.

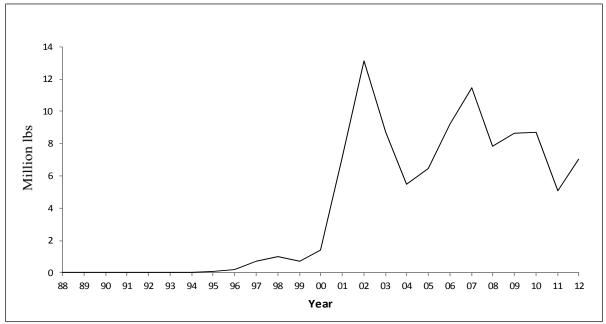
Calculation: The estimated total annual landings of yellowfin tuna are listed for longline and trolling fishing methods as explained in Table 3.

Table 14. American Samoa annual estimated total yellowfin tuna landings (lbs) by gear

Year	Longline	Trolling
1982	0	7,038
1983	0	19,789
1984	0	58,704
1985	0	38,586
1986	0	51,439
1987	0	27,451
1988	1,775	48,319
1989	127	51,873
1990	0	25,188
1991	262	28,046
1992	0	23,916
1993	2,632	18,180
1994	1,716	49,415
1995	4,052	54,139
1996	25,662	37,051
1997	48,589	21,679
1998	92,528	6,762
1999	139,496	11,566
2000	190,564	4,827
2001	413,999	6,116
2002	1,060,315	12,353
2003	1,096,218	6,953
2004	1,959,674	5,939
2005	1,151,375	7,501
2006	1,095,952	9,106
2007	1,396,331	9,023
2008	749,825	20,089
2009	866,522	2,785
2010	981,258	2,052
2011	1,191,634	12,382
2012	828,424	8,479
Average	531,998	20,838
Std. Dev	572,374	16,753

Figure 10. American Samoa annual estimated total bigeye tuna landings (lbs) by longlining




Interpretation: Estimated total longline landings of bigeye tuna shows an increasing trend from 2008 to 2010, but started decreasing in 2011, dropping another 2% in 2012.

Calculation: The estimated total annual landings of bigeye tuna is listed for longline fishing method as explained in Table 3. The average and standard deviation for the pounds caught is calculated from 1991 onward.

Table 15. American Samoa annual estimated total bigeye tuna landings (lbs) by gear

Year	Pounds
1988	0
1989	0
1990	0
1991	0
1992	0
1993	708
1994	0
1995	2,191
1996	8,701
1997	8,808
1998	22,291
1999	19,211
2000	47,710
2001	165,755
2002	436,280
2003	534,903
2004	502,541
2005	293,605
2006	443,042
2007	509,385
2008	274,482
2009	353,779
2010	392,896
2011	389,132
2012	383,023
Average	191,541
Std. Dev	203,727

Interpretation: Estimated total albacore landings in 2012 increased by 38% to 7.0 million pounds from 2011. The landings varied from 5 million pounds to 13 million pounds between 2002 and 2012. The 2002 albacore landings estimate of 13.1 million pounds is the highest ever recorded in the history of the fishery. Since the longline fishery initially began, it has been the most commonly used method of fishing for pelagic species, especially for albacore tuna.

Calculation: The estimated total annual landings of albacore tuna is listed for the longline fishing methods. The average and standard deviation is calculated from 1988 onward.

Year	Pounds
1988	1,875
1989	241
1990	0
1991	1,730
1992	0
1993	315
1994	1,609
1995	58,949
1996	190,269
1997	689,397
1998	983,560
1999	743,038
2000	1,394,011
2001	7,120,245
2002	13,109,695
2003	8,693,212
2004	5,480,841
2005	6,429,023
2006	9,210,565
2007	11,438,307
2008	7,831,590
2009	8,646,726
2010	8,684,611
2011	5,098,823
2012	7,054,206
Average	4,114,514
Std. Dev	4,257,720

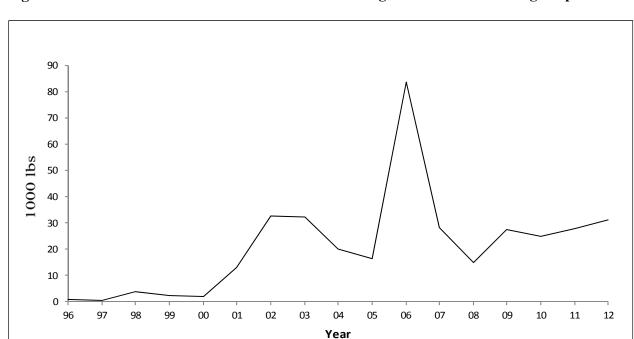


Figure 12. American Samoa annual estimated total longline swordfish landings in pounds

Interpretation: More than 31,000 pounds of swordfish are estimated to have been landed in American Samoa in 2012, which is 11% more than 2011. The 2006 landings are the highest for this fishery; landings declined in 2007 and 2008 before it returned to 2002-2003 levels from 2009-2012.

Calculation: The estimated total annual landings of swordfish are listed for longline and trolling fishing methods as explained in Table 3.

Year	Pounds
1996	893
1997	701
1998	3,716
1999	2,259
2000	2,056
2001	13,091
2002	32,710
2003	32,231
2004	20,195
2005	16,491
2006	83,615
2007	28,287
2008	14,889
2009	27,615
2010	24,816
2011	27,997
2012	31,179
Average	21,338
Std. Dev	19,391

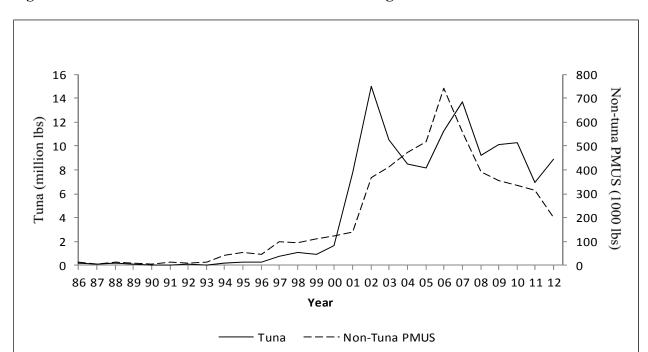


Figure 13. American Samoa annual commercial landings of tunas and non-tuna PMUS

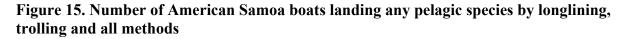

Interpretation: The estimated total commercial landing in 2012 is about 8.9 million pounds. Landings for tuna increased 28% in 2012 from the 2011 estimate of approximately 6.9 million pounds. The commercial landings of non-tuna (PMUS) decreased by 37% from 2011 landings.

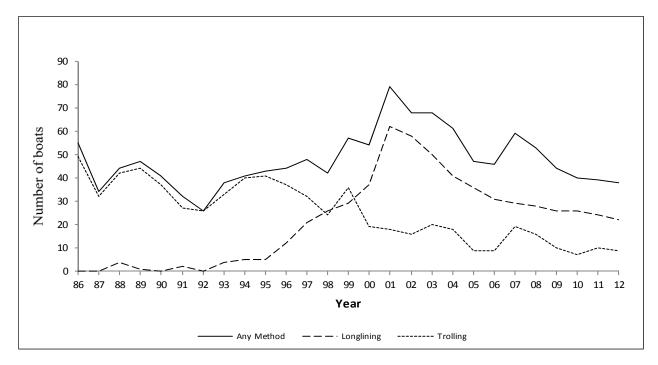
Calculation: Estimated commercial landings for Tunas and Non-Tuna PMUS were calculated by summing the commercial landings for the species these categories as defined by in Table 3.

Table 16. American Samoa annual commercial landings of tunas and non-tuna PMUS

	Pounds I	Pounds Landed	
		Non-	
Year	Tuna	Tuna	
1986	170,150	15,291	
1987	132,238	4,841	
1988	172,803	12,111	
1989	113,545	8,164	
1990	56,622	3,627	
1991	58,027	15,027	
1992	90,575	11,088	
1993	44,407	14,479	
1994	188,980	41,330	
1995	281,804	55,056	
1996	311,348	46,254	
1997	799,911	97,956	
1998	1,115,310	95,011	
1999	946,855	109,638	
2000	1,646,902	124,833	
2001	7,746,689	138,967	
2002	14,989,385	367,251	
2003	10,554,312	410,305	
2004	8,449,678	473,258	
2005	8,159,461	518,561	
2006	11,228,163	743,235	
2007	13,727,477	558,635	
2008	9,248,516	389,997	
2009	10,145,828	357,183	
2010	10,295,267	335,981	
2011	6,948,153	315,467	
2012	8,920,560	198,971	
Average	4,686,777	202,315	
Std. Dev	5,031,847	207,324	

Figure 14. Number of American Samoa vessels landing any pelagic species, tunas and non-tuna PMUS




Interpretation: There were 38 vessels in American Samoa vessels landing pelagic species in 2012. Boats landing tuna species equaled 38, and 33 boats landed non-tuna PMUS. The highest number of boats landing any pelagic, tuna and non-tuna PMUS species was 79, 76, and 69 respectively during 2001. Since the peak in 2001, the number of American Samoan vessels landing any pelagic, tuna and non-tuna species has declined. There was a brief increase in the number of vessels in 2007 and 2009 to 59 and 53, respectively, but in 2009 the downward trend was resumed with yet another 3% drop in 2012.

Calculation: Prior to 1997, each boat counted in the Any Pelagics column made at least one landing in an offshore creel survey interview of at least one species in Table 4 in the given year. Likewise each boat counted in the other two columns made at least one landing in an offshore creel survey interview of at least one species in the corresponding subgroup of Table 3 in the given year. In 1997 and after, the count of non-interviewed boats that made at least one landing of the appropriate species in a longline log was added to the count of interviewed boats from the offshore creel survey.

 $Table\ 17.\ Number\ of\ American\ Samoa\ boats\ landing\ any\ pelagic\ species,\ tunas\ and\ nontuna\ PMUS$

	Number of Vessels Landing Pelagic Species		
Year	Any Pelagics	Tuna	Non-Tuna PMUS
1982	22	17	12
1983	35	31	22
1984	50	42	38
1985	47	43	36
1986	55	54	40
1987	34	32	20
1988	44	42	33
1989	47	45	29
1990	41	38	28
1991	32	28	21
1992	26	26	20
1993	38	34	29
1994	41	40	28
1995	43	43	39
1996	44	43	37
1997	48	45	43
1998	42	38	36
1999	57	56	49
2000	54	52	43
2001	79	76	69
2002	68	67	62
2003	68	66	65
2004	61	59	54
2005	47	45	44
2006	46	39	37
2007	59	50	44
2008	53	44	38
2009	44	39	34
2010	40	38	35
2011	39	37	32
2012	38	38	33
Average	48	45	39
Std. Dev	12	12	12

Interpretation: The number of American Samoan vessels landing pelagic species in 2012 using any method was 38. There were 22 boats using longline gear and 9 boats using troll gear. The number of longline boats decreased by two and number of boats using trolling decreased by one boat.

The number of American Samoan vessels using any method and longline gear have been declining over the years since the peak in 2001.

Calculation: Prior to 1997, each boat counted in the Any Method column made at least one landing in an offshore creel survey interview of at least one species in Table 4 in the given year. Each boat counted in the Longlining and Trolling columns made at least one landing in an offshore creel survey interview of at least one species in Table 4, using the longline or troll or combined troll/bottom fishing methods in the given year. In 1997 and after the count of non-interviewed boats that made at least one landing of the species in Table 4 in a longline log during the given year was added to the count of interviewed boats from the offshore creel survey in the Any Method and Longlining columns. The average and standard deviation for the number of boats using Longlining is calculated from 1988 onward.

Table~18.~Number~of~American~Samoa~boats~landing~any~pelagic~species~by~longlining, trolling~and~all~methods

_	Number of Boats		
Year	Any Method	Longlining	Trolling
1982	22	0	22
1983	35	0	35
1984	50	0	50
1985	47	0	47
1986	55	0	49
1987	34	0	32
1988	44	4	42
1989	47	1	44
1990	41	0	37
1991	32	2	27
1992	26	0	26
1993	38	4	33
1994	41	5	40
1995	43	5	41
1996	44	12	37
1997	48	21	32
1998	42	26	24
1999	57	29	36
2000	54	37	19
2001	79	62	18
2002	68	58	16
2003	68	50	20
2004	61	41	18
2005	47	36	9
2006	46	31	9
2007	59	29	19
2008	53	28	16
2009	44	26	10
2010	40	26	7
2011	39	24	10
2012	38	22	9
Average	48	23	25
Std. Dev	12	18	12

Figure 16. Number of permitted and active longline fishing vessels in the A (\leq 40 foot) and D (> 70.1 foot) size classes

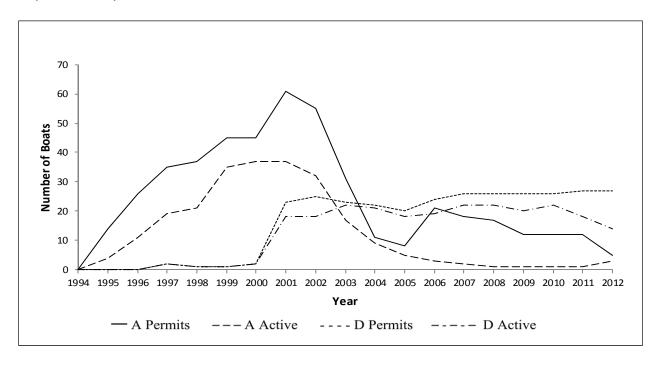
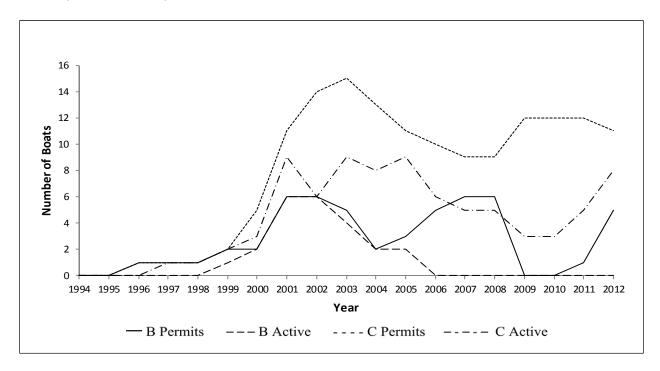
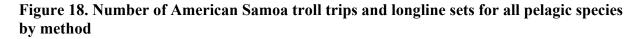
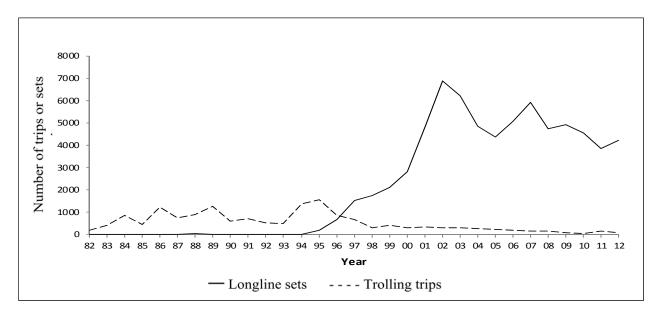



Figure 17. Number of permitted and active longline fishing vessels in the B (40.1 to 50 foot) and C (50.1 to 70 foot) size classes


Interpretation: In 2012, three alias (Class A) out of the 5 permitted vessels were active. The use of alias has steadily declined since 2001 when 37 alias were active, although 2012 saw an increase of two more vessels. Five Class B permits were issued in 2011, but no vessels from this class were active. Eight of 11 Class C permitted vessels were active. Class D boats dominated the American Samoa longline fishery in 2012, with 14 of 27 permitted vessels making landings. However, the number of Class D vessels making landings decreased by 22% in 2012.


Calculation: For 2006, the number of permits is the number actual of Limited Entry Longline Permits issued for each size class late in 2005. For earlier years, the number of permits is the number of federal general longline permits issued for each vessel size category. For the C and D size classes the number of permits may include those for Hawaiian permitted boats landing their fish in American Samoa. The number of active boats is those that have submitted longline logs or have been interviewed in the boat-based creel survey after a longline fishing trip during the year. Boats in the boat-based creel survey are not counted as active if they are interviewed using only fishing methods other than longlining such as bottomfishing or trolling.

The range of dates that constitutes a year of activity is skewed to be in line with when the longline permits are issued and expire, roughly Feb. 25th. The active year of 1996 is from February 25, 1996 to February 24 1997. This applies through 2004. The active year 2005 is from February 25, 2005 to December 31, 2005. The active year of 2006 is the calendar year; the active year of 1995 is January 1, 1995 to February 24, 1996. This causes the number of active vessels to be slightly different from other counts of longline vessel activity based on the calendar year.

Table 19. Number of permits and active permits by class

		Class A < 40 Feet		Class B 40.1-50 Feet		ss C '0 Feet	Clas > 70	
Year	Permits	Active	Permits	Active	Permits	Active	Permits	Active
1994	0	0	0	0	0	0	0	0
1995	14	4	0	0	0	0	0	0
1996	26	11	1	0	1	0	0	0
1997	35	19	1	0	1	1	2	2
1998	37	21	1	0	1	1	1	1
1999	45	35	2	1	2	2	1	1
2000	45	37	2	2	5	3	2	2
2001	61	37	6	6	11	9	23	18
2002	55	32	6	6	14	6	25	18
2003	31	17	5	4	15	9	23	22
2004	11	9	2	2	13	8	22	21
2005	8	5	3	2	11	9	20	18
2006	21	3	5	0	10	6	24	19
2007	18	2	6	0	9	5	26	22
2008	17	1	6	0	9	5	26	22
2009	1	1	1	0	8	5	26	20
2010	12	1	0	0	12	5	26	20
2011	12	1	1	0	12	5	27	18
2012	5	3	5	0	11	8	27	14

Interpretation: Longline sets increased by 9% in 2012, which reversed a declining trend. Longline sets varied from 3,800 to 6,800 sets between 2002 and 2011. The 2012 estimated number of troll trips decreased by 40% from 2011.

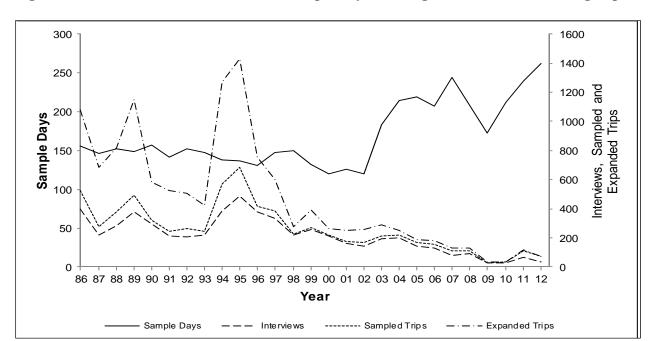
Calculation: The number of Troll Trips is calculated by first subtracting the total longline pounds of Table 1 from the total pounds to get an estimate of the number of pounds caught by trolling and other fishing methods. This value is divided by the catch per hour for pure troll trips, from the offshore creel survey system expansion, to get the number of trolling hours. The number of trolling hours is then divided by the hours per trip for a purely trolling trip from the offshore creel survey system expansion to get the number of troll trips.

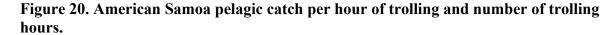
The number of longline sets using logbook data is obtained by counting all of the sets entered in the longline logbook system for the given year for interviewed and non-interviewed boats.

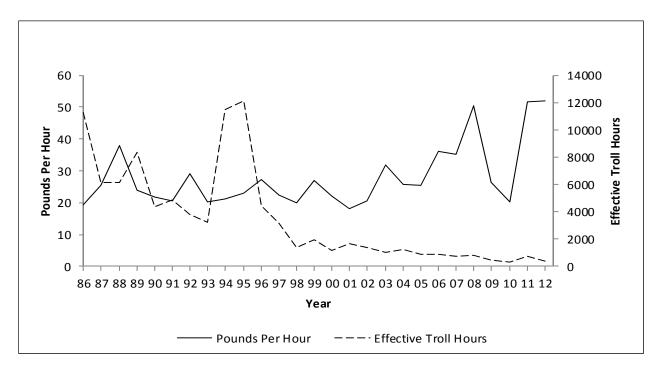
Prior to 1997, the number of longline sets using creel survey data is the expanded number of longline fishing trips from the offshore creel survey system. In 1997 and after this number is the expanded number of longline fishing trips from the offshore creel survey system for interviewed vessels plus the count of all of the sets entered in the longline logbook system for non-interviewed vessels. The average and standard deviation for Longline Sets from logbook data and creel data is calculated from 1996 onward for comparison.

Table 20. Number of American Samoa troll trips and longline sets for all pelagic species by method

Year	Troll Trips	Longline Sets
1982	177	0
1983	406	0
1984	853	0
1985	464	0
1986	1,234	0
1987	751	0
1988	875	31
1989	1,269	3
1990	615	0
1991	699	21
1992	513	0
1993	481	16
1994	1,355	20
1995	1,548	187
1996	847	653
1997	656	1,528
1998	316	1,754
1999	429	2,108
2000	292	2,814
2001	330	4,801
2002	288	6,872
2003	310	6,221
2004	276	4,853
2005	211	4,359
2006	193	5,069
2007	145	5,919
2008	143	4,754
2009	81	4,911
2010	53	4,537
2011	141	3,847
2012	84	4,208
Average	524	4,285
Std. Dev	417	1,502




Figure 19. Number of American Samoa sample days, trolling interviews, and trolling trips

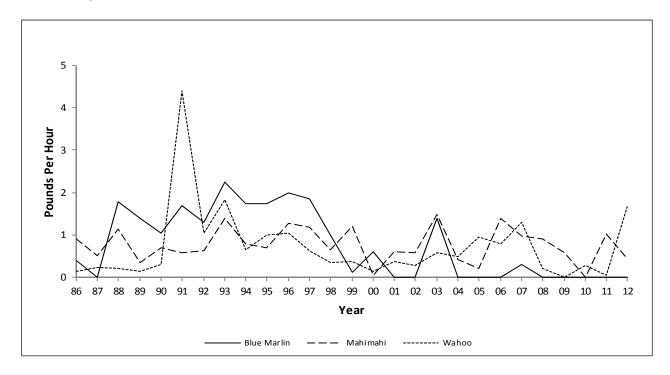

Interpretation: Sample days increased by 10% to 262 in 2012 but trolling interviews decreased by 45% to 37. Trolling trips sampled increased by 6 in 2010 and spiked in 2011, but has overall been experiencing a declining trend since a high of 683 in 1995.

Calculation: All data in this table and chart comes from the Tutuila and Manua Boat-Based Creel Survey. The number of Sample Days is the number of weekend/holiday and weekday sample days in the Tutuila Boat-based Creel survey for the year. The number of Trolling Interviews is the number of Tutuila pure trolling interviews without pooling plus the number of unadjusted Manua pure trolling interviews for the year. The number of Sampled Trips is the number of pure trolling trips actually counted in the Tutuila and Manua surveys. The Expanded Number of Trips is the expanded number of Tutuila pure troll trips plus the number of Manua troll trips adjusted for the coverage factor.

Table 21. Number of American Samoa sample days, trolling interviews, and trolling trips

Voor	Sample	Trolling	Trolling	Trips	Damaant
Year	Days	Interviews	Sampled	Expanded	Percent
1986	156	398	523	1,077	49
1987	146	217	277	686	40
1988	152	285	379	817	46
1989	149	376	496	1,148	43
1990	157	293	321	583	55
1991	142	213	248	524	47
1992	152	206	263	503	52
1993	148	222	245	423	58
1994	138	387	567	1,273	45
1995	137	489	683	1,429	48
1996	131	377	420	754	56
1997	147	337	386	603	64
1998	150	220	227	280	81
1999	132	257	271	393	69
2000	120	212	221	263	84
2001	126	163	175	250	70
2002	120	143	169	259	62
2003	183	194	214	287	75
2004	214	198	219	252	87
2005	219	146	169	187	90
2006	207	133	156	182	86
2007	244	82	114	133	86
2008	208	90	111	132	84
2009	172	27	30	37	81
2010	212	31	36	38	95
2011	239	67	113	119	95
2012	262	37	71	76	93
Average	169	215	263	471	68
Std. Dev	40	121	161	384	18

Interpretation: Catch per hour of trolling in 2012 increased by 0.9% to 52 from 51.6 lbs in 2011. The number of troll hours decreased in 2012 by 45%. The troll hours in 2012 are similar to those seen from 2009 to 2010.

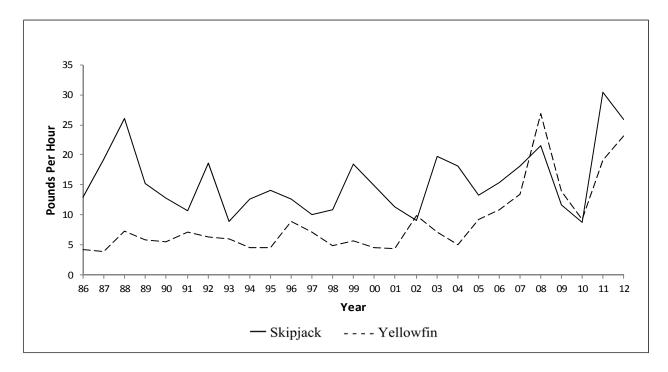

Calculation: For purely trolling trips where the number of hours was recorded, the total catch was divided by the total number of trolling hours to obtain CPUE.

The number of effective Trolling Hours is calculated by first subtracting the total longline pounds of Table 3 from the total pounds to get an estimate of the number of pounds caught by trolling and other fishing methods. This value is divided by the catch per hour for pure troll trips, from the offshore creel survey system expansion, to get the number of trolling trip-hours.

Table 22. American Samoa pelagic catch per hour of trolling and number of trolling hours

Year	CPUE	Hours
1982	25.91	1,019
1983	27.41	3,513
1984	30.97	7,785
1985	32.59	4,394
1986	19.36	11,294
1987	25.34	6,179
1988	38.01	6,125
1989	23.79	8,370
1990	21.86	4,362
1991	20.64	4,884
1992	28.97	3,809
1993	20.09	3,216
1994	21.23	11,448
1995	22.94	12,143
1996	27.38	4,442
1997	22.31	3,144
1998	19.93	1,405
1999	26.81	1,981
2000	22.01	1,149
2001	18.09	1,655
2002	20.62	1,362
2003	31.78	1,044
2004	25.70	1,204
2005	25.44	862
2006	36.02	883
2007	35.15	723
2008	50.44	808
2009	26.38	424
2010	20.32	308
2011	51.56	711
2012	52.03	389
Average	27.93	3,493
Std. Dev	9.72	3,536

Figure 21. American Samoa trolling CPUEs (lbs per hour fished) for blue marlin, mahimahi, and wahoo

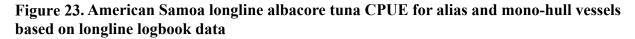

Interpretation: CPUE (pounds caught per trolling hour) for blue marlin are zero for 2012. For blue marlin this is the same as the last four consecutive years. CPUE for mahimahi in 2012 decreased by 57% to 0.44 from 1.04 in 2011. For wahoo, CPUE increased to 1.67 pounds per hour from 0.04 in 2011.

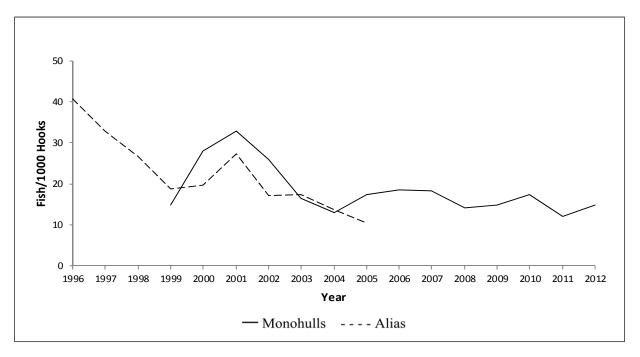
Calculation: The values for each of the three species is obtained by dividing the Troll Pounds for each species in Table 3 by the expanded number of trip-hours for purely trolling trips from the offshore creel survey system.

Table 23. American Samoa trolling CPUEs in pounds per hour fished for blue marlin, mahimahi, and wahoo

Trolling CPUEs: Blue Marlin, Mahimahi, Wahoo (pounds per hour)							
<u> </u>	Blue	our j					
Year	Marlin	Mahimahi	Wahoo				
1982	0	0.92	0.14				
1983	0.43	0.43	0.15				
1984	0.91	0.28	0.09				
1985	0.41	2.06	0.36				
1986	0.39	0.9	0.15				
1987	0	0.52	0.23				
1988	1.79	1.13	0.22				
1989	1.4	0.36	0.15				
1990	1.05	0.7	0.3				
1991	1.7	0.57	4.39				
1992	1.29	0.62	1.04				
1993	2.25	1.38	1.84				
1994	1.74	0.8	0.64				
1995	1.74	0.69	1				
1996	1.99	1.27	1.05				
1997	1.86	1.18	0.63				
1998	0.99	0.65	0.35				
1999	0.13	1.21	0.37				
2000	0.6	0.06	0.14				
2001	0	0.6	0.37				
2002	0	0.59	0.28				
2003	1.39	1.49	0.59				
2004	0	0.43	0.48				
2005	0	0.21	0.94				
2006	0	1.4	0.79				
2007	0.31	0.98	1.29				
2008	0	0.9	0.22				
2009	0	0.58	0				
2010	0	0	0.29				
2011	0	1.02	0.04				
2012	0	0.44	1.67				
Average	0.76	0.77	0.72				
Std. Dev	0.80	0.40	0.86				

Figure 22. American Samoa trolling CPUEs for skipjack and yellowfin tuna in pounds per hour fished


Interpretation: The 2012 total pounds for skipjack decreased by 15% to the third highest rate per troll hour in its history. Estimated 2012 troll CPUE for yellowfin increased by 21%.


Trolling regularly occurs closer to the islands of American Samoa, at different times, and targets different depths than longline fishing.

Calculation: The values for each of the two species is obtained by dividing the Troll Pounds for each species in Table 3 by the expanded number of trip-hours for purely trolling trips from the offshore creel survey system.

Table 24. American Samoa trolling CPUEs (lbs per hour fished) for skipjack and yellowfin tuna

Trolling CPUE: Skipjack Tuna, Yellowfin Tuna (pounds per hour)					
		Yellowfin			
Year	Skipjack 15.0				
1982	15.9	7.8			
1983	21	5.04			
1984	18.1	7.2			
1985	13.8	8.9			
1986	12.9	4.31			
1987	19.3	3.88			
1988	26	7.3			
1989	15.2	5.9			
1990	12.8	5.51			
1991	10.7	7.06			
1992	18.7	6.4			
1993	8.89	6.06			
1994	12.6	4.49			
1995	14.1	4.57			
1996	12.7	8.98			
1997	10.1	7.19			
1998	10.8	4.89			
1999	18.4	5.62			
2000	14.9	4.61			
2001	11.4	4.44			
2002	9.03	9.83			
2003	19.8	7.1			
2004	18.2	5.1			
2005	13.3	9.25			
2006	15.4	10.8			
2007	18.2	13.4			
2008	21.5	26.9			
2009	11.7	14			
2010	8.78	9.23			
2011	30.50	19.10			
2012	25.90	23.20			
Average	15.62	8.86			
Std. Dev	5.51	5.76			

Interpretation: Due to fishery data confidentiality, albacore information for alias from 2006 through 2012 is omitted. Monohulls catch rate in 2012 was 14.8, an increase of 22%, or 2.7 albacore per 1000 hooks. Monohull catch rates of albacore have been relatively stable, ranging from 12 to 18 fish between 2003 and 2012.

Calculation: These values are sums of the Longline Logbook albacore catch (number of fish kept + released) from the longline logs for the two types of longline vessels in Samoa, alias and mono-hulls, divided by the total number of hooks set by each type of vessel. The 2006 mono-hull value is the value for all vessels for confidentiality reasons.

Albacore CPUE						
(fish p	er 1000 l	100ks)				
Year	Alias	Monohulls				
1996	40.6					
1997	32.8					
1998	26.6					
1999	18.8	14.8				
2000	19.8	28				
2001	27.3	32.9				
2002	17.2	25.8				
2003	17.3	16.4				
2004	13.7	12.9				
2005	10.3	17.4				
2006		18.4				
2007		18.3				
2008		14.2				
2009		14.8				
2010		17.4				
2011		12.1				

14.8

2012

American Samoa Longline

Table 25. American Samoa catch/1000 hooks for two types of longline vessels from 1996 to 1999

	1996	1997	1998	19	999
Species	Alias	Alias	Alias	Alias	Monohulls
Skipjack tuna	0.1	1.2	3.7	5.0	4.5
Albacore tuna	40.6	32.8	26.6	18.8	14.8
Yellowfin tuna	6.5	2.7	2.2	6.7	2.1
Bigeye tuna	1.3	0.3	0.3	0.7	0.5
TUNAS					
SUBTOTAL	48.5	37	32.8	31.2	21.9
Mahimahi	2.3	2.2	1.7	2.2	0.3
Black Marlin	0.0	0.1	0.0	0.2	0.1
Blue Marlin	0.9	0.7	0.6	0.5	0.1
Striped Marlin	0.0	0.0	0.0	0.0	0.2
Wahoo	0.8	0.9	2.2	2.1	1.2
Sharks (all)	0.7	0.1	0.1	0.1	1.2
Sailfish	0.2	0.2	0.1	0.0	0.1
Spearfish	0.0	0.0	0.0	0.0	0.1
Moonfish	0.0	0.1	0.1	0.1	0.1
Oilfish	0.0	0.0	0.0	0.0	0.6
Pomfret	0.0	0.0	0.0	0.0	0.2
NON-TUNA					
PMUS					
SUBTOTAL	4.9	4.3	4.8	5.2	4.2
Other Pelagic	0.0	0.0	0.0	0.0	0.0
Fishes	0.0	0.0	0.2	0.3	0.2
OTHER					
PELAGICS	0.0	0.0	0.2	0.2	0.2
SUBTOTAL	U. U	U. U	U.2	0.3	U. 2
TOTAL					
PELAGICS	53.4	41.3	37.7	36.7	26

Table 26. American Samoa catch/1000 hooks for two types of longline vessels from 2000 to 2002

2	2000 2001		2001	2002		
Alias	Monohulls	Alias	Monohulls	Alias	Monohulls	
2.0	1.7	3.1	2.1	6.0	4.9	
19.8	28.0	27.3	32.9	17.2	25.8	
6.2	3.1	3.3	1.4	7.1	1.3	
0.4	1.0	0.6	1.0	0.6	0.9	
28.4	33.8	34.3	37.4	30.9	32.9	
1.7	0.4	3.4	0.5	4.0	0.6	
0.1	0.1	0.1	0.0	0.0	0.0	
0.5	0.2	0.4	0.2	0.2	0.3	
0.1	0.3	0.0	0.1	0.1	0.0	
1.2	1.1	1.5	0.6	2.7	1.0	
0.0	0.7	0.0	0.7	0.0	0.8	
0.0	0.0	0.1	0.0	0.1	0.0	
0.0	0.1	0.0	0.0	0.0	0.0	
0.1	0.2	0.1	0.1	0.1	0.1	
0.0	0.1	0.0	0.2	0.0	0.5	
0.0	0.1	0.0	0.1	0.0	0.1	
3.6	3.3	5.6	2.6	7.2	3.5	
0.0	0.0	0.0	0.0	0.0	0.1	
0.0	0.0	0.0	0.0	0.0	0.2	
0.0	0.0	0.0	0.0	0.0	0.3	
0.0	0.0	0.1	Λ 1	0.0	0.3	
U.U	0.0	U.1	0.1	U.U	0.3	
32.0	37.0	40.0	40.1	38.1	36.6	
	2.0 19.8 6.2 0.4 28.4 1.7 0.1 0.5 0.1 1.2 0.0 0.0 0.0 0.1 0.0	Alias Monohulls 2.0 1.7 19.8 28.0 6.2 3.1 0.4 1.0 28.4 33.8 1.7 0.4 0.1 0.1 0.5 0.2 0.1 0.3 1.2 1.1 0.0 0.7 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Alias Monohulls Alias 2.0 1.7 3.1 19.8 28.0 27.3 6.2 3.1 3.3 0.4 1.0 0.6 28.4 33.8 34.3 1.7 0.4 3.4 0.1 0.1 0.1 0.5 0.2 0.4 0.1 0.3 0.0 1.2 1.1 1.5 0.0 0.7 0.0 0.0 0.1 0.0 0.1 0.2 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <	Alias Monohulls 2.0 1.7 3.1 2.1 19.8 28.0 27.3 32.9 6.2 3.1 3.3 1.4 0.4 1.0 0.6 1.0 28.4 33.8 34.3 37.4 1.7 0.4 3.4 0.5 0.1 0.1 0.1 0.0 0.5 0.2 0.4 0.2 0.1 0.3 0.0 0.1 1.2 1.1 1.5 0.6 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.1 0.0 0.0 0.1 0.2 0.1 0.1 0.0 0.1 0.0 0.2 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0	Alias Monohulls Alias Monohulls Alias 2.0 1.7 3.1 2.1 6.0 19.8 28.0 27.3 32.9 17.2 6.2 3.1 3.3 1.4 7.1 0.4 1.0 0.6 1.0 0.6 28.4 33.8 34.3 37.4 30.9 1.7 0.4 3.4 0.5 4.0 0.1 0.1 0.1 0.0 0.0 0.5 0.2 0.4 0.2 0.2 0.1 0.3 0.0 0.1 0.1 1.2 1.1 1.5 0.6 2.7 0.0 0.7 0.0 0.7 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.1 0.0 0.1 0.0 0.0	

Table 27. American Samoa catch/1000 hooks for two types of longline vessels from 2003 to 2005

	2	003	2004		2005	
Species	Alias	Monohulls	Alias	Monohulls	Alias	Monohulls
Skipjack tuna	4.7	2.9	3.0	3.9	1.0	2.7
Albacore tuna	17.3	16.4	13.7	12.9	10.3	17.4
Yellowfin tuna	5.9	2.0	8.8	3.2	7.0	2.6
Bigeye tuna	1.6	1.1	0.8	1.3	1.0	0.9
TUNAS						
SUBTOTAL	29.5	22.4	26.3	21.2	19.3	23.7
Mahimahi	2.2	0.4	2.1	0.2	2.0	0.3
Blue Marlin	0.2	0.2	0.1	0.2	0.2	0.2
Striped Marlin	0.0	0.0	0.1	0.0	0.1	0.0
Wahoo	1.8	1.1	3.1	1.6	2.3	1.4
Sharks (all)	0.3	0.8	0.1	0.9	0.0	0.7
Swordfish	0.1	0.0	0.1	0.0	0.1	0.0
Sailfish	0.1	0.0	0.0	0.1	0.1	0.1
Spearfish	0.1	0.0	0.0	0.1	0.0	0.1
Moonfish	0.1	0.1	0.1	0.1	0.1	0.1
Oilfish	0.3	0.5	0.0	0.7	0.0	0.3
Pomfret	0.1	0.1	0.0	0.1	0.1	0.1
NON-TUNA						
PMUS						
SUBTOTAL	5.2	3.3	5.7	3.8	4.8	3.1
Other Pelagic						
Fishes	0.2	0.2	0.0	0.1	0.0	0.1
OTHER						
PELAGICS	0.2	0.2	0.0	0.1	0.0	0.1
SUBTOTAL	0.2	0.2	0.0	0.1	0.0	0.1
TOTAL						
PELAGICS	34.9	25.8	32	25.2	24.2	26.9

Table 28. American Samoa catch/1000 hooks for two types of longline vessels from 2006 to 2012

Species	2006 All Vessels	2007 All Vessels	2008 All Vessels	2009 All Vessels	2010 All Vessels	2011 All Vessels	2012 All Vessels
Skipjack Tuna	3.2	2.3	2.4	2.3	2.4	2.5	4.3
Albacore Tuna	18.5	18.3	14.2	14.8	17.4	12.1	14.8
Yellowfin Tuna	1.6	1.9	1.0	1.1	1.8	2.0	1.2
Bigeye Tuna	1.0	0.9	0.5	0.6	0.8	0.7	0.7
TUNAS SUBTOTAL	24.2	23.5	18.2	18.8	22.4	17.3	21.0
Mahimahi	0.4	0.1	0.1	0.2	0.2	0.1	0.1
Blue Marlin	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Wahoo	1.5	1.0	0.7	1.0	1.0	0.9	0.7
Sharks (all)	0.5	0.4	0.4	0.4	0.4	0.5	0.6
Swordfish	0.1	0.0	0.0	0.0	0.0	0.0	
Spearfish	0.1	0.0	0.1	0.1	0.1	0.1	0.1
Oilfish	0.5	0.5	0.4	0.5	0.6	0.6	0.8
Pomfret	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NON-TUNA PMUS SUBTOTAL	3.3	2.4	2	2.5	2.5	2.4	2.5
Other Pelagic Fishes	0.1	0.2	0.1	0.2	0.3	0.4	0.3
OTHER PELAGIC FISHES SUBTOTAL	0.1	0.2	0.1	0.2	0.3	0.4	0.3
TOTAL PELAGICS	27.5	26.0	20.3	21.5	25.2	20.0	23.7

Interpretation: The catch rate by all longline vessels from the past five years have generally been the same, ranging from 17 to 22 fishes for tuna species. The catch rate for tunas in 2012 was 21, an increase of 21%. Albacore tuna was the targeted species with a 14.8 catch rate. The non-tuna PMUS species catch are about constant in the previous five years at 2.0 to 2.5 fish.

Calculation: These values are sums of the Longline Logbook catch (number of fish kept + released) from the longline logs for the two types of longline vessels in Samoa, alias and monohulls, divided by the total number of hooks set by each type of vessel. All species of sharks entered in the Longline Logs are combined in the All Sharks species category. Rays and sunfish are included in the Misc Pelagic Fish category.

Figure 24. Albacore average weight per fish

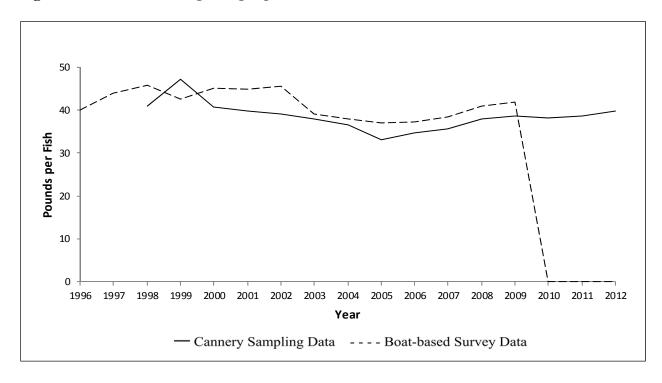
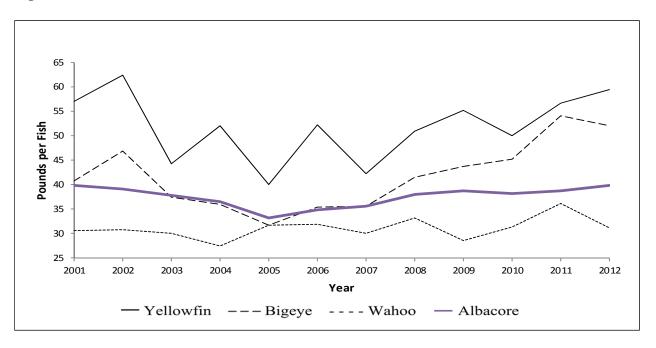



Figure 25. Average weight per fish for other tuna and cannery species (cannery-sampled)

Interpretation: The cannery data represents the portion of the catch unloaded by larger vessels fishing farther away from Tutuila. The creel survey represents fish caught by alias near Tutuila. In 1999 longline boats began landing catches gilled and gutted to obtain higher prices at the canneries. This new method could have an impact on size variation for the longline fishery.

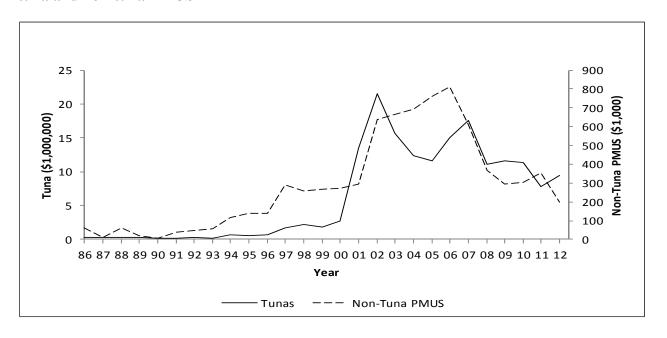
For the cannery sampled average weight per fish, about half of the weights increased and half decreased. Albacore average weight-per-fish increased slightly by 1 pound in 2012. In 2012, skipjack increased by 2.8 lbs, a 27% increase, and yellowfin increased by 2.7 lbs, representing a 5% increase. Bigeye decreased by 2 lbs and wahoo decreased by roughly 5 lbs.

Calculation: The Creel Survey Annual Average Pounds/Fish for each species was calculated from the creel survey interviews by dividing the total pounds of each species sampled during the year by the number of fish of sampled during the year. If the fish were sampled as other than whole (i.e. Gilled and Gutted) the sampled weight is divided by the appropriate factor (less than 1) to get the whole weight. All weights were measured directly before 2000, but after that most weights were calculated from length measurements. Since these fish are caught by alias operating close to Tutuila this represents fish sizes close to shore.

The Cannery Sampled Annual Average Pounds/Fish for each species was calculated from the length measurements made at the canneries when the fish are unloaded there. The weight of each sampled fish is calculated from the length measurements. These weights are summed over the year for each species and are then divided by the number of fish of that species sampled during the year. Since these fish are caught by larger boats operating away from Tutuila these catches represent fish sizes further out to sea from Tutuila.

Table 29. Cannery sampled average weight per fish in pounds (1998-2002)

Species	1998	1999	2000	2001	2002
Skipjack				16.8	11.3
Albacore	41	47.2	40.7	39.8	39.1
Yellowfin				57	62.4
Bigeye				40.7	46.8
Mahimahi				16.2	13.5
Black marlin				36.3	
Blue marlin					
Wahoo				30.6	30.7
Swordfish					
Sailfish					27.4
Moonfish				147.6	117.6
Pomfret				5.1	6.2
Rainbow Runner					9.4

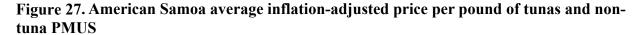

Table 30. Cannery-sampled average weight per fish in pounds (2003-2008)

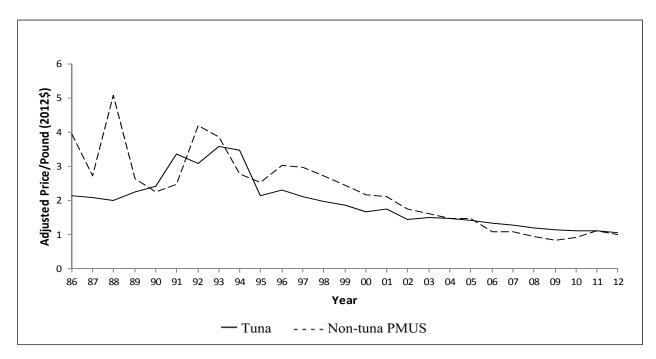
Species	2003	2004	2005	2006	2007	2008
Skipjack	9.9	13.6	13.1	12.3	12.1	12.0
Albacore	37.8	36.5	33.2	34.8	35.6	37.9
Yellowfin	44.3	52.1	40.1	52.1	42.2	50.9
Bigeye	37.4	35.9	31.6	35.5	35.6	41.4
Mahimahi	20.7	13.0	17.2	13.4	13.5	19.1
Black marlin						
Blue marlin			45.8			
Wahoo	30	27.4	31.7	31.9	29.9	33.2
Swordfish		72.3		90.3		
Sailfish			22.9	21.7		
Moonfish			95.5	34.7		
Pomfret			7.8		5.4	
Rainbow Runner		10.8				

Table 31. Cannery-sampled average weight per fish in pounds (2009-2012)

С .	2000	2010	2011	2012	-
Species	2009	2010	2011	2012	
Skipjack	12.1	12.1	10.4	13.2	
Albacore	38.7	38.1	38.7	39.7	
Yellowfin	55.2	49.9	56.7	59.4	
Bigeye	43.7	45.3	54.0	52.0	
Mahimahi	15.1	23.7	21.6	22.8	
Black marlin					
Blue marlin			48.9		
Wahoo	28.5	31.4	36.2	31.1	
Swordfish					
Sailfish					
Moonfish					
Pomfret					
Rainbow Runner					

Figure 26. American Samoa annual inflation-adjusted revenue in 2012 dollars for tuna and non-tuna PMUS

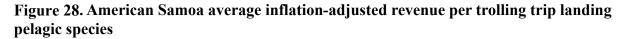

Interpretation: Inflation-adjusted revenues for tunas increased in 2012, but decreased for nontuna PMUS. Adjusted revenue for tunas increased by 23%, recovering from a slump in 2011 – the lowest adjusted revenue for tuna since 2000. Non-tuna adjusted revenues decreased by 44% from 2011. The adjusted revenue for tuna species peaked in 2002 at \$21.5 million and peaked for non-tuna at \$809,000 in 2006.

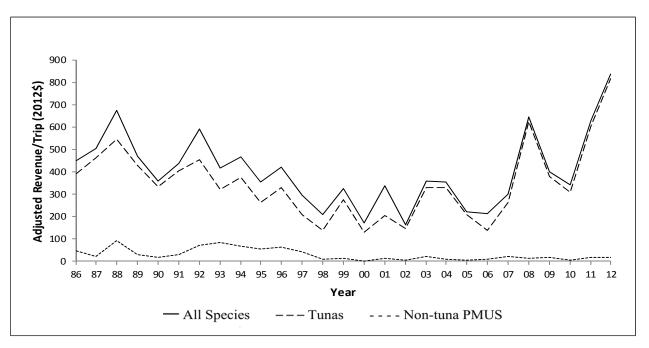

Calculation: The unadjusted revenues for Tunas and Other PPMUS were calculated by summing the values for the species in these categories as defined by Table 4. The unadjusted revenue for All Pelagics is the sum of the value for the Tuna, Other PPMUS and Miscellaneous categories as defined by Table 4.

The unadjusted revenues from commercial landings for the pelagic species subgroups above were adjusted for inflation by multiplying a given year's revenue by the 2000 consumer price index (CPI) divided by the CPI for that year.

Table 32. American Samoa commercial pelagic fishing revenues in unadjusted and inflation-adjusted dollars 1986-2012 including consumer price index (CPI)

			Revenue (<u>(\$)</u>	
		Tun	ias	Non-Tuna	PMUS
Year	CPI	Unadjusted	Adjusted	Unadjusted	Adjusted
1986	107.1	\$139,021	\$362,288	\$23,117	\$60,244
1987	111.8	\$110,012	\$274,590	\$5,267	\$13,146
1988	115.3	\$143,623	\$347,711	\$25,384	\$61,455
1989	120.3	\$110,343	\$255,996	\$9,338	\$21,663
1990	129.6	\$63,285	\$136,315	\$3,813	\$8,213
1991	135.3	\$94,344	\$194,632	\$17,923	\$36,975
1992	140.9	\$141,106	\$279,530	\$23,451	\$46,457
1993	141.1	\$80,250	\$158,734	\$28,181	\$55,741
1994	143.8	\$337,977	\$656,013	\$59,266	\$115,035
1995	147	\$319,213	\$606,185	\$73,194	\$138,994
1996	152.5	\$393,770	\$720,599	\$76,234	\$139,507
1997	156.4	\$941,063	\$1,679,797	\$162,262	\$289,638
1998	158.4	\$1,241,313	\$2,187,194	\$146,754	\$258,580
1999	159.9	\$1,016,156	\$1,773,192	\$153,286	\$267,485
2000	166.7	\$1,656,449	\$2,772,895	\$161,748	\$270,797
2001	169.9	\$8,226,280	\$13,515,778	\$178,111	\$292,636
2002	172.1	\$13,284,647	\$21,547,697	\$393,751	\$638,664
2003	176.0	\$9,905,705	\$15,700,543	\$420,253	\$666,101
2004	188.5	\$8,384,420	\$12,408,942	\$167,170	\$691,411
2005	198.3	\$8,206,541	\$11,546,603	\$539,924	\$759,673
2006	204.3	\$11,046,801	\$15,089,930	\$592,765	\$809,716
2007	215.5	\$13,583,174	\$17,590,210	\$471,547	\$610,653
2008	231.5	\$9,196,349	\$11,090,797	\$306,141	\$369,206
2009	240.7	\$9,997,635	\$11,587,259	\$255,246	\$295,830
2010	249.4	\$10,187,511	\$11,399,825	\$273,140	\$305,644
2011	269.4	\$7,470,861	\$7,739,812	\$340,591	\$352,852
2012	279.1	\$9,512,685	\$9,512,685	\$196,475	\$196,475
Average	173.4	\$4,658,909	\$6,338,361	\$200,160	\$287,880
Std Dev	47.25	\$4,875,120	\$6,641,967	\$179,340	\$245,404


Interpretation: The average inflation-adjusted price-per-pound for tunas decreased in 2012 by \$0.04 (4%) from 2011 and decreased by \$0.13 (12%) for non-tuna PMUS. Tuna price-per-pound peaked at \$3.57 in 1993; the non-tuna PMUS average peaked in 1988 at \$5.07. The 2012 inflation-adjusted price-per-pound for tuna PMUS is currently at its lowest level since 1986 at \$1.07, while non-tuna PMUS was at its lowest price per pound in 2009 at \$0.83.


Calculation: The unadjusted price/pound for Tunas and Non-Tuna PMUS were calculated by dividing the sum of the values for the species in these categories as defined by Table 4 by the sum of their commercial landings or pounds.

The unadjusted price/pound values for the pelagic species subgroups above were adjusted for inflation by multiplying the given year's price/pound by the 2006 consumer price index (CPI) divided by the CPI for that year.

