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Executive Summary 

This population assessment is for the North Pacific (NP) loggerhead turtle (Caretta caretta) 
Distinct Population Segment (DPS) and the western Pacific (WP) leatherback turtle 
(Dermochelys coriacea) nesting population, with the sole purpose of evaluating the population-
level impacts of a single U.S. commercial fishery, the Hawaii-based shallow-set longline (SSLL) 
fishery on these two populations. Both populations are listed as Endangered under the 
Endangered Species Act (ESA), NP loggerheads as a DPS and WP leatherbacks as a global 
species. This assessment was performed in a Bayesian framework with four main components: 
nesting data imputation (leatherbacks only), nesting trend analysis, population viability analysis 
(PVA), and incorporation of direct SSLL fishery take into the PVA (i.e., adding a “take model” 
component). Conducting PVAs under scenarios with and without future takes by the SSLL 
fishery allowed for evaluation of the impact of the fishery on the population status (e.g., 
abundance relative to pre-determined thresholds) and trends for the two populations. Trends and 
abundance for nesting females were estimated using a Bayesian state-space model (Boyd et al. 
2017) with exponential population growth as the underlying process. Time series data used in the 
model originated from long-term nesting beach monitoring programs in Japan (loggerheads) and 
Indonesia (leatherbacks). The loggerhead data from Japan were provided as annual nest counts 
from three index beaches (Maehama, Inakahama, and Yotsusehama) from 1985 to 2015. The 
leatherback data came from two index beaches in Indonesia (Jamursba Medi and Wermon) from 
2001 to 2017. The leatherback data set contained months with no monitoring effort; thus, we 
developed a model to impute the missing data in order to produce a time series of annual nest 
counts. The imputation model was autoregressive with a lag of one month (AR1 model) where 
the relationship between the numbers of nests in two months was modeled by the Fourier series. 

This assessment indicated an increasing trend for NP loggerheads (2.3% annually; 95% CI: 
−11.1% to 15.6%) and a declining trend for the WP leatherbacks (−6.1% annually; 95% CI: 
−23.8% to 12.2%). For loggerheads, current abundance was estimated at 4541 total nesters (95% 
CI: 4074–5063) for the three index beaches in Japan which represent approximately 52% of all 
nesting individuals. For leatherbacks, current abundance for the two index beaches in Indonesia, 
which represent approximately 75% of all nesting individuals, was estimated from the median 
and 95% confidence limits of the imputed nest counts. Estimates of total nesters were as follows: 
790 (95% CI: 666–942) using the median for nest counts, 515 (95% CI: 425–634) using the 
lower 95% limit, and 1224 (95% CI: 1052–1425), using the upper 95% limit. It is important to 
note that these population growth rates better reflect long-term annual trends in the number of 
nesters rather than true population growth rates for the following reasons: (i) the model relies 
exclusively on nest count data, which we assume provide an index of Annual Nester abundance, 
(ii) nesters represent only a small portion of the total population that also includes adult males 
and immature turtles of both sexes, and (iii) assuming that the growth rate for nesters represents 
the growth rate for the whole population would also assume a stable age distribution, and we 
have no data to confirm this for either population.  

The PVA was developed to generate specific results to meet the needs outlined by the Pacific 
Islands Regional Office (PIRO) in a 2018 request, specifically: (1) mean and median times until 
each species declines to 50%, 25%, and 12.5% of current abundance estimates, (2) probability of 
each species reaching those thresholds in 5, 10, 25, 50, and 100-year time intervals with 
associated 95% confidence intervals, and (3) estimates of the species’ mean log growth rate 
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(with variance and 95% confidence intervals) and finite rate of increase (lambda; with variance 
and 95% confidence intervals). PVAs projections out 100 years in the future suggested a 100% 
chance of leatherbacks falling below 50% of their current abundance, with a mean of 13 years to 
reach that threshold, and a 33% chance of loggerheads falling below the 50% abundance 
threshold, with a mean of 25 years to reach that threshold. At 10 years in the future, the chance 
of falling below the 50% abundance threshold was 40% for leatherbacks and 8% for 
loggerheads. 

The take model component was developed to assess the population impacts of direct interactions 
between SSLL fishery gear (i.e., longline hooks) and turtles from the specified populations. A 
direct interaction can result in the immediate death of a turtle, or the turtle may be released alive, 
with or without trailing gear. For turtles released alive, PIRO assigns post-interaction mortality 
percentages (i.e., percent chance of death after release) by following the rubric outlined in Ryder 
et al. (2006). The rubric includes an injury category and a release condition that, when combined, 
provide a probability of mortality for each turtle (0 to 1, with 1 being dead). Thus, “take” in the 
model is equivalent to a probability of mortality resulting from interaction with the fishery. 
However, other possible forms of take (e.g., oil spills) are not considered here. Additionally, the 
model does not explicitly address sub-lethal effects potentially experienced by turtles released 
with injuries or trailing gear (e.g., reduced fitness, growth, or fecundity). We are not aware of 
any data quantifying sub-lethal effects to support inclusion of such effects into the model. 

The primary challenge of incorporating take into the analysis is in converting the anticipated 
future take of each species, which is comprised of various lengths, ages, stages (i.e., juvenile or 
adult), and sexes, to adult nester equivalents (ANE). This step is necessary, as it converts the 
future take into nester equivalents, which are the only index of abundance available. 
Distributions were generated for life history parameters of each species using the best scientific 
information available. An ANE was then calculated for each individual of the anticipated take 
for future years using draws from several parameters in the calculation: length and post-
interaction mortality based on historical incidental take data, back-calculated age with years until 
maturity based on a von Bertalanffy growth model, juvenile survival rate, sex, and a remigration 
interval.  

Take was applied in two different ways: (1) adding in the historical interactions from the SSLL 
fishery back to the populations, and (2) removing the predicted takes from the PVA projections. 
There were no discernible changes to the probabilities of falling below abundance thresholds 
(50%, 25%, and 12.5% of current abundance) when comparing the “no take” and “take” 
scenarios for the future. The one exception was that for leatherbacks, where the difference 
between the “no take” and “take” scenarios became apparent after 2060 and the projection 
suggested the population would go extinct roughly 5 years sooner in the “take” scenario than in 
the “no take” scenario (around 2110 vs. 2115). However, in the 10-year future timeframe, which 
is perhaps more biologically realistic to use for impact assessments, there was no discernible 
difference between the “no take” and “take” projection scenarios for either species. This finding 
suggests that continued operation of the SSLL fishery would not negatively impact the NP 
loggerhead or WP leatherback populations in terms of changing their projected population 
growth trends or nesting female abundances. The turtles are largely released alive by this fishery, 
which employs 100% observer coverage, circle hooks, and finfish bait as bycatch mitigation 
measures. The number of interactions in the SSLL fishery is relatively low compared to other 
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sources of bycatch in the Pacific (Lewison et al. 2004), and the current findings suggest the 
fishery is not a major driver of population trends for the western Pacific leatherback or North 
Pacific loggerhead. 
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Introduction 

Background 
The Hawaii-based shallow-set longline (SSLL) fishery has historically interacted with four 
marine turtle species, including the North Pacific (NP) loggerhead (Caretta caretta) Distinct 
Population Segment (DPS), the western Pacific (WP) leatherback (Dermochelys coriacea) 
population, the eastern and western Pacific olive ridley (Lepidochelys olivacea) populations, and 
several green (Chelonia mydas) turtle DPSs. As a result of historically high interactions (i.e., 
incidental takes) with loggerhead and leatherback turtles (prior to the year 2000), the fishery is 
currently subject to closure for the remainder of the calendar year when the number of 
interactions with either species reaches pre-determined numbers (i.e., hard caps). In 2019, the 
fishery was shut down on March 27 for exceeding the annual loggerhead turtle cap of 17 
interactions, reduced from a hard cap of 34 in previous years.  

In 2018, the Pacific Islands Regional Office (PIRO) requested an assessment of status and trends 
for the North Pacific loggerhead and western Pacific leatherback populations that are impacted 
by the SSLL fishery to support its pending Biological Opinion (“the BiOp”) on the continued 
operation of the SSLL fishery. PIFSC assembled a team of marine turtle ecologists and fisheries 
scientists from PIFSC and SWFSC (“the Team”) to respond to the request. The Team conducted 
an extensive review of previous modeling efforts used to evaluate fishery impacts on loggerhead 
and leatherback turtles in the SSLL fishery, and determined an optimal modeling approach to 
estimate trends and conduct population viability analyses given the data available for the 
impacted populations. See Appendix I for the Team’s review and justification of the selected 
approach, which was tailored to answer PIRO’s specific requests for the following information: 
(1) mean and median times until each species declines to 50%, 25%, and 12.5% of current 
abundance estimates, (2) probability of each species reaching those thresholds in 5, 10, 25, 50, 
and 100-year time intervals with associated 95% confidence intervals, and (3) estimates of the 
species’ mean log growth rate (with variance and 95% confidence intervals) and finite rate of 
increase (lambda; with variance and 95% confidence intervals).  

The Team completed its analysis and submitted it to external reviewers with technical expertise 
in population modeling in August 2018, also providing a copy to PIRO at that time. The Team 
made some improvements to the analysis implementing feedback received from the reviews and 
submitted a final version to PIRO in early October 2018. The Team presented the modeling 
approach and results to the Western Pacific Regional Fisheries Management Council’s (“the 
Council”) Scientific and Statistical Committee (SSC), which accepted and approved the 
approach and assessment. Members of the SSC commented that incidental take could be readily 
added within the framework assembled by the Team.  

In accordance with comments from external reviewers and the SSC, the Team moved forward 
with the development of a statistical model addressing effects of historical take (2004 to present) 
on population trends and projections, and potential impacts from anticipated future take levels by 
the SSLL fishery. As noted by the Council’s SSC members, the original trend and population 
viability analyses produced by the Team could be modified to include incidental take so that 
results can be compared for “no take” and “take” scenarios for past and future years. In doing so, 
there are a number of modeling decisions to be made. PIFSC reassembled the Team (with some 
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personnel changes) in June 2019 to complete the modeling effort and prepare for another 
external review, this time with the focus on the integration of take into the model. PIRO also 
completed its BiOp in June 2019.  

The “take model” described herein is an analytical tool which was developed to assess the 
population impacts of a specific type of take by the fishery—namely, the direct interactions 
between fishing gear (i.e., longline hooks or line) and turtles from the specified populations. A 
direct interaction can result in the immediate death of a turtle, or the turtle may be released alive, 
with or without trailing gear. For turtles released alive, PIRO assigns post-interaction mortality 
percentages (i.e., percent chance of death after release) by following the rubric outlined in Ryder 
et al. (2006). The rubric includes an injury category and a release condition that, when combined, 
provide the estimated probability of mortality for each turtle (0 to 1, with 1 being dead). Thus, 
“take” as defined in the model is equivalent to a probability of mortality resulting from 
interaction with the fishery. However, other possible forms of take (e.g., oil spills, collision, or 
noise) are not considered here.  

The take model does not explicitly address sub-lethal effects potentially experienced by turtles 
released with injuries or trailing gear (e.g., reduced fitness, growth, or fecundity). We are not 
aware of any data quantifying sub-lethal effects to support inclusion of such effects into the 
model; Ryder et al. (2006) noted that while there was some evidence of sub-lethal effects on 
foraging behavior, no data were available to quantify the impacts on fecundity. Furthermore, the 
mortality coefficients in Ryder et al. (2006) were estimates agreed upon by a panel of experts 
(including marine turtle biologists and veterinarians). They are likely conservative for the species 
(i.e., the experts likely did not underestimate the impacts of gear interactions on the turtles) but 
the accuracy of the estimates is unknown. Adding sub-lethal impacts into the mortality estimates 
would likely place them within the range of the original estimates, which do not have 
uncertainties specified. For example, expert suggestions for the appropriate mortality rate for 
high risk injuries ranged from 40 to 70%, with a cluster of responses in the 40–50% range (Ryder 
et al. 2006). Finally, every turtle released alive receives a post-interaction mortality probability 
greater than zero in Ryder et al. (2006), with 5% chance of death as the minimum for hooked 
turtles and with a 1% minimum for entanglement only. This inherently reduces the impact of 
those turtles by reducing their fecundity in the model by the same amount.  

North Pacific Loggerhead Turtles 
The North Pacific loggerhead population (“NP loggerheads”) is recognized as a distinct 
population segment and listed as Endangered under the Endangered Species Act (ESA). NP 
loggerheads nest exclusively in Japan, in three regions or management units (MUs): Mainland 
Japan, Yakushima, and Okinawa. After the turtles emerge as hatchlings on their natal beaches in 
Japan, they spend their developmental years (i.e., >20 years until sexual maturity (Tomaszewicz 
et al. 2015)) foraging in the North Pacific, with the oceanic central North Pacific and neritic 
zones off Baja California and California identified as two key developmental areas (Kobayashi et 
al. 2008; Polovina et al. 2006; Polovina et al. 2000). Once mature, they forage in oceanic or 
neritic waters closer to Japan in between breeding seasons (Hatase et al. 2002; Hatase et al. 
2010), with adult females returning to nest, on average, every 3.3 years (mean “remigration 
interval”) and laying 4.6 nests per season (mean “clutch frequency”) (see Hatase et al. 2013). 
Similar to most marine turtle populations worldwide, the only available monitoring data that are 
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suitable for assessing population status and trends are nest count data. The Sea Turtle 
Association of Japan (STAJ) provided annual nest count data for our use in this assessment, with 
the data coming exclusively from three beaches in Yakushima: Inakahama (1986–2015), 
Maehama (1989–2015), and Yotsusehama (1999–2015). The three beaches comprise an 
estimated 52% (Matsuzawa, Sea Turtle Association of Japan, pers. comm.) of annual nesting for 
the population. We consider these data to be the best scientific information available and use 
them as an index of abundance for NP loggerheads.  

Western Pacific Leatherback Turtles 
The western Pacific leatherback population (“WP leatherbacks”) is currently listed as 
Endangered as part of a single global population of leatherback turtles. While it is not currently 
recognized as a distinct population segment under the ESA, it is genetically and ecologically 
different from other populations and is treated as such for management purposes related to the 
SSLL fishery. Nesting for this population occurs in the Indo-Pacific region, primarily in 
Indonesia, Papua New Guinea, and Solomon Islands, and to a lesser extent in Vanuatu. The WP 
leatherbacks are wide-ranging and undergo long migrations between nesting grounds and 
foraging areas. There are at least three important foraging regions for the WP leatherbacks, 
including pelagic areas of the Northeast Pacific (NEP; off the coasts of California, Oregon, and 
Washington), the North Pacific Transition Zone (NPTZ), and the South China Sea (Benson et al. 
2011). The SSLL fishery is only known to interact with those foraging in the NEP and NPTZ. 
Females mature after 16.1 years (mean age at maturity) (Jones et al. 2011), and those from NEP 
and NPTZ foraging areas return to nest, on average, every 3.1 years (mean remigration interval, 
which was derived from Lontoh (2014)), laying 5.5 nests per season (mean clutch frequency) 
(Tapilatu et al. 2013). The only monitoring data that are suitable for trend analysis are nest 
counts from two beaches in the Bird’s Head Peninsula of Papua Barat, Indonesia. Our Indonesian 
colleagues provided monthly nest count data for those beaches, Jamursba Medi (2001–2017) and 
Wermon (2006–2017), for our use in this assessment. However, due to the presence of gaps in 
the monthly data, we had to impute missing values to estimate annual nest counts prior to our 
trend analysis. While there is a single peak in nesting activity during the summer at Jamursba 
Medi, there are both summer and winter peaks in nesting at Wermon. The two beaches comprise 
approximately 75% (NOAA Fisheries and USFWS Leatherback Turtle Status Review, in 
Review) of nesting for the population. We consider these data to be the best scientific 
information available and use them as an index of abundance for WP leatherbacks.  
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Methods 

Data 
The analyses in this report are based on nest count data originating from long-term monitoring 
programs in Japan (loggerheads) and Indonesia (leatherbacks) as stated previously. Raw nest 
count data were made available by international colleagues for this analysis (Figure 1). The 
loggerhead data from Japan were provided as annual nest counts from three index beaches 
(Maehama, Inakahama, and Yotsusehama) from 1985 to 2015. The leatherback data came from 
two index beaches in Indonesia (Jamursba Medi and Wermon) from 2001 to 2017. The 
leatherback dataset contained months with no monitoring effort; thus, we developed a model to 
impute the missing data in order to produce a time series of annual nest counts (see Monthly 
Nest Count Imputations for Leatherback Turtles).  

 
Figure 1. Raw nest count data available for this analysis. For North Pacific loggerhead 
turtles, annual nest count data came from three beaches in Japan (Maehama, Inakahama, 
and Yotsusehama) from 1985 to 2015. For western Pacific leatherback turtles, monthly 
nest count data came from two beaches in Indonesia (Jamursba Medi and Wermon) from 
2001 to 2017. Annual counts for leatherbacks were imputed within this analysis (see 
Section 2.3); estimates are shown as median annual counts (points) with 95% credible 
intervals (gray shading). 
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Modeling Overview  
Nest counts for both species were converted into the number of females nesting each year 
(“Annual Nesters”) using their respective clutch frequencies (see Appendix II). Trend analysis 
was conducted in a population modeling framework to allow for extraction of population growth 
rates and annual abundance estimates, which were used to perform a population viability analysis 
(PVA) for each population. The anticipated take level (ATL) for each population (McCracken 
2018) was incorporated into the PVA model to allow for a quantitative comparison of future 
scenarios with and without incidental fishery take; the mean annual ATL was 10 for leatherbacks 
and 15.6 for loggerheads (see Predicting Anticipated Take Levels (ATLs): Turtle Interactions in 
Future Years). The modeling framework is shown in Figure 2, with details on each step of the 
modeling process outlined in the sections below. Full R code for all aspects of the modeling is 
provided in Appendix III.  

 
Figure 2. Overview of the modeling framework used to assess population trends and 
viability for North Pacific loggerhead and western Pacific leatherback turtles, as well as 
the impact of incidental takes by the Hawaii-based shallow-set longline fishery on the 
two populations. (A) Data imputations for monthly nest counts for leatherback turtles 
nesting in Indonesia. (B) Trend analysis of nest count data to estimate population growth 
rates and current abundance. (C) Population viability analysis including future 
projections of population size and assessment of the impacts of anticipated take levels 
on the projections; 𝝀𝝀 = 𝒆𝒆𝒓𝒓, where r is the instantaneous population growth rate (i.e., long-
term annual trend), and 𝝀𝝀 (“lambda”) is the finite rate of increase for the population. 
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Monthly Nest Count Imputations for Leatherback Turtles 
To impute missing monthly nest counts in the leatherback data from Indonesia, we used a 
Bayesian hierarchical model. In the model, the natural logarithm (“natural log”) of monthly 
counts at a nesting beach was modeled as an auto-regressive model (Eq. 1): 

 Eq. 1 

where 𝑢𝑢𝑡𝑡,𝑚𝑚 is the mean of the natural log of the true (unobserved) number of nests at time (t) of 
month (m), 𝑠𝑠𝑡𝑡,𝑚𝑚 is the “slope” parameter at time t, which is defined by month (m = 1 to 12), and 
𝑋𝑋𝑡𝑡−1,𝑚𝑚 is the natural log of the true nest count at time t − 1. The time index starts at the first 
month of the time series and increases monthly, whereas the month index (m) corresponds to 
sequential months within each nesting season (i.e., months 1 through 12). The nesting season 
starts in April (m = 1) and ends in March (m = 12) of the next calendar year. For example, the 
mean of the number of nests during July of the fourth season would be indexed as 𝑢𝑢43,4 (43rd 
time step and fourth month of the season). 

The state-space (i.e., biological process of interest, which in this case is the natural log of the true 
number of nests (𝑋𝑋𝑡𝑡,𝑚𝑚) laid per month on a beach, either Jamursba Medi or Wermon) is modeled 
with a normal distribution with the mean (𝑢𝑢𝑡𝑡,𝑚𝑚) and standard deviation (𝜎𝜎𝑥𝑥), which was assumed 
to be constant over time (Eq. 2). 

 Eq. 2 

Given the state-space process for the natural log of the true number of nests (𝑋𝑋𝑡𝑡,𝑚𝑚), observations 
(𝑦𝑦𝑡𝑡,𝑚𝑚) (i.e., monthly nest counts recorded on either beach in natural log space) are modeled with 
another normal distribution with standard deviation (𝜎𝜎𝑦𝑦), which also was assumed to be constant 
over time (Eq. 3). 

 Eq. 3 

The slope (𝑠𝑠𝑡𝑡,𝑚𝑚) parameters are modeled with the discrete Fourier series by acknowledging the 
periodicity of nesting (Eq. 4). For Jamursba Medi, we used a 12-month period to capture the 
single summer peak in nesting, whereas for Wermon we used 6 months to capture the summer 
and winter peaks (Figure 5).  

 Eq. 4 
The two coefficients (𝛽𝛽₁ and 𝛽𝛽₂) were estimated from the data. 

Annual number of nests for each season (April through March; 𝑋𝑋𝑇𝑇) were then computed (Eq. 5) 
as the sum of estimated true monthly log numbers of nests (𝑋𝑋𝑡𝑡,𝑚𝑚) which were derived from 
imputed log observed nest counts (𝑦𝑦𝑡𝑡,𝑚𝑚). 
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 Eq. 5 

where 𝑋𝑋.,𝑚𝑚 indicates all t values from m = 1 to m = 12.  

Prior distributions for the parameters were not flat but with large uncertainties in the natural-log 
space. Normal distributions with mean = 0 and variance = 1 were used for the two parameters for 
the Fourier discrete function (𝛽𝛽₁, 𝛽𝛽₂), whereas gamma distributions with the shape parameter = 
2, and rate parameter = 0.5 were used for the standard deviation parameters for the process (𝜎𝜎𝑋𝑋) 
and observation (𝜎𝜎𝑦𝑦) models.  

The posterior distributions for (𝑋𝑋𝑡𝑡,𝑚𝑚) were used to determine the number of total nesters. The 
medians of the posterior distributions were used as point estimates, whereas lower and upper 
95% confidence limits were used to incorporate the estimated uncertainty in the imputed 
numbers of nests. The model (Eq. 2) was fit to the two data sets from leatherback nesting 
beaches (Jamursba Medi and Wermon) using JAGS (v. 4.3.0; (Plummer 2003; 2017)) through 
the jagsUI package (Kellner 2018) in R (v. 3.5.3; R Development Core Team (2018).  

Trend Analysis and Population Viability Analysis 
Estimating Historical Trends and Current Nester Abundance 
Population growth rates were estimated using a stochastic density-independent exponential 
growth model (Eq. 6–Eq. 8) applied to nest count data (Boyd et al. 2017; Holmes et al. 2007) as 
follows:  

 Eq. 6 

where 𝑁𝑁𝑗𝑗 is the number of Annual Nesters in year 𝑗𝑗, 𝑟𝑟 is the instantaneous population growth rate 
(i.e., long-term annual trend), and 𝑒𝑒𝑟𝑟 = 𝜆𝜆 (i.e., “lambda,” the finite rate of increase for the 
population).  

This model is commonly used for long-lived, slow-growing, late-maturing species such as sea 
turtles whose populations have been depleted to relatively low levels. The assumption of density-
independence could be evaluated in a future assessment by running a density-dependent model 
(e.g., Gompertz model), which would allow for the population reaching a carrying capacity at 
some point in the future. This is only potentially relevant for increasing populations. The data 
inputs to the model were time series of Annual Nesters (i.e., the number of females arriving on a 
beach each year to nest), which were derived from observed nest counts by simply dividing nests 
by mean clutch frequency (4.6 for loggerheads and 5.5 for leatherbacks, Appendix II). This static 
conversion from nests to nesters had no bearing on the estimation process, but put the results into 
management-relevant terms (i.e., nester abundance). The number of Annual Nesters summed 
across the number of years of one remigration interval (e.g., 3.3 years for loggerheads) yields a 
snapshot of the Total Nesters in the population.  

It is important to note that the population growth rates estimated here are better interpreted as a 
long-term annual trends in the number of nesters rather than true population growth rates for the 
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following reasons: (i) the model relies exclusively on nest count data, which we assume provide 
an index of Annual Nester abundance, (ii) nesters represent only a small portion of the total 
population that also includes adult males and immature turtles of both sexes, and (iii) assuming 
that the growth rate for nesters represents the growth rate for the whole population would also 
assume a stable age distribution, and we have no data to confirm this for either population.  
The exponential growth equation (Eq. 6) was transformed into natural log space (Eq. 7) and 
solved for the population growth rate (Eq. 8):  

 Eq. 7 

 Eq. 8 

Following Boyd et al. (2017) and the methods outlined in their Appendix S1, we constructed a 
Bayesian state-space model (BSSM, Figure 3) from the natural log version of the exponential 
population growth equation (Eq. 7). The BSSM framework allows for estimation of both process 
variation (i.e., environmental and demographic variability that leads to additional changes in the 
number of Annual Nesters from year to year) and observation uncertainty (i.e., imperfect data 
collection), and provides parameter estimates with probability distributions (i.e., posterior 
distributions) which are useful for conveying uncertainty in management applications. Model 
inputs were the time series of Annual Nesters as described above. 
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Figure 3. Schematic illustration of Bayesian state-space model based on stochastic 
density-independent exponential population growth. There are two major components: a 
process model describing the true number females nesting each year and an observation 
model relating the observed count data to the true number of nesting females. Three 
parameters are estimated: (1) r, the instantaneous population growth rate, (2) Q, process 
error variance, and (3) R, observation error variance. The model also provides a 
predicted count (number of nesting females) with a probability distribution for each year 
of observed data. The predicted value for the final year of observed data is then used as 
a starting point for future projections. 

Adapting the methods in Boyd et al. (2017), the process equation of the BSSM model is written 
in discrete-time and log-space: 

 where 𝑝𝑝𝑗𝑗 ~ 𝑁𝑁(0, 𝑄𝑄) (process equation) Eq. 9 

where 𝑇𝑇𝑗𝑗 is the natural log of the true (unobserved) number of Annual Nesters in year (𝑗𝑗), 𝑟𝑟 is the 
instantaneous population growth rate (i.e., long-term annual population trend), 𝑝𝑝𝑗𝑗 is the process 
error at year (𝑗𝑗), and 𝑄𝑄 is the variance of the state process (time invariant). The true state 
variable, 𝑇𝑇𝑗𝑗, is not directly measured for the NP loggerheads or WP leatherbacks. Instead, nest 
counts are observed on multiple beaches for each population, and the resulting time series come 
with various forms of observation uncertainty (i.e., missed nests or falsely identified nests). The 
relationship between the observed data and the corresponding true number of Annual Nesters is 
defined by a second equation:  
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 where 𝑜𝑜𝑗𝑗 ~ 𝑁𝑁(0, 𝑅𝑅) (observation equation) Eq. 10 

where 𝐵𝐵𝑗𝑗 is the natural log of the observed Annual Nesters, 𝑜𝑜𝑗𝑗 is the observation error at year (𝑗𝑗), 
and 𝑅𝑅 is the variance of the observation process (time invariant).  

This basic model can be expanded to accommodate multiple state vectors, representing several 
populations and multiple time series (Hinrichsen and Holmes 2009): 

 where 𝑝𝑝𝑗𝑗 ~ 𝑀𝑀𝑀𝑀𝑁𝑁(0, 𝑄𝑄𝑗𝑗) (process equation) Eq. 11 

 where 𝑜𝑜𝑗𝑗 ~ 𝑀𝑀𝑀𝑀𝑁𝑁(0, 𝑅𝑅𝑗𝑗) (observation equation) Eq. 12 

where 𝑄𝑄𝑗𝑗 is the process variance-covariance matrix, 𝑅𝑅𝑗𝑗 is the observation variance-covariance 
matrix, 𝑍𝑍 is a matrix that maps the set of time series to the set of state vectors, and 𝑎𝑎 is a vector 
of scaling parameters (Boyd et al. 2017). In the multivariate setting, the number of underlying 
population states (corresponding to the number of populations) may vary from 1, …, I, where I is 
the number of time series (Boyd et al. 2017). For both NP loggerheads and WP leatherbacks, we 
defined the model to have only one population (one state vector) with multiple time series of 
observations (i.e., multiple beaches), as this structure best represented the known population 
dynamics which include exchange of individuals and genetic similarity across the studied 
beaches. We assumed the observation error for each beach to be independent. These decisions 
simplified the distributions for the process and observation errors to normal distributions (rather 
than multivariate normal distributions as shown in Eq. 11 and Eq. 12). The annotated model code 
(in JAGS format) is provided in Figure 4. 
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Figure 4. Bayesian state-space model code used in the analysis of historical trends for 
North Pacific loggerheads and western Pacific leatherbacks (JAGS code for use in R).  
Full code for all aspects of the modeling described in this report is included in Appendix 
III.  
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Posterior distributions of the model parameters were numerically derived using Markov chain 
Monte Carlo (MCMC) simulation in JAGS (Plummer 2003, 2017) in R (R Development Core 
Team 2018) with ‘coda’ and ‘jagsUI’ packages. The MCMC simulations were based on 10,000 
samples of 2 chains, where every other sample was retained to reduce the auto-correlation among 
samples (thinning). The first 1000 samples of each chain were discarded as a burn-in sample. 
The burn-in sample is used for finding the central part of joint posterior distribution and is not 
helpful for making inference of the parameters (Gelman et al. 2013). The estimation process was 
conducted on the data set for each species separately (i.e., the three time series of Annual Nesters 
for loggerhead turtles and two time series for leatherback turtles for a total of two models, one 
per species). Prior distributions are described in Table 1. Convergence of MCMC sampling was 
determined via examination of trace plots, effective sample sizes, Geweke statistics (Geweke 
1992), and Gelman and Rubin statistics.  

Table 1. Prior distributions for the Bayesian state-space model historical population 
trend analysis. 

Parameter Prior distribution Interpretation 

r Normal(0, σ²), σ = 0.5 instantaneous population growth rate  
(i.e., long-term annual trend) 

Q Inv-Gamma(0.01, 0.01) inverse of Q, process error variance (precision)  

T₀ Normal(B₁,₁, σ²), σ = 10 initial true state of ln (Annual Nesters) at time 
𝑗𝑗 = 0; (Bₖ,₁) is the first observed data point from 
Jamursba Medi for leatherbacks and Inakahama 
for loggerheads (the beaches with the earliest year 
of data) 

Rₖ Inv-Gamma(0.01, 0.01) inverse of Rk, observation error variance 
(precision) for the kth time series 

aₖ Normal(0, σ²), σ = 4 scaling parameter for the kth time series; a₁ is set 
to 0 

From the model outputs, we were most interested in the posterior distributions for r, the annual 
population growth rate (i.e., long-term annual trend); Q, the process variance; and Tfinal, the 
estimated true log Annual Nesters for the final year of observed data (see Figure 3). We used the 
joint posterior distribution for these parameters to project forward 100 years into the future 
(details below). We also used the posterior distributions of Annual Nesters for the final four 
years of data (2012–2015 for loggerheads; 2014–2017 for leatherbacks) to estimate Current 
Abundance:  

 Eq. 13 
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where 𝑅𝑅𝑅𝑅 is the remigration interval for the population and 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the median Annual Nesters 
estimated for the final year of data (i.e., 2017 for leatherbacks and 2015 for loggerheads), 
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1 is for the second to final year of data, and so on. This estimate serves as a snapshot of 
Total Reproductive Females in the population and assumes no mortality of adult females during 
the 𝑅𝑅𝑅𝑅 period.  