Table 33. American Samoa average price per pound of tuna PMUS and non-tuna PMUS in unadjusted and inflation-adjusted dollars 1986-2012

	Average Price/Pound (\$)			
	Tuna	s	Non-Tuna l	PMUS
Year	Unadjusted	Adjusted	Unadjusted	Adjusted
1986	\$0.82	\$2.13	\$1.51	\$3.94
1987	\$0.83	\$2.08	\$1.09	\$2.72
1988	\$0.83	\$2.01	\$2.10	\$5.07
1989	\$0.97	\$2.25	\$1.14	\$5.65
1990	\$1.12	\$2.41	\$1.05	\$2.26
1991	\$1.63	\$3.35	\$1.19	\$2.46
1992	\$1.56	\$3.09	\$2.12	\$4.19
1993	\$1.81	\$3.57	\$1.95	\$3.85
1994	\$1.79	\$3.47	\$1.43	\$2.78
1995	\$1.13	\$2.15	\$1.33	\$2.52
1996	\$1.26	\$2.31	\$1.65	\$3.02
1997	\$1.18	\$2.10	\$1.66	\$2.96
1998	\$1.11	\$1.96	\$1.54	\$2.72
1999	\$1.07	\$1.87	\$1.40	\$2.44
2000	\$1.01	\$1.68	\$1.30	\$2.17
2001	\$1.06	\$1.74	\$1.29	\$2.11
2002	\$0.89	\$1.44	\$1.07	\$1.74
2003	\$0.94	\$1.49	\$1.02	\$1.62
2004	\$0.99	\$1.47	\$0.99	\$1.46
2005	\$1.01	\$1.42	\$1.04	\$1.46
2006	\$0.98	\$1.34	\$0.80	\$1.09
2007	\$0.99	\$1.28	\$0.84	\$1.09
2008	\$0.99	\$1.20	\$0.79	\$0.95
2009	\$0.99	\$1.14	\$0.71	\$0.82
2010	\$0.99	\$1.11	\$0.81	\$0.91
2011	\$1.08	\$1.11	\$1.08	\$1.12
2012	\$1.07	\$1.07	\$0.99	\$0.99
Average	\$1.11	\$1.94	\$1.25	\$2.26
Std. Dev	\$0.27	\$0.72	\$0.38	\$1.09

Interpretation: Adjusted revenues per trolling trip for non-tunas increased by \$1.20 in 2012 from 2011, an 8% increase. The 2012 average adjusted revenue-per-troll-trip for tunas increased to \$816, a 349% increase over 2011. Skipjack and yellowfin are the primary tuna landings by trollers. The adjusted revenue-per-troll-trip for all species increased by \$205, or 32.5%. The 2012 average revenue per trolling trip for tunas is the highest since recordings started in 1986.

Calculation: The purely trolling interviews in the offshore creel survey system landing any of the species listed in Table 3 and selling part or all of their catch are first counted for the given year to get the number of trips. The unadjusted revenue/trip for Tunas and Non-Tuna PMUS is calculated by first summing the value of the species in these pelagic subgroups caught and sold by purely trolling methods and then dividing this by the number of pure trolling trips. The unadjusted revenue/trip for all species is the sum of the value of all species, in Table 3 or not, caught by the purely trolling trips that sold all or part of their catch divided by the number of such trips. The unadjusted revenue/trip values for the pelagic species subgroups above and for all species were adjusted for inflation by multiplying the given year's revenue/trip by the 2003 consumer price index (CPI) divided by the CPI for that year.

Table 34. American Samoa commercial pelagic revenues in unadjusted and inflation-adjusted dollars per trip 1986-2012

	All Spe	ecies ecies	Tuna	<u>18</u>	Non-Tuna	<u>PMUS</u>
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1986	\$173	\$452	\$150	\$390	\$17.4	\$45.3
1987	\$201	\$502	\$185	\$462	\$9.1	\$22.7
1988	\$278	\$674	\$225	\$544	\$38.6	\$93.5
1989	\$202	\$469	\$185	\$430	\$12.5	\$29.0
1990	\$166	\$357	\$154	\$332	\$7.8	\$16.8
1991	\$212	\$438	\$195	\$402	\$15.4	\$31.8
1992	\$298	\$590	\$228	\$454	\$36.8	\$72.9
1993	\$211	\$418	\$162	\$320	\$41.7	\$82.5
1994	\$241	\$467	\$194	\$376	\$33.7	\$65.4
1995	\$187	\$355	\$139	\$264	\$29.7	\$56.4
1996	\$230	\$422	\$180	\$329	\$35.3	\$64.6
1997	\$165	\$295	\$116	\$207	\$23.1	\$41.2
1998	\$119	\$210	\$78	\$137	\$6.1	\$10.7
1999	\$187	\$326	\$158	\$275	\$7.4	\$12.9
2000	\$102	\$171	\$76	\$128	\$0.8	\$1.3
2001	\$206	\$339	\$124	\$203	\$8.6	\$14.1
2002	\$101	\$163	\$91	\$148	\$3.8	\$6.2
2003	\$226	\$359	\$208	\$330	\$14.0	\$22.2
2004	\$239	\$354	\$223	\$330	\$6.4	\$9.5
2005	\$158	\$223	\$148	\$208	\$4.2	\$5.9
2006	\$155	\$212	\$100	\$137	\$5.7	\$7.8
2007	\$233	\$302	\$201	\$261	\$17.8	\$23.1
2008	\$535	\$645	\$518	\$624	\$11.4	\$13.7
2009	\$345	\$400	\$328	\$381	\$15.9	\$18.4
2010	\$307	\$343	\$277	\$310	\$3.6	\$4.0
2011	\$608	\$630	\$584	\$605	\$14.8	\$15.3
2012	\$835	\$835	\$816	\$816	\$16.5	\$16.5
Average	\$256	\$405	\$224	\$348	\$16.2	\$29.8
Std. Dev	\$159	\$160	\$163	\$161	\$11.8	\$25.6

B. Commonwealth of the Northern Mariana Islands

Introduction

The Northern Mariana Islands pelagic fishery occurs primarily from the island of Farallon de Medinilla south to the island of Rota. The fishery is characterized using data from the Commercial Receipt Invoice Database and the Boat-based Creel Survey. The commercial purchase collection system is dependent upon first-level purchasers of local fresh fish to accurately record all fish purchases by species categories on specially designed invoices. Staff from the Department of Lands and Natural Resources, Division of Fish and Wildlife (DFW) routinely distributes and collects invoice books from participating local fish purchasers on Saipan. This program is a voluntary program that includes purchasers at some fish markets, stores, restaurants, hotels and roadside vendors ("fish-mobiles").

The Commercial Purchase Database Collection System and the Boat-based Creel Survey is currently documenting landings only on the island of Saipan. The establishment of a data collection system for the islands of Tinian and Rota are in the process, however funding is an issue. It is believed that the commercial purchase database landings include around 90% of all commercial landings on Saipan. There is also a subsistence fishery on Saipan were profits are made by selling a small portion of catch to cover fishing expenses. Some fishermen sell their catch going "door to door," which results in around 30% unreported commercial landings.

Although the Saipan Commercial Purchase Database Collection System has been in operation since the mid-1970s, only data collected since 1983 are considered accurate enough to be used.

The boat-based creel survey was re-implemented in April 2000 and is still ongoing. Data from this survey is used in this report and analyzes fishing activity only on the island of Saipan. Currently no boat-based creel survey programs are being conducted on the islands of Tinian and Rota.

Summary

Trolling is the primary fishing method utilized in the pelagic fishery. The pelagic fishing fleet, other than charter boats, consists primarily of vessels less than 24 ft in length, which usually have a limited 20-mile travel radius from Saipan.

Charter vessel landings from the Creel Survey are used in this report. Recorded Charter boat landings make up less than 2% of the total pelagics landings on Saipan.

The total pelagics landed in 2012 increased 33%. The primary target and most marketable species for the pelagic fleet are skipjack tuna. In 2012, skipjack tuna landings comprised over 60% of the entire pelagic landings. Schools of skipjack tuna have historically been common in near shore waters, providing an opportunity to catch numerous fish with a minimum of travel time and fuel costs. Skipjack is readily consumed by the local populace and restaurants, primarily as sashimi.

Yellowfin tuna and mahimahi are also easily marketable species but are seasonal. During their seasonal runs, these fish are usually found close to shore and provide easy targets for the local fishermen.

In late 2007, Crystal Seas became the first established longline fishing company in the CNMI to begin its operation out of the island of Rota. However, by 2009 Crystal Seas became Pacific Seafoods and relocated its operation to Saipan. In 2011, four licensed longline fishing vessels were stationed in the CNMI. Federal log book data are being collected and submitted to NMFS. This report did not include any data or landings from longline vessels.

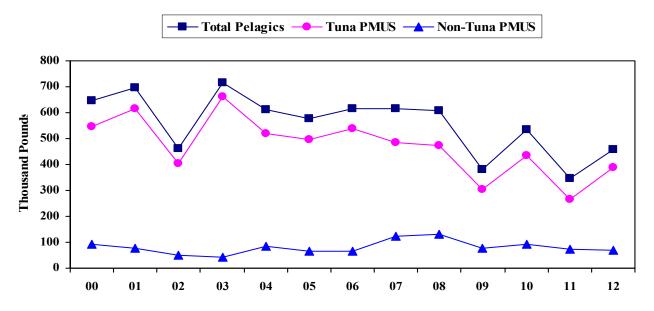
Plan Team Recommendations
There were no recommendations made for 2012.

Table 35. CNMI Creel Survey 2012 pelagic species composition

	Total Landings	Non-	
Species	(Lbs)	Charter	Charter
Skipjack Tuna	288,642	287,482	1,160
Yellowfin Tuna	73,707	73,565	142
Kawakawa	24,680	24,580	100
Tuna PMUS	387,029	385,627	1,402
Mahimahi	39,236	38,015	1,221
Wahoo	18,456	16,301	2,156
Blue Marlin	9,751	9,751	0
Sailfish	0	0	0
Shortbill Spearfish	0	0	0
Non-tuna PMUS	67,443	64,067	3,376
Dogtooth Tuna	2,087	2,087	0
Rainbow Runner	525	525	0
Barracudas	144	0	144
Yellowtail Barracuda	0	0	0
Non-PMUS Pelagics	2,756	2,612	144
Total Pelagics	457,228	452,306	4,922

Interpretation: Skipjack tuna continued to dominate the pelagic landings, comprising around 63% of the total pelagic catch. Skipjack tunas are easily caught in near shore waters throughout the year. Mahimahi is seasonal with peak catch usually from February through April. Yellowfin season usually runs from April to September. The overall pelagic catch increased 33% in 2012.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid overestimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

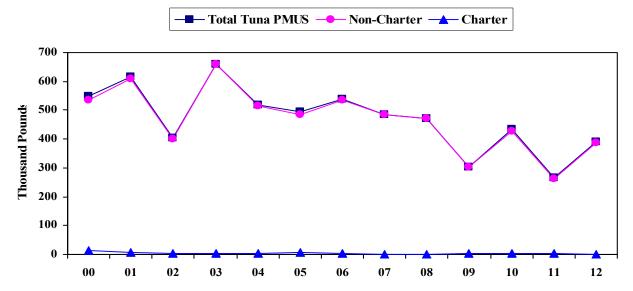

Table 36. CNMI 2012 estimated commercial pelagic landings, revenues and price (from Commercial Receipt invoices)

	Landing		Avg. Price
Species	(Lbs)	Value (\$)	(\$/Lb)
Skipjack Tuna	99,187	192,810	1.94
Yellowfin Tuna	19,392	41,494	2.14
Saba (kawakawa)	774	1,599	2.07
Tunas (misc.)	6,004	9,996	1.66
Tuna PMUS	125,356	245,899	1.96
Mahimahi	18,712	40,704	2.18
Wahoo	8,677	19,363	2.23
Blue Marlin	2,010	4,385	2.18
Sailfish	25	49	2.00
Sickle Pomfret (w/woman)	493	1,040	2.11
Non-tuna PMUS	29,917	65,542	2.19
Dogtooth Tuna	5,072	12,210	2.41
Rainbow Runner	368	803	2.18
Non-PMUS Pelagics	5,440	13,013	2.39
Total Pelagics	160,714	324,454	2.02

Interpretation: In 2012, Skipjack tuna dominated the pelagic landings, comprising around 62% of the (commercially receipted) industry's pelagic catch. In 2012, yellowfin tuna and mahimahi ranked second and third in total landings. Skipjack tunas are easily caught in near shore waters throughout the year. Mahimahi is seasonal with catch peak usually from February through April. Yellowfin season usually runs from April to September. The 2012 total pelagic recorded catch sold increased 33% over 2011.

The highest average price of identified pelagic species was \$2.41/lb for dogtooth tuna. The lowest priced species was skipjack tuna, which sold at an average price of \$1.94/lb and is the main target in the CNMI pelagic fishery.

Figure 29. Annual CNMI boat-based creel estimated total landings for all pelagics, tuna PMUS, and non-tuna PMUS

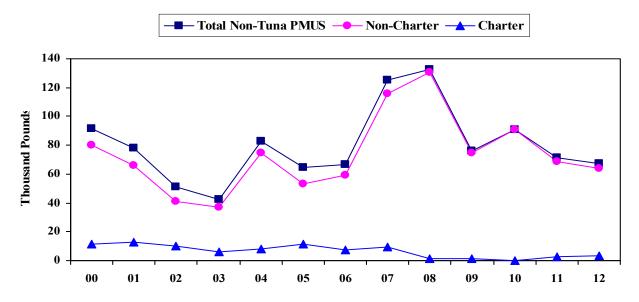

Interpretation: Creel survey landings declined in 2002, possibly due to several typhoons hitting the Mariana Islands. Since then, landings of pelagic species have been relatively stable until 2009 when landings of tuna PMUS decreased 42% because fewer fishing trips were taken and fishermen took shorter trips. The decrease in 2011 tuna PMUS landings of by 35% from 2010 was partly due to many days of unfavorable weather conditions. In 2012, tuna PMUS landings increased 46% over the 2011 landings with fishermen reporting better catch rates and favorable fishing conditions.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid over-

Annual Bo	Annual Boat-based Creel Estimated Landings			
(lbs)				
			Non-	
	All	Tuna	Tuna	
Year	Pelagics	PMUS	PMUS	
2000	644,324	547,441	91,536	
2001	695,382	614,330	78,164	
2002	461,332	403,062	51,064	
2003	714,407	660,805	42,584	
2004	613,002	518,362	82,773	
2005	576,312	494,493	64,661	
2005	614,002	539,455	66,757	
2007	615,267	486,000	124,996	
2008	608,809	472,703	132,312	
2009	381,380	303,522	76,308	
2010	535,291	432,829	90,694	
2011	344,999	265,857	71,681	
2012	457,227	389,116	67,442	
Average	558,636	471,383	80,075	
Standard				
Deviation	110,902	108,497	24,664	

estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for total of pelagic species, Tuna PMUS and Non-Tuna PMUS separately are summed across all methods to obtain the numbers plotted above.

Figure 30. Annual CNMI boat-based creel estimated tuna landings for all, non-charter, and charter pelagics for 2000-2012

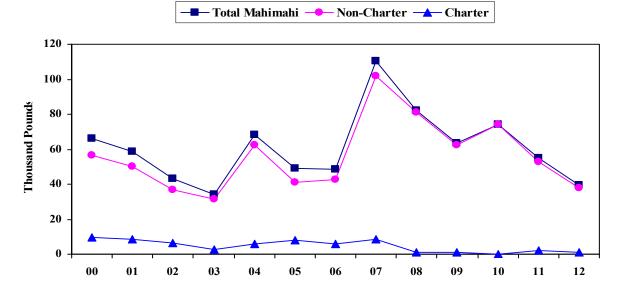

Interpretation: Total landings over the time series indicate that 98% of all tuna PMUS are landed by non-charter vessels. 2011 non-charter landings decreased 38% over 2010, but increased in 2012 by 48%. 2010 charter landings increased significantly by 51% over 2009. 2011 charter landings were similar to 2010, while charter landings decreased by 65% in 2012.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce

Boat-based Creel Estimated Tuna Landings (lbs)			
	Total		
Year	Tunas	Non-charter	Charter
2000	547,441	534,708	12,733
2001	614,330	608,705	5,625
2002	403,062	400,848	2,214
2003	660,805	658,123	2,862
2004	518,362	515,420	2,942
2005	494,493	486,196	8,297
2006	539,455	535,838	3,617
2007	486,000	485,025	975
2008	472,703	471,294	1,408
2009	303,522	301,207	2,315
2010	432,829	428,786	4,043
2011	265,857	263,724	4,002
2012	389,116	387,713	1,403
Average	471,383	467,363	4,020
Standard			
Deviation	108,497	107,661	3,150

catch estimates for each species for the expanded period. The annual catch for total tuna PMUS, charter and non-charter separately are summed across all methods to obtain the numbers plotted above.

Figure 31. Annual CNMI boat-based creel estimated non-tuna PMUS landings for all, non-charter, and charter pelagics for 2000-2012



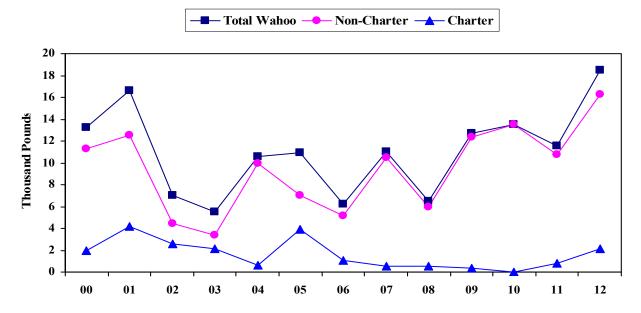
Interpretation: The 2010 total non-tuna PMUS increased slightly over 2009 figures by 16%, mostly due to the increased mahimahi and wahoo landings. 2011 nontuna landings decreased by 19%, and decreased another 6% in 2012. The noncharter 2011 landings decreased 23% over previous year and decreased further in 2012. Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for Total Non-Tuna PMUS, Charter and Non-Charter

Non	Non-tuna PMUS Landings (lbs)				
	Total Non-				
	tuna	Non-			
Year	PMUS	charter	Charter		
2000	91,536	80,029	11,507		
2001	78,164	65,692	12,472		
2002	51,064	41,246	9,819		
2003	42,584	36,827	5,758		
2004	82,773	74,416	8,357		
2005	64,661	52,898	11,762		
2006	66,757	59,223	7,533		
2007	124,996	115,861	9,135		
2008	132,312	130,854	1,458		
2009	76,308	74,929	1,379		
2010	90,694	90,694	0		
2011	71,681	69,439	4,050		
2012	67,442	64,066	3,376		
Average	80,075	73,502	6,573		
Standard					
Deviation	24,664	25,736	4,188		

separately are summed across all methods to obtain the numbers plotted above.

Figure 32. Annual CNMI boat-based creel estimated mahimahi landings

Interpretation: Mahimahi landings have fluctuated yearly, usually in a two year cycle. The bulk of mahimahi landings are from non-charter vessels. Although mahimahi is a favorite target by charter boats, the decreasing number of tourists arriving into Saipan has deeply impacted the charter fishing industry.

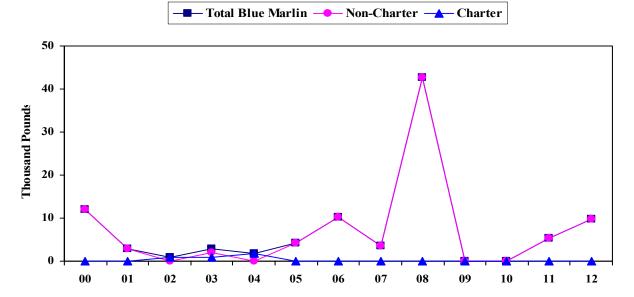

2010 landings increased by 16% over 2009 landings, however landings declined in 2011 (24%) and again in 2012 (29%). Non-charter landings decreased by 28% and charter mahi landings decreased significantly by 42% in 2012.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort

M	Mahimahi Landings (lbs)				
	Total	Non-			
Year	Mahimahi	Charter	Charter		
2000	66,230	56,719	9,512		
2001	58,548	50,219	8,328		
2002	43,149	36,774	6,375		
2003	34,128	31,338	2,790		
2004	68,302	62,433	5,869		
2005	48,960	41,122	7,839		
2006	48,666	42,729	5,937		
2007	110,351	101,792	8,559		
2008	81,912	81,025	887		
2009	63,559	62,568	991		
2010	73,965	73,965	0		
2011	54,935	52,846	2,089		
2012	39,235	38,015	1,221		
Average	60,918	56,273	4,646		
Standard					
Deviation	19,577	19,359	3,278		

estimates for the pelagic fishery to avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for Total Mahimahi, Charter and Non-Charter are separately summed across all methods to obtain the numbers plotted above.

Figure 33. Annual CNMI boat-based creel estimated wahoo landings

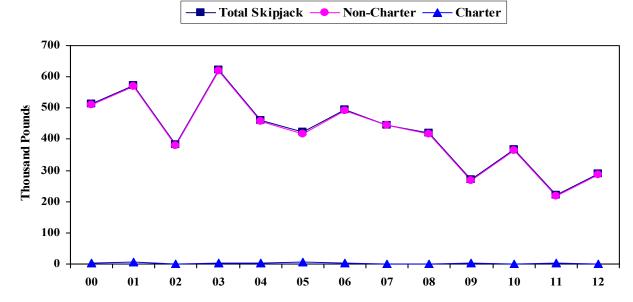

Interpretation: Wahoo landings have fluctuated yearly with majority of landings being made by non-charter vessels. Total wahoo landings increased in 2010 by 6% over 2009 landings. There were no wahoo landings recorded during creel survey sample days of charter boats in 2010. 2011 total wahoo landing decreased 12% over 2010 with non-charter landings decreasing 20% over the previous year. Total wahoo landings increased significantly by 60% in 2012 with non-charter wahoo landings increasing 52% and charter landings increasing significantly by 169%. Fishermen reported a good year for landing wahoo in 2012.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort

Wahoo Landings (lbs)				
	Total	Non-		
Year	Wahoo	Charter	Charter	
2000	13,282	11,287	1,996	
2001	16,653	12,509	4,144	
2002	7,060	4,471	2,589	
2003	5,528	3,417	2,110	
2004	10,537	9,924	613	
2005	10,956	7,033	3,924	
2006	6,225	5,141	1,085	
2007	11,023	10,447	576	
2008	6,525	5,954	571	
2009	12,750	12,362	388	
2010	13,494	13,494	0	
2011	11,516	10,714	802	
2012	18,456	16,301	2,155	
Average	11,077	9,466	1,612	
Standard				
Deviation	3,830	3,774	1,289	

estimates for the pelagic fishery to avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for Total Wahoo landings, Charter and Non-Charter separately are summed across all methods to obtain the numbers plotted above.

Figure 34. Annual CNMI boat-based creel estimated blue marlin landings

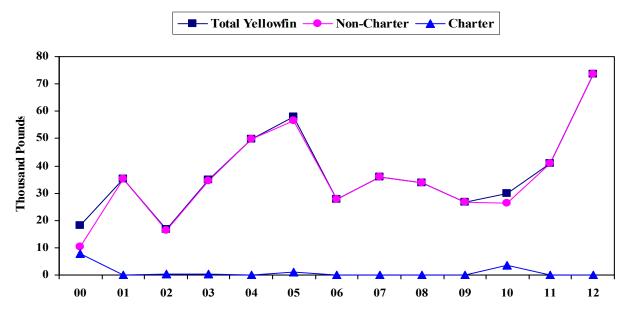

Interpretation: Blue marlin is rarely targeted by non-charter vessels. Charter vessels would prefer to land blue marlin but seldom do due to the short fishing time (average is 4 hours) that tourists charter their vessels. Non-charter fishermen find it difficult to find a market for blue marlin landings. Although the majority of the fishing is done by non-charter vessels, these vessels are usually smaller in size (15-18 feet in length), making it difficult to haul blue marlin. During 2009 and 2010 there was no blue marlin landings recorded during creel survey sample days, but in 2011, non-charter vessels landed over 5,000 pounds. In 2012, non-charter vessels recorded total blue marlin landings of nearly 10,000 pounds. No landings from charter vessels were recorded during creel survey samples in 2012.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort

Blue Marlin Landings (lbs)			
	Total		
	Blue	Non-	
Year	Marlin	Charter	Charter
2000	12,024	12,024	0
2001	2,963	2,963	0
2002	855	0	855
2003	2,928	2,071	857
2004	1,876	0	1,876
2005	4,248	4,248	0
2006	10,161	10,161	0
2007	3,623	3,623	0
2008	42,586	42,586	0
2009	0	0	0
2010	0	0	0
2011	5,230	5,230	0
2012	9,751	9,751	0
Average	7,403	7,127	276
Standard			
Deviation	10,828	10,981	554

estimates for the pelagic fishery to avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for blue marlin, Charter and Non-Charter separately are summed across all methods to obtain the numbers plotted above.

Figure 35. Annual CNMI boat-based creel estimated skipjack tuna landings


Interpretation: Skipjack tuna make up the majority of all pelagic landings. A drop in 2002 landings may be attributed to several typhoons that hit the Mariana Islands. Skipjack landings spiked in 2003, possibly due to increased fishing efforts. 2009 landings decreased 36% over 2008, which is a reflection of the Saipan economy and rising fuel prices. 2010 skipjack landings increased 37% over 2009, but decreased 39% in 2011. This decrease may be partially due to increasing fuel prices, the current economic situation in CNMI, and unfavorable sea conditions for fishing, which caused several long-time troll fishermen to leave the fishery. Total skipjack landings in 2012 increased 30% from 2011. Non-charter landings indicate an increase of 32% while charter landings indicate a significant decrease of 71%.

Source and Calculations: Data are from the DFW boat-based creel survey. A 365-day (leap year = 366 days) annual expansion is run for

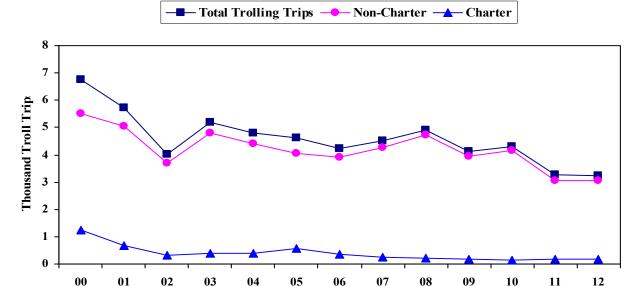
Skipjack Tuna Landings (lbs)				
	Total	Non-		
Year	Skipjack	Charter	Charter	
2000	514,027	510,678	3,350	
2001	573,996	569,041	4,955	
2002	381,612	380,062	1,550	
2003	621,204	619,130	2,073	
2004	460,626	457,966	2,660	
2005	424,597	418,340	6,258	
2006	494,927	491,520	3,407	
2007	444,493	443,600	893	
2008	419,311	417,903	1,408	
2009	270,439	268,484	1,955	
2010	365,636	365,192	444	
2011	221,575	217,633	3,943	
2012	288,642	287,482	1,160	
Average	421,622	419,002	2,620	
Standard	•	•	•	
Deviation	112,426	112,066	1,636	

each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for Skipjack Tuna, Charter and Non-Charter separately are summed across all methods to obtain the numbers plotted above.

Figure 36. Annual CNMI boat-based creel estimated yellowfin landings

Interpretation: In 2010, yellowfin tuna comprised only 6% of all total pelagic landings. Yellowfin tuna catches are usually smaller in size than other geographical areas; the average size of yellowfin tuna measured during creel survey on Saipan was 48.7 cm in length. Fishermen on Saipan recorded a good year for yellowfin tuna in 2011, with landings increasing over 2010 by 39%. There were no vellowfin tuna landings from charter vessels recorded in the boat-based creel survey in 2011. Total yellowfin landings increased in 2012 by 80%. 99.8% of the yellowfin landings in 2012 were from non-charter landings. Fishermen reported a longer season of yellowfin schools around Saipan.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boatbased creel survey. A 365-day (366 days during leap years) annual expansion is run for each

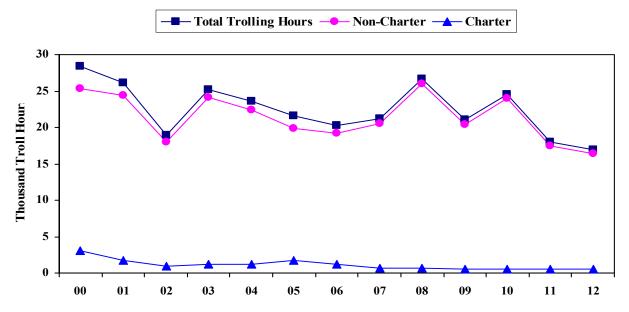

Yellowfin Tuna Landings (lbs)				
	Total	Non-		
Year	Yellowfin	Charter	Charter	
2000	18,123	10,195	7,928	
2001	35,265	35,265	0	
2002	16,714	16,494	220	
2003	34,953	34,568	384	
2004	49,674	49,674	0	
2005	57,829	56,656	1,173	
2006	27,658	27,599	59	
2007	35,958	35,958	0	
2008	33,906	33,906	0	
2009	26,602	26,602	0	
2010	29,730	26,289	3,441	
2011	41,006	41,006	0	
2012	73,707	73,565	142	
Average	37,010	35,983	1,027	
Standard				
Deviation	151,171	16,068	2,194	

calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for Yellowfin Tuna, Charter and Non-Charter separately are summed across all methods to obtain the numbers plotted above.

Table 37. Boat-based survey statistics: raw data

Year	Survey Days	Total Trips (Boat	Non- Charter Trips (Boat	Charter Trips (Boat	Total Interviews Conducted	Non- charter Interviews	Charter Interviews
2000	66	Log) 130	Log) 115	Log) 15	123	104	19
	67					104 196	
2001		221	202	19	215		19
2002	75	149	138	11	163	137	26
2003	91	248	224	24	278	223	55
2004	77	211	191	20	211	187	24
2005	78	293	259	34	294	247	47
2006	71	212	198	14	222	193	29
2007	63	199	193	6	194	187	7
2008	56	164	160	4	160	155	5
2009	66	140	137	3	137	132	5
2010	70	122	118	4	115	112	3
2011	73	111	106	5	105	100	5
2012	77	134	127	7	126	119	7

Figure 37. CNMI boat-based creel estimated number of trolling trips

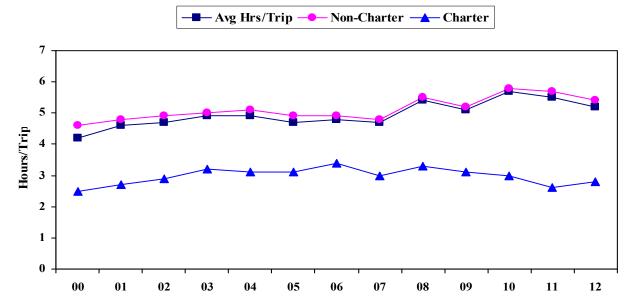

Interpretation: The total number of trolling trips has slightly decreased over the 12 years since the start of the boat-based creel survey, which is partly due to the down turn in economic activity in CNMI, rising fuel cost, and fishermen leaving the fishery. Despite this, 2010 total trips increased 5% over 2009 because non-charter boats trips increased 6% over 2009. Charter trips decreased 17% in 2010. In 2011, the number of total estimated trips decreased 22%; non-charter trips decreased 26% and, while charter trips increased by 19%, charter trips only represent 5.8% of the 2011 trips. The number of trolling trips in 2012 remained relatively the same as 2011, while charter trips declined slightly by 8%. The majority of trolling trips are from non-charter boats, which recorded 3,069 of the 3,242 total trips in 2012.

CNMI Estimated Number of Trips				
	Total	Non-		
Year	Trips	Charter	Charter	
2000	6,755	5,528	1,227	
2001	5,709	5,039	671	
2002	4,001	3,683	318	
2003	5,181	4,804	377	
2004	4,810	4,412	398	
2005	4,616	4,064	553	
2006	4,235	3,896	340	
2007	4,504	4,261	242	
2008	4,921	4,717	204	
2009	4,141	3,951	190	
2010	4,312	4,154	158	
2011	3,262	3,074	188	
2012	3,242	3,069	173	
Average	4,591	4,204	388	
Standard				
Deviation	911	687	284	

Source and Calculations: Data are from the

Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated number of trips for the trolling method as taken directly from creel survey expansion outputs.

Figure 38. CNMI boat-based creel estimated number of trolling hours

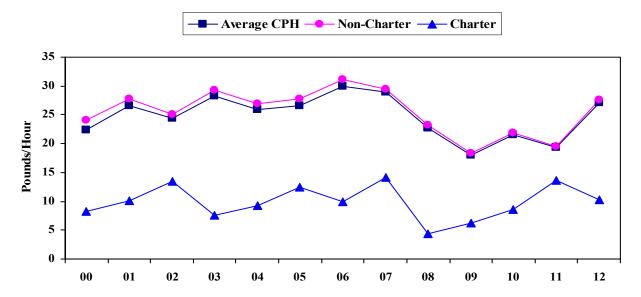


Interpretation: In 2011, total estimated trolling hours decreased 25% from 2010; trolling hours for non-charter boats decreased 27% from 2010, while charter trolling hours increased by 5%. In 2012, the total estimated trolling hours decreased by 6%; non-charter boat trolling hours decreased 6% and charter trolling hours decreased by 3%.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated boat hours spent fishing for the trolling method as taken directly from creel survey expansion outputs.

CNMI Estimated Trolling Hours				
	Total	Non-		
Year	Hours	Charter	Charter	
2000	28,425	25,349	3,077	
2001	26,166	24,370	1,796	
2002	18,870	17,940	930	
2003	25,266	24,078	1,188	
2004	23,623	22,375	1,248	
2005	21,619	19,915	1,705	
2006	20,299	19,160	1,140	
2007	21,232	20,499	733	
2008	26,642	25,969	673	
2009	21,027	20,443	584	
2010	24,473	24,000	473	
2011	17,973	17,475	498	
2012	16,928	16,447	481	
Average	22,503	21,386	1,117	
Standard				
Deviation	3,426	3,051	709	

Figure 39. CNMI boat-based creel estimated average troll trip length (hours/trip)

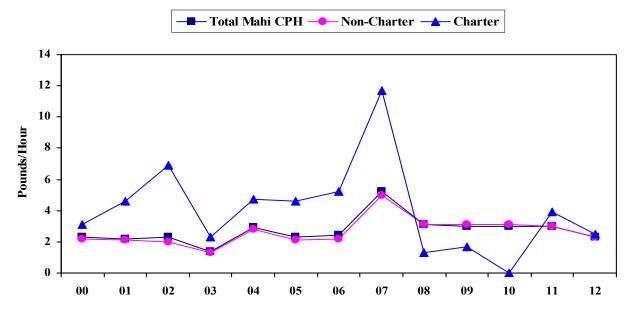

Interpretation: The overall average trolling hours/trips have increased over the 12 year time series. Total average trip length in 2010 increased 12% because non-charter boats fished longer hours, possibly due to remaining fishermen fishing longer to meet the demand in the market created when some fishermen left the industry. Total hours per trip taken in 2011 decreased by 4%; non-charter boats hours per trip decreased 2% and charter hours per trip decreased 10%. The 2011 decrease may be attributed to unfavorable sea conditions and rising fuel prices. The 2012 combined hours per trip data indicates a 5% decrease. In 2012, non-charter boat hours per trip decreased slightly by 5% due to better trolling catch rates. Charter boat hours per trip increased by 8% in 2012, partly due to lower catch rates being reported by the charter fleet and tourists requesting longer fishing trips. Favorable sea conditions also play a

Estimated Troll Trip Length				
	Average	Non-		
Year	Hours/Trip	Charter	Charter	
2000	4.2	4.6	2.5	
2001	4.6	4.8	2.7	
2002	4.7	4.9	2.9	
2003	4.9	5.0	3.2	
2004	4.9	5.1	3.1	
2005	4.7	4.9	3.1	
2006	4.8	4.9	3.4	
2007	4.7	4.8	3.0	
2008	5.4	5.5	3.3	
2009	5.1	5.2	3.1	
2010	5.7	5.8	3.0	
2011	5.5	5.7	2.6	
2012	5.2	5.4	2.8	
Average	5.0	5.1	3.0	
Standard				
Deviation	0.4	0.4	0.3	

major role in hours/trips that non-charter and charter boats spend in the ocean.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated boat hours spent fishing and number of trips for the trolling method, as taken directly from creel survey, expansion system outputs.

Figure 40. CNMI boat-based creel trolling CPUE (pounds/hour) for all pelagic species

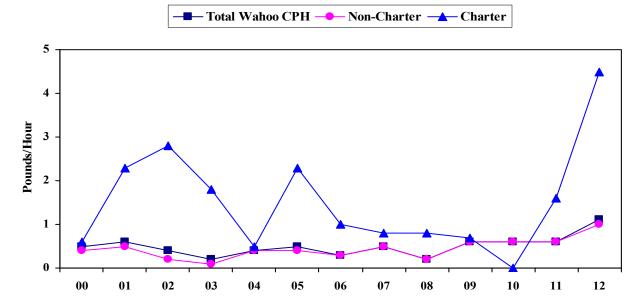


Interpretation: The trolling catch rates yearly fluctuations may be associated with weather patterns that affect sea conditions. 98% of total pelagic fish landed are from non-charter vessels, which are usually smaller boats, to target mainly skipjack. Smaller boats allow fishermen to save on fuel costs by using smaller boat engines. However, it also affects their ability to fish efficiently during rough weather days. 2010 pounds/hour for all pelagics increased 21% from 2009, decreased by 10% in 2011, but increased by 40% in 2012. Non-charter boats and charter vessels increased 20% and 89% respectively in 2010. The 2011 non-charter catch rates for all pelagics decreased by 10%, but increased by 42% in 2012. Charter boats increased consistently from 2008 through 2011, with a 55% increase from 2010 to 2011. However, charter boat catch rates declined by 26% in 2012.

CPUE (p	CPUE (pounds/hour): All Pelagic Species				
	Combined	Non-			
Year	Average	Charter	Charter		
2000	22.4	24.1	8.2		
2001	26.6	27.8	10.1		
2002	24.4	25.0	13.4		
2003	28.3	29.3	7.5		
2004	25.9	26.9	9.3		
2005	26.6	27.8	12.4		
2006	29.9	31.1	9.9		
2007	29.0	29.5	14.2		
2008	22.8	23.3	4.4		
2009	18.0	18.3	6.3		
2010	21.6	21.9	8.5		
2011	19.3	19.5	13.7		
2012	27.1	27.6	10.2		
Average	24.8	25.5	9.9		
Standard					
Deviation	3.6	3.8	2.9		

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of all troll catch, divided by the total number of hours spent fishing.

Figure 41. CNMI boat-based creel trolling CPUE (pounds/hour) for mahimahi

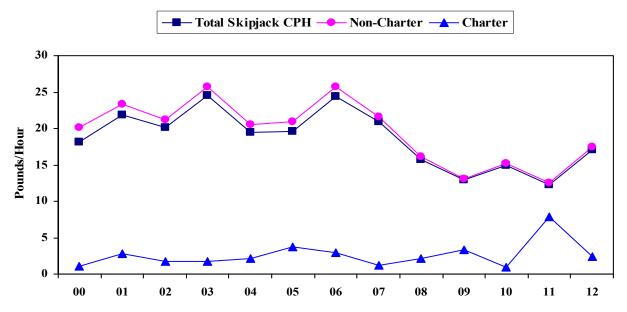

Interpretation: Mahimahi landing fluctuates yearly with high variability possibly due to seasonal availability of stocks and abundance. Mahimahi is not a very marketable fish on Saipan. Fishermen do not target mahimahi; therefore, varying catch rates can be expected. While non-charter vessels catch rates remained consistent from 2008 through 2011, charter vessel catch rate was low until a jump in 2011 to 3.8 lbs/hr. 2012 mahimahi catch rates decreased 23% from 2011 level. Non-charter mahimahi catch rates decreased 23% and charter catch rates decreased 36%.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per

CPUE (pounds/hour): Mahimahi			
		Non-	
Year	Combined	Charter	Charter
2000	2.3	2.2	3.1
2001	2.2	2.1	4.6
2002	2.3	2.0	6.9
2003	1.4	1.3	2.3
2004	2.9	2.8	4.7
2005	2.3	2.1	4.6
2006	2.4	2.2	5.2
2007	5.2	5.0	11.7
2008	3.1	3.1	1.3
2009	3.0	3.1	1.7
2010	3.0	3.1	0.0
2011	3.0	3.0	3.9
2012	2.3	2.3	2.5
Average	2.7	2.6	4.0
Standard			
Deviation	0.8	0.9	2.8

unit of effort (CPUE) are based on the total annual landings of mahimahi divided by the total number of hours spent fishing (gear in use).

Figure 42. CNMI boat-based creel trolling CPUE (pounds/hour) for wahoo

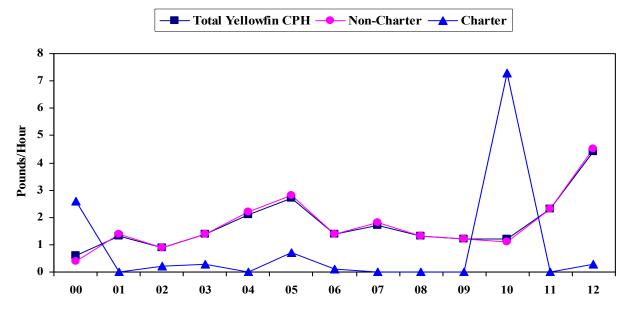

Interpretation: The yearly fluctuation in wahoo catch rates is probably similar to Guam's wide fluctuations in their CPUE, possibly due to high variability in the year to year abundance and availability of the stocks. Catch rates for non-charter boats remained constant at 0.6 lbs/hr from 2009 to 2011, and increased 67% in 2012 to 1.0 lbs/hr. Catch rates fluctuated for charter vessels, with a significant increase from 2011 to 2012 of 1.6 lbs/hr to 4.5 lbs/hr, which is the highest catch rate recorded in 12 years. The combined noncharter and charter total wahoo catch rates remained constant at 0.6 lbs/hr from 2009 to 2011, and increased to 1.1 in 2012. The 2012 combined wahoo catch rates for non-charter and charter boats increased by 83%.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-

CPUE (pounds per hour): Wahoo			
		Non-	
Year	Combined	Charter	Charter
2000	0.5	0.4	0.6
2001	0.6	0.5	2.3
2002	0.4	0.2	2.8
2003	0.2	0.1	1.8
2004	0.4	0.4	0.5
2005	0.5	0.4	2.3
2006	0.3	0.3	1.0
2007	0.5	0.5	0.8
2008	0.2	0.2	0.8
2009	0.6	0.6	0.7
2010	0.6	0.6	0.0
2011	0.6	0.6	1.6
2012	1.1	1.0	4.5
Average	0.5	0.4	1.5
Standard			
Deviation	0.2	0.2	1.2

based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of wahoo divided by the total number of hours spent fishing (gear in use).

Figure 43. CNMI boat-based creel trolling CPUE (pounds/hour) for skipjack tuna

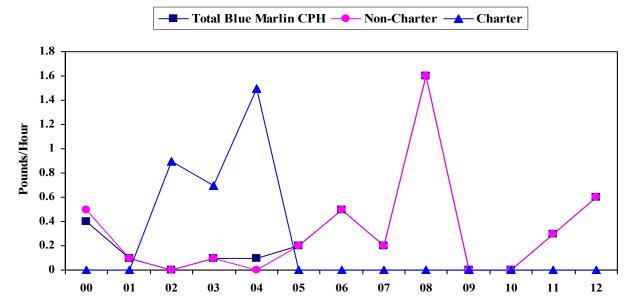

Interpretation: Skipjack tuna is the main targeted species in the pelagic fishery of the CNMI. Yearly fluctuations of catch rates may be due to availability of stock and the sea conditions; the smaller vessels typical for the commercial troll fishermen are affected more by unfavorable sea conditions. The combined catch rates for 2011 decreased 17% from 2010, but increased in 2012 by 39%. The non-charter boat catch rates for skipjack tuna, their primary target, decreased by 18% in 2011, but rebounded by 40% in 2012. Charter vessels showed a significant increase from 0.9 lbs/hr in 2010 to 7.4 lbs/hr in 2011, but decreased by 70% in 2012. Fishermen reported a better catch rate in 2012 than in 2011, which is also reflected in the shorter trips/hour that fishermen spent trolling.

CPUE (pounds/hour): Skipjack Tuna			
		Non-	
Year	Combined	Charter	Charter
2000	18.1	20.1	1.1
2001	21.9	23.4	2.8
2002	20.2	21.2	1.7
2003	24.6	25.7	1.7
2004	19.5	20.5	2.1
2005	19.6	21.0	3.7
2006	24.4	25.7	3.0
2007	20.9	21.6	1.2
2008	15.7	16.1	2.1
2009	12.9	13.1	3.3
2010	14.9	15.2	0.9
2011	12.3	12.5	7.9
2012	17.1	17.5	2.4
Average	18.6	19.5	2.6
Standard			
Deviation	3.8	4.2	1.7

Source and Calculations: Data are from the

Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of skipjack divided by the total number of hours spent fishing (gear in use).

Figure 44. CNMI boat-based creel trolling CPUE (pounds/hour) for yellowfin tuna


Interpretation: Yellowfin tuna landed on Saipan are usually smaller in size than other geographical areas. The average length of vellowfin tuna measured during creel survey sample days was around 48.7 cm. Fluctuations in yellowfin tuna catch rates are similar to mahimahi and wahoo in that it may have more to do with abundance and availability of stock. This species is seasonal in the CNMI. In 2011, non-charter fishermen reported a good year for landing vellowfin tuna, which is reflected in an increase in CPUE of 109%; there were no creel survey recorded landings of yellowfin tuna by charter vessels. In 2012, yellowfin tuna catch rates continued to increase by 96% over 2011 for non-charter boats; charter boats also experienced increased catch rates of 0.3 lbs/hr.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-

CPUE (pounds/hour): Yellowfin Tuna				
		Non-		
Year	Combined	Charter	Charter	
2000	0.6	0.4	2.6	
2001	1.3	1.4	0.0	
2002	0.9	0.9	0.2	
2003	1.4	1.4	0.3	
2004	2.1	2.2	0.0	
2005	2.7	2.8	0.7	
2006	1.4	1.4	0.1	
2007	1.7	1.8	0.0	
2008	1.3	1.3	0.0	
2009	1.2	1.2	0.0	
2010	1.2	1.1	7.3	
2011	2.3	2.3	0.0	
2012	4.4	4.5	0.3	
Average	1.7	1.7	0.9	
Standard				
Deviation	0.9	1.0	2.0	

based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of yellowfin divided by the total number of hours spent fishing (gear in use).

Figure 45. CNMI boat-based creel trolling CPUE (pounds per hour) for blue marlin

Interpretation: Blue marlin is rarely a target for non-charter boats. There is almost no market for blue marlin and boats that make up the majority of the troll fishing industry are generally too small to transport blue marlins once they are landed. Blue marlins are mostly only targeted during fishing tournaments. Charter vessels target blue marlins, but trip time is limited. There have been no trips for blue marlins by charter vessels from 2005 through 2012. The non-charter catch rate increased from 2011 by 100% in 2012. Although there were landings recorded in the creel survey in 2012, blue marlin is rarely a target for non-charter boats and catch rates reported are more like an incidental catch rate.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boatbased creel survey. The data expansion system

CPUE (pounds/hour): Blue Marlin			
		Non-	
Year	Combined	Charter	Charter
2000	0.4	0.5	0.0
2001	0.1	0.1	0.0
2002	0.0	0.0	0.9
2003	0.1	0.1	0.7
2004	0.1	0.0	1.5
2005	0.2	0.2	0.0
2006	0.5	0.5	0.0
2007	0.2	0.2	0.0
2008	1.6	1.6	0.0
2009	0.0	0.0	0.0
2010	0.0	0.0	0.0
2011	0.3	0.3	0.0
2012	0.6	0.6	0.0
Average	0.3	0.3	0.2
Standard			
Deviation	0.4	0.4	0.5

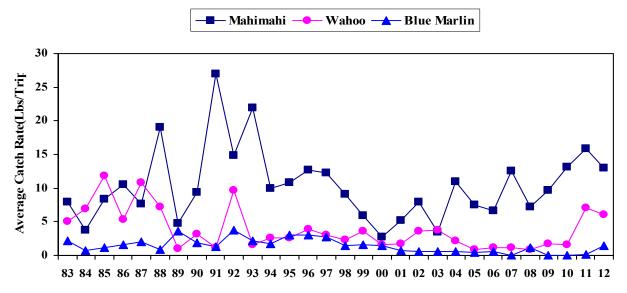

is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of marlin divided by the total number of hours spent fishing (gear in use).

Table 38. CNMI consumer price index, consumer price index adjustment factor, and commercial receipt invoices data coverage

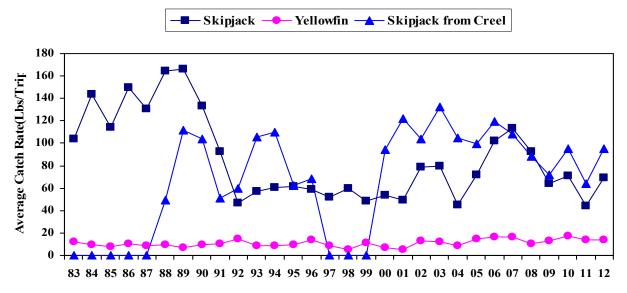
		СРІ	
		Adjustment	Data
Year	СРІ	Factor	Coverage
1983	140.90	2.62	80.00
1984	153.20	2.41	80.00
1985	159.30	2.32	80.00
1986	163.50	2.26	80.00
1987	170.70	2.16	80.00
1988	179.60	2.06	80.00
1989	190.20	1.94	80.00
1990	199.33	1.85	80.00
1991	214.93	1.72	80.00
1992	232.90	1.58	80.00
1993	243.18	1.52	80.00
1994	250.00	1.48	80.00
1995	254.48	1.45	80.00
1996	261.98	1.41	80.00
1997	264.95	1.39	80.00
1998	264.18	1.40	80.00
1999	267.80	1.38	80.00
2000	273.23	1.35	80.00
2001	271.01	1.36	80.00
2002	271.55	1.36	80.00
2003	268.92	1.37	80.00
2004	271.28	1.36	55.00
2005	271.90	1.36	55.00
2006	285.96	1.29	55.00
2007	301.72	1.22	65.00
2008	320.39	1.15	65.00
2009	325.20	1.14	55.00
2010	351.05	1.05	45.00
2011	363.90	1.01	40.00
2012	369.10	1.00	65.00

Calculations: The Commonwealth of the Northern Mariana Islands' Consumer Price Index is computed by the CNMI Department of Commerce using the Laspeyres' formula.

Figure 46. CNMI trolling catch rates from commercial receipt invoices for mahimahi, wahoo, and blue marlin (pounds/trip)

Interpretation: The mahimahi catch appears to be highly variable, shifting between high and low CPUE annually. It may be biological because it appears that the trolling catch rates of Guam and the CNMI have fluctuated similarly over the last twenty-nine years. Mahimahi catch rates increased steadily from 2008 through 2011, increasing 121%. It declined in 2012 though by 18%.

Prior to the 1989 record low, wahoo catch rates rivaled those for mahimahi. Wahoo catch rates generally never regained those historical levels. The record low was hit in 2008 at 0.91 lbs/trip. However, catch rates have increased steadily to the second highest level in 20 years, which were 7.00 lbs/trip in 2011 and 6.05 lbs/trip in 2012. 2012 was 13.5% lower than 2011.


Blue marlins are not a marketable species and are rarely a target by fishermen except during fishing tournaments. When landed, it is rarely sold to vendors participating in the Commercial Purchase Data Collection Program; therefore it would not be recorded in the Commercial Purchase Database used to generate these reports. During the 2000 Saipan International Fishing Derby, a 996-pound blue marlin was landed and another 997 pound blue marlin was landed in the 2011 fishing derby. However, blue marlin lbs/trip increased significantly in 2012. Large blue marlins are not uncommon around the waters of the CNMI however non-charter boats, which make up over 90% of the troll boat fleet, rarely, target this species.

Source and Calculations: Annual catch rates for selected species were obtained by calculating the average weight per trip for each year. Trips were assumed to be one day in length and each commercial invoice assumed to represent one trip.

Table 39. CNMI trolling catch rates from commercial receipt invoices for mahimahi, wahoo, and blue marlin (pounds/trip)

CPUE: Mahimahi, Wahoo, and Blue Marlin (pounds/trip)							
	viariin (poun	as/trip)	DI				
X 7	M - l.: l.:	XX /-1	Blue				
Year	Mahimahi	Wahoo	Marlin				
1983	7.92	4.98	2.15				
1984	3.76	6.95	0.76				
1985	8.36	11.77	1.20				
1986	10.50	5.35	1.57				
1987	7.66	10.81	1.98				
1988	18.98	7.21	0.81				
1989	4.71	1.01	3.67				
1990	9.40	3.12	1.83				
1991	27.03	1.22	1.26				
1992	14.80	9.68	3.72				
1993	21.89	1.62	2.15				
1994	9.89	2.54	1.73				
1995	10.84	2.66	3.08				
1996	12.68	3.84	3.06				
1997	12.25	2.97	2.77				
1998	9.13	2.27	1.51				
1999	5.86	3.67	1.61				
2000	2.80	1.56	1.38				
2001	5.23	1.67	0.71				
2002	7.87	3.58	0.55				
2003	3.43	3.71	0.53				
2004	10.94	2.12	0.61				
2005	7.43	0.93	0.44				
2006	6.58	1.19	0.54				
2007	12.57	1.19	0.04				
2008	7.19	0.91	1.11				
2009	9.60	1.68	0.04				
2010	13.17	1.64	0.04				
2011	15.90	7.00	0.13				
2012	13.05	6.05	1.40				
Average	10.38	3.83	1.41				
Standard							
Deviation	5.33	2.97	1.03				

Figure 47. CNMI trolling catch rates from commercial receipt invoices for skipjack tuna, yellowfin tuna, and skipjack tuna from the Creel Survey (pounds/trip)

Interpretation: The Creel Survey data on skipjack tuna catch rates showed a very different pattern from the Commercial Purchase data until they appeared to stabilize beginning in 2006. Catch rates based on the Commercial Purchase Data Base and from the Creel Survey data continue a decline in 2011 that began in 2007, both showing a decline of about 30 lbs/trip since 2010. Previous discussions have suggested that non-tuna PMUS may be increasing in value and a slight shift in target troll fish may be occurring. The 2011 skipjack tuna catch rates decreased by 38 % from 2010 figures, but then increased 57% in 2012. This increase is partly due to better sea conditions.

Catch rates of yellowfin tuna per trip have been relatively consistent since 2005, varying between 13 and 17 lbs/trip, except a low of 10 lbs/trip in 2008. In 2011, the yellowfin tuna catch rate decreased by 3 lb/trip (18%) to 14 lbs/trip from the 2010 level, and remained the same in 2012 as indicated by commercial receipt invoices.

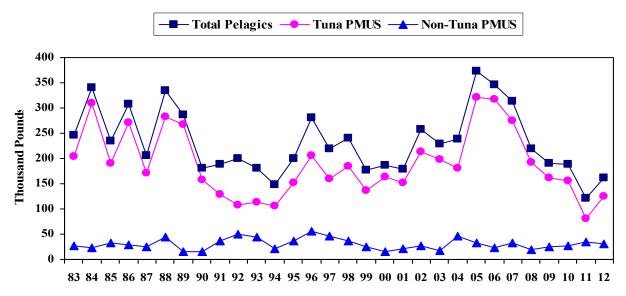
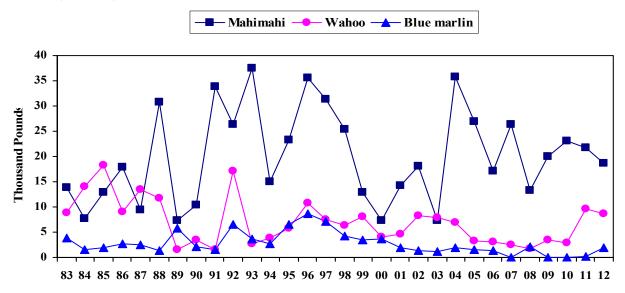

Source and Calculations: Data were summarized from the Commercial Purchase Database, which provides average pounds caught per trip. Annual catch rates for selected species were obtained by calculating the average weight per trip for each year. Trips were assumed to be one day in length and each commercial invoice represents one trip. Creel skipjack CPUE was calculated by dividing the sum of skipjack weight from all trolling trip interviews by the number of trolling trips interviewed.

Table 40. CNMI trolling catch rates from commercial receipt invoices for skipjack tuna, yellowfin tuna, and skipjack tuna from the Creel Survey (pounds/trip)

	CPUE: Skipjack, Yellowfin, and Skipjack from						
	Creel Survey	(pounds/trip					
Year	Skinigak	Yellowfin	Skipjack Creel				
	Skipjack						
1983	104	12	0				
1984	144	10	0				
1985	114	8	0				
1986	150	10	0				
1987	130	8	0				
1988	164	9	49				
1989	166	7	112				
1990	133	9	104				
1991	93	10	51				
1992	46	14	60				
1993	57	9	106				
1994	61	9	110				
1995	61	10	62				
1996	59	14	68				
1997	52	8	0				
1998	60	5	0				
1999	48	11	0				
2000	54	7	94				
2001	49	5	122				
2002	78	13	104				
2003	80	12	133				
2004	45	8	104				
2005	72	14	99				
2006	102	16	119				
2007	114	17	108				
2008	93	10	88				
2009	64	13	72				
2010	71	17	95				
2011	44	14	64				
2012	69	14	95				
Average	86	11	67				
Standard Deviation	37	3	45				

Source and Calculations: Annual summaries for each species are from the Commercial Purchase Database invoices.

Figure 48. CNMI estimated total commercial landings (lbs) from commercial receipt invoices for tuna and non-tuna PMUS


Interpretation: The total pelagics landed in 2012 increased 33% despite landings in 2011 decreasing by 40% from 2010. Tuna PMUS landing also increased in 2012 by 54% but still lower than the 30 year mean. Non-tuna PMUS landings decreased in 2012 by 14%. The current downward trend of the CNMI economy has been very challenging for fish vendors to stay open. Fluctuations in total pelagic landings are mostly due to the low demand for troll fish in the CNMI.

Source and Calculations: All pelagics, tuna and non-tuna PMUS landings were summed from the Commercial Purchase Database.

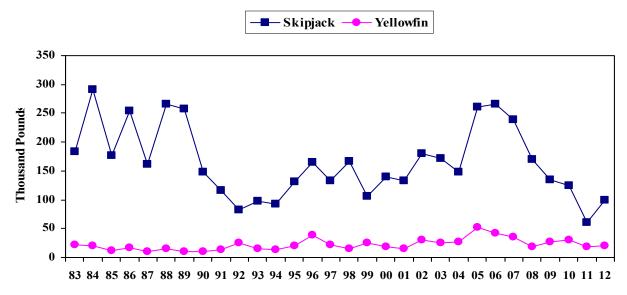
 $Table\ 41.\ CNMI\ estimated\ total\ commercial\ landings\ (lbs)\ from\ commercial\ receipt\ invoices\ for\ all\ pelagic,\ tuna,\ and\ non-tuna\ PMUS$

CNMI I	CNMI Estimated Total Commercial Landings						
	All	Tuna	Non-Tuna				
Year	Pelagics	PMUS	PMUS				
1983	245,985	204,692	26,544				
1984	341,136	310,424	23,244				
1985	234,178	189,809	33,143				
1986	307,459	271,279	29,626				
1987	205,068	171,957	25,450				
1988	334,523	281,872	43,805				
1989	286,784	267,811	14,595				
1990	180,450	158,430	15,936				
1991	188,561	128,848	36,975				
1992	199,228	108,314	50,159				
1993	181,328	113,207	44,518				
1994	147,329	105,942	21,657				
1995	200,180	152,756	35,759				
1996	281,277	206,247	55,712				
1997	218,873	159,626	46,049				
1998	240,263	184,450	35,979				
1999	177,031	136,907	24,768				
2000	187,295	162,747	15,551				
2001	179,181	152,144	21,198				
2002	256,982	213,565	27,876				
2003	228,416	198,843	17,346				
2004	239,007	181,331	45,737				
2005	372,375	321,089	32,136				
2006	346,885	316,446	23,080				
2007	312,554	275,614	32,755				
2008	219,187	192,598	18,454				
2009	190,796	161,778	24,284				
2010	188,351	154,871	26,978				
2011	121,118	81,269	34,757				
2012	160,714	125,356	29,917				
Average	232,417	189,674	30,466				
Standard Deviation	63,274	65,157	10,668				

Figure 49. CNMI estimated commercial landings from commercial receipt invoices for mahimahi, wahoo, and blue marlin

Interpretation: Mahimahi has been on a downward trend from 2010 through 2012. Mahimahi landings decreased by 16% from 2010 to 2011, and 1% from 2011 to 2012. However, this is after an upward trend from 2008 through 2010 in which mahimahi increased 48% then 16%. It is noteworthy that the CNMI and Guam mahimahi catches have been fluctuating similarly since 1987, which may indicate a strong biological influence in local landing patterns.

Wahoo landings were relatively stable, although low, from 2005 through 2010. Wahoo landings in 2011 showed a significant increase in landings, from 2,887 pounds in 2010 to 9,606 pounds in 2011, a 230% increase. Fishermen have reported that they fished closer to land and near reefs to lower fuel cost which may be attributed to increase in wahoo landings. Wahoo landings in 2012 declined slightly by 10%. Yearly fluctuations with wahoo landings are not unusual for the CNMI since fishermen mainly target skipjack tuna.


Blue marlin is rarely a target by the commercial fishermen except for charter boats and during fishing tournaments. If blue marlins are landed, they are often kept by the fishermen and therefore rarely ever recorded in the Commercial Purchase Data Base. 2009 through 2011 landings were very low (<175 lbs), but in 2012 there was over 2,000 pounds of blue marlin recorded as being sold, a level not seen since 2008 and prior to that, in 2004.

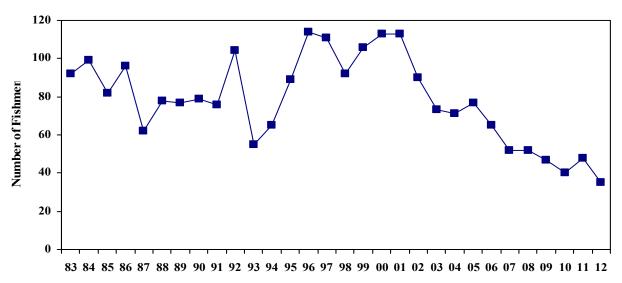
Source and Calculations: The annual commercial landings of the three major PMUS species (mahimahi, wahoo and blue marlin) were summed directly from the Commercial Purchase Database.

Table 42. CNMI estimated commercial landings for mahimahi, wahoo, and blue marlin

Estima	ated Commer	cial Land	ings					
	Blue							
Year	Mahimahi	Wahoo	Marlin					
1983	13,939	8,760	3,787					
1984	7,614	14,087	1,544					
1985	12,955	18,251	1,860					
1986	17,796	9,062	2,654					
1987	9,502	13,404	2,460					
1988	30,799	11,697	1,309					
1989	7,320	1,571	5,704					
1990	10,439	3,462	2,034					
1991	33,756	1,521	1,568					
1992	26,257	17,172	6,603					
1993	37,545	2,779	3,687					
1994	15,063	3,863	2,635					
1995	23,321	5,722	6,619					
1996	35,655	10,783	8,593					
1997	31,277	7,580	7,068					
1998	25,375	6,299	4,201					
1999	12,882	8,063	3,541					
2000	7,324	4,097	3,608					
2001	14,229	4,550	1,924					
2002	18,042	8,212	1,261					
2003	7,357	7,950	1,130					
2004	35,808	6,936	2,001					
2005	26,891	3,349	1,595					
2006	17,181	3,116	1,402					
2007	26,410	2,504	76					
2008	13,187	1,669	2,027					
2009	20,030	3,500	82					
2010	23,157	2,887	73					
2011	21,821	9,606	175					
2012	18,712	8,677	2,010					
Average	20,055	7,038	2,774					
Standard								
Deviation	9,151	4,475	2,171					

Figure 50. CNMI estimated commercial purchase database landings from commercial receipt invoices for skipjack tuna and yellowfin tuna

Interpretation: Skipjack tuna was on a steady decline from 2006 through 2011 as a result of the current downward trend of the CNMI economy and also lack of vendor participation in this voluntary program. Sea conditions were also not favorable in 2011. The demand for pelagic fish is not what it once was. In 2012, skipjack landings recovered slightly by 64%. Fishermen reported better catch rates and better sea conditions in 2012.

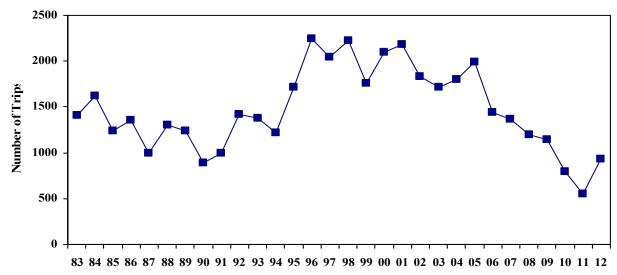

Although more highly prized than skipjack, yellowfin tuna are not as common, and therefore not landed as often. The average fish size tends to be smaller when compared with yellowfin tuna from other geographic areas. Landings decreased steadily from 2005 through 2008, recovered somewhat over 2009 and 2010, but then decreased by 37% in 2011, partially due to some vendors not participating in this voluntary program. Landings remained steady in 2012, increasing only 2%. This increase is due to better participation by vendors in this data collection program as well as an increase in yellowfin tuna landings, as indicated in the creel survey program.

Source and Calculations: Landings were summed directly from the Commercial Purchase Database.

 $\label{thm:commercial} Table~43.~CNMI~estimated~commercial~purchase~database~landings~for~skipjack~tuna~and~yellow fin~tuna$

Estim	Estimated Commercial						
	Landings						
Year	Skipjack	Yellowfin					
1983	183,411	21,281					
1984	290,843	19,580					
1985	177,344	12,466					
1986	254,362	16,917					
1987	161,504	10,454					
1988	266,497	15,375					
1989	257,703	10,109					
1990	147,962	10,468					
1991	115,802	13,042					
1992	82,280	25,687					
1993	97,268	14,898					
1994	92,212	13,445					
1995	131,377	20,918					
1996	165,037	38,043					
1997	133,446	21,352					
1998	167,114	14,570					
1999	106,297	24,419					
2000	140,389	17,673					
2001	133,769	14,543					
2002	179,966	30,017					
2003	171,574	26,042					
2004	148,328	27,548					
2005	260,614	52,014					
2006	265,753	41,996					
2007	238,972	34,894					
2008	170,059	18,695					
2009	133,794	26,463					
2010	124,096	30,507					
2011	60,431	19,059					
2012	99,187	19,392					
Average	165,246	22,062					
Standard							
Deviation	61,391	9,804					

Figure 51. CNMI number of commercial vessels landing pelagic species from commercial receipt invoices

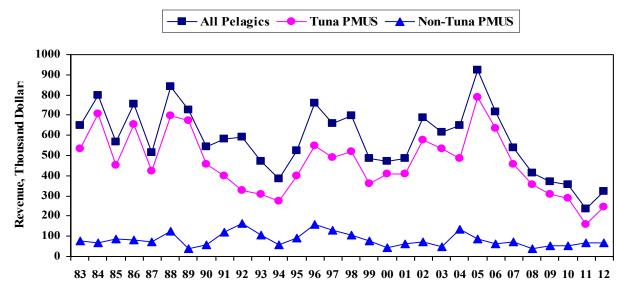

Interpretation: The number of fishers (vessels) making pelagic landings has been steadily decreasing from 2001 through 2012, despite a slight increase in 2011 of 17%. In 2012, the number of fishers declined 27% from 2011. The decrease is partly due to vendors who own multiple fishing boats entering all their landings on a single receipt and at times combining monthly total landings onto a single receipt. Other factors that may have influenced a drop in fishermen making pelagic landings are the bad weather that plagued the Marianas throughout 2003 and early 2004, continued increase in fuel price, continued decline in the average price per pound of skipjack tuna, and downward trend in the CNMI economy. Also, several long-time fishermen have left the fishery.

Source and Calculations: Each invoice from the Commercial Purchase Database records the fisherman's name from whom the fish were purchased. The number of fishermen who sold any pelagic species was calculated directly from the data invoices.

Table 44. CNMI number of commercial vessels from commercial receipt invoices

	Number of
Year	Vessels
1983	92
1984	99
1985	82
1986	96
1987	62
1988	78
1989	77
1990	79
1991	76
1992	104
1993	55
1994	65
1995	89
1996	114
1997	111
1998	92
1999	106
2000	113
2001	113
2002	90
2003	73
2004	71
2005	77
2006	65
2007	52
2008	52
2009	47
2010	40
2011	48
2012	35
Average	78
Standard	
Deviation	23

Figure 52. CNMI number of fishing trips commercially landing any pelagic species from commercial receipt invoices


Interpretation: Despite a slight upward trend in 2004 and 2005, there has been a continued decline in the number of fishing trips commercially landing pelagic species since 2001. The decline in the number of trips from 2005 to 2009 is related to the lack of market demand for pelagics. Typhoons hit the Marianas region frequently, which may contribute to some decline in fishing trips, as well as the increasing price of fuel cost (\$3.58/gallon in 2006 compared to \$4.33/gallon in 2007). The decline in 2010 and 2011 may be partly due to the lack of requirements of vendors and fishermen to participate in this commercial receipt invoice program. However the CNMI Division of Fish and Wildlife (DFW) are currently trying to implement a legislative requirement to address this issue. In 2012, DFW started to actively encourage fish vendors to participate in this program. With this determined new effort to have better commercial receipt invoice data coverage, the number of fishing trips reported in this program increased by 70%.

Source and Calculations: The total trips for all pelagic species were summed from the Commercial Purchase Database. Trips were calculated based on the assumptions that no fisherman makes more than one trip per day, and that all sales from a single trip are made on a single day.

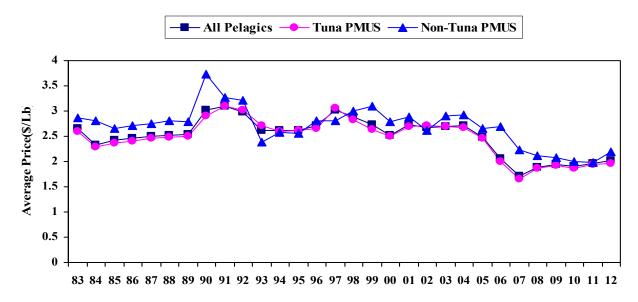
Table 45. CNMI Number of fishing trips commercially landing any pelagic species

	Number
Year	of Trips
1983	1,408
1984	1,621
1985	1,240
1986	1,356
1987	992
1988	1,298
1989	1,242
1990	888
1991	999
1992	1,419
1993	1,372
1994	1,218
1995	1,721
1996	2,249
1997	2,042
1998	2,223
1999	1,759
2000	2,095
2001	2,178
2002	1,835
2003	1,715
2004	1,801
2005	1,990
2006	1,436
2007	1,366
2008	1,192
2009	1,148
2010	791
2011	549
2012	932
Average	1,469
Standard	
Deviation	445

Figure 53. CNMI annual adjusted commercial revenues from pelagic species obtained from commercial receipt invoices

Interpretation: The erratic fluctuations of the inflation-adjusted revenues for tunas and for all pelagics prior to 1990 is most likely due to the annual variations in skipjack tuna landings, which completely dominated the tuna category and the "All Pelagics" category. In 2003, the tunas' inflation-adjusted revenues decreased 8% from the 2002 figures and continued to decline to 11% for 2004. This is due to the decrease in landings of skipjack tuna, which in 2004 comprised only of 67% of the total pelagic landings compared to 2003 where it comprised 87% of the total pelagic landings. The tunas' inflation-adjusted revenues increased significantly by 38% in 2005, but have steadily declined since. According to vendors, these declines are due to the low demand for pelagic or troll species. This decrease in tuna adjusted revenues continued annually from until 2012, when revenues increased 56% over 2011. This increase in revenue is due to an increase in landings and better data coverage in this program.

In 2003, a drop of 31% occurred for the non-tuna PMUS inflation-adjusted revenues, however 2004 data indicates an increase of 158% compared to the previous year because mahimahi landings increased by 387%. The inflation adjusted revenue decreased from 2004 through 2008, but increased in 2009 by 25%. The inflation adjusted revenue increased again in 2010 and 2011, but declined in 2012 by 5%.


The 2010 inflation adjusted revenues for all pelagic declined slightly and declined further in 2011. The decline in 2010 is related to the decreasing price per pound for pelagics and decline in total landings that is reported on the commercial receipt invoice program. In 2012, the inflation adjusted revenue for all pelagics increased by 39%.

Source and Calculations: Annual revenue in dollars was summed separately for all pelagic fish, tunas and non-tuna PMUS. Inflation-adjusted revenues were calculated using the Consumer Price Index, with 1998 as a base by which previous years' nominal prices are adjusted.

Table 46. CNMI annual adjusted commercial revenues from pelagic species

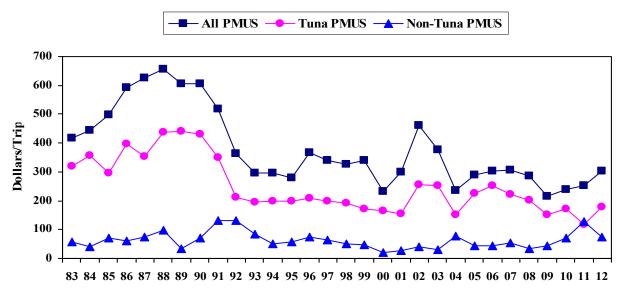
	All Pel	agics	Tuna P	MUS	Non-tuna	PMUS
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1983	248,387	650,774	202,800	531,366	29,059	76,135
1984	330,254	795,912	294,077	708,725	27,044	65,176
1985	244,171	566,477	193,920	449,894	37,882	87,886
1986	333,766	754,311	289,681	654,679	35,488	80,203
1987	237,687	513,404	195,793	422,913	32,344	69,863
1988	409,075	842,695	338,348	696,997	59,701	122,984
1989	373,927	725,418	345,839	670,928	20,917	40,579
1990	293,993	543,887	248,144	659,066	32,102	59,389
1991	338,643	582,466	232,077	399,172	70,235	120,804
1992	374,977	592,464	206,950	326,981	102,133	161,370
1993	311,342	473,240	201,350	306,052	69,592	105,780
1994	259,470	384,016	185,381	274,364	37,818	55,971
1995	361,511	524,191	275,080	398,866	62,920	91,234
1996	539,628	760,875	388,691	548,054	110,939	156,424
1997	474,509	659,568	351,492	488,574	93,306	129,695
1998	496,652	695,313	372,142	520,999	77,011	107,815
1999	351,062	484,466	261,394	360,724	55,404	76,458
2000	350,468	473,132	302,473	408,339	32,186	43,451
2001	358,656	487,772	300,154	408,209	44,987	61,182
2002	506,302	688,571	425,961	579,307	53,468	72,716
2003	447,647	613,276	390,100	534,437	36,764	50,367
2004	476,543	648,098	356,110	484,310	98,417	133,847
2005	678,773	923,131	578,914	787,323	62,759	85,352
2006	554,373	715,141	492,762	635,663	48,026	61,954
2007	439,953	536,743	372,573	454,539	60,137	73,367
2008	359,427	413,341	310,855	357,483	33,954	39,047
2009	324,637	370,086	271,832	309,888	44,309	50,512
2010	339,846	356,838	276,286	290,100	51,525	54,101
2011	234,249	236,591	156,557	158,123	68,250	68,933
2012	324,454	324,454	245,899	245,899	65,542	65,542
Average	379,146	577,888	302,121	462,398	55,141	82,271
Standard						
Deviation	103,753	160,490	93,832	149,987	23,300	32,808

Figure 54. CNMI average inflation-adjusted price for commercially landed pelagic species (dollars per pound)

Interpretation: The inflation-adjusted average price of all pelagic declined steadily from 2004 to 2007, but recovered some in 2008 by 10%. The price remained stable from 2008 through 2011, fluctuating between \$1.84 and \$1.95. In 2012, the price increased by 4% to \$2.02.

The inflation-adjusted average price of tuna declined steadily from 2002 through 2007, but recovered slightly in 2008 by 13%. It has fluctuated between \$1.86 and \$1.96 since, with the high of \$1.96 in 2012, a 0.5% increase over 2011.

Decline in price per pound for skipjack tuna is a direct result from strong competition among fishermen. Fishermen land large amounts of skipjack tuna, flooding markets and consequently causing prices to drop as low as \$.75 per pound. This saturation of the local markets directly affects both the inflation-adjusted average prices and the inflation-adjusted revenues. In 2011 and 2012 there were far fewer fishermen participating in the troll fishery than in previous years.


The average for the inflation-adjusted price of non-tuna PMUS increased to \$2.90 in 2003 and remained at near that level for 2004. However, the price has steadily decreased since 2005 through 2011, when the adjusted average price per pound reached \$1.98. In 2012, inflation adjusted price per pound for non-tuna PMUS increased 11%, recovering slightly to \$2.19.

Source and Calculations: The unadjusted average price is calculated by dividing the total revenues generated by the total weight sold. The inflation adjustment is made using the 1998 NMI Consumer Price Index (CPI) as the basis by which calculations of previous years' prices are made.

Table 47. CNMI average adjusted price for commercially landed pelagic species (\$/lb)

	All Pela	agics	Tuna P	MUS	Non-Tuna PMUS	
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1983	1.01	2.65	0.99	2.60	1.09	2.87
1984	0.97	2.33	0.95	2.28	1.16	2.80
1985	1.04	2.42	1.02	2.37	1.14	2.65
1986	1.09	2.45	1.07	2.41	1.20	2.71
1987	1.16	2.50	1.14	2.46	1.27	2.75
1988	1.22	2.52	1.20	2.47	1.36	2.81
1989	1.30	2.53	1.29	2.51	1.43	2.78
1990	1.63	3.01	1.57	2.90	2.01	3.73
1991	1.80	3.09	1.80	3.10	1.90	3.27
1992	1.88	2.97	1.91	3.02	2.04	3.22
1993	1.72	2.61	1.78	2.70	1.56	2.38
1994	1.76	2.61	1.75	2.59	1.75	2.58
1995	1.81	2.62	1.80	2.61	1.76	2.55
1996	1.92	2.71	1.88	2.66	1.99	2.81
1997	2.17	3.01	2.20	3.06	2.03	2.82
1998	2.07	2.89	2.02	2.82	2.14	3.00
1999	1.98	2.74	1.91	2.63	2.24	3.09
2000	1.87	2.53	1.86	2.51	2.07	2.79
2001	2.00	2.72	1.97	2.68	2.12	2.89
2002	1.97	2.68	1.99	2.71	1.92	2.61
2003	1.96	2.68	1.96	2.69	2.12	2.90
2004	1.99	2.71	1.96	2.67	2.15	2.93
2005	1.82	2.48	1.80	2.45	1.95	2.66
2006	1.60	2.06	1.56	2.01	2.08	2.68
2007	1.41	1.72	1.35	1.65	1.84	2.24
2008	1.64	1.89	1.61	1.86	1.84	2.14
2009	1.70	1.94	1.68	1.92	1.82	2.08
2010	1.80	1.89	1.78	1.87	1.91	2.01
2011	1.93	1.95	1.93	1.95	1.96	1.98
2012	2.02	2.02	1.96	1.96	2.19	2.19
Average	1.67	2.50	1.66	2.47	1.80	2.70
Standard						
Deviation	0.35	0.37	0.35	0.38	0.34	0.39

Figure 55. CNMI per-trip adjusted revenues for commercially sold pelagic species from commercial receipt invoices

Interpretation: The inflation-adjusted revenue per trip for all species increased 20% in 2012. Although fishermen earned the same price pound in 2012 and 2011 for skipjack tuna, the average price for other non-tuna species increased. 2012 tuna PMUS inflation-adjusted revenue increased significantly by 52%. This is possibly due to fishermen getting better pricing for yellowfin tuna. In 2012, non-tuna PMUS per trip adjusted revenue declined 43%.

Source and Calculations: Values were obtained by selecting, from the Commercial Purchase Database, all trips which landed at least one PMUS, and then calculating a) the average revenue of all species combined, b) the average revenue of non-tuna PMUS only, and c) the average revenue of tuna only.

Table 48. CNMI per-trip adjusted revenues for commercially sold pelagic species

	All Pel	agics	Tuna P	MUS	Non-Tuna	PMUS
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1983	159.00	416.58	122.00	319.64	22.00	57.64
1984	185.00	445.85	148.00	356.68	17.00	40.97
1985	214.00	496.48	128.00	296.96	31.00	71.92
1986	262.00	592.12	176.00	397376	27.00	61.02
1987	290.00	626.40	163.00	352.08	34.00	73.44
1988	318.00	655.08	213.00	438.78	47.00	96.82
1989	312.00	605.28	228.00	442.32	17.00	32.98
1990	327.00	604.95	233.00	431.05	38.00	70.30
1991	302.00	519.44	204.00	350.88	77.00	132.44
1992	231.00	364.98	135.00	213.30	83.00	131.14
1993	195.00	296.40	128.00	194.56	55.00	83.60
1994	200.00	296.00	135.00	199.80	35.00	51.80
1995	193.00	279.85	136.00	197.20	39.00	56.55
1996	261.00	368.01	148.00	208.68	53.00	74.73
1997	245.00	340.55	143.00	198.77	47.00	65.33
1998	234.00	237.60	138.00	193.20	36.00	50.40
1999	246.00	339.48	125.00	172.50	33.00	45.54
2000	172.00	232.20	121.00	163.35	16.00	21.60
2001	219.00	297.84	113.00	153.68	21.00	28.56
2002	339.00	461.04	189.00	257.04	30.00	40.80
2003	275.00	376.75	185.00	532.45	22.00	30.14
2004	172.00	233.92	112.00	152.35	56.00	76.16
2005	213.00	289.68	165.00	224.40	32.00	43.52
2006	236.00	304.44	195.00	251.55	35.00	45.15
2007	251.00	306.22	182.00	222.04	45.00	54.90
2008	248.00	285.20	177.00	203.55	30.00	34.50
2009	189.00	215.46	133.00	151.62	39.00	44.46
2010	227.00	238.35	164.00	172.20	68.00	71.40
2011	251.00	253.51	116.00	117.16	127.00	128.27
2012	304.00	304.00	179.00	179.00	73.00	73.00
Average	242.33	379.12	157.80	248.85	42.83	62.97
Standard						
Deviation	48.60	129.81	34.15	92.72	23.46	28.56

Table 49. CNMI non-charter and charter trolling bycatch summary based on interview catch data, 2000-2012

			Number Caught				Tı	rip	
	Species	Released	Dead/Injd	Both	All	BC%	With BC	All	BC%
Non Charter							3	1,876	0.16
	Mahimahi	4		4	3,136	0.13			
	Yellowfin Tuna		1	1	2,398	0.05			
	Skipjack Tuna	1		1	43,842				
		Total		6	49,376	0.01			
	Compare	ed With All S	Species	6	52,620	0.01			
Charter							0	207	0.00
		Compa	red With All	Species			0	1,081	0.00

Interpretation: With the assistance of NMFS staff, the implementation of an Offshore Day Time Creel Survey program began in April 2000. One of the main purposes of re-implementing the Offshore Creel Survey was to address the issue of bycatch. This bycatch summary data is not expanded.

A summary report from the year 2000 to 2012 by both non-charter and charter boats indicates less than 1%, or 6 out of 49,376, of the total pelagic species landed is released. Only three species were reported as bycatch: mahimahi, yellowfin tuna and skipjack tuna. Four out of 3,136 (0.13%) mahimahi landed were released. One out of 2,398 (0.04%) yellowfin tuna landed was released. There was 1 out of 43,842 skipjack tuna recorded as released. Charter boats had no bycatch reported.

Bycatch in the CNMI has been believed in the past not to exist because fishermen retain most of their catch, which is further supported by the results of the Offshore (Boat Based) Creel Survey. The CNMI will continue sampling in order to monitor this issue however it is a common practice by fishermen to keep all species caught regardless of size, species or condition.

Source: Offshore (Boat Based) Creel Survey Expansion Program.

C. Guam

Introduction

Pelagic fishing vessels based in Guam are classified into two general groups: 1) distant-water purse seiners and longliners that fish outside Guam's economic exclusive zone (EEZ) and transship through the island and, 2) small recreational trolling boats that fish only within local waters, either within Guam's EEZ, or occasionally, in Commonwealth of the Northern Mariana Islands (CNMI) waters. Primarily, this module covers the Guam-based small-boat pelagic fishery.

The estimated annual pelagic landings have varied widely, ranging between 322,000 and 937,000 pounds over the 30-year time series. The average total catch has shown a slowly increasing trend over the time period. The 2012 total pelagic landings were approximately 495,384 pounds, a decrease of 16% compared with 2011. Landings consisted primarily of five major species: mahimahi (*Coryphaena hippurus*), wahoo (*Acanthocybium solandri*), bonita or skipjack tuna (*Katsuwonus pelamis*), yellowfin tuna (*Thunnus albacares*), and Pacific blue marlin (*Makaira mazara*). Other minor catch species include rainbow runner, dogtooth tuna, barracudas, and sailfish. No sharks were encountered during creel surveys in 2012. While sailfish are kept, sharks are often discarded as bycatch. In addition to the above pelagic species, kawakawa and pomfrets were landed incidentally this year.

The number of boats involved in Guam's pelagic or open ocean fishery gradually increased from 193 in 1983 to 469 in 1998. This number decreased until 2001, but has generally been increasing since that year. There were 351 boats involved in Guam's pelagic fishery in 2012, a decrease of 23% from 2011. A majority of the fishing boats are less than 10 meters (33 feet) in length and are usually owner-operated by fishermen who earn a living outside of fishing. Most fishermen sell a portion of their catch at one time or another and it is difficult to make a distinction between recreational, subsistence, and commercial fishers. A small, but significant, segment of the pelagic group is made up of marina-berthed charter boats that are operated primarily by full-time captains and crews. Data and graphs for non-charters, charters, and bycatch are represented in this report.

There are general wide year-to-year fluctuations in the estimated landings of the five major pelagic species. Most catch amounts for the five common species showed decreases from 2011 levels. 2012 mahimahi catch decreased 7% from 2011, wahoo catch increased 19.5% from 2011, skipjack (bonita) catch decreased by 10.5% from 2011, Pacific blue marlin catch decreased 33% from 2011, and yellowfin tuna catch decreased 64% from 2011.

Aggregate landings of all pelagics, tuna, and non-tuna Pelagic Management Unit Species (PMUS) decreased in 2012 from 2011 levels. Landings of all pelagics decreased 16%, with tuna PMUS decreasing 20% and non-tuna PMUS decreasing 2%. The number of trolling boats decreased by 23%, the number of trolling trips decreased by 26%, and hours spent trolling decreased by 30%. Total CPUE increased 13%. Mahimahi, wahoo, and skipjack CPUE increased; blue marlin remained constant; and yellowfin tuna CPUE decreased.

Commercial landing data for 2012 decreased from 2011 levels. Commercial landings and revenues decreased in 2011, with total adjusted revenues decreasing 15%. The adjusted average price per pound for tuna PMUS decreased by 3%, and non-tuna PMUS decreased by only 0.9%. Adjusted revenue per trolling trip decreased 5% for all pelagics, increased 36% for tuna PMUS, and decreased 7% for non-tuna PMUS. Commercial landings have shown a decreasing trend over the past ten years. A majority of troll fishermen do not rely on the catch or selling of fish as their primary source of income. Previously, Guam law required the government of Guam to provide locally caught fish to food services in government agencies, such as Department of Education and Department of Corrections. In 2002, the government of Guam began implementing cost-saving measures, including privatization of food services. The requirement that locally-caught fish be used for food services, while still a part of private contracts, is not being enforced. This has allowed private contractors to import cheaper foreign fish, and reduced the sales of vendors selling locally caught fish. This represented a substantial portion of sales of locally caught pelagic fish. The decrease in commercial sales seen following 2002 may be, in part, due to this change.

In early 2010, the U.S. military began exercises in an area south and southeast of Guam designated W-517. W-517 is a special use airspace (SUA) (approximately 14,000 nm²) that overlays deep open ocean approximately 50 miles south-southwest of Guam. Exercises in W-517 generally involve live fire and/or pyrotechnics. When W-517 is in use, a notice to mariners (NTM) is issued, and vessels attempting to use the area are advised to be cautious of objects in the water and other small vessels. This discourages access to virtually all banks south of Guam, including Galvez, Santa Rosa, White Tuna, and other popular fishing areas. From 1982-2009, DAWR surveys recorded more than 2020 trolling and bottom fishing trips to these southern banks, an average of more than 72 trips per year. During 2012, 32 NTM comprising a total of 72 days (19.7% of all days) were issued for area W-517. This makes access to these banks less attractive fishing areas for nearly 1/5th of the year. Additionally, the military occasionally holds exercises that do not involve live fire, but still restricts access to the area. As no notice is given for these events, there is not a reliable way to track how frequently this occurs.

The shortage of staff biologists has been significant in the past several years. DAWR staff biologists continue to oversee several projects simultaneously, while providing on-going training to ensure the high quality of data being collected by all staff. All fisheries staff are trained to identify the most commonly caught fish to the species level. New staff are mentored by biologists and senior technicians in the field before conducting creel surveys on their own.

The makeshift ramp at Ylig Bay was eliminated in 2010. Widening of the main road on the south east coast of Guam will cause removal of the ramp. In December 2006, a new launch ramp and facility was opened in Acfayan Bay, located in the village on Inarajan on the southeast coast of Guam. Monitoring of this ramp for pelagic fishing activity began at the start of 2007. In early 2007, this facility was damaged by heavy surf and has yet to be repaired. Monitoring of this ramp is currently on hold until the ramp is repaired. The current financial situation for the Guam government makes it unlikely this ramp will be repaired in the near future. With the loss of the Ylig ramp and the destruction of the ramp in Acfayan Bay, there will be no boat launching facilities on the east side of Guam.

Four FADs were deployed in 2012. DAWR currently is ordering 5 more systems, and is awaiting the awarding of a deployment contract. If these five systems are deployed, this should bring the number of FADS on station to 13, of the fourteen considered to be a full complement.

Plan Team Recommendations

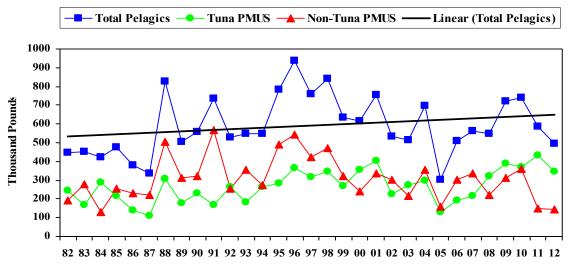
There were no 2012 Plan Team recommendations.

Table 50. Guam 2012 creel survey - pelagic species composition

	Total Landing (Lbs)	Non-Charter	Charter
Tuna PMUS	(LDS)	Non-Charter	Charter
Skipjack Tuna	313,278	308,256	5,022
Yellowfin Tuna	29,609	27,830	1,779
Kawakawa	198	198	0
Albacore	0	0	0
Bigeye Tuna	0	0	0
Other Tuna PMUS	0	0	0
Tuna PMUS Total	343,085	336,284	6,801
Non-Tuna PMUS			
Mahimahi	84,504	68,889	15,615
Wahoo	44,643	38,931	5,712
Blue Marlin	12,718	2,207	10,511
Black Marlin	0	0	0
Striped Marlin	0	0	0
Sailfish	3,614	3,614	0
Shortbill Spearfish	0	0	0
Swordfish	0	0	0
Oceanic Sharks	0	0	0
Pomfrets	113	113	0
Oilfish	0	0	0
Moonfish	0	0	0
Misc. Longline Fish	0	0	0
Non-Tuna PMUS Total	145,592	113,754	31,838
Non-PMUS Pelagics			
Dogtooth Tuna	3,839	3,839	0
Rainbow Runner	1,656	1,656	0
Barracudas	1,212	1,212	0
Oceanic Sharks	0	0	0
Misc. Troll Fish	0	0	0
Non-PMUS Pelagics Total	6,707	6,707	0
Total Pelagics	495,384	456,745	38,639

Source: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel survey data. This table includes several species of barracuda and the double-lined mackerel, species that may not be included in other tables in this report. Pelagic totals may slightly differ in those tables.

Table 51. Guam 2012 average commercial price of pelagic species


	Average Price (\$/Lb)
Tuna PMUS	
Bonita/skipjack Tuna	1.97
Yellowfin Tuna	2.07
Tunas (misc)	2.68
Tuna PMUS Average	2.24
Non-Tuna PMUS	
Mahi / Dolphinfish	2.30
Wahoo	2.32
Marlin	1.63
Sailfish	1.50
Spearfish	2.40
Monchong	2.50
Non-Tuna PMUS Average	2.11
Non-PMUS Pelagics	
Dogtooth Tuna	1.63
Rainbow Runner	2.23
Barracuda	1.99
Non-PMUS Pelagics Average	1.95
Pelagics Average	2.10

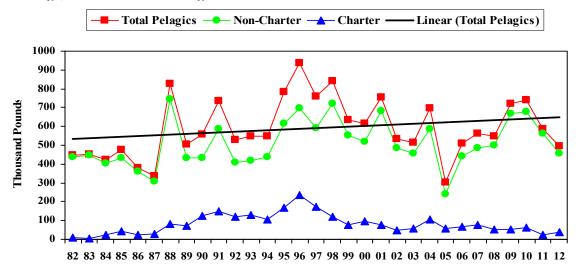
Source: The WPacFIN-sponsored commercial landings system.

Table 52. Annual consumer price indices (CPI) and CPI adjustment factors

		CPI
		Adjustment
Year	CPI	factor
1980	134.0	6.11
1981	161.4	5.07
1982	169.7	4.82
1983	175.6	4.66
1984	190.9	4.29
1985	198.3	4.13
1986	203.7	4.02
1987	212.7	3.85
1988	223.8	3.66
1989	248.2	3.30
1990	283.5	2.89
1991	312.5	2.62
1992	344.2	2.38
1993	372.9	2.19
1994	436.0	1.88
1995	459.2	1.78
1996	482.0	1.70
1997	491.3	1.67
1998	488.2	1.68
1999	497.2	1.65
2000	507.1	1.61
2001	500.0	1.64
2002	503.2	1.63
2003	517.0	1.58
2004	548.5	1.49
2005	590.5	1.39
2006	658.9	1.24
2007	703.5	1.16
2008	733.7	1.12
2009	749.2	1.09
2010	768.5	1.07
2011	793.5	1.03
2012	818.1	1.00

Figure 56. Guam annual estimated total landings: all pelagics landings, tuna PMUS landings, and non-tuna PMUS landings

Interpretation: The estimated pelagic landings have been cyclic with alternating high and low multi-year periods and annual variation within those smaller time periods. Total pelagic catch peaked in 1996 and reached an historic low in 2005. Landings rose in 2009 and 2010, but returned to 2006-2008 levels for 2011 and 2012. Factors relating to this cycle may be associated with the biology of the fish or be weather related. There is also evidence from the fishermen and historic creel survey data that some pelagic fish species are not caught consistently year round around Guam.

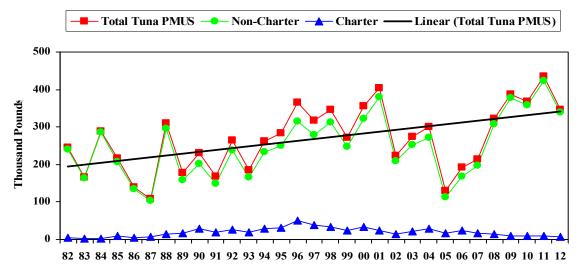

Total pelagic and tuna PMUS decreased in 2012 by 16% and 20% respectively, compared with 2011, while non-tuna landings decreased only 2%. Non-tuna PMUS catch was well below the 30 year average, while the tuna PMUS catch was above the 30 year average. Total catch was also below the 30 year average. Generally, skipjack tuna are consistently caught year round, with the other major pelagic species being more seasonal. There is now a small fleet of vessels targeting skipjack tuna. These vessels fish almost every day, which is contributing to the high levels of tuna catch.

Source and Calculation: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel survey. A 365-day (366 days during leap years) quarterly expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid overestimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

Table 53. Guam estimated total pelagics landings: all pelagics landings, tuna PMUS landings, and non-tuna PMUS landings

			Non-Tuna
Year	All Pelagics	Tuna PMUS	PUMS
1982	447,432	245,400	192,129
1983	450,823	166,105	277,179
1984	424,299	288,634	130,027
1985	477,073	215,686	252,707
1986	381,495	139,099	230,814
1987	338,354	108,729	222,521
1988	827,260	309,571	502,803
1989	505,811	177,158	310,755
1990	559,773	230,559	321,935
1991	737,653	168,669	566,242
1992	528,215	264,362	255,471
1993	548,295	184,394	357,787
1994	545,917	262,181	273,167
1995	781,389	283,055	489,757
1996	935,837	364,929	541,317
1997	759,936	316,552	420,967
1998	841,681	346,634	469,976
1999	632,319	271,359	320,529
2000	614,709	355,581	242,558
2001	754,999	403,691	336,571
2002	534,878	223,805	302,339
2003	514,820	273,029	217,440
2004	694,746	299,495	357,169
2005	301,487	129,489	159,929
2006	510,608	192,247	303,297
2007	562,513	214,014	334,599
2008	550,081	322,053	223,406
2009	719,954	387,643	311,582
2010	738,221	367,960	359,104
2011	588,415	434,501	148,375
2012	495,382	346,924	308,934
Average	590,464	267,568	308,934
Standard			
Deviation	152,161	84,346	113,650

Figure 57. Guam annual estimated total landings: total pelagics landings, non-charter landings, and charter landings

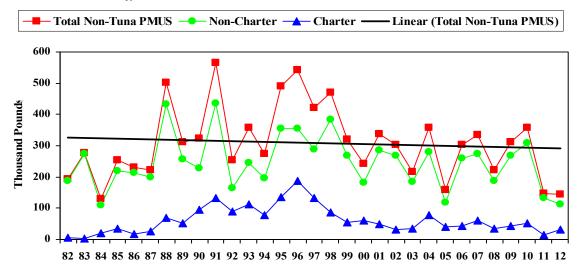

Interpretation: Non-charter trolling trips have always accounted for the bulk of the pelagic catch, although charter boats, which make up less than 5% of the troll fleet, account for a high proportion of trolling effort and catch. Prior to 1988, non-charter boats accounted for over 90% of the troll catch. In 1988, this percentage decreased due to an increase in charter boat activity catering specifically to Asian visitors. Beginning in 1996 however, a downturn in Japan's economy caused a significant decrease in charter trips and subsequent landings. No such trend is observed for non-charters. In 2012, non-charter landings decreased 19%, while charter landings increased 52%. Non-charter boats landed 86% of all pelagics in 2012.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel survey data. A 365-day (366 days during leap years) quarterly expansion is run for each calendar year of survey data to produce catch and effort estimates for trolling. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

Table 54. Guam annual boat-based creel estimated landings: total pelagics, non-charter landings, and charter landings

Year	Total Pelagics	Non-Charter	Charter
1982	447,432	438,297	9,135
1983	450,823	445,116	5,707
1984	424,299	401,687	22,612
1985	477,073	432,202	44,871
1986	381,495	359,020	22,475
1987	338,354	307,342	31,013
1988	827,260	743,415	83,845
1989	505,811	434,832	70,979
1990	559,773	434,361	125,412
1991	737,653	586,914	150,739
1992	528,215	409,548	118,667
1993	548,295	416,340	131,955
1994	545,917	438,677	107,239
1995	781,389	614,137	167,251
1996	935,837	698,544	237,293
1997	759,936	589,089	170,847
1998	841,681	719,841	121,840
1999	632,319	553,487	78,831
2000	614,709	519,677	95,032
2001	754,999	680,436	74,563
2002	534,878	486,790	48,087
2003	514,820	458,746	56,074
2004	694,746	588,217	106,529
2005	301,487	242,520	58,968
2006	510,608	443,504	67,104
2007	562,513	484,230	78,284
2008	550,081	499,137	50,945
2009	719,954	665,904	54,050
2010	738,221	676,904	61,316
2011	588,415	563,029	25,386
2012	495,382	456,744	38,639
Average	590,464	509,312	81,151
Standard			
Deviation	152,161	121,584	52,338

Figure 58. Guam annual tuna PMUS landings: total landings, non-charter landings, and charter landings

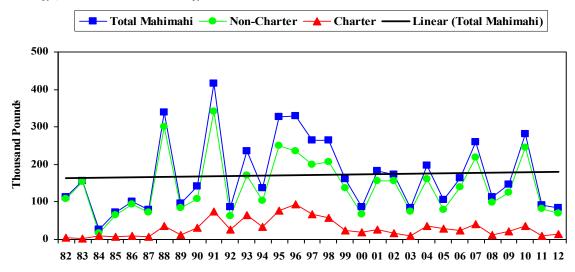

Interpretation: The general trend of the estimated total tuna landings is increasing. Non-charter boats account for the bulk of the total tuna catch. In 2012, 93% of tuna were caught by non-charter boats. 2012 non-charter landings decreased by 20%, and charter landings decreased by 35%. The 2012 estimated tuna PMUS landings were 30% higher than the 30 year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program, expanded with the assistance of NMFS. A 365-day (366 days during leap years) quarterly expansion is run for each calendar year of survey data to produce catch and effort estimates for trolling. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

Table 55. Guam annual boat-based creel estimated tuna landings: total landings, non-charter landings, and charter landings

Year	Total Tunas	Non-Charter	Charter
1982	245,400	241,410	3,990
1983	166,105	164,377	1,729
1984	288,634	287,078	1,556
1985	215,686	205,965	9,721
1986	139,099	133,618	5,480
1987	108,729	102,529	6,199
1988	309,571	294,961	14,610
1989	177,158	159,766	17,392
1990	230,559	201,046	29,512
1991	168,669	149,568	19,100
1992	264,362	237,210	27,152
1993	184,394	165,609	18,786
1994	262,181	233,223	28,959
1995	283,055	250,837	32,218
1996	364,929	314,719	50,210
1997	316,552	277,987	38,566
1998	346,634	313,004	33,630
1999	271,359	246,794	24,565
2000	355,581	321,642	33,939
2001	403,691	379,991	23,701
2002	223,805	208,925	14,880
2003	273,029	251,484	21,545
2004	299,495	270,647	28,848
2005	129,489	113,040	16,450
2006	192,247	168,788	23,459
2007	214,014	196,056	17,958
2008	322,053	306,682	15,371
2009	387,643	377,471	10,172
2010	367,960	357,668	10,292
2011	434,501	423,964	10,536
2012	346,924	340,123	6,801
Average	267,568	248,299	19,269
Standard			
Deviation	84,346	81,694	11,519

Figure 59. Guam estimated non-tuna PMUS landings: total landings, non-charter landings, and charter landings

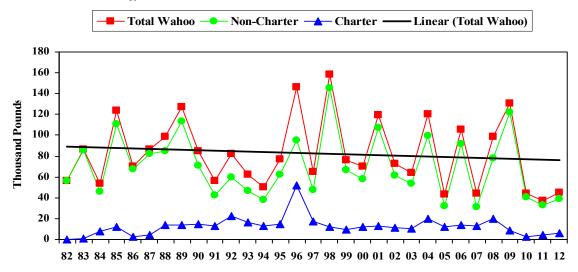

Interpretation: The estimated total non-tuna PMUS landings showed a general increase between 1984 and 1996, corresponding with an increase in boats entering the fishery. However, the non-tuna PMUS landings have been experiencing a general decline over the last 30 years. Non-charter trolling trips accounts for the bulk of the non-tuna PMUS catch. In 2012, total non-tuna PMUS and non-charter non-tuna PMUS decreased 2% and 15% respectively compared to 2011. However, charter non-tuna PMUS increased 116%. These decreased levels may be due to the biology of non-tuna PMUS species, primarily mahimahi. Additionally, poor weather conditions limited the number of fishing days in 2011. Non-charter boats accounted for 78% of non-tuna PMUS catch in 2012.

Source and Calculation: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program, expanded with the assistance of NMFS. A 365-day (366 days during leap years) expansion is run for each calendar year of survey data to produce catch and effort estimates for each fishing method surveyed. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

Table 56. Guam annual boat-based creel estimated non-tuna PMUS landings: total, non-charter vessels, and charter vessels (pounds)

	Total Non-		
Year	Tuna PMUS	Non-Charter	Charter
1982	192,129	187,341	4,788
1983	277,179	273,201	3,978
1984	130,027	108,971	21,056
1985	252,707	218,028	34,678
1986	230,814	213,897	16,917
1987	222,521	197,979	24,542
1988	502,803	433,773	69,030
1989	310,755	257,508	53,247
1990	321,935	226,558	95,378
1991	566,242	434,832	131,410
1992	255,471	165,097	90,374
1993	357,787	245,139	112,648
1994	273,167	195,134	78,032
1995	489,757	355,337	134,421
1996	541,317	354,822	186,495
1997	420,967	289,596	131,371
1998	469,976	382,281	87,695
1999	320,529	267,112	53,417
2000	242,558	181,863	60,695
2001	336,571	286,816	49,756
2002	302,339	269,555	32,784
2003	217,440	183,667	33,773
2004	357,169	279,872	77,297
2005	159,929	118,429	41,500
2006	303,297	259,979	43,318
2007	334,599	274,675	59,924
2008	223,406	187,958	35,449
2009	311,582	267,735	43,847
2010	359,104	308,409	50,695
2011	148,375	133,590	14,786
2012	145,590	113,753	31,838
Average	308,934	247,478	61,456
Standard			
Deviation	113,650	84,043	42,341

Figure 60. Guam annual estimated mahimahi landings: total landings, non-charter landings, and charter landings

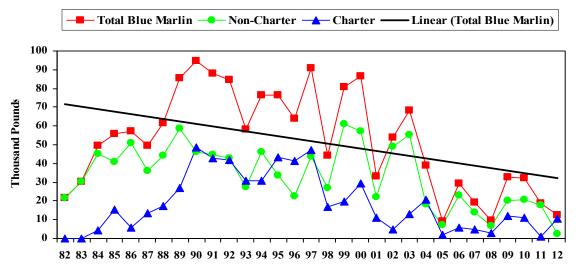


Interpretation: Historically, mahimahi catches have fluctuated wildly, with a good year followed by one or two down years. Catch peaked in 1996, and has been lower since, although still demonstrating the cyclical nature. Non-charter trips account for the bulk of the mahimahi catch, with charter activity harvesting proportionally more beginning in the late 1980s as tourist arrivals to Guam increased. A drop in charter catch corresponds to decreasing tourist arrivals in the late 1990s. In 2012, total and non-charter mahimahi landings decreased 7% and 16%, respectively. Charter landings increased by 69%. All three categories are well below the 30 year average.

Table 57. Guam annual estimated mahimahi landings: total, non-charter landings, and charter landings (pounds)

	Total	Non-	
Year	Mahimahi	Charter	Charter
1982	112,181	107,480	4,701
1983	156,340	153,158	3,183
1984	26,174	17,228	8,946
1985	72,361	65,442	6,919
1986	101,108	92,620	8,488
1987	79,480	72,200	7,280
1988	337,769	300,520	37,249
1989	96,043	84,791	11,253
1990	140,629	108,370	32,259
1991	415,944	341,139	74,805
1992	87,942	62,274	25,668
1993	234,979	169,662	65,317
1994	138,014	103,648	34,367
1995	326,979	250,910	76,069
1996	328,315	235,144	93,170
1997	265,157	198,344	66,813
1998	264,421	206,592	57,830
1999	161,936	137,811	24,126
2000	85,561	66,575	18,986
2001	183,278	157,293	25,986
2002	173,130	156,172	16,958
2003	84,739	74,766	9,973
2004	195,935	160,543	35,392
2005	105,715	77,931	27,784
2006	162,512	139,365	23,147
2007	259,828	218,521	41,307
2008	111,811	99,331	12,480
2009	146,649	124,061	22,588
2010	280,963	244,374	36,589
2011	90,888	81,642	9,246
2012	84,504	68,889	15,615
Average	171,331	141,186	30,145
Standard			
Deviation	94,849	75,884	23,591

Figure 61. Guam annual estimated wahoo landings: total landings, non-charter landings, and charter landings

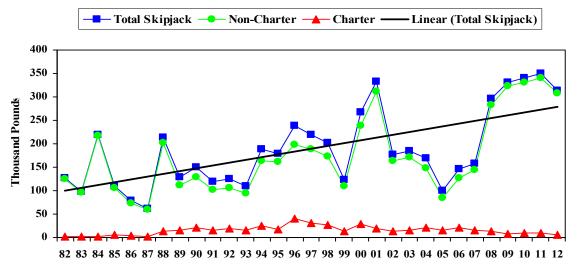


Interpretation: The wide fluctuations in wahoo landings are probably due to the high variability in the year-to-year abundance and availability of the stocks. Until 1987, non-charter landings accounted for over 95% of the total catch. In 1988, this percentage decreased due to an increase in charter boat activity. In 1996, wahoo charter landings peaked, accounting for 35% of the total catch. Wahoo charter landings remained relatively stable through 2009, but have been low the last three years. In 2012, total, charter, and non-charter wahoo landings increased 20%, 26%, and 19%, respectively. Charter landings only represent 13% of the total wahoo landings. The total wahoo catch was 50% below the 30 year average.