Future Projections 
After the historical trend model was run and the parameters estimated, Population Viability 
Analysis (PVA) projections were conducted using a simulation approach with 10,000 runs for 
each species. Each projection was initialized in its starting year with a paired draw from the 
MCMC samples for Annual Nesters (𝑁𝑁0 = 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), instantaneous population growth rate (𝑟𝑟), 
and process error variance (𝑄𝑄) from the final data year of the historical trend analysis (2015 for 
loggerheads; 2017 for leatherbacks). For each subsequent year in the projection, a new growth 
rate and a new process error variance were drawn as pairs from the MCMC samples (i.e., the 
joint posterior distribution), making the projections dynamic to reflect inter-annual variation in 
the observed data as well as the biology of the species. Pulling paired draws from the MCMC 
samples constrained the values of the parameters to realistic combinations, thereby keeping the 
uncertainty in the projections reasonable. For each year, the number of Annual Nesters was 
calculated according to the exponential growth equation but with the addition of a process error 
(Eq. 11; see model diagram in Figure 3). If the number of Annual Nesters dropped below zero in 
a given year, the population was considered to be extirpated and was set at zero for all remaining 
years of the simulation. Each projection was simulated for 100 years (2016–2116 for 
loggerheads; 2018–2118 for leatherbacks). The projections were completed in R (R 
Development Core Team 2018) using the ‘coda’ and ‘jagsUI’ packages (Kellner 2018; Plummer 
2017).  

Evaluating Projections against Abundance Thresholds 
The probability of falling below 50%, 25%, and 12.5% of the current population size (i.e., 
Annual Nesters on the beaches studied, 𝑁𝑁0) was calculated at 5, 10, 25, 50, and 100-year time 
steps by summing the number of projections below the thresholds at a given time step and 
dividing by the total number of projections (10,000). For the 100-year time step and for 
simulation runs that fell below a given population threshold, the mean, median, and 95% 
confidence limits of number of years to reach the threshold were calculated.  

Incorporating Fishery Interactions into the Model 
In principle, incorporating the SSLL incidental take of loggerheads and leatherbacks into the 
PVA projections is simple. During the calculation of the number of females in the next time step 
(i.e., season), 𝑁𝑁𝑗𝑗+1, the number of females in the current time step, 𝑁𝑁𝑗𝑗, is reduced by the 
incidental take in the current time step, 𝐹𝐹𝑗𝑗, then multiplied by the finite population growth rate, 
𝜆𝜆 (i.e., 𝑒𝑒𝑟𝑟) (Eq. 14). 

 Eq. 14 

Ultimately, the challenge is converting the incidental take of a given species that is comprised of 
various lengths, ages, stages (i.e., juvenile or adult), and sexes to adult nester equivalents (ANE). 
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To do so, life history parameters of each species were collated, compared, and used to generate a 
distribution of each parameter (Appendix II).  

Predicting Anticipated Take Levels (ATLs): Turtle Interactions in Future Years 
The first step in the take model is generating the number and characteristics of the anticipated 
turtles that will be taken in each year. The number of turtles is referred to as the annual 
anticipated take level (ATL; i.e., the number of turtles the fishery anticipates taking in each 
future year). Each year’s ATL was drawn from a Conway-Maxwell Poisson distribution (CMP), 
a two parameter version of the Poisson distribution that includes a scale parameter (𝜈𝜈) (Eq. 15).  

 Eq. 15 

where 𝜇𝜇𝑠𝑠,𝑗𝑗 is the mean of the CMP distribution, and 𝑠𝑠 is one of three within-year segments which 
are summed to produce the annual ATL (McCracken 2018). The estimation of the CMP 
distribution’s parameters was broken into three time periods per year: (1) January 1 – March 20; 
(2) March 21 – November 18; and (3) November 20 – December 31 (McCracken 2018). For NP 
Loggerheads, the year 2011 was excluded from the estimation of the parameter estimates and 
time blocks 2 and 3 were combined. For WP Leatherbacks, CMP parameters were estimated for 
each time block. In the take model, the CMP parameters were used to draw an ATL for each time 
block and then summed (Eq. 15 above) to result in an annual ATL. The inclusion of 𝜈𝜈 allows for 
the variance of the distribution to not equal the mean, 𝜇𝜇, which an assumption of a standard 
Poisson distribution. Thus, the number of turtles taken by the fishery in a given year can be over 
or under-dispersed relative to a Poisson distribution when using the CMP distribution. 

A critical assumption to the estimation of the ATL per McCracken (2018) is that the conditions 
generating the historical take levels were constant (e.g., the fishery effort, closures, population 
size). This is obviously not true and results in the estimation of future ATLs to be independent of 
changes in the generating processes. McCracken (2018) discusses these assumptions and the 
impacts of the short time series of historic takes in estimating the ATL. However, as the ATL 
estimates provided by McCracken (2018) represent the best available science, we use them 
herein.  

Take Demographics 

Lengths and Fishery Mortality 
In summary, each individual of the anticipated take received a length and fishery mortality from 
a bivariate normal distribution, a back-calculated age with years until maturity based on a von 
Bertalanffy growth model, juvenile survival rate, sex, and a remigration interval.  
For each individual in the annual ATL, demographic characteristics were computed. Based on 
the historical incidental take, a bivariate normal distribution was used to generate lengths (in 
logarithmic space) and assigned fishery mortality (in logit space) (Eq. 16). 
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 Eq. 16 

 Eq. 17 

 Eq. 18 

Where 𝜃𝜃𝐿𝐿,𝑗𝑗 is a linear function (Eq. 17) of the annual incidental take, 𝐹𝐹𝑗𝑗, with intercept, 𝛼𝛼0, and 
slope, 𝛼𝛼1, and 𝛴𝛴 is the variance-covariance matrix (Eq. 18) with variances, 𝜎𝜎𝐿𝐿

2 and 𝜎𝜎𝐷𝐷
2, for the log 

lengths and logit fishery mortality with a correlation of 𝜌𝜌𝐿𝐿,𝐷𝐷. This formulation allows for the log 
lengths (log (Lk)) and logit assigned fishery mortality (logit(Dk)) to have correlated draws. The 
parameters of the multivariate normal distribution (α0, α1, 𝜎𝜎𝐿𝐿, 𝜎𝜎𝐷𝐷, and 𝜌𝜌𝐿𝐿,𝐷𝐷) were solved for in a 
Bayesian framework using STAN via RStan (Stan Development Team 2018) with 7,500 
simulations per chain (5,000 as burn-in and 2,500 retained) with 4 chains. We used weakly 
informative prior distributions for all parameters (Gelman et al. 2017); normal prior distributions 
with mean 0 and standard deviation of 2 for α0, α1, half-normal with mean 0 and a standard 
deviation of 2 for 𝜎𝜎𝐿𝐿 and 𝜎𝜎𝐷𝐷, and for 𝜌𝜌𝐿𝐿,𝐷𝐷 which had a prior distribution of 𝜌𝜌𝐿𝐿,𝐷𝐷+1

2
~𝐵𝐵𝑒𝑒𝐵𝐵𝑎𝑎(2,2). 

All MCMC simulations converged with  < 1.1 for all parameters (Gelman and Rubin 1992). 

Age and Stage 
From the lengths of all historically taken loggerheads (n = 197) and leatherbacks (n = 105), a von 
Bertalanffy growth model (VBGM) was used to calculate the expected length at age across the 
range of lengths for each species. The predicted age at length of each individual, 𝐴𝐴𝑘𝑘, was 
determined by using the minimum length of the VBGM predicted lengths and lengths of turtles 
that were anticipated to be taken in the fishery. Using the VBGM for each species, the age at 
maturity, 𝐴𝐴𝑚𝑚𝑓𝑓𝑡𝑡, was assumed as the age corresponding to a length of 97.5% of 𝐿𝐿∞, the 
asymptotic maximum length. Using the best scientific information available, this was 16.1 years 
for leatherbacks (Jones et al. 2011) and 26.5 years for loggerheads (See Appendix IV for the 
loggerhead VBGM methods).  

Turtles in the anticipated take with ages less than 𝐴𝐴𝑚𝑚𝑓𝑓𝑡𝑡 or lengths less than 97.5% of 𝐿𝐿∞ were 
considered immature. The years until maturity for all immature turtles was calculated as 
𝑌𝑌𝑘𝑘 = 𝐴𝐴𝑚𝑚𝑓𝑓𝑡𝑡 − 𝐴𝐴𝑘𝑘, where 𝐴𝐴𝑘𝑘 indicates the age of the kth individual.  

Remigration Interval, Juvenile Survival, and Sex 
We ran both deterministic and stochastic versions of the take model. In deterministic runs, each 
individual in the anticipated take was assigned the mean remigration interval (𝑅𝑅𝑅𝑅) (3.06 for 
leatherbacks, 3.30 for loggerheads) and the mean juvenile survival (𝜑𝜑𝐽𝐽) (0.81 for leatherbacks, 
0.80 for loggerheads). In stochastic runs, each individual’s remigration interval was drawn from 
a CMP distribution for leatherbacks (𝜇𝜇 = 3.06, 𝜈𝜈 = 2.36) and a truncated normal distribution for 
loggerheads (𝜇𝜇 = 3.3, 𝜎𝜎 = 2.30) greater than 0 (derived from Lontoh et al. 2014; Hatase et al. 
2013). The CMP parameters for the leatherback remigration interval were solved for by fitting a 
CMP distribution to known remigration intervals of leatherbacks from the North Pacific 
Transition Zone and the Northeast Pacific reported in Lontoh (2014) using the compoisson 
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package in R (Dunn 2012). In stochastic runs, the juvenile survival was drawn from a normal 
distribution (𝜇𝜇 = 0.81, 𝜎𝜎 = 0.030, for leatherbacks; 𝜇𝜇 = 0.80, 𝜎𝜎 = 0.031, for loggerheads). The 
sex of each animal was drawn from a Bernoulli distribution with the probability of being female 
equal to 0.73 in leatherbacks and 0.65 in loggerheads (Benson et al. 2011; Snover 2008). During 
stochastic runs, the probability of being female was used to draw the expected sex of each animal 
from a Bernoulli distribution. See Appendix II for parameter sources. 

Adult Nester Equivalent (ANE) calculation 
To calculate the ANE for each individual (k) in the anticipated take, adults were given ANEs of 1 
and juvenile ANEs were calculated by projecting the juvenile survival over the number of years 
to maturity and dividing by the remigration interval (Eq. 19).  

 Eq. 19 

The division by the remigration interval was necessary to account for the population viability 
analysis projections being made in terms of annual nesting females (i.e., the number of females 
nesting in a given year).  

For deterministic and stochastic runs, the stochastic nature of sex ratio and fishery mortality 
(derived from the historical take and assigned mortality) were applied to adjust the individual 
ANE. In the latter, the probability of an individual taken by the fishery dying was used with a 
Bernoulli distribution to simulate whether an individual died. Thus, the ANE of the kth 
individual was computed such that when the individual was a juvenile, female (𝑆𝑆𝑒𝑒𝑆𝑆 = 1) and 
ended up dying (𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷𝑎𝑎𝑟𝑟𝐷𝐷 = 1), the ANE was defined as Eq. 19, whereas when the individual 
was adult and either male (𝑆𝑆𝑒𝑒𝑆𝑆 = 0) or ends up alive (𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷𝑎𝑎𝑟𝑟𝐷𝐷 = 0) the ANE equals 0 (Eq. 20). 

 Eq. 20 

Historical ANE Imputation 
To account for the historical impact of the SSLL on the respective population growth rates, the 
ANE of the historical incidental take was calculated in a deterministic fashion for all turtles 
encountered. Similar to the anticipated take in the PVA projections, each turtle’s length was used 
to generate a likely age, stage, and years until maturity. For juveniles, the number of years until 
maturity was rounded to the nearest year. Adults were assumed to be nesting the year of their 
interaction with the SSLL fishery. To calculate the cumulative impact of the incidental take of 
each turtle, the projected nesting years were calculated as the following: 

 Eq. 21 

where 𝑌𝑌𝐹𝐹 is the year the incidental take occurred, 𝑌𝑌𝑘𝑘 is the years to maturity, and 𝑅𝑅𝑅𝑅 is the 
remigration interval, which was assumed to be 3 years (rounded from 3.06 for leatherbacks and 
3.3 for loggerheads). Thus, a juvenile caught in 2005 with 2 years to maturity would first nest in 
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2007, then again in 2010, then again in 2013, then again in 2016, and so on (see Figure 10). For 
the purpose of computing the historical take, nesting years between 2004 and 2017 for 
leatherbacks and 2004 and 2015 for loggerheads were used. However, the survival probability 
between each nesting year had to be accounted for so that the assumed initial ANE was adjusted 
as the following: 

 Eq. 22 

where 𝜑𝜑𝐽𝐽 and 𝜑𝜑𝐴𝐴 are the juvenile and adult survival rates (0.81 and 0.89 for leatherbacks; and 
0.80 and 0.90 for loggerheads, respectively), PF is the proportion of females, and D is the 
assigned fishery mortality. The result is that adult females have an ANE of 1 in the first year (as 
𝑁𝑁𝑒𝑒𝑠𝑠𝐵𝐵1 = 0) and the ANE of juvenile females is adjusted for the years until maturity (as 𝑁𝑁𝑒𝑒𝑠𝑠𝐵𝐵1 =
𝑌𝑌𝑘𝑘). For all subsequent nesting years, all turtles are adult and assumed a discounted ANE for 
their years between nesting (𝑌𝑌𝑓𝑓𝑛𝑛𝑠𝑠𝑡𝑡,𝑘𝑘 = 𝑅𝑅𝑅𝑅). When summed across turtles, it equals the expected 
ANE determined for a given year (Eq. 23). The historical ANEs for each species are shown in 
Figure 11.  

 Eq. 23 

Take Calculation 
After converting all individuals to ANEs, Eq. 14 is modified to: 

 Eq. 24 

where the Take, 𝐹𝐹𝑗𝑗, from Equation 14 is substituted out for the summation of the individual 
ANEs in a given ye

n (Eq. 24) w
ar. To account for the process variance,𝑄𝑄, from the trend analysis, the above 

equatio as modified to draw 𝑁𝑁𝑗𝑗+1 from a normal distribution: 

 Eq. 25 

This modified population growth model, which now incorporates take as ANEs, is then used as 
the basis for the same 100-year PVA projection process described above to produce future 
scenarios with take.  

Modeling Assumptions 
The analyses conducted herein required a number of assumptions. We summarize the most 
important assumptions here to provide context for interpretation of the analyses and results. This 
list is not exhaustive of all technical assumptions made within the models.  
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Imputation: 
1. The true number of nests per month is distributed normally, where the monthly means 

can be modeled with a discrete Fourier series with a fixed annual frequency. In other 
words, the number of peaks within a year is constant over the years. The variance around 
the means is assumed constant over the years. 

2. We used an autoregressive model with a lag of one month (AR1 model) where the 
relationship between the numbers of nests in two months is modeled by the Fourier 
series. We assume this model sufficiently captures the cyclical nature of nesting 
throughout the year.  

Trend: 
1. The proportion of total nests observed on a given beach is constant through time.  
2. The time series of observed number of annual nesters are representative of the 

populations, as are the population growth rates observed for nesters. Note that index 
beaches are typically identified for long-term monitoring because they represent the 
population well.  

3. The clutch frequency is constant through time. 
4. The population growth rate is density-independent for each species (i.e., no carrying 

capacity or Allee effects in the timeframe considered).  
5. The population growth rate is the same across the different beaches for each species (i.e., 

there is a single biological process resulting in a single trend).  
6. The process and observation variances are estimable (with so few beaches, the prior has a 

lot of influence). 
7. The index beaches in both Japan and Indonesia were observed with constant effort or 

were effort-corrected by the data collectors prior to being provided to PIFSC to form the 
time series used in these analyses.  

8. The remigration interval is constant through time. 

Projections: 
1. The population will face the same threats in the future as it did in the past. The PVA 

applies the population growth rate from the past, which was influenced by some 
particular magnitude of threats, to the future trajectory of the population. It does not 
account for the impacts of new or increasing threats, such as the loss of nesting habitat 
from climate change. 

Take model: 
1. The anticipated take level (ATL) is constant through time and independent of fishery 

effort. This assumption was made by McCracken (2018) when generating the ATLs for 
the fishery. 

2. The distribution of turtles’ sizes and post-interaction mortalities in the past is 
representative of what will be encountered in the future. We make this assumption when 
we use the fisheries observer data to inform characteristics of future turtles taken by the 
fishery, and do so because these are the best available data for the task. 

3. The life history parameters are indicative of the populations of interest and are estimated 
accurately. Specifically, Amat (age at maturity) is 0.975 of Linf (asymptotic length; average 
length of mature females). 

4. Turtles will nest immediately once they reach maturity.  
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Conservation Implications 
We made a number of decisions in the analyses that were inherently conservative for the turtle 
species in question (i.e., likely inflated the mortality relative to the true). We highlight those here 
to provide context for interpretation:  

1. We applied the entire anticipated take for the fishery in future years to the index beaches 
for which we had data; however, those index beaches represent only 52% and 75% of the 
nesting populations for loggerheads and leatherbacks, respectively. Assessing the impact 
of the entire take on the index beach populations rather than the full populations is 
conservative for the species.  

2. The Bayesian trend analysis accounts for the parameter uncertainty by incorporating 
estimated uncertainty of demographic parameters. Consequently, we found large 
uncertainty around the estimated population growth rate (r), which resulted in greater or 
lesser chance of recovering than what was found from a frequentist approach. This 
finding provides an accurate assessment of the projected population given what we know 
about the population. 

3. The anticipated take level is biased high (the CMP distribution tends to draw ATLs that 
are higher than the take levels observed in previous years).  

4. In calculating Adult Nester Equivalents (ANEs) in our historical analysis of fishery 
impacts (see Historical ANE Imputation), we assume that nesters would have 
repeatedly returned to nest at a constant remigration interval with an annual probability of 
survival equal to 0.89 for leatherbacks and 0.90 for loggerheads. However, for 
loggerheads, Japanese colleagues have indicated that nesters have a relatively low 
probability of being observed nesting in future years after their initial sighting 
(approximately 0.30), suggesting potentially high threats in the marine environment. If 
this is true, then the ANE values in our historical analysis (see Historical ANE 
Imputation) are inflated compared to the true ANE values (i.e., we added back 
loggerhead nesters to the population when in reality they had a low chance of surviving 
to the next nesting season).  
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Results 

Monthly Nest Count Imputations for Leatherback Turtles 
The distributions of nests across months for both index beaches in Indonesia are shown in Figure 
5. The main nesting season in Jamursba Medi is from May through September with peak nesting 
in June/July. Wermon has a similar summer nesting peak with another winter nesting season 
peaking in December/January.  

 

Figure 5. Monthly nest counts at Jamursba-Medi and Wermon showing the bimodal 
pattern for Wermon. 

The observed and imputed nest count data are shown in Figure 6 for leatherback turtles (note – 
loggerhead nest count data was provided to NOAA as annual counts). The data for this analysis 
came from the two leatherback index nesting beaches in Indonesia (Jamursba-Medi and 
Wermon). Observed monthly leatherback nest counts are depicted as red dots, imputed monthly 
nest counts are depicted as blue dots, and annual (from imputed data) numbers of nests are 
depicted as black dots with 95% credible interval shading. The median imputed nests ranged 
from 380 to 4150 and 127 to 1489 annually for Jamursba Medi and Wermon, respectively. The 
annual imputed data time-series shown in Figure 6 with uncertainty were used for the long-term 
trends and current abundance estimates. 
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Figure 6. Leatherback monthly nest count imputations in natural log space. 

Long-term Trend and Current Abundance 
North Pacific Loggerheads 
The Bayesian state-space model suggests the loggerhead population (based on annual nesters) is 
increasing at 2.3% per year (r = 0.023) (see Figure 7). Figure 7 depicts the trend for the three 
loggerhead nesting beaches of Inakahama, Maehama, and Yotsusehama, Japan. The median 
long-term trend is depicted as a black line with 95% credible interval shading (gray). The 
observed data (Annual Nesters) are black dots; the model-predicted Annual Nesters (median 
values) are red dots. Distributions are shown around the modeled number of Annual Nesters in 
the starting year (blue) and final year (purple).  
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Figure 7. Model fit from trend analysis for North Pacific loggerheads nesting in Japan 
(Inakahama, Maehama, and Yotsusehama beaches). Notation: Nobs,j is Annual Nesters 
observed in year j (derived from raw nest counts using mean clutch frequency); Tj is 
ln(Annual Nesters) in year j, the true population state; aj is the scaling factor for a 
specific beach (time series); r is the instantaneous population growth rate; T0 is the initial 
population state in year j = 0; Nfinal, the number of Annual Nesters in the final year of data, 
which is also the starting point for the PVA projections.  

The joint posterior distributions of r (population growth rate), Q (process error variance), and N0 
(Annual Nesters in 2015, N0 = Nfinal) from the trend analysis are shown in Figure 8. The joint 
distributions show the relationship between population growth rate and abundance of Annual 
Nesters. These joint distributions form the basis of the PVA projections, as drawing parameter 
values from the joint posterior distribution constrains them to realistic combinations, thereby 
keeping the uncertainty in the projections reasonable (see PVA Projections for North Pacific 
Loggerhead Turtles). 
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Figure 8. Joint posterior distributions of r (instantaneous population growth rate), Q 
(process error variance), and N0 (Annual Nesters in 2015, Nfinal) from the trend analysis 
for North Pacific loggerheads. 

Along with the estimates of the population growth rate (inferred from the number of nests) an 
estimate of current female abundance for the portion of North Pacific loggerheads nesting on the 
three monitoring beaches for which data were available (Inakahama, Maehama, and 
Yotsusehama) was produced (Table 2). The estimates were derived from the trend analysis and 
serve as the best available index of current abundance. 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1,  𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−2,  𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−3 are 
the number of Annual Nesters in years 2015, 2014, 2013, and 2012, respectively. Total Nesters 
(∑ 𝑁𝑁𝑗𝑗

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑗𝑗=𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−3 ) was calculated as a snapshot of current abundance as of 2015 using the estimates 

from the final 4 years as described in Eq. 13.  
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Table 2. Estimated number of nesting females for the portion of North Pacific 
loggerheads nesting on the three monitoring beaches for which data were available 
(Inakahama, Maehama, and Yotsusehama). The three beaches comprise approximately 
52% of total nesting for the population. L95% = the lower 95% credible limit and U95% = 
the upper 95% credible limit. 

 L95% Median U95% 
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−3 1529 1851 2236 
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−2 1461 1778 2153 
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1 977 1202 1449 

𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 529 651 858 

 

4074 4541 5063 

Western Pacific Leatherbacks 
The Bayesian state-space model suggests the leatherback population (based on annual nesters) is 
decreasing at 6.1% per year (r = −0.061) (see Figure 9). Figure 9 depicts the modeled trend for 
the two leatherback nesting beaches of Jamursba Medi and Wermon, Indonesia. The median 
long-term trend is depicted as a black line with 95% credible interval shading (gray). The 
observed data (Annual Nesters) are black dots; the model-predicted Annual Nesters (median 
values) are red dots. Distributions are shown around the modeled number of Annual Nesters in 
the starting year (blue) and final year (purple).  
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Figure 9. Model fit from trend analysis for western Pacific leatherbacks nesting in 
Indonesia (Jamursba Medi and Wermon beaches). Notation: Nobs,j is Annual Nesters 
observed in year j (derived from raw nest counts using mean clutch frequency); Tj is 
ln(Annual Nesters) in year j, the true population state (Tj); aj is the scaling factor for a 
specific beach (time series); r, the instantaneous population growth rate; T0 is the initial 
population state in year j = 0; Nfinal, the number of Annual Nesters in the final year of data, 
which is also the starting point for the PVA projections.  

The joint posterior distributions of r (long-term growth rate), Q (process error variance), and N0 
(Annual Nesters in 2017) from the trend analysis are shown in Figure 10. The joint distributions 
show the relationship with population growth rate and abundance of annual nesters. 
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Figure 10. Joint posterior distributions of r (long-term growth rate), Q (process error 
variance), and Nfinal (Annual Nesters in 2017) from the trend analysis for western Pacific 
leatherbacks. 

Along with the estimates of the population growth rate (inferred from the number of nests) an 
estimate of current female abundance for the portion of western Pacific leatherbacks nesting on 
the two monitoring beaches for which data were available (Jamursba Medi and Wermon) was 
produced (Table 3). The two beaches comprise approximately 75% of total nesting for the 
population (National Marine Fisheries Service and U.S. Fish and Wildlife Service In review). 
The estimates are derived from the trend analysis and serve as the best available index of current 
abundance. 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1, 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−2, 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−3 are the number of Annual Nesters in years 2017, 
2016, 2015, and 2014, respectively. Total Nesters (∑ 𝑁𝑁𝑗𝑗

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑗𝑗=𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−3 ) was calculated as a snapshot 

of current abundance as of 2017 using the estimates from the final four years as described in 
Figure 13.  
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Table 3. Estimated number of nesting females for the portion of western Pacific 
leatherbacks nesting on the two monitoring beaches for which data were available 
(Jamursba Medi and Wermon). The two beaches comprise approximately 75% of total 
nesting for the population. L95% = lower 95% credible limit and U95% = upper 95% 
credible limit. Median, Low, and High correspond to the median and lower and upper 
limits of estimated number of nests from the imputation process. 

 Median Low High 
 L95% Median U95% L95% Median U95% L95% Median U95% 

𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−3 118 162 211 79 109 147 169 238 302 
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−2 166 217 280 111 148 195 250 323 409 
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1 256 340 445 156 209 281 425 565 727 

𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 237 309 417 153 204 281 371 469 628 

 

666 790 942 425 515 634 1052 1224 1425 

Incorporating Fishery Interactions into the Model 
Historical Take 
An example demonstrating how historical take is added back into the population as part of a 
retrospective analysis is shown in Figure 11. The analysis produces a population trend that 
excludes the observed (100% observer coverage) historical SSLL fishery turtle interactions. In 
this example the projected ANE for a single leatherback turtle caught in 2005 with a 137.2 cm 
SCL, an estimated age of 14.22 years, 1.88 years from maturity, and an assigned stage of 
juvenile would be an ANE = 0.66. As the turtle was caught in 2005 with 1.88 years to maturity, 
the ANE for this turtle would be added back into the Adult Nester population in 2007 (𝑃𝑃𝑗𝑗

2; 
shown in orange in Figure 11). The ANE does not account for the sex ratio and assigned post-
interaction mortality (0.3), when accounting for sex ratio and the assigned post-interaction  
mortality, the expected realized ANE in the first year of nesting is 0.14 (𝑃𝑃𝑗𝑗

2 ∗ 𝑃𝑃𝐹𝐹 ∗ 𝐷𝐷𝑓𝑓 shown in 
black in Figure 11).  
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Figure 11. An example demonstrating how historical take is added back into the 
population as part of a retrospective analysis of the population trend that excludes 
historical SSLL fishery turtle interactions. The orange line depicts the ANE when 
accounting for carapace length, estimated age, time to maturity, and stage based 
survival rates. The black line depicts the ANE when including the assigned fishing 
mortality and sex-ratio. Ultimately the analysis converts fisheries interactions into adult 
nesters (the modeled data of the PVA). Solid circles indicate years in which the ANE 
would be added back to the population (between 2004 and 2017). Open circles occur in 
years beyond the data. 

The cumulative historical take ANE for each year is expressed as (∑ 𝐴𝐴𝑁𝑁𝐸𝐸𝑟𝑟𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑛𝑛𝑟𝑟,𝑘𝑘,𝑗𝑗
𝑓𝑓
𝑘𝑘=1 ). In any 

year the take of adult females from that year and any carryover ANE from previous years are 
summed. In Figure 12, the realized ANE for leatherbacks (dark blue) and loggerheads (brown) is 
depicted. The realized ANE is higher in leatherbacks than loggerheads as 36% of incidental takes 
are adults in leatherbacks versus 8% are adults in loggerheads. 
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Figure 12. The historical ANE for each year for each species (leatherbacks in dark blue; 
loggerheads in brown). The cumulative historical take ANE for each year is expressed as 
(∑ 𝑨𝑨𝑨𝑨𝑬𝑬𝒓𝒓𝒆𝒆𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒆𝒆𝒓𝒓,𝒌𝒌,𝒋𝒋

𝒏𝒏
𝒌𝒌=𝟏𝟏 ). 

North Pacific Loggerhead Turtles 
There was no discernible difference between the median and posterior distribution of r 
(population growth rate) for North Pacific loggerheads under historical “no take” and “take” 
scenarios (see Figure 13 and Table 4). The growth rate estimation was conducted on either 𝑁𝑁𝑗𝑗, 
the number of Annual Nesters in year j, or 𝑁𝑁𝑗𝑗 – 𝐹𝐹, Annual Nesters minus historical take. The “no 
take” scenario removes the population impacts of historical interactions in the SSLL fishery. The 
distributions are perfectly overlapping, indicating the population growth rate did not change 
when the turtles taken by the fishery were added back in to the population prior to analyzing the 
trend. 
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Figure 13. Posterior distribution of r (population growth rate) for North Pacific 
loggerheads under historical “no take” (Nj) and “take” (Nj–F) scenarios. 

A complete summary of the long-term annual trend (i.e., population growth rate) for North 
Pacific loggerheads under “no take” and “take” scenarios over the period of available nest 
monitoring data (1985–2015), including log population trend (r) and λ with the mean (𝑆𝑆), median 
( ), variance (𝜎𝜎ₓ), lower 95% (L95%) and upper 95% (U95%) of the statistic, is found in Table 
4. The “no take” scenario removes the population impacts of historical interactions in the 
Hawaii-based SSLL fishery. Both scenarios suggest a growth rate of 2.3% per year in the 
number of females nesting annually. The estimates are based on the available data from three 
beaches in Japan (Inakahama, Maehama, and Yotsusehama) that comprise approximately 52% of 
total nesting.  
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Table 4. Summary of the long-term trend (i.e., population growth rate) for North Pacific 
loggerheads under “no take” and “take” scenarios over the period of available nest 
monitoring data (1985–2015). 

 No Take Take 
𝑟𝑟 0.023 0.023 
�̃�𝑟 0.023 0.023 

𝜎𝜎𝑟𝑟 0.005 0.005 
𝑟𝑟𝐿𝐿95% −0.11 −0.111 
𝑟𝑟𝑈𝑈95% 0.156 0.156 

𝜆𝜆 1.026 1.026 
�̃�𝜆 1.023 1.023 
𝜎𝜎𝜆𝜆 0.005 0.005 

𝜆𝜆𝐿𝐿95% 0.895 0.895 
𝜆𝜆𝑈𝑈95% 1.169 1.169 

Western Pacific Leatherback Turtles 
There was no discernible difference between the median and posterior distribution of U (long-
term growth rate) for western Pacific leatherbacks under historical “no take” and “take” 
scenarios (see Figure 14 and Table 5). The growth rate estimation was conducted on either 𝑁𝑁𝑗𝑗, 
the number of Annual Nesters in year j, or 𝑁𝑁𝑗𝑗 − 𝐹𝐹, Annual Nesters minus Take. The “no take” 
scenario removes the population impacts of historical interactions in the SSLL fishery. The 
distributions are completely overlapping, indicating the population growth rate did not change 
when the turtles taken by the fishery were added back in to the population prior to analyzing the 
trend. 
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Figure 14. Posterior distribution of r (population growth rate) for western Pacific 
leatherbacks under historical “no take” (Nj) and “take” (Nj–F) scenarios. 

A complete summary of the long-term trend (i.e., population growth rate) for western Pacific 
leatherbacks under “no take” and “take” scenarios over the period of available nest monitoring 
data (2001–2017), including log population trend (r) and λ with the mean (𝑆𝑆), median ( ), 
variance (𝜎𝜎ₓ), lower 95% (L95%) and upper 95% (U95%) of the statistic, is found in Table 4. 
The estimates are based on the available data from two beaches in Indonesia (Jamursba Medi and 
Wermon) that comprise approximately 75% of total nesting. The “no take” scenario removes the 
population impacts of historical interactions in the Hawaii-based shallow-set longline fishery. 
Three estimates are provided (Median, Low, and High), corresponding with three different 
scenarios from the imputed monthly count estimates (median, lower 95%, and upper 95% from 
the imputed nest counts). Results suggest a declining trend, with median trend estimates of 
−6.1% per year (−5.6% to −6.4%) in the number of females nesting annually. All scenarios (take 
and no take) suggest a declining growth rate of 6.1% (median) per year in the number of females 
nesting annually. The estimates are based on the available data from two beaches in Indonesia 
(Jamursba Medi and Wermon) that comprise approximately 75% of total nesting.  
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Table 5. Summary of the long-term annual trend (i.e., population growth rate) for western 
Pacific leatherbacks under “no take” and “take” scenarios over the period of available 
nest monitoring data (2001–2017). Results include log population trend (r) and λ with the 
mean (𝒙𝒙), median ( ), variance (𝝈𝝈𝒙𝒙), lower 95% (L95%) and upper 95% (U95%) of the 
statistic.  

 Median Low High 
 No Take Take No Take Take No Take Take 

𝑟𝑟 −0.06 −0.06 −0.063 −0.063 −0.055 −0.055 
�̃�𝑟 −0.061 −0.061 −0.064 −0.064 −0.056 −0.056 

𝜎𝜎𝑟𝑟 0.008 0.008 0.008 0.009 0.009 0.009 
𝑟𝑟𝐿𝐿95% −0.238 −0.24 −0.243 −0.245 −0.236 −0.237 
𝑟𝑟𝑈𝑈95% 0.122 0.123 0.121 0.123 0.131 0.132 

𝜆𝜆 0.946 0.945 0.943 0.943 0.951 0.951 
�̃�𝜆 0.941 0.941 0.938 0.938 0.946 0.946 
𝜎𝜎𝜆𝜆 0.007 0.008 0.008 0.008 0.008 0.008 

𝜆𝜆𝐿𝐿95% 0.788 0.787 0.785 0.783 0.79 0.789 
𝜆𝜆𝑈𝑈95% 1.13 1.131 1.128 1.13 1.14 1.141 

Population Viability Analysis (PVA) with Take and without Take 
Assigned lengths and mortality for predicted interactions 
For leatherbacks, the median correlation between length and assigned post-interaction mortality 
parameters was −0.04 and, for loggerheads, the median correlation between parameters was 0.15. 
The former correlation indicates a very weak negative correlation between length and assigned 
fishery mortality and, the latter correlation, indicates a weak positive correlation between length 
and fishery mortality. For leatherbacks, 𝛼𝛼0 was 141 cm SCL and 𝛼𝛼1 was 0.00003 and, for 
loggerheads, 𝛼𝛼0 was 63 cm SCL and 𝛼𝛼1 was −0.006. The former slope indicates no significant 
effect of the number of incidental takes on the expected lengths and, the latter, indicates a slight 
negative effect of the number of incidental takes on the expected length (i.e., the mean length 
decreases as a function of increasing take). The mean assigned post-interaction mortality, 𝜇𝜇𝐷𝐷, (in 
probability space) was 0.19 for leatherbacks and 0.10 for loggerheads. The posterior distributions 
of all bivariate normal parameters for the take demographics are in Figure 15; the median of all 
parameters were used for drawing lengths and assigned fishery mortality. 
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Figure 15. Posterior distributions of parameters (y-axes are relative densities) used in the 
multivariate normal distribution to generate lengths and assigned fishery mortality for 
each individual in the annual anticipated take. The intercept (𝜷𝜷𝟎𝟎 = 𝜶𝜶𝟎𝟎) and slope (𝜷𝜷𝟏𝟏 = 𝜶𝜶𝟏𝟏) 
were used to model the mean log lengths as a function of the take. For visualization, the 
intercept has been exponentiated to the anti-log scale in cm of SCL. The remaining 
parameters are the mean logit assigned fishery mortality (using an inverse logit 
transform; logit⁻¹ 𝝁𝝁𝑫𝑫), the standard deviations of log lengths (𝝈𝝈𝑳𝑳), and logit fishery 
mortality (𝝈𝝈𝑫𝑫), and the correlation between the log lengths and the logit discard 
mortality(𝝆𝝆). 
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PVA Projections for North Pacific Loggerhead Turtles 
Projections out to 100 years for loggerheads reflect the 2.3% annual growth rate estimated from 
the 1985–2015 data (Figure 16). There is no discernible difference between the deterministic and 
stochastic models (top vs. bottom panel in Figure 16). There is also no discernible difference 
between the “no take” and “take” scenarios for the future, shown by the completely overlapping 
medians and shaded credible envelopes in Figure 16 (note – natural log scale is used for the 100 
year projections to facilitate visual detection of differences between the two scenarios) and the 
difference plot in Figure 17 centered on zero.  

 

Figure 16. One-hundred-year projections of Annual Nesters (vertical axis is in natural log 
units) for North Pacific loggerheads under future scenarios including take (Nj – F) and no 
take (Nj). Projections begin a year after the final year of available data (2015) and end 100 
years later. Top panel shows results from a fully deterministic version of the take model 
in which the parameters are set at point estimates rather than pulled from distributions 
as they are in the stochastic version in the bottom panel.  
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Figure 17. Difference plots of 100-year projections of Annual Nesters for North Pacific 
loggerheads under future scenarios including take (Nj – F) and no take (Nj). Projections 
begin a year after the final year of available data (2015) and end 100 years later. Top 
panel shows results from a fully deterministic version of the take model in which the 
parameters are set at point estimates rather than pulled from distributions as they are in 
the stochastic version in the bottom panel. 

Projections out to 10 years into the future are more relevant biologically for management 
purposes than to 100 years given the estimated uncertainty in the population parameters. 
Specifically, the effects of the environmental or anthropogenic drivers on the population would 
be lagged; therefore, we think the first 10 years is largely based on the previously observed trend 
but after that we do not have sufficient information to account for uncertainty of the drivers that 
affect the populations. For loggerheads, there was again no discernible difference between the 
deterministic and stochastic versions of the model or between the “no take” and “take” scenarios 
(Figure 18 and Figure 19) (note – to provide a sense of the actual magnitude change in Annual 
Nesters over the shorter time frame, we do not use the natural log scale here).  
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Figure 18. Ten-year projections of Annual Nesters for North Pacific loggerheads under 
future scenarios including take (Nj – F) and no take (Nj). Projections begin a year after the 
final year of available data (2015) and end 10 years later. Top panel shows results from a 
fully deterministic version of the take model in which the parameters are set at point 
estimates rather than pulled from distributions as they are in the stochastic version in 
the bottom panel. Note the almost exact overlay of trend and uncertainty envelope.  
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Figure 19. Difference plots of 10-year projections of Annual Nesters for North Pacific 
loggerheads under future scenarios including take (Nj – F) and no take (Nj). Projections 
begin a year after the final year of available data (2015) and end 10 years later. Top panel 
shows results from a fully deterministic version of the take model in which the 
parameters are set at point estimates rather than pulled from distributions as they are in 
the stochastic version in the bottom panel. Note the almost exact overlay of trend and 
uncertainty envelope. 

For loggerheads, 33% of the simulation runs projected that Annual Nesters would fall below 
50% of current Annual Nesters within 25 years (95% CI: 5–82 years), while 67% of runs ended 
with Annual Nesters above that threshold (Table 6). The chances of falling below the lower 
abundance thresholds (25% and 12.5% of current abundance) were smaller (28% and 25%, 
respectively) and took longer (37 and 45 years, respectively). There was no discernible 
difference in the probabilities of falling below any of the thresholds (50%, 25%, and 12.5% of 
current abundance) between the “no take” and “take” scenarios (Table 6).  
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Table 6. For North Pacific loggerheads, the probability of the population being above or 
below (p > θ or p < θ, respectively) abundance thresholds (50%, 25%, 12.5% of current 
Annual Nesters) within the 100-year simulation time frame, and the number of years 
(mean, median, & 95% credible interval [CI]) to reach each threshold for all runs that fall 
below them. Results are from the stochastic model, both with and without take, and with 
historical ANEs added back into the population; results from the deterministic model 
were not notably different. ∆(NT-T) shows the difference between the take and no take 
projection scenarios. 

  p > θ p < θ Mean yr Median yr L95% yr U95% yr 
50% No Take 0.67 0.33 25.2 18 5 82 

Take 0.67 0.33 25.2 18 5 82 
∆(NT-T) 0 0 0.0 0 0 0 

25% No Take 0.72 0.28 37.4 31 10 92 
Take 0.72 0.28 37.4 31 10 92 

∆(NT-T) 0 0 0.0 0 0 0 
12.5% No Take 0.75 0.25 45.2 41 14 94 

Take 0.75 0.25 45.2 41 14 94 
∆(NT-T) 0 0 0 0 0 0 

The probability of the loggerhead nesting population falling below the abundance thresholds 
within time frames shorter than 100 years ranged from 0 (for all thresholds at 5 years) to 0.29 
(for the 50% threshold at 50 years) (Table 7). For each abundance threshold, the difference 
between the “no take” and “take” scenarios was non-existent to negligible for the median and 
95% CI probability estimates (Table 7). 
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Table 7. For North Pacific loggerheads, probability (median with 95% credible intervals 
[CI]) of the population reaching abundance thresholds at 5, 10, 25, 50, and 100 years from 
final data year (2015). Results are from the stochastic version of the take model with 
historical takes accounted for by adding the ANEs back into the population. Scenarios 
with and without take are provided, with ∆(NT-T) showing the difference between the two 
scenarios. * indicates a difference attributable to simulation rounding error.  

  5 yr 10 yr 25 yr 50 yr 100 yr 
50% No Take 0.01 0.08 0.21 0.29 0.33 

Take 0.01 0.08 0.22 0.29 0.33 
∆(NT-T) 0.00 0.00 −0.01* 0 0 

50%-L95 No Take 0.01 0.08 0.21 0.28 0.32 
Take 0.01 0.08 0.21 0.28 0.32 
∆(NT-T) 0 0 0 0 0 

50%-U95 No Take 0.01 0.08 0.22 0.29 0.33 
Take 0.01 0.08 0.22 0.29 0.33 
∆(NT-T) 0 0 0 0 0 

25% No Take 0 0.01 0.11 0.21 0.29 
Take 0 0.01 0.11 0.22 0.29 
∆(NT-T) 0 0 0 −0.01* 0 

25%-L95 No Take 0 0.01 0.11 0.21 0.28 
Take 0 0.01 0.11 0.21 0.28 
∆(NT-T) 0 0 0 0 0 

25%-U95 No Take 0 0.01 0.12 0.22 0.29 
Take 0 0.01 0.12 0.22 0.29 
∆(NT-T) 0 0 0 0 0 

12.5% No Take 0 0 0.05 0.16 0.25 
Take 0 0 0.05 0.16 0.25 
∆(NT-T) 0 0 0 0 0 

12.5%-L95 No Take 0 0 0.05 0.15 0.24 
Take 0 0 0.05 0.16 0.24 
∆(NT-T) 0 0 0 −0.01* 0 

12.5%-U95 No Take 0 0 0.06 0.16 0.25 
Take 0 0 0.06 0.16 0.25 
∆(NT-T) 0 0 0 0 0 
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PVA Projections for Western Pacific Leatherback Turtles 
Projections out to 100 years for leatherbacks reflect the −6.1% annual decline estimated from the 
2001–2017 data (Figure 20). The difference between the deterministic and stochastic models is 
negligible (top vs. bottom panel in Figure 20). There is a subtle yet discernible difference 
between the “no take” and “take” scenarios, shown by the diverging medians and shaded 
credible envelopes in Figure 20 (note – natural log scale is used for the 100 year projections to 
emphasize the differences between the two scenarios) and the slight divergence from zero in later 
years on the difference plot in Figure 21. The difference slowly becomes apparent after 2060 and 
suggests the population would go extinct roughly 5 years sooner than in the “no take” scenario 
(around 2110 vs. 2115). 

 

Figure 20. 100-year projections of Annual Nesters (vertical axis is in natural log units) for 
western Pacific leatherbacks under future scenarios including take (Nj – F) and no take 
(Nj). Projections begin a year after the final year of available data (2017) and end 100 
years later. Top panel shows results from a fully deterministic version of the take model 
in which the parameters are set at point estimates rather than pulled from distributions 
as they are in the stochastic version in the bottom panel. 
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Figure 21. Difference plots of 100-year projections of Annual Nesters (vertical axis is in 
natural log units) for western Pacific leatherbacks under future scenarios including take 
(Nj – F) and no take (Nj). Projections begin a year after the final year of available data 
(2017) and end 100 years later. Top panel shows results from a fully deterministic version 
of the take model in which the parameters are set at point estimates rather than pulled 
from distributions as they are in the stochastic version in the bottom panel. 

Projections out to 10 years into the future are more relevant biologically for management 
purposes than to 100 years given the estimated uncertainty in the population parameters. 
Specifically, the effects of the environmental or anthropogenic drivers on the population would 
be lagged; therefore, we think the first 10 years is largely based on the previously observed trend 
but after that we do not have sufficient information to account for uncertainty of the drivers that 
affect the populations. For leatherbacks, there is no discernible difference between the 
deterministic and stochastic versions of the model when looking out only 10 years. Importantly, 
the difference seen between the “no take” and “take” scenarios in the 100-year projection is not 
seen in the 10-year projection (Figure 22 and Figure 23) (note – to provide a sense of the actual 
magnitude change in Annual Nesters over the shorter time frame, we do not use the natural log 
scale here).  
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Figure 22. 10-year projections of Annual Nesters for North Pacific loggerheads under 
future scenarios including take (Nj – F) and no take (Nj). Projections begin a year after the 
final year of available data (2017) and end 10 years later. Top panel shows results from a 
fully deterministic version of the take model in which the parameters are set at point 
estimates rather than pulled from distributions as they are in the stochastic version in 
the bottom panel. 
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Figure 23. Difference plots for 10-year projections of Annual Nesters for North Pacific 
loggerheads under future scenarios including take (Nj – F) and no take (Nj). Projections 
begin a year after the final year of available data (2017) and end 10 years later. Top panel 
shows results from a fully deterministic version of the take model in which the 
parameters are set at point estimates rather than pulled from distributions as they are in 
the stochastic version in the bottom panel. 

For leatherbacks, 100% of the simulation runs projected that Annual Nesters would fall below 
50% of current Annual Nesters within 13 years (95% CI: 5–26 years) (Table 8). The chances of 
falling below the lower abundance thresholds (25% and 12.5% of current abundance) were 
smaller (24% and 36%, respectively) and it took longer to reach them (23 and 35 years, 
respectively). Comparing the “no take” and “take” scenarios, there was no discernible difference 
in the probability of falling below the 50% abundance threshold, but there was a slight difference 
of 1 year for the 25% threshold (in the U95% estimate) and the 12.5% threshold (median 
estimate) (Table 8).  
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Table 8. For western Pacific leatherbacks, the probability of the population being above 
or below (p > θ or p < θ, respectively) abundance thresholds (50%, 25%, 12.5% of current 
Annual Nesters) within the 100-year simulation time frame, and the number of years 
(mean, median, & 95% credible interval [CI]) to reach each threshold for all runs that fall 
below them. Results are from the stochastic model, both with and without take, and with 
historical ANEs added back into the population; results from the deterministic model 
were not notably different. ∆(NT-T) shows the difference between the take and no take 
projection scenarios. Results are based on the median imputed monthly count values. 

  p > θ p < θ Mean yr Median yr L95% yr U95% yr 
50% No Take 0 1 12.7 12 5 26 

Take 0 1 12.7 12 5 26 
∆(NT-T) 0 0 0 0 0 0 

25% No Take 0 1 24.2 23 13 42 
Take 0 1 24.1 23 13 41 
∆(NT-T) 0 0 0.1 0 0 1 

12.50% No Take 0 1 35.7 35 21 56 
Take 0 1 35.5 34 21 56 
∆(NT-T) 0 0 0.2 1 0 0 

The probability of the leatherback nesting population falling below the abundance thresholds 
within time frames shorter than 100 years ranged from 0 (for 25% and 12.5% thresholds at 5–10 
years) to 100% (for the 25% and 50% thresholds at 50 years) (Table 9). For each abundance 
threshold, the difference between the “no take” and “take” scenarios was non-existent to 
negligible for the median and 95% CI probability estimates (Table 9). 
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Table 9. For western Pacific leatherbacks, probability (median with 95% credible intervals 
[CI]) of the population reaching abundance thresholds at 5, 10, 25, 50, and 100 years from 
final data year (2017). Results are from the stochastic version of the take model with 
historical takes accounted for by adding the ANEs back into the population. Scenarios 
with and without take are provided, with ∆(NT-T) showing the difference between the two 
scenarios. * indicates a difference attributable to simulation rounding error.  

  5 yr 10 yr 25 yr 50 yr 100 yr 
50% No Take 0.03 0.40 0.97 1 1 

Take 0.03 0.40 0.97 1 1 
∆(NT-T) 0 0 0 0 0 

50%-L95 No Take 0.03 0.39 0.97 1 1 
Take 0.03 0.39 0.97 1 1 
∆(NT-T) 0 0 0 0 0 

50%-U95 No Take 0.03 0.40 0.97 1 1 
Take 0.03 0.40 0.97 1 1 
∆(NT-T) 0 0 0 0 0 

25% No Take 0 0 0.63 1 1 
Take 0 0 0.64 1 1 
∆(NT-T) 0 0 −0.01* 0 0 

25%-L95 No Take 0 0 0.63 1 1 
Take 0 0 0.63 1 1 
∆(NT-T) 0 0 0 0 0 

25%-U95 No Take 0 0 0.64 1 1 
Take 0 0 0.64 1 1 
∆(NT-T) 0 0 0 0 0 

12.5% No Take 0 0 0.11 0.94 1 
Take 0 0 0.11 0.94 1 
∆(NT-T) 0 0 0 0 0 

12.5%-L95 No Take 0 0 0.10 0.94 1 
Take 0 0 0.11 0.94 1 
∆(NT-T) 0 0 −0.01* 0 0 

12.5%-U95 No Take 0 0 0.11 0.94 1 
Take 0 0 0.11 0.94 1 
∆(NT-T) 0 0 0 0 0 
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Discussion 

The purpose of this analysis was to estimate long-term trends, conduct population viability 
analyses, and assess the population impacts of continued operation of the SSLL fishery on the 
western Pacific leatherback and North Pacific loggerhead populations. Time series of nest count 
data from Indonesia (leatherbacks, 2001–2017) and Japan (loggerheads, 1985–2015) formed the 
basis of this analysis, and missing data was imputed for leatherbacks prior to the trend analysis. 
A Bayesian state-space population growth model indicated a declining trend for leatherbacks 
(−6.1% annually; 95% CI: −5.6% to −6.4%) and an increasing trend for loggerheads (2.3% 
annually; 95% CI: −11.1% to 15.6%). For loggerheads, current abundance was estimated at 4541 
(95% CI: 4074–5063) Total Nesters for the three index beaches in Japan which represent 52% of 
all nesting. For leatherbacks, there were three estimates of current abundance for the two index 
beaches in Indonesia which represent 75% of all nesting: (1) from median imputed nest counts, 
790 Total Nesters (95% CI: 666–942), (2), from lower 95% imputed nest counts, 515 Total 
Nesters (95% CI: 425–634), and (3) from upper 95% imputed nest counts, 1224 (95% CI: 1052–
1425). The trend was also analyzed with historical impacts from the SSLL fishery removed (i.e., 
by adding back ANEs to the population); however, there was no difference between the trends 
for the “no take” and “take” scenarios for either species for the past. Population viability 
analyses projecting the trends 100 years into the future suggested a 100% chance of leatherbacks 
falling below 50% of their current abundance, with a mean of 13 years to reach that threshold; 
loggerheads had a 33% chance of falling below the 50% abundance threshold, with a mean of 25 
years to reach that threshold. At 10 years in the future, the chance of falling below the 50% 
abundance threshold was 40% for leatherbacks and 8% for loggerheads. There were almost no 
changes to the probabilities of falling below abundance thresholds (50%, 25%, and 12.5% of 
current abundance) when comparing the “no take” and “take” scenarios for the future. The one 
exception was that for leatherbacks, the difference between the “no take” and “take” scenarios 
became apparent after 2060 and the projection suggested the population would go extinct 
roughly 5 years sooner in the “take” scenario than in the “no take” scenario (around 2110 vs. 
2115). However, in the 10-year future time frame, which is perhaps more biologically relevant to 
use for impact assessments, there was no discernible difference between the “no take” and “take” 
projection scenarios for either species.  
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Appendix I:  PIFSC October 5, 2018 Response to PIRO 
September 7, 2018 Memorandum 

Note: PIRO Memorandum text in blue italicized text. PIFSC responses in black text. 

The subject memorandum: 

MEMORANDUM FOR:  Dr. T. Todd Jones, Marine Turtle Program, 
NMFS Pacific Islands Fisheries Science Center 

FROM:  Ann M. Garrett 
Assistant Regional Administrator, Protected Resources Division 
NMFS Pacific Islands Regional Office 

SUBJECT:  Review of draft response to PRD’s request for information to 
support ESA section 7 consultation on the effects of Hawaii-based 
longline fisheries on ESA listed species 

Background from memo: 

“On April 6, 2018, PIRO’s Protected Resources Division sent a request for information through 
Michael Tosatto, PIRO Regional Administrator, in support of ESA section 7 consultation on the 
effects of Hawaii-based longline fisheries on ESA-listed species. I received your draft word 
document on August 19 and additional supporting files on August 21. We have completed our 
review of your submitted materials and ask that you make the following modifications to your 
assessment documents:” 

Below we provide portions or sections of the memorandum (blue italicized text) and then 
provide our answers in black.  

Comments and PIFSC Response: 

1. Specifically, identify the number of demographically-independent units (populations, 
subpopulations, demes, etc.) that comprise each “species” (that is, the entity that has 
been listed as endangered) and estimate the status of these demographic units over 
time using the metrics and thresholds described in the terms of reference. That is, the 
assessment should address the structure and performance of the two species as they 
have been listed, the sub-populations that comprise these species, the populations that 
comprise the various sub-populations, and the demes that comprise those sub-
populations. 

The original memo dated April 6th, 2018 from Michael Tosatto (PIRO 2018) did not ask for the 
above. PIFSC provided what was requested in paragraph two of the original memo, using the 
best available nesting abundance time series data: (1) population trends, which are a measure 
of the "current population status", for leatherbacks (western Pacific nesting population) and 
loggerheads (North Pacific DPS), (2) estimates for the mean and median time until each 
population declines to 50%, 25%, and 12.5% of current abundance estimates, and (3) estimated 
probabilities of each population reaching those thresholds in 5, 10, 25, 50, and 100-year time 
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intervals with associated 95% confidence intervals. We are not aware of a NMFS or other 
document or body of work that recognizes demographically-independent units for leatherbacks 
or loggerheads below the level at which they are currently listed under ESA or IUCN 
http://www.iucnredlist.org/details/46967817/0 (North Pacific Loggerhead DPS and the western 
Pacific leatherback [see Wallace et al. (2010a)]). Nor are we aware of data series that would 
allow modeling of such units. The above request is of the scope of a Status Review Team (SRT) 
and currently, there is a SRT for leatherbacks that includes representatives from PIRO and 
PIFSC. Status reviews often take a year or more to complete and a request of that nature is 
outside the scope of what PIFSC can provide in the allotted time frame. We will not be providing 
any further analyses or sub analyses of the populations in questions. We provide further 
responses below in the detailed points: 

• For the leatherback sea turtle, the Western Pacific “sub-population” is 
represented by the sub-populations (nests) at Papua as well as Papua New 
Guinea, Solomon Islands, and Vanuatu. The assessment should address 
demographic performance of each of these nesting aggregations to provide 
insight into the probable status and trend of this sub-populations. This would 
include an assessment of the boreal summer nesters and boreal winter nesters, 
and the role of males. 

The comment contains  three separate issues, (i) that the western Pacific population of 
leatherback turtles has nesting sites outside of the ‘index’ nesting beaches of Jamursba Medi 
and Wermon, (ii) that there is a summer versus winter phenomenon of nesting within the ‘index’ 
beaches, and (iii) the model does not address males. We will respond to each in turn: 

(i) For the western Pacific leatherback nesting population, the only data sufficient for time series 
analysis come from Jamursba Medi and Wermon beaches in West Papua, Indonesia. To our 
knowledge, data series from Papua New Guinea, Solomon Islands, and Vanuatu sufficient for 
population modeling do not exist. The purpose of the ‘index’ beaches of Jamursba Medi and 
Wermon is that they allow focused effort to produce reliable time series. 

(ii) The western Pacific population of leatherbacks turtles includes the nesting beaches of 
Indonesia (e.g., Jamursba Medi, Wermon), Papua New Guinea, Solomon Islands, and Vanuatu 
(non-inclusive of all leatherback nesting). Nesting turtles from this region show a bimodal 
nesting pattern with peaks in the Northern Hemisphere winter and summer. The evolutionary 
and environmental drivers are not understood; however, limited satellite tracking data (n=126) 
from the beaches of Indonesia and foraging areas off of California suggest that there may be 
divergences in the foraging areas used by summer versus winter nesters (Benson et al. 2011). 
The genetic analyses conducted on samples from the beaches of Indonesia do not suggest the 
summer or winter nesters differ genetically and the role of males and recruitment of hatchlings 
to the summer versus winter phenomenon is further unknown. For the two beaches where we 
have time series data of abundance (i.e., Jamursba Medi and Wermon) the summer nesters 
largely drive the signal. Jamursba Medi has the most consistent nesting observation effort and 
its nesters are primarily summer nesters. Wermon has a stronger bimodal pattern, however, 
with summer and winter nesting in roughly equal proportions. We have performed the analyses 
on summer versus winter nesters for both beaches combined (Jamursba Medi and Wermon) 
and for each beach independently. We are happy to provide these analyses. However, our team 
of 6 scientists discussed this at length and recommends using the single combined trend that 
accounts for all nesters on both beaches that has already been provided to PIRO. There is 

http://www.iucnredlist.org/details/46967817/0
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inadequate knowledge to date as to whether females will nest in different seasons or if late or 
early nests within seasons will have hatchlings swept into different areas. Based on the 
uncertainty in splitting the nesting data and the strong signal from the summer nesters we 
suggest that the best scientific information available (BSIA) is to model the beaches (i.e., 
Jamursba Medi, Wermon) as a single population with projection. 

(iii) We will address the male issue here, and this will be our response for the several instances 
in which the issue is raised in the comments. The index of population abundance we have is 
nesting females and it is most appropriate to fit to nesting trends and generate future 
projections. We do not have quantitative information on sex-ratio or how sex-ratio will change in 
the future projections. Sex-ratio for the purposes of the requested modeling would be static; 
therefore, to add males into our projections we would simply multiply the model-estimated 
number of nesting females by the sex ratio (if the ratio is 50:50 then multiply model estimates of 
nesting females by 2 to get total male and female estimates). This would not change the 
trajectories, growth rates, or probabilities of reduction thresholds calculated for nesting females 
only.  

Little is known about male sea turtles for any species or population. Leatherback sea turtles are 
largely oceanic-pelagic in their distribution throughout ontogeny (Bolten 2003) with observations 
of pelagic foraging in some select nearshore (neritic) areas (e.g, Benson et al. (2011)). 
Loggerhead turtles in the North Pacific have an extended oceanic-pelagic phase (Briscoe et al. 
2016b) returning to breeding grounds in Japan once approaching sexual maturity. To assess 
marine turtle population trends, time series of abundance data are required and the only 
available time series of abundance data come from nesting observations. The leatherback and 
loggerhead populations do not bask and because of their oceanic-pelagic nature in-water 
observations and captures are very limited. Furthermore, leatherback turtles are generally not 
boarded and loggerhead turtles are released alive when incidentally caught in the Hawaii-based 
shallow set longline fishery providing no data on the sex of the bycaught turtles (juvenile and 
sub-adult turtles do not display sexual dimorphism). Curtis et al. (2015) included males in their 
model of leatherback turtles, however, they used data on 37 juvenile to adult turtles caught off 
California from 2000 to 2007 (Benson et al. 2011) which represented a point estimate that was 
then applied throughout their model. The generated sex ratio was from a small sample size, an 
isolated region of the known leatherback distribution, and averaged proportion female from 
different life-stages. We found the point estimate from limited captures would arbitrarily increase 
uncertainty and would be less defensible than projecting nesting females from a nest 
abundance time series. While there are some studies of hatchling sex-ratio for marine turtle 
populations, it is not known how hatchling sex-ratios propagate through a population into 
breeding or operational sex-ratios. We recommend that the best approach is to model Annual 
Females derived from annual nests and to not include a metric/parameter for males.   

• For the North Pacific loggerhead sea turtle, the assessment should address the 
demographic structure and performance of each population, which are 
represented by the regional management units identified by {Matsuzawa, 2016 
#7} as (a) the Ryukyu unit, (b) Yakushima Island unit, and (c) the mainland unit. 
Smaller nesting aggregations would represent sub-populations. These, and the 
role of males, also should be addressed. 

The Matsuzawa et al. (2016) study includes 12 beaches throughout Japan; however, there are 
no time series of nesting data for most of these beaches to our knowledge. There are 36 
beaches listed for the IUCN Redlist <http://www.iucnredlist.org/details/83652278/0> assessment 

http://www.iucnredlist.org/details/83652278/0
http://www.iucnredlist.org/details/83652278/0
http://www.iucnredlist.org/details/83652278/0
http://www.iucnredlist.org/details/83652278/0
http://www.iucnredlist.org/details/83652278/0
http://www.iucnredlist.org/details/83652278/0
http://www.iucnredlist.org/details/83652278/0
http://www.iucnredlist.org/details/83652278/0
http://www.iucnredlist.org/details/83652278/0
http://www.iucnredlist.org/details/83652278/0
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of the North Pacific Loggerhead and the genetic diversity and fluidity between these nesting 
beaches is unknown. For these reasons an assessment of the potential management units 
within the North Pacific DPS is not possible. Furthermore, the only available time series data 
available and permissible for our use are from three nesting beaches in Yakushima, Japan. The 
three beaches including their proportion of total nesting are Inakahama (29%), Maehama (20%), 
and Yotsusehama (3%), which together comprise approximately 52% of loggerhead nesting in 
Japan; these data were used in our analyses.  

2. Describe the criteria used to review the modeling options and discard modeling options. 
3. Describe the alternative state-space models available and considered. 
4. Clearly articulate the model used, why it was selected, the variables considered in the 

model, and the initial setting for those variables, and any population models underlying 
the statespace model (the Leslie life history model). Include alternative scenarios that 
were considered or actually modeled, and explain why those alternatives were not 
selected. 

5. Clearly list the assumptions made for modeling, such as assumptions of density 
independence. Explain why those assumptions were advisable or necessary, and the 
consequences of the assumptions if they later prove to be incorrect. 

Our responses to points 2-4 and 6 are in the “Modeling Approach” section below.  

6. Clearly identify the data used to drive the model including any transformation and 
corrections applied to those data before they were used. 

For North Pacific loggerhead turtles, available raw data were time series of Annual Nest Counts 
from three nesting beaches in Yakushima, Japan – Inakahama (1986-2015), Maehama (1989-
2015), and Yotsusehama (1999-2015). These beaches represent approximately 52% of 
loggerhead turtle nesting for this population. These are the official datasets provided by 
Japanese colleagues and permissible for our use; they are the best scientific data available for 
this analysis. For trend estimation, we input the data as Annual Female Counts, which were 
simply Annual Nest Counts divided by a clutch frequency of 3 nests per female (Conant et al. 
2009).  

For western Pacific leatherback turtles, available raw data were time series of Monthly Nest 
Counts from two nesting beaches in West Papua, Indonesia – Jamursba Medi (2001-2017) and 
Wermon (2006-2017, except 2013-2015). These beaches represent approximately 85% of 
leatherback nesting for this population. These datasets were provided by Indonesian colleagues 
(via collaborators at Southwest Fisheries Science Center) and are permissible for our use; they 
are the best scientific data available for this analysis. Although there were count data for 
Jamursba Medi for 1999-2000, we chose not to include them, as they did not fit with the current 
regime of standardized monitoring which includes particular attention to protecting nests and 
enhancing the nesting habitat (see WPRFMC (2004)). The Monthly Nest Count time series had 
some missing data due to low or no monitoring effort in some months. To impute missing data, 
we conducted an auto-regressive time series analysis with one year of lag using a Bayesian 
state-space model with two variances and two slope parameters in the state model. The two 
variances corresponded to high and low counts, whereas the two slope parameters 
corresponded to increasing and decreasing phases of nest counts. After imputing missing data, 
the Monthly Nest Counts were summed into Annual Nest Counts. Wermon beach did not have 
sufficient data for 2013-2015, so no imputed data were used for those years. For trend 
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estimation, we input the data as Annual Female Counts, which were simply Annual Nest Counts 
divided by a clutch frequency of 5.5 nests per female (Tapilatu et al. 2013).  