Table 58. Guam annual estimated wahoo landings: total landings, non-charter landings, and charter landings (pounds)

Year	Total Wahoo	Non-Charter	Charter
1982	55,993	55,906	87
1983	86,530	85,735	795
1984	53,804	45,900	7,905
1985	123,685	111,144	12,540
1986	70,337	67,909	2,428
1987	86,465	82,477	3,989
1988	98,679	85,006	13,673
1989	127,325	113,557	13,768
1990	85,108	70,710	14,398
1991	55,926	42,633	13,293
1992	82,446	60,003	22,444
1993	62,550	46,532	16,018
1994	50,457	37,766	12,691
1995	77,391	62,365	15,026
1996	146,521	94,896	51,624
1997	65,034	47,693	17,341
1998	158,194	145,659	12,535
1999	76,338	66,673	9,665
2000	70,433	58,157	12,277
2001	119,765	107,150	12,616
2002	72,643	61,386	11,257
2003	64,266	53,505	10,761
2004	120,266	99,941	20,325
2005	43,443	31,739	11,704
2006	105,878	91,713	14,166
2007	44,528	31,166	13,362
2008	98,345	78,274	20,071
2009	130,903	121,868	9,035
2010	43,959	41,057	2,902
2011	37,354	32,809	4,545
2012	44,642	38,931	5,712
Average	82,555	70,008	12,547
Standard			
Deviation	32,360	29,240	9,005

Figure 62. Guam annual estimated blue marlin landings: total landings, non-charter landings, charter landings

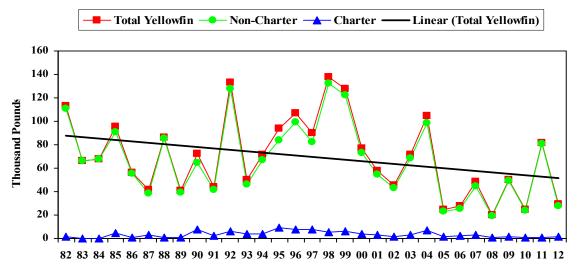


Interpretation: During the 1980s, non-charter boats accounted for the bulk of the blue marlin catch. In the early 1990s, the charter share of the marlin catch began to increase, peaking at 64% in 1996. The increases were due to an increase in charter boat activity and the active targeting of blue marlin by charter boats during the summer months. The decrease in charter landings after 1997 corresponded to the decrease in tourist charter trips. In 2012, total and non-charter blue marlin catch decreased by 33% and 88%, respectively. Charter landings of blue marlin increased in 2012 to 2009-2010 levels after very little harvest in 2011. Charter blue marlin landings accounted for 83% of the total blue marlin harvest. Total and non-charter blue marlin landings were below the 30 year average. The non-charter total is the lowest in the time series.

Table 59. Guam annual estimated blue marlin landings: total landings, non-charter landings, charter landings (pounds)

	Total Blue		
Year	Marlin	Non-Charter	Charter
1982	21,845	21,845	0
1983	30,402	30,402	0
1984	49,438	45,233	4,205
1985	55,945	40,726	15,219
1986	57,076	51,074	6,002
1987	49,360	36,087	13,274
1988	61,427	44,242	17,185
1989	85,515	58,477	27,038
1990	94,798	46,344	48,455
1991	87,869	44,899	42,970
1992	84,498	42,810	41,688
1993	57,992	27,280	30,713
1994	76,633	46,057	30,576
1995	76,569	33,535	43,034
1996	63,919	22,602	41,318
1997	90,777	43,559	47,217
1998	44,026	27,009	17,017
1999	80,537	61,032	19,505
2000	86,424	56,992	29,432
2001	33,302	22,148	11,154
2002	53,761	49,191	4,569
2003	68,204	55,165	13,039
2004	38,845	18,036	20,809
2005	9,270	7,258	2,012
2006	29,222	23,217	6,005
2007	18,994	14,148	4,846
2008	9,704	6,807	2,898
2009	32,605	20,411	12,194
2010	32,042	20,838	11,204
2011	18,895	17,901	994
2012	12,718	2,207	10,511
Average	52,020	33,469	18,551
Standard			
Deviation	26,149	16,124	15,198

Figure 63. Guam annual estimated skipjack tuna landings: total, non-charter, and charter landings

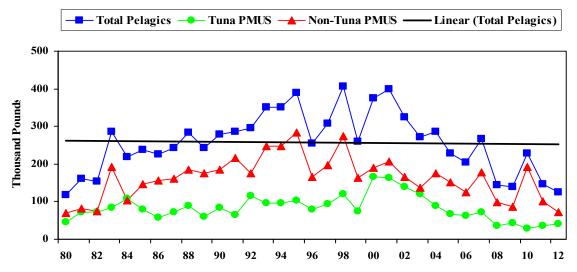

Interpretation: Skipjack tuna catch has fluctuated over the reporting period, reaching a high in 2001 and again in 2011. The increasing catch in skipjack tuna since 2007 reflects an increase in small boats targeting this species, which are primarily crewed by Micronesian fishermen.

Total skipjack tuna, non-charter, and charter landings decreased in 2012 by 11%, 9.6%, and 46% respectively, after a peak in 2011. Total catch is well above the 30-year average.

Table 60. Guam annual estimated skipjack tuna landings: total, non-charter, and charter landings (pounds)

	Total		
Year	Skipjack	Non-Charter	Charter
1982	126,825	124,649	2,176
1983	97,802	96,142	1,660
1984	218,307	217,152	1,155
1985	110,303	105,359	4,944
1986	78,283	73,878	4,405
1987	61,806	58,948	2,858
1988	214,328	201,561	12,766
1989	128,209	112,364	15,845
1990	149,502	128,910	20,592
1991	118,708	102,845	15,862
1992	123,373	104,117	19,257
1993	109,582	95,081	14,502
1994	188,784	164,288	24,496
1995	179,036	160,771	18,265
1996	238,583	198,888	39,695
1997	219,177	189,211	29,966
1998	201,659	173,892	27,767
1999	123,538	109,696	13,841
2000	267,699	238,330	29,368
2001	331,768	312,001	19,767
2002	176,356	163,504	12,852
2003	185,575	170,352	15,223
2004	168,838	147,447	21,391
2005	99,391	84,762	14,629
2006	146,658	126,042	20,616
2007	157,861	143,332	14,529
2008	295,250	281,827	13,423
2009	330,955	322,574	8,381
2010	339,569	330,310	9,286
2011	350,193	340,934	9,259
2012	313,277	308,256	5,022
Average	188,784	173,823	14,961
Standard			
Deviation	82,383	81,408	9,102

Figure 64. Guam annual estimated yellowfin tuna landings: total, non-charter, and charter landings



Interpretation: The overall yellowfin landings show wide fluctuations during the 30-year time series, although the total and non-charter estimated landings showed a significant decrease from 1998 to 2002 and have been on a steady decline over the 30-year time series. Charter landings of yellowfin tuna peaked in 1985, 1990, and 1995, and then showed a general decrease until 2002. Yellowfin tuna catch by charter boats was up significantly in 2012, with an increase of 69% over 2011. Total yellowfin tuna catch and non-charter catch decreased in 2012 by 64% and 66%, respectively. Non-charter boats harvested 94% of the total yearly catch of yellowfin. All categories are below their 30-year averages.

Table 61. Guam annual estimated yellowfin tuna landings: total, non-charter, and charter landings (pounds)

	Total		
Year	Yellowfin	Non-Charter	Charter
1982	112,794	110,981	1,813
1983	65,996	65,996	0
1984	67,975	67,710	266
1985	95,273	90,778	4,495
1986	56,024	55,035	989
1987	41,444	38,561	2,883
1988	86,251	85,682	569
1989	40,457	39,453	1,004
1990	72,394	64,942	7,452
1991	44,034	41,822	2,212
1992	133,170	127,311	5,859
1993	50,350	46,444	3,906
1994	71,221	67,022	4,199
1995	93,495	83,913	9,582
1996	107,038	99,005	8,033
1997	90,167	82,408	7,759
1998	137,422	132,020	5,402
1999	128,026	122,204	5,822
2000	76,651	72,967	3,684
2001	57,929	54,668	3,261
2002	45,089	43,336	1,753
2003	71,626	68,573	3,053
2004	104,954	98,255	6,700
2005	24,884	23,130	1,754
2006	28,049	25,419	2,630
2007	48,118	44,934	3,184
2008	19,888	18,900	987
2009	50,279	49,065	1,214
2010	24,502	23,659	843
2011	81,815	80,763	1,051
2012	29,609	27,830	1,779
Average	69,578	66,219	3,471
Standard			
Deviation	32,619	31,196	2,510

Figure 65. Guam annual estimated commercial landings: all pelagics, tuna PMUS, and non-tuna PMUS

Interpretation: Commercial pelagic fishery landings showed a general increase for the first 20 years in the 30-year time series, but the overall trend is slightly decreasing. In 2002, the estimated commercial landings decreased overall by 17%, with a 15% decrease for tuna landings and a 20% decrease for landings of other PMUS, possibly due to direct hits by two super typhoons resulting in boat damage, lack of tourist for the commercial charter boats, and unavailability of ice for fishermen. However, the total pelagic landings have steadily declined from 2002 with a couple upticks in 2007 and 2010. Total commercial catch in 2012 decreased 15% from 2011; tuna PMUS landings increased by 11% and non-tuna PMUS decreased by 28%. Total commercial catch is less than half of the 30 year average.

Source and Calculations: The WPACFIN-sponsored commercial landings system. Total commercial landings were estimated by summing the weight fields in the commercial landings database from the principle fish wholesalers on Guam, and then multiplying by an estimated percent coverage expansion factor. The annual expansion factor was subjectively created based on as much information as possible depending on the year, including: an analysis of the "disposition of catch" data available from the DAWR offshore creel survey; an evaluation of the fishermen in the fishery and their entry/exit patterns; general "dock-side" knowledge of the fishery and the status of the marketing conditions and structure; the overall number of records in the data base; and a certain measure of best guesses.

 $\begin{tabular}{ll} Table 62. Guam annual estimated commercial landings: all pelagics, tuna PMUS, and nontuna PMUS \end{tabular}$

			Non-Tuna
Year	All Pelagics	Tuna PMUS	PMUS
1980	118,251	45,043	69,062
1981	162,186	72,229	81,808
1982	153,577	72,347	74,832
1983	285,118	83,764	191,676
1984	218,028	107,568	102,398
1985	237,695	79,028	146,477
1986	226,138	57,689	157,377
1987	242,444	72,004	161,657
1988	284,408	88,093	185,451
1989	242,554	59,825	175,667
1990	279,121	84,176	185,934
1991	285,696	64,694	216,611
1992	296,809	114,765	175,751
1993	351,201	96,289	248,070
1994	351,187	95,321	246,860
1995	389,849	102,236	282,468
1996	255,281	78,636	166,702
1997	307,764	93,825	196,335
1998	405,666	120,186	272,882
1999	260,669	75,346	164,082
2000	376,192	165,898	190,761
2001	399,471	163,369	205,648
2002	325,299	139,009	164,853
2003	272,633	121,326	138,160
2004	285,545	89,479	175,777
2005	228,936	66,804	150,770
2006	203,139	63,579	125,847
2007	266,964	72,271	178,660
2008	144,110	36,009	98,207
2009	138,854	43,760	86,040
2010	228,620	27,935	191,275
2011	145,750	36,939	100,868
2012	124,395	41,004	72,849
Average	257,380	82,741	163,085
Standard			
Deviation	79,432	33,318	55,601

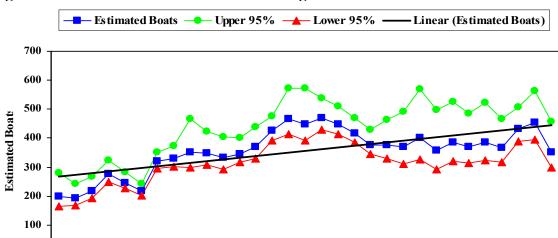
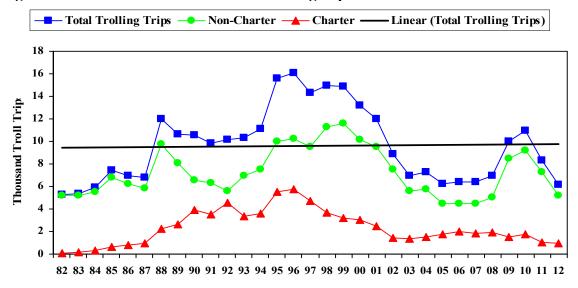


Figure 66. Guam estimated number of trolling vessels

0

Interpretation: Since 1982, the general trend on Guam has been an increase in the number of boats participating in the pelagic fishery, especially since the addition of two marinas to the offshore sampling program. There appears to be a general increase in the number of small boats participating in Guam's pelagic fishery, while the number of charter vessels has remained fairly constant for several years. While the number of vessels increased from 2010 to 2011 by 5% to 454, it decreased in 2012 to 351 vessels, or by 23%.

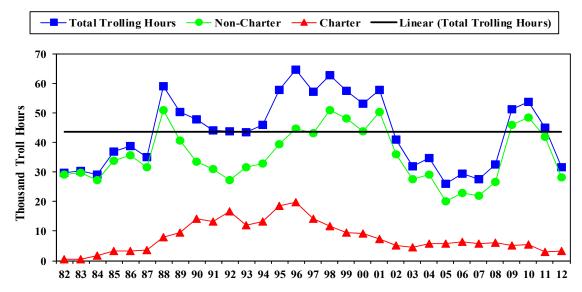

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS. Since only a fraction of the days of the year are sampled, it is not possible to know the exact number of boats participating in the fishery. The 2010 trolling boat log was converted and processed through a boat estimator model 1,000 times.

Table 63. Guam estimated number of trolling vessels from boat-based creel surveys

	Estimated		
Year	Boats	Upper 95%	Lower 95%
1982	199	280	165
1983	193	242	168
1984	219	267	193
1985	276	323	249
1986	246	284	226
1987	219	244	201
1988	320	353	297
1989	329	374	303
1990	352	467	299
1991	349	422	309
1992	332	405	294
1993	346	401	316
1994	369	439	329
1995	427	476	393
1996	466	572	415
1997	449	572	393
1998	469	537	430
1999	449	510	415
2000	416	470	385
2001	375	429	345
2002	375	464	330
2003	371	492	312
2004	401	568	326
2005	358	498	293
2006	386	527	321
2007	370	485	315
2008	385	523	322
2009	368	468	316
2010	432	508	390
2011	454	563	396
2012	351	457	298

Figure 67. Guam estimated number of trolling trips

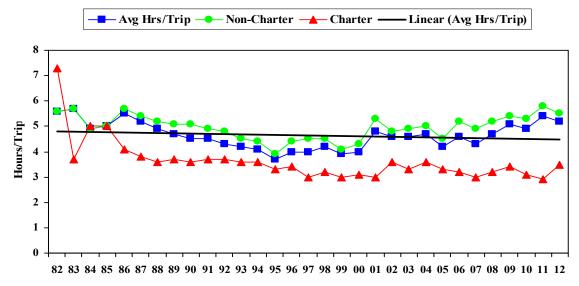

Interpretation: Non-charter and charter troll trips generally increased for the first 15 years of the 30-year time series. The number of troll trips began to decline in 1999 due to a number of factors including a continuing economic recession on the island, a decline in Asian visitors for charter boats, and an increase in cost to maintain, repair, and fuel boats for the average fishermen compared with fish caught for sale to make up for expenses. In 2012, the total number of troll trips returned to levels seen from 2003-2008, declining by 26% from 2011. The number of non-charter trips decreased by 29%, and the number of charter trips decreased by 8%. The decrease may be attributed to an increase in gas prices. Total trips are 36% below the 30 year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated number of trips for the trolling method as taken directly from creel survey expansion system printouts.

Table 64. Guam Estimated number of trolling trips

	Estimated	Non-		
Year	Trips	Charter	Charter	
1982	5,292	5,230	62	
1983	5,339	5,187	151	
1984	5,913	5,554	359	
1985	7,454	6,783	671	
1986	6,999	6,227	772	
1987	6,776	5,818	958	
1988	11,981	9,727	2,254	
1989	10,660	8,049	2,612	
1990	10,531	6,571	3,960	
1991	9,868	6,317	3,550	
1992	10,167	5,617	4,551	
1993	10,295	6,971	3,324	
1994	11,125	7,515	3,610	
1995	15,562	10,030	5,532	
1996	16,060	10,274	5,787	
1997	14,313	9,555	4,758	
1998	14,944	11,304	3,641	
1999	14,848	11,610	3,239	
2000	13,203	10,154	3,049	
2001	11,977	9,522	2,456	
2002	8,917	7,497	1,420	
2003	6,991	5,622	1,368	
2004	7,307	5,754	1,553	
2005	6,238	4,495	1,743	
2006	6,414	4,440	1,973	
2007	6,395	4,520	1,875	
2008	6,947	5,057	1,891	
2009	10,014	8,488	1,526	
2010	10,935	9,193	1,743	
2011	8,336	7,268	1,068	
2012	6,152	5,169 98		
Average	9,611	7,275	2,337	
Standard				
Deviation	3,220	2,117	1,518	

Figure 68. Guam estimated number of trolling hours

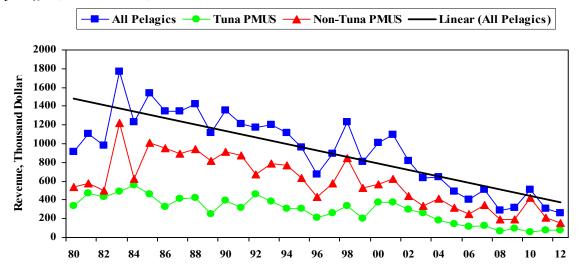

Interpretation: Trolling hours for non-charters and charters have generally increased over the first 15 years. Beginning in 1996, charter troll hours began to decrease. This corresponded to a downturn in Asian economies, which resulted in fewer charter trolling hours. After 2001, charter activity dropped off dramatically. Tourism was also down due to the 9/11 attacks, the SARS scare, and two typhoons striking Guam in 2002. From 2005 through 2010, the number of non-charter hours trolling generally increased, but dropped over the last two years, decreasing 33% from 2011 to 2012. Total trolling hours mirrored that decline. 2012 charter trolling hours increased slightly from 2011 by 10%. The decrease in hours trolling may be attributed higher gas prices and a high number of bad weather days in 2012. Total hours trolling were 27% below the 30-year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated boat hours spent fishing for the trolling method as taken directly from creel survey expansion system printouts.

Table 65. Guam estimated number of trolling hours

	Estimated	Non-	
Year	Hours	Charter	Charter
1982	29,678	29,226	453
1983	30,363	29,803	560
1984	29,115	27,332	1,783
1985	36,967	33,630	3,337
1986	38,621	35,489	3,132
1987	35,112	31,441	3,671
1988	59,043	50,971	8,073
1989	50,220	40,685	9,535
1990	47,865	33,567	14,298
1991	44,136	30,981	13,155
1992	43,865	27,080	16,785
1993	43,354	31,465	11,889
1994	46,017	32,903	13,113
1995	57,767	39,409	18,359
1996	64,452	44,748	19,704
1997	57,122	42,965	14,157
1998	62,584	50,969	11,614
1999	57,533	47,973	9,560
2000	53,072	43,743	9,329
2001	57,572	50,231	7,341
2002	40,950	35,787	5,162
2003	31,974	27,511	4,463
2004	34,635	29,026	5,608
2005	25,903	20,116	5,786
2006	29,250	22,987	6,263
2007	27,644	21,955	5,689
2008	32,624	26,538	6,087
2009	51,145	45,890	5,255
2010	53,667	48,295	5,372
2011	45,053	41,944	3,108
2012	31,685	28,267 3,41	
Average	43,516	35,578	7,937
Standard			
Deviation	11,505	8,993	5,094

Figure 69. Guam estimated trip length (hours per trip)

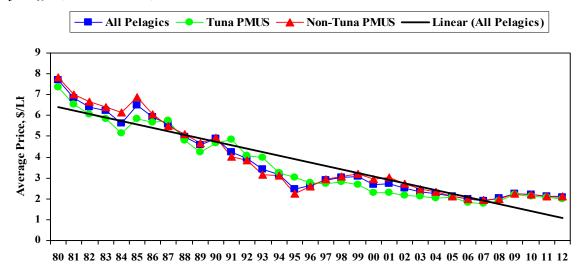

Interpretation: The overall average trolling trip and non-charter average trolling trip decreased slightly in 2012 by 4% and 5% respectively. 2012 charter average hours per trip increased by 21%. The redeployment of fish aggregating devices (FADs) still provided charter boats and non-charter fishermen with a prescribed route for trolling activity, although many boats have been observed to be making longer trips to the banks located north and south of Guam. Overall trolling trip length appears to have remained fairly constant throughout the 30-year time series, and the 2012 overall average hours per trip is 13% higher than the 30 year average, as is the non-charter average hours per trip.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated boat hours spent fishing and number of trips for the trolling method, as taken directly from creel survey, expansion system printouts.

Table 66. Guam estimated trip length (hours per trip)

	Estimated	Non-	
Year	Trips	Charter	Charter
1982	5.6	5.6	7.3
1983	5.7	5.7	3.7
1984	4.9	4.9	5.0
1985	5.0	5.0	5.0
1986	5.5	5.7	4.1
1987	5.2	5.4	3.8
1988	4.9	5.2	3.6
1989	4.7	5.1	3.7
1990	4.5	5.1	3.6
1991	4.5	4.9	3.7
1992	4.3	4.8	3.7
1993	4.2	4.5	3.6
1994	4.1	4.4	3.6
1995	3.7	3.9	3.3
1996	4.0	4.4	3.4
1997	4.0	4.5	3.0
1998	4.2	4.5	3.2
1999	3.9	4.1	3.0
2000	4.0	4.3	3.1
2001	4.8	5.3	3.0
2002	4.6	4.8	3.6
2003	4.6	4.9	3.3
2004	4.7	5.0	3.6
2005	4.2	4.5	3.3
2006	4.6	5.2	3.2
2007	4.3	4.9	3.0
2008	4.7	5.2	3.2
2009	5.1	5.4	3.4
2010	4.9	5.3	3.1
2011	5.4	5.8	2.9 3.5
2012	5.2	5.2 5.5	
Average	4.6	5.0	3.6
Standard			
Deviation	0.5	0.5	0.8

Figure 70. Guam estimated annual commercial revenues in inflation-adjusted dollars: all pelagics, tuna PMUS, and non-tuna PMUS

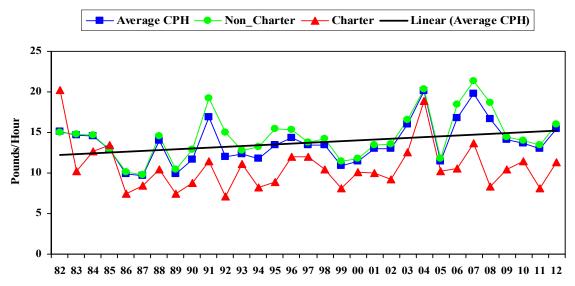

Interpretation: Commercial revenues have shown a gradual decrease since the early 1980's. A large drop occurring after 2002 can partly be attributed to two typhoons striking Guam, as well as a change in government policy (see introduction). This trend somewhat continued in 2012, with all three adjusted revenue categories well below the 31-year averages.

Source and Calculations: The WPACFIN-sponsored commercial landings system. Commercial revenues were estimated by summing the revenue fields in the commercial landings database from the principle fish wholesalers on Guam, and then multiplying by the same percent coverage expansion factor. Inflation-adjusted total revenue per trip is derived from the Guam Annual Consumer Price Index (CPI).

Table 67. Guam estimated annual commercial revenues in inflation-adjusted dollars: all pelagics, tuna PMUS, and non-tuna PMUS

	All Pe	lagics	Tuna	PMUS	Non-Tuna PMUS		
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	
1980	149124	883111	54353	321876	88775	525728	
1981	218384	1073577	92914	456767	113212	556552	
1982	203847	953190	90719	424202	103459	483774	
1983	380231	1718262	105308	475887	262817	1187670	
1984	286490	1190939	129389	537871	146339	608333	
1985	373796	1495930	112286	449367	244423	978182	
1986	334955	1304650	81299	316661	237826	926333	
1987	350828	1308939	107642	401613	231451	863543	
1988	388630	1378081	115243	408653	258203	915589	
1989	337586	1079262	76865	245739	249421	797397	
1990	471241	1319005	136321	381562	316491	885858	
1991	462191	1173502	119640	303766	333096	845731	
1992	492707	1135690	195547	450735	284546	655879	
1993	547835	1165794	175360	373167	358592	763084	
1994	593838	1080786	165296	300838	411832	749534	
1995	537889	929472	173629	300032	356256	615611	
1996	398375	655726	127375	209659	254063	418188	
1997	534352	862979	154819	250033	344972	557129	
1998	733101	1191289	201639	327663	502801	817052	
1999	489605	781410	122023	194749	319342	509670	
2000	626803	980946	234735	367361	349312	546673	
2001	667648	1059557	228652	362870	379174	601749	
2002	500777	789725	184705	291280	274929	433564	
2003	399989	613983	163423	250854	214143	328710	
2004	432735	626167	122098	176676	277544	401607	
2005	353131	474608	100720	135368	232336	312260	
2006	324686	390922	94040	113225	202560	243882	
2007	437861	493907	109201	123179	296385	334322	
2008	260474	281832	61360	66392	174973	189321	
2009	286514	303419	88918	94164	176071	186459	
2010	474481	489664	55183	56949	397710	410437	
2011	297309	297309	73945	73945	206200	206200	
Average	417107	921363	126708	288847	268727	589251	
Standard Deviation	134016	369347	47826	131753	92662	253670	

Figure 71. Guam annual estimated inflation-adjusted average price of pelagics (\$/lb): all pelagics, tuna PMUS, and non-tuna PMUS


Interpretation: The inflation-adjusted price of tuna and other non-tuna PMUS has shown a steady decline since data on the pelagic fishery was first collected in 1980. In 2007, the trend started to change slightly. In 2012, prices were virtually unchanged, with the adjusted price for all pelagics decreasing 0.5%, 3.4% for tuna PMUS, and a 1% for non-tuna PMUS species. All three categories are well below their 30 year averages. Locally-caught pelagic fish continues to have to compete with cheaper pelagic fish caught by longliners. These are value-added products sold at several supermarkets and roadside vendors.

Source and Calculations: The WPACFIN-sponsored commercial landings system. The average price of the Tunas and other PMUS groups are calculated by dividing the total revenue for each by the sold weight. The inflation adjustment is made by using the Consumer Price Index (CPI) for Guam and establishing the current year figure as the base from which to calculate expansion factors for all previous years (e.g., divide the current year CPI by the CPI of any given year), and then multiplying that factor by the unadjusted average price for the given year.

Table~68.~Guam~annual~estimated~inflation-adjusted~average~price~of~pelagics~(\$/lb):~all~pelagics,~tuna~PMUS,~and~non-tuna~PMUS

	All Pelagics		Tuna P	MUS	Non-Tuna PMUS	
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1980	1.26	7.70	1.21	7.37	1.29	7.85
1981	1.35	6.83	1.29	6.52	1.38	7.01
1982	1.33	6.40	1.25	6.05	1.38	6.67
1983	1.33	6.21	1.26	5.86	1.37	6.39
1984	1.31	5.63	1.20	5.16	1.43	6.13
1985	1.57	6.49	1.42	5.86	1.67	6.88
1986	1.48	5.95	1.41	5.66	1.51	6.07
1987	1.45	5.57	1.49	5.75	1.43	5.51
1988	1.37	5.00	1.31	4.78	1.39	5.09
1989	1.39	4.59	1.28	4.23	1.42	4.68
1990	1.69	4.87	1.62	4.67	1.70	4.91
1991	1.62	4.24	1.85	4.84	1.54	4.03
1992	1.66	3.95	1.70	4.05	1.62	3.85
1993	1.56	3.42	1.82	4.00	1.45	3.17
1994	1.69	3.17	1.73	3.25	1.67	3.13
1995	1.38	2.46	1.70	3.03	1.26	2.25
1996	1.56	2.65	1.62	2.75	1.52	2.59
1997	1.74	2.89	1.65	2.75	1.76	2.93
1998	1.81	3.03	1.68	2.81	1.84	3.09
1999	1.88	3.09	1.62	2.66	1.95	3.20
2000	1.67	2.69	1.41	2.28	1.83	2.95
2001	1.67	2.73	1.40	2.29	1.84	3.02
2002	1.54	2.50	1.33	2.16	1.67	2.71
2003	1.47	2.32	1.35	2.13	1.55	2.45
2004	1.52	2.26	1.36	2.04	1.58	2.36
2005	1.54	2.14	1.51	2.09	1.54	2.13
2006	1.60	1.99	1.48	1.84	1.61	2.00
2007	1.64	1.91	1.51	1.76	1.66	1.93
2008	1.81	2.02	1.70	1.90	1.78	1.99
2009	2.06	2.25	2.03	2.22	2.05	2.23
2010	2.08	2.21	1.98	2.10	2.08	2.21
2011	2.04	2.10	2.00	2.06	2.04	2.11
2012	2.09	2.09	1.99	1.99	2.13	2.13
Average	1.61	3.74	1.55	3.60	1.63	3.81
Standard	0.00		<u> </u>	4 /-	2.42	. . .
Deviation	0.23	1.71	0.24	1.65	0.23	1.78

Figure 72. Guam trolling CPUE (lbs/hr)

Interpretation: The fluctuations in CPUE are probably due to variability in the year-to-year abundance and availability of the stocks. However, since it is not possible to allocate species-specific effort, effort used to target other species can also result in artificially high or low catch rates for a given species. This is especially true with charter boats targeting blue marlin during the summer months. In 2012, total overall, and non-charter catch rates increased 19.2% and 19.4%, respectively. Charter catch rates increased by 39.5%. Charter catch rates have generally been lower than catch rates of non-charter boats, probably due to their shorter fishing time and non-charter boats beginning earlier in the morning and ending as late as early evening.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of all troll catch, divided by the total number of hours spent fishing (gear in use).

Table 69. Guam trolling CPUE (lbs/hr)

		Non-	
Year	Catch Rate	Charter	Charter
1982	15.1	15.0	20.2
1983	14.7	14.8	10.2
1984	14.6	14.7	12.7
1985	12.9	12.9	13.4
1986	9.9	10.1	7.5
1987	9.7	9.8	8.4
1988	14.0	14.6	10.4
1989	9.9	10.5	7.4
1990	11.7	12.9	8.8
1991	16.9	19.2	11.5
1992	12.0	15.0	7.1
1993	12.3	12.8	11.1
1994	11.8	13.2	8.2
1995	13.4	13.4 15.5	
1996	14.3	15.3	12.0
1997	13.4	13.8	12.0
1998	13.5	14.2	10.4
1999	10.9	11.5	8.1
2000	11.5	11.8	10.1
2001	13.0	13.4	10.0
2002	13.0	13.6	9.2
2003	16.0	16.6	12.6
2004	20.1	20.3	18.9
2005	11.5	11.8	10.2
2006	16.8	18.5	10.6
2007	19.8	21.3	13.7
2008	16.7	18.7	8.3
2009	14.1	14.5	10.4
2010	13.7	14.0	11.4
2011	13.0	13.4	8.1
2012	15.5	16.0	11.3
Average	13.7	14.5	10.7
Standard			
Deviation	2.5	2.8	2.9

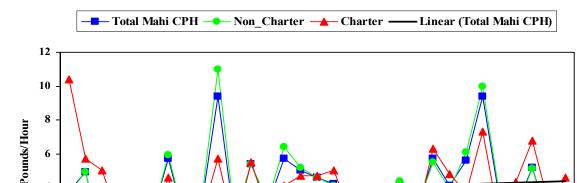


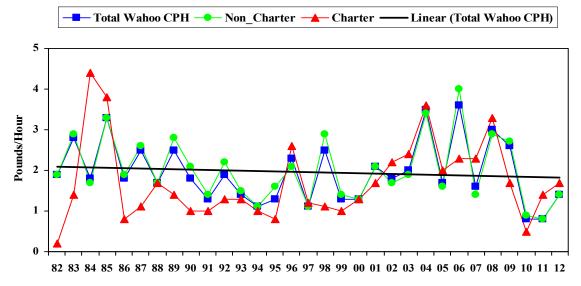
Figure 73. Guam trolling CPUE (lbs/hr): mahimahi

6

4

2

Interpretation: The wide fluctuations in mahimahi CPUEs are probably due to the high variability in the year-to-year abundance and availability of the stocks. It is not possible to allocate species-specific effort one particular species; effort used to target other species can result in artificially high or low catch rates for a given species. In 2012, the catch rate for total and noncharter mahimahi increased 35%, and 26%, respectively, while charter CPUE increased by 53%. Although CPUE increased in 2012, total mahimahi CPUE was 31% below the 31 year average.

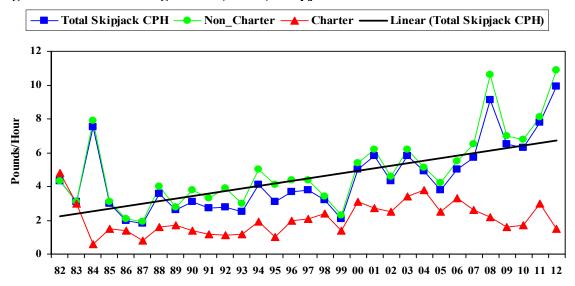

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of mahimahi divided by the total number of hours spent fishing (gear in use).

Table 70. Guam boat-based creel trolling CPUE (lbs/hr): mahimahi

	Total	Non-	
Year	Mahimahi	Charter	Charter
1982	3.8	3.7	10.4
1983	4.9	4.9	5.7
1984	0.9	0.6	5.0
1985	2.0	1.9	2.1
1986	2.6	2.6	2.7
1987	2.3	2.3	2.0
1988	5.7	5.9	4.6
1989	1.9	2.1	1.2
1990	2.9	3.2	2.3
1991	9.4	11.0	5.7
1992	2.0	2.3	1.5
1993	5.4	5.4	5.5
1994	3.0	3.2	2.6
1995	5.7	6.4	4.1
1996	5.0	5.2	4.7
1997	4.6	4.6	4.7
1998	4.2	4.1	5.0
1999	2.8	2.9	2.5
2000	1.6	1.5	2.0
2001	3.2	3.1	3.5
2002	4.2	4.4	3.3
2003	2.7	2.7	2.2
2004	5.7	5.5	6.3
2005	4.1	3.9	4.8
2006	5.6	6.1	3.7
2007	9.4	10.0	7.3
2008	3.4	3.7	2.1
2009	2.9	2.7	4.3
2010	5.2	5.1	6.8
2011	2.0	1.9	3.0
2012	2.7	2.4	4.6
Average	3.9	4.0	4.1
Standard			
Deviation	2.0	2.2	2.0

Figure 74. Guam trolling CPUE (lbs/hr): wahoo

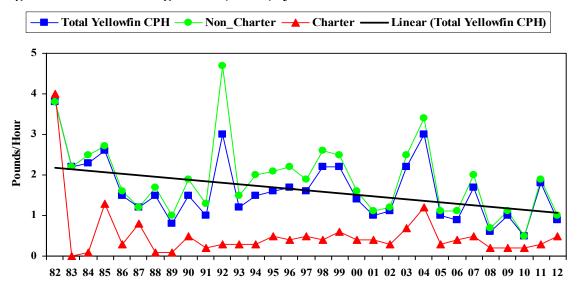

Interpretation: The wide fluctuations in CPUEs are probably due to the high variability in the year-to-year abundance and availability of the stocks. The trend for the 30 year series has remained virtually unchanged. In 2012, all three categories increased. Total wahoo CPUE increased 75%, while non-charter CPUE increased by 75%. Charter CPUE increased by 21.4%. Total CPUE was 30% below the 30 year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of wahoo divided by the total number of hours spent fishing (gear in use).

Table 71. Guam boat-based creel trolling CPUE (lbs/hr): wahoo

	Catch	Non-	
Year	Rate	Charter	Charter
1982	1.9	1.9	0.2
1983	2.8	2.9	1.4
1984	1.8	1.7	4.4
1985	3.3	3.3	3.8
1986	1.8	1.9	0.8
1987	2.5	2.6	1.1
1988	1.7	1.7	1.7
1989	2.5	2.8	1.4
1990	1.8	2.1	1.0
1991	1.3	1.4	1.0
1992	1.9	2.2	1.3
1993	1.4	1.5	1.3
1994	1.1	1.1	1.0
1995	1.3	1.6	0.8
1996	2.3	2.1	2.6
1997	1.1	1.1	1.2
1998	2.5	2.9	1.1
1999	1.3	1.4	1.0
2000	1.3	1.3	1.3
2001	2.1	2.1	1.7
2002	1.8	1.7	2.2
2003	2.0	1.9	2.4
2004	3.5	3.4	3.6
2005	1.7	1.6	2.0
2006	3.6	4.0	2.3
2007	1.6	1.4	2.3
2008	3.0	2.9	3.3
2009	2.6	2.7	1.7
2010	0.8	0.9	0.5
2011	0.8	0.8	1.4
2012	1.4	1.4	1.7
Average	2.0	2.0	1.7
Standard			
Deviation	0.7	0.8	1.0

Figure 75. Guam trolling CPUE (lbs/hr): skipjack tuna

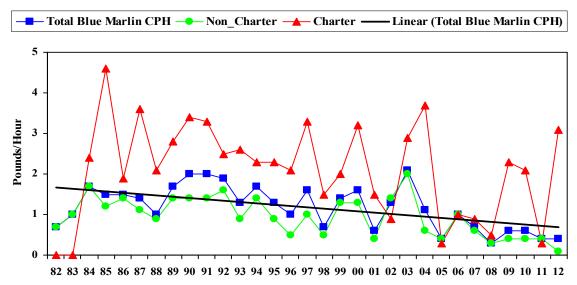

Interpretation: The wide fluctuations in CPUE for skipjack tuna are probably due to the high variability in the year-to-year abundance and availability of the stocks, although skipjack tuna is caught year round. However, it is not possible to allocate species-specific effort, since effort used to target other species can result in an artificially high or low catch rate for a given species. In 2012, the catch rates for total and non-charter increased by 26.9% and 34.6%, respectively. Charter rates decreased 50% in 2012. Total CPUE was 120% above the 30-year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of skipjack divided by the total number of hours spent fishing (gear in use).

Table 72. Guam boat-based creel trolling CPUE (lbs/hr): skipjack tuna

	Total	Non-	
Year	Skipjack	Charter	Charter
1982	4.3	4.3	4.8
1983	3.1	3.1	3.0
1984	7.5	7.9	0.6
1985	3.0	3.1	1.5
1986	2.0	2.1	1.4
1987	1.8	1.9	0.8
1988	3.6	4.0	1.6
1989	2.6	2.8	1.7
1990	3.1	3.8	1.4
1991	2.7	3.3	1.2
1992	2.8	3.8	1.1
1993	2.5	3.0	1.2
1994	4.1	5.0	1.9
1995	3.1	4.1	1.0
1996	3.7	4.4	2.0
1997	3.8	4.4	2.1
1998	3.2	3.4	2.4
1999	2.1	2.3	1.4
2000	5.0	5.4	3.1
2001	5.8	6.2	2.7
2002	4.3	4.6	2.5
2003	5.8	6.2	3.4
2004	4.9	5.1	3.8
2005	3.8	4.2	2.5
2006	5.0	5.5	3.3
2007	5.7	6.5	2.6
2008	9.1	10.6	2.2
2009	6.5	7.0	1.6
2010	6.3	6.8	1.7
2011	7.8	8.1	3.0
2012	9.9	10.9	1.5
Average	4.5	5.0	2.1
Standard			
Deviation	2.0	2.2	0.9

Figure 76. Guam trolling CPUE (lbs/hr): yellowfin tuna

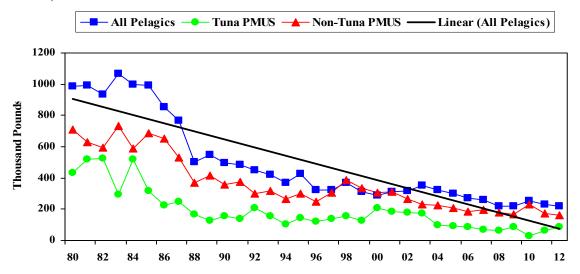

Interpretation: The wide fluctuations in CPUE for yellowfin tunas are probably due to the high variability in the year-to-year abundance and availability of the stocks. It is not possible to allocate species-specific effort, since effort used to target other species can also result in an artificially high or low catch rate for a given species. In 2012, the yellowfin catch rates for total and non-charter catch decreased by 50% and 47% respectively. Charter CPUE increased 67%. All three categories are near their 30-year averages.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of yellowfin divided by the total number of hours spent fishing (gear in use).

Table 73. Guam boat-based creel trolling CPUE (lbs/hr): yellowfin tuna

	Total	Non-	
Year	Yellowfin	Charter	Charter
1982	3.8	3.8	4.0
1983	2.2	2.2	0.0
1984	2.3	2.5	0.1
1985	2.6	2.7	1.3
1986	1.5	1.6	0.3
1987	1.2	1.2	0.8
1988	1.5	1.7	0.1
1989	0.8	1.0	0.1
1990	1.5	1.9	0.5
1991	1.0	1.3	0.2
1992	3.0	4.7	0.3
1993	1.2	1.5	0.3
1994	1.5	2.0	0.3
1995	1.6	2.1	0.5
1996	1.7	2.2	0.4
1997	1.6	1.9	0.5
1998	2.2	2.6	0.4
1999	2.2	2.5	0.6
2000	1.4	1.6	0.4
2001	1.0	1.1	0.4
2002	1.1	1.2	0.3
2003	2.2	2.5	0.7
2004	3.0	3.4	1.2
2005	1.0	1.1	0.3
2006	0.9	1.1	0.4
2007	1.7	2.0	0.5
2008	0.6	0.7	0.2
2009	1.0	1.1	0.2
2010	0.5	0.5	0.2
2011	1.8	1.9	0.3
2012	0.9	1.0	0.5
Average	1.6	1.9	0.5
Standard			
Deviation	0.8	0.9	0.7

Figure 77. Guam trolling CPUE (lbs/hr): blue marlin

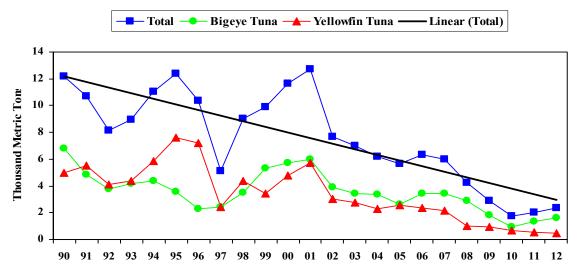

Interpretations: The wide fluctuations in CPUE are probably due to the high variability in the year-to-year abundance and availability of the stocks. Since it is not possible to allocate species-specific effort, effort used to target other species can also result in an artificially high or low catch rate for a given species. The 2012 blue marlin non charter CPUE declined 75% from 2011. Total CPUE was unchanged, while charter CPUE was up 1033%. Total catch CPUE is 67% below the 30 year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of marlin divided by the total number of hours spent fishing (gear in use).

Table 74. Guam boat-based creel trolling CPUE (lbs/hr): blue marlin

	Total Blue	Non-	
Year	Marlin	Charter	Charter
1982	0.7	0.7	0.0
1983	1.0	1.0	0.0
1984	1.7	1.7	2.4
1985	1.5	1.2	4.6
1986	1.5	1.4	1.9
1987	1.4	1.1	3.6
1988	1.0	0.9	2.1
1989	1.7	1.4	2.8
1990	2.0	1.4	3.4
1991	2.0	1.4	3.3
1992	1.9	1.6	2.5
1993	1.3	0.9	2.6
1994	1.7	1.4	2.3
1995	1.3	0.9	2.3
1996	1.0	0.5	2.1
1997	1.6	1.0	3.3
1998	0.7	0.5	1.5
1999	1.4	1.3	2.0
2000	1.6	1.3	3.2
2001	0.6	0.4	1.5
2002	1.3	1.4	0.9
2003	2.1	2.0	2.9
2004	1.1	0.6	3.7
2005	0.4	0.4	0.3
2006	1.0	1.0	1.0
2007	0.7	0.6	0.9
2008	0.3	0.3	0.5
2009	0.6	0.4	2.3
2010	0.6	0.4	2.1
2011	0.4	0.4	0.3
2012	0.4	0.1	3.1
Average	1.2	1.0	2.3
Standard			
Deviation	0.5	0.5	1.1

Figure 78. Guam annual inflation-adjusted revenue per trolling trip: all pelagics, tuna PMUS, and non-tuna PMUS


Interpretation: There has been a general decrease from 1980 in the adjusted revenues per trolling trip for all pelagics, tunas and other PMUS, although the revenue values have remained fairly constant for 10 years. In 2012, the adjusted revenue per trip decreased 5.3 % for all pelagics. Tuna PMUS revenues increased by 36.3%, and non-tuna PMUS decreased by 7%. Despite continual declines in revenues, trolling effort still occurs since most charter and non-charter trolling boats do not rely on selling fish caught as their primary source of income and a reliable market exists for members of the local fishermen's cooperative which provides additional income.

Source and Calculations: Data are from the WPacFIN-sponsored commercial landings system. The average revenue per trip was calculated by summing the revenue of all species sold then dividing by the number of trips, and summing the revenue of tunas and other PMUS sold, and then dividing each by the number of trips, respectively, for any trip, which landed PMUS. Adjusted revenue per trip was derived from the Guam Annual Consumer Price Index (CPI).

Table~75.~Guam~annual~inflation-adjusted~revenue~per~trolling~trip:~all~pelagics,~tuna~PMUS,~and~non-tuna~PMUS

	All Pel	agics	Tuna PMUS		Non-Tuna	PMUS
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1980	161.31	984.80	71.14	431.31	116.20	709.40
1981	195.29	989.93	102.24	518.25	124.58	631.50
1982	194.29	936.67	108.45	522.84	123.68	596.26
1983	229.26	1068.12	62.81	292.63	156.75	730.30
1984	233.01	998.68	121.56	521.01	137.48	589.24
1985	240.34	991.64	76.21	314.44	165.90	684.50
1986	212.25	852.40	55.68	223.61	162.89	654.17
1987	199.18	766.05	64.07	246.41	137.77	529.86
1988	137.30	501.97	44.98	164.45	100.78	368.45
1989	166.79	549.74	38.89	128.18	126.20	415.96
1990	172.68	498.35	53.19	153.51	123.50	356.42
1991	185.96	486.84	51.79	135.59	144.20	377.52
1992	188.33	447.66	86.72	206.13	126.18	299.93
1993	191.92	421.07	70.60	154.90	144.36	316.73
1994	197.09	369.74	56.32	105.66	140.32	263.24
1995	239.79	427.31	82.55	147.10	169.38	301.84
1996	191.10	324.30	72.55	123.12	144.71	245.57
1997	192.95	321.26	82.74	137.76	184.35	306.94
1998	221.01	370.41	92.81	155.55	231.44	387.89
1999	190.05	312.63	78.35	128.89	205.04	337.29
2000	179.42	289.40	127.01	204.87	189.00	304.86
2001	188.68	308.68	113.92	186.37	188.92	309.07
2002	193.42	314.50	109.41	177.90	162.85	264.79
2003	223.73	353.94	110.95	175.52	145.38	229.99
2004	215.10	320.93	65.56	97.82	149.03	222.35
2005	216.34	299.63	64.62	89.50	149.05	206.45
2006	219.47	272.58	68.83	85.49	148.26	184.14
2007	221.40	257.49	61.56	71.59	167.09	194.33
2008	196.13	218.68	55.86	62.28	159.29	177.61
2009	202.16	220.76	76.76	83.82	152.00	165.98
2010	238.87	254.40	29.75	31.68	214.40	228.34
2011	221.87	228.75	60.94	62.83	169.93	175.20
2012	216.61	216.61	85.65	85.65	169.92	162.92
Average	202.22	490.18	75.89	188.78	155.27	361.49
Standard	22.55	355.50	22.50	131.00	20.24	150 (4
Deviation	23.57	275.79	23.79	131.80	28.24	173.61

Figure 79. Guam foreign longline transshipment landings (mt) from vessels fishing outside the Guam EEZ

Interpretation: Annual landings from a primarily foreign longline fishing fleet have ranged from a low of 2,874 metric tons in 2009 to a high of 12,627 metric tons in 2001. These vessels fish primarily outside Guam's EEZ, but transship their catch through Guam. The dramatic drop observed in 1997 was due to a large number of foreign fishing boats leaving the western Pacific that year for several reasons, including availability of fish stocks. In 2012, total longline landings increased 16.1%, with bigeye landings increasing 21.9%, and yellowfin landings decreasing 7.5%. 2012 yellowfin totals were the lowest in the 23 year data set, and total catch was 69% below the 23 year average. The lower numbers may be due to a reduction in the number of agents reporting sales, and vessels relocating to other regions of the Pacific.

Source and Calculations: Data are from the Bureau of Statistics and Plans. Pre-1990 data was extracted directly from transshipment agents' files. Beginning in 1990, a mandatory data submission program was implemented.

Table 76. Guam foreign longline transshipment landings (mt)

Year	Total	Bigeye	Yellowfin
1990	12,198	6,793	5,011
1991	10,707	4,824	5,505
1992	8,157	3,754	4,104
1993	8,981	4,178	4,379
1994	11,023	4,400	5,878
1995	12,366	3,560	7,635
1996	10,356	2,280	7,214
1997	5,093	2,395	2,392
1998	9,032	3,533	4,379
1999	9,865	5,328	3,404
2000	11,664	5,725	4,795
2001	12,716	5,996	5,711
2002	7,691	3,904	3,011
2003	7,010	3,418	2,788
2004	6,190	3,375	2,287
2005	5,660	2,618	2,574
2006	6,315	3,455	2,377
2007	5,991	3,439	2,134
2008	4,215	2,926	1,014
2009	2,874	1,813	934
2010	1,779	935	656
2011	2,016	1,343	532
2012	2,342	1,637	492
Average	7,576	3,549	3,444
Standard			
Deviation	3,414	1,474	2,058

Table 77. Guam numbers of trips and interviews for the creel trolling method

	Survey	Trips in	
Year	Days	Boat Log	Interviews
1982	46	393	363
1983	47	363	351
1984	54	486	365
1985	66	737	503
1986	49	629	382
1987	48	614	431
1988	51	1,032	698
1989	60	1,053	642
1990	60	1,098	804
1991	60	1,097	773
1992	60	1,170	843
1993	61	1,149	844
1994	69	1,224	878
1995	96	1,540	1,110
1996	96	1,543	1,146
1997	96	1,378	949
1998	96	1,477	1,052
1999	96	1,436	917
2000	96	1,338	854
2001	96	1,076	620
2002	84	730	396
2003	79	531	289
2004	96	716	366
2005	97	698	377
2006	96	763	413
2007	96	755	391
2008	96	788	405
2009	96	1,018	604
2010	96	1,135	683
2011	96	878	496
2012	96	627	330

Table 78. Trolling bycatch annual summaries

Year	Released alive	Released dead/ injured	Total Number Released	Total Number Landed	Percent Bycatch*	Interviews with Bycatch	Total Number of Interviews	Percent of Interviews with Bycatch
2001	7	3	10	5,289	0.2	10	461	2.2
2002	1	2	3	3,443	0.1	3	258	1.2
2003	5	0	5	3,026	0.2	2	178	1.1
2004	0	0	0	4,292		0	91	0
2005	3	0	3	2,631	.11	3		
2006	2	1	3	3,478	.09	3	413	.7
2007	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
2008	1	0	1	3,495	.02	1	98	1.02
2009	2	1	3	3,478	.08	3	604	.05
2010	0	0	0	6,085	0	0	670	0
2011	0	1	1	7,100	.00014	1	496	.002
2012	0	0	0	5,570	0	0	330	0

^{*&}quot;percent bycatch" represents the number of pieces that were discarded compared to the total number of fish caught trolling. The bycatch information is from unexpanded data, taken only from actual interviews that reported bycatch.

Interpretation: Bycatch information was recorded beginning in 2000 as a requirement of the pelagic FMP. Historically, most fish landed are kept regardless of size and species. Bycatch for this fishery are sharks, shark-bitten pelagics, small pelagics, or other pelagic species. In 2010 and 2012, bycatch was not encountered by Fisheries staff when interviewing trollers.

Source and Calculations: The DAWR creel survey data for boat based methods. Bycatch is obtained directly from trolling interviews where bycatch was voluntarily reported. The number of bycatch reported is from unexpanded data.

D. Hawaii

Introduction

Hawaii's pelagic fisheries, which include the longline, main Hawaiian Island (MHI) troll and handline, offshore handline, and aku boat (pole and line) fisheries, are the state's largest and most valuable commercial fisheries. These pelagic fisheries landed an estimated 32 million pounds worth about \$106 million (ex-vessel revenue) in 2012. The deep-set longline fishery was the largest of all commercial pelagic fisheries in Hawaii and represented 72% of the total commercial pelagic landings and 81% of the ex-vessel revenue. The MHI troll was the second largest fishery in Hawaii and accounted for 11% and 8% of the landings and revenue, respectively. The shallow-set longline, MHI handline, aku boat, offshore handline fisheries and other gear types made up the remainder.

Target species for Hawaii's pelagic fisheries are tunas and billfishes, but a variety of other pelagic species are also important to these fisheries. The largest component of the pelagic landings was tunas, which comprised 66% of the total in 2012. Bigeye tuna alone accounted for 66% of the tunas and 44% of all pelagic landings. Billfish landings made up 16% of the total landings in 2012. Swordfish was the largest of these at 61% of the billfish and 10% of the total landings. Landings of other pelagic management unit species (PMUS) represented 18% of the total landings in 2012 with mahimahi being the largest component at 34% of the other PMUS and 6% of the total landings.

Data Sources and Calculation Procedures

This report contains the most recently available information on Hawaii's commercial pelagic fisheries, as compiled from three data sources: The State of Hawaii's Division of Aquatic Resources (HDAR) Commercial Fishing Report data (Fishing Report), HDAR Commercial Marine Dealer (Dealer) data, and the National Oceanic and Atmospheric Administration (NOAA) Fisheries, Pacific Islands Fisheries Science Center's (PIFSC) longline logbook data. The data sources and estimation procedures are described below.