See subsection “7. Modeling Decisions” in the “Modeling Approach” section below for further 
details on data transformations from raw Annual Nest Counts.  

Modeling Approach 

1. Overview  

On April 6, 2018 PIRO requested that PIFSC provide model-based estimates of specific 
parameters pertaining to marine turtle populations in support of the current Biological Opinion 
for the Hawaii-based shallow-set longline fishery (PIRO 2018). The requested parameter 
estimates of interest included projected mean and median time to reach specific fractions of 
current abundance, the probability of reaching those fractions of current abundance at specific 
future time points, and estimates of projected population growth rates with associated 
uncertainty.  In response, PIFSC convened a team of PIFSC and SWFSC scientists (the 
“Team”) with expertise in population assessments, quantitative modeling, and marine turtle 
biology to determine the best approach given the specific questions asked in the memo, the 
current knowledge of the specific turtle populations in question, and the data available to PIFSC 
for analysis and public dissemination. The Team consisted of Drs. T. Todd Jones, Summer 
Martin, Tomo Eguchi, Annie Yau, Brian Langseth, and Jason Baker. In a series of meetings 
from April through June, the Team tackled three major tasks: (1) review the modeling methods 
employed in previous Biological Opinions for the fishery (specifically, climate-based models, 
diffusion approximation models, and stochastic exponential growth models), (2) review the 
demographic models for loggerhead and leatherback turtles produced by Dr. Milani Chaloupka 
in 2002 for NMFS to explore fishery impacts, and (3) determine the best approach forward to 
provide the information PIRO requested given data limitations and expert knowledge about the 
populations impacted by the fishery. The population models in (1) and (2) differ in their 
complexity (e.g., number of parameters), structure (e.g., which life stages are included), and the 
amount of specific biological data (e.g., growth and death rates for all life stages vs. annual nest 
counts and clutch frequencies) required as inputs, and consequently also vary in the number of 
assumptions to be applied. Not all of the models described above can be used to conduct a 
population viability analysis (PVA), in other words not all of the models described in (1) and (2) 
would yield estimates of the parameters requested by PIRO.  

This document outlines the key discussion points raised by the PIFSC/SWFSC Team as it 
accomplished tasks (1) - (3) above. The discussion below provides support for the decisions 
made by the Team. In summary, the Team unanimously decided the following:  

1. The climate-based approach employed by Van Houtan (2011) is inappropriate for 
fulfilling PIRO’s requests. Among other reasons for this conclusion, this approach does 
not provide estimates of population growth rate requested by PIRO.  

2. The diffusion-approximation PVA is an appropriate analytical method (Snover 2008), but 
it does not deliver results with probability-based uncertainty. 

3. Non-climate-based stochastic exponential growth models (based on nest count data), 
paired with a numerical approximation PVA (Van Houtan 2011), could be used to 
provide the information PIRO requested, though improvements to this modeling 
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approach could be warranted to better capture and propagate uncertainty into future 
estimates. 

4. The complex demographic models developed by Dr. Chaloupka (Chaloupka 2002b, a) 
are useful as heuristic tools to explore the sensitivity of population trajectories to various 
biological parameters (e.g., survival rates for various life stages or remigration intervals), 
but they are inappropriate for the task at hand due to a lack of population-specific data to 
inform input parameter estimates (and their uncertainty). 

5. Given PIRO’s request and the available data, the best approach is to use annual nest 
counts as an index of abundance, estimate a long-term population growth rate over the 
period of data collection, estimate an index of current abundance, project the estimated 
trend forward using the estimated population growth rate, and evaluate the probability of 
the projections falling below specified thresholds (percentages of the index of current 
abundance) at specified points in the future. 

6. There are various ways to estimate the long-term population growth rate (e.g., log-linear 
regression of the nest counts over time, fitting a distribution to interannual log differences 
in nest counts, and state-space population models). Several were explored and similar 
results were achieved.  

7. The most robust approach to completely fulfill PIRO’s request given the available data is 
to use a Bayesian state-space PVA using nest count time series as inputs, which 
accounts for both environmental variability and observation error in estimating the long-
term trend and produces final results with probabilities to characterize uncertainty.   

2. Climate-based models by Van Houtan 

The 2012 Biological Opinion for the Hawaii-based shallow-set longline fishery (NMFS 2012) 
included a climate-based approach which estimated future trajectories of North Pacific 
loggerhead and western Pacific leatherback turtle populations and assessed potential impacts 
to those populations from the fishery. This approach was described in an internal PIFSC report 
by Van Houtan (2011) but the methods were based on a previous study by Van Houtan and 
Halley (2011). In short, Van Houtan and Halley (2011) correlated nesting activity of loggerhead 
turtles at Japanese beaches to a lagged oceanographic index (Pacific Decadal Oscillation) and 
sea surface temperature (SST) at 8-28° N and 120-128° E during the November-January before 
the nesting season. The latter has been found to correlate with the number of nesters in Japan 
previously (Chaloupka et al. 2008). Van Houtan (2011) applied the same approach to 
loggerhead turtles and modified it for leatherback turtles using PDO and an upwelling index from 
the California Current. The Team raised a number of concerns about this approach and the 
appropriateness of using it to answer the current PIRO request. Specific issues with the 
approach are detailed below within broader categories of concerns about: (1) the inability of the 
method to produce the outputs requested by PIRO, (2) the general modeling framework, (3) 
biological aspects of the models, given the Team’s knowledge of the species and populations in 
question, (4) climate aspects of the models, and (5) lack of reproducibility of the models.  

Inability to meet PIRO’s request 

These particular climate-based models cannot fulfill PIRO’s requests. PIRO asked for an 
evaluation of the risks of falling below specified abundance thresholds (50%, 25%, and 12.5% of 
current abundance estimates) at 5, 10, 25, 50, and 100 year time frames. These climate-based 
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models can only project up to one lag into the future (22 years for leatherbacks and 25 years for 
loggerheads). This is due to the structure of the models, which includes a climate-based age at 
first reproduction determined by a correlation with climate index lagged by 22 to 25 years. The 
climate index used (Pacific Decadal Oscillation, PDO) cannot be predicted, thus the model can 
only predict 22-25 years beyond the most recent measurements of PDO. Additionally, the 
models do not generate estimates of long-term population growth rate parameters (‘r’ or 
‘lambda’) and their associated uncertainty (i.e., 95% confidence intervals), as PIRO requested. 
Further, the models do not employ a straightforward estimated index of abundance (e.g., Annual 
Nests or Annual Females). Instead, the modeled response variable is a standardized anomaly 
of the natural log of nest counts. There is no apparent way to convert this standardized log-
anomaly to abundance in order to calculate probabilities of the population falling below the 
various abundance thresholds as PIRO requested. Based on these concerns alone, the climate-
based approach was deemed inadequate for answering PIRO’s current questions. The Team 
also discussed several additional concerns about the models, which are described below.  

General modeling framework 

There were a number of concerns about the general modeling framework and its application to 
fishery management decisions. At its core, the approach transforms auto-correlated time series 
(e.g., nesting activity and environmental/oceanographic indices) using opaque methods, and fits 
a single time lag using generalized linear models (GLMs) to match environmental patterns to 
those of nesting females and hatch year turtles. For loggerheads, the model considers only two 
environmental indices (Pacific Decadal Oscillation, PDO, and sea surface temperature, SST); 
for leatherbacks, it considers PDO and California Current Upwelling (CCU). For both species, 
the model only considers effects of these environmental indices on two life stages: nesting 
females and hatch year turtles. The selection of the lag was not based on biology or a priori 
hypotheses, rather multiple lags were tested until one was significantly correlated with the data 
and that one was chosen as the solution. Subsequently, it was purported to match the age at 
first reproduction. Regarding the data transformations, the nesting activity was defined as the 
normalized natural-log transformed annual nest counts, with a justification that this was 
“consistent with the observed pattern of variability of wild populations” but the citations 
referenced as support did not involve transformed data. It was therefore unclear how Van 
Houtan and Halley (2011) normalized nest counts. The Team assumed that data were 
standardized by subtracting the sample mean from data and dividing by the sample standard 
deviation, resulting in a mean of zero and standard deviation of one. However, the trend in data, 
if any, was lost through this transformation. Correlations with environmental variability 
(oceanographic indices) were computed for anomalies; positive or negative values from the 
sample mean.  

This climate-based approach is not based on population dynamics theory, but rather on a lag 
correlation index. It is not surprising to find correlations between two auto-correlated time series 
(in this case environmental indices and wildlife patterns) when the data are somehow 
transformed and multiple lags are tested until one is statistically significant; if you try enough 
different time series and lags, you will eventually find a statistically significant correlation. The 
Team questioned some elements of this modeling approach: (1) why use a model based only 
on fitted correlations rather than a population dynamics model incorporating relevant climate 
variables?, and (2) why were only GLMs fitted, when generalized additive models (GAMs) could 
have also been used to explore non-linear relationships between climate and nesting activity? 
The Team considered dubious the claim that climate change is driving population change based 
only on fitted lagged correlations that do not demonstrate causality. In general, the Team 
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concluded that this approach requires many poorly-supported assumptions and that it was not 
appropriate to use such models to determine turtle population status and trends in the context of 
questions asked by PIRO for management.  

Biology of the species 

Several concerns arose in the Team’s discussions about how these particular climate-based 
models treated various aspects of the biology of loggerhead and leatherback turtle populations. 
First, only two life stages were considered to be influenced by oceanographic conditions in 
these models. The first was the hatch year stage. Collectively, the world’s scientific experts on 
marine turtles know very little about this stage due to the difficulties in studying these small, 
highly mobile animals at sea, far from coastlines. Empirical data for this stage are extremely 
limited, which limits our understanding of their survival rates and how they are actually 
influenced by oceanographic factors. The models considered SST and PDO as causing 
changes in the annual survivorship of the first year turtles, but there are no data to support this 
assumption. There is high natural variability in survival rates of juveniles in their entire 20-30 
year life stage and the probability of surviving to maturity is extremely low (1 in 1,000 to 1 in 
10,000 hatchlings), but we do not know how or when specific drivers (e.g., predation, 
environmental variation, or anthropogenic mortality) influence these rates. Additionally, Van 
Houtan and Halley (2011) and Van Houtan (2011) assume juvenile loggerheads move into the 
northwestern part of the Pacific (Figures 1 and 4, respectively). However, recent studies have 
shown that juvenile loggerheads distribute more widely throughout the North Pacific (Kobayashi 
et al. 2008, Kobayashi et al. 2011, Allen et al. 2013, Briscoe et al. 2016a, Briscoe et al. 2016b), 
and thus may be impacted differently than this climate-based model suggests. Van Houtan 
(2011) also assumes juvenile leatherbacks move into the southwestern part of the North Pacific 
in a geographically distinct area from the loggerheads and thus the effect of PDO on 
leatherbacks is opposite its effect on loggerheads. However, an active dispersal simulation 
model by Gaspar and Lalire (2017) suggests that leatherbacks from Indonesia (Jamursba Medi 
beach) move into the same areas as loggerheads within the first 1-5 years of life (20 - 40° N in 
the western North Pacific). A dispersal model simulation of loggerhead hatchlings from Japan by 
Okuyama et al. (2011) further demonstrates this geographic overlap. These dispersal models 
suggest effects of PDO on loggerheads and leatherbacks that are the opposite of those 
specified in the climate-based approach by Van Houtan (2011).  

The other life stage influenced by climate in the models is that of nesting females, for which the 
most empirical data exists. Oceanographic effects might influence adults by impacting resource 
availability during foraging periods, which can subsequently impact their remigration intervals, 
but that doesn’t necessarily affect abundance over time (climate-induced resource limitation 
leading to adult mortality would be an extreme scenario). The model completely relies on the 
fitted lag as a fixed age of sexual maturity (25 and 22 years for loggerheads and leatherbacks, 
respectively). However, it is well known that individual growth rates and age at sexual maturity 
vary among individuals of these populations, especially as they are known to use many different 
foraging areas throughout a vast ocean basin. Also problematic is that the lag used is only 
associated with neophytes, females that are nesting for the first time. However, turtles nesting 
each year are made up of both neophytes and remigrants. Data on the proportion of neophytes 
each year would be required to properly adjust the annual nest counts to reflect neophyte 
counts and remigrant counts.   

The climate-based approach used by Van Houtan and Halley (2011) and Van Houtan (2011) 
conclude that demographic factors, e.g., survivorship and birth rates, are not important to the 
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oscillation of loggerhead nesting. Van Houtan and Halley (2011) claimed that “… changes in 
loggerhead nesting over at least the last several decades are strongly correlated with ocean 
oscillations.” They further claimed that “… climate forcing seems to dominate population 
dynamics.” They do not mention incidental mortality in fisheries, which has been implicated in 
the decline of marine turtle populations globally (Lewison et al. 2004a, Lewison et al. 2004b, 
Wallace et al. 2010b). For North Pacific loggerheads, there have been reports of mass mortality 
events along the juvenile foraging ground along the Pacific coast of Baja Peninsula, Mexico in 
connection with gillnet fisheries (e.g., Peckham et al. 2007, Peckham et al. 2008, Koch et al. 
2013). These deaths (demographic events) may have played a large a role in the abundance of 
loggerhead turtles in the North Pacific; however, the documentation supporting the climate-
based models makes no mention of any of these papers. Instead it suggests that the historical 
declines observed for both North Pacific loggerheads and Jamursba Medi leatherbacks is 
explained by the environmental drivers in the models (Van Houtan 2011), rather than fisheries 
bycatch or harvesting of nesting females and eggs, which are known to have been high over the 
period of decline. Further, if we accept the conclusions of these authors that the future nesting 
female anomaly can be predicted by using PDO and SST within a particular region, then how do 
we convert this standardized log-anomaly to abundance itself? The procedure for doing this is 
not clear.  

Finally, now that time has passed since the climate-based approach was developed, it seems 
that the models’ projections were not realized. The projections were essentially in the opposite 
direction of the long-term trends observed for both the loggerhead (observed positive trend 
since the 1990s) and leatherback (observed negative trend since 2001) populations. If we 
examine shorter-term model predictions from their start in 2010 to the most recent year of 
available data, we find the following. For loggerheads, the model predicts a decline for 2010-
2016, but the observed data increased over 2010-2013 and decreased over 2013-2016, 
suggesting the predicted pattern of oscillations was wrong for half of the time period. For 
leatherbacks (Jamursba Medi), the model predicts an increase over 2010-2013, a decrease 
over 2013-2015, an increase over 2015-2016, and a decrease over 2016-2017; the observed 
data decreased over 2010-2013, increased over 2013-2016, and decreased 2016-2017, 
suggesting the model predicted the opposite pattern of what really happened for the majority of 
the time period.  

Climate aspects of the models 

The Team identified several issues specific to the climate aspects of the climate-based 
approach produced by Van Houtan. A climate-based approach to modeling population trends 
such as the one in question should include a population dynamics model and carefully consider 
the population’s spatial structure, the climate index selected, the choice of time lag, the 
influence of the climatic effect on the life stages in question (e.g., hatchlings and nesters), and 
the forecasted climate. The Team was not satisfied with the treatment of these aspects in the 
Van Houtan models, which included a fair number of assumptions. 

The climate variables included in the models came from IPCC climate models (e.g., scenario A2 
for SST), but there were a number of concerns in the way they were used. First, the IPCC 
models were not developed for short-term projections, but in this case were indeed used for 
short-term projections (22-25 years). Additionally, the uncertainty of climate predictions was not 
incorporated into Van Houtan’s model projections, which may have underestimated the 
uncertainty in the nest count predictions by an unknown but possibly large amount. The nest 
count prediction figures in Van Houtan and Halley (2011) and Van Houtan (2011) appear to 
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grossly underestimate the uncertainty because of this omission. Without this environmental 
variability, the climate-based approach is deterministic in nature with less stochasticity than the 
non-climate-based PVA models produced by Van Houtan (2011) -- this is not ideal for 
management decision-making purposes. Ultimately, including climate into a PVA model may 
add more uncertainty because climate predictions are also uncertain, and there are many 
different impacts on the different life-stages of the population, most of which were not accounted 
for in the Van Houtan approach. 

One finding in this climate-based approach was that, by subtracting 25 years from the PDO 
index, the authors could somewhat match the lagged PDO values and model predictions of the 
nest count anomalies in Japan. However, as noted above, we have to be careful in how we 
interpret these results, as the response variable in this analysis was the standardized anomaly 
of the log nest counts. It appears that PDO was also standardized, even though it was not 
stated as such in Van Houtan and Halley (2011).  

Lack of reproducibility of the models 

There were several issues regarding reproducibility of the climate-based models which created 
some difficulty in evaluating them or interpreting their results. As noted above, the method for 
transforming nest count data into anomalies was unclear, as was the standardization of the 
PDO index. The data for the analyses were not made available (e.g., eight time series for 
Japan), nor were the methods clear enough to reproduce the results. Also, in the Van Houtan 
and Halley (2011) analysis, they removed two data points because the numbers were less than 
20 nests, which skewed the normalization process. The Team questioned whether this removal 
would introduce bias in some way, as certainly these counts were as important as any other 
count in the data. Data points should not be omitted simply because they are low or high. 
Further, the authors did not provide estimated parameter values for any of these models, nor 
model selection results (i.e., delta AIC values for each dataset). Consequently, it was not 
possible to replicate these results.  

3. Demographic models by Chaloupka 

In reviewing potential modeling approaches for answering PIRO’s questions, the Team 
discussed the possibility of using stage-based demographic models, and in particular, those 
previously developed by Dr. Milani Chaloupka for Pacific loggerhead and leatherback turtle 
populations. A natural starting point for discussions was a review of the models themselves, 
previous Biological Opinions, and external technical reviews of the models. An excerpt from the 
2002 Biological Opinion for the Hawaii-based shallow set longline fishery (pg. 162 in NMFS 
(2002)) summarizes the models and NMFS’s conclusion about the applicability of the models for 
management purposes:  

“In early 2002, Dr. Milani Chaloupka developed a series of simulation models that were 
designed to help us overcome the limits in our knowledge of the population ecology of sea 
turtles in the Pacific Ocean (Chaloupka 2002a, b, Chaloupka 2002c). These models use 
differential equations (running in Berkeley Madonna software) to simulate time-varying 
demographic processes that can be subject to environmental and demographic stochasticity; 
the models were designed to allow managers and other interested parties to quickly consider 
the effects of small changes in some variables on a population’s trajectory over time. After 
carefully reviewing these models, NMFS concluded that, without much more information on the 
biology and ecology of sea turtles in the Pacific Ocean, it would be inappropriate to use the 
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models as the basis for biological opinions or other, specific management purposes. In 
particular, comprehensive models like the ones developed by Dr. Chaloupka require detailed 
information on the biology and ecology of sea turtles and the environmental relationships that, 
as we discussed in the preceding paragraphs, is not available for sea turtles in the Pacific 
Ocean. Using this kind of model under those circumstances would give the appearance of 
numerical precision without the reality of it (Burgman et al. 1993, Reed et al. 1998, Cortés 1999, 
Morris and Doak 2002).” 

After review of the models (Chaloupka 2002a, b), the previous external CIE reviews (CEFAS 
2002, NMFS 2004, CEFAS 2009), and extensive discussions, the Team concluded that even 
though 16 years has passed, the decision by NMFS not to use such models for biological 
opinions or management purposes was still prudent from a scientific perspective. Detailed 
information on the biology North Pacific loggerhead and Western Pacific leatherback turtle 
populations is still lacking, and there are too many unknown demographic parameters across all 
life stages to employ such a demographic model with any confidence that it reflects reality. 
Following is a summary of the Team’s concerns with using demographic models, specifically 
those previously developed by Dr. Chaloupka, to answer PIRO’s questions in support of the 
current Biological Opinion. In brief, the issues raised are related to: (1) lack of population-
specific data to inform a complex model with a high number of parameters, (2) biological or 
ecological aspects of the models, (3) lack of uncertainty included in the models, (4) sensitivity of 
the model to certain data-poor biological parameters, and (5) appropriateness of the method to 
fulfill PIRO’s request.  

Complex model with a large number of biological parameters 

The demographic models by Dr. Chaloupka employ a complex sex- and age- structured Leslie-
matrix approach to characterizing population dynamics. This approach requires a user to 
provide estimates for a large number of biological parameters (e.g., somatic growth rates, 
survival rate, and reproductive values) for each specific ageclass (e.g., eggs, hatchlings, 
neonates, juveniles, subadults, potential adult breeders, post-breeders). In the absence of 
population-specific empirical data to inform these parameters, estimates may be borrowed from 
similar populations from the same or different ocean. Due to a paucity of the required 
demographic data on North Pacific loggerheads and western Pacific leatherbacks, Chaloupka 
borrowed estimates from other populations or species. For example, for the North Pacific 
loggerhead model, many demographic parameters were based on the southwestern Pacific 
“stock” and other populations. A statistical model based on the southwestern Pacific loggerhead 
turtles should not be used as a management tool for the northwestern Pacific stock, or vice 
versa, as these two stocks are genetically distinct (Bowen 2003) and experience different 
environmental and ecological drivers, including anthropogenic threats.  

In addition to inputting parameters from other populations, the parameters then had to be 
“tuned” (i.e., a process of adjusting values and evaluating model outcomes) to force the 
population into a stable age distribution. Recognizing the limitations of the data inputs, 
Chaloupka noted that the models were heuristic tools intended to improve our understanding of 
the population dynamics for the data-poor populations in question, and that the models are not 
applicable for robust management decisions. He also noted that the limited data available for 
both the North Pacific loggerhead and western Pacific leatherback abundance “precludes any 
robust fitting procedures and quantitative model validation” (Chaloupka 2002a, b). Overall, it 
was not clear which biological values were borrowed from which other populations, and which 
were tuned. The Team agreed that given the best available data on both populations which 



63 

generally lacked biological age- or sex-structured estimates, the elaborate, complicated 
simulation models developed by Chaloupka were not appropriate for evaluating the specific 
management questions.  

Biological or ecological aspects of the models 

The Team discussed some biological/ecological aspects of the models. While we have slightly 
more data now in 2018 than in 2002 when the models were created, we are still not in a place 
where we can build age- or size-structured models. For example, we do have some juvenile 
loggerhead abundance estimates at two foraging grounds (Southern California and Baja) based 
upon aerial estimates, but we don’t know the proportion of the population that goes to these 
areas. The new information adds to our understanding of spatial patterns, but we cannot 
incorporate it into a stage-based demographic model. To implement stage-based demographic 
models would require better population-specific estimates of growth and survival rates and 
reproductive outputs for all life stages (at a minimum). As noted above, the biological complexity 
of the models without adequate data to support that complexity was concerning. Thus, the 
Team agreed that the best way forward was to use a simpler approach that only relies primarily 
on the data available (annual nest counts at different beaches) and not on scarce data from 
other populations.  

The Chaloupka models assume density-dependence in the models for both loggerheads and 
leatherbacks. This decision was questioned by the Team due to the low population sizes of the 
long-lived, slow-growing, late-maturing species being modeled. Density-dependence generally 
occurs at high population levels in so-called K-selected species, and there is no empirical 
evidence of density-dependence in turtles at low population sizes (either higher population 
growth rates or Allee effects reducing the probability of finding a mate; Hays (2004)). Mating in 
sea turtles occurs offshore from nesting beaches, with individuals typically returning to their 
natal beach or nearby beaches. This location-specific breeding behavior may play a role in 
preventing Allee effects at small population sizes, allowing turtle populations to recover at 
exponential rates. Thus, including density-dependence in the models requires the user to 
provide even more parameters to specify the functional form of the relationships, but there are 
no population-specific data to inform this process. 

Lack of uncertainty in the models 

The Team noted the demographic models lacked uncertainty for the various parameters 
included in the models. The models used point estimates for many parameters without including 
or explaining the variability or uncertainty surrounding those estimates. Some parameters were 
determined by tuning the model, but it was not clear which parameters were tuned, to what 
extent they were tuned, and whether it was appropriate to do so. Without considering 
uncertainty of the estimated demographic parameters used in the models, the simulation 
analyses end up conveying falsely precise results. Since the models do not propagate 
uncertainty through to the results, there is no way to use the models to obtain uncertainty 
estimates (i.e., the output is not an estimate with a distribution). There is stochasticity in the 
models, but for each simulation run, the output is still just a single point estimate result. The 
Team would not recommend using such results as a management tool because the probable 
errors from the simulations are hidden.  

It was not surprising, however, that parameter uncertainty was not included in the models. We 
currently do not know the uncertainty for the number of nesting females, which is the easiest 
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aspect of turtle populations to study. For other important nesting demographic parameters, we 
do not have robust estimates (with uncertainty) of how often they nest (3-5 years?), how many 
clutches each female lays in a season (3-6?), how long will each female survives (i.e., will she 
be observed nesting one or ten more times?), the hatching success on different beaches, or the 
emergence rate for nests. Beyond nesting ecology, the models include life-history stage 
parameters such as growth rates and stage-based mortality, and we understand these 
parameters far less than we do the nesting ecology parameters. 

Sensitivity of the models to data-poor biological parameters 

The models results were most sensitive to annual variation in the proportion of females that 
breed, the maximum number of clutches laid per season by a female, and the pelagic and 
benthic ageclass survival probabilities. The Team noted that any modeling approach chosen for 
addressing PIRO’s requests should carefully consider all input parameter estimates and 
associated uncertainty. Unfortunately, the very parameters Chaloupka found his models were 
most sensitive to are ones that we know very little about. Therefore using a model that is very 
sensitive to to them is not a defensible approach for informing management decisions. 

Lack of transparency 

The Team noted transparency issues with the complex nature of the demographic models 
developed by Chaloupka. It was difficult to determine what was really driving the outcomes of 
the models. There was no clear accounting of which biological parameters were obtained from 
the population in question versus borrowed from other populations. It was difficult to follow some 
of the documentation in order to reproduce the models. Based on the high number of 
parameters that a user would have to tweak to produce a stable outcome, it did not appear to be 
a stable model. 

Appropriateness of the demographic models to fulfill PIRO’s request  

While it is possible to apply Chaloupka’s stage-based demographic models (or others like them) 
to answer PIRO’s requests, the Team agreed that it was not a good approach based on the 
reasons described above. Given that the model is stochastic, and that an estimate of population 
abundance is available, one could use the models to determine how long it takes for the 
population to reach percentages of the current abundance, with uncertainty estimates. Thus at 
face value, these models could be used. However, these models were designed for model 
tuning and testing, not for management use. The Team agrees with the many CIE reviewer 
comments along the same lines, one of which stated, "We certainly can't approve use of the 
model beyond heuristic exploration" (Dan Goodman in NMFS (2004)).   

4. Diffusion approximation method by Snover 

The Team discussed a diffusion approximation method for estimating extinction risk in turtle 
populations which was described in a PIFSC internal report by Snover (2008) and included in 
the 2008 Biological Opinion for the Hawaii-based shallow set longline fishery (NMFS 2008). This 
approach was based on peer-reviewed research conducted by Snover and Heppell (2009), 
which built upon previously established diffusion approximation methods for estimating quasi-
extinction risks (Dennis et al. 1991, Holmes 2001, Holmes and Fagan 2002, Morris and Doak 
2002). This method uses time series of abundances (i.e., annual nest counts) to estimate two 
key parameters using simple linear regression (Dennis et al. 1991, Snover and Heppell 2009): 
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mean population growth rate and its variance. These parameters are then used to estimate PVA 
risk metrics, including mean time to extinction and probabilities of declining to a preset threshold 
(quasi-extinction) (Dennis et al. 1991, Snover and Heppell 2009). This approach is a count-
based PVA based on a model for exponential growth in a randomly varying environment (Morris 
and Doak 2002, Snover 2008), with Nt+1 = Ntert, where N is the population size, t is time and r is 
the population growth rate. The variance of the log population growth rate accounts for 
environmental and demographic stochasticity and observation error (Snover 2008).  

This approach certainly has merits and was recognized by the Team as a possible starting point 
for providing answers to PIRO’s request. Compared to a complex stage-based demographic 
model, this approach allows one to more easily see what is driving the outcome. It is a 
frequentist method that has solid underpinnings in the scientific literature, and it offers perhaps 
more realistic projections than the other approaches discussed (i.e., climate-based approach 
and stage-based demographic models). The parametric bootstrap approach used to compute 
the susceptibility to quasi-extinction (proportion of bootstrap replicates that indicate a >90% 
chance of dropping below a pre-defined quasi-extinction threshold) and the decision rules used 
to categorize a population as being “at risk” of falling below a threshold would need to be 
modified to address PIRO’s specific requests of estimating the probability of falling below 
specific thresholds. In contrast to numerical approximation methods, this analytical approach 
includes explicit mathematical equations, which can be computationally efficient.  

There were concerns about the modeling framework that could influence the results. First, as 
the available data are annual nest counts, the model would actually be estimating some fraction 
of the population over time (rather than the total population) since most females do not return to 
nest every year. Snover addressed this by applying a run-sum (i.e., adding a few years of data 
together to capture a cohort of nesting females). Snover (2008) used a run-sum of three years, 
which was based on a remigration interval, but CIE reviewers (CEFAS 2009) suggested that 
sensitivity analyses be performed on this decision to use a three year run-sum. The Team noted 
that the run-sum addresses the remigration interval issue, but does not account for variation in 
survey effort. However, the question of whether it is best to use run-sums is not specific to 
Snover’s approach, but arises for any method using annual nest count data. A question arose 
as to how many years of data should be included in the analysis. Snover and Heppell (2009) 
indicated that the model was most accurate with >20 years of data. However, using a longer 
time series would downweight the importance of the data in recent years, which is more likely 
reflective of the current dynamics and trend. These decisions about remigration interval and 
time series length impact the resulting population growth rate and its variance, which, in this 
approach, contains the survey observation error, environmental variation, and demographic 
variation all wrapped into one term. In general, the Team agreed with the CIE reviews that this 
approach was valid, but that: (1) more sensitivity analyses could be performed (especially for 
the extension of the approach that incorporates fisheries take), (2) propagating uncertainty 
through to the results would be an improvement, such that outputs are point estimates with 
distributions, and (3) a Bayesian approach could provide a better framework for dealing with 
some of the drawbacks of the frequentist diffusion approximation approach, especially if 
managers are interested in probabilities of the population falling below thresholds.   

5. Empirically-derived stochastic exponential growth model by Van Houtan 

In support of the 2012 Biological Opinion for the Hawaii-based shallow-set longline fishery, Van 
Houtan employed a modeling approach he called a “classical approach to population viability” or 
an “empirically-derived stochastic exponential growth (SEG) model” (Van Houtan 2011). This 
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approach was similar to Snover’s diffusion approximation (DA) application in many ways: (1) it 
was based on a stochastic exponential growth model to describe observed population changes, 
(2) it used annual nest count data (natural log transformed) from Jamursba Medi, Indonesia for 
leatherbacks and from Japan for loggerheads, (3) it employed a run-sum method of annual 
counts based on a remigration interval, and (4) it converted nest counts to nesting females 
using clutch frequency. However, Van Houtan’s approach differed from Snover’s in how it 
estimated the population growth rate, r, and generated future projections. Rather than use the 
DA methods, he estimated r by fitting a normal distribution to the interannual differences in log 
nest counts and then made projections using Monte Carlo methods to randomly select r from 
the fitted distribution for thousands of simulation runs (each run having a constant r across 
future years). The Team discussed this approach and the claims made by Van Houtan (2011) in 
his explanation of the method and its caveats.   