The Hawaii-based Longline Fishery: The federal longline logbook system was implemented in December 1990 and served as the source of the data used to determine fish catches. The number of "Fish Kept" from the longline logbook data was multiplied by the average weight per fish from HDAR Dealer data to estimate total kept catch. The revenue in this report originates from the Dealer and is a sum of the "Amount Paid" for the "Fish Bought". To satisfy confidentiality standards as well as comply with Regional Fisheries Management Organization (RFMO) or International data and reporting standards, longline vessels landings their catch in California were also included in the following data summaries. However, longline size summaries, revenue and average prices are only for longline vessels landing their catch in Hawaii.

MHI Troll Fishery: Catch and effort by the MHI troll fishery was defined as using a combination of pelagic species, gear and area codes from the HDAR Fishing Report data. The codes for the MHI troll fishery includes summaries of PMUS caught by Miscellaneous Trolling Methods (HDAR gear code 6), Lure Trolling (61), Bait Trolling (62), Stick Trolling (63), Casting, Light Tackle, Spinners or Whipping (10) and Hybrid Methods (97) in HDAR statistical

3-186 *Hawaii*

areas 100 through 642. These are areas that begin from the shoreline out to 20 minute squares around the islands of Hawaii, Maui, Kahoolawe, Lanai, Mokolai, Oahu, Kauai and Niihau.

MHI Handline Fishery: The MHI handline fishery includes PMUS caught by Deep Sea or Bottom Handline Methods (HDAR gear code 3), Inshore Handline or Cowrie Shell (Tako) Methods (4), Ika_Shibi (8), Palu-Ahi, Drop Stone or Make Dog Methods (9), Drifting Pelagic Handline Methods (35) and Floatline Methods (91) in HDAR statistical areas 100 to 642 except areas 175, 176, and 181.

Offshore Handline Fishery: The offshore handline fishery includes PMUS caught by Ika-Shibi (HDAR gear code 8), Palu-Ahi, Drop Stone or Make Dog Methods (9), Drifting Pelagic Handline Methods (35), Miscellaneous Trolling Methods (6), Lure Trolling (61), and Hybrid Methods (97) in Areas 15217 (NOAA Weather Buoy W4), 15717 (NOAA Weather Buoy W2), 15815, 15818 (Cross Seamount), 16019 (NOAA Weather Buoy W3), 16223 (NOAA Weather Buoy W1), 175, 176, 181, 804, 807, 816, 817, 825, 839, 842, 892, 893, 894, 898, 900, 901, 15416, 15417, 15423, 15523, 15718, 15918, 15819, and 16221. This fishery also includes pelagic species caught by Deep Sea or Bottom Handline Methods (3) in Area 16223.

<u>Other Gear:</u> This category represents pelagic species caught by other methods or in areas other than those methods mentioned above. Catch and revenue from this category is primarily composed of PMUS caught by the aku boat fishery, fishers trolling in areas outside of the MHI (the distant water albacore troll fishery) or PMUS caught close to shore by diving, spearfishing, squidding, or netting inside of the MHI.

<u>Calculations:</u> Calculating catch by the MHI troll, MHI handline, offshore handline, and other gear involved processing of two data sets: the HDAR Fishing Report data collected and submitted by the aforementioned fishers, and HDAR Dealer data collected and submitted by seafood dealers. "Pounds Landed" from HDAR Fishing Report data was summed by species for each of the above fisheries. Total "Pounds Landed" for each species was then calculated by summing the catch of that particular species for the MHI troll, MHI handline, offshore handline fisheries and other gear category. The percent catch of each species by fishery was also calculated and later used in conjunction with the HDAR Dealer data.

Catch in the HDAR Dealer data, referred to as "Pounds Bought", by each fishery was not clearly differentiated; however, "Pounds Bought" by the longline and aku boat fisheries were identified by CML numbers and/or vessel names and kept separate from the "non-longline & non-aku boat" Dealer data. The remaining "non-longline and non-aku" boat "Pounds Bought" was presumed to be from the MHI troll, MHI handline, offshore handline fisheries or other gear category. "Pounds Bought" from this data was summed on a species specific basis with fishery specific landings of each particular species allocated based on the percent catch by fishery calculated from the HDAR Dealer data. The fishery specific HDAR Dealer data allocation was then compared to the "Pounds Landed" from the HDAR Fishing Report total. The greater value of "Pounds Bought" from the HDAR Dealer data or the "Pounds Landed" from the HDAR Fishing Report catch data was used as the catch. This process was repeated on a monthly basis.

3-187 *Hawaii*

This module was prepared by Russell Ito of the PIFSC. Summaries for the longline fishery that originate from NOAA Fisheries longline logbook data were provided by Karen Sender of the PIFSC. NOAA Fisheries logbook data that were integrated with corresponding HDAR Dealer data was provided by Dios Gonzales and Grace Kagami from the PIFSC. HDAR Commercial Fish Catch and Dealer data used calculate the MHI troll, MHI handline, offshore handline, and other gear landings were compiled by Karen Brousseau and Ashley Tomita from JIMAR. Information on HDAR CMLs was provided by Reginald Kokubun of HDAR.

Plan Team Recommendations

There were no recommendations by the Pelagics Plan Team for 2012.

3-188 *Hawaii*

Table 79. Number of Hawaii licenses per fishing method in 2011-2012

	Number of licer	isees
Primary Fishing Method	2011	2012
Trolling	1,295	1,221
Longline	626	752
Ika Shibi & Palu Ahi	211	241
Aku Boat (Pole and Line)	17	16
Total Pelagic	2,149	2,230
Total All Methods	3,762	3,841

<u>Interpretation:</u> A total of 3,841 fishermen were licensed in 2012, including 2,230 (58%) who indicated that their primary fishing method and gear was intended to catch pelagic fish. Most licenses that indicated pelagic fishing as their primary method were issued to trollers (55%) and longline fishermen (34%). The remainder was issued to ika shibi and palu ahi (handline) (11%) and aku boat fishers (1%).

<u>Sources and calculations:</u> Any fisherman who takes marine species for commercial purposes is required by the State of Hawaii, Division of Aquatic Resources (HDAR) to have a Commercial Marine License (CML) and submit a monthly catch report. An exception to this rule is that should a fishing trip occur on a boat, only one person per vessel is required to submit a catch report. This person is usually, but not necessarily, the captain. Crew members do not ordinarily submit catch reports. HDAR asks fishermen to identify their primary fishing gear or method on the CML at time of licensing. This does not preclude fishermen from using other gears or methods.

3-189 *Hawaii*

Table 80. Hawaii commercial pelagic landings, revenue, and average price by species, 2011-2012

		2011			2012	
	Pounds	Ex-vessel	Average	Pounds	Ex-vessel	Average
	lande d	revenue	price	lande d	revenue	price
Species	(x 1000)	(\$1000)	(\$/lb)	(x 1000)	(\$1000)	(\$/lb)
Tuna PMUS						
Albacore	1,734	\$2,621	\$1.61	2,009	\$4,114	\$2.13
Bigeye tuna	13,496	\$53,860	\$4.17	14,022	\$63,814	\$4.68
Bluefin tuna	0	\$0	\$0.00	1	\$3	\$5.26
Skipjack tuna	1,105	\$1,044	\$1.64	907	\$914	\$1.74
Yellowfin tuna	3,877	\$10,063	\$2.93	4,098	\$13,173	\$3.67
Other tunas	23	\$57	\$3.06	67	\$240	\$3.81
Tuna PMUS subtotal	20,235	\$67,646	\$3.63	21,104	\$82,258	\$4.17
Billfish PMUS						
Swordfish	3,569	\$6,829	\$2.57	3,094	\$6,699	\$2.81
Blue marlin	1,247	\$1,266	\$1.36	951	\$1,449	\$1.83
Spearfish (hebi)	543	\$559	\$1.25	386	\$697	\$2.17
Striped marlin	835	\$1,147	\$1.13	648	\$1,411	\$1.84
Other marlins	40	\$27	\$1.46	30	\$40	\$3.63
Billfish PMUS subtotal	6,234	\$9,828	\$1.96	5,109	\$10,295	\$2.44
Other PMUS						
Mahimahi	1,628	\$4,427	\$3.06	2,007	\$5,276	\$3.04
Ono (wahoo)	675	\$1,821	\$3.23	809	\$2,262	\$3.55
Opah (moonfish)	1,622	\$2,918	\$1.82	1,593	\$3,163	\$2.04
Oilfish	589	\$889	\$1.38	563	\$852	\$1.41
Pomfrets (monchong)	422	\$1,472	\$3.39	710	\$2,088	\$2.87
PMUS Sharks	190	\$117	\$1.05	181	\$129	\$1.28
Other PMUS subtotal	5,126	\$11,643	\$2.42	5,863	\$13,770	\$2.57
Other pelagics	51	\$43	\$2.93	26	\$38	\$1.79
Total pelagics	31,646	\$89,160	\$3.13	32,102	\$106,362	\$3.62

Interpretation: The total commercial pelagic landings in 2012 were 32.1 million pounds, up 3% from 2011. Tunas represented 66% of the total landings. Bigeye tuna was the largest component of the pelagic landings (44%) followed by yellowfin tuna (13%) and swordfish (10%).

3-190 *Hawaii*

Total Hawaii commercial ex-vessel revenue exceeded \$100 million in 2012, a first time for these fisheries. This represented an increase of 19% in revenue from the previous year. Tunas comprised 77% of total revenue. Bigeye tuna alone accounted for 60% of the total revenue at \$64 million. Yellowfin tuna revenue increased 31% to \$13 million. Billfish revenue (\$10.3 million) was close to last year's revenue. Swordfish was the third highest contributor to total revenue at \$6.7 million. Revenue of other PMUS increased 18% in 2012. The average price for pelagic fish was strong in 2012 increasing by 16%. Average prices for all species groups rose in 2012.

Source and Calculations: NOAA Fisheries longline logbook and HDAR Dealer data were used to produce longline landings, revenue, and average price estimates. The Main Hawaiian Islands (MHI) troll, MHI handline, offshore handline, and other gear landings, revenue, and average price estimates were produced from HDAR Commercial Fish Catch and Dealer data.

Tuna MUS included albacore, bigeye tuna, bluefin tuna, skipjack tuna, yellowfin tuna and other tuna species such as kawakawa, keokeo. Billifsh MUS are composed on swordfish, blue marlin, striped marlin, spearfish, sailfish, black marlin and unclassified marlins. Mahimahi, monchong, moonfish, oilfish, and ono made up the other PMUS. The shark MUS were blue shark, mako shark, thresher shark, and white-tipped sharks. "Other pelagics" includes non-PMUS fish species.

The revenue for the current year is an unadjusted value while the revenue for the previous year is adjusted by the CPI. The average price is the total revenue divided by the pounds sold for each species where pounds sold is equal to or less than the total catch for each species.

3-191 *Hawaii*

Table 81. Hawaii-based deep-set and shallow-set longline landings, ex-vessel value, and average price by species 2011-2012

Deep-set longline Shallow-set longline 2011 2012 2011 2012 Ex-vessel Avg. Ex-vessel Ex-vessel Avg. Ex-vessel Avg. Avg. Landings value Price Landings value Price Landings value Price Landings value Price (\$1000)(\$1000)(\$1000)Species (1000 lbs) (\$/lb) (1000 lbs) (\$/lb) (1000 lbs) (\$/lb) (1000 lbs)(\$1000)(\$/lb) Tuna PMUS 64 \$0.54 Albacore 1,473 \$2,367 \$1.66 1,421 \$3,281 \$2.39 \$15 26 \$23 \$1.75 Bigeye tuna 12,315 \$51,959 \$4.27 12,741 \$4.79 106 \$313 \$3.93 75 \$359 \$5.09 \$61,206 Bluefin tuna 0 \$0 \$0.00 1 \$3 \$5.26 0 \$0 \$0.00 0 \$0 \$0.00 Skipjack tuna 453 \$128 \$0.92 541 \$425 \$1.38 1 \$0 \$0.50 1 \$0 \$0.10 Yellowfin tuna 2,009 \$6,190 \$3.00 1,886 \$7,537 \$3.92 38 \$113 \$3.35 29 \$152 \$4.73 **Tuna PMUS Subtotal** 16,250 \$60,644 \$3.84 16,590 \$72,452 \$4.42 209 \$440 \$3.14 131 \$534 \$4.61 Billfish PMUS Swordfish 456 \$1,255 \$2.91 566 \$1,586 \$2.92 3,100 \$5,536 \$2.50 2,508 \$5,054 \$2.78 Blue marlin 797 \$819 \$1.32 \$1.29 630 \$1,055 \$1.84 27 \$18 \$0.85 26 \$23 5 \$1.85 Spearfish 511 \$517 \$1.11 354 \$638 \$1.82 6 \$6 \$1.38 \$5 Striped marlin 756 \$1,074 \$1.24 596 \$1,321 \$2.17 43 \$55 \$1.26 25 \$58 \$1.99 Other Marlins 29 \$1.42 \$33 0 \$0 \$0.00 0 \$25 21 \$3.82 \$0 \$0.00 **Billfish PMUS Subtotal** 2,549 \$3,690 \$1.53 2,167 \$4,634 \$2.22 3,176 \$5,615 \$2.46 2,564 \$5,139 \$2.75 Other PMUS Mahimahi 860 \$2,247 \$2.60 889 \$2,217 \$2.49 60 \$129 \$2.84 46 \$89 \$2.79 Ono (wahoo) 352 \$974 \$2.84 366 \$1,097 \$3.18 \$2 \$2.22 1 \$3 \$2.79 6 Opah (moonfish) \$5 17 1,616 \$2,912 \$1.82 1,574 \$3,154 \$2.04 \$1.88 \$5 \$2.66 Oilfish \$851 \$1.38 \$818 33 24 \$31 \$1.48 555 537 \$1.41 \$36 \$1.34 Pomfrets (monchong) 398 \$1,401 \$3.36 682 \$1,999 \$2.84 1 \$1 \$2.87 5 \$2 \$3.71 PMUS sharks 14 \$5 \$0.83 \$1.33 171 \$110 \$1.07 150 \$114 \$1.31 26 \$10 Other PMUS Subtotal 3,952 \$8,495 \$2.15 \$9,399 \$2.26 115 \$2.17 119 \$2.19 4,198 \$178 \$140 Non-PMUS pelagics 45 \$3.04 0 \$0 \$0.00 0 \$0.00 \$41 20 \$36 \$1.80 **\$0** \$2.84 Total pelagics 22,796 \$72,871 \$3.29 22,975 \$86,520 \$3.82 3,500 \$6,234 \$2.49 2,814 \$5,814

3-192 *Hawaii*

<u>Interpretation</u>: Deep-set longline landings was slightly higher in 2012, but ex-vessel revenue and average price for the deep-set longline fishery increased by 19% and 16%, respectively. Although the average price for the shallow-set longline fishery increased in 2012, its landings and ex-vessel revenue decreased. Bigeye tuna is the largest component of the landings and the most valuable species for the deep-set longline fishery while swordfish was the most important species in terms of landings and revenue for the shallow-set longline fishery.

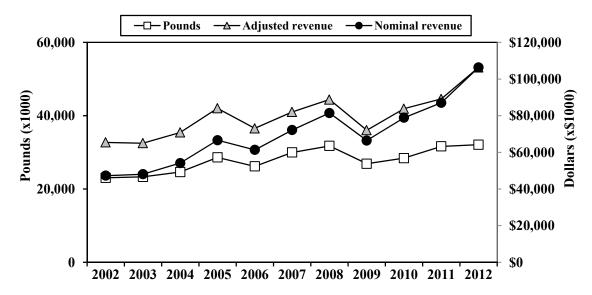
Source and calculations:

The NOAA Fisheries longline logbook data (number of fish kept) was used in conjunction with the HDAR Commercial Marine Dealer data (average pounds) to calculate pounds kept or landings. The longline ex-vessel revenue was calculated by summing longline records in the HDAR Commercial Marine Dealer data for each species. The HDAR Dealer data was used to calculate average price by dividing the "Amount Paid" for longline fish sales by the "Pounds Bought". Ex-vessel revenue and average price was adjusted for inflation by dividing the current year Honolulu CPI (H-CPI) by the previous year H-CPI then multiplying the nominal revenue for that respective year.

3-193 *Hawaii*

Table 82. Hawaii commercial pelagic landings, revenue, and average price by fishery, 2011-2012

		2011			2012	
•	Pounds landed	Ex-vessel revenue	Average price	Pounds landed	Ex-vessel revenue	Average price
Fishery	(x1000)	(\$1000)	(\$/lb)	(x1000)	(\$1000)	(\$/lb)
Deep-set longline	22,796	\$72,871	\$3.29	22,975	\$86,520	\$3.82
Shallow-set longline	3,500	\$6,234	\$2.49	2,814	\$5,814	\$2.84
MHI trolling	2,966	\$5,906	\$2.92	3,690	\$8,594	\$3.29
MHI handline	1,129	\$2,184	\$2.54	1,602	\$3,361	\$2.54
Offshore handline	610	\$854	\$2.41	562	\$1,094	\$2.95
Other gear	645	\$1,112	\$2.01	459	\$979	\$2.81
Total	31,646	\$89,160	\$3.13	32,102	\$106,362	\$3.62


Interpretation: The deep-set longline fishery is the largest commercial fishery in Hawaii. The deep-set longline landings and revenue were 23.0 million pounds and \$86.50 million, respectively, in 2012. Landings by this fishery increased by only 179,000 pounds but revenue rose \$13.6 million in 2012. The average price for the deep-set longline fishery was the difference increasing by 16% in 2012. The MHI troll fishery was the second largest commercial fishery. It produced 3.7 million pounds worth \$8.6 million; an increase of 25% and 46%, respectively, from the previous year. The MHI handline fishery produced 1.6 million pounds of pelagic fish worth \$3.4 million while the offshore handline fishery landed 562,000 pounds worth \$1.1 million in 2012.

<u>Source and calculations:</u> Number of fish from the NOAA Fisheries longline logbook data and average weight of fish from the HDAR Commercial Marine Dealer (Dealer) data were used to calculate longline landings. The ex-vessel revenue was the sum of "Amount Paid" from the HDAR Dealer data. The average price was calculated by dividing the total "Amount Paid" by the "Pounds Bought" from the Dealer data.

The landings and revenue is the sum of the all pelagic species for each fishery. The revenue for 2011 is inflation-adjusted by the Honolulu CPI. The average price was calculated from the HDAR Commercial Marine Dealer data by dividing the "Amount Paid" by the "Pounds Bought" for each fishery.

3-194 *Hawaii*

Figure 80. Hawaii total commercial landings and revenue, 2002-2012

<u>Interpretation</u>: Commercial landings and revenue in 2012 reached record highs of 32.1 million pounds worth an estimated \$106.4 million. The trend for both landings and inflation-adjusted revenue were increasing. Gear and species specific changes over the 11-year period are explained in greater detail in the following figures and tables.

Source and calculations: The pounds and nominal revenue values are obtained by adding the landings and revenue values for all species and all fisheries for each year. The inflation-adjusted revenue for each year is calculated by multiplying the nominal value by the Honolulu CPI for the current year and then dividing by the Honolulu CPI for that year.

	Pounds	Nominal revenue	Adjusted revenue	Honolulu
Year	(1000)	(\$1000)	(\$1000)	CPI
2002	23,061	\$47,316	\$65,476	180.3
2003	23,330	\$48,069	\$65,004	184.5
2004	24,622	\$54,147	\$70,880	190.6
2005	28,631	\$66,651	\$84,073	197.8
2006	26,178	\$61,349	\$73,098	209.4
2007	29,980	\$72,196	\$82,064	219.5
2008	31,760	\$81,499	\$88,834	228.9
2009	26,894	\$66,472	\$72,108	230.0
2010	28,433	\$78,922	\$83,828	234.9
2011	31,646	\$87,052	\$89,160	243.6
2012	32,102	\$106,362	\$106,362	249.5
Average	27,876.1	70,003.2	80,080.4	
SD	3,327.9	17,818.3	12,333.8	

3-195 *Hawaii*

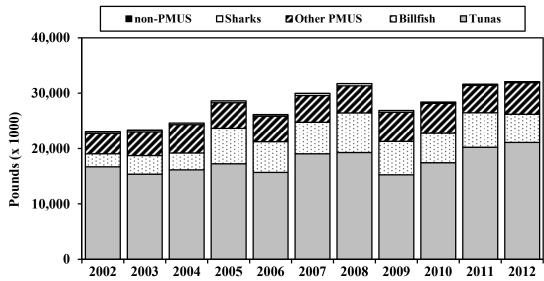


Figure 81. Hawaii commercial tuna, billfish, shark, and other PMUS landings, 2002-2012

<u>Interpretation:</u> Hawaii's pelagic landings reached a record 32.1 million pounds in 2012. Tunas were the largest group followed by other PMUS and billfish. In general, the trends for tuna, billfish and other PMUS were increasing. Sharks and non-PMUS landings were relatively small.

<u>Source and calculations:</u> Pelagic landings were calculated from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch and Marine Dealer data. The landings values are obtained by adding the landing values for species in the pelagic species groups defined below for the longline and non-longline fisheries for each year. The PMUS in each group included:

Tunas: Albacore, Bigeye tuna, Bluefin tuna, Kawakawa, Skipjack tuna,

Unclassified tuna, Yellowfin tuna

Billfishes: Blue marlin, Black marlin, Sailfish, Spearfish, Striped marlin,

Swordfish, Unclassified billfish

Other PMUS: Mahimahi, Moonfish, Oilfish, Pomfret, Wahoo

Sharks: Blue shark, Mako shark, Thresher shark, Oceanic white-tip shark Non-PMUS: Barracuda, Beltfish, Flying fish, Frigate mackeral, Stingray, Sunfish,

Hammerhead shark, Tiger shark, Unclassified sharks

		Hawaii pelagic landings (1000 pounds)								
*7	T	D'HC I	Other	GL I	DMUG	7 7				
Year	Tunas	Billfish	PMUS	Sharks	non-PMUS	Total				
2002	16,689	2,386	3,683	270	33	23,061				
2003	15,381	3,375	4,242	305	27	23,330				
2004	16,152	3,046	5,109	273	42	24,622				
2005	17,262	6,367	4,645	311	46	28,631				
2006	15,696	5,559	4,589	285	49	26,178				
2007	19,058	5,689	4,814	396	23	29,980				
2008	19,306	7,136	4,892	390	36	31,760				
2009	15,257	6,059	5,226	332	20	26,894				
2010	17,450	5,363	5,343	244	33	28,433				
2011	20,235	6,234	4,936	190	51	31,646				
2012	21,104	5,109	5,682	181	26	32,102				
Average	17,599.1	5,120.3	4,832.8	288.8	35.1	27,876.1				
SD	2,033.7	1,521.1	547.1	69.5	10.7	3,327.9				

Hawaii

The properties of the properti

Figure 82. Hawaii total commercial pelagic landings by gear type 2002-2012

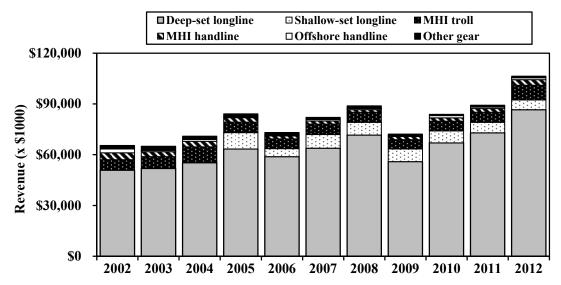
2004

<u>Interpretation:</u> Hawaii commercial pelagic landings were dominated by deep-set longline fishery. Total landings increased to a record level largely due to higher landings by this fishery and higher landings by the shallow-set longline fishery. MHI troll was typically the third largest fishery, but became the second largest fishery in 2012. Landings by the MHI handline and offshore fisheries were the next two largest fisheries in Hawaii. Landings by the offshore handline and other gear accounted for 1 million pounds in 2012.

2007

2008

2009

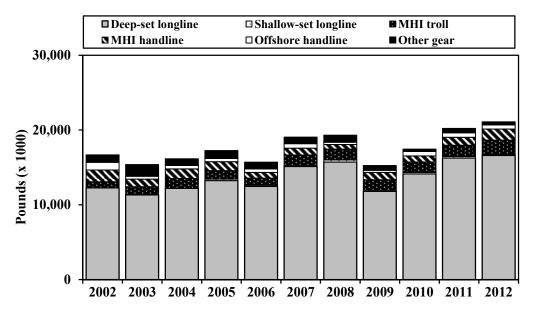

2005 2006

<u>Source and calculations:</u> Pelagic landings were calculated from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch and Marine Dealer data. The landing estimates were calculated by adding the landings values of all species of each fishery. The total column includes the five major pelagic fisheries and contributions from the other gear category. The other gear category includes landings from the aku boat fishery to maintain confidentiality standard of the fishery statistics.

	Hawaii pelagic total landings (1000 pounds)									
	Deep-set	Shallow-set		MHI	Offshore	Other				
Year	longline	longline	MHI troll	handline	handline	gear	Total			
2002	16,868	0	2,387	1,693	1,058	1055	23,061			
2003	17,509	0	2,693	1,089	402	1637	23,330			
2004	18,119	285	3,348	1,407	470	993	24,622			
2005	19,452	3,739	2,606	1,288	424	1122	28,631			
2006	19,008	2,328	2,590	818	502	932	26,178			
2007	20,967	3,644	2,835	982	598	954	29,980			
2008	22,456	4,301	2,971	701	326	1005	31,760			
2009	18,071	3,833	2,958	1,067	298	667	26,894			
2010	20,075	3,614	2,855	933	614	342	28,433			
2011	22,796	3,500	2,966	1,129	610	645	31,646			
2012	22,975	2,814	3,690	1,602	562	459	32,102			
Average	19,845.1	2,550.7	2,899.9	1,155.4	533.1	891.9	27,876.1			
SD	2,189.4	1,661.7	365.0	313.4	206.2	355.6	3,327.9			

3-197 *Hawaii*

Figure 83. Total commercial pelagic ex-vessel revenue by gear type 2002-2012



Interpretation: Ex-vessel revenue from Hawaii's pelagic fisheries has been trending upward reaching a record \$106 million in 2012, up 19% from the previous year. The highest grossing fishery in Hawaii was the deep-set longline, which accounted for 81% of the total revenue, or \$86.5 million, in 2012. The next three largest revenue generating fisheries were the MHI troll, shallow-set longline, and MHI handline fisheries. MHI troll revenue decreased gradually from its peak of \$8.9 million in 2004, but increased in 2012. Shallow-set longline revenue increased dramatically after it reopened in 2004 but decreased gradually to \$5.8 million in 2012. MHI handline revenue has been increasing from its low of \$1.5 million in 2008 to \$3.4 million in 2012. The offshore handline fishery and other gear category (which also includes aku boat revenue) generated \$2.1 million in 2012.

<u>Source and Calculations:</u> The HDAR Commercial Marine Dealer data was used in conjunction with the NOAA Fisheries logbook and the HDAR Fish Report data to calculated ex-vessel revenue. Ex-vessel revenue values were obtained by adding the revenue for all pelagic species of each fishery for each year. Ex-vessel revenue was then adjusted for inflation using the Honolulu Consumer Price Index (CPI).

	Hawaii pelagic total revenue (\$1000)									
Year	Deep-set longline	Shallow-set longline	MHI troll	MHI handline	Offshore handline	Other gear	Total	Honolulu CPI		
2002	\$50,849	\$0	\$6,224	\$4,027	\$2,278	\$2,098	\$65,476	180.3		
2003	\$51,837	\$0	\$7,044	\$2,855	\$776	\$2,492	\$65,004	184.5		
2004	\$55,264	\$392	\$8,907	\$3,286	\$1,114	\$1,918	\$70,880	190.6		
2005	\$63,366	\$9,634	\$6,195	\$2,673	\$544	\$1,661	\$84,073	197.8		
2006	\$58,805	\$4,749	\$5,788	\$1,619	\$608	\$1,529	\$73,098	209.4		
2007	\$63,836	\$8,035	\$6,155	\$1,789	\$910	\$1,338	\$82,064	219.5		
2008	\$71,592	\$7,478	\$5,947	\$1,542	\$623	\$1,651	\$88,834	228.9		
2009	\$55,969	\$7,379	\$5,456	\$1,898	\$426	\$978	\$72,108	230.0		
2010	\$66,946	\$7,062	\$5,746	\$2,024	\$1,306	\$742	\$83,828	234.9		
2011	\$72,871	\$6,234	\$5,906	\$2,184	\$854	\$1,112	\$89,160	243.6		
2012	\$86,520	\$5,814	\$8,594	\$3,361	\$1,094	\$979	\$106,362	249.5		
Average	\$63,441.3	\$5,161.4	\$6,542.0	\$2,478.0	\$957.7	\$1,499.9	\$80,080.4			
SD	\$10,667.0	\$3,463.1	\$1,164.6	\$820.2	\$513.9	\$534.8	\$12,333.8			

Figure 84. Hawaii commercial tuna landings by gear type, 2002-2012

<u>Interpretation:</u> The deep-set longline fishery was the largest single contributor to the tuna landings. It accounted for 78% of the tuna landings during 2002-2012. The MHI troll fishery was the second largest fishery, followed by the MHI handline and offshore handline fisheries. Tuna landings by other gear also included the aku boat fishery, which was responsible for a large part of the decline in this category.

<u>Source and calculations:</u> Tuna landings by gear types were summarized for the longline, MHI troll, MHI handline, offshore handline, aku boat fisheries, and other gear. The tuna landing statistics for the longline fishery were derived from NOAA Fisheries longline logbook and HDAR Commercial Marine Dealer data while landing estimates for the MHI troll, MHI handline, offshore handline, fisheries and other gear category originate from HDAR Commercial Fish Catch and Marine Dealer data.

	Hawaii tuna landings by gear type (1000 pounds)									
'	Deep-set	Shallow-set		MHI	Offshore	Other				
Year	longline	longline	MHI troll	handline	handline	gear	Total			
2002	12,265	0	804	1,598	1,010	1,012	16,689			
2003	11,329	0	1,088	1,023	382	1,559	15,381			
2004	12,204	2	1,316	1,286	446	898	16,152			
2005	13,243	209	1,116	1,204	413	1,077	17,262			
2006	12,454	147	979	749	485	882	15,696			
2007	15,130	148	1,382	930	579	889	19,058			
2008	15,723	270	1,462	607	311	933	19,306			
2009	11,794	156	1,417	970	286	634	15,257			
2010	14,140	200	1,381	818	597	314	17,450			
2011	16,250	209	1,509	1,061	602	604	20,235			
2012	16,590	131	1,926	1,496	548	413	21,104			
Average	13,738.4	133.8	1,307.3	1,067.5	514.5	837.7	17,599.1			
SD	1,910.0	94.0	302.7	306.2	198.1	342.9	2,033.7			

3-199 *Hawaii*

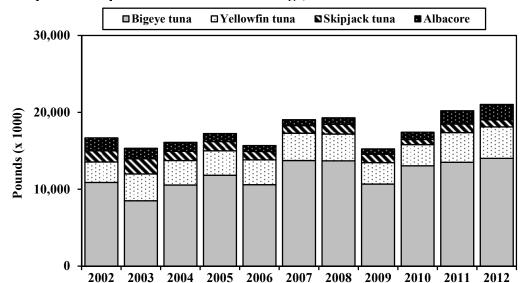
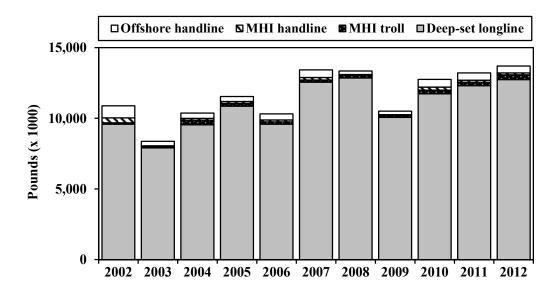


Figure 85. Species composition of the tuna landings, 2002-2012

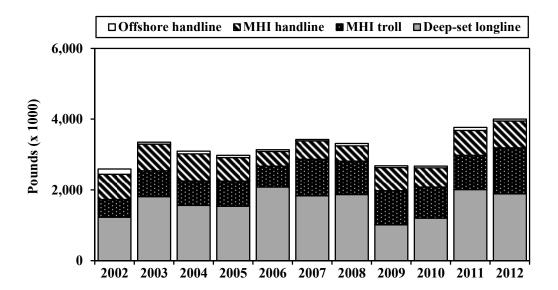

<u>Interpretation:</u> Bigeye tuna was the largest component of the tuna landings and reached a record level in 2012. Yellowfin tuna was the second largest component of the tuna landings and also reached a record amount. Skipjack tuna landings decreased over time and were at its lowest levels in 2010. Albacore landings rose from a low of 670,000 pounds in 2009 to a record 2 million pounds in 2012.

Source and Calculations: Tuna landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch, and Marine Dealer data and was calculated for each gear type. Landings by the longline were derived from the logbook and HDAR Dealer data while the MHI troll, MHI handline, offshore handline, aku boat fisheries and other gear originate from the HDAR Commercial Fish Catch and Dealer data sets. Tuna landings were composed of albacore, bigeye tuna, bluefin tuna, skipjack tuna, yellowfin tuna and other tunas.

;	Hawaii tuna landings (1000 pounds)								
Year	Bigeye tuna	Yellowfin tuna	Skipjack tuna	Albacore	Bluefin tuna	Other tunas	Total		
2002	10,894	2,661	1,445	1,670	2	17	16,689		
2003	8,507	3,481	1,991	1,356	0	46	15,381		
2004	10,563	3,171	1,191	1,162	1	64	16,152		
2005	11,816	3,186	1,193	1,038	1	28	17,262		
2006	10,606	3,211	1,090	769	0	20	15,696		
2007	13,729	3,541	1,015	758	0	15	19,058		
2008	13,689	3,479	1,281	843	0	14	19,306		
2009	10,683	2,788	1,099	667	0	20	15,257		
2010	13,052	2,747	662	963	0	26	17,450		
2011	13,496	3,877	1,105	1,734	0	23	20,235		
2012	14,022	4,098	907	2,009	1	67	21,104		
Average	11,914.3	3,294.5	1,179.9	1,179.0	0.5	30.9	17,599.1		
SD	1,799.9	458.9	336.0	453.5	0.7	19.2	2,033.7		

3-200 *Hawaii*

Figure 86. Hawaii bigeye tuna landings by gear type, 2002-2012

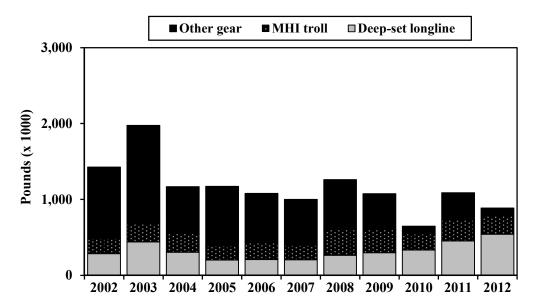

<u>Interpretation:</u> Annual bigeye tuna landings increased gradually reaching a record of 14 million pounds in 2012. The deep-set longline fishery is the dominate gear type for bigeye tuna. It accounted for 91% of the total bigeye tuna landings. Landings by the shallow-set longline, MHI troll, MHI, handline and offshore handline varied considerably over the 11-year period but were far below that of the deep-set longline fishery.

Source and Calculations: Bigeye tuna landings statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for landings of bigeye tuna included the longline, MHI troll, MHI handline, and offshore handline fisheries and the other gear category.

	Hawaii bigeye tuna landings (1000 pounds)									
,	Deep-set	Shallow-set		MHI	Offshore	Other				
Year	longline	longline	MHI troll	handline	handline	gear	Total			
2002	9,601	0	86	353	850	4	10,894			
2003	7,911	0	82	75	316	123	8,507			
2004	9,554	2	328	125	370	184	10,563			
2005	10,873	160	188	143	345	107	11,816			
2006	9,597	126	154	135	431	163	10,606			
2007	12,567	115	140	188	535	184	13,729			
2008	12,858	167	166	86	245	167	13,689			
2009	10,067	96	130	70	239	81	10,683			
2010	11,736	143	261	212	542	158	13,052			
2011	12,315	106	243	140	515	177	13,496			
2012	12,741	75	341	131	491	243	14,022			
Average	10,892.7	90.0	192.6	150.7	443.5	144.6	11,914.3			
SD	1,659.2	63.3	89.5	80.0	174.2	63.7	1,799.9			

3-201 *Hawaii*

Figure 87. Hawaii yellowfin tuna landings by gear type, 2002-2012


Interpretation: Yellowfin tuna landings rose gradually peaking at 4.1 million pounds in 2012. There were three gear types that contributed to majority of the yellowfin tuna landings. The deep-set longline fishery was the largest fishery landing yellowfin tuna and accounted for 50% of the total landings. The MHI troll and MHI handline fisheries represented 26% and 19% of the yellowfin tuna landings, respectively. The MHI troll fishery was on an increasing trend while there was no pattern for the deep-set longline and MHI handline fisheries.

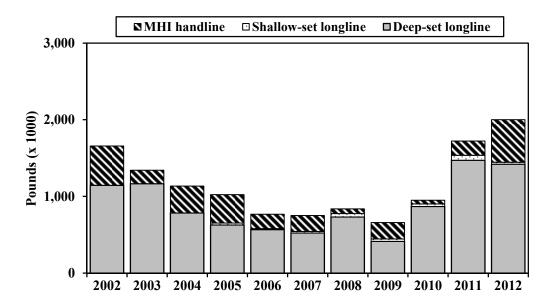
Source and calculations: Yellowfin tuna landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for landings of yellowfin tuna included the longline, MHI troll, MHI handline, offshore handline fisheries and other gear that included landings from the aku boat fishery.

		Hawaii yellowfin tuna landings (1000 pounds)								
	Deep-set	Shallow-set		MHI	Offshore	Other				
Year	longline	longline	MHI troll	handline	handline	gear	Total			
2002	1,231	0	500	711	151	68	2,661			
2003	1,811	0	732	752	53	133	3,481			
2004	1,561	0	690	770	75	75	3,171			
2005	1,541	22	708	665	67	183	3,186			
2006	2,082	10	590	414	52	63	3,211			
2007	1,835	13	1,032	517	42	102	3,541			
2008	1,869	56	941	437	64	112	3,479			
2009	1,014	28	964	656	46	80	2,788			
2010	1,202	23	881	542	49	50	2,747			
2011	2,009	38	970	704	84	72	3,877			
2012	1,886	29	1,304	759	53	67	4,098			
Average	1,640.1	19.9	846.5	629.7	66.9	91.4	3,294.5			
SD	357.6	17.7	229.2	130.2	30.7	38.9	458.9			

3-202 *Hawaii*

Figure 88. Hawaii skipjack tuna landings by gear type, 2002-2012

<u>Interpretation</u>: Skipjack tuna landings peaked at almost 2 million pounds in 2003 and declined slowly thereafter with a low of 662,000 pounds in 2010. The decline of skipjack tuna landings is a result of the attrition in the aku boat fishery, which was combined with other gear to satisfy confidentiality standards. This decline in skipjack tuna landings was not apparent or as apparent in other fisheries. Increasing skipjack tuna landings by the deep-set longline fishery has made this the largest fishery for this species from 2010. Landings by the MHI troll fishery were stable during the 11-year period.


<u>Source and calculations:</u> Skipjack tuna landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for landings of skipjack tuna included the deep-set longline, shallow-set longline, MHI troll, MHI handline fisheries, and other gear types that contributed a small amount of

skipjack tuna and included landings by the aku boat fishery.

		Hawaii skip	jack tuna la	ndings (100	0 pounds)	
	Deep-set	Shallow-set		MHI	Other	
Year	longline	longline	MHI troll	handline	gear	Total
2002	284	0	203	20	938	1,445
2003	440	0	237	16	1,298	1,991
2004	303	0	246	23	619	1,191
2005	200	1	191	21	780	1,193
2006	206	0	221	11	652	1,090
2007	204	1	192	15	603	1,015
2008	264	2	344	20	651	1,281
2009	298	1	303	24	473	1,099
2010	332	1	211	14	104	662
2011	453	1	279	17	355	1,105
2012	541	1	240	20	105	907
Average	320.5	0.7	242.5	18.3	598.0	1,179.9
SD	112.8	0.6	48.5	4.0	347.4	336.0

3-203 *Hawaii*

Figure 89. Hawaii albacore landings by gear type, 2002-2012

Interpretation: Albacore landings decreased slowly from 1.6 million pounds in 2002 to 667,000 pounds in 2009, then rose by more than 3-fold to 2 million pounds in 2012. The deep-set longline fishery accounted for 75% of the albacore landings. The MHI handline fishery was the second largest fishery for albacore and represented 22% of the total. Albacore landings by this fishery varied considerably ranging from 48,000 pounds in 2010 to a record 554,000 pounds in 2012. Albacore landings by the shallow-set longline and MHI troll fisheries were small. On rare occasions, the MHI troll fishery has encountered short "runs" of albacore but those landings were negligible in comparison to the deep-set longline and MHI handline fisheries.

Source and calculations: Albacore landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch, and Marine Dealer Data. The gear types

summarized for landings of albacore included the deep-set longline, shallowset longline, MHI troll, and MHI handline fisheries.

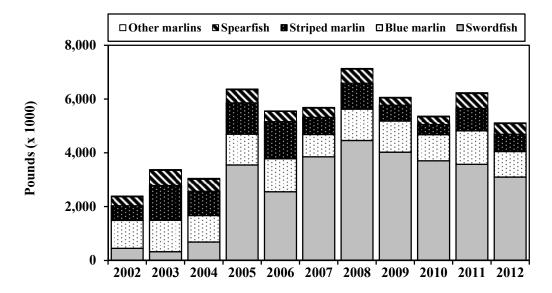
		Hawaii albacore landings (1000 pounds)						
·	Deep-set	Shallow-set		MHI	Other			
Year	longline	longline	MHI troll	handline	gear	Total		
2002	1,147	0	9	511	3	1,670		
2003	1,167	0	10	176	3	1,356		
2004	785	0	7	351	19	1,162		
2005	628	26	14	370	0	1,038		
2006	569	11	2	187	0	769		
2007	524	19	7	208	0	758		
2008	732	45	3	62	1	843		
2009	415	31	7	214	0	667		
2010	870	33	4	48	8	963		
2011	1,473	64	8	186	3	1,734		
2012	1,421	26	7	554	1	2,009		
Average	884.6	23.2	7.1	260.6	3.5	1,179.0		
SD	365.0	20.2	3.4	166.3	5.7	453.5		

3-204 *Hawaii*

8,000 - 6,000 - 2,000 - 2,000 - 2,000 - 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 90. Hawaii commercial billfish landings by gear type, 2002-2012

Interpretation: The largest fisheries for billfish were the deep-set and shallow-set longline fisheries. The most significant event that led to a large increase in billfish landings was the reopening of the shallow-set longline fishery in 2004. Billfish landings, composed predominantly of swordfish, by the shallow-set longline fishery increased dramatically the following year. Billfish landings by the deep-set longline fishery were mostly marlins. The MHI troll fishery landed a much lower volume of billfish that was composed primarily of blue marlin.

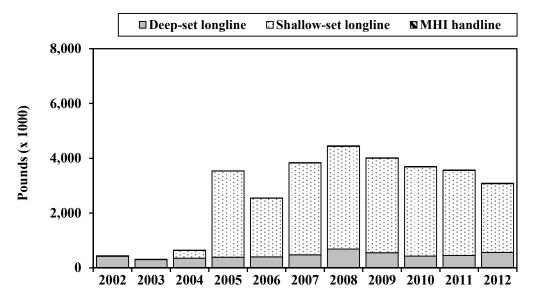

Source and calculations: Billfish landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch, and Marine Dealer data and was calculated for each gear type. Landings by the longline were derived from the logbook and HDAR Dealer data while the MHI troll, MHI handline, offshore handline, aku boat fisheries and other gear originate from the HDAR Fish Catch and Dealer data sets. The billfish group was composed of swordfish,

blue marlin, striped marlin, spearfish, sailfish, black marlin, and other marlins.

	Hawaii billfish landings (1000 lbs)								
	Deep-set	Shallow-	МНІ	MHI	Offshore	Other			
Year	longline	set longline	troll	handline	handline	gear	Total		
2002	1,820	0	535	26	3	2	2,386		
2003	2,864	0	485	18	2	6	3,375		
2004	2,249	280	451	23	1	42	3,046		
2005	2,506	3,365	476	16	1	3	6,367		
2006	2,987	2,158	397	12	3	2	5,559		
2007	1,948	3,409	315	14	1	2	5,689		
2008	2,776	3,892	445	17	0	6	7,136		
2009	2,087	3,552	404	14	0	2	6,059		
2010	1,710	3,305	335	11	1	1	5,363		
2011	2,549	3,176	486	15	1	7	6,234		
2012	2,167	2,564	346	22	1	9	5,109		
Average	2,333.0	2,336.5	425.0	17.1	1.3	7.5	5,120.3		
SD	433.3	1,515.9	71.2	4.8	1.0	11.8	1,521.1		

3-205 *Hawaii*

Figure 91. Species composition of the billfish landings, 2002-2012


<u>Interpretation</u>: The billfish landings consisted mostly of swordfish, blue marlin, and striped marlin with smaller catches of spearfish and other marlins. Swordfish landings dominated billfish landings from 2005 with the reopening of the shallow-set longline fishery in 2004. Blue marlin and striped marlin were the next two largest components of the billfish landings followed by spearfish. Small catches of other marlins were composed of sailfish and black marlin.

Source and calculations: The billfish landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch, and Marine Dealer data and was calculated for each species. The gear types summarized for each species include landings from the longline, MHI troll, MHI handline, offshore handline, aku boat fisheries, and other gear category.

		Hawaii	billfish lan	dings (1000	lbs)	
		Blue	Striped		Other	
Year	Swordfish	marlin	marlin	Spearfish	marlins	Total
2002	446	1,035	553	324	28	2,386
2003	316	1,172	1,298	559	30	3,375
2004	682	986	905	441	32	3,046
2005	3,543	1,147	1,171	481	25	6,367
2006	2,552	1,223	1,382	375	27	5,559
2007	3,846	834	638	339	32	5,689
2008	4,455	1,165	969	518	29	7,136
2009	4,019	1,159	591	261	29	6,059
2010	3,700	975	376	280	32	5,363
2011	3,569	1,247	835	543	40	6,234
2012	3,094	951	648	386	30	5,109
Average	2,747.5	1,081.3	851.5	409.7	30.4	5,120.3
SD	1,535.8	131.8	327.1	105.3	3.9	1,521.1

3-206 *Hawaii*

Figure 92. Hawaii swordfish landings, 2002-2012

Interpretation: Swordfish landings were low in 2002 and 2003 due to a prohibition on targeting swordfish by the longline fishery from high sea turtle interaction rates with shallow-set longline gear. Swordfish landings increased marginally in 2004 with the shallow-set longline fishery reopening under several new regulations intended to reduce sea turtle interactions. Swordfish landings then rose rapidly, peaking at 4.5 million pounds in 2008 then declined gradually to 3.1 million pounds in 2012. The shallow-set longline fishery accounted for 83% of the total swordfish landings. Although deep-set longline landings of swordfish were higher in recent years, it only represented 17% of the landings. Swordfish landings by the MHI handline fishery were negligible.

Source and calculations: Swordfish landing statistics were derived from NOAA Fisheries

longline logbook, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for landings of swordfish included the deep-set longline, shallow-set longline, and MHI troll fisheries and other gear.

!	Swordfish landings (1000 lbs)						
Year	Deep-set longline	Shallow- set longline	MHI handline	Other gear	Total		
2002	426	0	19	1	446		
2003	301	0	12	3	316		
2004	354	279	16	33	682		
2005	388	3,144	10	1	3,543		
2006	399	2,144	8	1	2,552		
2007	476	3,357	12	1	3,846		
2008	689	3,749	14	3	4,455		
2009	554	3,451	12	2	4,019		
2010	432	3,258	9	1	3,700		
2011	456	3,100	11	2	3,569		
2012	566	2,508	18	2	3,094		
Average	458.3	2,271.8	12.8	4.5	2,747.5		
SD	109.6	1,467.5	3.6	9.5	1,535.8		

3-207 *Hawaii*

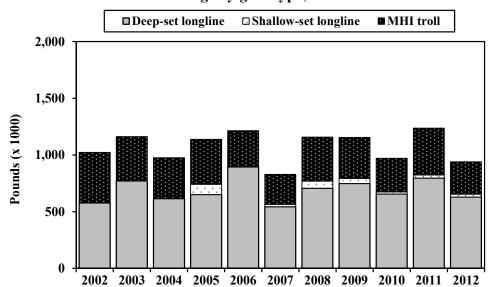


Figure 93. Hawaii blue marlin landings by gear type, 2002-2012

<u>Interpretation:</u> Blue marlin landings were relatively stable during 2002-2012, ranging from 834,000 pounds in 2007 to 1.2 million pounds in 2006 and 2011. The two fisheries that accounted for majority of blue marlin landings were the deep-set longline and MHI troll fisheries which represented 64% and 33% of the marlin landings, respectively. Blue marlin landings by the shallow-set longline and handline fisheries were relatively small in comparison.

<u>Source and calculations:</u> Blue marlin landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for landings of blue marlin included the deep-set longline, shallow-set longline,

MHI troll, MHI handline, offshore handline fisheries and other gear category.

Blue marlin landings by the longline fishery are nominal estimates that do not account for misidentification problems. The results of the marlin misidentification problem showed that striped marlin in longline logbooks were misidentified as blue marlin in a Pelagic Fisheries Research Program (PFRP) project. Thus, the general pattern was blue marlin were

	Blue marlin landings (1000 lbs)								
Year	Deep-set longline	Shallow- set longline	MHI troll	MHI handline	Offshore handline	Other gear	Total		
2002	578	0	446	6	3	2	1,035		
2003	772	0	390	5	1	4	1,172		
2004	616	0	360	5	0	5	986		
2005	652	90	396	6	1	2	1,147		
2006	895	0	320	4	3	1	1,223		
2007	545	21	263	2	1	2	834		
2008	708	62	388	3	0	4	1,165		
2009	749	45	362	2	0	1	1,159		
2010	657	18	296	2	1	1	975		
2011	797	27	414	4	1	4	1,247		
2012	630	26	285	4	1	5	951		
Average	690.8	26.3	356.4	3.9	1.1	2.8	1,081.3		
SD	104.5	29.2	58.2	1.5	1.0	1.6	131.8		

overreported in logbooks. Therefore, nominal blue marlin landing estimates for the longline fishery are probably inflated.

3-208 *Hawaii*

2,000

1,500

1,000

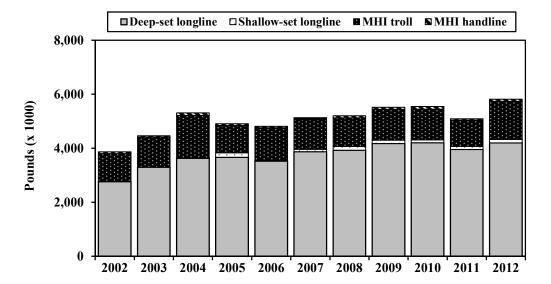
500

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 94. Hawaii striped marlin landings by gear type, 2002-2012

<u>Interpretation:</u> Striped marlin landings varied over the 11-year period, ranging from a peak of 1.4 million pounds in 2006 to a low of 376,000 pounds in 2010. Striped marlin was landed primarily by the deep-set longline fishery. This fishery was responsible for over 90% of the striped marlin landings. The shallow-set longline fishery was the second largest producer of striped marlin followed by the MHI troll fishery. Most of the fisheries landing striped marlin appeared to be on a downward trend.

Source and Calculations: Striped marlin landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for catches of striped marlin included the deep-set longline, shallow-set longline, MHI troll, MHI handline, offshore handline fisheries and other gear category.


Striped marlin landings by the longline fishery are nominal estimates which do not account for

misidentification problems. The results of the marlin misidentification problem showed that striped marlin in longline logbooks were misidentified as blue marlin in a Pelagic Fisheries Research Program (PFRP) project. Thus, the nominal striped marlin landing estimates for the longline fishery are negatively biased. Thus, the longline landings presented in this report are a conservative estimate.

	Striped marlin landings (1000 lbs)								
Year	Deep-set longline	Shallow- set longline	MHI troll	MHI handline	Offshore handline	Other gear	Total		
2002	487	0	65	1	0	0	553		
2003	1,239	0	57	1	1	0	1,298		
2004	847	1	52	2	1	2	905		
2005	1,002	125	44	0	0	0	1,171		
2006	1,320	14	47	0	0	1	1,382		
2007	581	29	28	0	0	0	638		
2008	866	76	27	0	0	0	969		
2009	516	53	22	0	0	0	591		
2010	338	26	12	0	0	0	376		
2011	756	43	35	0	0	1	835		
2012	596	25	25	0	0	2	648		
Average	777.1	35.6	37.6	0.4	0.2	0.5	851.5		
SD	314.4	38.0	16.5	0.7	0.4	0.8	327.1		

3-209 *Hawaii*

Figure 95. Hawaii commercial landings of other PMUS by gear type, 2002-2012

<u>Interpretation:</u> The landings of other PMUS increased gradually from 4 million pounds in to 5.9 million pounds in 2012. Most of the growth was attributed primarily to increased landings by the deep-set longline fishery. The MHI troll fishery was second highest contributor to other PMUS landings and was reasonably stable. Other PMUS landings by the MHI handline and offshore handline fisheries were much lower than the longline and MHI troll fisheries.

<u>Source and calculations:</u> Other pelagic PMUS landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch, and Marine Dealer data and was calculated for each gear type. Landings by the longline fishery were derived from the logbook and HDAR Dealer data while the MHI troll, MHI handline, offshore handline, and other gear originate from the HDAR Fish Catch and Dealer data sets. The other PMUS category includes mahimahi, moonfish, oilfish, ono, pomfret, and PMUS sharks.

		Landings	of other	PMUS by ge	ar type (100	0 lbs)	
	Deep-set	Shallow-	MHI	MHI	Offshore	Other	
Year	longline	set longline	troll	handline	handline	gear	Total
2002	2,758	0	1,044	65	45	41	3,953
2003	3,295	0	1,118	47	18	69	4,547
2004	3,627	3	1,579	97	23	53	5,382
2005	3,663	163	1,012	67	10	41	4,956
2006	3,520	23	1,212	57	14	48	4,874
2007	3,870	87	1,136	37	18	62	5,210
2008	3,924	139	1,061	77	15	66	5,282
2009	4,173	125	1,135	82	12	31	5,558
2010	4,199	109	1,135	102	16	26	5,587
2011	3,952	115	967	52	7	33	5,126
2012	4,198	119	1,413	83	13	37	5,863
Average	3,743.5	80.3	1,164.7	69.6	17.4	46.1	5,121.6
SD	439.7	61.7	181.1	20.6	10.1	14.7	533.2

3-210 *Hawaii*

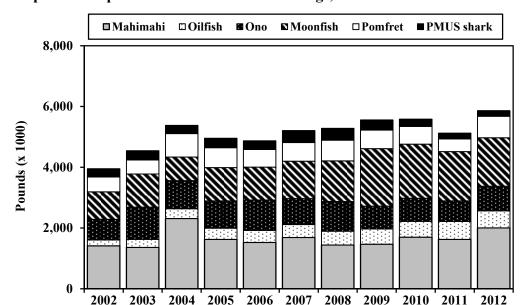


Figure 96. Species composition of other PMUS landings, 2002-2012

Interpretation: Mahimahi, ono, and moonfish were the three largest components of other PMUS landings. Landings of mahimahi and moonfish were above their respective long-term averages in 2012. Ono landings fluctuated over the past 11 years and were below its long-term average from 2008. Though pomfret and oilfish landings were lower than those species mentioned above, the landings of these two species have experienced notable rates in increase from 2002 through 2012. Shark landings gradually decreased after its peak in 2007.

Source and calculations: The other pelagic PMUS landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Catch, and Marine Dealer data and was calculated for each species. The gear types summarized for each species include landings from the longline, MHI troll, MHI handline, offshore handline, and other gear category.

		Landing	s of other	PMUS by sp	ecies (100	lbs)	
						PMUS	
Year	Mahimahi	Oilfish	Ono	Moonfish	Pomfret	shark	Total
2002	1,418	188	686	902	489	270	3,953
2003	1,365	264	1,058	1,094	461	305	4,547
2004	2,318	321	919	780	771	273	5,382
2005	1,630	365	897	1,096	657	311	4,956
2006	1,531	391	1,002	1,080	585	285	4,874
2007	1,692	425	857	1,225	615	396	5,210
2008	1,443	455	975	1,338	681	390	5,282
2009	1,473	498	748	1,897	610	332	5,558
2010	1,703	521	758	1,781	580	244	5,587
2011	1,628	589	675	1,622	422	190	5,126
2012	2,007	563	809	1,593	710	181	5,863
Average	1,655.3	416.4	853.1	1,309.8	598.3	288.8	5,121.6
SD	283.2	125.8	129.2	366.7	107.4	69.5	533.2

3-211 *Hawaii*

3,000

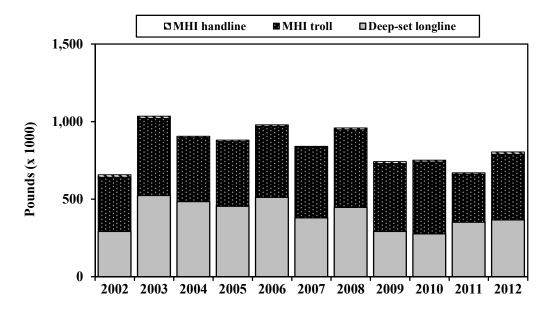
2MHI handline MHI troll Shallow-set longline Deep-set longline

1,000

1,000

Figure 97. Hawaii mahimahi landings by gear type, 2002-2012

<u>Interpretation:</u> Mahimahi landings peaked at 2.3 million pounds in 2004. Landings were relatively stable through 2001 and rose to 2 million pounds in 2012. The deep-set longline and MHI troll fisheries accounted for 94% of mahimahi landings. The shallow-set longline, MHI handline, offshore handline, and other gear type landings of mahimahi were very low.


2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

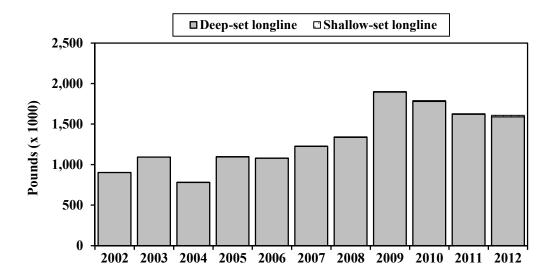
Source and calculations: Mahimahi landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Report and Marine Dealer data. The gear types summarized for mahimahi landings included the deep-set and shallow-set longline, MHI troll, MHI handline, offshore handline fisheries and the other gear category.

		N	l ahimahi	landings (1	.000 lbs)		
Year	Deep-set longline	Shallow- set longline	MHI troll	MHI handline	Offshore handline	Other gear	Total
2002	644	0	694	48	26	6	1,418
2003	688	0	619	31	14	13	1,365
2004	1,047	1	1,166	72	14	18	2,318
2005	881	91	595	47	8	8	1,630
2006	714	6	754	38	8	11	1,531
2007	951	26	681	21	6	7	1,692
2008	765	62	560	32	9	15	1,443
2009	686	40	696	35	7	9	1,473
2010	934	31	671	41	14	12	1,703
2011	860	60	656	30	6	16	1,628
2012	889	46	988	53	12	19	2,007
Average	823.5	33.0	734.5	40.7	11.3	12.2	1,655.3
SD	131.2	30.2	181.7	13.9	5.8	4.4	283.2

3-212 *Hawaii*

Figure 98. Hawaii wahoo (ono) landings by gear type, 2002-2012

<u>Interpretation:</u> Ono landings peaked above 1 million pounds in 2003 and 2006. Ono landings were below their long-term average, but stable from 2009 through 2012. The deep-set longline and troll fisheries were the main contributors to ono landings. The deep-set longline fishery had higher landings in the early part of the time series and was replaced by the MHI troll fishery in the recent years.

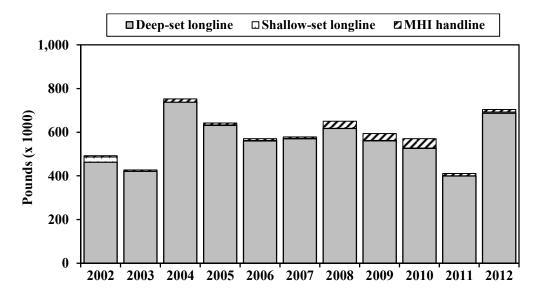

<u>Source and calculations:</u> Ono landing statistics were derived from NOAA Fisheries longline logbook, HDAR Commercial Fish Report and Marine Dealer data. The gear types summarized for landings of ono included the deep-set and shallow-set longline, MHI troll, and MHI handline fisheries. The total column also contains small ono landings by the offshore handline fishery

and other gear category.

	Ono landings (1000 lbs)								
Year	Deep-set longline	Shallow- set longline	MHI troll	MHI handline	Offshore handline	Other gear	Total		
2002	292	0	350	15	3	26	686		
2003	524	0	498	13	4	19	1,058		
2004	485	0	412	8	3	11	919		
2005	455	4	416	10	1	11	897		
2006	512	0	457	10	2	21	1,002		
2007	380	3	454	7	1	12	857		
2008	448	5	500	11	1	10	975		
2009	292	2	438	12	1	3	748		
2010	277	3	463	11	1	3	758		
2011	352	1	309	9	1	3	675		
2012	366	1	424	15	1	2	809		
Average	398.5	1.7	429.2	11.0	1.7	11.0	853.1		
SD	91.0	1.8	57.9	2.6	1.1	8.1	129.2		

3-213 *Hawaii*

Figure 99. Hawaii moonfish landings, 2002-2012

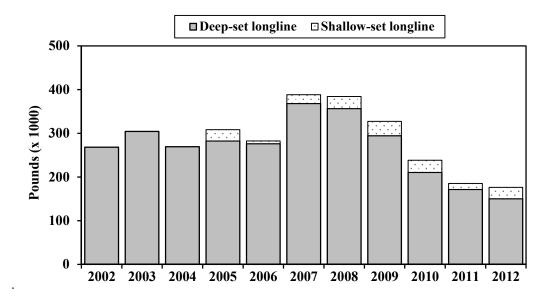

<u>Interpretation</u>: Moonfish are unique among the PMUS because they are caught exclusively by the longline fishery with the deep-set sector accounting for almost all of landings. Although moonfish landings by the shallow-set longline fishery were increasing, they were still well below the level landed by the deep-set sector. Landings rose from 780,000 pounds in 2004, peaked at 1.9 million pounds in 2009 then declined to 1.6 million pounds in 2011 and 2012.

<u>Source and calculations:</u> Moonfish landing statistics were derived from NOAA Fisheries longline logbook and HDAR Commercial Marine Dealer data. There were no landings of moonfish in the HDAR Commercial Fish Report data by the MHI troll, MHI handline, and offshore handline fisheries.

	Moonfis	h landings (1	000 lbs)
	Deep-set	Shallow-set	
Year	longline	longline	Total
2002	902	0	902
2003	1,094	0	1,094
2004	779	1	780
2005	1,093	3	1,096
2006	1,078	2	1,080
2007	1,222	3	1,225
2008	1,332	6	1,338
2009	1,891	6	1,897
2010	1,772	9	1,781
2011	1,616	6	1,622
2012	1,574	17	1,591
Average	1,304.8	4.8	1,309.6
SD	363.1	5.0	366.5

3-214 *Hawaii*

Figure 100. Hawaii pomfret landings, 2002-2012


Interpretation: Pomfret landings ranged from 422,000 pounds in 2011 to 771 pounds in 2004. Pomfret landings rose in 2012 by 68% from 2011; the longline fishery was responsible for 93% of the total pomfret landings. The MHI handline, offshore handline, shallow-set longline fisheries and other gear types contributed to the rest of the pomfret landings. There was no trend with respect to total pomfret landings from 2002-2012.

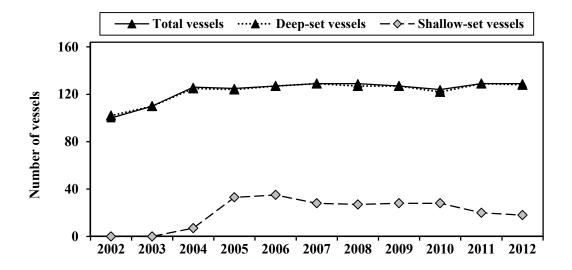
<u>Source and calculations:</u> Pomfret landing statistics were derived from NOAA Fisheries longline logbook and HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for landings of pomfrets included the longline, MHI troll, MHI handline fisheries, and other gear category.

		Pom	fret landin	gs (1000 lb	s)	
Year	Deep-set longline	Shallow- set longline	MHI handline	Offshore handline	Other gear	Total
2002	465	0	1	14	9	489
2003	421	0	3	0	37	461
2004	737	0	14	5	15	771
2005	629	2	9	1	16	657
2006	558	2	8	3	14	585
2007	568	2	6	10	29	615
2008	616	1	31	3	30	681
2009	559	1	32	4	14	610
2010	525	1	43	1	10	580
2011	398	1	11	0	12	422
2012	682	5	11	0	12	710
Average	559.8	1.4	15.4	3.7	18.0	598.3
SD	104.9	1.4	13.7	4.5	9.4	107.4

3-215 *Hawaii*

Figure 101. Hawaii PMUS shark landings, 2002-2012

<u>Interpretation</u>: Sharks were landed almost exclusively by the deep-set longline fishery. Shark landings were relatively stable from 2002 through 2006, then peaked in 2007, and decreased to a low in 2012. The deep-set longline fishery accounted for 94% of the shark landings. Since make and thresher sharks had markets for fillets and fish steaks, they were the species typically landed by the longline fishery. Most of the other shark species were released.

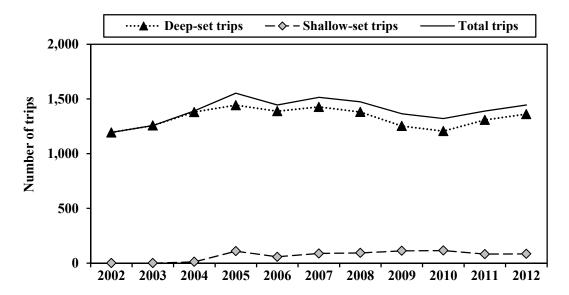

<u>Source and calculations:</u> Shark catch (in number of fish kept) were derived from NOAA Fisheries longline logbook. The HDAR Dealer data included sharks which were typically landed headed and gutted and were raised to an estimated whole weight. The number of sharks was multiplied by the mean whole weight to yield shark landings. For shark species with no the

weight data from HDAR Dealer data, landings were extrapolated by using an average length calculated from the observer data that was converted to weight which was then used to multiply number of fish as a crude method to estimate shark biomass.

_	PMUS shark landings (1000 lbs)									
Year	Deep-set longline	Shallow- set longline	Non- Longline	Total						
2002	268	0	2	270						
2003	304	0	1	305						
2004	269	0	4	273						
2005	282	26	3	311						
2006	276	6	3	285						
2007	368	20	8	396						
2008	356	28	6	390						
2009	294	33	5	332						
2010	210	28	6	244						
2011	171	14	5	190						
2012	150	26	5	181						
Average	268.0	16.5	4.4	288.8						
SD	68.3	12.9	2.0	69.5						

3-216 *Hawaii*

Figure 102. Number of Hawaii-based longline vessels, 2002-2012

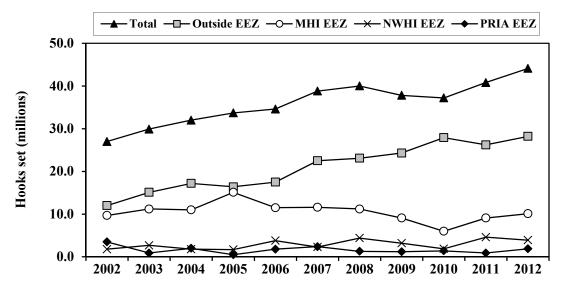

Interpretation: There were 129 active Hawaii-based longline vessels in 2012, the same number of vessels as in the previous year. Vessel activity was lowest in 2002 and 2003 when shallow-set longline fishing was prohibited. The increase in vessel activity in 2003 and 2004 is from California-based vessels migrating back to Hawaii due to the reopening of the shallow-set longline fishery in April 2004 under a new set of regulations intended to reduce the number of sea turtle interactions. The total number and number of deep-set vessels varied little from 2004 through 2012, but the pattern for shallow-set vessel activity was quite different. Only 7 vessels chose to embark on shallow-set trips in 2004, but this number rose dramatically in the following year peaking at 35 vessels in 2006. The number of shallow-set vessels declined slowly to 18 vessels in 2012. Almost all shallow-set longline vessels switch to deep-set longline fishing after the swordfish season

Source and calculations: The number of vessels was compiled from NMFS federal longline logbook data. The vessel summary was based on haul date. The vessel counts were based on whether they went deepset or shallow-set longline fishing. A deep-set trip was defined as one which fishing operations set 15 or more hooks between floats while a shallow-set trip was characterized by sets with less than 15 hooks between floats. Shallow-set effort was prohibited in 2002 and 2003. Almost all vessels that went shallow-set longline fishing switched to deep-set longline fishing at some time of the year.

			Total
Year	Deep-set	Shallow-set	vessels
2002	102	0	100
2003	110	0	110
2004	125	7	126
2005	124	33	125
2006	127	35	127
2007	129	28	129
2008	127	27	129
2009	127	28	127
2010	122	28	124
2011	129	20	129
2012	128	18	129
Average	122.7	20.4	123.2
SD	8.7	12.7	9.4

3-217 *Hawaii*

Figure 103. Number of trips by the Hawaii-based longline fishery, 2002-2012


Interpretation: The Hawaii-based longline fleet made 1,361 trips in 2012. The total number of trips was lowest in 2002 and 2003 during which time only deep-set longline fishing was allowed. Trips increased in 2004 with the return of longline vessels that were in California and peaked in 2005 as shallow-set longline fishing picked up. The number of trips remained about the same thereafter. Deep-set trips made up 95% of the total number of trips during 2002-2012. Shallow-set trips are highest in the early part of each year when swordfish season is at its peak.

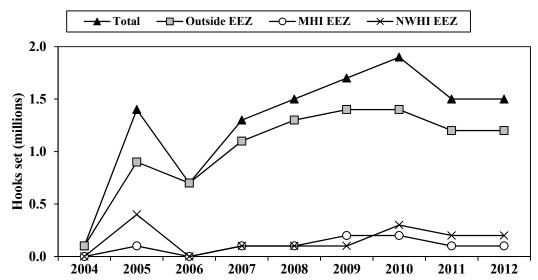
<u>Source and calculations:</u> The number of trips was compiled from NMFS federal longline logbook data. The trip summary was based on haul date. The trip type was separated into deep-set or shallow-set. A deep-set trip was defined as one in which fishing operations set 15 or more hooks between floats while a shallow-set trip was characterized by sets with less than 15 hooks between floats. Shallow-set effort was prohibited in 2002 and 2003.

	Hawaii	longline trip	activity
	Total	Deep-set	Shallow-
Year	trips	trips	set trips
2002	1,194	1,194	0
2003	1,257	1,257	0
2004	1,391	1,380	11
2005	1,552	1,443	109
2006	1,445	1,388	57
2007	1,515	1,427	88
2008	1,474	1,381	93
2009	1,365	1,253	112
2010	1,321	1,206	115
2011	1,390	1,308	82
2012	1,445	1,361	84
Average	1,395.4	1,327.1	68.3
SD	107.8	87.8	44.6

3-218 *Hawaii*

Figure 104. Number of hooks set by the Hawaii-based deep-set longline fishery, 2002-2012

<u>Interpretation:</u> The total number of hooks set by the Hawaii-based deep-set longline fishery increased steadily from 27 million hooks in 2002 to a record 44.1 million hooks in 2012. Much of the increase in effort is due to higher effort outside the EEZ. Hooks set outside the EEZ represented 64% of the total effort in 2012. Hooks set in the MHI EEZ was relatively stable and was close to its long-term average in 2012. Hooks set in the NWHI EEZ and PRIA EEZ was relatively low compared to effort outside the EEZ and MHI EEZ.


Source and calculations: Number of hooks set was compiled from NMFS federal longline logbook data collected from 2004 to 2012. The Hawaii-based longline fishery was separated into deep-set or shallow-set sectors. The set type was based the number of hooks between floats with a deep-set defined as a fishing operation with 15 or more hooks between floats and a shallow-set characterized by having less than 15 hooks between floats. The time series for the shallow-set sector was truncated since this type of longline fishing was prohibited in 2002 and 2003. The

summary of hooks set was based on date of haul and grouped into general areas of operation, i.e., Main Hawaiian Islands EEZ, Northwestern Hawaiian Islands EEZ, Pacific Remote Island Area EEZ, and the Outside of the U.S. EEZs.

		Number of hoo	ks set by a	rea (milions)	
	Outside		NWHI		
Year	EEZ	MHI EEZ	EEZ	PRIA EEZ	Total
2002	12.0	9.7	1.8	3.5	27.0
2003	15.1	11.2	2.7	0.9	29.9
2004	17.2	11.0	1.8	2.0	32.0
2005	16.4	15.1	1.7	0.5	33.7
2006	17.5	11.5	3.8	1.8	34.6
2007	22.5	11.6	2.3	2.4	38.8
2008	23.1	11.2	4.4	1.3	40.0
2009	24.3	9.1	3.2	1.2	37.8
2010	27.9	6.0	1.9	1.4	37.2
2011	26.2	9.1	4.6	0.9	40.8
2012	28.2	10.1	3.9	1.9	44.1
Average	20.95	10.51	2.92	1.62	35.99
SD	5.55	2.23	1.11	0.84	5.09

3-219 *Hawaii*

Figure 105. Number of hooks set by the Hawaii-based shallow-set longline fishery, 2004-2012

Interpretation: The total number of hooks set by the Hawaii-based shallow-set longline fishery was low when it was first reopened in 2004 since fishermen were uncertain how successful their operations would be under the new set of regulations and the timing of the reopening occurring near or just past the peak of a typical swordfish season. Effort increased in 2005 as fishermen adapted to the change in regulations. However, the shallow-set sector effort was curtailed when it reached the loggerhead sea turtle limit in March 2006. The shallow-set fishery was then closed for the rest of the year. The number of hooks set peaked at 1.9 million hooks in 2010, decreased the flowing year, and remained the same in 2012.

Most of the hooks set by the shallow-set longline fishery were outside the EEZ (80%). Much less effort was observed in the NWHI EEZ (12%) and the MHI EEZ (8%). The shallow-set effort in the NWHI EEZ and MHI EEZ usually occur later in the swordfish season when fish migrate closer the Hawaiian Islands.

Source and calculations: Number of hooks set was compiled from NMFS federal longline logbook data collected from 2004 to 2012. The Hawaii-based longline fishery was separated into deep-set or shallow-set sectors. The set type was based the number of hooks between floats with a deep-set defined as a fishing operation with 15 or more hooks between floats and a shallow-set characterized by having less than 15 hooks between floats. The time

	1	Number of hoo	ks set by a	rea (milions)	
	Outside		NWHI		
Year	EEZ	MHI EEZ	EEZ	PRIA EEZ	Total
2004	0.1	0.0	0.0	0.0	0.1
2005	0.9	0.1	0.4	0.0	1.4
2006	0.7	0.0	0.0	0.0	0.7
2007	1.1	0.1	0.1	0.0	1.3
2008	1.3	0.1	0.1	0.0	1.5
2009	1.4	0.2	0.1	0.0	1.7
2010	1.4	0.2	0.3	0.0	1.9
2011	1.2	0.1	0.2	0.0	1.5
2012	1.2	0.1	0.2	0.0	1.5
Average	1.03	0.10	0.16	0.00	1.29
SD	0.42	0.07	0.13	0.00	0.55

3-220 *Hawaii*

series for the shallow-set sector was truncated since this type of longline fishing was prohibited in 2002 and 2003. The summary of hooks set was based on date of haul and grouped into general areas of operation, i.e., Main Hawaiian Islands EEZ, Northwestern Hawaiian Islands EEZ, Pacific Remote Island Area EEZ, and the Outside of the U.S. EEZs.

3-221 *Hawaii*

Table 83. Hawaii-based deep-set longline catch (number of fish) by area, 2002-2012

		Tunas				Billfishes			Ot	ther PMU	S	
	Bigeye	Yellowfin			Blue	Striped		Other		Ono		PMUS
Year	tuna		Albacore	Swordfish	marlin	marlin	Spearfish	marlins	Mahimahi	(wahoo)	Moonfish	Sharks
	awaiian Isla			•								
2002	51,177	2,463	2,706		873	3,449	3,628	133	21,374	1,345	3,373	14,540
2003		10,058	2,593		1,742	12,247	8,118	174	25,255	4,751	3,454	25,683
2004	49,152	8,847	3,031	1,166	1,135	6,665	5,099	273	26,631	3,204	2,707	24,761
2005	52,783	13,717	4,604		1,523	6,738	7,551	214	39,772	5,448	4,228	26,338
2006	32,799	6,731	1,598		1,547	7,479	3,771	110		4,130		17,593
2007	43,850	6,102	1,233		629	2,344	3,127	107	21,435	2,845		16,159
2008	34,778	13,021	1,303		917	3,270	4,773	129	14,596	2,540		12,788
2009	23,800	2,584	490		551	1,753	1,764	56	9,367	1,240		10,297
2010 2011	15,872 26,828	3,131 8,473	1,568 4,077		417 894	669 3,966	1,383 3,138	65 123	6,604 14,611	1,025 1,285	1,354 1,878	8,245 13,307
2011	35,050	7,131	2,576		547	2,646	2,612	66	12,696	1,283		12,893
	vestern Haw			037	347	2,040	2,012	00	12,090	1,334	1,931	12,093
2002	9,492	806	1,897	109	295	1,352	1,307	32	3,485	313	882	4,880
2003	8,929	2,522	2,286		1,035	4,703	2,523	74	3,559	1,596	1,372	11,773
2004	8,906	932	708		265	1,290	913	25	3,863	469	662	6,552
2005	6,337	1,968	1,014		240	1,268	915	14	2,751	552	861	8,212
2006	20,383	4,162	1,005		480	3,291	1,554	106	4,005	1,322	1,291	12,608
2007	11,321	1,966	965		139	1,154	714	16	2,739	465	926	6,720
2008	18,036	7,861	1,262		743	3,521	2,457	98	5,821	1,560	1,375	8,509
2009	11,292	1,756	1,779	280	210	1,183	687	15	1,505	488	1,033	5,527
2010	6,965	1,252	2,266	216	131	364	362	7	548	405	1,055	3,348
2011	17,337	4,408	7,038	322	558	3,252	2,747	102	7,395	733	1,259	9,520
2012	13,880	3,514	3,985	311	219	1,412	1,027	28	3,542	651	1,122	8,123
Pacific	Remote Isl:	and Areas 1										
2002	18,110	12,826	6,342		778	1,015	668	97	957	2,429	377	7,058
2003	2,106	2,392	2,202		443	572	436	54	842	1,058	117	2,416
2004	9,813	4,587	2,661	253	426	618	508	25	1,049	1,344		4,673
2005	1,428	1,714	1,089		143	161	155	8	316	569		870
2006	6,698	7,353	2,359		614	520	514	14	1,126	1,486		3,294
2007	14,509	3,257	1,432		426	383	526	41	870	1,677		4,211
2008	5,987	2,247	2,422		310	293	581	27	1,535	1,122	127	2,655
2009	3,985 7,447	1,922 1,584	1,073 779		291 334	206 129	389 203	49 28	348 332	552 628	159 132	3,267 3,016
2010 2011	4,082	2,560	998		195	390	295	20	578	643	111	1,582
2011	6,475	5,063	3,138		233	288	614	38	1,987	1,189	235	3,077
Outsid		3,003	3,136	172	233	200	014	30	1,707	1,107	233	3,077
2002		4,278	9,643	2,275	2,025	3,076	3,883	193	22,407	4,791	4,658	22,750
2003	56,284	12,957	13,783		2,439	8,433	6,913	176	25,727	10,985	6,954	28,782
2004	74,300	11,541	10,648		3,019	6,585	7,512	231	35,034	10,592	4,876	35,977
2005		11,388	5,693	1,718	1,962	6,027	5,964	145	28,549	9,461	8,138	23,275
2006	57,585	12,189	6,026	1,842	3,050	9,618	6,084	283	30,150	10,191	7,860	23,873
2007	,	14,826	5,823		2,046	4,008	5,598	340	55,921	7,482	10,304	31,512
2008		10,897	8,736		1,904	6,394	7,491	186	40,504	8,887	11,062	24,436
2009	79,127	6,905	5,310		3,041	4,224	5,933	417	49,261	6,518	17,620	31,624
2010	105,352	7,630	14,153		2,514	2,512	6,427	363	84,810	6,678	16,982	36,535
2011	107,009	15,883	19,387		2,780	8,644	9,377	297	52,265	7,790	14,462	31,485
2012	103,655	11,986	19,916	2,404	2,291	4,745	7,036	247	59,144	8,016	13,804	32,957
Total c	140,874	20,373	20,588	3,668	3,971	8,892	9,486	455	48,223	8,878	9,290	49,228
2002	107,226	27,929	20,386		5,659	25,955	17,990	433	55,383	18,390	11,897	68,654
2003	142,171	25,907	17,048		4,845	15,158	14,032	554	66,577	15,609		71,963
2004	127,315	28,787	12,400		3,868	14,194	14,585	381	71,388	16,030		58,695
2006	117,465	30,435	10,988		5,691	20,908	11,923	513	52,150	17,129		57,368
2007	158,086	26,151	9,453		3,240	7,889	9,965	504	80,965	12,469		58,602
2008	150,852	34,026	13,723	-	3,874	13,478	15,302	440		14,109		48,388
2009	118,204	13,167	8,652		4,093	7,366	8,773	537	60,481	8,798	21,266	50,715
2010	135,636	13,597	18,766		3,396	3,674	8,375	463	92,294	8,736	19,523	51,144
2011	155,256	31,324	31,500		4,427	16,252	15,557	542	74,849	10,451	17,710	55,894
2012	159,060	27,694	29,615		3,290	9,091	11,289	379	77,369	11,410	17,112	57,050

Table 84. Hawaii-based shallow-set longline catch (number of fish) by area, 2004-2012

1 abic	O II IIav	Tunas	cu siiaii	low-set 10		Billfishes	iumber (71 11311)		ther PMUS		
	Bigeve	Yellowfin			Blue	Striped		Other		Ono		PMUS
Year	tuna		Albacore	Swordfish	marlin	_	Spearfish		Mahimahi		Moonfish	Sharks
	awaiian Isla									(
2004	-	-	-	_	-	-	-	_	-	-	-	-
2005	73	45	2	1,259	71	215	31	0	398	25	0	627
2006	-	-	-	-	-	_	-	-	-	-	-	-
2007	37	25	3	1,116	7	63	17	0	167	19	0	433
2008	29	69	0	620	74	127	15	0	195	22	0	300
2009	29	32	0	2,024	51	199	26	0	199	15	24	715
2010	25	65	3	963	18	36	13	1	414	14	0	906
2011	26	19	4	409	9	24	22	0	181	4	3	240
2012	4	16	2	282	10	16	5	0	167	4	0	204
Northy	vestern Haw	aiian Island	ls EEZ									
2004	-	-	-	-	-	-	-	-	-	-	-	-
2005	372	62	27	5,923	272	919	112	3	2,946	68	4	3,197
2006	-	-	-	-	-	=	-	=	-	-	-	-
2007	69	7	1	2,220	22	58	7	0		11	1	639
2008	342	201	9	2,346	170	418	64	3	,	30	9	543
2009	58	23	2	1,872	52	79	11	0		2	1	401
2010	193	38	15	2,560	24	102	20	0		43	4	1,275
2011	185	74	14	1,697	76	246	55	1	1,325	6	1	893
2012	62	39	10	1,948	51	147	36	0	669	19	1	710
	Remote Isla	and Areas I	EEZ									
2004	-	-	-	=	-	-	-	-	-	-	-	-
2005	-	-	-	-	-	-	-	-	-	-	-	-
2006	-	-	-	-	-	-	-	-	-	-	-	-
2007	-	-	-	-	-	-	-	=	-	-	-	-
2008	-	-	-	-	-	-	-	=	-	-	-	-
2009	-	-	-	-	-	-	-	-	-	-	-	-
2010	-	-	-	-	-	-	-	-	-	-	-	-
2011 2012	_	-	-	-	-	-	-	-	-	-	-	-
Outsid	o FF7		-	-	-		-	-		-		-
2004	11	_	293	1,422	1	4	_		31	1	29	1,642
2005	1,598	80	1,208	14,078	110	466	87	11	3,230	44	55	12,363
2006	1,200	135	434	13,437	13	110	4	1	465	6	49	10,087
2007	1,244	97	1,387	17,507	22	197	47	13		57	53	15,391
2008	1,119	234	2,921	17,376	107	392	90	23		82	96	12,860
2009	760	192	1,509	14,612	77	321	40	4		21	71	8,291
2010	1,367	102	1,902	13,604	22	117	37	13		15		16,776
2011	849	226	2,928	14,074	30	252	104	6		24	202	7,806
2012	811	227	1,142	12,011	41	122	102	2		17		6,066
Total c												
2004	11	0	293	1,422	1	4	0	0	31	1	29	1,642
2005	2,043	187	1,237	21,260	453	1,600	230	14	6,574	137	59	16,187
2006	1,200	135	434	13,437	13	110	4	1	465	6	49	10,087
2007	1,350	129	1,391	20,843	51	318	71	13		87	54	16,463
2008	1,490	504	2,930		351	937	169	26		134	105	13,703
2009	847	247	1,511	18,508	180	599	77	4	,	38	96	9,407
2010	1,585	205	1,920		64	255	70	14		72	217	18,957
2011	1,060	319	2,946	16,180	115	522	181	7		34		8,939
2012	877	282	1,154	14,241	102	285	143	2	4,459	40	285	6,980

3-223 *Hawaii*

<u>Interpretation:</u> With the exception of swordfish, the largest catches were made by deep-set sector of the longline fishery. Catches for most species were usually highest outside the U.S. EEZ for both sectors. Bigeye tuna catches by the deep-set sector were higher in the latter part of the time series, while swordfish catches by the shallow-set sectors were trending down after its peak in 2005.

Source and calculations: Catches (number of fish) by area were compiled from NMFS federal longline logbook data. The catch tables are based on date of haul and include fish that were kept and released. The shallow-set sector of the Hawaii-based longline fishery was reopened in March 2004. The set type was based the number of hooks between floats with a deep-set defined as a fishing operation with 15 or more hooks between floats and a shallow-set characterized by having less than 15 hooks between floats. Longline vessel operators are required to declare what set type they plan to make prior to leaving on a trip. The bolded numbers in the above tables show the area with the highest catch for a particular species in each area. The bolded numbers in the total catch table is the year which the record high catch was made for each species of fish.

3-224 *Hawaii*

Table 85. Average weight of the Hawaii-based longline fishery by species and sector, 2002-2012

		Hawaii deep-set longline fishery															
		Tunas				Billfish					C	ther PMU	JS		Sharks		
Bigeye tuna	Yellowfin tuna	Albacore	Skipjack tuna	Bluefin Tuna	Swordfish	Striped marlin	Blue marlin	Spearfish	Sailfish	Black marlin	Mahimahi	Ono (Wahoo)	Moonfish	Pomfrets	Oilfish	Mako shark	Thresher shark
70	62	56	16	184	141	56	148	33	58	222	14	33	98	13	16	179	156
77	68	57	19	184	129	49	138	31	56	151	13	29	93	13	16	182	190
68	62	46	16	184	122	57	130	30	40	187	16	31	92	11	16	173	173
88	58	51	16	184	148	72	170	31	43	189	13	29	83	13	16	177	197
84	71	52	17	184	141	64	159	30	48	185	14	30	85	13	17	179	190
82	73	56	16	184	159	74	170	33	47	189	12	31	86	14	15	190	180
87	58	53	18	184	209	65	184	32	59	252	12	32	89	14	15	184	192
86	78	48	18	184	180	71	184	28	45	189	12	33	90	15	15	186	189
88	90	47	18	184	160	92	195	31	55	189	10	32	91	14	15	200	169
81	66	47	18	184	169	47	182	33	58	189	12	34	92	12	15	182	164
81	69	48	16	184	172	66	192	32	56	189	12	32	92	13	16	196	174
81.0	68.6	51.1	17.0	184.3	157.4	64.8	168.4	31.4	51.2	193.8	12.6	31.4	90.0	13.3	15.8	184.3	179.6 13.0
	tuna 70 77 68 88 84 82 87 86 88 81	tuna tuna 70 62 77 68 68 62 88 58 84 71 82 73 87 58 86 78 88 90 81 66 81 69 81.0 68.6	tuna tuna Albacore 70 62 56 77 68 57 68 62 46 88 58 51 84 71 52 82 73 56 87 58 53 86 78 48 88 90 47 81 66 47 81 69 48 81.0 68.6 51.1	tuna tuna Albacore tuna 70 62 56 16 77 68 57 19 68 62 46 16 88 58 51 16 84 71 52 17 82 73 56 16 87 58 53 18 86 78 48 18 88 90 47 18 81 66 47 18 81 69 48 16 81.0 68.6 51.1 17.0	tuna tuna Albacore tuna Tuna 70 62 56 16 184 77 68 57 19 184 68 62 46 16 184 88 58 51 16 184 84 71 52 17 184 82 73 56 16 184 87 58 53 18 184 86 78 48 18 184 88 90 47 18 184 81 66 47 18 184 81 69 48 16 184 81.0 68.6 51.1 17.0 184.3	tuna tuna Albacore tuna Tuna Swordfish 70 62 56 16 184 141 77 68 57 19 184 129 68 62 46 16 184 122 88 58 51 16 184 148 84 71 52 17 184 141 82 73 56 16 184 159 87 58 53 18 184 209 86 78 48 18 184 180 88 90 47 18 184 160 81 66 47 18 184 169 81 69 48 16 184 172 81.0 68.6 51.1 17.0 184.3 157.4	tuna tuna Albacore tuna Tuna Swordfish marlin 70 62 56 16 184 141 56 77 68 57 19 184 129 49 68 62 46 16 184 122 57 88 58 51 16 184 148 72 84 71 52 17 184 141 64 82 73 56 16 184 159 74 87 58 53 18 184 209 65 86 78 48 18 184 180 71 88 90 47 18 184 160 92 81 66 47 18 184 169 47 81 69 48 16 184 172 66 81.0 68.6 51.1 17	tuna tuna Albacore tuna Tuna Swordfish marlin marlin 70 62 56 16 184 141 56 148 77 68 57 19 184 129 49 138 68 62 46 16 184 122 57 130 88 58 51 16 184 148 72 170 84 71 52 17 184 141 64 159 82 73 56 16 184 159 74 170 87 58 53 18 184 209 65 184 86 78 48 18 184 180 71 184 88 90 47 18 184 160 92 195 81 66 47 18 184 169 47 182	tuna tuna Albacore tuna Tuna Swordfish marlin marlin Spearfish 70 62 56 16 184 141 56 148 33 77 68 57 19 184 129 49 138 31 68 62 46 16 184 122 57 130 30 88 58 51 16 184 148 72 170 31 84 71 52 17 184 141 64 159 30 82 73 56 16 184 159 74 170 33 87 58 53 18 184 209 65 184 32 86 78 48 18 184 180 71 184 28 88 90 47 18 184 169 47 182 33	tuna Albacore tuna Tuna Swordfish marlin marlin Spearfish Sailfish 70 62 56 16 184 141 56 148 33 58 77 68 57 19 184 129 49 138 31 56 68 62 46 16 184 122 57 130 30 40 88 58 51 16 184 148 72 170 31 43 84 71 52 17 184 141 64 159 30 48 82 73 56 16 184 159 74 170 33 47 87 58 53 18 184 209 65 184 32 59 86 78 48 18 184 180 71 184 28 45 88	tuna Albacore tuna Tuna Swordfish marlin marlin Spearfish Sailfish marlin 70 62 56 16 184 141 56 148 33 58 222 77 68 57 19 184 129 49 138 31 56 151 68 62 46 16 184 122 57 130 30 40 187 88 58 51 16 184 148 72 170 31 43 189 84 71 52 17 184 141 64 159 30 48 185 82 73 56 16 184 159 74 170 33 47 189 87 58 53 18 184 209 65 184 32 59 252 86 78 48 <td< td=""><td>tuna Albacore tuna Tuna Swordfish marlin Spearfish Sailfish marlin Mahimahi 70 62 56 16 184 141 56 148 33 58 222 14 77 68 57 19 184 129 49 138 31 56 151 13 68 62 46 16 184 122 57 130 30 40 187 16 88 58 51 16 184 148 72 170 31 43 189 13 84 71 52 17 184 141 64 159 30 48 185 14 82 73 56 16 184 159 74 170 33 47 189 12 87 58 53 18 184 209 65 184 32 <</td><td>tuna Albacore tuna Tuna Swordfish marlin Spearfish Sailfish marlin Mahimahi (Wahoo) 70 62 56 16 184 141 56 148 33 58 222 14 33 77 68 57 19 184 129 49 138 31 56 151 13 29 68 62 46 16 184 122 57 130 30 40 187 16 31 88 58 51 16 184 148 72 170 31 43 189 13 29 84 71 52 17 184 141 64 159 30 48 185 14 30 82 73 56 16 184 159 74 170 33 47 189 12 31 87 58</td><td>tuna Albacore tuna Tuna Swordfish marlin spearfish Sailfish marlin Mahimahi (Wahoo) Moonfish 70 62 56 16 184 141 56 148 33 58 222 14 33 98 77 68 57 19 184 129 49 138 31 56 151 13 29 93 68 62 46 16 184 122 57 130 30 40 187 16 31 92 88 58 51 16 184 148 72 170 31 43 189 13 29 83 84 71 52 17 184 141 64 159 30 48 185 14 30 85 82 73 56 16 184 159 74 170 33 47</td><td>tuna Albacore tuna Tuna Swordfish marlin marlin Spearfish Sailfish marlin Mahimahi (Wahoo) Moonfish Pomfrets 70 62 56 16 184 141 56 148 33 58 222 14 33 98 13 77 68 57 19 184 129 49 138 31 56 151 13 29 93 13 68 62 46 16 184 122 57 130 30 40 187 16 31 92 11 88 58 51 16 184 148 72 170 31 43 189 13 29 83 13 84 71 52 17 184 141 64 159 30 48 185 14 30 85 13 82 73 56</td><td>tuna Albacore tuna Tuna Swordfish marlin Spearfish Sailfish marlin Mahimahi (Wahoo) Moonfish Pomfrets Oilfish 70 62 56 16 184 141 56 148 33 58 222 14 33 98 13 16 77 68 57 19 184 129 49 138 31 56 151 13 29 93 13 16 68 62 46 16 184 122 57 130 30 40 187 16 31 92 11 16 88 58 51 16 184 148 72 170 31 43 189 13 29 83 13 16 84 71 52 17 184 141 64 159 30 48 185 14 30 85</td><td>tuna Albacore tuna Tuna Swordfish marlin Spearfish Sailfish marlin Mahimahi (Wahom) Moonfish Pomfrets Oilfish shark 70 62 56 16 184 141 56 148 33 58 222 14 33 98 13 16 179 77 68 57 19 184 129 49 138 31 56 151 13 29 93 13 16 182 68 62 46 16 184 122 57 130 30 40 187 16 31 92 11 16 182 88 58 51 16 184 148 72 170 31 43 189 13 29 83 13 16 177 84 71 52 17 184 141 64 159 30</td></td<>	tuna Albacore tuna Tuna Swordfish marlin Spearfish Sailfish marlin Mahimahi 70 62 56 16 184 141 56 148 33 58 222 14 77 68 57 19 184 129 49 138 31 56 151 13 68 62 46 16 184 122 57 130 30 40 187 16 88 58 51 16 184 148 72 170 31 43 189 13 84 71 52 17 184 141 64 159 30 48 185 14 82 73 56 16 184 159 74 170 33 47 189 12 87 58 53 18 184 209 65 184 32 <	tuna Albacore tuna Tuna Swordfish marlin Spearfish Sailfish marlin Mahimahi (Wahoo) 70 62 56 16 184 141 56 148 33 58 222 14 33 77 68 57 19 184 129 49 138 31 56 151 13 29 68 62 46 16 184 122 57 130 30 40 187 16 31 88 58 51 16 184 148 72 170 31 43 189 13 29 84 71 52 17 184 141 64 159 30 48 185 14 30 82 73 56 16 184 159 74 170 33 47 189 12 31 87 58	tuna Albacore tuna Tuna Swordfish marlin spearfish Sailfish marlin Mahimahi (Wahoo) Moonfish 70 62 56 16 184 141 56 148 33 58 222 14 33 98 77 68 57 19 184 129 49 138 31 56 151 13 29 93 68 62 46 16 184 122 57 130 30 40 187 16 31 92 88 58 51 16 184 148 72 170 31 43 189 13 29 83 84 71 52 17 184 141 64 159 30 48 185 14 30 85 82 73 56 16 184 159 74 170 33 47	tuna Albacore tuna Tuna Swordfish marlin marlin Spearfish Sailfish marlin Mahimahi (Wahoo) Moonfish Pomfrets 70 62 56 16 184 141 56 148 33 58 222 14 33 98 13 77 68 57 19 184 129 49 138 31 56 151 13 29 93 13 68 62 46 16 184 122 57 130 30 40 187 16 31 92 11 88 58 51 16 184 148 72 170 31 43 189 13 29 83 13 84 71 52 17 184 141 64 159 30 48 185 14 30 85 13 82 73 56	tuna Albacore tuna Tuna Swordfish marlin Spearfish Sailfish marlin Mahimahi (Wahoo) Moonfish Pomfrets Oilfish 70 62 56 16 184 141 56 148 33 58 222 14 33 98 13 16 77 68 57 19 184 129 49 138 31 56 151 13 29 93 13 16 68 62 46 16 184 122 57 130 30 40 187 16 31 92 11 16 88 58 51 16 184 148 72 170 31 43 189 13 29 83 13 16 84 71 52 17 184 141 64 159 30 48 185 14 30 85	tuna Albacore tuna Tuna Swordfish marlin Spearfish Sailfish marlin Mahimahi (Wahom) Moonfish Pomfrets Oilfish shark 70 62 56 16 184 141 56 148 33 58 222 14 33 98 13 16 179 77 68 57 19 184 129 49 138 31 56 151 13 29 93 13 16 182 68 62 46 16 184 122 57 130 30 40 187 16 31 92 11 16 182 88 58 51 16 184 148 72 170 31 43 189 13 29 83 13 16 177 84 71 52 17 184 141 64 159 30

Hawaii shallow-set longline fishery

			Tunas					Bil	lfish				(Other PMU	JS		Sh	arks
Year	Bigeye tuna	Yellowfin tuna	Albacore	Skipjack tuna	Bluefin Tuna	Swordfish	Striped marlin	Blue marlin	Spearfish	Sailfish	Black marlin	Mahimahi	Ono (Wahoo)	Moonfish	Pomfrets	Oilfish	Mako shark	Thresher shark
2002	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
2003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2004	92		36	19	164	205	85	204	-	-	-	16	-	78	16	20	175	-
2005	85	126	31	19	164	165	92	226	40	52	-	17	32	59	17	19	163	218
2006	110	77	30	19	164	170	130	204	34	52	-	14	35	54	17	21	124	-
2007	99	107	22	19	-	179	105	428	36	52	-	15	42	77	18	17	173	218
2008	121	117	25	19	164	202	86	185	35	52	189	14	36	77	17	18	207	218
2009	121	113	28	19	164	200	91	264	36	52	-	13	43	79	19	16	177	218
2010	95	116	24	19	164	202	106	299	37	52	-	12	42	74	18	18	155	218
2011	110	127	26	19	-	214	90	242	38	52	-	11	37	53	18	17	196	218
2012	92	109	25	19	164	193	95	259	36	-	-	11	34	74	18	17	180	218
Average	102.7	111.6	27.6	19.3	164.1	192.3	97.7	256.9	36.5	51.6	188.6	13.5	37.5	69.5	17.5	18.0	172.1	218.0
SD	13.2	15.8	4.2	0.0	0.0	16.9	14.3	73.4	2.0	0.0	-	2.1	4.2	10.7	0.8	1.7	24.0	0.0

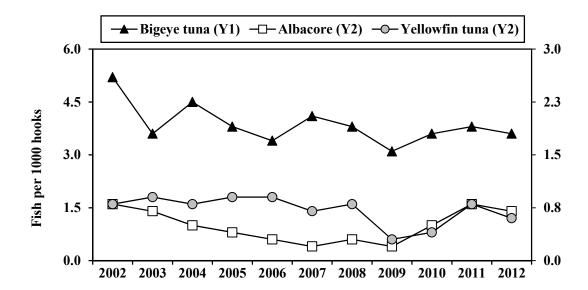
3-225 *Hawaii*

<u>Interpretation:</u> The deep-set sector targets bigeye tuna, while the shallow-set sector fishes for swordfish although both sectors catch and land a variety of pelagic species. The mean weight of fish landed by the shallow-set sector was larger for most of the major species. Bigeye tuna from the deep-set sector was at its long-term mean weight in 2011 and 2012 and has been greater than 80 lbs from 2004. Mean weight of swordfish by the shallow-set sector varied from 2004 with the average weight at its long-term value in 2012.

Source and calculations: Average weight of the longline landings was summarized from the HDAR, State Commercial Marine Dealer data identified as landed by longline fishing during 2002 to 2012. Swordfish and sharks were landed headed and gutted. In December 2004, the Honolulu Auction required fishers to gill and gut tunas and mahimahi that weighed more than 20 pounds and marlins greater than 40 pounds. When fish were processed prior to sale, e.g., headed and gutted, gilled and gutted, a conversion factor was applied to convert it to an estimated whole weight. Discarded fish were not represented in the size summaries. Average weight statistics were also calculated for deep-set and shallow-set longline sectors. The set type was based the number of hooks between floats with a deep-set defined as a fishing operation with 15 or more hooks between floats and a shallow-set characterized by having less than 15 hooks between floats. Longline vessel operators are required to declare what set type they plan to make prior to leaving on a trip. Each species needed a minimum of 20 samples within a month of each RFMO area, i.e., WCPO or EPO, in order to calculate a mean weight. If this criteria was not met, the time strata was increased to a quarter, year or multi-year period until there were enough samples to calculate a mean weight. Some species which were landed in low numbers needed to be aggregated to a multi-year period. Consequently, their respective annual mean weights are the same from year to year or repeat over time.

Table 86. Numbers of released catch, retained catch, and total catch for the Hawaii-based longline fishery, 2012

	De	ep-set lon	gline fisher	y	Sha	llow-set lo	ngline fishe	ry
	Released catch	Percent released	Retained catch	Total Catch	Released catch	Percent released	Retained catch	Total Catch
Tuna								
Albacore	76	0.3%	29,529	29,605	119	9.9%	1,077	1,196
Bigeye tuna	2,223	1.4%	157,019	159,242	62	7.4%	778	840
Bluefin tuna	0	0.0%	3	3	1	50.0%	1	2
Skipjack tuna	1,310	3.7%	34,037	35,347	2	6.1%	31	33
Yellowfin tuna	471	1.7%	27,234	27,705	16	5.7%	265	281
Other tuna	0	0.0%	7	7	0	0.0%	0	0
Total tunas	4,080	1.6%	247,829	251,909	200	8.5%	2,152	2,352
Billfish								
Blue marlin	20	0.6%	3,276	3,296	1	1.0%	101	102
Spearfish	62	0.5%	11,235	11,297	12	8.5%	130	142
Striped marlin	47	0.5%	9,049	9,096	20	7.0%	266	286
Other marlin	9	2.4%	371	380	1	50.0%	1	2
Swordfish	250	7.4%	3,142	3,392		8.8%	13,135	14,395
Total billfish	388	1.4%	27,073	27,461	1,294	8.7%	13,633	14,927
Other PMUS								
Mahimahi	676	0.9%	76,660	77,336	220	4.9%	4,273	4,493
Moonfish	49	0.3%	17,072	17,121	55	19.4%	229	284
Oilfish	362	1.1%	33,040	33,402	214	12.6%	1,487	1,701
Pomfret	256	0.5%	51,610	51,866		25.6%	259	348
Wahoo	36	0.3%	11,385	11,421	3	7.5%	37	40
Total other PMUS	1,379	0.7%	189,767	191,146	581	8.5%	6,285	6,866
Non-PMUS fish	2,968	73.3%	1,082	4,050	7	63.6%	4	11
Total non-shark	8,815	1.9%	465,751	474,566	2,082	8.6%	22,074	24,156
PMUS Sharks								
Blue shark	45,456	99.1%	401	45,857	6,129	99.8%	12	6,141
Mako shark	1,527	71.6%	605	2,132	· ·	81.4%	150	808
Thresher shark	8,036	97.9%	170	8,206		94.9%	2	39
Other PMUS sharks	913	98.2%	17	930	4	80.0%	1	5
Total PMUS sharks	55,932	97.9%	1,193	57,125	6,828	97.6%	165	6,993
Non-PMUS sharks	524	97.9%	11	535	32	97.0%	1	33
Grand Total	65,271	12.3%	466,955	532,226	8,942	28.7%	22,240	31,182


<u>Interpretation:</u> Released, retained and total catch by the Hawaii-based longline fishery was measured in number of fish. Since fishing techniques and target species were different between the deep-set and shallow-set sectors of the longline fishery, the catch table was split into their respective sectors. The disposition of sharks was significantly different from tunas, billfish, and other PMUS. Therefore, sharks were separated into a group of its own.

The number and percentage of fish released by the deep-set sector of the longline fishery in 2012 was 65,271 fish and 12%, respectively. The percentage of tuna, billfish and other PMUS released by the deep-set sector of the longline fishery was only 2%. Bigeye tuna, the target species of the deep-set sector, had the highest number of fish released although the rate of fish released was only 1.4%. Although billfish and other PMUS are not targeted, these species are highly marketable and also have low rates of release (1.4% and 0.7%, respectively). In contrast to tunas, billfish and other PMUS, sharks had the highest number and percentage of fish released. There were 56,456 sharks released, which represented 97.9% of the total sharks caught by the deep-set sector.

The number of fish released by the shallow-set sector of the longline fishery was lower compared to the deep-set sector, but the rate of fish released was higher; 8,942 fish and 28%, respectively. The higher release rate by the shallow-set sector may be related conserving space for swordfish and the limited shelf life of incidental catch of other marketable species of fish. The percentage of tuna, billfish and other PMUS released by the shallow-set sector of the longline fishery was 8.6% in 2012. Swordfish, the target species of the shallow-set sector, had the highest number of non-shark catch released. However, the percentage of swordfish released (8.8%) was close to the total non-shark release rate. In contrast to tunas, billfish and other PMUS, sharks had the highest number and percentage of fish released. There were 8,942 sharks released which represented 97.6% of the total sharks caught by the shallow-set sector. With the exception of make shark, other shark species have no market so they are released.

<u>Source and calculations:</u> Longline released catch, retained catch and total catch along with their respective percentages were compiled from NMFS longline logbook data. Longline catch was summarized on date of haul. The set type was based the number of hooks between floats with a deep-set defined as a fishing operation with 15 or more hooks between floats and a shallow-set characterized by having less than 15 hooks between floats. Longline vessel operators are required to declare what set type they plan to make prior to leaving on a trip.

Figure 106. Hawaii longline CPUE for major tunas on tuna trips, 2002-2012

Interpretation: Bigeye tuna CPUE was consistently higher than those for albacore or yellowfin tuna. Bigeye tuna CPUE was 5.2 in 2002, declined the following year, and remained relatively steady ranging between 3.1 and 4.5 in the following years. Albacore is caught incidentally or seldom targeted, therefore its CPUE is much lower than bigeye tuna. Albacore CPUE declined from 2002 through 2009 and rose back to that level in 2011. CPUE for yellowfin tuna was steady from 2002 through 2008, dropped the following two years and recover in 2011 and 2012.

Source and calculation: Tuna CPUE was compiled from NMFS longline logbook data and summarized on date of haul. CPUE was measured as number of fish caught (kept + released) per 1000 hooks. Set type CPUE summaries were based the number of hooks between floats with a

deep-set defined as a set with 15 or more hooks between floats and a shallow-set characterized by having less than 15 hooks between floats. Longline vessel operators are required to declare what set type they plan to make prior to leaving on a trip.