Van Houtan (2011) stated that both the DA model and his empirically-derived SEG model make 
two assumptions: “(i) demographic forces are the primary factor driving population dynamics, 
and (ii) that the factors that regulate population dynamics remain constant through time”. He 
stated that “neither of these assumptions may be warranted, however” and cited his publication 
(Van Houtan and Halley 2011) that includes the climate-based models described above. The 
Team found the first two statements inaccurate, and noted that the purpose of the third 
statement is seemingly to highlight his preference for the climate-based models presented in the 
same report, which presumably do not make the same assumptions. First, population dynamics 
are always affected by demographic forces. The only way a population can change its size is 
through demographic events - births, deaths, emigrations and immigrations. So the first stated 
assumption is not an assumption, it is fact. For his second claim, i.e., the factors that regulate 
population dynamics remain constant over time, there is no such assumption. The factors that 
affected the population in the past will continue to affect the population in the future – but this is 
not equivalent to “constant over time.” In fact, this approach selects different r values from a 
fitted normal distribution around the mean and variance of the population growth rate which are 
estimated from observed changes in abundance. Consequently, the distribution of past growth 
rates is assumed to be operative in the future. It might be reasonably expected that the 
particular factors that influenced past observed rates will operate similarly in the future, but that 
is not strictly speaking an assumption of this modeling approach. Van Houtan also fails to point 
out that another very important assumption made was that r follows a normal distribution.  

In explaining why he chose the empirically-derived SEG method over the DA method, Van 
Houtan states that Kendall (2009) showed that “diffusion approximation systematically 
overestimates extinction risk, especially for species with life history patterns like sea turtles.” 
However, examining Kendall’s paper, as well as Snover and Heppell (2009), reveals more 
nuance. For example, Snover and Heppell’s approach is not the same as the plain DA 
approach, which was the subject of investigation by Kendall (2009). Snover and Heppell (2009) 
looked at how a new metric (susceptibility to quasi-extinction or SQT) would perform based on 
the DA approach. Through simulations, they satisfied themselves (and the reviewers) that the 
new metric is indeed useful in determining a population’s status – even for a species with non-
continuous breeding. Further, Kendall (2009) reported that “… for many populations/species the 
bias was quite small, especially when the overall risk was high. In those populations for which I 
could calculate confidence intervals of extinction risk, the bias was never more than 20% of the 
width of the 95% confidence interval, suggesting that bias is a relatively minor component of the 
estimation error.” Also, Kendall stated that “In two of the policy applications that I examined, the 
impact of the bias was modest. The relative risk of populations was sometimes misranked, but 
only if the risk difference between them was small. In such cases the choice of which population 
to protect will likely be driven by factors such as feasibility and cost.” Thus, the bias associated 
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with the DA approach may not be a major issue and Snover’s approach takes into account the 
possible bias. Consequently, the statement by Van Houtan that the DA approach was not 
appropriate is unfounded. 

The Team agreed that the empirically-derived SEG model could be used to address PIRO’s 
requests, but that adjustments should be made to the method. First, Van Houtan assumed that 
the population growth rate of each simulation run for the future projection was constant over 
time, which may not reflect interannual variation in the observed data. This could be adjusted by 
instead randomly drawing from the estimated distribution for r in each future year. This would 
capture the variability in the long-term population trend, which is simply the integration of each 
interannual trend, effectively an overall average of interannual trend values. There is variation in 
the estimate of a long-term trend inherently, due to many factors (e.g., data accuracy, 
population response to variability in environment). The data show this in that they do not 
produce a straight line throughout the time period of observation; they fluctuate. Drawing a new 
trend each future year matches this reality: interannual variability but on the average the same 
long term pattern. Further, this approach suffers from many of the same modeling decisions as 
Snover’s DA approach (i.e., run-sum based on a fixed remigration interval, projection time frame 
into future based on generation time, constant growth rate each run), so many of the criticisms 
of the Snover model from the CIE reviews also exist here but could be improved upon. 
However, the Team recognizes that adding uncertainty to biological parameters such as 
remigration intervals, clutch frequencies, and age at maturity is difficult when data don’t exist to 
inform the parameters, and that the result may simply be to increase the uncertainty 
surrounding the modeled future trends. Finally, the Team noted that theoretically, the 
empirically-derived SEG (numerical approximation approach) and the DA (analytical approach) 
should produce similar population growth rates and projected trends.  

6. Selecting a modeling approach to estimate long-term trends and conduct a 
Population Viability Analysis to answer PIRO’s request 

The Team acknowledged that there are many approaches to estimating a long-term population 
trend, and various modeling decisions to make within any given approach. After deciding that 
neither the climate-based approach from the previous Biological Opinion nor the complex stage-
based demographic models developed by Milani Chaloupka (or similar models that would 
require an abundance of biological parameter data) were appropriate for the current task, the 
Team moved on to select an appropriate method for estimating long-term trends which would 
then inform a count-based Population Viability Analysis (PVA). The Team considered and 
experimented with a few commonly used estimation approaches, including: (1) log-linear 
regression of count data, (2) fitting a distribution to interannual log differences in count data, (3) 
Bayesian state-space models. All of these approaches include a stochastic exponential growth 
model at their core, rely exclusively on nesting time series data as model inputs, and have been 
previously used on marine turtle populations. In fact, the first approach was employed as part of 
the diffusion approximation models implemented by Snover (2008), the second approach was 
employed by Van Houtan (2011) in his empirically-derived stochastic exponential growth 
models, and the third approach was applied by Boyd et al. (2017) in examining extinction risk of 
several Endangered Species Act listed populations. Following is a summary of the Team’s 
discussions and conclusions about the three approaches and the decision to pursue a Bayesian 
state-space model as the most robust method for addressing PIRO’s request (PIRO 2018).   

The primary goal for all of the approaches is to estimate a long-term trend, which is the 
population growth rate parameter, r, in the stochastic exponential growth equation Nt+1 = Ntert, 
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where N is the population size and t is time. It is important to note, however, that the best 
available data are annual nest counts, which only represent a portion of the mature females in 
the population because females do not return to nest every year. Annual nest counts therefore 
provide an index for the only segment of the population (mature females) that we can sufficiently 
track through time. No data are available to provide an index of abundance for other age 
classes. Due to this data limitation, the estimated r does not actually represent the true 
population growth rate for the population of interest (e.g., North Pacific loggerhead turtles). Even 
if the data were annual number of females rather than nests, we probably still could not assume 
a stable age distribution (an assumption that would be required for the growth rate to represent 
the entire population) due to a lack of data on other age classes. Further, given the observed 
variability in year-to-year nest counts, our estimates of r will have large uncertainty around them. 
There is no way around this problem unless we set some limits on r through a prior distribution 
or cut-off values. The consequence of this reality is that any sort of future projections of nest 
counts will have large uncertainty in them. Therefore, how the models deal with the variability in 
the data and characterize uncertainty is an important consideration. 

There were a few key issues associated with the log-linear regression and interannual log 
difference approaches that made them suboptimal approaches compared to a Bayesian state-
space model. First, neither method separates the possible sources of variation in the annual 
nest count data. Those sources include (1) observation error (imperfect data collection, with the 
possibility that some nests are missed, misidentified, or misrecorded, and/or that sampling 
methods change somewhat between years or observers), and (2) process error, which is 
comprised of both environmental stochasticity (e.g., variability in food and habitat resources) 
and demographic stochasticity (chance events of individual mortality and reproduction that 
influence population growth rates). As a result, both methods are relatively sensitive to errors in 
count data and changes to sampling methodology between years. This is most extreme in the 
interannual log differences approach, as it is specifically focused on the difference between 
each consecutive pair of years, which can vary because of more than just changes in 
abundance. Instead of separating those sources of variation, both methods wrap them into the 
variance associated with the mean long-term trend, resulting in trend estimates with high 
uncertainty that are subsequently propagated through to future projections with high uncertainty. 
Thus, the two methods fall short in their ability to adequately capture the long-term trend. The 
log-linear regression under-captures the full degree of interannual variability in the data, while 
the interannual log differences method over-captures it. Finally, the results are packaged as 
point estimates with 95% confidence intervals rather than probability distributions. Monte Carlo 
simulation methods can then be used to create multiple projection runs, and we can calculate 
the proportion of runs falling below an abundance threshold in place of estimating probabilities, 
as requested by PIRO. However, this workaround would be improved by starting with probability 
distributions for the parameters being used to generate future projections.  

A Bayesian state-space model that is based on stochastic exponential population growth 
addresses the shortcomings of the other two methods outlined above. Specifically, Bayesian 
methods are designed to produce posterior probability distributions for estimated parameters 
based on data, and these distributions can be directly used to generate future projections. This 
provides PIRO with results that are based on probabilities. Additionally, the “state-space” aspect 
of the model allows specification of both a biological process model and an observation model, 
which allows the sources of variability in the annual nest count data to be parsed out and 
estimated separately. Consequently, the estimate for the long-term trend parameter is better 
isolated from noise in the data, and the variance surrounding its mean more accurately captures 
the variation in the trend itself without being conflated with data collection errors and natural 
variability (environmental and demographic). The Team identified the Bayesian state-space 
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modeling methods used by Boyd et al. (2017) as fully capable of producing specific count-based 
PVA results requested by PIRO. The approach is robust, has been tested on turtle populations, 
and is simply a Bayesian adaptation of multivariate autoregressive state space (MARSS) 
models used for analysis of ecological time series; the MARSS package in R uses maximum 
likelihood estimation rather than Bayesian estimation (Holmes et al. 2012, R Development Core 
Team 2012, Holmes et al. 2014, Boyd et al. 2017).  

7. Modeling decisions 

Data transformations 

The best available data are annual nest counts from Japan for North Pacific loggerheads and 
from Indonesia (Jamursba Medi and Wermon beaches) for western Pacific leatherbacks. For 
the trend estimation, we converted annual nest counts to annual female counts using a fixed 
clutch frequency based on best available data (3 nests per female for loggerheads (Conant et 
al. 2009) and 5.5 nests per female for leatherbacks (Tapilatu et al. 2013)). This conversion to 
annual females scaled the results but did not substantively change the trend. The Team 
considered using a running-sum (“run-sum”) approach to add nesting females across three 
years (based on assumed remigration interval), but found this extra transformation of the data to 
be unnecessary, as it only further changes an index of abundance. Also, there were a few 
missing years in the Wermon beach data, which would prevent computing a run-sum across 
some years. Further, there was precedent to estimate the trend using annual nesting females 
rather than run-sum totals of nesting females, as demonstrated by Boyd et al. (2017). The 
natural log transformation of annual female counts is a standard choice when working within an 
exponential growth model, and appears in all the modeling approaches discussed in this 
document.  

Current abundance estimates 

PIRO’s memo requested a comparison of future projections to current abundance estimates 
(PIRO 2018). Current abundance estimates do not exist for either population in question. 
Therefore, as an index of current abundance, we calculated a run-sum total using the model 
estimates for the final three years of data (e.g., 2015-2017 for leatherbacks); three years reflects 
the best available data on remigration interval for both loggerheads and leatherbacks, which we 
assume provides a snapshot of the total abundance of nesting females. Specifically, we pulled 
the estimated number of annual females for each of the last three years from an individual 
MCMC run, and summed those to produce an estimated index of total reproductive females in 
the population.  

Future projections including dynamic growth rate  

The long-term trend (i.e., growth rate, r, for the annual females index) estimated for the data 
time series is used to generate future projections through a simulation procedure. Each 
simulation run begins with three components: (1) a starting point for annual females -- this is the 
estimated number of annual females for the final year, as described above, (2) a value of r 
drawn from a normal distribution centered around the mean and standard deviation derived from 
the posterior estimates, and (3) a value of Q, process error variance, drawn from a lognormal 
distribution centered around the mean and standard deviation derived from its posterior 
estimates. For all subsequent years in a simulation run, a constant versus dynamic approach 
was considered for the long-term population growth rate value. In the constant approach, a 
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single r and Q value are drawn from their distributions and those values are used for every 
subsequent year up to 100 years. In the dynamic approach, a new value of r and Q are drawn 
from their respective distributions for each future year up to 100 years. In test scenarios, using a 
constant value across years produced much higher uncertainty around the future projections 
than using a dynamic trend. Because the raw data are annual nest counts rather than a more 
comprehensive index of the population, and because females do not nest every year, we do 
observe high and low values in consecutive years. The Team therefore decided to use the 
dynamic approach, as it better represented the interannual oscillations observed in the annual 
count data and produced more ecologically realistic projections over a 100 year time scale.  

Probabilities of falling below abundance thresholds 

PIRO requested estimates of the time (number of years) it will take for the impacted loggerhead 
and leatherback populations to decline to specified abundance thresholds, as well as estimates 
of the probability that each population will reach those thresholds at specified points in the future 
(PIRO 2018). To fulfill this request, we generated 10,000 simulated projections for 100 years in 
the future for each population (see above). The projections were made in units of annual 
females, consistent with our use of annual females for estimating the long-term trend; this 
decision was also made by Boyd et al. (2017). However, as PIRO’s request defined the 
thresholds in terms of “current abundance estimates” (50%, 25%, and 12.5% of current 
abundance estimates), we calculated run-sums from the future projections (again using 3 years 
based on assumed remigration intervals) and compared them to the run-sum estimates of 
current abundance for the final data years as described above. As noted previously, the 3-year 
run-sum provides an estimated snapshot of total reproductive females in the population, which 
is our best estimate for an index of abundance, based on the available data. To estimate the 
probability of falling below each threshold, we computed the proportion of simulation runs falling 
below (and remaining below) each threshold. For those runs falling below a threshold, we 
computed the time in number of years it took to reach the threshold (mean, median, 95% 
credible intervals).   

METHODS 

Modeling the long-term trend  

Our approach to estimate the long-term population trend, i.e., population growth rate, is based 
on a stochastic density-independent exponential growth model, which we implement within a 
Bayesian state-space modeling framework, following Boyd et al. (2017). Estimation of the 
Bayesian state-space model was completed in JAGS (Plummer 2003), and projections (see 
below) were completed in R (R Development Core Team 2012) using the ‘coda’ and ‘jagsUI’ 
packages (Plummer et al. 2006, Kellner 2015). This type of model is commonly used for long-
lived, slow-growing, late-maturing species such as sea turtles whose populations have been 
depleted to relatively low levels. The framework allows for estimation of both process variation 
(i.e., environmental and demographic variability) and observation uncertainty (i.e., imperfect 
data collection), and provides parameter estimates with probability distributions. The only inputs 
to the model are time series of nest count data, which we assume are an index of abundance 
for reproductive females in the population. The basic exponential growth equation underlying 
this approach is outlined below, and the model structure is described in Figure 1.  

Exponential growth equation: 

Nt+dt = Nt*exp(r*dt) 
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Nt = population size (number of individuals) at time t 

dt = delta t, or difference in time (unit = years) 

r = population growth rate, or log growth rate (i.e., long-term trend) 

exp(r) = λ or “lambda”, the finite rate of increase 

Log-transformed equation & solved for growth rate: 

log(Nt+dt) = log(Nt) + r*dt 

r = [log(Nt+dt) - log(Nt)]/dt 

From the model outputs, we were most interested in the posterior distributions estimated for r, 
the population growth rate or long-term trend; Q, the process error variance; and Nfinal, the 
predicted nesting female count for the final year of observed data (see Figure 1). We used these 
three posterior distributions to project forward 100 years into the future (details below). The 
parameter distributions were estimated through a Bayesian model fitting process in which the 
program employs a Markov Chain Monte Carlo simulation to fit the model parameters to each 
set of data separately (i.e., the three time series of Annual Females for loggerhead turtles and 
two time series for leatherback turtles for a total of 2 models, 1 per species). Models were 
checked for suitable performance using the following diagnostic tools: examination of trace 
plots, effective sample sizes, Geweke statistics, Gelman statistics, and Deviance Information 
Criterion.   

Future projections 

Future projections were generated using a simulation approach with 10,000 runs for each 
model. Each run began with a draw from each of three model-estimated distributions: the 
nesting female count in the final observed year, Nfinal; the growth rate, r; and the process error 
variance, Q. For each future year, new values of r and Q were drawn, making the projected 
growth rate and process error variance dynamic and best reflecting interannual variation in the 
observed data as well as the biology of the species. For each run, the number of nesting 
females for each future year was calculated according to the exponential growth equation but 
with the addition of a process error (see model diagram below). In addition, a Current 
Abundance Estimate was generated for each projection run by summing the last 3 estimated 
count values (Nfinal, Nfinal-1, and Nfinal-2) from the same MCMC run as where the Nfinal value was 
drawn for the projection. The three year running sum was based on assuming a three year 
remigration interval (applicable to both loggerheads and leatherbacks), with the assumption that 
summing all females that nest during that period provides a snapshot of Total Reproductive 
Females in the population.  



72 

 

Figure 1. Schematic illustration of Bayesian state-space model based on stochastic density-
independent exponential population growth. There are two major components: a process model 
describing the true number females nesting each year and an observation model relating the 
observed count data to the true number of nesting females. Three parameters are estimated: (1) 
r, the long-term trend, i.e., population growth rate, (2) Q, process error variance, and (3) R, 
observation error variance. The model also provides a predicted count (number of nesting 
females) with a probability distribution for each year of observed data. The predicted value for 
the final year of observed data is then used as a starting point for future projections.  

Evaluating projections against abundance thresholds 

We calculated 3-year running sums from the Annual Female projections to create an index of 
Total Reproductive Females. This allowed us to compare the projections to the Current 
Abundance Estimates calculated above. To do so, we computed the proportion of runs for which 
the projected Total Reproductive Females fell below (and remained below) PIRO’s specified 
thresholds (50%, 25%, and 12.5% of Current Abundance) by 100 years in the future. For the set 
of runs ending below a threshold, we calculated the mean, median, and 95% credible interval 
for the number of years until the population fell below the threshold. We also calculated the 
probability of the projected Total Reproductive Females falling below each threshold at 5, 10, 
25, 50, and 100 years in the future.   
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MODEL RESULTS SUMMARY 

North Pacific Loggerhead Turtles 

1. Data: Annual Female Counts (raw Annual Nest Counts divided by clutch frequency of 3 
nests per female; (Conant et al. 2009)). We use annual counts instead of a running sum to 
minimize assumptions about remigration interval. Raw data are comprised of time series 
from three nesting beaches in Yakushima, Japan – Inakahama (1986-2015), Maehama 
(1989-2015), and Yotsusehama (1999-2015). These beaches represent approximately 52% 
of loggerhead turtle nesting in Japan. These are the best available data and were provided 
by Japanese colleagues. The data are shown below as the natural log of annual nesting 
females; this is how they were input to the model.  

 

2. Model Fit: fit population growth rate, ‘r’, using Bayesian state-space model approach based 
on density-independent stochastic exponential population growth as in Boyd et al. (2017). 
Other model approaches were considered; however, the Bayesian state-space approach 
incorporates uncertainty better and partitions that uncertainty into both process and 
observation error components. The predicted model median (blue line) with 95% credible 
intervals (gray shading) are overlaid on data points (black dots) for each time series, scaled 
appropriately by the model-estimated scaling parameters.  
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3. Current abundance estimate: use model-estimated Annual Female distributions for 2013-
2015 to estimate an index of current Total Reproductive Female abundance; this is 
computed as a 3-year run sum (3 year remigration interval; (Conant et al. 2009)). The 
estimated distributions for 2013-2015 Annual Females and the summed Total Reproductive 
Females estimate are summarized in the table below. 

Observed data year Median Lower 95% CI Upper 95% CI 

Final Data Yr -2 1777 1465 2165 

Final Data Yr -1 1203 984 1448 

Final Data Yr -0 652 527 855 

Sums=CurAbundEst 3632 2976 4468 

4. Projections: start with a value drawn from the posterior distribution of Annual Females for 
2015; use dynamic ‘r’ (draw new ‘r’ each future year within a simulation run) and dynamic 
process error variance, ‘Q,’ to add natural variability. The figure below shows the 10,000 
model projection runs for 100 years into the future from the final data year (2015). Model 
projections are of Annual Females in natural log space. 

 

5. Abundance thresholds: each future projection (n = 10,000 simulation runs) of Total 
Reproductive Females (3 year running sum of projected Annual Females) is compared to 
the specified fraction (50%, 25%, or 12.5%) of its specific starting estimate for current Total 
Reproductive Females.  
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Loggerhead Table 1: Probability of the population reaching abundance thresholds within the 
100 year projection period, and time in years (mean, median, & 95% credible interval [CI]) to 
reach the threshold for all runs that fall below the threshold. 

 

Loggerhead Table 2: Probability (with 95% credible intervals [CI]) of the population reaching 
abundance thresholds at 5, 10, 25, 50, and 100 years from final data year (2015). 

 

6. Population growth rates: Bayesian model estimates provide an index of population growth 
using the best available index of population abundance derived from nest count data. 
Estimating true population growth rates would require additional data or assumptions about 
the population age distribution. Rates reflect the long-term trend estimated using the Annual 
Female Count data described above. For r, if values are positive then growth is positive; if 
values are negative then growth is negative. For ƛ lambda, if values are greater than 1 then 
growth is positive; if values are less than 1 then growth is negative.  

Log growth rate of population (r): 
  mean: 0.024 
  median: 0.024 
  variance: 0.005 
  95% CI: -0.108 to 0.156 

Finite rate of increase (ƛ): 
  mean: 1.024 
  median: 1.024 
  95% CI: 0.897 to 1.168 

Threshold
Probability of 
staying above 

threshold

Probability of 
falling below 

threshold

Years to reach 
threshold 

(Mean)

Years 
(Median)

Years 
(lower 
95% CI)

Years 
(upper 
95% CI)

50% abundance 75% 25% 49 50 2 99
25% abundance 80% 20% 56 59 3 99
12.5% abundance 85% 15% 62 68 7 99

Abundance 
Threshold

yr 5 yr 10 yr 25 yr 50 yr 100

50% 13% 14% 16% 18% 25%
lower 95% CI 12% 13% 15% 17% 25%
upper 95% CI 13% 15% 16% 18% 26%

25% 3% 6% 9% 12% 20%
lower 95% CI 3% 6% 9% 12% 19%
upper 95% CI 4% 7% 10% 13% 20%

12.5% 0% 2% 5% 8% 15%
lower 95% CI 0% 2% 5% 8% 14%
upper 95% CI 0% 2% 6% 9% 16%
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Western Pacific Leatherback Turtles 

1. Data: Annual Female Counts (raw Annual Nest Counts divided by clutch frequency of 5.5 
nests per female; (Tapilatu et al. 2013)). We use annual counts instead of a running sum to 
minimize assumptions about remigration interval. Raw data are comprised of time series 
from two nesting beaches in Bird’s Head, West Papua, Indonesia – Jamursba Medi (2001-
2017) and Wermon (2006-2017, except 2013-2015). These beaches represent 
approximately 85% of nesting for the western Pacific leatherback population. These are the 
best available data and were provided by Indonesian colleagues. The data are shown below 
as the natural log of annual nesting females; this is how they were input to the model.  

 

2. Model Fit: fit population growth rate, ‘r’, using Bayesian state-space model approach based 
on density-independent stochastic exponential population growth as in Boyd et al. (2017). 
Other model approaches were considered; however, the Bayesian state-space approach 
incorporates uncertainty better and partitions that uncertainty into both process and 
observation error components. The predicted model median (blue line) with 95% credible 
intervals (gray shading) are overlaid on data points (black dots) for each time series, scaled 
appropriately by the model-estimated scaling parameters.  
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3. Current abundance estimate: use model-estimated Annual Female distributions for 2015-
2017 to estimate an index of current Total Reproductive Female abundance; this is 
computed as a 3-year run sum (3 year assumed remigration interval). The estimated 
distributions for 2015-2017 Annual Females and the summed Total Reproductive Females 
estimate are summarized in the table below. 

Observed data year Median Lower 95% CI Upper 95% CI 

Final Data Yr -2 340 275 433 

Final Data Yr -1 439 350 552 

Final Data Yr -0 401 324 495 

Sums=CurAbundEst 1180 949 1479 

4. Projections: start with a value drawn from the posterior distribution of Annual Females for 
2017; use dynamic ‘r’ (draw new ‘r’ each future year within a simulation run) and dynamic 
process error variance, ‘Q,’ to add natural variability. The figure below shows the 10,000 
model projection runs for 100 years into the future from the final data year (2017). Model 
projections are of Annual Females in natural log space. 
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5. Abundance thresholds: each future projection (n = 10,000 simulation runs) of Total 
Reproductive Females (3 year running sum of projected Annual Females) is compared to 
the specified fraction (50%, 25%, or 12.5%) of its specific starting estimate for current Total 
Reproductive Females.  

Leatherback Table 1: Probability of the population reaching abundance thresholds within the 
100 year projection period, and time in years (mean, median, & 95% credible interval [CI]) to 
reach the threshold for all runs that fall below the threshold. 

 

Threshold
Probability of 
staying above 

threshold

Probability of 
falling below 

threshold

Years to reach 
threshold 

(Mean)

Years 
(Median)

Years 
(lower 
95% CI)

Years 
(upper 
95% CI)

50% abundance 2% 98% 26 18 3 86
25% abundance 5% 95% 37 31 7 91
12.5% abundance 9% 91% 46 43 13 95
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Leatherback Table 2: Probability (with 95% credible intervals [CI]) of the population reaching 
abundance thresholds at 5, 10, 25, 50, and 100 years from final data year (2017). 

 

6. Population growth rates: Bayesian model estimates provide an index of population growth 
using the best available index of population abundance derived from nest count data. 
Estimating true population growth rates would require additional data or assumptions about 
the population age distribution. Rates reflect the long-term trend estimated using the Annual 
Female Count data described above. For r, if values are positive then growth is positive; if 
values are negative then growth is negative. For ƛ lambda, if values are greater than 1 then 
growth is positive; if values are less than 1 then growth is negative. 
 
 Log growth rate of population (r): 
  mean: -0.053 

median: -0.053 

variance: 0.003 

95% CI: -0.164 to 0.059 

 Finite rate of increase (ƛ): 
  mean: 0.949 

median: 0.948 

95% CI: 0.849 to 1.061 

Abundance 
Threshold

yr 5 yr 10 yr 25 yr 50 yr 100

50% 12% 36% 68% 87% 98%
lower 95% CI 11% 35% 67% 87% 97%
upper 95% CI 13% 36% 69% 88% 98%

25% 0% 8% 45% 76% 95%
lower 95% CI 0% 7% 44% 75% 95%
upper 95% CI 1% 8% 46% 76% 96%

12.5% 0% 1% 22% 61% 91%
lower 95% CI 0% 1% 21% 60% 90%
upper 95%  CI 0% 1% 23% 62% 91%
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Appendix II:  Parameter Estimates and Sources 
Sp Param Description Estimate SE Low Upp Pop Source Justification/Notes 

Dc Linf VBGF: 
average size 
of nesting 
females 
(SCL in 
cm) 

142.7 1.64 
  

Mix Jones et al. 
(2011) JEMB 

best available 
growth model, both 
globally and for W. 
Pacific specifically 

Dc k VBGF: 
Brody 
growth 
coefficient 
in VBGF 

0.2262 0.021 
  

Mix Jones et al. 
(2011) JEMB 

best available 
growth model, both 
globally and for W. 
Pacific specifically 

Dc t0 VBGF: 
hypothetical 
age animals 
would be 
length = 0 

-0.17 0.07 
  

Mix Jones et al. 
(2011) JEMB 

best available 
growth model, both 
globally and for W. 
Pacific specifically 

Dc Amat VBGF: age 
at maturity 
(97.5% of 
Linf in 
VBGF) 

16.1 
   

Mix Jones et al. 
(2011) JEMB 

best available 
growth model, both 
globally and for W. 
Pacific specifically 
(Age at maturity 
confirmed recently 
with 
skeletochronology 
by L. Avens et al. 
(2020) in Marine 
Biology) 

Dc SCL_slo slope: SCL 
conversion 
to CCL 

1.04 
    

Tucker & 
Frazer (1991) 
Herpetologica 

best available but 
didn't end up 
needing, as no CCL 
measurements for 
Dc 

Dc SCL_int intercept: 
SCL 
conversion 
to CCL 

2.04 
    

Tucker & 
Fraser (1991) 
Herpetologica 

best available but 
didn't end up 
needing, as no CCL 
measurements for 
Dc 

Dc CF clutch 
frequency = 
# of nests 
laid by a 
female in a 
season 

5.5 SD 
1.6 

3 10 W. 
Pac 

Tapilatu et al. 
(2013) 
Ecosphere 

most recent 
estimate of clutch 
frequency 

Dc CS clutch size 
= # of eggs 
laid in one 
nest 

77.9 2.35 
  

W. 
Pac 

Tapilatu & 
Tiwari (2007) 
Copeia 

most recent 
estimate of clutch 
size using direct 
count observations 
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Sp Param Description Estimate SE Low Upp Pop Source Justification/Notes 

Dc RI remigration 
interval = # 
of years 
between 
nesting 
years 

3.06 
   

W. 
Pac 

derived from 
Lontoh 
(2014) 
master's thesis 

most recent 
estimate; specific 
to CNP foraging 
area; estimated 
Poisson scale 
parameter was 2.36 

Dc Pj survival of 
juveniles 
(probability 
from one 
age to next) 

0.81 0.03 
  

WP Jones et al. 
(2012) PLoS 
One 

best available; 
based on 
population growth 
model calculating 
natural mortality 
based on known 
age at maturity 

Dc Pa survival of 
adults 
(probability 
from one 
age to next) 

0.893 0.013 
  

CB Dutton et al. 
(2005) Biol 
Cons 

Jones et al. (2012) 
was too low due to 
conflating fisheries 
& natural 
mortality; thus, use 
Dutton et al. (2005) 
estimate as best 
available for a 
growing population 
at the time so 
probably a better 
estimate of what Pa 
actually is  

Dc PF proportion 
female = 
sex ratio 

0.73 
    

Benson et al. 
(2011) 
Ecosphere 

Using Benson et al 
2011 (Ecosphere) 
27:10 female:male 
(27 females and 10 
males captured/sat-
tagged) as best 
(only) available 
estimate even 
though CA foragers 
different foraging 
stock and size 
ranges that are not 
necessarily 
representative of 
Dc taken in SSLL 

Cc CCL_slo slope: CCL 
conversion 
to SCL 

0.9084 
    

SM model of 
Zug (1995) 

best available 
SCL/CCL 
measurements data 
for CNP & specific 
sizes that interact 
w/ SSLL 
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Sp Param Description Estimate SE Low Upp Pop Source Justification/Notes 

Cc CCL_int intercept: 
CCL 
conversion 
to SCL 

0.0303 
    

SM model of 
Zug (1995) 

best available 
SCL/CCL 
measurements data 
for CNP & specific 
sizes that interact 
w/ SSLL 

Cc Pj survival of 
juveniles 
(probability 
from one 
age to next) 

0.8 0.031 0.74 0.86 Mix Snover (2008) 
PIFSC  IR-
08-010; 
Conant et al. 
(2009) 

these two papers 
are best available 
and generally 
accepted survival 
rates for the 
parameter; Conant 
et al. (2009) had 
mortality rates 
estimated from 
population model; 
Snover (2008) 
range includes 
Conant et al. 
(2009) 

Cc Pa survival of 
adults 
(probability 
from one 
age to next) 

0.895 0.028 0.84 0.95 Mix Snover (2008) 
PIFSC IR-08-
010; Conant 
et al (2009) 

best available and 
generally accepted 
survival rates for 
the parameter 

Cc PF proportion 
female = 
sex ratio 

0.65 
   

Mix Snover (2008) 
PIFSC IR-08-
010; Conant 
et al. (2009) 

best available and 
generally accepted 
sex ratio and 
consistent with 
expert consensus 
for this population 
given lack of 
empirical data; 
Conant et al. 
(2009) had 
mortality rates 
estimated from 
population model; 
Snover (2008) 
range includes 
Conant et al. 
(2009) 

Cc CF clutch 
frequency = 
# of nests 
laid by a 
female in a 
season 

4.6 SD 
1.1 

  
NP Hatase et al. 