	Deep-set longline CPUE									
	(fish per 1000 hooks)									
·	Bigeye		Yellowfin							
Year	tuna	Albacore	tuna							
2002	5.2	0.8	0.8							
2003	3.6	0.7	0.9							
2004	4.5	0.5	0.8							
2005	3.8	0.4	0.9							
2006	3.4	0.3	0.9							
2007	4.1	0.2	0.7							
2008	3.8	0.3	0.8							
2009	3.1	0.2	0.3							
2010	3.6	0.5	0.4							
2011	3.8	0.8	0.8							
2012	3.6	0.7	0.6							
Average	3.86	0.49	0.72							
SD	0.57	0.23	0.20							

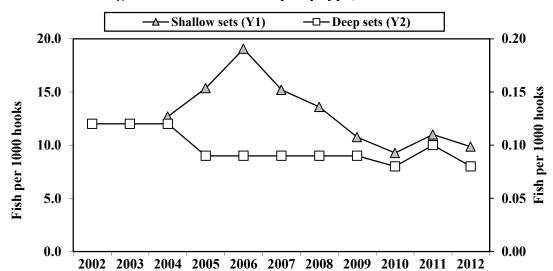


Figure 107. Hawaii longline swordfish CPUE by trip type, 2002-2012

Interpretation: Shallow-set longline fishing was prohibited in 2002 and 2003 due to sea turtle conservation measures then reopened under a new set of regulations with intentions to reduce sea turtle interactions in April 2004. A few shallow-set trips were made before the end of the year and had respectable swordfish CPUEs (Y1 axis) under the new regulations. In 2005, the first complete year since its reopening, the shallow-set sector managed to equal a pre-closure CPUE of 15.3 fish per 1000 hooks attained back in 1991. Although shallow-set CPUE for swordfish was a record 19.0 in 2006, it was only because the shallow-set fishery was closed in March due to reaching the limit of 17 loggerhead turtle interactions. This prohibited this sector from fishing for the remainder of the year when shallow-set CPUE for swordfish is typically lower. Swordfish CPUE for the shallow-set fishery decreased to its lowest level at 9.3 in 2010 and remained low the following two years.

Deep-set longline swordfish CPUEs (Y2 axis) were more than 100 times lower compared to shallow-set longline swordfish CPUEs. Deep-set swordfish CPUE was slightly higher in the earlier period, decreased in 2005 and remained constant thereafter.

Source and calculation: Longline swordfish CPUE was compiled from NMFS longline logbook data and summarized based on date of haul. CPUE was based on number of swordfish caught (kept + released) divided by the number of hooks set. Set type CPUE summaries were based the number of hooks between floats with a deep-set defined as a set with 15 or more hooks between floats and a shallow-set characterized by having less than 15 hooks between floats. Longline vessel operators are required to declare what set type they plan to make prior to leaving on a trip.

	Swordfi	sh CPUE
	Shallow-	
Year	set	Deep-set
2002	-	0.1
2003	-	0.1
2004	12.7	0.1
2005	15.3	0.1
2006	19.0	0.1
2007	15.2	0.1
2008	13.6	0.1
2009	10.8	0.1
2010	9.3	0.1
2011	11.0	0.1
2012	9.8	0.1
Average	12.97	0.10
SD	3.15	0.02

Figure 108. Longline striped marlin CPUE by trip type, 2002-2012

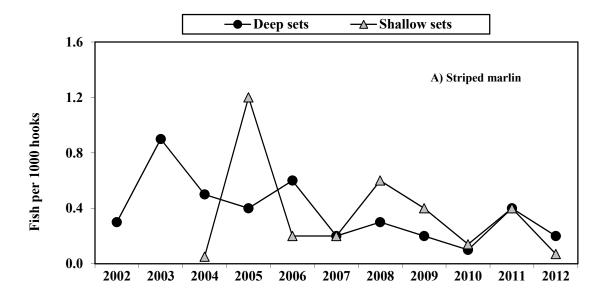
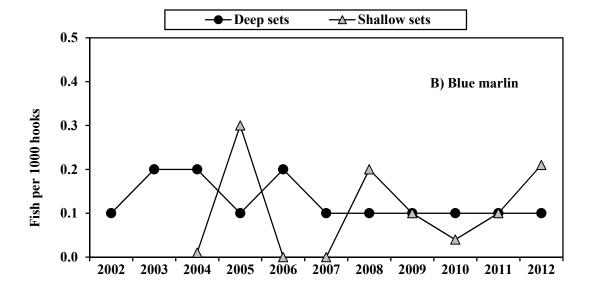
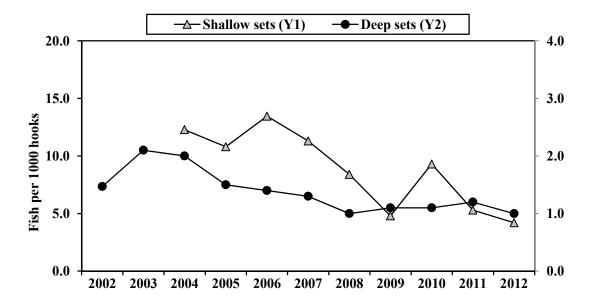



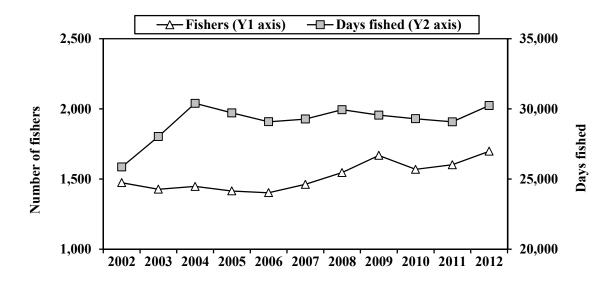
Figure 109. Longline blue marlin CPUE by trip type, 2002-2012



Interpretation: Striped marlin and blue marlin are caught incidentally by the longline fishery. Therefore, their catch rates are significantly lower than those for target species such as swordfish and bigeye tuna. There was little difference in striped marlin CPUE between the deep-set and shallow-set sectors. CPUE for both sectors exhibited variability with the appearance of a downward trend. Blue marlin CPUE was slightly higher in deep-set sector. The trend for in blue marlin CPUE in the deep-set sector was slightly higher through 2006, but steady throughout the 10-year period. In contrast, shallow-set CPUE for blue marlin was low but highly variable.

Source and calculation: Longline marlin CPUEs were compiled from NMFS longline logbook data and summarized based on date of haul. CPUE was based on number of marlin caught (kept + released) divided by the number of hooks set. Set type CPUE summaries were based the number of hooks between floats with a deep-set defined as a set with 15 or more hooks between floats and a shallow-set characterized by having less than 15 hooks between floats. Longline vessel operators are required to declare what set type they plan to make prior to leaving on a trip.

	Striped marlin		Blue n	narlin
		Shallow		Shallow
Year	Deep sets	sets	Deep sets	sets
2002	0.3	-	0.1	-
2003	0.9	-	0.2	-
2004	0.5	0.1	0.2	0.0
2005	0.4	1.2	0.1	0.3
2006	0.6	0.2	0.2	0.0
2007	0.2	0.2	0.1	0.0
2008	0.3	0.6	0.1	0.2
2009	0.2	0.3	0.1	0.1
2010	0.1	0.1	0.1	0.0
2011	0.4	0.4	0.1	0.1
2012	0.2	0.2	0.1	0.1
Average	0.37	0.37	0.13	0.09
SD	0.23	0.35	0.05	0.11


Interpretation: Blue sharks are caught incidentally by the longline fishery. The blue shark CPUE by the shallow-set sector (Y1 axis) was more than 6-fold greater than the deep-set sector (Y2 axis). Shallow-set blue shark CPUE decreased from 13.5 in 2006 to 4.2 in 2012. Blue shark CPUE in deep-set sector declined also although at a more gradual rate.

<u>Source and calculation:</u> Longline blue shark CPUEs were compiled from NMFS longline logbook data and summarized based on date of haul. CPUE was based on number of sharks caught (kept + released) divided by the number of hooks set. Set type CPUE summaries were

based the number of hooks between floats with a deep-set defined as a set with 15 or more hooks between floats and a shallow-set characterized by having less than 15 hooks between floats. Longline vessel operators are required to declare what set type they plan to make prior to leaving on a trip.

	Blue shark CPUE		
	(fish per 1000 hooks)		
	Shallow		
Year	sets	Deep sets	
2002	-	1.5	
2003	-	2.1	
2004	12.3	2.0	
2005	10.8	1.5	
2006	13.5	1.4	
2007	11.3	1.3	
2008	8.4	1.0	
2009	4.8	1.1	
2010	9.3	1.1	
2011	5.3	1.2	
2012	4.2	1.0	
Average	8.88	1.38	
SD	3.43	0.38	

Figure 111. Number of Main Hawaiian Islands troll fishers and number of days fished, 2002-2012

<u>Interpretation</u>: The trend for the number of Main Hawaiian Islands (MHI) troll fishers is increasing participation. The number of fishers rose from 1,402 fishers in 2006 to a peak of 1,698 fishers in 2012. The number of days fished by the MHI troll fishery was lowest in the 2002 followed by increased effort in the following two years. Number of days fished remained steady from 2004 through 2012.

<u>Source and calculations</u>: The number of MHI troll fishers was based on the number of unique State of Hawaii, Division of Aquatic Resources (HDAR) issued Commercial Marine Licenses (CMLs) submitting Fishing Reports. The number of days fished by the MHI troll fishery was calculated using the Fishing Report data. A MHI troll day fished is defined as a unique CML

number fishing on a unique day for the gear types and fishing in areas defined for the MHI troll fishery at the beginning of this module. The number of days fished includes days that fishers did not catch anything or days that fish were caught but not sold.

Year	Fishers	Days fished
2002	1,474	25,854
2003	1,427	28,028
2004	1,447	30,395
2005	1,415	29,714
2006	1,402	29,080
2007	1,462	29,271
2008	1,546	29,938
2009	1,668	29,553
2010	1,569	29,298
2011	1,602	29,073
2012	1,698	30,232
Average	1,519.1	29,130.5
SD	103.8	1,264.4

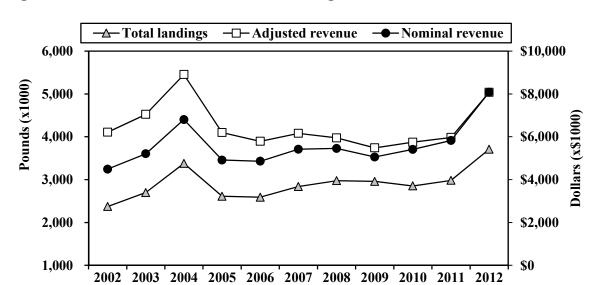
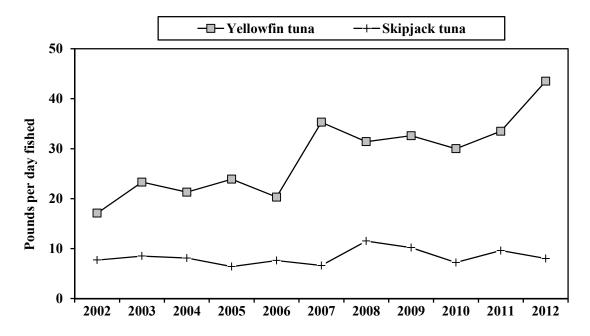


Figure 112. Main Hawaiian Islands troll landings and revenue, 2002-2012

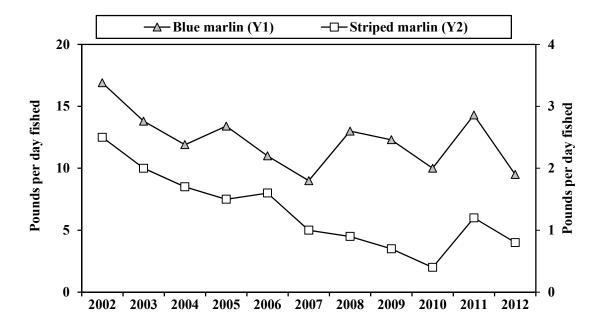

Interpretation: The total landings by the MHI troll fishery in 2012 were 3.7 million pounds worth an estimated \$8.1 million. Total landings were at their highest during the ten-year period and 28% above their long-term average with a general trend increasing from 2006. Adjusted revenue peaked in 2004, remained stable from 2005 through 2011, and rose in 2012.

<u>Source and calculations:</u> Total landings and nominal revenue for the MHI troll fishery were derived from HDAR Commercial Fishing and Marine Dealer Report data. Total landings by the MHI troll fishery was based on a sum of Pounds Landed from the Fishing Report data or an extrapolation of Pounds Bought from the non-longline Dealer Report data. Nominal revenue is a

sum of the Amount Paid from the Dealer Report data for fish caught by the MHI troll fishery. The adjusted revenue is calculated by dividing the nominal revenue by the Honolulu CPI for the respective year then multiplying the result by the current year (2012) Honolulu CPI.

	Total	Adjusted	Nominal	
	landings	revenue	revenue	Honolulu
Year	(1000 lbs)	(\$1000)	(\$1000)	CPI
2002	2,372	\$6,211	\$4,488	180.3
2003	2,698	\$7,044	\$5,209	184.5
2004	3,379	\$8,907	\$6,804	190.6
2005	2,612	\$6,198	\$4,914	197.8
2006	2,590	\$5,788	\$4,858	209.4
2007	2,839	\$6,159	\$5,418	219.5
2008	2,975	\$5,947	\$5,456	228.9
2009	2,958	\$5,484	\$5,055	230.0
2010	2,851	\$5,748	\$5,412	234.9
2011	2,982	\$5,965	\$5,824	243.6
2012	3,710	\$8,078	\$8,078	249.5
Average	2,906.0	\$6,502.6	\$5,592.4	
SD	374.9	\$1,075.4	\$1,021.6	

Figure 113. Main Hawaiian Islands troll tuna CPUE, 2002-2012


Interpretation: MHI troll yellowfin tuna CPUE was consistently higher than skipjack tuna CPUE. Yellowfin tuna CPUE was a record 44 pounds per trip in 2012 and had an increasing trend. Yellowfin tna has been above its long-term average CPUE for the past six years. Skipjack tuna CPUE was 8 pounds per trip in 2012, close to its long-term average CPUE. The trend for skipjack tuna was flat.

Source and calculations: The MHI troll CPUE values originate from HDAR Commercial Fishing Report data. CPUE based on pounds per day fished was calculated from Pounds Landed of yellowfin tuna and skipjack tuna divided by the number of MHI troll Days Fished. The number of Days Fished includes days that fishers did not catch anything or days that fish were caught but not sold. The pounds per hour fished CPUE calculation was based on the Pounds Landed divided by the sum of MHI troll Hours Fished.

MHI troll tuna CPUE				
(pounds per day fished)				
	Yellowfin Skipjack			
Year	tuna	tuna		
2002	17.1	7.7		
2003	23.3	8.5		
2004	21.3	8.1		
2005	23.9	6.4		
2006	20.3	7.6		
2007	35.3	6.6		
2008	31.4	11.5		
2009	32.6	10.2		
2010	30.0	7.2		
2011	33.5	9.6		
2012	43.5	8.0		
Average	28.38	8.31		
SD	7.88	1.56		

MHI troll tuna CPUE					
(pound	(pounds per hours fished)				
	Yellowfin Skipjack				
Year	tuna	tuna			
2003	3.9	1.4			
2004	3.6	1.4			
2005	4.1	1.1			
2006	3.5	1.3			
2007	5.9	1.1			
2008	5.4	2.0			
2009	5.5	1.7			
2010	5.0	1.2			
2011	5.5	1.6			
2012	7.0	1.3			
Average	4.94	1.40			
SD	1.15	0.28			

Interpretation: CPUE for blue marlin (Y1 axis) was substantially higher compared to the CPUE for striped marlin (Y2 axis). The CPUE trend for blue marlin was that of a decline from 2002 to a low in 2007 and somewhat variable through 2012. Striped marlin CPUE showed a longer decline from 2002 to a low in 2010. Although striped marlin CPUE was higher the following two years, the values were still below its long-term average.

Source and calculations: The MHI troll CPUE values originate from HDAR Commercial Fishing Report data. CPUE based on pounds per day fished was calculated from Pounds Landed of blue marlin and striped marlin divided by the number of MHI troll Days Fished. The number of Days Fished includes days that fishers did not catch anything or days that fish were caught but not sold. The pounds per hour fished CPUE calculation was based on the Pounds Landed divided by the sum of MHI troll Hours Fished.

MHI troll marlin CPUE (pounds per day fished)			
- U	Blue Striped		
Year	marlin	marlin	
2002	16.9	2.5	
2003	13.8	2.0	
2004	11.9	1.7	
2005	13.4	1.5	
2006	11.0	1.6	
2007	9.0	1.0	
2008	13.0	0.9	
2009	12.3	0.7	
2010	10.0	0.4	
2011	14.3	1.2	
2012	9.5	0.8	
Average	12.28	1.30	
SD	2.34	0.62	

MHI troll marlin CPUE (pounds per hours fished)			
Year	Blue Striped marlin marlin		
2003	2.3	0.3	
2003	2.0	0.3	
2005	2.3	0.3	
2006	1.9	0.3	
2007	1.5	0.2	
2008	2.2	0.2	
2009	2.1	0.1	
2010	1.7	0.1	
2011	2.4	0.2	
2012	1.5	0.1	
Average	1.98	0.20	
SD	0.32	0.09	

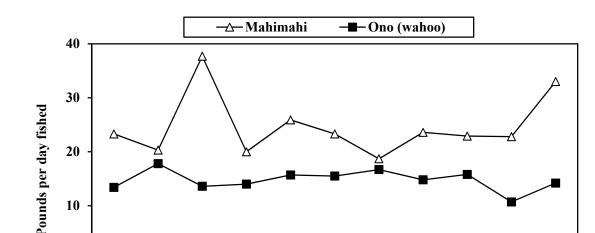


Figure 115. Main Hawaiian Islands troll mahimahi and ono CPUE, 2002-2012

20

10

0

2003

2004

2005

Interpretation: Mahimahi CPUE for the MHI troll fishery was slightly higher and exhibited more variability than ono. Mahimahi CPUE peaked in 2004, dropped the following year, remained somewhat stable through 2011 and increased in 2012. Ono CPUE was stable from 2002 through 2010 and dropped below its long-term average in 2011 and 2012.

2006

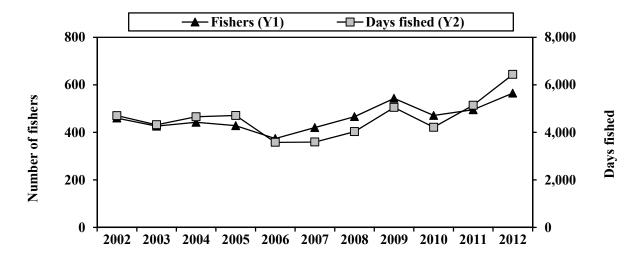
2007

2008

2009

2010

2011


2012

Source and calculations: The MHI troll CPUE values originate from HDAR Commercial Fishing Report data. CPUE based on pounds per day fished was calculated from Pounds Landed of mahimahi and ono divided by the number of MHI troll Days Fished. The number of Days Fished includes days that fishers did not catch anything or days that fish were caught but not sold. The pounds per hour fished CPUE calculation was based on the Pounds Landed divided by the sum of MHI troll Hours Fished.

MHI troll mahimahi and ono					
CPUE (CPUE (pounds per day fished)				
		Ono			
Year	Mahimahi	(wahoo)			
2002	23.3	13.4			
2003	20.3	17.8			
2004	37.7	13.6			
2005	20.0	14.0			
2006	25.9	15.7			
2007	23.3	15.5			
2008	18.7	16.7			
2009	23.6	14.8			
2010	22.9	15.8			
2011	22.8	10.7			
2012	33.0	14.2			
Average	24.68	14.75			
SD	5.73	1.90			

MHI troll mahimahi and ono				
CPUE (pounds per hours fished)				
		Ono		
Year	Mahimahi	(wahoo)		
2003	3.4	3.0		
2004	6.3	2.3		
2005	3.4	2.4		
2006	4.4	2.7		
2007	3.9	2.6		
2008	3.2	2.9		
2009	4.0	2.5		
2010	3.8	2.7		
2011	3.8	1.8		
2012	5.3	2.3		
Average	4.15	2.49		
SD	0.96	0.35		

Figure 116. Number of Main Hawaiian Islands handline fishers and days fished, 2002-2012

<u>Interpretation:</u> There were 565 MHI handline fishers that fished 6,437 days in 2012. Both measures of effort were above their respective long-term averages. MHI handline effort was lowest in 2006 with upward trend thereafter.

<u>Source and calculations:</u> The number of MHI handline fishers was based on the number of unique State of Hawaii, Division of Aquatic Resources (HDAR) Commercial Marine Licenses (CMLs) submitting Fish Reports. The number of days fished by the MHI handline fishery was calculated using the HDAR Fishing Report data. A MHI handline day fished is defined as a unique CML number fishing on a unique day for the gear types and fishing in areas defined for the MHI handline fishery at the beginning of this module. The number of days fished includes days that fishers did not catch anything or days that fish were caught but not sold.

Year	Fishers	Days fished
2002	460	4,703
2003	426	4,319
2004	442	4,658
2005	428	4,710
2006	374	3,579
2007	420	3,592
2008	466	4,030
2009	543	5,049
2010	471	4,215
2011	495	5,141
2012	565	6,437
Average	462.7	4,584.8
SD	55.4	806.4

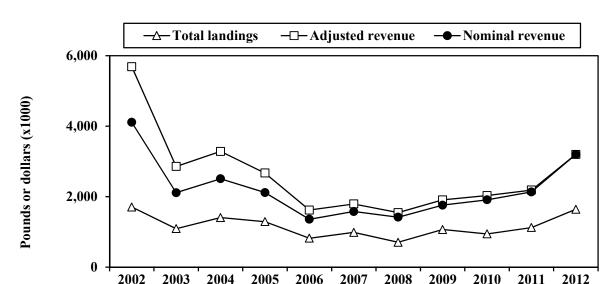


Figure 117. Main Hawaiian Island handline landings and revenue, 2002-2012

Interpretation: Total landings by the MHI handline fishery in 2012 was 1.6 million pounds, worth an estimated \$3.2 million. Total landings and revenue by this fishery was above the long-term values by 41% and 22%, respectively. The recent pattern for MHI handline fishery landings and revenue was an increasing trend from 2008 through 2012.

Source and calculations: Total landings and nominal revenue for the MHI handline fishery were derived from HDAR Commercial Fishing and Marine Dealer Report data. Total landings by the MHI handline fishery was based on a sum of Pounds Landed from the Fishing Report data or an extrapolation of Pounds Bought from the non-longline Dealer Report data. Nominal revenue is a sum of the Amount Paid from the Dealer Report data for fish caught by the MHI

handline fishery. The adjusted revenue is calculated by dividing the nominal revenue by the respective year Honolulu CPI and then multiplying the result by the current year (2012) Honolulu CPI.

	Total	Adjusted	Nominal	
	landings	revenue	revenue	Honolulu
Year	(1000 lbs)	(\$1000)	(\$1000)	CPI
2002	1,705	\$5,687	\$4,110	180.3
2003	1,092	\$2,856	\$2,112	184.5
2004	1,405	\$3,283	\$2,508	190.6
2005	1,291	\$2,670	\$2,117	197.8
2006	820	\$1,619	\$1,359	209.4
2007	984	\$1,794	\$1,578	219.5
2008	704	\$1,546	\$1,418	228.9
2009	1,066	\$1,908	\$1,759	230.0
2010	942	\$2,030	\$1,911	234.9
2011	1,124	\$2,187	\$2,135	243.6
2012	1,642	\$3,199	\$3,199	249.5
Average	1,161.4	\$2,616.3	\$2,200.5	-
SD	319.9	\$1,188.4	\$821.2	

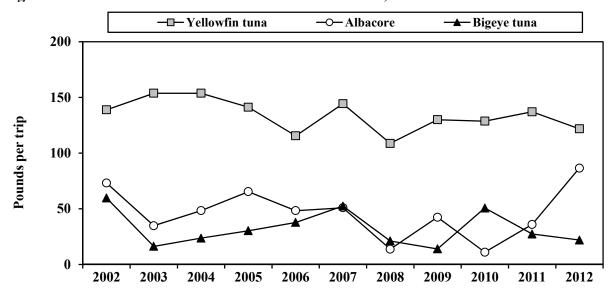


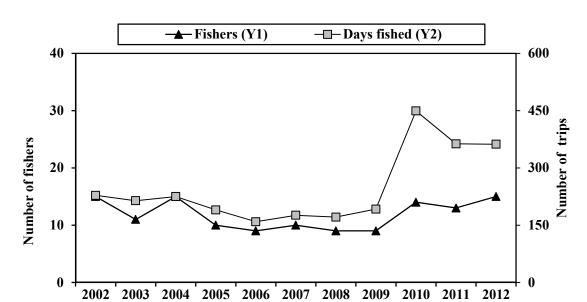
Figure 118. Main Hawaiian Island handline tuna CPUE, 2002-2012

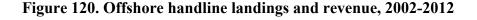
<u>Interpretation:</u> MHI handline CPUE (pounds per day fished) were slightly higher than the long-term average. Yellowfin tuna was the dominant component of the handline landings and its CPUE was 122 pounds per trip in 2012; 9% below its long-term average. Nonetheless, the yellowfin tuna CPUE was relatively stable from 2002. Albacore and bigeye tuna CPUE varied substantially from 2002 with albacore CPUE reaching a peak in 2012.

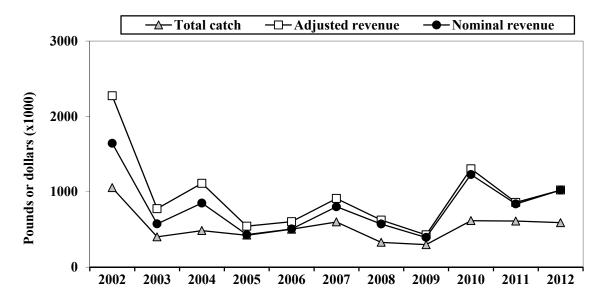
Source and calculations: The MHI handline CPUE values originate from HDAR Commercial Fishing Report data. CPUE based on pounds per day fished was calculated from Pounds Landed of yellowfin tuna, albacore, and bigeye tuna divided by the number of MHI handline Days Fished. The number of Days Fished includes days that fishers did not catch anything or days that fish were caught but not sold. The pounds per hour fished CPUE calculation was based on the Pounds Landed divided by the sum of MHI handline Hours Fished. The total MHI handline CPUE also includes skipjack tuna, kawakawa, and other tunas.

	MHI handl	ine CPUE (po	unds per ho	ur fished)			
'	Yellowfin		Bigeye				
Year	tuna	Albacore	tuna	Total			
2003	21.5	4.9	2.3	29.3			
2004	21.5	6.8	3.3	32.8			
2005	20.3	9.4	4.3	34.8			
2006	17.3	7.2	5.6	30.6			
2007	22.5	7.9	8.2	39.4			
2008	17.1	2.2	3.3	23.4			
2009	19.7	6.4	2.1	29.0			
2010	19.1	1.6	7.5	28.8			
2011	19.8	5.2	4.0	29.6			
2012	17.4	12.3	3.1	33.3			
Average	19.62	6.39	4.37	31.10			
SD	1.91	3.18	2.09	4.28			

_	MHI hand	line CPUE (po	ounds per da	ay fished)
-	Yellowfin		Bigeye	
Year	tuna	Albacore	tuna	Total
2002	138.9	73.2	59.7	276.7
2003	153.8	34.8	16.2	209.5
2004	153.8	48.3	23.6	234.3
2005	141.2	65.4	30.3	242.4
2006	115.5	48.3	37.7	205.2
2007	144.3	50.9	52.4	252.4
2008	108.7	13.7	21.1	149.3
2009	130.0	42.4	13.9	192.0
2010	128.7	11.0	50.7	194.1
2011	137.1	35.9	27.3	204.2
2012	121.8	86.5	21.9	233.9
Average	133.98	46.40	32.25	217.64
SD	14.67	23.02	15.68	34.84



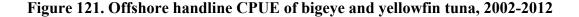

Figure 119. Number of offshore handline fishers and days fished, 2002-2012

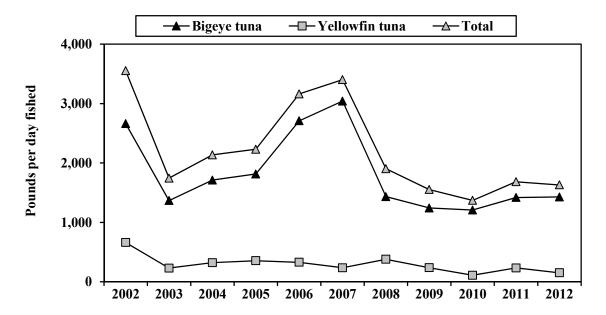

Interpretation: The offshore tuna handline fishery had 15 fishers that fished 362 days in 2012, effort close to previous. The number of fishers peaked at 15 in 2002, 2004, and 2012 with a long-term average 11.8 fishers. The number of days fished was low during 2002 through 2009 and peaked at 449 days in 2010. Days fished was nearly the same in 2011 and 2012.

<u>Source and calculations:</u> The number of offshore handline fishers was based on the number of unique State of Hawaii, Division of Aquatic Resources (HDAR) Commercial Marine Licenses (CMLs) submitting Fish Reports. The number of days fished by the offshore handline fishery was calculated using the HDAR Fishing Report data. An offshore handline day fished is defined as a unique CML number fishing on a unique day for the gear types and fishing in areas defined

for the offshore handline fishery at the beginning of this module. The number of days fished includes days that fishers did not catch anything or days that fish were caught but not sold.

		Days
Year	Fishers	fished
2002	15	228
2003	11	214
2004	15	225
2005	10	190
2006	9	159
2007	10	176
2008	9	171
2009	9	192
2010	14	449
2011	13	363
2012	15	362
Average	11.8	248.1
SD	2.6	97.1





<u>Interpretation:</u> Total landings and revenue by the offshore handline fishery were 590,000 pounds worth an estimated \$1,023 in 2012. Total landings by this fishery decreased 3% while revenue increased 19%. Both landings and revenue were above their respective long-term values in 2012. The trend for landings and revenue by the offshore handline fishery showed a steep decline from 2002 to 2003 then remaining low through 2012.

Source and calculations: Total landings and nominal revenue for the offshore handline fishery were derived from HDAR Commercial Fishing and Marine Dealer Report data. Total landings by the offshore handline fishery were based on a sum of Pounds Landed from the Fishing Report data or an extrapolation of Pounds Bought from the non-longline Dealer Report data. Nominal revenue is a sum of the Amount Paid from the Dealer Report data for fish caught by the offshore handline fishery. The adjusted revenue is calculated by dividing the nominal revenue by the respective year Honolulu CPI and then multiplying the result by the current year (2012) Honolulu CPI.

	Total	Adjusted	Nominal	
	landings	revenue	revenue	Honolulu
Year	(1000 lbs)	(\$1000)	(\$1000)	CPI
2002	1054	\$2,275	\$1,644	180.3
2003	402	\$776	\$574	184.5
2004	485	\$1,113	\$850	190.6
2005	424	\$544	\$431	197.8
2006	503	\$603	\$506	209.4
2007	599	\$910	\$801	219.5
2008	328	\$623	\$572	228.9
2009	298	\$427	\$394	230.0
2010	616	\$1,305	\$1,229	234.9
2011	611	\$858	\$838	243.6
2012	590	\$1,023	\$1,023	249.5
Average	485.6	\$818.3	\$721.8	
SD	119.1	\$276.9	\$272.2	

<u>Interpretation:</u> Offshore handline CPUE was 1,630 pounds in 2012, below its long-term average. CPUE for bigeye tuna and mahimahi were higher in 2012, but lower for yellowfin tuna. Since bigeye tuna is the largest component of the offshore handline fishery, its CPUE contributes to a substantial amount to the overall CPUE. In general, bigeye tuna CPUE fluctuated in the early half of the time series and has remained low from 2008. The trend for yellowfin tuna CPUE was somewhat lower in the recent part of the time series.

Source and calculations: The offshore handline CPUE values originate from HDAR Commercial Fishing Report data. CPUE based on pounds per day fished was calculated from Pounds Landed of bigeye tuna, yellowfin tuna and mahimahi divided by the number of offshore handline Days Fished. The number of Days Fished includes days that fishers did not catch anything or days that fish were caught but not sold. The pounds per hour fished CPUE calculation was based on the Pounds Landed divided by the sum of offshore handline Hours Fished. The total offshore handline CPUE also includes skipjack tuna, kawakawa, and other tunas.

	0	ffshore hand	lline landing	S			
		(pounds per day fished)					
	Bigeye	Yellowfin					
Year	tuna	tuna	Mahimahi	Total			
2002	2,663	661	98	3,552			
2003	1,367	231	61	1,744			
2004	1,712	322	61	2,136			
2005	1,814	355	40	2,230			
2006	2,710	328	52	3,162			
2007	3,041	236	34	3,402			
2008	1,433	379	55	1,903			
2009	1,243	238	39	1,552			
2010	1,208	110	32	1,370			
2011	1,418	233	18	1,684			
2012	1,428	152	36	1,630			
Average	1,821.5	295.0	47.8	2,215.0			
SD	662.0	146.9	21.3	787.2			

Table 87. Average weight by species for the troll and handline landings, 2002-2012

	Tunas					Billfish			Other PMUS	
		Bigeye	Skipjack	Yellowfin	Blue	Stripe d			Ono	
Year	Albacore	tuna	tuna	tuna	marlin	marlin	Swordfish	Mahimahi	(wahoo)	
2002	38	30	10	42	224	42	152	16	26	
2003	46	20	6	30	185	49	118	16	22	
2004	43	36	6	27	207	60	142	18	23	
2005	48	29	5	23	183	74	102	15	23	
2006	47	27	8	29	209	69	128	16	23	
2007	49	31	4	35	267	89	133	16	24	
2008	51	35	6	26	205	67	158	15	26	
2009	46	30	7	30	231	84	184	14	24	
2010	49	32	5	30	257	107	123	14	26	
2011	45	27	8	32	222	50	132	13	27	
2012	49	22	5	32	270	56	126	12	25	
Average	46.4	29.0	6.4	30.6	223.6	67.9	136.2	15.0	24.4	
SD	3.6	4.9	1.8	5.0	30.2	19.6	22.2	1.6	1.6	

<u>Interpretation:</u> The mean weight for albacore, skipjack tuna, yellowfin tuna, swordfish, and ono caught on troll and handline gear in 2012 was close to their respective long-term average weight. Mean weight of bigeye tuna, striped marlin and mahimahi were below their long-term mean weight. The mean weight for blue marlin was much higher in 2012 compared to its long-term average and had the biggest mean weight of all species landed by the troll and handline fishery at 270 pounds.

Source and calculations: The average weights were calculated from HDAR Commercial Marine Dealer data. The mean weight of fish was based on the total of pounds bought divided by the total number bought. Landings by the troll and handline fishery were usually landed whole. If fish were processed prior to sale, e.g., headed and gutted, gilled and gutted, a conversion factor was applied to convert it to an estimated whole weight.

E. International

Introduction

The U.S Pacific Island Exclusive Economic Zones managed by the Council are surrounded by large and diverse fisheries targeting pelagic species. The International Module contains reported catches of pelagic species in the entire Pacific Ocean by fleets of Pacific Island nations and distant water fishing nations (DWFN) and information for a Stock Assessment and Fishery Evaluation (SAFE) report that includes the most recent assessment information in relation to status determination criteria. Fishery trends in the entire Pacific Ocean are illustrated for the purse seine, longline and pole-and-line fisheries. A table lists the U.S. longline landings as submitted to the Western and Central Pacific Fisheries Commission (WCPFC) and Inter-American Tropical Tuna Commission (IATTC).

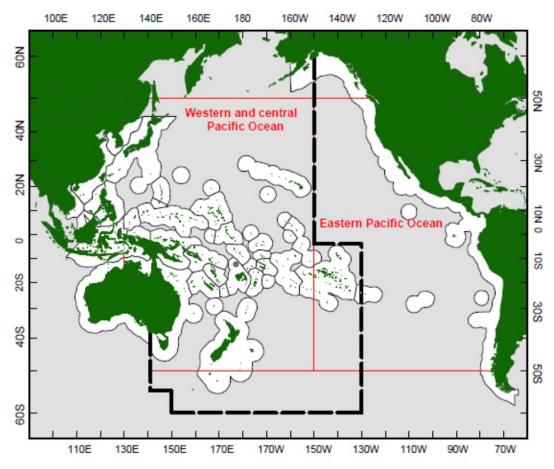


Figure 122. The western and central Pacific Ocean (WCPO), the eastern Pacific Ocean (EPO) and the WCPFC Convention Area (WCP-CA in dashed lines)

1. The 2012 purse-seine fishery in the WCPFC Convention Area (WCP-CA)

Source: WCPFC-SC8-2011 GN-WP-01

Vessels: The majority of the historic WCP–CA purse seine catch has come from the four main Distant Water Fishing Nation (DWFN) fleets – Japan, Korea, Chinese-Taipei and USA, which numbered 163 vessels in 1992, declined to a low of 111 vessels in 2006 before increasing again to 139 vessels in 2012. The Pacific Islands fleets have gradually increased in numbers over the past two decades to a level of 94 vessels in 2012. The remainder of the purse seine fishery includes several fleets which entered the WCPFC tropical fishery in the 2000s (e.g. China, Ecuador, El Salvador, New Zealand and Spain). The total number of purse seine vessels was relatively stable over the period 1990-2006 (in the range of around 180–220 vessels), but over the last five years, the number of vessels has gradually increased, attaining a level of 297 vessels in 2012.

Catch: The provisional 2012 purse-seine catch of 1,816,503 mt was the lowest catch for five years and more than 30,000 mt higher than the record attained in 2009 (1,785,626 mt). The 2012 purse-seine skipjack catch (1,348,554 mt) was the second highest on record (after the 2009 catch) with a slight decline in the adjusted skipjack tuna catch (74%) compared to recent years. The 2012 purse-seine catch estimate for yellowfin tuna (398,464 mt – 22%) was also the second highest on record, just below the record catch of 2008 (400,908 mt) and following a relatively poor catch year in 2011. The provisional catch estimate for bigeye tuna for 2012 (69,164 mt) was again amongst the highest on record but may be revised once all observer data for 2012 have been received and processed. The high bigeye catch in 2012 coincides with the second highest number of associated sets (WCPFC Database), albeit a 15-20% reduction on the record high in 2011.

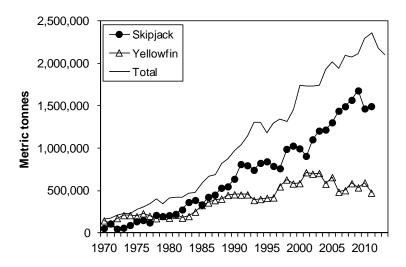

Fleet Distribution: The purse seine catch distribution in tropical areas of the WCP–CA is strongly influenced by El Nino–Southern Oscillation Index (ENSO) events. At the start of 2006, a weak La Niña-state presided, but soon dissipated and a weak El Niño event then presided over the remainder of 2006. During the first half of 2007, the WCP–CA was in an ENSO-neutral state, but then moved into a prolonged La Niña state, which persisted throughout 2008 and into 2009. There was a transition in the middle of 2009 to an El Niño period which then presided into the first quarter of 2010. Conditions in the WCP-CA then switched back to a strong La Niña state over the latter months of 2010 and into the first half of 2011. It weakened, and then strengthened toward the end of 2011. The beginning of 2012 experienced a return to neutral ENSO conditions and other than relatively weak El Nino-type readings in the middle of the year, 2012 was essentially characterized as a neutral ENSO period. In line with the prevailing ENSO conditions, fishing activity during 2012 extended further east than previous years, particularly compared to 2011 which began with a strong La Niña and effort concentrated in the western regions of the tropical WCPO (i.e. the waters of the PNG, FSM and Solomon Islands).

Table 88. Total reported purse seine catch (metric tonnes) of skipjack, yellowfin and bigeye tuna in the Pacific Ocean, 1993-2012

Year	Skipjack	Yellowfin	Bigeye	Total
1993	688,201	444,283	44,040	1,176,524
1994	780,247	446,813	71,895	1,298,955
1995	830,591	428,548	78,120	1,337,259
1996	790,200	420,103	102,389	1,312,692
1997	764,437	550,173	140,176	1,454,786
1998	998,105	630,368	117,919	1,746,392
1999	1,029,894	587,750	114,608	1,732,252
2000	994,744	593,467	145,612	1,733,823
2001	925,962	701,934	115,658	1,743,554
2002	1,115,176	692,120	121,891	1,929,187
2003	1,203,371	712,574	98,660	2,014,605
2004	1,211,765	590,625	138,526	1,940,916
2005	1,323,055	643,935	128,685	2,095,675
2006	1,435,265	494,848	145,255	2,075,368
2007	1,502,094	496,583	112,328	2,111,005
2008	1,562,994	594,311	132,841	2,290,146
2009	1,658,116	561,075	140,726	2,359,917
2010	1,470,082	595,948	113,383	2,179,413
2011	1,460,063	515,107	127,972	2,103,142
2012	1,635,353	581,895	138,944	2,356,192
Average	1,194,290	570,430	120,294	1,885,015
STD Deviation	307,088	87,123	21,248	344,887

Source: SPC 2012

Figure 123. Total purse seine catch of skipjack and yellowfin tuna in the Pacific Ocean, 1993-2012

Source: SPC 2012

2. The 2012 longline fishery in the WCP-CA

Source: WCPFC-SC8-2011 GN-WP-01

Vessels: The total number of vessels involved in the fishery has generally fluctuated between 3,000 and 6,000 for the last 30 years. The fishery involves two main types of operation:

- Large (typically >250 GRT) distant-water freezer vessels which undertake long voyages (months) and operate over large areas of the region. These vessels may target either tropical (yellowfin, bigeye tuna) or subtropical (albacore tuna) species.
- **Smaller** (typically <100 GRT) **offshore** vessels which are usually **domestically-based**, undertaking trips less than one month, with ice or chill capacity, and serving fresh or airfreight sashimi markets, or albacore canneries.

The following broad categories of longline fishery, based on type of operation, area fished and target species, are currently active in the WCP–CA:

- South Pacific offshore albacore fishery comprises Pacific-Islands domestic "offshore" vessels, such as those from American Samoa, Cook Islands, Fiji, French Polynesia, New Caledonia, Samoa, Solomon Islands, Tonga and Vanuatu; these fleets mainly operate in subtropical waters, with albacore the main species taken. Two new entrants, Tuvalu and Wallis& Futuna, joined this category during 2011.
- Tropical offshore bigeye/yellowfin-target fishery includes "offshore" sashimi longliners from Chinese-Taipei based in Micronesia, Guam, Philippines and Chinese-Taipei; mainland Chinese vessels based in Micronesia; and domestic fleets based in Indonesia, Micronesian countries, Philippines, PNG, the Solomon Islands and Vietnam.
- Tropical distant-water bigeye/yellowfin-target fishery comprises "distant-water" vessels from Japan, Korea, Chinese-Taipei, mainland China and Vanuatu. These vessels primarily operate in the eastern tropical waters of the WCP–CA, targeting bigeye and yellowfin tuna for the frozen sashimi market. The Portuguese fleet (one vessel) started fishing in 2011.
- **South Pacific distant-water albacore fishery** comprises "distant-water" vessels from Chinese-Taipei, mainland China and Vanuatu operating in the south Pacific, generally below 20°S, targeting albacore tuna destined for canneries.
- Domestic fisheries in the sub-tropical and temperate WCP-CA comprise vessels targeting different species within the same fleet depending on market, season and/or area. These fleets include the domestic fisheries of Australia, Japan, New Zealand and Hawaii. For example, the Hawaii longline fleet has a component that targets swordfish and another that targets bigeye tuna.
- **South Pacific distant-water swordfish fishery** is a relatively new fishery and comprises "distant-water" vessels from Spain.
- North Pacific distant-water albacore and swordfish fisheries mainly comprise "distant-water" vessels from Japan (swordfish and albacore), Chinese-Taipei (albacore only) and Vanuatu (albacore only).

Catch: The provisional WCP–CA longline catch (262,076 mt) for 2012 was the fifth highest on record, at around 15,000 mt lower than the highest on record attained in 2009 (279,012 mt). The WCP–CA albacore longline catch (98,854 mt - 37%) for 2012 was the third highest on record, 4,000 mt lower than the record (103,364 mt in 2010). The provisional bigeye catch (76,599 mt -

29%) for 2012 was similar to the level in 2011 which is below the average for the past ten years. The yellowfin catch for 2012 (85,245 mt - 32%) was the lowest for four years but similar to the average catch level for this species over the past decade.

A significant change in the WCP–CA longline fishery over the past 10 years has been the growth of the Pacific Islands domestic albacore fishery, which has risen from taking 33% of the total south Pacific albacore longline catch in 1998 to accounting for around 50-60% of the catch in recent years. The combined national fleets (including chartered vessels) mainly active in the Pacific Islands domestic albacore fishery have numbered more than 500 (mainly small "offshore") vessels in recent years and catches are now at a similar level as the distant-water longline vessels active in the WCP–CA.

The distant-water fleet dynamics continue to evolve in recent years, with catches down from record levels in the mid-2000s initially due to a reduction in vessel numbers, although vessel numbers for some fleets appear to be on the rise again in recent years, but with variations in areas fished and target species. The Japanese distant-water and offshore longline fleets have experienced a substantial decline in both bigeye catches (from 20,725 mt in 2004 to 7,683 mt in 2012) and vessel numbers (366 in 2004 to 124 in 2012). The Chinese-Taipei distant-water longline fleet bigeye catch declined from 16,888 mt in 2004 to 7,503 mt (in 2012), mainly related to a substantial drop in vessel numbers (137 vessels in 2004 reduced to 87 vessels in 2009). The Korean distant-water longline fleet experienced smaller declines in bigeye and yellowfin catches in recent years, but with a more significant drop in vessel numbers – from 184 vessels active in 2002 reduced to 108 vessels in 2008, but back to 126 vessels in 2012.

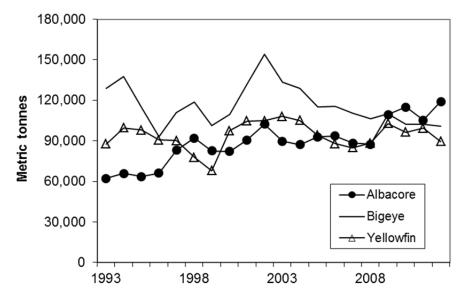

Fleet Distribution: Effort by the large-vessel, distant-water fleets of Japan, Korea and Chinese-Taipei account for most of the effort but there has been some reduction in vessel numbers in some fleets over the past decade. Effort is widespread as sectors of these fleets target bigeye and yellowfin for the frozen sashimi market in central and eastern tropical waters, and albacore for canning in the more temperate waters. Activity by the foreign-offshore fleets from Japan, mainland China and Chinese-Taipei is restricted to tropical waters, targeting bigeye and yellowfin for the fresh sashimi market; these fleets have limited overlap with the distant-water fleets. The substantial "offshore" effort in the west of the region is primarily by the Indonesian and Chinese-Taipei domestic fleets targeting yellowfin and bigeye. The growth in domestic fleets in the South Pacific over the past decade has been noted; the most prominent examples are the increases in the Samoan, Fijian and French Polynesian fleets, and more recently the Solomon Islands chartered vessels.

Table 89. Total reported longline catch (metric tonnes) of PMUS in the Pacific Ocean

Year	Albacore	Yellowfin	Bigeye	Striped	Black	Blue	Swordfish	Total
				Marlin	Marlin	Marlin		
1993	62,141	87,573	128,833	14,175	1,645	22,425	25,824	342,616
1994	65,823	99,500	137,362	9,585	2,100	24,636	22,047	361,053
1995	63,456	97,907	114,614	10,438	1,493	25,332	20,209	333,449
1996	66,146	90,657	92,867	9,052	1,044	18,122	22,248	300,136
1997	83,022	90,248	110,879	9,483	1,117	18,459	28,755	341,963
1998	92,020	77,839	118,874	10,638	1,713	21,304	29,099	351,487
1999	82,722	67,843	101,406	8,503	2,021	18,263	28,108	308,866
2000	82,257	97,456	109,698	6,153	1,401	17,431	30,144	344,540
2001	90,599	104,617	132,285	6,740	1,621	19,780	34,293	389,935
2002	102,322	104,813	154,305	6,534	1,873	19,008	36,487	425,342
2003	89,644	108,101	133,393	7,270	2,103	28,209	38,397	407,117
2004	87,199	105,201	128,891	6,503	2,334	25,629	37,437	393,194
2005	92,925	93,977	115,254	5,798	2,771	23,454	28,686	362,865
2006	93,613	87,816	115,546	5,598	2,462	20,207	31,737	356,979
2007	88,271	84,947	110,641	4,755	1,808	17,384	34,311	342,117
2008	87,435	88,391	106,165	4,648	1,868	16,517	34,116	339,140
2009	109,440	102,855	110,118	3,846	2,071	16,908	34,143	379,381
2010	115,027	96,376	102,445	4,322	2,251	18,115	34,421	372,957
2011	105,401	99,379	102,422	5,457	1,969	16,314	36,109	367,051
2012	119,203	89,432	100,937	5,441	1,740	15,271	37,090	369,114
Average	88,933	93,746	116,347	7,247	1,870	20,138	31,183	359,465
STD deviation	16,324	10,020	15,217	2,634	427	3,647	5,456	30,585

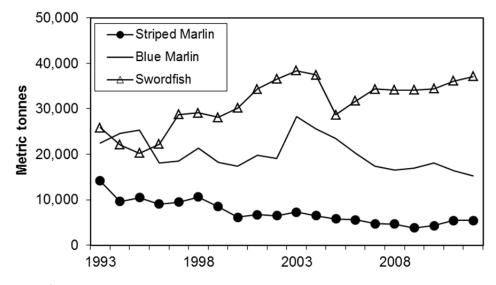

Source: SPC and I-ATTC

Figure 124. Reported longline tuna catches in the Pacific Ocean

Source: SPC and I-ATTC

Figure 125. Reported longline billfish catches in the Pacific Ocean

Source: SPC and I-ATTC

3. The 2012 pole-and-line fishery in the WCP-CA

Source: WCPFC-SC8-2011 GN-WP-01

Vessels: The pole-and-line fleet was composed of less than 200 vessels in the 2012 fishery which excludes vessels in the Indonesia domestic fishery.

Catch: The 2012 pole-and-line catch (224,207 mt) was the lowest annual catch since the late-1960s and continuing the trend in declining catches for three decades. Skipjack tends to account for the majority of the catch (~70-83% in recent years, but typically more than 85% of the total catch in tropical areas) and albacore (8–20% in recent years) is taken by the Japanese coastal and offshore fleets in the temperate waters of the north Pacific. Yellowfin tuna (5–16%) and a small component of bigeye tuna (1–4%) make up the remainder of the catch. The Japanese distantwater and offshore fleets (78,838 mt in 2012), and the Indonesian fleets (133,306 mt in 2012), account for most of the WCP–CA pole-and-line catch. The catches by the Japanese distant-water and offshore fleets in recent years have been the lowest for several decades and this is no doubt related to the continued reduction in vessel numbers (in 2012 reduced to only 90 vessels, the lowest on record). The Solomon Islands fleet recovered from low catch levels experienced in the early 2000s (only 2,773 mt in 2000 due to civil unrest) to reach a level of 10,448 mt in 2003. This fleet ceased operating in 2009, but resumed fishing in 2011 and took 11,221 mt in 2012, the highest catch since 1999.

Fleet Distribution: The WCP–CA pole-and-line fishery has several components:

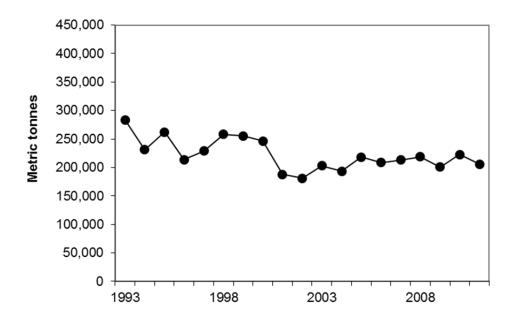

- The year-round tropical skipjack fishery, mainly involving the domestic fleets of Indonesia, Solomon Islands and French Polynesia, and the distant water fleet of Japan;
- Seasonal sub-tropical skipjack fisheries in the home waters of Japan, Australia, Hawaii and Fiji;
- A seasonal albacore/skipjack fishery east of Japan (largely an extension of the Japan home-water fishery).

Table 90. Total reported pole-and-line catch (metric tonnes) of skipjack in the Pacific Ocean.

Year	Catch
1993	283,838
1994	231,161
1995	262,400
1996	213,963
1997	228,872
1998	258,375
1999	255,288
2000	246,531
2001	187,938
2002	181,234
2003	202,792
2004	193,476
2005	218,015
2006	208,655
2007	212,996
2008	218,571
2009	200,843
2010	222,995
2011	205,572
2012	149,060
Average	219,129
STD deviation	31,498

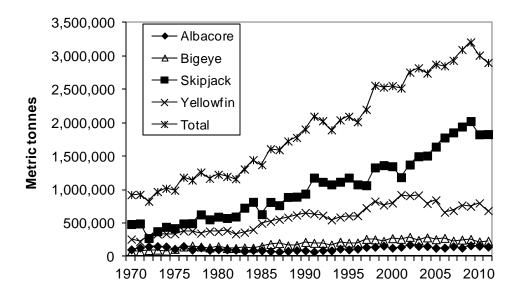

Source: SPC 2012

Figure 126. Reported pole-and-line catch (metric tons) in the Pacific Ocean.

Source: SPC 2012

Figure 127. Estimated total annual catch of tuna species in the Pacific Ocean

Source: SPC 2012

Table 91. Estimated annual catch (metric tonnes) of tuna species in the Pacific Ocean.