(2013) 
Ecology 

most recent 
available; study 
based on 
Yakushima nesters 
which is the driver 
of NP pop (52% for 
3 beaches in our 
analysis) 



88 

Sp Param Description Estimate SE Low Upp Pop Source Justification/Notes 

Cc CS clutch size 
= # of eggs 
laid in one 
nest 

122 SD 
18.4 

83.5 148 NP Hatase et al. 
(2013) 
Ecology 

most recent 
available; study 
based on 
Yakushima nesters 
which is the driver 
of NP pop (52% for 
3 beaches in our 
analysis) 

Cc RI remigration 
interval = # 
of years in 
between 
nesting 
years 

3.3 2.3 1 10 NP Hatase et al. 
(2013) 
Ecology 

most recent 
available; study 
based on 
Yakushima nesters 
which is the driver 
of NP pop (52% for 
three beaches in 
our analysis) 

Cc Linf VBGF: 
average size 
of nesting 
females 
(SCL in 
cm) 

86.9 
   

NP ZS model 
from data in 
Turner-
Tomaszewicz 
(2015) Biol 
Cons 

best available data 
used to construct 
VBGF model 

Cc k VBGF: 
Brody 
growth 
coefficient 
in VBGF 

0.09 
   

NP ZS model 
from data in 
Turner-
Tomaszewicz 
(2015) Biol 
Cons 

best available data 
used to construct 
VBGF model 

Cc t0 VBGF: 
hypothetical 
age animals 
would be 
length = 0 

-2.467 
   

NP ZS model 
from data in 
Turner-
Tomaszewicz 
(2015) Biol 
Cons 

best available data 
used to construct 
VBGF model 

Cc Amat Zach 
generate. 
VBGF: age 
at maturity. 
# of ages as 
a juvenile 
(to get to 
Amat) 

37.9 
   

NP ZS model of 
Loggerhead 
growth; Zug 
(1995) data, 
Turner-
Tomascewiz 
(2015) Biol 
Cons data, & 
Hatase et al. 
(2002) STAJ 
nesters data 

Using 85 cm ± 4.5 
cm (SD) as average 
nesting SCL length 
(Linf) from Hatase 
et al. (2002) MEPS 

Cc Linf_L0 VBGF: 
average size 
of nesting 
females 
(SCL in 
cm) 

80.4474 
   

NP ZS model 
from data in 
Turner-
Tomaszewicz 
(2015) Biol 
Cons 

best available data 
used to construct 
VBGF model 
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Sp Param Description Estimate SE Low Upp Pop Source Justification/Notes 

Cc k_L0 VBGF: 
Brody 
growth 
coefficient 
in VBGF 

0.1396 
   

NP ZS model 
from data in 
Turner-
Tomaszewicz 
(2015) Biol 
Cons 

best available data 
used to construct 
VBGF model 

Cc L0 VBGF: 
length at 
birth 
(hatching) 

4.7363 
   

NP ZS model 
from data in 
Turner-
Tomaszewicz 
(2015) Biol 
Cons 

best available data 
used to construct 
VBGF model 

Cc Amat VBGF: age 
at maturity. 
# of ages as 
a juvenile 
(to reach 
Amat) 

26.4951 
 

    NP ZS model of 
Loggerhead 
growth; Zug 
(1995) data, 
Turner-
Tomascewiz 
(2015) Biol 
Cons data, & 
Hatase et al. 
(2002) STAJ 
nesters data 

Using 85 cm ± 4.5 
cm (SD) as average 
nesting SCL length 
(Linf) from Hatase 
et al. (2002) MEPS 

Sp = species 
Param = parameter 
SE = standard error (except where SD is indicated for standard deviation) 
Low = lower value if a range is known 
Upp = upper value if a range is known 
Pop = population of leatherback turtles 
Dc = Dermochelys coriacea (leatherback sea turtle)  
Cc = Caretta caretta (loggerhead sea turtle) 
Pop "Mix" = mixed population of leatherback turtles; not only western Pacific nesting population 
Pop "CB" = Caribbean nesting population of leatherback turtles 
Pop "W. Pac" = western Pacific nesting population of leatherback turtles 
Pop "N. Pac" = portion of western Pacific nesting population of leatherback turtles found 

foraging in the North Pacific 
CNP = Central North Pacific foraging area used by western Pacific leatherback turtles 
ZS = Zach Siders (coauthor on this report; produced loggerhead growth model used herein) 
VBGF = von Bertalanffy growth function 
CCL = curved carapace length 
SCL = straight carapace length 
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Appendix III:  R Code 

A. Integrated Take Model Code 
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
# 
# PIFSC Hawaiian SSLL Sea Turtle Take Model 
#   
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
# Date Initialized: August 3, 2019 
# Compiler: Zach Siders 
# Authors: Tomo Eguchi, Summer Martin, Zach Siders, T. Todd Jones 
 
###----------------------------------------------------- 
#  Initialization 
###----------------------------------------------------- 
 #devtools::install_github( "James-Thorson/Conway-Maxwell-Poisson" ) 
 library(CMP) 
 library(compoisson) 
 library(mvtnorm) 
 library(truncnorm) 
 library(doParallel)  #Foreach Parallel Adaptor  
 library(foreach)     #Provides foreach looping construct 
 library(abind) 
 library(jagsUI) 
 library(coda) 
 library(tidyverse) #must be loaded after compoisson due to masking of MASS::select 
 library(loo) 
 library(rstan) 
 rstan_options(auto_write = TRUE) 
 options(mc.cores = parallel::detectCores()) 
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 main.folder <- "/Volumes/HDD/Users/Zach/Documents/Projects/NOAA_BioOp_Take_LH_LB/Models/Integrated/" 
 
 ##### 
 ##### 
 redo <- FALSE #FLAG TO RERUN ALL PREVIOUS OPS 
 ##### 
 ##### 
 
 data.path <- paste0(main.folder,"Data/") 
 imput.path <- paste0(main.folder,"Imputation/") 
 trend.path <- paste0(main.folder,"Trend/") 
 table.path <- paste0(main.folder,"Output/Tables/") 
 fig.path <- paste0(main.folder,"Output/Figures/") 
 sim.path <- paste0(main.folder,"Output/Simulations/") 
 
 if(!dir.exists(data.path)) dir.create(data.path) 
 if(!dir.exists(imput.path)) dir.create(imput.path) 
 if(!dir.exists(trend.path)) dir.create(trend.path) 
 if(!dir.exists(paste0(main.folder,"Output"))) dir.create(paste0(main.folder,"Output")) 
 if(!dir.exists(table.path)) dir.create(table.path) 
 if(!dir.exists(fig.path)) dir.create(fig.path) 
 if(!dir.exists(sim.path)) dir.create(sim.path) 
 
 source(paste0(main.folder,"take_helper_Fn.R")) 
 
###---------------------------------------------------------------- 
# LOGGERHEAD GROWTH (led by Zach Siders) 
###---------------------------------------------------------------- 
 #Collaborators: Rob Ahrens, Nicholas Ducharme-Barth, T. Todd Jones, Summer Martin, Calandra N. Turner Tomaszewicz 
  
 check.prerun <- file.exists(paste0(data.path,"VBGM_HMC_sims.Rdata")) 
 if(!check.prerun | redo){ 
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  CC.growth <- read.csv(paste0(data.path, 'NPCc CCL at est age.csv')) 
 
  #Hatchling size (Nishimura 1967) 
  CC.hatchling <- read.csv(paste0(data.path, "Nishimura_1967_Hatchling.csv")) 
 
  hatchling_size <- mean(CC.hatchling$Length_cm) 
  hatchling_sd <- sd(CC.hatchling$Length_cm) 
 
  CC.nester <- read.csv(paste0(data.path,"Hatase_2002_Nesters.csv")) 
 
  gen_nester <- unlist(apply(CC.nester, 1, function(x) {rnorm(x[3], x[1], x[2])})) 
  nester_size <- mean(gen_nester)/10 
  nester_sd <- sd(gen_nester)/10 
 
  CC.growth.stan.dat <- list(n_obs = nrow(CC.growth), 
                   age = CC.growth$Est_Age+0.001, 
                   l = CC.growth$CCL, 
                   seq_ages = seq(0, max(CC.growth$Est_Age), by=0.1), 
                   nseq = length(seq(0, max(CC.growth$Est_Age), by=0.1)), 
                   nester_size = nester_size, 
                   nester_sd = nester_sd, 
                   n_hatchlings = nrow(CC.hatchling), 
                   hatchling_size = CC.hatchling$Length_cm) 
 
  CC.growth.stan.fit.l0 <- stan(model_code=vbgm_stan_l0_ln, 
                   data = CC.growth.stan.dat, 
                   init = init.vbgm.l0, 
                   warmup = 5000, 
                   iter = 7500) 
   
  CC.growth.stan.sims.l0 <- rstan::extract(CC.growth.stan.fit.l0) 
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  CC.VBGF <- with(CC.growth.stan.sims.l0, list(model="Lknot", Linf = median(Linf), K = median(K), Lknot = 
median(Lknot), Amat=median(Amat))) 
 
  save(CC.growth.stan.sims.l0, file=paste0(data.path,"VBGM_HMC_sims.Rdata")) 
 }else{ 
  load(file=paste0(data.path,"VBGM_HMC_sims.Rdata")) 
  CC.VBGF <- with(CC.growth.stan.sims.l0, list(model="Lknot", Linf = median(Linf), K = median(K), Lknot = 
median(Lknot), Amat=median(Amat))) 
 } 
###----------------------------------------------------- 
#  IMPUTATION (led by Tomo Eguchi) 
###----------------------------------------------------- 
 check.prerun <- file.exists(paste0(imput.path, "N_imput.Rdata")) 
 if(!check.prerun | redo){ 
  ###-------------------------------------------------- 
  #  Process Raw Observations of Nests (DC) 
  ###-------------------------------------------------- 
 
   period.JM <- 12 
   period.W <- 6 
   maxN <- 10000 
 
   all.years <- 2001:2017 
   idx <- 1:length(all.years) 
 
   year.begin.JM <- 2001 
   year.end <- 2017 
   data.jags.JM <- data.extract(location = "JM",  
                                year.begin = year.begin.JM,  
                                year.end = year.end, 
                                file.path = data.path) 
 
   JM.keep <- 2001:2017 
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   idx.JM <- idx[all.years %in% JM.keep] 
   n.keep.JM <- length(idx.JM) 
   dt.JM <- idx.JM[2:length(idx.JM)] - idx.JM[1:(length(idx.JM)-1)] 
 
   year.begin.W <- 2006 
   data.jags.W <- data.extract(location = "W",  
                               year.begin = year.begin.W,  
                               year.end = year.end, 
                                file.path = data.path) 
   W.keep <- c(2006, 2007, 2008, 2009, 2010, 2011, 2012, 2016, 2017) 
   idx.W <- idx[all.years %in% W.keep] 
   n.keep.W <- length(idx.W) 
   dt.W <- idx.W[2:length(idx.W)] - idx.W[1:(length(idx.W)-1)] 
 
   #Combine datasets for analysis 
   # JM has more data than W, so we need to pad W data 
   y.W <- rbind(array(data = NA,  
                      dim = c(nrow(data.jags.JM$jags.data2$y) - nrow(data.jags.W$jags.data2$y), 
                              ncol(data.jags.JM$jags.data2$y))), 
                data.jags.W$jags.data2$y) 
 
   y <- cbind(as.vector(t(data.jags.JM$jags.data2$y)), as.vector(t(y.W))) 
   y.raw <- as.data.frame(apply(y,2,exp)) 
   colnames(y.raw) <- c("JM","W") 
   y.raw$year.frac <- rep(2001:2017, each=12) + seq(1,12)/12 
   save(y.raw, file=paste0(data.path,"DC_raw_nests_month.Rdata")) 
 
   years <- rep(2001:2017, each = 12) 
   n.years <- 17 
 
   # for estimating U  ###### 
   n.timeseries <- ncol(y) 
  ###-------------------------------------------------- 
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  #  JAGS Implementation 
  ###-------------------------------------------------- 
 
   jags.data <- list(y = y, 
                   m = rep(1:12, times = n.years), 
                   n.steps = nrow(y), 
                   n.months = 12, 
                   pi = pi, 
                   period = c(period.JM, period.W), 
                   n.timeseries = n.timeseries, 
                   n.years = n.years) 
 
   jags.params <- c("c", "beta.cos", "beta.sin", 
                  'sigma.X', "sigma.y", "N",  
                   "y", "X", "deviance") 
 
   MCMC.params <- list(n.chains = 5, 
                    n.samples = 100000, 
                    n.burnin = 50000, 
                    n.thin = 5) 
 
   jm <- jags(jags.data, 
             inits = NULL, 
             parameters.to.save= jags.params, 
             model.file = paste0(main.folder,'model_norm_norm_Four_imputation.txt'), 
             n.chains = MCMC.params$n.chains, 
             n.burnin = MCMC.params$n.burnin, 
             n.thin = MCMC.params$n.thin, 
             n.iter = MCMC.params$n.samples, 
             DIC = T, parallel=T) 
 
   save(jm, file=paste0(imput.path,"JAGS_model_run.Rdata")) 
  ###-------------------------------------------------- 
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  #  Summary of JAGS model 
  ###-------------------------------------------------- 
 
   Ns.stats.JM <- data.frame(time = year.begin.JM:year.end, 
                            low = as.vector(t(jm$q2.5$N[,1])), 
                            median = as.vector(t(jm$q50$N[,1])), 
                            high = as.vector(t(jm$q97.5$N[,1]))) 
   Ns.stats.JM$location <- "Jamursba-Medi" 
 
   Ns.stats.W <- data.frame(time = year.begin.JM:year.end, 
                            low = as.vector(t(jm$q2.5$N[,2])), 
                            median = as.vector(t(jm$q50$N[,2])), 
                            high = as.vector(t(jm$q97.5$N[,2]))) 
   Ns.stats.W$location <- "Wermon" 
 
   Ns.stats <- rbind(Ns.stats.JM, Ns.stats.W) 
 
   save(Ns.stats.JM, Ns.stats.W, file=paste0(imput.path, "N_imput.Rdata")) 
 }else{ 
  load(paste0(imput.path, "N_imput.Rdata")) 
 } 
###----------------------------------------------------- 
#  Historical ANE (led by Zach Siders) 
###----------------------------------------------------- 
 check.prerun <- file.exists(paste0(data.path,"historical_ANE.csv")) 
 if(!check.prerun | redo){ 
  ###-------------------------------------------------- 
  #  Take Demographics Data 
  ###-------------------------------------------------- 
   #------- 
   # Historical Take  
    
   td.dat <- read.csv(paste0(data.path,"turtle_l_m.csv"), stringsAsFactors=FALSE) 
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   colnames(td.dat) <- c("Year", "Spp", "M.low", "M.high", "Len") 
 
   td.dat <- td.dat[td.dat$Spp!="" & td.dat$Year != 2019,] 
   td.dat <- td.dat[td.dat$Spp %in% c("Leatherback", "Loggerhead"),] 
 
   DC.VBGF <- list(Linf = 142.7, K = 0.2262, tknot=-0.17, Amat = 16.1) 
   CC.VBGF <- list(Linf = 80.4473850, K = 0.1396317, Lknot=4.7363329, Amat = 26.4950786) 
 
   DC.Pj <- 0.81 
   DC.Pa <- 0.893 
   CC.Pj <- 0.8 
   CC.Pa <- 0.895 
 
   DC.PF <- 0.73 
   CC.PF <- 0.65 
  ###-------------------------------------------------- 
  #  Individual Characteristics 
  ###-------------------------------------------------- 
   
   pred.Age <- seq(0,100, by=0.01) #sequence of ages to back calculate over 
   DC.Lpred <- with(DC.VBGF, Linf * (1-exp(-K*(pred.Age-tknot)))) 
   CC.Lpred <- with(CC.VBGF, Linf - (Linf-Lknot)*exp(-K*pred.Age)) 
 
   td.dat$Len[is.na(td.dat$Len) & td.dat$Spp == "Leatherback"] <- median(td.dat$Len[td.dat$Spp == 
"Leatherback"], na.rm=T) 
   td.dat$Len[is.na(td.dat$Len) & td.dat$Spp == "Loggerhead"] <- median(td.dat$Len[td.dat$Spp == 
"Loggerhead"], na.rm=T) 
    
   td.dat$M.mu <- rowMeans(td.dat[,c("M.low","M.high")], na.rm=T) 
   td.dat$M.mu[is.nan(td.dat$M.mu)] <- mean(td.dat$M.mu[!is.nan(td.dat$M.mu) & td.dat$Spp == 
td.dat$Spp[is.nan(td.dat$M.mu)]]) 
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   td.dat$Age <- NA 
   td.dat$Age[td.dat$Spp == "Leatherback"] <- sapply(td.dat$Len[td.dat$Spp == "Leatherback"], function(x) 
{pred.Age[which.min(abs(x - DC.Lpred))]}) 
   td.dat$Age[td.dat$Spp == "Loggerhead"] <- sapply(td.dat$Len[td.dat$Spp == "Loggerhead"], function(x) 
{pred.Age[which.min(abs(x - CC.Lpred))]}) 
 
   #determine the animals stage based on maturity 
   td.dat$Stage <- NA 
   td.dat$Stage[td.dat$Spp == "Leatherback"] <- ifelse(td.dat$Age[td.dat$Spp == "Leatherback"] > 
DC.VBGF$Amat, "A", "J") 
   td.dat$Stage[td.dat$Spp == "Loggerhead"] <- ifelse(td.dat$Age[td.dat$Spp == "Loggerhead"] > 
CC.VBGF$Amat, "A", "J") 
 
   #calculate the number of years until maturity 
   td.dat$YatLarge <- NA 
   td.dat$YatLarge[td.dat$Spp == "Leatherback"] <- DC.VBGF$Amat - td.dat$Age[td.dat$Spp == "Leatherback"] 
   td.dat$YatLarge[td.dat$Spp == "Loggerhead"] <- CC.VBGF$Amat - td.dat$Age[td.dat$Spp == "Loggerhead"] 
  ###-------------------------------------------------- 
  #  back project for the Remigration Interval 
  ###-------------------------------------------------- 
   
   #back project the RI 
   td.dat$YatLargeR <- round(td.dat$YatLarge) 
   td.dat$YatLargeR[td.dat$YatLargeR < 0] <- 0 
 
   td.dat$Nest1 <- td.dat$Year + td.dat$YatLargeR 
   td.dat$Nest2 <- td.dat$Nest1 + 3 
   td.dat$Nest3 <- td.dat$Nest2 + 3 
   td.dat$Nest4 <- td.dat$Nest3 + 3 
   td.dat$Nest5 <- td.dat$Nest4 + 3 
   td.dat$Nest6 <- td.dat$Nest5 + 3 
   td.dat$Nest7 <- td.dat$Nest6 + 3 
  ###-------------------------------------------------- 
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  #  Convert to ANEs 
  ###-------------------------------------------------- 
   
   ANEyr <- td.dat[,paste0("Nest",1:7)] - td.dat$Year 
   ANEproj <- ANEyr 
   ANEproj$Nest1 <- (ifelse(td.dat$Spp == "Leatherback", DC.Pj, CC.Pj) ^ ANEproj$Nest1) * ifelse(td.dat$Spp 
== "Leatherback", DC.PF, CC.PF) * td.dat$M.mu 
   ANEproj[,-1] <- ifelse(td.dat$Spp == "Leatherback", DC.Pa, CC.Pa) ^ ANEproj[,-1] * ANEproj$Nest1 
 
   ANEproj.nFD <- ANEyr 
   ANEproj.nFD$Nest1 <- (ifelse(td.dat$Spp == "Leatherback", DC.Pj, CC.Pj) ^ ANEproj.nFD$Nest1) 
   ANEproj.nFD[,-1] <- ifelse(td.dat$Spp == "Leatherback", DC.Pa, CC.Pa) ^ ANEproj.nFD[,-1] * 
ANEproj.nFD$Nest1 
 
   ANEp <- data.frame(nestyr = unlist(td.dat[,paste0("Nest",1:7)]), 
                      ANE = unlist(ANEproj),  
                      Spp = rep(td.dat$Spp, 7)) 
 
   ANEtab <- aggregate(ANE ~ Spp + nestyr, data=ANEp, FUN=sum) 
 
   write.csv(ANEtab, file=paste0(data.path,"historical_ANE.csv"), row.names=FALSE) 
 }else{ 
  ANEtab <- read.csv(paste0(data.path,"historical_ANE.csv")) 
 } 
 
 
 check.prerun <- file.exists(paste0(data.path, "take_demo_mvn.Rdata")) 
 
 if(!check.prerun | redo){ 
  ###-------------------------------------------------- 
  #  Fit multivariate take demographics 
  ###-------------------------------------------------- 
   tab.spp <- as.data.frame(with(td.dat, table(Year, Spp))) 
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   DC.td.df <- na.omit(td.dat[td.dat$Spp=="Leatherback",]) 
 
   DC.td.tab <- tab.spp[tab.spp$Spp=="Leatherback",c("Year","Spp","Freq")] 
 
   DC.td.dat <- list(N = nrow(DC.td.df), 
                  x = cbind(log(DC.td.df$L), boot::logit(DC.td.df$M.mu)), 
                  nyear = nrow(DC.td.tab), 
                  year = as.integer(factor(DC.td.df$Year)), 
                  rtl = DC.td.tab$Freq) 
   DC.td.fit <- stan(model_code = mvnorm, 
                  data = DC.td.dat, 
                  init = mv.DC.init, 
                  warmup = 5000, 
                  iter = 7500) 
   DC.td.sims <- rstan::extract(DC.td.fit) 
 
  
 ###@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
   # LOGGERHEADS 
 
   CC.td.df <- na.omit(td.dat[td.dat$Spp=="Loggerhead",]) 
   CC.td.df$M.mu[CC.td.df$M.mu==1] <- 0.999 
 
   CC.td.tab <- tab.spp[tab.spp$Spp=="Loggerhead",c("Year","Spp","Freq")] 
 
   CC.td.dat <- list(N = nrow(CC.td.df), 
                  x = cbind(log(CC.td.df$L), boot::logit(CC.td.df$M.mu)), 
                  nyear = nrow(CC.td.tab), 
                  year = as.integer(factor(CC.td.df$Year)), 
                  rtl = CC.td.tab$Freq)   
 
   CC.td.fit <- stan(model_code = mvnorm, 
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                  data = CC.td.dat, 
                  init = mv.CC.init, 
                  warmup = 5000, 
                  iter = 7500) 
   CC.td.sims <- rstan::extract(CC.td.fit) 
  ###-------------------------------------------------- 
  #  Summarize take Demographics 
  ###-------------------------------------------------- 
   DC.mu0 <- median(DC.td.sims$mu0) 
   DC.beta0 <- median(DC.td.sims$beta0) 
   DC.beta1 <- median(DC.td.sims$beta1) 
   DC.sigma <- apply(DC.td.sims$sigma, 2, median) 
   DC.rho <- median(DC.td.sims$rho) 
   DC.cov <- matrix(c(DC.sigma[1]^2, DC.sigma[1]*DC.sigma[2]*DC.rho, DC.sigma[1]*DC.sigma[2]*DC.rho, 
DC.sigma[2]^2),2,2) 
 
   CC.mu0 <- median(CC.td.sims$mu0) 
   CC.beta0 <- median(CC.td.sims$beta0) 
   CC.beta1 <- median(CC.td.sims$beta1) 
   CC.sigma <- apply(CC.td.sims$sigma, 2, median) 
   CC.rho <- median(CC.td.sims$rho) 
   CC.cov <- matrix(c(CC.sigma[1]^2, CC.sigma[1]*CC.sigma[2]*CC.rho, CC.sigma[1]*CC.sigma[2]*CC.rho, 
CC.sigma[2]^2),2,2) 
 
    
   save(DC.mu0, DC.beta0, DC.beta1, DC.cov, CC.mu0, CC.beta0, CC.beta1, CC.cov, 
file=paste0(data.path,"take_demo_mvn.Rdata")) 
 }else{ 
  load(paste0(data.path,"take_demo_mvn.Rdata")) 
 } 
###----------------------------------------------------- 
#  Trend Analysis (led by Summer Martin) 
###----------------------------------------------------- 
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 check.prerun <- all(file.exists(c(paste0(trend.path,"Historical.ANE.Scenarios/Dc_JM&W_MEDIAN_sUQ"), 
                               paste0(trend.path,"Historical.ANE.Scenarios/Dc_JM&W_LOW_sUQ"), 
                               paste0(trend.path,"Historical.ANE.Scenarios/Dc_JM&W_HIGH_sUQ"), 
                               paste0(trend.path,"Historical.ANE.Scenarios/Cc_Yakushima_sUQ")))) 
 if(!check.prerun | redo){  
  ###-------------------------------------------------- 
  #   Data Read In 
  ###-------------------------------------------------- 
   #------- 
   # Yakushima 3 beaches (Loggerheads) 
 
   CC.dat <- read.csv(paste0(data.path,"Yakushima_data_for_BiOp.csv"), header=T) 
    
   clutch.freq <- 3             # clutch frequency = nests per female in a season (for converting nests to females) 
   CC.dat[ ,c("Females_Mae", "Females_Inak", "Females_Yotsu")] <- CC.dat[ , 2:4]/clutch.freq   # use CF to 
convert from nests to females that nest each year 
 
   #------- 
   # Jamursba-Medi & Wermon (Leatherbacks) 
 
   #------- 
   # Jamursba-Medi 
    
   JM.dat <- Ns.stats.JM   # only keep specific data years per group discussions 
   JM.dat[,2:4] <- exp(JM.dat[,2:4]) 
   clutch.freq <- 5.5    # clutch frequency =nests per female in a season; Tapilatu etal 2013 = mean CF 5.5 +/- 1.6 
   JM.dat$Females_median <- JM.dat$median/clutch.freq   # use CF to convert from nests to females that nest 
each year 
   JM.dat$Females_low <- JM.dat$low/clutch.freq   # use CF to convert from nests to females that nest each year 
   JM.dat$Females_high <- JM.dat$high/clutch.freq   # use CF to convert from nests to females that nest each year 
 
   #------- 
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   # Wermon 
   analysis.yrs <- c(2006:2017) 
   W.dat <- Ns.stats.W   # only keep specific data years per group discussions 
   W.dat[,2:4] <- exp(W.dat[,2:4]) 
   W.dat <- W.dat[W.dat$time %in% analysis.yrs,] 
   W.dat$Females_median <- W.dat$median/clutch.freq   # use CF to convert from nests to females that nest each 
year 
   W.dat$Females_low <- W.dat$low/clutch.freq   # use CF to convert from nests to females that nest each year 
   W.dat$Females_high <- W.dat$high/clutch.freq   # use CF to convert from nests to females that nest each year 
 
   colnames(JM.dat)[1] <- colnames(W.dat)[1] <- "Season" 
   
   #------- 
   # Combine 
 
   DC.dat.med <- merge(x=JM.dat[,c("Season", "Females_median")], y=W.dat[,c("Season", "Females_median")], 
by="Season", all.x=TRUE, all.y=TRUE) 
 
   DC.dat.low <- merge(x=JM.dat[,c("Season", "Females_low")], y=W.dat[,c("Season", "Females_low")], 
by="Season", all.x=TRUE, all.y=TRUE) 
 
   DC.dat.high <- merge(x=JM.dat[,c("Season", "Females_high")], y=W.dat[,c("Season", "Females_high")], 
by="Season", all.x=TRUE, all.y=TRUE) 
 
   DC.raw.dat <- merge(x=JM.dat[,c("Season","low","median","high")], y = 
W.dat[,c("Season","low","median","high")], by="Season", all.x=TRUE, all.y=TRUE, suffixes=c(".JM",".W")) 
 
 
   CC.dat.iT <- CC.dat 
   DC.dat.med.iT <- DC.dat.med 
   DC.dat.low.iT <- DC.dat.low 
   DC.dat.high.iT <- DC.dat.high 
  ###-------------------------------------------------- 
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  #  Adding the historical ANE 
  ###-------------------------------------------------- 
 
   #------- 
   # ANE Loggerheads  
 
    CC.ANE <- ANEtab[ANEtab$Spp == "Loggerhead",] 
    #proportion by beach 
    prop.CC1 <- CC.dat[,5]/rowSums(CC.dat[5:7], na.rm=T) 
    prop.CC2 <- CC.dat[,6]/rowSums(CC.dat[5:7], na.rm=T) 
    prop.CC3 <- CC.dat[,7]/rowSums(CC.dat[5:7], na.rm=T) 
 
    #tack it back in  
    CC.dat[CC.dat$Year %in% CC.ANE$nestyr, 5] <- CC.dat[CC.dat$Year %in% CC.ANE$nestyr, 5] + 
CC.ANE[CC.ANE$nestyr %in% CC.dat$Year,"ANE"] * prop.CC1[CC.dat$Year %in% CC.ANE$nestyr] 
    CC.dat[CC.dat$Year %in% CC.ANE$nestyr, 6] <- CC.dat[CC.dat$Year %in% CC.ANE$nestyr, 6] + 
CC.ANE[CC.ANE$nestyr %in% CC.dat$Year,"ANE"] * prop.CC2[CC.dat$Year %in% CC.ANE$nestyr] 
    CC.dat[CC.dat$Year %in% CC.ANE$nestyr, 7] <- CC.dat[CC.dat$Year %in% CC.ANE$nestyr, 7] + 
CC.ANE[CC.ANE$nestyr %in% CC.dat$Year,"ANE"] * prop.CC3[CC.dat$Year %in% CC.ANE$nestyr] 
 
   #------- 
   # ANE Leatherbacks 
    DC.ANE <- ANEtab[ANEtab$Spp == "Leatherback",] 
 
    prop.DC <- DC.dat.med[,2]/rowSums(DC.dat.med[,2:3], na.rm=T) 
 
    DC.dat.med[DC.dat.med$Season %in% DC.ANE$nestyr, 2] <- DC.dat.med[DC.dat.med$Season %in% 
DC.ANE$nestyr, 2] + DC.ANE[DC.ANE$nestyr %in% DC.dat.med$Season,"ANE"] * prop.DC[DC.dat.med$Season %in% 
DC.ANE$nestyr] 
    DC.dat.med[DC.dat.med$Season %in% DC.ANE$nestyr, 3] <- DC.dat.med[DC.dat.med$Season %in% 
DC.ANE$nestyr, 3] + DC.ANE[DC.ANE$nestyr %in% DC.dat.med$Season,"ANE"] * (1-prop.DC[DC.dat.med$Season %in% 
DC.ANE$nestyr]) 
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    DC.dat.low[DC.dat.low$Season %in% DC.ANE$nestyr, 2] <- DC.dat.low[DC.dat.low$Season %in% 
DC.ANE$nestyr, 2] + DC.ANE[DC.ANE$nestyr %in% DC.dat.low$Season,"ANE"] * prop.DC[DC.dat.low$Season %in% 
DC.ANE$nestyr] 
    DC.dat.low[DC.dat.low$Season %in% DC.ANE$nestyr, 3] <- DC.dat.low[DC.dat.low$Season %in% 
DC.ANE$nestyr, 3] + DC.ANE[DC.ANE$nestyr %in% DC.dat.low$Season,"ANE"] * (1-prop.DC[DC.dat.low$Season %in% 
DC.ANE$nestyr]) 
 
    DC.dat.high[DC.dat.high$Season %in% DC.ANE$nestyr, 2] <- DC.dat.high[DC.dat.high$Season %in% 
DC.ANE$nestyr, 2] + DC.ANE[DC.ANE$nestyr %in% DC.dat.high$Season,"ANE"] * prop.DC[DC.dat.high$Season %in% 
DC.ANE$nestyr] 
    DC.dat.high[DC.dat.high$Season %in% DC.ANE$nestyr, 3] <- DC.dat.high[DC.dat.high$Season %in% 
DC.ANE$nestyr, 3] + DC.ANE[DC.ANE$nestyr %in% DC.dat.high$Season,"ANE"] * (1-prop.DC[DC.dat.high$Season %in% 
DC.ANE$nestyr]) 
  ###-------------------------------------------------- 
  #  Running the Trend analysis 
  ###-------------------------------------------------- 
    
   ###@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
   ### Historical ANE added in 
 
   hist.scen.path <- paste0(trend.path,"Historical.ANE.Scenarios/") 
   if(!dir.exists(hist.scen.path)) dir.create(hist.scen.path) 
   # ---------------------------------------------- 
   # 1 - Loggerheads - using 3 beaches from Yakushima, Japan  
   # ---------------------------------------------- 
   scenario <- "Cc_Yakushima_sUQ" 
   thedata.loggers <- CC.dat 
   remigLH <- 3.3 
   clutch.freqLH <- 4.6  
   CC.file.tag <- paste(scenario,"_", Sys.Date(), sep="") 
   rsel <- "rdyn"   # future predictions: choose "rdyn" (dynamic) or "rstat" (static) for future predictions 
   save.dir <- paste0(hist.scen.path, scenario) 
   source(paste0(trend.path,"singleUQ_indeptUQs_PROJECTIONS.R")) 
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   # ---------------------------------------------- 
 
   # ---------------------------------------------- 
   # 2A - Leatherbacks. Using MEDIAN annual nest count estimates Tomo's imputation model output. 
   # ---------------------------------------------- 
   scenario <- "Dc_JM&W_MEDIAN_sUQ" 
   thedata.leathers <- DC.dat.med 
   remigLB <- 3.06 
   clutch.freqLB <- 5.5 
   DC.file.tag <- paste(scenario,"_", Sys.Date(), sep="")  
   rsel <- "rdyn"   # future predictions: choose "rdyn" (dynamic) or "rstat" (static) for future predictions 
   save.dir <- paste0(hist.scen.path, scenario) 
   source(paste0(trend.path,"singleUQ_indeptUQs_PROJECTIONS.R")) 
   # ---------------------------------------------- 
 
   # ---------------------------------------------- 
   # 2B - Leatherbacks. Using LOW (lower 95% CI value) annual nest count estimates from Tomo's imputation 
model output. 
   # ---------------------------------------------- 
   scenario <- "Dc_JM&W_LOW_sUQ" 
   thedata.leathers <- DC.dat.low 
   remigLB <- 3.06 
   clutch.freqLB <- 5.5  
   DC.file.tag.low <- paste(scenario,"_", Sys.Date(), sep="") 
   rsel <- "rdyn"   # future predictions: choose "rdyn" (dynamic) or "rstat" (static) for future predictions 
   save.dir <- paste0(hist.scen.path, scenario) 
   source(paste0(trend.path,"singleUQ_indeptUQs_PROJECTIONS.R")) 
   # ---------------------------------------------- 
 
   # ---------------------------------------------- 
   # 2C - Leatherbacks. Using HIGH (upper 95% CI value) annual nest count estimates from Tomo's imputation 
model output. 
   # ---------------------------------------------- 
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   scenario <- "Dc_JM&W_HIGH_sUQ" 
   thedata.leathers <- DC.dat.high 
   remigLB <- 3 
   clutch.freqLB <- 5.5  
   DC.file.tag.high <- paste(scenario,"_", Sys.Date(), sep="") 
   rsel <- "rdyn"   # future predictions: choose "rdyn" (dynamic) or "rstat" (static) for future predictions 
   save.dir <- paste0(hist.scen.path, scenario) 
   source(paste0(trend.path,"singleUQ_indeptUQs_PROJECTIONS.R")) 
 
  
 ###@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
   ### No Historical ANE added in 
 
   include.hist.take.path <- paste0(trend.path,"Include.Hist.Take.Scenarios/") 
   if(!dir.exists(include.hist.take.path)) dir.create(include.hist.take.path) 
   # ---------------------------------------------- 
   # 1 - Loggerheads - using 3 beaches from Yakushima, Japan  
   # ---------------------------------------------- 
   scenario <- "Cc_Yakushima_sUQ" 
   thedata.loggers <- CC.dat.iT 
   remigLH <- 3.3 
   clutch.freqLH <- 4.6  
   CC.file.tag <- paste(scenario,"_", Sys.Date(), sep="") 
   rsel <- "rdyn"   # future predictions: choose "rdyn" (dynamic) or "rstat" (static) for future predictions 
   save.dir <- paste0(include.hist.take.path, scenario) 
   source(paste0(trend.path,"singleUQ_indeptUQs_PROJECTIONS.R")) 
   # ---------------------------------------------- 
 
   # ---------------------------------------------- 
   # 2A - Leatherbacks. Using MEDIAN annual nest count estimates Tomo's imputation model output. 
   # ---------------------------------------------- 
   scenario <- "Dc_JM&W_MEDIAN_sUQ" 
   thedata.leathers <- DC.dat.med.iT 
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   remigLB <- 3.06 
   clutch.freqLB <- 5.5 
   DC.file.tag <- paste(scenario,"_", Sys.Date(), sep="")  
   rsel <- "rdyn"   # future predictions: choose "rdyn" (dynamic) or "rstat" (static) for future predictions 
   save.dir <- paste0(include.hist.take.path, scenario) 
   source(paste0(trend.path,"singleUQ_indeptUQs_PROJECTIONS.R")) 
   # ---------------------------------------------- 
 
   # ---------------------------------------------- 
   # 2B - Leatherbacks. Using LOW (lower 95% CI value) annual nest count estimates from Tomo's imputation 
model output. 
   # ---------------------------------------------- 
   scenario <- "Dc_JM&W_LOW_sUQ" 
   thedata.leathers <- DC.dat.low.iT 
   remigLB <- 3.06 
   clutch.freqLB <- 5.5  
   DC.file.tag.low <- paste(scenario,"_", Sys.Date(), sep="") 
   rsel <- "rdyn"   # future predictions: choose "rdyn" (dynamic) or "rstat" (static) for future predictions 
   save.dir <- paste0(include.hist.take.path, scenario) 
   source(paste0(trend.path,"singleUQ_indeptUQs_PROJECTIONS.R")) 
   # ---------------------------------------------- 
 
   # ---------------------------------------------- 
   # 2C - Leatherbacks. Using HIGH (upper 95% CI value) annual nest count estimates from Tomo's imputation 
model output. 
   # ---------------------------------------------- 
   scenario <- "Dc_JM&W_HIGH_sUQ" 
   thedata.leathers <- DC.dat.high.iT 
   remigLB <- 3 
   clutch.freqLB <- 5.5  
   DC.file.tag.high <- paste(scenario,"_", Sys.Date(), sep="") 
   rsel <- "rdyn"   # future predictions: choose "rdyn" (dynamic) or "rstat" (static) for future predictions 
   save.dir <- paste0(include.hist.take.path, scenario) 
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   source(paste0(trend.path,"singleUQ_indeptUQs_PROJECTIONS.R")) 
 }else{ 
   hist.scen.path <- paste0(trend.path,"Historical.ANE.Scenarios/") 
   scenario <- "Cc_Yakushima_sUQ" 
   file.date <- 
gsub("_0_data_used.csv","",gsub(paste0(scenario,"_"),"",grep("_data_used.csv",list.files(paste0(hist.scen.path,scenario)), value=T))) 
   file.date <- file.date[length(file.date)] 
   CC.file.tag <- paste(scenario,"_", file.date, sep="") 
   scenario <- "Dc_JM&W_MEDIAN_sUQ" 
   DC.file.tag <- paste(scenario,"_", file.date, sep="")  
   scenario <- "Dc_JM&W_LOW_sUQ" 
   DC.file.tag.low <- paste(scenario,"_", file.date, sep="") 
   scenario <- "Dc_JM&W_HIGH_sUQ" 
   DC.file.tag.high <- paste(scenario,"_", file.date, sep="") 
   include.hist.take.path <- paste0(trend.path,"Include.Hist.Take.Scenarios/") 
 } 
  
###----------------------------------------------------- 
#  Take Model (led by Zach Siders) 
###----------------------------------------------------- 
 ###----------------------------------------------------- 
 #  Initialization 
 ###----------------------------------------------------- 
  #store DC MVN Take Demographic Parameters 
  TD_DC_MVN = list(mu0 = DC.mu0, beta0 = DC.beta0, beta1 = DC.beta1, cov = DC.cov) 
  #store CC MVN Take Demographic Parameters 
  TD_CC_MVN = list(mu0 = CC.mu0, beta0 = CC.beta0, beta1 = CC.beta1, cov = CC.cov) 
 
  #Conway-Maxwell Poisson parameters for 3 year segements 
  #Anticipated Take Level from Marti McCracken's model for Dc 
  DC_ATL <- list(mu1 = 2.124568, nu1 = 0.4805365, mu2 = 2.344938, nu2 = 0.141262, mu3 = 0.03930914, nu3 = 
0.1149811) 
  #Anticipated Take Level from Marti McCracken's model for Cc 
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  CC_ATL = list(mu1 = 3.444104, nu1 = 0.06451325, mu2 = 7.506372e-05, nu2 =  0.01686626, mu3 = NULL, nu3 = 
NULL) 
 
  #Lontoh (2014) Dissertation on Dc; # of animals with a given remigration interval 
  DC.RI <- c(1, 13, 7, 6, 4, 1) 
  #Fit a Conway-Maxwell Poisson to the data 
  DC.CMP <- com.fit(matrix(c(1:6, DC.RI), ncol=2)) 
 ###----------------------------------------------------- 
 #  Loading the simulations 
 ###----------------------------------------------------- 
  #read in the U, Q, and final years N 
  DC.trend.sims <- 
read.csv(paste0(hist.scen.path,"Dc_JM&W_MEDIAN_sUQ/Posteriors_U_and_AbundFinalYrs_",DC.file.tag,".csv"), header=T) 
  DC.trend.sims.low <- 
read.csv(paste0(hist.scen.path,"Dc_JM&W_LOW_sUQ/Posteriors_U_and_AbundFinalYrs_",DC.file.tag.low,".csv"), header=T) 
  DC.trend.sims.high <- 
read.csv(paste0(hist.scen.path,"Dc_JM&W_HIGH_sUQ/Posteriors_U_and_AbundFinalYrs_",DC.file.tag.high,".csv"), header=T) 
  #includes historical take in U estimate 
  DC.trend.sims.iT <- 
read.csv(paste0(include.hist.take.path,"Dc_JM&W_MEDIAN_sUQ/Posteriors_U_and_AbundFinalYrs_",DC.file.tag,".csv"), 
header=T) 
  DC.trend.sims.iT.low <- 
read.csv(paste0(include.hist.take.path,"Dc_JM&W_LOW_sUQ/Posteriors_U_and_AbundFinalYrs_",DC.file.tag.low,".csv"), 
header=T) 
  DC.trend.sims.iT.high <- 
read.csv(paste0(include.hist.take.path,"Dc_JM&W_HIGH_sUQ/Posteriors_U_and_AbundFinalYrs_",DC.file.tag.high,".csv"), 
header=T) 
 
  CC.trend.sims <- 
read.csv(paste0(hist.scen.path,"Cc_Yakushima_sUQ/Posteriors_U_and_AbundFinalYrs_",CC.file.tag,".csv"), header=T) 
  CC.trend.sims.iT <- 
read.csv(paste0(include.hist.take.path,"Cc_Yakushima_sUQ/Posteriors_U_and_AbundFinalYrs_",CC.file.tag,".csv"), header=T) 
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 ###----------------------------------------------------- 
 #  Simulation Summary 
 ###----------------------------------------------------- 
  nsims <- nrow(DC.trend.sims) 
  dc.trend <- DC.trend.sims[,c("U","Q","N_fym0")] 
  colnames(dc.trend)[3] <- "N0" 
  dc.trend.low <- DC.trend.sims.low[,c("U","Q","N_fym0")] 
  colnames(dc.trend.low)[3] <- "N0" 
  dc.trend.high <- DC.trend.sims.high[,c("U","Q","N_fym0")] 
  colnames(dc.trend.high)[3] <- "N0" 
 
  cc.trend <- CC.trend.sims[,c("U","Q","N_fym0")] 
  colnames(cc.trend)[3] <- "N0" 
 
  #------- 
  # Write out Current Abundance  
   
   write.csv(curr.abund.fn(DC.trend.sims, 3.06), file=paste0(table.path,"DC.Curr.Abund.csv")) 
   write.csv(curr.abund.fn(DC.trend.sims.low, 3.06), file=paste0(table.path,"DC.Curr.Abund.LOW.csv")) 
   write.csv(curr.abund.fn(DC.trend.sims.high, 3.06), file=paste0(table.path,"DC.Curr.Abund.HIGH.csv")) 
 
   write.csv(curr.abund.fn(CC.trend.sims, 3.3), file=paste0(table.path,"CC.Curr.Abund.csv")) 
 
  #------- 
  # Write out U summary 
   dc.u.sum <- data.frame(notake = sum.fn(dc.trend$U), 
                       take = sum.fn(DC.trend.sims.iT$U)) 
   dc.u.sum.low <- data.frame(notake = sum.fn(dc.trend.low$U), 
                       take = sum.fn(DC.trend.sims.iT.low$U)) 
   dc.u.sum.high <- data.frame(notake = sum.fn(dc.trend.high$U), 
                       take = sum.fn(DC.trend.sims.iT.high$U)) 
 
   cc.u.sum <- data.frame(notake = sum.fn(cc.trend$U), 
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                       take = sum.fn(CC.trend.sims.iT$U)) 
 
   write.csv(round(dc.u.sum,3), file=paste0(table.path,"DC.U_summary.csv")) 
   write.csv(round(dc.u.sum.low,3), file=paste0(table.path,"DC.U_summary.LOW.csv")) 
   write.csv(round(dc.u.sum.high,3), file=paste0(table.path,"DC.U_summary.HIGH.csv")) 
   write.csv(round(cc.u.sum,3), file=paste0(table.path,"CC.U_summary.csv")) 
 
  #------- 
  # Plot overlapping U's 
    
   pdf(file=paste0(fig.path, "U_Leatherbacks.pdf"), width=4, height=4) 
   par(mar=c(4,4,1,1)) 
    u.den(dc.trend$U, DC.trend.sims.iT$U) 
    fig.lab("W. Pac.\nLeatherbacks", xscale=0.8, yscale=0.9, cex=1) 
    abline(v=0, col='grey80') 
   dev.off() 
 
   pdf(file=paste0(fig.path, "U_Leatherbacks.LOW.pdf"), width=4, height=4) 
   par(mar=c(4,4,1,1)) 
    u.den(dc.trend.low$U, DC.trend.sims.iT.low$U) 
    fig.lab("W. Pac.\nLeatherbacks", xscale=0.8, yscale=0.9, cex=1) 
    abline(v=0, col='grey80') 
   dev.off() 
 
   pdf(file=paste0(fig.path, "U_Leatherbacks.HIGH.pdf"), width=4, height=4) 
   par(mar=c(4,4,1,1)) 
    u.den(dc.trend.high$U, DC.trend.sims.iT.high$U) 
    fig.lab("W. Pac.\nLeatherbacks", xscale=0.8, yscale=0.9, cex=1) 
    abline(v=0, col='grey80') 
   dev.off() 
 
   pdf(file=paste0(fig.path, "U_Loggerheads.pdf"), width=4, height=4) 
   par(mar=c(4,4,1,1)) 
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    u.den(cc.trend$U, CC.trend.sims.iT$U) 
    fig.lab("N. Pac.\nLoggerheads", xscale=0.8, yscale=0.9, cex=1) 
    abline(v=0, col='grey80') 
   dev.off() 
 
  #------- 
  # Plot Joint 
   plot.joint(dc.trend, "DC", 6) 
   plot.joint(dc.trend.low, "DC.LOW", 6) 
   plot.joint(dc.trend.high, "DC.HIGH", 6) 
   plot.joint(cc.trend, "CC", 6) 
 ###----------------------------------------------------- 
 #  Define Scenarios (Parameter Read In) 
 ###----------------------------------------------------- 
  DC.scenario <- list( 
                  n_y = 100, #number of years in scenario 
                  VBGF = list(model="tknot",Linf = 142.7, K = 0.2262, tknot=-0.17, Amat = 16.1), #VBGF parameters 
                  TD_MVN = TD_DC_MVN, #take demographics MVN parameters 
                  PjV = list(mu = 0.81, sd = 0.03), #juvenile survival 
                  PaV = list(mu = 0.893, sd = 0.013), #adult survival 
                  RI.dist = c("CMP"), #distribution of RI 
                  RV = list(RI = com.mean(DC.CMP$lambda, DC.CMP$nu), RI_sd = DC.CMP$nu, CF = 5.5, CF_sd = 1.6, CS = 
77.9, CS_sd = 2.35, PF = 0.73, PF_sd = 0), #reproductive values 
                  ATLp = list(mu1 = 2.124568, nu1 = 0.4805365, mu2 = 2.344938, nu2 = 0.141262, mu3 = 0.03930914, nu3 = 
0.1149811), 
                  ANE_dyn = FALSE, #whether ANE is dynamic 
                  Surv_dyn = FALSE, 
                  dynUQ = TRUE, 
                  ATL_scale = FALSE, 
                  grim.reaper=FALSE) 
 
  CC.scenario <- list( 
                  n_y = 100, #number of years in scenario 
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                  VBGF = list(model="Lknot",Linf = 80.4473850, K = 0.1396317, Lknot=4.7363329, Amat = 26.4950786), #VBGF 
parameters 
                  TD_MVN = TD_CC_MVN, #take demographics MVN parameters 
                  PjV = list(mu = 0.8, sd = 0.031), #juvenile survival 
                  PaV = list(mu = 0.895, sd = 0.028), #adult survival 
                  RI.dist = "normal", 
                  RV = list(RI = 3.3, RI_sd = 2.3, CF = 4.6, CF_sd = 1.1, CS = 122, CS_sd = 18.4, PF = 0.65, PF_sd = 0), 
#reproductive values 
                  ATLp = list(mu1 = 3.444104, nu1 = 0.06451325, mu2 = 7.506372e-05, nu2 =  0.01686626, mu3 = NULL, nu3 = 
NULL), 
                  ANE_dyn = FALSE, #whether ANE is dynamic 
                  Surv_dyn = FALSE, 
                  dynUQ = FALSE, 
                  ATL_scale = FALSE, 
                  grim.reaper=FALSE) 
  DC.scenario.GR <- list( 
                  n_y = 100, #number of years in scenario 
                  VBGF = list(model="tknot",Linf = 142.7, K = 0.2262, tknot=-0.17, Amat = 16.1), #VBGF parameters 
                  TD_MVN = TD_DC_MVN, #take demographics MVN parameters 
                  PjV = list(mu = 0.81, sd = 0.03), #juvenile survival 
                  PaV = list(mu = 0.893, sd = 0.013), #adult survival 
                  RI.dist = c("CMP"), #distribution of RI 
                  RV = list(RI = com.mean(DC.CMP$lambda, DC.CMP$nu), RI_sd = DC.CMP$nu, CF = 5.5, CF_sd = 1.6, CS = 
77.9, CS_sd = 2.35, PF = 0.73, PF_sd = 0), #reproductive values 
                  ATLp = list(mu1 = 2.124568, nu1 = 0.4805365, mu2 = 2.344938, nu2 = 0.141262, mu3 = 0.03930914, nu3 = 
0.1149811), 
                  ANE_dyn = FALSE, #whether ANE is dynamic 
                  Surv_dyn = FALSE, 
                  dynUQ = TRUE, 
                  ATL_scale = FALSE, 
                  grim.reaper=TRUE) 
 
  CC.scenario.GR <- list( 
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                  n_y = 100, #number of years in scenario 
                  VBGF = list(model="Lknot",Linf = 80.4473850, K = 0.1396317, Lknot=4.7363329, Amat = 26.4950786), #VBGF 
parameters 
                  TD_MVN = TD_CC_MVN, #take demographics MVN parameters 
                  PjV = list(mu = 0.8, sd = 0.031), #juvenile survival 
                  PaV = list(mu = 0.895, sd = 0.028), #adult survival 
                  RI.dist = "normal", 
                  RV = list(RI = 3.3, RI_sd = 2.3, CF = 4.6, CF_sd = 1.1, CS = 122, CS_sd = 18.4, PF = 0.65, PF_sd = 0), 
#reproductive values 
                  ATLp = list(mu1 = 3.444104, nu1 = 0.06451325, mu2 = 7.506372e-05, nu2 =  0.01686626, mu3 = NULL, nu3 = 
NULL), 
                  ANE_dyn = FALSE, #whether ANE is dynamic 
                  Surv_dyn = FALSE, 
                  dynUQ = FALSE, 
                  ATL_scale = FALSE, 
                  grim.reaper=TRUE) 
   
 ###----------------------------------------------------- 
 #  projection function 
 ###----------------------------------------------------- 
    
  # Toggles: 
   # dynUQ: toggles whether a static U and Q to a dynamic (annual) U and Q is used 
   # ATL_scale: toggles whether the ATL scales along with the population 
 
  # Included modes: 
   # det. ... deterministic runs 
   # sto. ... stochastic runs (RI, Pj) 
   # by  
   # nost ... sex and discard mortality are drawn with binomial 
 
   
  ### DC 
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   DC.l <- sim.fn(dc.trend, DC.scenario, 10000, fn=pva.proj) 
   save(DC.l, file=paste0(sim.path,"DC_median_sim.Rdata")) 
   DC.l.low <- sim.fn(dc.trend.low, DC.scenario, 10000, fn=pva.proj) 
   save(DC.l.low, file=paste0(sim.path,"DC_low_sim.Rdata")) 
   DC.l.high <- sim.fn(dc.trend.high, DC.scenario, 10000, fn=pva.proj) 
   save(DC.l.high, file=paste0(sim.path,"DC_high_sim.Rdata")) 
  #### 
 
  ### CC 
   CC.l <- sim.fn(cc.trend, CC.scenario, 10000, fn=pva.proj) 
   save(CC.l, file=paste0(sim.path,"CC_sim.Rdata")) 
  ##### 
 
  #------- 
  # Grim reaper 
   
  ### DC  
   DC.l <- sim.fn(dc.trend, DC.scenario.GR, 10000, fn=pva.proj) 
   save(DC.l, file=paste0(sim.path,"DC_median_sim.GR.Rdata")) 
   DC.l.low <- sim.fn(dc.trend.low, DC.scenario.GR, 10000, fn=pva.proj) 
   save(DC.l.low, file=paste0(sim.path,"DC_low_sim.GR.Rdata")) 
   DC.l.high <- sim.fn(dc.trend.high, DC.scenario.GR, 10000, fn=pva.proj) 
   save(DC.l.high, file=paste0(sim.path,"DC_high_sim.GR.Rdata")) 
  #### 
 
  ### CC 
   CC.l <- sim.fn(cc.trend, CC.scenario.GR, 10000, fn=pva.proj) 
   save(CC.l, file=paste0(sim.path,"CC_sim.GR.Rdata")) 
  ##### 
 ###----------------------------------------------------- 
 #  projection summary 
 ###----------------------------------------------------- 
  thres.pop <- c(.5, .25, .125) 
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  thres.yr <- c(5, 10, 25, 50, 100) 
 
   
  DC.sum <- proj.summ.fn(DC.l, dc.trend, thres.pop, thres.yr, alpha=0.05, keepers=c(5,6,11,12), spp="DC", 
mode="MEDIAN") 
  DC.sum.low <- proj.summ.fn(DC.l.low, dc.trend.low, thres.pop, thres.yr, alpha=0.05, keepers=c(5,6,11,12), spp="DC", 
mode="LOW") 
  DC.sum.high <- proj.summ.fn(DC.l.high, dc.trend.high, thres.pop, thres.yr, alpha=0.05, keepers=c(5,6,11,12), 
spp="DC", mode="HIGH") 
  CC.sum <- proj.summ.fn(CC.l, cc.trend, thres.pop, thres.yr, alpha=0.05, keepers=c(5,6,11,12), spp="CC") 
 
  #grim reaper 
  DC.sum <- proj.summ.fn(DC.l, dc.trend, thres.pop, thres.yr, alpha=0.05, keepers=c(5,6,11,12), spp="DC", 
mode="MEDIAN.GR") 
  DC.sum.low <- proj.summ.fn(DC.l.low, dc.trend.low, thres.pop, thres.yr, alpha=0.05, keepers=c(5,6,11,12), spp="DC", 
mode="LOW.GR") 
  DC.sum.high <- proj.summ.fn(DC.l.high, dc.trend.high, thres.pop, thres.yr, alpha=0.05, keepers=c(5,6,11,12), 
spp="DC", mode="HIGH.GR") 
  CC.sum <- proj.summ.fn(CC.l, cc.trend, thres.pop, thres.yr, alpha=0.05, keepers=c(5,6,11,12), spp="CC", 
mode="GR") 
 
 ###----------------------------------------------------- 
 #  plot raw 
 ###----------------------------------------------------- 
  load(paste0(data.path,"DC_raw_nests_month.Rdata")) 
 
  pdf(file=paste0(fig.path,"Raw_nest_data_monthly.pdf")) 
   layout(matrix(c(rep(1:3,each=3),4,4,4,5,0,6,6,6,7),ncol=2)) 
 
   par(mar=c(2,5,0.1,1),cex.axis=1.2, oma=c(1,1,2,3)) 
   with(CC.dat, plot(Year, Maehama.Beach, ylim=range(pretty(range(CC.dat[,2:4], na.rm=T))), xlab="", ylab="", 
type="b", pch=16, las=1, xaxt='n')) 
   axis(1, pretty(CC.dat$Year), labels=FALSE) 
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   mtext("N. Pac. Loggerheads", side=3, line=0.5) 
   fig.lab("Maehama", xscale=0.025, yscale=0.975, adj=c(0,1)) 
   with(CC.dat, plot(Year, Inakahama.Beach, ylim=range(pretty(range(CC.dat[,2:4], na.rm=T))), xlab="", ylab="", 
type="b", pch=16, las=1, xaxt='n')) 
   fig.lab("Inakahama", xscale=0.025, yscale=0.975, adj=c(0,1)) 
   axis(1, pretty(CC.dat$Year), labels=FALSE) 
   with(CC.dat, plot(Year, Yakushima.Yotsuse, ylim=range(pretty(range(CC.dat[,2:4], na.rm=T))), xlab="", 
ylab="", type="b", pch=16, las=1, xaxt='n')) 
   fig.lab("Yotsuse", xscale=0.025, yscale=0.975, adj=c(0,1)) 
   axis(1, pretty(CC.dat$Year), labels=TRUE, xpd=NA) 
 
   ### DC 
   with(DC.raw.dat, { 
    plot(Season, median.JM, ylim=range(pretty(range(DC.raw.dat[,2:7], na.rm=T))), xlab="", ylab="", 
type="n", pch=16, las=1, xaxt='n', xlim=range(Season)) 
    polygon(c(Season, rev(Season)), 
            c(low.JM, rev(high.JM)), 
            col=col2rgbA('gray50',0.25), border='gray50') 
    points(Season, median.JM, type='b', pch=16)}) 
   fig.lab("Jamursba-Medi", xscale=0.975, yscale=0.975, adj=c(1,1)) 
   mtext("W. Pac. Leatherbacks", side=3, line=0.5) 
   axis(1, pretty(DC.raw.dat$Season), labels=FALSE) 
 
 
   plot(y.raw$year.frac, y.raw$JM, ylim=range(pretty(range(y.raw[,1:2],na.rm=T))), type='l', col='black', pch=16, 
las=1, xlab="", ylab="", xlim=range(DC.raw.dat$Season), xaxt='n', yaxt='n', lwd=1.2) 
   axis(1, pretty(DC.raw.dat$Season), labels=FALSE) 
   axis(2, pretty(range(y.raw[,1:2],na.rm=T))[seq(1,6,by=2)], las=1) 
   fig.lab("Monthly", xscale=0.99, yscale=0.95, adj=c(1,1), cex=1) 
 
    
   with(DC.raw.dat, { 
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    plot(Season, median.W, ylim=range(pretty(range(DC.raw.dat[,2:7], na.rm=T))), xlab="", ylab="", 
type="n", pch=16, las=1, xaxt='n') 
    polygon(c(Season, rev(Season)), 
            c(low.W, rev(high.W)), 
            col=col2rgbA('gray50',0.25), border='gray50') 
    points(Season, median.W, type='b', pch=16)}) 
   fig.lab("Wermon", xscale=0.975, yscale=0.975, adj=c(1,1)) 
   axis(1, pretty(DC.raw.dat$Season), labels=FALSE) 
 
   plot(y.raw$year.frac, y.raw$W, ylim=range(pretty(range(y.raw[,1:2],na.rm=T))), type='l', col='black', pch=16, 
las=1, xlab="", ylab="", xlim=range(DC.raw.dat$Season), xaxt='n', yaxt='n', lwd=1.2) 
   fig.lab("Monthly", xscale=0.99, yscale=0.95, adj=c(1,1), cex=1) 
   axis(1, pretty(DC.raw.dat$Season), labels=TRUE) 
   axis(2, pretty(range(y.raw[,1:2],na.rm=T))[seq(1,6,by=2)], las=1) 
 
   mtext("# of Nests", side=2, outer=T, line=-0.75, cex=1.4) 
  dev.off() 

B. Helper Function 
data.extract <- function(location, year.begin,year.end, season.begin = year.begin, season.end = year.end, file.path = NULL){ 
 # In March 2019, we received new data for 2018. So, the raw data file 
 # has been updated.   
 # On 16 April 2019, the last few data points for 2019 were received 
 # so the data files have been updated.  
 if (is.null(season.begin)) season.begin <- year.begin 
 if (is.null(season.end)) season.end <- year.end 
  
 if (location == "JM"){ 
  data.0 <- read.csv(paste0(file.path,"JM_nests_April2019.csv")) 
   
  data.0 %>%  
   select(Year_begin, Month_begin, JM_Nests) %>% 
   mutate(Nests = JM_Nests) -> data.0 
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 } else if (location == "W"){ 
  data.0 <- read.csv(paste0(file.path,"W_nests_April2019.csv")) 
  data.0 %>%  
   select(Year_begin, Month_begin, W_Nests) %>% 
   mutate(Nests = W_Nests) -> data.0 
 } 
  
 # create regularly spaced time series: 
 data.2 <- data.frame(Year = rep(min(data.0$Year_begin, na.rm = T):max(data.0$Year_begin, na.rm = T),each = 12), 
            Month_begin = rep(1:12, max(data.0$Year_begin, 
na.rm = T) - min(data.0$Year_begin, na.rm = T) + 1)) %>% 
  mutate(begin_date = as.Date(paste(Year, Month_begin, '01', sep = "-"), format = "%Y-%m-%d"), Frac.Year = Year + 
(Month_begin-0.5)/12) %>% 
  select(Year, Month_begin, begin_date, Frac.Year) 
  
 # also make "nesting season" that starts April and ends March 
  
 data.0 %>% mutate(begin_date = as.Date(paste(Year_begin, Month_begin, '01', sep = "-"),format = "%Y-%m-%d")) %>% 
  mutate(Year = Year_begin, 
      Month = Month_begin, 
      f_month = as.factor(Month), 
      f_year = as.factor(Year), 
      Frac.Year = Year + (Month_begin-0.5)/12) %>% 
  select(Year, Month, Frac.Year, begin_date, Nests) %>% 
  na.omit() %>% 
  right_join(.,data.2, by = "begin_date") %>% 
  transmute(Year = Year.y, 
       Month = Month_begin, 
       Frac.Year = Frac.Year.y, 
       Nests = Nests, 
       Season = ifelse(Month < 4, Year-1, Year), 
       Seq.Month = ifelse(Month < 4, Month + 9, Month - 3)) %>% 
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  reshape::sort_df(.,vars = "Frac.Year") %>% 
  filter(Season >= season.begin & Season <= season.end) -> data.1 
  
 data.1 %>% filter(Month > 3 & Month < 10) -> data.summer 
 data.1 %>% filter(Month > 9 | Month < 4) %>% 
  mutate(Seq.Month = Seq.Month - 6) -> data.winter 
  
 jags.data <- list(y = log(data.1$Nests), 
          m = data.1$Seq.Month, 
          T = nrow(data.1)) 
  
 y <- matrix(log(data.1$Nests), ncol = 12, byrow = TRUE) 
  
 jags.data2 <- list(y = y, 
           m = matrix(data.1$Seq.Month, ncol = 12, byrow = TRUE), 
           n.years = nrow(y)) 
  
 y.summer <- matrix(log(data.summer$Nests), 
           ncol = 6, byrow = TRUE) 
  
 y.winter <- matrix(log(data.winter$Nests), 
           ncol = 6, byrow = TRUE) 
  
 jags.data2.summer <- list(y = y.summer, 
              m = 
matrix(data.summer$Seq.Month,ncol = 6, byrow = TRUE), 
              n.years = nrow(y.summer)) 
  
 jags.data2.winter <- list(y = y.winter, 
              m = 
matrix(data.winter$Seq.Month, ncol = 6, byrow = TRUE), 
              n.years = nrow(y.winter)) 
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 out <- list(jags.data = jags.data, 
       jags.data2 = jags.data2, 
       jags.data.summer = jags.data2.summer, 
       jags.data.winter = jags.data2.winter, 
       data.1 = data.1, 
       data.summer = data.summer, 
       data.winter = data.winter) 
 return(out) 
} 
sum.fn <- function(U){ 
 meanU <- mean(U) 
 varU <- var(U) 
 qU <- quantile(U, probs=c(0.5,0.025, 0.975)) 
 
 lamb <- exp(U) 
 meanL <- mean(lamb) 
 varL <- var(lamb) 
 qL <- quantile(lamb, probs=c(0.5, 0.025, 0.975)) 
 
 summ <- matrix(c(meanU, qU[1], varU, qU[2:3], meanL, qL[1], varL, qL[2:3]), ncol=1) 
 rownames(summ) <- c("meanU", "medianU", "varU", "L95U", "U95U", "meanl", "medianl", "varl", "L95l", "U95l") 
 
 return(summ) 
} 
pva.proj <- function(sim, trend, scenario){ 
 with(scenario, { 
  
 
 #convert U to lambda 
  lambda <- rep(1, n_y) #exp of U 
  Q.sd <- rep(NA, n_y) #std. dev. of Q (is variance) 
  #toggle for dynamic or static U & Q 
  if(dynUQ){ 