Year	Albacore	Bigeye	Skipjack	Yellowfin	Total
1993	90,238	180,150	1,022,308	603,042	1,895,738
1994	116,152	220,374	1,071,424	634,654	2,042,604
1995	104,959	205,837	1,165,232	620,787	2,096,815
1996	116,957	208,618	1,078,046	612,378	2,015,999
1997	141,576	261,550	1,067,222	730,043	2,200,391
1998	144,737	252,704	1,338,154	826,208	2,561,803
1999	161,818	231,734	1,365,554	777,181	2,536,287
2000	130,802	271,139	1,347,120	806,582	2,555,643
2001	145,397	261,389	1,203,299	909,717	2,519,802
2002	178,525	290,458	1,385,432	903,397	2,757,812
2003	157,013	244,497	1,495,046	925,258	2,821,814
2004	155,658	283,281	1,501,473	804,087	2,744,499
2005	130,043	255,191	1,661,231	829,284	2,875,749
2006	132,205	274,874	1,773,763	671,350	2,852,192
2007	153,235	234,836	1,864,133	680,248	2,932,452
2008	130,995	252,460	1,937,266	775,422	3,096,143
2009	167,015	263,776	2,002,548	776,380	3,209,719
2010	157,568	228,179	1,829,282	801,562	3,016,591
2011	152,489	241,975	1,795,489	726,742	2,916,695
2012	167,650	256,201	1,920,335	836,115	3,180,301
Average	141,752	245,961	1,491,218	762,522	2,641,452
STD deviation	22,654	27,691	332,951	99,874	404,828

Source: SPC 2012 Yearbook

Table 92. Estimates of stock status in relation to overfishing and overfished reference points for WPRFMC PMUS

	Overfishing	Is overfishing	Approaching	Overfished	Is the stock	Approaching	Assessment	Natural	
Stock	reference point	occurring?	Overfishing (2 yr)	reference point	overfished?	Overfished (2 yr)	results	mortality ¹	MSST
Skipjack Tuna (WCPO)	F/F _{MSY} =0.37	No	No	B/B _{MSY} =2.68	No	No	Hoyle et al. 2011	>0.5 yr ⁻¹	0.5 B _{MSY}
Yellowfin Tuna (WCPO)	F/F _{MSY} =0.77	No	No	B/B _{MSY} =1.33	No	No	Langley et al. 2011	0.8-1.6 yr ⁻¹	0.5 B _{MSY}
Albacore Tuna (S. Pacific)	F/F _{MSY} =0.21	No	No	SB/SB _{MSY} =2.56	No	No	Hoyle et al. 2012	0.4 yr ⁻¹	0.7 SB _{MSY}
Albacore Tuna (N. Pacific)	Unknown	No		Unknown	No		ISC 2011	0.4 yr ⁻¹	0.6 B _{MSY}
Bigeye Tuna (WCPO)	F/F _{MSY} =1.46	Yes	Not applicable	B/B _{MSY} =1.25	No	No	Davies et al. 2011	0.4 yr ⁻¹	0.6 B _{MSY}
Pacific Bluefin Tuna	Unknown	Yes	Not applicable	Unknown	Yes	Not applicable	ISC 2014	0.25-1.6 yr ⁻¹	~0.72 B _{MSY}
Blue Marlin (Pacific)	F/F _{MSY} =0.81	No	Unknown	SB/SB _{MSY} =1.28	No	Unknown	ISC 2013	0.22-0.42 yr ⁻¹	~0.7 B _{MSY}
Swordfish (N. Pacific)	F/F _{MSY} =0.54	No	Unknown	B/B _{MSY} =1.60	No	Unknown	ISC 2009	0.3 yr ⁻¹	0.7 B _{MSY}
Striped Marlin (N. Pacific)	F/F _{MSY} =1.24	Yes	Not applicable	SB/SB _{MSY} =0.35	Yes	Not applicable	ISC 2012	0.4 yr ⁻¹	0.6 SB _{MSY}
Blue Shark (N. Pacific) ²	F/F _{MSY} =0.86	No	Unknown	B/B _{MSY} =1.11	No	Unknown	Kleiber et al. 2009	0.2 yr ⁻¹	0.8 B _{MSY}
Oceanic white-tip shark (WCPO)	F/F _{MSY} =6.69	Yes	Not applicable	SB/SB _{MSY} =0.15	Yes	Not applicable	Rice and Harley 2012	0.18 yr ⁻¹	0.82 B _{MSY}
Silky shark (WCPO)	F/F _{MSY} =4.32	Yes	Not applicable	SB/SB _{MSY} =0.72	Yes	Not applicable	Rice and Harley 2013	0.18 yr ⁻¹	0.82 B _{MSY}
Other Billfishes		Unknown		Unknown				Unknown	
Other Pelagic Sharks	Unknown			Unknown			Unknown		
Other PMUS		Unknown			Unknown			Unknown	

Table 93. U.S. and American Samoa longline landings in the North Pacific Ocean, American Samoa landings in the South Pacific Ocean, and total landings as reported to WCPFC and IATTC, 2008-2012

	Ū	J.S. in No	rth Pacif	ic Ocean	1	America	an Samo	a in Nort	h Pacific Ocear	America	an Samo	a in Sout	h Pacific	Ocean			Total		
	2012	2011	2010	2009	2008	2012	2011	2010	2009	2012	2011	2010	2009	2008	2012	2011	2010	2009	2008
<u>Vessels</u>	127	128	123	127	129	115	115	11	10	25	24	26	26	28	153	152	146	151	155
Species																			
Albacore, North Pacific	479	497	324	177	307	115	113	48	4						594	610	371	181	307
Abacore, South Pacific						0	0			3,155	2,291	3,943	3,903	3,561	3,155	2,291	3,943	3,903	3,561
Bigeye tuna	3,654	3,565	3,577	3,741	4,649	1,338	1,086	507	156	167	178	178	161	132	5,160	4,829	4,261	4,059	4,781
Pacific bluefin tuna	0	0	0	1	0					7	2	3	1	1	7	2	3	2	1
Skipjack tuna	115	158	114	116	117	123	34	18	5	244	108	110	152	166	483	300	242	272	282
Yellowfin tuna	575	738	462	429	841	272	144	53	15	337	555	445	386	336	1,184	1,437	960	829	1,177
Other tuna	0	0	0	0	0			0						0	0	0	0	0	C
FOTAL TUNA	4,824	4,958	4,477	4,464	5,913	1,849	1,376	625	179	3,910	3,135	4,679	4,603	4,195	10,583	9,469	9,781	9,246	10,109
Black marlin	1	1	0	0	0	0	0	0		2	1	0	0	0	3	2	1	0	0
Blue marlin	226	290	238	333	327	50	45	23	7	36	40	45	42	35	312	375	306	382	362
Sailfish	5	10	9	10	10			1	0	1	4	2	2	1	9	15	11	12	11
Spearfish	111	169	79	97	207	35		9	2	1	5	2	3	1	147	209	89	102	208
Striped marlin, North Pacific	209	263	124	234	407	54		13	5	· ·		_			262	331	137	239	407
Striped marlin, South Pacific	0							.0	-	7	3	2	4	1	7	3	2	4	1
Other marlins	1	1	1	0	2	0				· ·		_			1	1	1	0	2
Swordfish, North Pacific	859	837	1,013	1,243	1.282	38	22	20	5						897	859	1.033	1.248	1.282
Swordfish, South Pacific	0		,	, -	, -			-		14	12	11	13	7	14	12	11	13	7
TOTAL BILLFISH	1,410	1,570	1,464	1,917	2,235	180	171	66	19	62	64	62	63	43	1,652	1,805	1,592	1,999	2,279
Blue shark	12	9	6	9	6	2	2	0		3	2	1	1	1	18	14	7	9	7
Mako shark	42	43	63	102	110	8	8	5	1	0	0	0	0	0	50	51	68	103	110
Thresher	9	15	16	28	38	3	3	0	0	0	0		0		13	18	16	29	38
Other sharks	2	2	3	6	4	0	0	0		0	1	1	0		2	3	3	6	4
TOTAL SHARKS	65	69	87	144	158	14	14	6	1	4	4	2	1	1	83	87	95	147	159
<i>M</i> ahimahi	288	291	230	265	328	52	52	23	7	11	11	9	17	13	351	353	262	289	341
Moonfish	356	309	356	485	409		84	42	22	3	3	2	3	2	445	396	400	510	411
Dilfish	169	178	164	194	178		55	20	7	0	1	0	3	0	228	233	185	203	179
Pomfret	214	115	169	202	223	56	33	19	10	Ť		J	0	J	270	148	188	213	223
Nahoo	117	124	101	116	191	39	23	11	4	83	123	133	140	133	239	270	246	260	324
Other fish	8	20	10	8	13	1	0	0	0	0	1	1	0	0	9	21	11	8	14
TOTAL OTHER	1,153	1,036	1,031	1,269	1,344	292	_	115	51	97	137	145	163	149			1,291	1,484	1,492
GEAR TOTAL	7,452	7,632	7,058	7,794	9,650	2,335	1.809	812	251	4.074	3,341	4,888	4,830	4.388	13.861	12.782	12,758	12.875	14.038
ZZ, I CIAL	1,452	1,002	7,000	1,134	3,000	2,000	1,000	0.2	201	7,017	0,041	4,000	4,000	4,000	.0,001	.2,102	.2,730	.2,0.0	. 4,000

Table 94. U.S. longline landings in the North Pacific and Eastern Pacific Oceans as reported to WCPFC and IATTC, 2008-2012

	U.S. long	gline cate	ch (mt) b	y specie	s in the	U.S	S. long	gline cat	ch (mt) b	y specie	s in the	U.S. Ion	gline cat	ch (mt) b	y species	in the	U.S. lo	ngline cat	ch (mt) b	y species	in the
	North Pa	acific Oc	ean, 200	8-2012.		Ea	stern	Pacific (Ocean, 2	008-201	2.	Eastern	Pacific (Ocean, 2	008-2012.		Easter	n Pacific	Ocean, 20	008-2012	
		ı	J.S. (ISC))			-	All U.S. v	essels ir	the EPC)	U.S.	vessels	GT 24 me	eters in the	e EPO	U.S.	vessels l	E 24 met	ers in the	∌ EPO
	2012	2011	2010	2009	2008	2	012	2011	2010	2009	2008	2012	2011	2010	2009	2008	201	2 2011	2010	2009	2008
<u>Vessels</u>	129	129	125	128	130		102	112	118	103	120	29	28	30	26	31	7	3 84	88	77	89
Cunning																					
Species Albacara North Bacific	659	708	421	203	354		65	98	49	22	48	18	46	21	7	13	4	6 53	28	15	35
Albacore, North Pacific	009	708	421	203	354		00	90				10	40	21	- 1	13	4	0 53	20	15	35
Albacore, South Pacific		-	-	4,628	•						-	205	207	407	400	240	50	7 740	050	504	962
Bigeye tuna	5,854	5,701	5,440		,		861	1,050	-		,	295	337	407	199	348	56	7 713	950	531	
Pacific bluefin tuna	0	0	0	1	0		0	0			0				0	0				0	
Skipjack tuna	245	207	153	136	120		7	15		15		2			4	1		5 9		12	
Yellowfin tuna	885	937	568	527	875		38	55			35	22	26		64	15	1	6 29	29	19	
Other tuna	0	0	0	0	0		0	0			0	0			0					0	
TOTAL TUNA	7,644	7,552	6,582	5,494	7,310		971	1,218	1,481	851	1,396	337	414	459	274	378	63	4 804	1022	577	1018
Black marlin	1	1	1	1	0		0	0	0	0	0				0			0 0	0		
Blue marlin	297	373	306	360	349		21	38	45	20	22	4	13	12	6	6	1	7 25	33	14	16
Sailfish	9	13	11	10	11		1	2			1	0		0	0	0		1 2		0	
Spearfish	163	234	118	113	225		17	31	31	14	17	5	9		3	5	1	2 22		11	12
Striped marlin, North Pacific	282	362	165	258	427		20	31	28		20	6	11	7	6	7	1			13	
Striped marlin, South Pacific	0	0	0	0	0		0	0			0				-			-			
Other marlins	1	1	1	0	2		0	0			0	0				0		0	0	0	0
Swordfish, North Pacific	1,418	1.623	1,676	1,817	2,014		521	764	642		732	226	330	314	334	314	29		_	235	
Swordfish, South Pacific	0	0	.,0.0	0	2,011		0	0		0	0			0	00.	• • •			020		
TOTAL BILLFISH	2,170	2,608	2,278	2,559	3,028		580	867	747		793	241	364	341	350	332	33	8 503	406	273	461
TOTAL BILLITION	2,170	2,000	2,210	2,000	0,020		000	001		020	700		001	011	000	002		000	100	210	101
Blue shark	16	13	7	9	7		1	2			0	0	1	0	0	0		1 1	1	0	0
Mako shark	68	68	94	120	133		18	18	26	17	24	11	8	10	8	7		7 10	16	9	16
Thresher	14	19	18	30	41		1	1	1	1	3	1	0	1		1		1 1	1	1	2
Other sharks	2	2	3	6	4		0	0	1	0	0			0	0				1		0
TOTAL SHARKS	99	103	122	165	185		20	20	30	19	27	11	9	11	9	8		9 11	19	11	19
Mahimahi	427	418	439	330	377		86	76	186	58	49	29	25	40	14	14	5	7 50	145	44	
Moonfish	734	757	824	887	615		293	364	426	380	206	92	104	112	81	54	20	0 261	313	299	152
Oilfish	256	272	237	226	202		28	40	53	25	24	9	16	18	10	8	1	9 24	35	15	16
Pomfret	311	181	239	255	280		41	33	51	42	57	10	7	13	9	14	3	1 26	37	33	42
Wahoo	167	161	128	134	206		11	14	15	14	14	3	4	4	4	4		8 9	11	10	10
Other fish	9	21	12	8	14		0	0	2	0	0	0	0	0	0			0 0	2	0	C
TOTAL OTHER	1,905	1,810	1,878	1,840	1,693		459	527	733	519	350	145	156	188	119	95	31	5 371	544	400	255
GEAR TOTAL	11,817	12,073	10,861	10,058	12,217		2,030	2,632	2,990	2,013	2,566	734	943	1,000	752	813	1,29	1,689	1,991	1,261	1,753

Literature cited

Boggs, C., Dalzell, P., Essington, T., Labelle, M., Mason, D., Skillman, R., and J. Wetherall. 2000. Recommended overfishing definitions and control rules for the western Pacific regional fishery management council's pelagic fishery management plan. Administrative Report H-00-05, Honolulu Laboratory, SWFSC, NMFS, NOAA.

Brodziak, J. 2012. Executive Summary: Western and Central North Pacific Striped Marlin Stock Assessment. ISC/12/BILLWG-2/1

Davies, N., Hoyle, S., Harley S., Langley, A., Kleiber, P. and J. Hampton 2011. Stock assessment of bigeye tuna in the western and central Pacific Ocean. WCPFC-SC7-2011/SA-WP-02, Pohnpei, Federated States of Micronesia, 9-17 August 2011.

Hoyle, S., Kleiber, P., Davies, N., Langley, A. and J. Hampton 2011. Stock assessment of skipjack tuna in the western and central Pacific Ocean. WCPFC-SC7-2011/SA-WP-04, Pohnpei, Federated States of Micronesia, 9-17 August 2011.

Hoyle, S., Hampton, J., and N. Davies 2012. Stock assessment of albacore tuna in the South Pacific Ocean. WCPFC-SC8-2012/SA-WP-04, Busan, South Korea, 7-15 August 2012.

ISC Billfish Working Group. 2009. International Scientific Committee for Tuna and Tuna-Like Species [ISC] Plenary. Annex 7. Report of the Billfish Working Group Workshop (19-26 May 2009; Busan, Korea), 74 p.

ISC Albacore Working Group. 2011. Stock Assessment of Albacore Tuna in the North Pacific Ocean in 2011. WCPFC-SC7-2011/SA-WP-10, Pohnpei, Federated States of Micronesia, 9-17 August 2011.

ISC Billfish Working Group. 2012. Annex 5 REPORT OF THE BILLFISH WORKING GROUP WORKSHOP. WCPFC-SC8-2012/SA-WP-10, Busan, South Korea, 7-15 August 2012.

ISC Billfish Working Group. 2013. Stock assessment of blue marlin in the Pacific Ocean. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean. 125 p.

ISC Pacific Bluefin Tuna Working Group. 2014. Stock assessment of Pacific bluefin tuna. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean. 110 p.

Kleiber, P., Clarke, S., Bigelow, K., Nakano, H., McAllister, M. and Y. Takeuchi. 2009. North Pacific Blue Shark Stock Assessment. NOAA Tech. Memo. NMFS PIFSC-17. 74 p.

Langley, A., Hoyle, S. and J. Hampton 2011. Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WCPFC-SC7-2011/SA-03, Pohnpei, Federated States of Micronesia, 9-17 August 2011.

Rice, J. and S. Harley. 2012. Stock assessment of oceanic whitetip sharks in the western and central Pacific Ocean. WCPFC-SC8-2012/SA-WP-06, Busan, South Korea, 7-15 August 2012.

Rice, J. and S. Harley. 2013. Updated stock assessment of silky sharks in the western and central Pacific Ocean. WCPFC-SC9-2013/SA-WP-03, Pohnpei, Federated States of Micronesia, 6-14 August 2013.

F. Marine Recreational Fisheries of the Western Pacific Region

Introduction

Fishing, either for subsistence or recreation, continues to be an important activity throughout the Western Pacific Region in the four major populated island areas of the Western Pacific Region, Hawaii, American Samoa, Guam and the Commonwealth of the Northern Mariana Islands (CNMI). Fish consumption in Micronesia and Polynesia typically averages about 130 lb/per capita/yr (Dalzell et al. 1996) and even in more culturally diverse Hawaii, fish consumption is almost three times the US national average at about 42 lb/person/yr (Dalzell & Paty 1996).

Recreational fisheries in the Western Pacific Region

In Hawaii, recreational shoreline fishing was more popular than boat fishing up to and after WW II. Boat fishing during this period referred primarily to fishing from traditional canoes (Glazier 1999). All fishing was greatly constrained during WW II through time and area restrictions, which effectively stopped commercial fishing and confined recreational fishing to inshore areas (Brock 1947). Following WWII, the advent of better fishing equipment and new small boat hulls and marine inboard and outboard engines led to a growth in small vessel-based recreational fishing.

A major period of expansion of small vessel recreational fishing occurred between the late 1950s and early 1970s, through the introduction of fiberglass technology to Hawaii and the further refinement of marine inboard and outboard engines (Figure 154). By the early 1960s, there were an estimated 5,300 small boats in the territory being used for recreational fishing. By the 1980s, the number of recreational or pleasure craft had risen to almost 13,000 vessels and to about 15,000 vessels in the 1990s. There are presently about 30 fishing clubs in Hawaii and a variety of different recreational fishing tournaments organized both by clubs and independent tournament organizers. Hawaii also hosts between 150 and 200 boat-based fishing tournaments, about 30 of which are considered major international competitions, with over 20 boats and entry fees of \$100. This level of interest in recreational fishing is sufficient to support a local fishing magazine, Hawaii Fishing News, which besides articles of interest to recreational fishermen, includes a monthly roundup of the fishing activity and conditions at the major small boat harbors in the State.

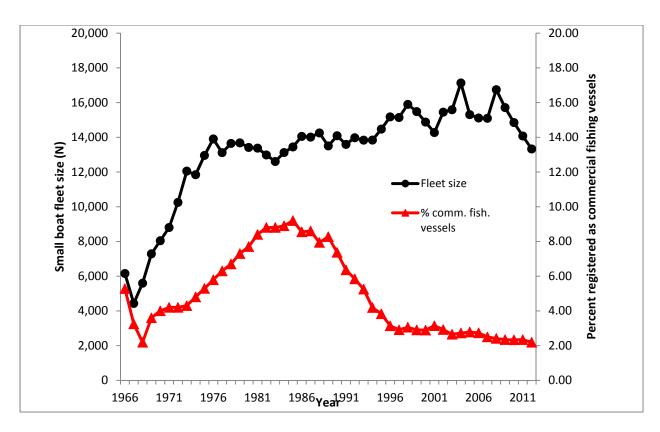


Figure 128. Annual number of small vessel fleet registrations in Hawaii, 1966-2012 - total fleet size and percentage of vessels being registered for commercial fishing (Source: Hawaii Division of Boating and Ocean Resources)

Elsewhere in the region, recreational fishing is less structured. In Guam, fishing clubs have been founded along ethnic lines by Japanese and Korean residents. These clubs had memberships of 10-15 people, along with their families. Four such clubs were founded in Guam during the past 20 years, but none lasted for more than a 2-3 years (Gerry Davis, NMFS PIRO pers. comm.). There was also a Guam Boating Association comprising mostly fishermen, with several hundred members. This organization functioned as a fishing club for about 10 years and then disbanded. Some school groups and the Boy Scouts have formed fishing clubs focused on rod and reel fishing, and there is still one spear-fishing club that has only a handful of members, but appears to still be active. There are also some limited fishing tournaments on Guam, including a fishing derby for children organized by the local Aquatic and Wildlife Resources Division. There are few fishing clubs in the in the Northern Mariana Islands. The Saipan Sportfishing Association (SSA) has been in existence for at least 16 years, and is the sponsor of the annual Saipan International Fishing Tournament, which is usually held in August or September. In 1997, the SSA listed approximately 40 members. A recent innovation in the Mariana Island is the publication of a free quarterly magazine, Mariana Fishing Magazine, which covers recreational fishing in both Guam and the CNMI.

Levine and Allen (2009) provide an overview of fisheries in American Samoa, including subsistence and recreational fisheries. Citing a survey conducted in American Samoa by Kilarski *et al.* (2006), Levine and Allen noted that approximately half of the respondents stated that they

fished for recreation, with 71 percent of these individuals fishing once a week or less. Fishermen also fished infrequently for cultural purposes, although cultural, subsistence, and recreational fishing categories were difficult to distinguish as one fishing outing could be motivated by all three reasons.

Boat-based recreational fishing in American Samoa has been influenced primarily by the fortunes of fishing clubs and fishing tournaments. Tournament fishing for pelagic species began in American Samoa in the 1970s, and between 1974 and 1998, a total of 64 fishing tournaments were held in American Samoa (Tulafono 2001). Most of the boats that participated were alia catamarans and small skiffs. Catches from tournaments were often sold, as most of the entrants are local small-scale commercial fishermen. In 1996, three days of tournament fishing contributed about one percent of the total domestic landings. Typically, 7 to 14 local boats carrying a total of 55 to 70 fishermen participated in each tournament, which were held two to five times per year (Craig et al. 1993).

The majority of tournament participants operated 28-foot alia, the same vessels that engage in the small-scale longline fishery. With more emphasis on commercial longline fishing since 1996, interest in the tournaments waned (Tulafono 2001) and pelagic fishing effort shifted markedly from trolling to longlining. Catch-and-release recreational fishing is virtually unknown in American Samoa. Landing fish to meet cultural obligations is so important that releasing fish would generally be considered a failure to meet these obligations (Tulafono 2001). Nevertheless, some pelagic fishermen who fish for subsistence release fish that are surplus to their subsistence needs.

More recently, recreational fishing has undergone a renaissance in American Samoa through the establishment of the Pago Pago Game Fishing Association (PPGFA), which was founded by a group of recreational anglers in 20032. The motivation to form the PPGFA was the desire to host regular fishing competitions. There are about 15 recreational fishing vessels ranging from 10 ft single engine dinghies to 35 ft twin diesel engine cabin cruisers. The PPGFA has annually hosted international tournaments in each of the past five years with fishermen from neighboring Samoa and Cook Islands attending. The recreational vessels use anchored fish aggregating devices (FADs) extensively, and on tournaments venture to the various outer banks which include the South Bank (35 miles), North East Bank (40 miles NE), South East bank (37 miles SE), Two Percent Bank (40 miles), and East Bank (24 miles East). Several recreational fishermen have aspirations to become charter vessels and are in the process of obtaining captains (6 pack) licenses. In 2011, PPGFA played host to the 12th Steinlager I'a Lapo'a Game Fishing Tournament, which was a qualifying event for the International Game Fish Association's Offshore World Championship in Cabo San Lucas, Mexico.

There is no full-time regular charter fishery in American Samoa similar to those in Hawaii or Guam. However, Pago Pago Marine Charters3, which is concerned primarily with industrial

3 http://pagopagomarinecharters.com/

-

² http://ppgfa.com/page/about-ppgfa

work such as underwater welding, construction, and salvage, also includes for-hire fishing among the services it offers.

There is also some recreational fishing activity at some of the Pacific Remote Island Areas (PRIAs), namely at Midway, Wake and Palmyra Islands. There are no resident populations at Howland & Baker, Johnston and Jarvis Islands and fishing activity at these locations is likely minimal. There was a tourist facility at Midway until 2002, which operated a charter boat fishery targeting primarily pelagic fish at Midway Atoll. The company operated five vessels for charter fishing at Midway: three 22-26 ft catamarans for lagoon and nearshore fishing operations and two 38 ft sportfishing vessels used for blue water trolling. In addition, there were approximately seven small vessels maintained and used by Midway residents for recreational fishing. Of this total, three vessels engaged primarily in offshore trolling for PMUS including yellowfin tuna, whaoo and marlin. All vessels fishing at Midway were required to file a float plan prior to a fishing trip and complete the "Midway Sports Fishing Boat Trip Log" upon completion of each trip. The US Fish and Wildlife Service was responsible for compiling these catch data.

At Palmyra Atoll, an island privately owned by The Nature Conservancy, a 22 ft catamaran is used for offshore trolling and four small boats operated within the lagoon used for bonefish angling. There are several craft used for recreational fishing at the military base on Wake Island including two landing craft and two small vessels.

Recreational catches

Estimates of recreational pelagic fish catch for the Western Pacific are given in Table 133. The data for Guam, CNMI, and American Samoa are based on the proportion of catches landed for sale and catches retained and not sold, in all landings sampled by creel surveys in each area. The ratio of unsold to sold catch in the samples was used in conjunction with the total catch estimate expanded from the creel survey data. This was adjusted downwards based on the creel surveys by the ratio of landings by vessels retaining 100% of their catch to the total unsold catch. This accounts for that fraction of the catch not sold by commercial fishing vessels. The volume of fish landed by vessels retaining all their catch was labeled the nominal recreational catch.

The estimates for American Samoa are almost certainly under-estimates due to the creel surveys not picking up the activities of sports-fishermen belonging to the Pago Pago Yacht Club. Most of their activities are conducted on the weekend, when the creel survey mounted by DMWR is inactive. A special survey is being undertaken by DMWR staff to capture this recreational fishing activity.

The recreational catch for Hawaii is generated from the Hawaii Marine Recreational Fisheries Statistical Survey, which is a collaborative effort between the State of Hawaii's Division of Aquatic Resources and the National Marine Fisheries Service (NMFS) Office of Science and Technology. This survey is part of the NMFS Marine Fisheries Recreational Statistical Survey (MRFSS) which has been modified following a review by the National Academy of Science in 2006 under the auspices of the Marine Recreational Improvement Program (MRIP).

Table 95. Estimated boat-based recreational pelagic fish catches in the four principal island groups of the Western Pacific Region in 2012

Location	Total catch (lbs)	Unsold catch (lb)	Nominal recreational catch (lb)	Recr. catch as % of total catch	Recr. fishing trips
American Samoa	8,863,848	2,753	2,253	0.025%	4
Guam	233,829	115,792	83,487	35.7%	4,119
Hawaii	44,436,638	NA	12,330,638	27.75%	324,593
CNMI	178,438	18,218	18,030	10.10%	1,911

Charter vessel sports-fishing

Tables 96-99 present summaries of the charter vessel sportsfishing in the Western Pacific. Charter fishing in Hawaii is more focused on catching blue marlin, which in 2004 formed about 50 % of the total annual charter vessel catch by weight, but in 2012 only formed about 20% of the charter vessel catch and was superseded by yellowfin and mahmahi. Although commercial troll vessels take blue marlin, this species only forms about 6% of their catch, with the majority of the target species being yellowfin, mahimahi, and wahoo (Table 97). Unlike other parts of the US, there is little recreational fishery interest in catching sharks in Hawaii.

Guam has a charter fishing sector, which unlike Hawaii, caters for both pelagic and bottomfish fishing. Until recently, the troll charter fishery was expanding, but over the past few years, the number of vessels involved and level of fishing has decreased in response to lower tourist volume from Japan due to the ongoing economic recession. Nonetheless, although compromising about 5% of Guam's commercial troll fleet, the Guam troll charter industry accounts for 8.4% of the troll catch, and 36% and 13% of the Guam blue marlin and mahimahi catch respectively (see Guam module in this volume).

Charter fishing in CNMI is limited, with about ten boats operating on Saipan, and a few vessels on Tinian conducting occasional fishing charters. In American Samoa, tourism is not a significant component of the economy, and hence there is little charter fishing activity. As noted previously, there are few vessels suitable for charter-type operations (Tulafono 2001).

Table 96. Estimated catches by pelagic charter fishing vessels in Guam, Hawaii and CNMI in 2012

	Catch	Effort	CPUE	
Location	(lb)	(trips)	(lb/trip)	Principal species
Guam	38,639	983	39.3	Mahimahi, Blue marlin, Skipjack
Hawaii	661,477	9,324	70.9	Yellowfin, Mahimahi, Blue marlin
CNMI	4,922	173	28.5	Wahoo, Skipjack, Mahimahi

Charter vessel fishing in the Western Pacific Region has elements of both recreational and commercial fishing. The primary motivation for charter patrons is recreational fishing, with the possibility of catching large game fish such as blue marlin. The charter vessel skipper and crew receive compensation in the form of the patron's fee, but are also able to dispose of fish on local markets, as is the case in Hawaii. The catch composition of charter vessel catch versus conventional commercial trolling in Hawaii reflects the different targeting in the two fisheries. Blue marlins are among the dominant catch of charter vessels in Hawaii (Table 97), along with yellowfin and mahimahi. In Guam, blue marlin are also a dominant feature in charter catches, though the single largest catch is mahimahi (Table 98). In the CNMI, blue marlin are rarely taken by the charter fishery and catches are dominated by wahoo, mahimahi and skipjack (Table 99).

Table 97. Comparison of species composition of landings made by Hawaii pelagic charter vessels versus commercial troll vessels, 2012

	Cha	rter	Commercia	al troll
Species	Landings (lb)	Percent	Landings (lb)	Percent
Yellowfin tuna	159,540	33.63%	1,014,658	36.58%
Mahimahi	114,987	24.24%	734,061	26.47%
Blue marlin	97,953	20.65%	166,904	6.02%
Wahoo	38,322	8.08%	370,799	13.37%
Skipjack	36,154	7.62%	192,252	6.93%
Spearfish	12,023	2.53%	11,176	0.40%
Striped marlin	7,712	1.63%	13,914	0.50%
Bigeye tuna	3,882	0.82%	232,877	8.40%
Black marlin	1,481	0.31%	5,106	0.18%
Kawakawa	1,215	0.26%	4,685	0.17%
Uku	489	0.10%	10,339	0.37%
Others	696	0.15%	16,804	0.61%
Total	474,452	100.00%	2,773,573	100.00%

Table 98. Comparison of species composition of landings made by Guam pelagic charter vessels versus commercial troll vessels, 2012

	Charte	r	Commer	cial
Species	Landings (lb)	Percent	Landings (lb)	Percent
Mahimahi	15,615	40.41%	84,504	17.06%
Blue Marlin	10,511	27.20%	12,718	2.57%
Skipjack Tuna	5,022	13.00%	313,278	63.24%
Wahoo	5,712	14.78%	44,643	9.01%
Yellowfin Tuna	1,779	4.60%	29,609	5.98%
Others	0	0.00%	10,632	2.15%
Total	38,639	100.00%	495,384	100.00%

Table 99. Comparison of species composition of landings made by CNMI pelagic charter vessels versus commercial troll vessels, 2012

	Charte	r	Commer	cial
Species	Landings (lb)	Percent	Landings (lb)	Percent
Wahoo	2,155	43.78%	16,031	3.54%
Mahimahi	1,221	24.81%	38,015	8.40%
Skipjack Tuna	1,160	23.57%	287,482	63.56%
Others	244	4.96%	27,462	6.07%
Yellowfin Tuna	142	2.89%	73,565	16.26%
Blue Marlin			9,751	2.16%
Total	4,922	100.00%	452,306	100.00%

In Hawaii there is considerable variation in charter vessel catches between the various islands (Table 100), with the largest charter vessel fishery based on the island of Hawaii. However, in 2012, charter vessel catches on the island of Oahu accounted for 33.5% of the total charter vessel landings within the state, with the Hawaii charter catch being slightly smaller at about 31% of the total.

Table 100. Charter vessel catches in Hawaii by island, 2012

Island	Catch (lb)	Percent	Trips	Percent	CPUE (lb/trip)
Hawaii	202,775	30.65%	4,013	43.04%	50.53
Kauai	98,757	14.93%	1,153	12.37%	85.65
Maui County	138,714	20.97%	2,076	22.27%	66.82
Oahu	221,232	33.45%	2,082	22.33%	106.26
Total	661,477	100.00%	9,324	100.00%	70.94

^{*} DAR confidentiality protocols prevent reporting charter vessel activity for Molokai and Lanai separately, and these are aggregated with data for Maui, reported collectively as Maui County

Most charter vessel fishing on the island of Hawaii is conducted from Kona's small boat harbor at Honokohau, and about 36% of the charter vessel catch is comprised of blue marlin (Table 101). Blue marlin used to amount to about two-thirds of the catch, but this number has fallen considerably with the spread of a stronger catch and release ethic for billfish by charter vessel operators at Honokohau. Elsewhere, yellowfin, mahimahi and wahoo tend to dominate charter vessel landings.

Table 101. Composition of charter vessel catches in the Main Hawaiian Islands, 2012

Hawaii	Landings (lb)	Percent	Kauai	Landings (lb)	Percent
Blue marlin	72,076	35.54%	Yellowfin tuna	48,992	49.61%
Yellowfin tuna	65,406	32.26%	Mahimahi	18,326	18.56%
Mahimahi	19,964	9.85%	Aku	14,501	14.68%
Wahoo	17,332	8.55%	Wahoo	7,791	7.89%
Skipjack	10,344	5.10%	Blue marlin	7,274	7.37%
Spearfish	10,280	5.07%	Striped marlin	1,310	1.33%
Striped marlin	4,028	1.99%	Spearfish	518	0.52%
Bigeye tuna	3,018	1.49%	Uku	45	0.05%
Black marlin	276	0.14%			
Barracuda	50	0.02%			
Total	202,775	100.00%		98,757	100.00%

Maui	Landings (lb)	Percent	Kauai	Landings (lb)	Percent
Mahimahi	60,214	43.41%	Mahimahi	90,386	40.86%
Yellowfin tuna	43,841	31.61%	Yellowfin tuna	86,711	39.19%
Blue marlin	16,591	11.96%	Blue marlin	19,050	8.61%
Wahoo	11,765	8.48%	Wahoo	10,307	4.66%
Spearfish	1,945	1.40%	Skipjack	6,924	3.13%
Striped marlin	1,783	1.29%	Striped marlin	3,654	1.65%
Bigeye tuna	1,651	1.19%	Spearfish	1,916	0.87%
Skipjack	460	0.33%	Bigeye tuna	1,250	0.57%
Kawakawa	245	0.18%	Kawakawa	609	0.28%
Kamanu	164	0.12%	White ulua	220	0.10%
Barracuda	55	0.04%	Barracuda	205	0.09%
Total	138,714	100.00%	Total	221,232	100.00%

Recreational Fishing Data Collection in Hawaii

Recreational fish catches in Hawaii are monitored through the Hawaii Marine Recreational Fishing Survey (HMRFS), a collaborative project of the NMFS Office of Science and Technology and the Hawaii Division of Aquatic Resources. This project is a segment of the nationwide Marine Recreational Fisheries Statistical Survey (MRFSS), which has been used by NMFS to estimate recreational catches in most of the coastal states of the US.

The MRFSS program uses a triple survey approach that has been developed over the 20+ years of its history. For each two-month survey period (wave) a random sample of households is called by telephone to determine how many have conducted any fishing in the ocean, their mode of fishing (private boat, rental boat, charter boat, or shoreline), what methods were used, and how much effort (number of trips and hours) was expended. Concurrently, surveyors are sent out to boat launch ramps, small boat harbors, and shoreline fishing sites to interview fishermen to fill out intercept survey forms. The intercept survey collects data on fishing area, fishing methods, trip/effort, species caught, and lengths and weights of fish. The sites are randomly selected, but stratified by fishing pressure so that the sites with the highest pressures are likely to be surveyed more often. In addition the charter boat operators are surveyed by a separate survey. This

additional survey of the charter fleet serves the same function as the random digit dialing household survey and is necessary because out of town fishers that charter vessels would not be covered by randomly calling the Hawaiian populace. The telephone and charter survey data are used to estimate total statewide fishing effort and the intercept surveys provide detailed catch and trip information. Data from the three surveys are combined and expanded to yield statewide estimates of total effort and catch by species, mode, and county.

NMFS and HDAR contributed joint funding for intercept surveys and charter boat surveys on the islands of Oahu, Hawaii, and Maui. NMFS also funded the Random Digit Dialing household telephone survey via a national contractor beginning in January 2001. The HMRFS project commenced in July 2001 but took until 2003 until annual results were first reported from this initiative.

In 2006, the MRFSS survey was reviewed by the National Research Council of the National Academy of Sciences (NRC 2006). The reviewers were critical of the statistical methods employed to generate expansions of the survey data to annual recreational catch estimates for each state. Consequently, NMFS conducted an overhaul of the MRFSS survey to respond to the NRC criticisms. As such, readers of this report should understand that there is uncertainty surrounding the various expansions from the HMRFS survey and figures reported here may change as new methods are implemented to conduct the expansions from survey data.

Table 102 provides summaries of the recreational boat and shoreline fish catch between 2003 and 2012 for pelagic fish.

Table 102. Recreational pelagic fish catches in Hawaii between 2003 and 2012

Year	Shore catch (lb)	Vessel catch (lb)	Total (lb)
2003	422,439	14,906,148	15,328,587
2004	120,779	12,210,682	12,331,461
2005	229,059	11,564,698	11,793,758
2006	258,802	11,830,852	12,089,654
2007	114,832	13,956,644	14,071,475
2008	56,937	21,802,388	21,859,325
2009	66,635	17,071,414	17,138,049
2010	14,469	11,754,054	11,768,523
2011	14,216	10,574,696	10,588,912
2012	NA	12,330,638	12,330,638

Source: HDAR HMFRS and NMFS PIFSC

Figures 129-132 summarize aspects of the boat-based recreational fishery landings for six major pelagic fish species in Hawaii (blue marlin, striped marlin, mahimahi, skipjack, yellowfin and wahoo) between 2003 and 2012. Figure 133 shows the bimonthly distribution of boat-based fishing effort over the same time period. Skipjack tuna are the most commonly recreationally caught pelagic fish (Figure 129) followed by yellowfin tuna, mahimahi and wahoo. In terms of weight, however, yellowfin tuna dominates recreational pelagic fish catches (Figure 130).

Although blue marlin numbers in the catch are small compared to other species, the much greater average weight (Figure 131) means that it can comprise a significant fraction of the recreational catch by weight. Average weights for most species tended to be relatively similar between years for mahimahi, skipjack and wahoo, but may vary considerable between years for blue marlin, striped marlin and yellowfin tuna. This is also reflected in the nominal catch rate (lbs/trip) in Figure 132, where yellowfin catch rate was high in 2003, declined in 2004 and 2005, and then increased with peaks in 2009 and 2011. The distribution of fishing recreational fishing effort shows that boat based activity is highest in the summer and fall when the weather is at its most clement in Hawaii (Figure 133).

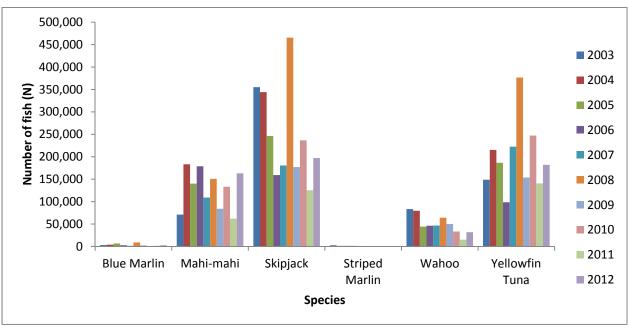


Figure 129. Annual recreational fishery landings by number for six major pelagic species from 2003-2012

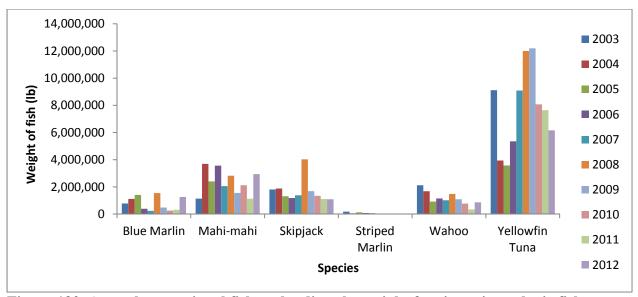


Figure 130. Annual recreational fishery landings by weight for six major pelagic fish species in Hawaii from 2003-2012

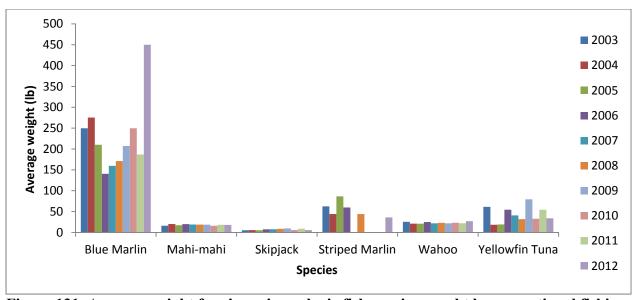


Figure 131. Average weight for six major pelagic fish species caught by recreational fishing in Hawaii from 2003-2012

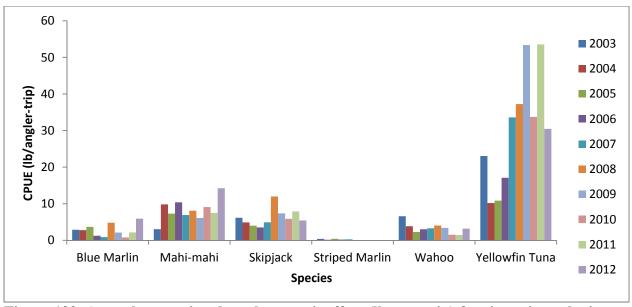


Figure 132. Annual recreational catch per unit effort (lbs per trip) for six major pelagic species in Hawaii from 2003-2012

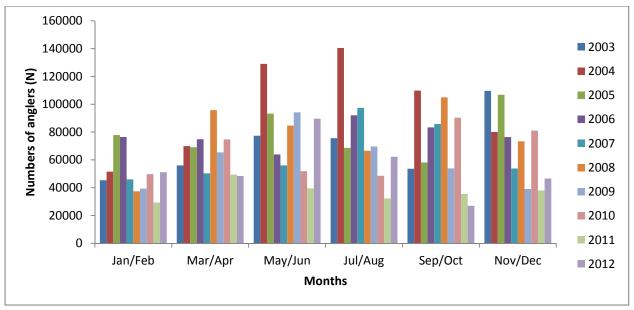


Figure 133. Boat fishing trip estimates (number of angler trips, 2003-2012)

References

Brock, V.E. Report of the Director, Division of Fish and Game. Report of the Board of Commissioners of Agriculture and Forestry of the Territory of Hawaii. Honolulu.

Craig, P., B. Ponwith, F. Aitaoto, and D. Hamm. 1993. The commercial, subsistence, and

recreational fisheries of American Samoa – Fisheries of Hawaii and U.S. – associated pacific Islands. Marine Fisheries Review 55 (2), 109-116.

Dalzell, P., T. Adams, & N. Polunin, 1996. Coastal fisheries in the South Pacific. Oceanography and Marine Biology Annual Review 33, 395-531.

Dalzell, P. & W. Paty, 1996. The importance and uniqueness of fisheries in the Western Pacific Region. Paper presented at the 91st Western Pacific Fishery Council Meeting, 18-21 November 1996, Honolulu, 10 p.

Glazier, E.W. 1999. Social aspects of Hawaii's small vessel troll fishery. Phase II of the Social Aspects of Pacific Pelagic Fisheries Program, Univ. Hawaii, JIMAR, 287 pp.

Kilarski, S., D. Klaus, J. Lipscomb, K. Matsoukas, R. Newton, and A. Nugent. 2006. Decision Support for Coral Reef Fisheries Management: Community Input as a Means of Informing Policy in American Samoa. A Group Project submitted in partial satisfaction of the requirements of the degree of Master's in Environmental Science and Management for the Donald Bren School of Environmental Management. University of California, Santa Barbara.

Levine, A. and S. Allen. 2009. American Samoa as a fishing community. U.S. Dept. of Commerce, NOAA Tech. Memo., NOAA-TM-NMFS-PIFSC-19, 74 pp.

Tulafono, R. 2001. Gamefishing and tournaments in American Samoa. In, Proceedings of the 1998 Pacific Island Gamefish Symposium: Facing the Challenges of Resource Conservation, Sustainable Development, and the Sportfishing Ethic, 29 July-1 August, 1998, Kailua-Kona, Hawaii, Western Pacific Regional Fishery Management Council.

Appendix 1: 2012 Pelagic Plan Team Members

Pelagics

Mr. Keith Bigelow (CHAIR)

NMFS Pacific Islands Fisheries Science Center

Dr. Christofer Boggs NMFS Pacific Islands Fisheries Science Center

Mr. Michael Fujimoto Hawaii Division of Aquatic Resources

Mr. Russell Ito NMFS Pacific Islands Fisheries Science Center

Dr. Pierre Kleiber NMFS Pacific Islands Fisheries Science Center

Mr. Brent Tibbats Guam Division of Aquatic & Wildlife Resources

Mr. Paul Bartram Akala Products Inc.

Mr. Nonu Tuisamoa American Samoa Dept. of Marine & Wildlife

Resources

Mr. Tom Graham NMFS Pacific Islands Regional Office

Ex-officio Members of All Plan Teams

Mr. Michael Quach NMFS Pacific Islands Fisheries Science Center

Mr. Reginald Kokubun Hawaii Division of Aquatic Resources

Mr. Justin Hospital NMFS Pacific Islands Fisheries Science Center

Appendix 2: Glossary of Terms and List of Acronyms

Glossary of Terms

<u>TERM</u> <u>DEFINITION</u>

Alia Samoan fishing catamaran, about 30 feet long, constructed of aluminum or wood with fiberglass.

Used for various fisheries including trolling, longline, and bottomfishing

Bycatch Fish caught in a fishery but discarded or released, except in a recreational fisheries catch and

release program.

Commercial Commercial fishing, where the catch is intended to be sold, bartered, or traded.

Guam A U.S. territory in the Marianas Archipelago. South of and adjacent to the Commonwealth of

Northern Marianas Islands.

Hawaii U.S. state. See MHI, NWHI. Composed of the islands, atolls and reefs of the Hawaiian

Archipelago from Hawai'i to Kure Atoll, except Midway Islands. Capitol - Honolulu.

Ika-shibi Hawaiian term for night tuna handline fishing method. Fishing for tuna using baited handlines at

night with a nightlight and chumming to attract squid and tuna.

Incidental Catch Fish caught that are retained in whole or part, though not necessarily the targeted species.

Examples include monchong, opah and sharks.

Interaction Catch of protected species, which is required to be released. Examples: Hawaiian monk seals,

marine turtles and albatrosses.

Logbook Journal kept by fishing vessels for each fishing trip; records catch data, including bycatch and

incidental catch. Required in the federally regulated longline and crustacean fisheries in the

Hawaiian EEZ.

Longline Fishing method utilizing a horizontal mainline stretching from several hundred yards to many

miles in length, suspended for the surface by floats, to which droppers with baited hooks are

attached.

Longliner Fishing vessel specifically adapted to use the longline fishing method.

Palu-ahi Hawaiian term for day tuna handline fishing. Fishing for tuna using baited handlines and

chumming with cut bait in a chum bag or wrapped around a stone. Also, drop-stone, make-dog,

etc.

Pelagic The pelagic habitat is the upper layer of the water column from the surface to the thermocline. The

pelagic species include all commercially targeted highly migratory species such as tuns, billfish and some incidental-catch species such as sharks, as well as coastal pelagic species such as akule

and opelu.

Pole-and-Line Fishing for tuna using poles and fixed leaders with barbless lures and chumming with live baitfish.

Poles can be operated manually or mechanically. Also, fishing vessels called baitboats or aku-

boats (Hawaii).

Protected Refers to species which are protected by federal legislation such as the Endangered Species Act,

Marine Mammal Protection Act, and Migratory Bird Treaty Act. Examples: Black-footed and

Laysan albatrosses, marine turtles, dolphins.

Purse seine Fishing for tuna by surrounding schools of fish with a very large net and trapping them by closing

the bottom of the net.

Recreational Recreational fishing for sport or pleasure, where the catch is not sold, bartered or traded.

Protected area. Commercial/recreational fishing may be restricted. Sanctuary

When capitalized and used in reference to fisheries within the U.S. EEZs, it refers to the U.S. Secretary

Secretary of Commerce.

Species such as akule (big-eye scad - *Selar* spp.) And opelu (mackerel scad - *Decapterus* spp). These fish occur mainly in shallow inshore waters but may also be found in deeper offshore **Small pelagics**

waters. Not part of the PMUS.

Trolling Fishing by towing lines with lures or live-bait from a moving vessel.

List of Acronyms

FDCC

FEP

<u>Acronym</u>	Meaning
AP	Advisory Panel. Appointed industry/government/educational representatives functioning in an advisory capacity to the Council.
AS	American Samoa. Includes the islands of Tutuila, Manua, Rose and Swains Atolls.
ASDPW	Department of Public Works, American Samoa. Also, DPW.
ASG	American Samoa Government
CNMI	Commonwealth of the Northern Mariana Islands. Also, Northern Mariana Islands, Northern Marianas, and NMI. Includes the islands of Saipan, Tinian, Rota, and many others in the Marianas Archipelago.
CPUE	Catch-Per-Unit-Effort. A standard fisheries index usually expressed as numbers of fish caught per unit of gear per unit of time, eg., number of fish per hook per line-hour or number of fish per 1,000 hooks. The term catch rate is sometimes used when data are insufficiently detailed to calculate an accurate CPUE.
DAWR	Division of Aquatic & Wildlife Resources, Territory of Guam.
DBEDT	Department of Business, Economic Development & Tourism, State of Hawaii.
DFW	Division of Fish & Wildlife, Northern Mariana Islands.
DLNR	Department of Land & Natural Resources, State of Hawaii. Parent agency for Division of Aquatic Resources (HDAR).
DMWR	Department of Marine & Wildlife Resources, American Samoa. Also, MWR.
DOC	Department of Commerce. In this annual report, it refers to the American Samoa Government.
EEZ	Exclusive Economic Zone, refers to the sovereign waters of a nation, recognized internationally under the United Nations Convention on the Law of the Sea as extending out 200 nautical miles from shore. Within the U.S., the EEZ typically is between three and 200 nautical miles from shore.
ESA	Endangered Species Act. An Act of Congress passed in 1966 that establishes a federal program to protect species of animals whose survival is threatened by habitat destruction, overutilization, disease etc.
FAD	Fish Aggregating Device; a raft or pontoon, usually tethered, and under which, pelagic fish will concentrate.

Fishery Data Coordinating Committee, WPRFMC.

Fisheries Ecosystem Plan

FFA Forum Fisheries Agency. An agency of the South Pacific Forum, which comprises the independent

island states of the South Pacific, Australia and New Zealand. The FFA formed to negotiated access agreements between FFA member countries and distant water fishing nations such as Japan

and the USA.

FMP Fishery Management Plan.

HDAR Hawaii Division of Aquatic Resources. Also, DAR.

HIMB Hawaii Institute of Marine Biology, University of Hawaii.

HMRFS Hawaii Marine Recreational Fishing Survey

HURL Hawaii Undersea Research Lab.

JIMAR Joint Institute of Marine and Atmospheric Research, University of Hawaii.

IATTC Inter-American Tropical Tuna Commission.

Lbs Pounds

MFCMA Magnuson Fishery Conservation and Management Act of 1976. Also, Magnuson-Stevens Fishery

Conservation and Management Act of 1996. Sustainable Fisheries Act. (Also, MSA)

MHI Main Hawaiian Islands (comprising the islands of Hawai'i, Mau'i, Lana'i, Moloka'i, Kaho'olawe,

O'ahu, Kauai', Ni'ihau and Ka'ula).

MRFSS Marine Recreational Fishing Statistical Survey

MSY Maximum Sustainable Yield.

mt Metric tonnes

MUS Management Unit Species

NMFS National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Department

of Commerce. Also NOAA Fisheries.

NOAA National Oceanic and Atmospheric Administration, U.S. Department of Commerce.

NWHI Northwestern Hawaiian Islands. All islands in the Hawaiian Archipelago, other than the Main

Hawaiian Islands (MHI).

OFP Oceanic Fisheries Program of the South Pacific Commission.

OY Optimum Yield.

PIFSC Pacific Islands Fisheries Science Center

PIRO Pacific Islands Regional Office, National Marine Fisheries Service. Also, NMFS PIRO.

PFRP Pacific Pelagic Fisheries Research Program, JIMAR, University of Hawaii. Also PPFRP.

PMUS Pacific Pelagic Management Unit Species. Also, PPMUS. Species managed under the Pelagics

FMP.

PPGFA Pago Pago Game Fishing Association

PT or PPT Pelagic Plan Team. Advisory body to the Council composed of scientists and fishermen who

monitor and manage the fisheries under the jurisdiction of the Pelagics FMP.

SAFE Stock Assessment and Fishery Evaluation, NMFS.

SPC South Pacific Commission. A technical assistance organization comprising the independent island

states of the tropical Pacific Ocean, dependant territories and the metropolitan countries of

Australia, New Zealand, USA, France and Britain.

SPR Spawning Potential Ratio. A term for a method to measure the effects of fishing pressure on a

stock by expressing the spawning potential of the fished biomass as a percentage of the unfished

virgin spawning biomass. Stocks are deemed to be overfished when the SPR<20%.

SSC Scientific & Statistical Committee, an advisory body to the Council comprising experts in

fisheries, marine biology, oceanography, etc.

USCG U.S. Coast Guard, 14th District, Department of Transportation.

USFWS U.S. Fish & Wildlife Service, Department of Interior. Also, FWS.

VMS Vessel Monitoring System. A satellite based system for locating and tracking fishing vessels.

Fishing vessels carry a transponder which can be located by overhead satellites. Two-way

communication is also possible via most VMS systems.

WPacFIN Western Pacific Fishery Information Network, NMFS.

WPRFMC Also, the Council. Western Pacific Regional Fishery Management Council. One of eight

nationwide fishery management bodies created by the Magnuson Fisheries Conservation and Management Act pf 1976 to develop and manage domestic fisheries in the U.S. EEZ. Composed

of American Samoa, Guam, Hawaii, and Commonwealth of Northern Mariana Islands.