125 

   samp.sim <- sample(1:length(trend$U), n_y-1, replace = FALSE) 
   lambda[1] <- exp(trend$U[sim]) 
   lambda[2:n_y] <- exp(trend$U[samp.sim]) 
   Q.sd[1] <- sqrt(trend$Q[sim]) 
   Q.sd[2:n_y] <- sqrt(trend$Q[samp.sim]) 
  }else{ 
   lambda[1:n_y] <- exp(trend$U[sim]) 
   Q.sd[1:n_y] <- sqrt(trend$Q[sim]) 
  } 
   
 ###----------------------------------------------------- 
 #draw a ATL 
  #ATL_scale is a logical flag for scaling the ATL at the same rate as the population growth rate 
  if(ATL_scale){ 
   ATL_segments <- matrix(0, n_y, 3) 
   for(i in 1:n_y){ 
    if(!is.null(ATLp$mu1)){ 
    ATL_segments[i,1] <- rCMP(1, mu = ATLp$mu1*cumprod(lambda)[i], nu = ATLp$nu1) 
    } 
    if(!is.null(ATLp$mu2)){ 
     ATL_segments[i,2] <- rCMP(1, mu = ATLp$mu2*cumprod(lambda)[i], nu = ATLp$nu2) 
    } 
    if(!is.null(ATLp$mu3)){ 
     ATL_segments[i,3] <- rCMP(1, mu = ATLp$mu3*cumprod(lambda)[i], nu = ATLp$nu3) 
    } 
   } 
    
   ATL <- rowSums(ATL_segments) 
  }else{ 
   ATL_segments <- matrix(0, n_y, 3) 
   if(!is.null(ATLp$mu1)){ 
    ATL_segments[,1] <- rCMP(n_y, mu = ATLp$mu1, nu = ATLp$nu1) 
   } 
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   if(!is.null(ATLp$mu2)){ 
    ATL_segments[,2] <- rCMP(n_y, mu = ATLp$mu2, nu = ATLp$nu2) 
   } 
   if(!is.null(ATLp$mu3)){ 
    ATL_segments[,3] <- rCMP(n_y, mu = ATLp$mu3, nu = ATLp$nu3) 
   } 
   ATL <- rowSums(ATL_segments) 
  } 
 
 #draw a Size and Mortality based on ATL 
  mu.l <- TD_MVN$beta0 + TD_MVN$beta1*ATL #linear model for mean lengths in take (log) 
  mu.m <- rep(TD_MVN$mu0, n_y) # mean discard mortality in take (logit) 
 
  pred.Age <- seq(0,100, by=0.01) #sequence of ages to back calculate over 
  Lpred <- ifelse(VBGF$model =="tknot",with(VBGF, Linf * (1-exp(-K*(pred.Age-tknot)))), with(VBGF, Linf - (Linf - 
Lknot)*(1-exp(-K*pred.Age)))) #lengths over those ages 
 
  det.TD.draw.raw <- rep(list(NA),n_y) #storage list of MVN draws 
  det.TD.draw <- rep(list(NA), n_y) #storage list 
  det.Take <- rep(0, n_y) #storage vector of take 
  det.Take.nost <- rep(0, n_y) #storage vector of take 
 
  sto.TD.draw.raw <- rep(list(NA),n_y) #storage list of MVN draws 
  sto.TD.draw <- rep(list(NA), n_y) #storage list 
  sto.Take <- rep(0, n_y) #storage vector of take 
  sto.Take.nost <- rep(0, n_y) #storage vector of take 
 
  #draw a proportion female in the Take for each year 
  PF.sto <- rnorm(n_y, RV$PF, RV$PF_sd) 
  PF.det <- RV$PF 
 
  for(i in 1:n_y){ 
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   if(ATL[i] > 0){ 
    #draw from MVN log(length) and logit(discard mortality) 
    det.TD.draw.raw[[i]] <- sto.TD.draw.raw[[i]] <- rmvnorm(ATL[i], c(mu.l[i], mu.m[i]), TD_MVN$cov) 
    #convert to length and discard mortality (prob. space) 
    det.TD.draw[[i]] <- sto.TD.draw[[i]] <- data.frame(l = exp(sto.TD.draw.raw[[i]][,1]), m = 
boot::inv.logit(sto.TD.draw.raw[[i]][,2])) 
    #get an anticpated Age from the VBGF 
    det.TD.draw[[i]]$Age <- sto.TD.draw[[i]]$Age <- sapply(sto.TD.draw[[i]]$l, function(x) 
{pred.Age[which.min(abs(x - Lpred))]}) 
    #calculate the number of years until maturity 
    det.TD.draw[[i]]$YatLarge <- sto.TD.draw[[i]]$YatLarge <- VBGF$Amat - sto.TD.draw[[i]]$Age 
    #determine the animals stage based on maturity 
    det.TD.draw[[i]]$Stage <- sto.TD.draw[[i]]$Stage <- ifelse(sto.TD.draw[[i]]$Age > VBGF$Amat, "A", 
"J") 
 
    #### Stochastic 
    #draw a remigration interval for every animal based on a specified distribution (normal or CMP) 
    if(RI.dist =="normal"){ 
     sto.TD.draw[[i]]$RI <- rtruncnorm(nrow(sto.TD.draw[[i]]), a=0, mean=RV$RI, sd=RV$RI_sd) 
#remigration interval 
    }else if(RI.dist =="CMP"){ 
     sto.TD.draw[[i]]$RI <- rCMP(nrow(sto.TD.draw[[i]]), mu=RV$RI, nu=RV$RI_sd) #remigration 
interval 
     while(any(sto.TD.draw[[i]]$RI==0)){ 
      sto.TD.draw[[i]]$RI[sto.TD.draw[[i]]$RI==0] <- rCMP(sum(sto.TD.draw[[i]]$RI==0), 
mu = RV$RI, nu = RV$RI_sd) 
     } 
    }else{ 
     sto.TD.draw[[i]]$RI <- RV$RI 
     #error handling 
     print("Distribution was not specified as normal or CMP") 
    } 
    #draw a juvenile survival for every animal 
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    sto.TD.draw[[i]]$Pj <- rnorm(nrow(sto.TD.draw[[i]]), PjV$mu, PjV$sd) #juvenile survival 
    #Calculate the Adult Nester Equivalency 
    sto.TD.draw[[i]]$ANEj <- (sto.TD.draw[[i]]$Pj^sto.TD.draw[[i]]$YatLarge) * (1/sto.TD.draw[[i]]$RI) 
#ANE 
    #Draw whether the animal is M/F based on yearly proportion 
    sto.TD.draw[[i]]$Sex <- rbinom(nrow(sto.TD.draw[[i]]), 1, PF.sto[i]) 
    #Draw whether the animal lived or died based on discard mortality 
    if(grim.reaper){ 
     sto.TD.draw[[i]]$Fdead <- 1 
    }else{ 
     sto.TD.draw[[i]]$Fdead <- rbinom(nrow(sto.TD.draw[[i]]), 1, sto.TD.draw[[i]]$m) 
    } 
 
    #Fill in Adult ANE 
    sto.TD.draw[[i]]$ANEa <- 1 
    #Calculate the realized ANE 
    sto.TD.draw[[i]]$rANE <- ((sto.TD.draw[[i]]$ANEj * as.integer(sto.TD.draw[[i]]$Stage=="J")) + 
(sto.TD.draw[[i]]$ANEa * as.integer(sto.TD.draw[[i]]$Stage=="A"))) * (sto.TD.draw[[i]]$Sex * sto.TD.draw[[i]]$Fdead) 
    #Calculate the realized ANE w/o stochastic Sex or Discard Mortality draws 
    sto.TD.draw[[i]]$rANE.nost <- ((sto.TD.draw[[i]]$ANEj * as.integer(sto.TD.draw[[i]]$Stage=="J")) + 
(sto.TD.draw[[i]]$ANEa * as.integer(sto.TD.draw[[i]]$Stage=="A"))) * (PF.sto[i] * sto.TD.draw[[i]]$m) 
     
      
     
    #### Deterministic 
    det.TD.draw[[i]]$RI <- RV$RI 
    det.TD.draw[[i]]$Pj <- PjV$mu 
    det.TD.draw[[i]]$Pa <- PaV$mu 
    det.TD.draw[[i]]$ANEj <- (det.TD.draw[[i]]$Pj^det.TD.draw[[i]]$YatLarge) * (1/det.TD.draw[[i]]$RI) 
    det.TD.draw[[i]]$Sex <- rbinom(length(det.TD.draw[[i]]$Stage), 1, PF.det) 
    if(grim.reaper){ 
     det.TD.draw[[i]]$Fdead <- 1 
    }else{ 
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     det.TD.draw[[i]]$Fdead <- rbinom(nrow(det.TD.draw[[i]]), 1, det.TD.draw[[i]]$m) 
    } 
     
    det.TD.draw[[i]]$ANEa <- 1 
     
    det.TD.draw[[i]]$rANE <- ((det.TD.draw[[i]]$ANEj * as.integer(det.TD.draw[[i]]$Stage=="J")) + 
(det.TD.draw[[i]]$ANEa * as.integer(det.TD.draw[[i]]$Stage=="A"))) * (det.TD.draw[[i]]$Sex * det.TD.draw[[i]]$Fdead) 
    det.TD.draw[[i]]$rANE.nost <- ((det.TD.draw[[i]]$ANEj * as.integer(det.TD.draw[[i]]$Stage=="J")) + 
(det.TD.draw[[i]]$ANEa * as.integer(det.TD.draw[[i]]$Stage=="A"))) * (PF.det * det.TD.draw[[i]]$m) 
     
     
 
    det.Take[i] <- sum(det.TD.draw[[i]]$rANE) 
    det.Take.nost[i] <- sum(det.TD.draw[[i]]$rANE.nost) 
    sto.Take[i] <- sum(sto.TD.draw[[i]]$rANE) 
    sto.Take.nost[i] <- sum(sto.TD.draw[[i]]$rANE.nost) 
   } 
  } 
   
  ### deterministic 
  det.nost.Nt_take <- det.Nt_take <- det.Nt <- det.nost.Nt_take.iQ <- det.Nt_take.iQ <- det.Nt.iQ <- rep(0, n_y) 
   
  det.Nt_take.iQ[1] <- rnorm(1,(trend$N0[sim] - det.Take[1])*lambda[1], Q.sd[1]) 
  det.nost.Nt_take.iQ[1] <- rnorm(1,(trend$N0[sim] - det.Take.nost[1])*lambda[1], Q.sd[1]) 
  det.Nt.iQ[1] <- rnorm(1, trend$N0[sim] * lambda[1], Q.sd[1]) 
  det.Nt_take[1] <- (trend$N0[sim] - det.Take[1])*lambda[1] 
  det.nost.Nt_take[1] <- (trend$N0[sim] - det.Take.nost[1])*lambda[1] 
  det.Nt[1] <-  trend$N0[sim] * lambda[1] 
  for(i in 2:n_y){ 
   #include process variance Q 
   det.Nt_take.iQ[i] <- rnorm(1,(det.Nt_take.iQ[i-1] - det.Take[i])*lambda[i], Q.sd[i]) 
   det.nost.Nt_take.iQ[i] <- rnorm(1,(det.Nt_take.iQ[i-1] - det.Take.nost[i])*lambda[i], Q.sd[i]) 
   det.Nt.iQ[i] <- rnorm(1, det.Nt.iQ[i-1] * lambda[i], Q.sd[i]) 
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   #drop process variance Q 
   det.Nt_take[i] <- (det.Nt_take[i-1] - det.Take[i])*lambda[i] 
   det.nost.Nt_take[i] <- (det.Nt_take[i-1] - det.Take.nost[i])*lambda[i] 
   det.Nt[i] <-  det.Nt[i-1] * lambda[i] 
  } 
 
  ### stochastic 
  sto.nost.Nt_take <- sto.nost.Nt <- sto.Nt_take <- sto.Nt <- sto.nost.Nt_take.iQ <- sto.nost.Nt.iQ <-sto.Nt_take.iQ <- 
sto.Nt.iQ <- rep(0, n_y) 
 
  sto.Nt_take.iQ[1] <- rnorm(1,(trend$N0[sim] - sto.Take[1])*lambda[1], Q.sd[1]) 
  sto.nost.Nt_take.iQ[1] <- rnorm(1,(trend$N0[sim] - sto.Take.nost[1])*lambda[1], Q.sd[1]) 
  sto.Nt.iQ[1] <- rnorm(1, trend$N0[sim] * lambda[1], Q.sd[1]) 
  sto.Nt_take[1] <- (trend$N0[sim] - sto.Take[1])*lambda[1] 
  sto.nost.Nt_take[1] <- (trend$N0[sim] - sto.Take.nost[1])*lambda[1] 
  sto.Nt[1] <-  trend$N0[sim] * lambda[1] 
  for(i in 2:n_y){ 
   #include process variance Q 
   sto.Nt_take.iQ[i] <- rnorm(1,(sto.Nt_take.iQ[i-1] - sto.Take[i])*lambda[i], Q.sd[i]) 
   sto.nost.Nt_take.iQ[i] <- rnorm(1,(sto.Nt_take.iQ[i-1] - sto.Take.nost[i])*lambda[i], Q.sd[i]) 
   sto.Nt.iQ[i] <- rnorm(1, sto.Nt.iQ[i-1] * lambda[i], Q.sd[i]) 
   #drop process variance Q 
   sto.Nt_take[i] <- (sto.Nt_take[i-1] - sto.Take[i])*lambda[i] 
   sto.nost.Nt_take[i] <- (sto.Nt_take[i-1] - sto.Take.nost[i])*lambda[i] 
   sto.Nt[i] <-  sto.Nt[i-1] * lambda[i] 
  } 
 
 return(as.matrix( 
  data.frame(det.nost.Nt_take = det.nost.Nt_take, 
             det.Nt_take = det.Nt_take, 
             det.Nt = det.Nt,  
             det.nost.Nt_take.iQ = det.nost.Nt_take.iQ, 
             det.Nt_take.iQ = det.Nt_take.iQ, 
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             det.Nt.iQ = det.Nt.iQ, 
             sto.nost.Nt_take = sto.nost.Nt_take, 
             sto.Nt_take = sto.Nt_take, 
             sto.Nt = sto.Nt,  
             sto.nost.Nt_take.iQ = sto.nost.Nt_take.iQ, 
             sto.Nt_take.iQ = sto.Nt_take.iQ, 
             sto.Nt.iQ = sto.Nt.iQ))) 
 }) 
} 
curr.abund.fn <- function(dat, RI, round=TRUE){ 
 curr.abund <- matrix(c(quantile(dat$N_fym0, probs=c(0.5,0.025,0.975)), quantile(dat$N_fym1, probs=c(0.5,0.025,0.975)), 
quantile(dat$N_fym2, probs=c(0.5,0.025,0.975)), quantile(dat$N_fym3, probs=c(0.5,0.025,0.975)), 
quantile(rowSums(dat[,c("N_fym0","N_fym1","N_fym2","N_fym3")]),probs=c(0.5,0.025,0.975))*(RI/4)), nrow=5, byrow=T) 
 rownames(curr.abund) <- c("N0","N-1","N-2","N-3","Sum") 
 colnames(curr.abund) <- c("Median","L95%","U95%") 
 if(round) curr.abund <- round(curr.abund) 
 return(curr.abund) 
} 
sim.fn <- function(trend, scenario, nsim, fn){ 
 pva.proj <- fn 
 UseCores <- detectCores() - 2 
 cl <- makeCluster(UseCores) 
 registerDoParallel(cl) 
 nst <- ceiling(seq(from=1, to = nsim, length.out=(UseCores+1)))[-(UseCores+1)] 
 nen <- ceiling(seq(from=1, to = nsim, length.out=(UseCores+1)))[-1] - c(rep(1,(UseCores-1)),0) 
  
 df <- foreach(i = 1:length(nst), .packages=c("CMP", "mvtnorm","truncnorm")) %dopar% { 
 
  iseq <- seq(nst[i],nen[i]) 
  arr <- array(NA, dim=c(100, 12, length(iseq))) 
 
  for(j in 1:length(iseq)){ 
   arr[,,j] <- pva.proj(iseq[j], trend, scenario) 
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  } 
 
  return(arr) 
 } 
 stopCluster(cl) 
 return(df) 
} 
bootCI <- function(dt, R){ 
 samps <- replicate(R, sample(1:length(dt), floor(0.9*length(dt)))) 
 q <- apply(samps, 2, function(v) {sum(dt[v]/length(v))}) 
 return(q) 
} 
fig.lab <- function(i, xscale=0.05, yscale, cex=1.4, adj=c(0.5,0.5)){ 
 text(x = par('usr')[1] + abs(diff(par('usr')[1:2]))*xscale, 
      y = par('usr')[3] + abs(diff(par('usr')[3:4]))*yscale, 
      ifelse(is.numeric(i),LETTERS[i],i), xpd=NA, cex=cex, adj=adj) 
} 
u.den <- function(notake, take){ 
 d1 <- density(notake, adj=2) 
 d2 <- density(take, adj=2) 
 d1$y <- d1$y/max(d1$y) 
 d2$y <- d2$y/max(d2$y) 
 
 plot(d1$x, d1$y, xlab="r", ylab="Relative Density", ylim=c(0,1.01), las=1, col='chartreuse4', type='l', lwd=3) 
 lines(d2$x, d2$y, col='dodgerblue4', lwd=3, lty=2) 
 legend("topleft", legend=c(expression(N[j]), expression(N[j]-F)), lwd=3, col=c('chartreuse4', 'dodgerblue4'), bty='n') 
} 
col2rgbA<-function(color,transparency) 
{ 
  rgb(t(col2rgb(color))/255,alpha=transparency) 
} 
proj.summ.fn <- function(sim.l, trend, thres.pop, thres.yr, alpha=0.05, keepers=c(5,6,11,12), spp, mode=NULL){ 
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 lci <- alpha/2 
 uci <- 1-(alpha/2) 
 
 arr <- abind(sim.l, along=3) 
 
 ### Summary arrays 
 #dims = length(thres.pop), 12 modes from pva.proj, 4 summary metrics (mean, median, LCI, UCI) 
 tab.yr <- array(NA, dim=c(length(thres.pop),12, 4)) 
 #dims = length(thres.yr), length(thres.pop), 12 modes from pva.proj, 3 summary metrics (median, LCI, UCI) 
 tab.prob <- array(NA, dim=c(length(thres.yr), length(thres.pop), 12, 3)) 
 
 ### Storage arrays 
 #dims = length(thres.pop), 12 modes from pva.proj, nsims 
 yr <- array(NA, dim=c(length(thres.pop), 12, dim(arr)[3])) 
 #dims = length(thres.yr), length(thres.pop), 12 modes from pva.proj, nsims 
 prob <- array(NA, dim=c(length(thres.yr), length(thres.pop), 12, dim(arr)[3])) 
 
 #duplicate array to fill in extinct years with 0's 
 arr2 <- arr 
 
 for(i in 1:dim(arr)[3]){ 
  N0 <- trend$N0[i] 
  N0.thres <- N0*thres.pop 
 
  #fills in zeros for extinct runs 
  arr2[,,i] <- apply(arr2[,,i], 2, function(x) {if(any(x < 0)){ d <- min(which(x < 0)); x[d:100] <- 0}; return(x)}) 
 
  #first year to fall below threshold 
  yr[,,i] <- apply(arr2[,,i], 2, FUN = function(x) {sapply(N0.thres, function(v) ifelse(min(which((x < v)==1))==Inf, NA, 
min(which((x < v)==1))))}) 
 
  # prob[,,,i] <- array(apply(arr2[,,i], 2, function(x) {sapply(N0.thres, function(v){ sapply(thres.yr, function(y) 
sum(x[1:y] < v)/y)})}), dim=c(5,3,12)) 
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  prob[,,,i] <- array(apply(arr2[,,i], 2, function(x) {sapply(N0.thres, function(v){ sapply(thres.yr, function(y) 
as.integer(any(x[1:y] < v)))})}), dim=c(5,3,12)) 
 } 
 
 #Summarize Years to threshold 
 tab.yr[,,1] <- apply(yr, c(1,2), mean, na.rm=T) 
 tab.yr[,,2] <- apply(yr, c(1,2), median, na.rm=T) 
 tab.yr[,,3] <- apply(yr, c(1,2), quantile, prob = lci, na.rm=T) 
 tab.yr[,,4] <- apply(yr, c(1,2), quantile, prob = uci, na.rm=T) 
 
 #Summarize probability of falling below threshold 
 tab.prob[,,,1] <- apply(prob, c(1,2,3), function(x) {sum(x)/length(x)}) 
 bootci.prob <- apply(prob,c(1,2,3), bootCI, R=1000) 
 tab.prob[,,,2] <- apply(bootci.prob, c(2,3,4), quantile, prob=lci) 
 tab.prob[,,,3] <- apply(bootci.prob, c(2,3,4), quantile, prob=uci) 
 
 # Table 1 
  tab1.det.NT <- matrix(c(1-aperm(tab.prob[,,keepers[2],], c(2,1,3))[,5,1], aperm(tab.prob[,,6,], c(2,1,3))[,5,1], 
tab.yr[,6,]), nrow=3) 
  tab1.det.T <- matrix(c(1-aperm(tab.prob[,,keepers[1],], c(2,1,3))[,5,1], aperm(tab.prob[,,5,], c(2,1,3))[,5,1], tab.yr[,5,]), 
nrow=3) 
  tab1.sto.NT <- matrix(c(1-aperm(tab.prob[,,12,], c(2,1,3))[,5,1], aperm(tab.prob[,,keepers[4],], c(2,1,3))[,5,1], 
tab.yr[,12,]), nrow=3) 
  tab1.sto.T <- matrix(c(1-aperm(tab.prob[,,11,], c(2,1,3))[,5,1], aperm(tab.prob[,,keepers[3],], c(2,1,3))[,5,1], 
tab.yr[,11,]), nrow=3) 
 
  rownames(tab1.det.NT) <- rownames(tab1.det.T) <- rownames(tab1.sto.NT) <- rownames(tab1.sto.T) <- 
paste0(thres.pop*100, "%") 
  colnames(tab1.det.NT) <- colnames(tab1.det.T) <- colnames(tab1.sto.NT) <- colnames(tab1.sto.T) <- 
c("Prob.Above","Prob.Below","MeanYr","MedYr","L95Yr","U95Yr") 
 
  write.csv(round(tab1.det.NT,2), file=paste0(table.path,"Table1.",spp, mode,".det.NT.csv")) 
  write.csv(round(tab1.det.T,2), file=paste0(table.path,"Table1.",spp, mode,".det.T.csv")) 
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  write.csv(round(tab1.sto.NT,2), file=paste0(table.path,"Table1.",spp, mode,".sto.NT.csv")) 
  write.csv(round(tab1.sto.T,2), file=paste0(table.path,"Table1.",spp, mode,".sto.T.csv")) 
 
 # Table 2 
  tp.det.NT <- apply(aperm(tab.prob[,,keepers[2],], c(2,1,3)),2,c)[c(1,4,7,2,5,8,3,6,9),] 
  tp.det.T <- apply(aperm(tab.prob[,,keepers[1],], c(2,1,3)),2,c)[c(1,4,7,2,5,8,3,6,9),] 
  tp.sto.NT <- apply(aperm(tab.prob[,,keepers[4],], c(2,1,3)),2,c)[c(1,4,7,2,5,8,3,6,9),] 
  tp.sto.T <- apply(aperm(tab.prob[,,keepers[3],], c(2,1,3)),2,c)[c(1,4,7,2,5,8,3,6,9),] 
 
  rownames(tp.det.NT) <- rownames(tp.det.T) <- rownames(tp.sto.NT) <- rownames(tp.sto.T) <- 
paste0(rep(paste0(thres.pop*100,"%"),each=3),  c("", "L95","U95")) 
  colnames(tp.det.NT) <- colnames(tp.det.T) <- colnames(tp.sto.NT) <- colnames(tp.sto.T) <- paste0(thres.yr,'yr') 
 
  write.csv(round(tp.det.NT,3), file=paste0(table.path,"Table2.",spp, mode,".det.NT.csv")) 
  write.csv(round(tp.det.T,3), file=paste0(table.path,"Table2.",spp, mode,".det.T.csv")) 
  write.csv(round(tp.sto.NT,3), file=paste0(table.path,"Table2.",spp, mode,".sto.NT.csv")) 
  write.csv(round(tp.sto.T,3), file=paste0(table.path,"Table2.",spp, mode,".sto.T.csv")) 
 
 #Median Projections 
  proj.med <- apply(arr2, c(1,2), quantile, probs=c(lci, 0.5, uci)) 
  proj.log.med <- apply(arr2, c(1,2), function(x) {quantile(log(x), probs=c(lci, 0.5, uci))}) 
  proj.log.med[is.infinite(proj.log.med)] <- min(proj.log.med[!is.infinite(proj.log.med)]) * 5 
  diff.det <- arr2[,keepers[1],] - arr2[,keepers[2],] 
  diff.sto <- arr2[,keepers[3],] - arr2[,keepers[4],] 
  proj.diff.det <- apply(diff.det, 1, quantile, probs=c(lci, 0.5, uci)) 
  proj.diff.sto <- apply(diff.sto, 1, quantile, probs=c(lci, 0.5, uci)) 
  if(spp=="DC"){ 
   pdf(file=paste0(fig.path,spp,mode,"proj100.pdf")) 
    ###PROJECT 100 
    par(mfrow=c(2,1), mar=c(3,4,2,1)) 
    # Deterministic 
    plot(2018:2117, proj.med[2,,keepers[1]],  
         xlim=c(2017,2118),  
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         ylim=c(0,max(proj.med[,,keepers])), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2018:2117, rev(2018:2117)), y = c(proj.med[1,,keepers[1]], 
rev(proj.med[3,,keepers[1]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2018:2117, rev(2018:2117)), y = c(proj.med[1,,keepers[2]], 
rev(proj.med[3,,keepers[2]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2018:2117, proj.med[2,,keepers[1]], col="dodgerblue4", lwd=3) 
    lines(2018:2117, proj.med[2,,keepers[2]], col="chartreuse4", lwd=3) 
    yrpretty <- pretty(2018:2118)[pretty(2018:2118)>2018 & pretty(2018:2118) < 2118] 
    axis(1, yrpretty, yrpretty) 
    mtext("Deterministic", side=3, font=3) 
    fig.lab("W. Pac. Leatherbacks", xscale=0.85, yscale=0.925, cex = 1) 
 
    # Stochastic 
    par(mar=c(4,4,1,1)) 
    plot(2018:2117, proj.med[2,,keepers[3]],  
         xlim=c(2017,2118),  
         ylim=c(0,max(proj.med[,,keepers])),  
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2018:2117, rev(2018:2117)), y = c(proj.med[1,,keepers[3]], 
rev(proj.med[3,,keepers[3]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2018:2117, rev(2018:2117)), y = c(proj.med[1,,keepers[4]], 
rev(proj.med[3,,keepers[4]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2018:2117, proj.med[2,,keepers[3]], col="dodgerblue4", lwd=3) 
    lines(2018:2117, proj.med[2,,keepers[4]], col="chartreuse4", lwd=3) 
    axis(1, yrpretty, yrpretty) 
    mtext("Stochastic", side=3, font=3) 
    fig.lab("W. Pac. Leatherbacks", xscale=0.85, yscale=0.925, cex = 1) 
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    legend("bottomright", legend=c(expression(paste(N[t] -F," Median")), expression(paste(N[j] -F," 
95%CI")),expression(paste(N[j]," Median")), expression(paste(N[j]," 95%CI"))), lty=c(1,NA,1,NA), lwd=c(3,NA,3,NA), 
pch=c(NA,15,NA,15), col=c("dodgerblue4",col2rgbA("dodgerblue3",0.5),"chartreuse4", col2rgbA("chartreuse3", 0.5)), bty='n', pt.cex 
= 2, inset = c(0,0.1)) 
   dev.off() 
 
   pdf(file=paste0(fig.path,spp,mode,"logproj100.pdf")) 
    ###PROJECT 100 
    par(mfrow=c(2,1), mar=c(3,4,2,1)) 
    # Deterministic 
    plot(2018:2117, proj.log.med[2,,keepers[1]],  
         xlim=c(2017,2118),  
         ylim=c(0.0001,max(proj.log.med[,,keepers])), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2018:2117, rev(2018:2117)), y = c(proj.log.med[1,,keepers[1]], 
rev(proj.log.med[3,,keepers[1]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2018:2117, rev(2018:2117)), y = c(proj.log.med[1,,keepers[2]], 
rev(proj.log.med[3,,keepers[2]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2018:2117, proj.log.med[2,,keepers[1]], col="dodgerblue4", lwd=3) 
    lines(2018:2117, proj.log.med[2,,keepers[2]], col="chartreuse4", lwd=3) 
    yrpretty <- pretty(2018:2118)[pretty(2018:2118)>2018 & pretty(2018:2118) < 2118] 
    axis(1, yrpretty, yrpretty) 
    mtext("Deterministic", side=3, font=3) 
    fig.lab("W. Pac. Leatherbacks", xscale=0.85, yscale=0.925, cex = 1) 
 
    # Stochastic 
    par(mar=c(4,4,1,1)) 
    plot(2018:2117, proj.log.med[2,,keepers[3]],  
         xlim=c(2017,2118),  
         ylim=c(0.0001,max(proj.log.med[,,keepers])),  
         type='n', las=1, xlab="Years",  
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         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2018:2117, rev(2018:2117)), y = c(proj.log.med[1,,keepers[3]], 
rev(proj.log.med[3,,keepers[3]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2018:2117, rev(2018:2117)), y = c(proj.log.med[1,,keepers[4]], 
rev(proj.log.med[3,,keepers[4]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2018:2117, proj.log.med[2,,keepers[3]], col="dodgerblue4", lwd=3) 
    lines(2018:2117, proj.log.med[2,,keepers[4]], col="chartreuse4", lwd=3) 
    axis(1, yrpretty, yrpretty) 
    mtext("Stochastic", side=3, font=3) 
    fig.lab("W. Pac. Leatherbacks", xscale=0.85, yscale=0.925, cex = 1) 
    legend("topright", legend=c(expression(paste(N[j] -F," Median")), expression(paste(N[j] -F," 
95%CI")),expression(paste(N[j]," Median")), expression(paste(N[j]," 95%CI"))), lty=c(1,NA,1,NA), lwd=c(3,NA,3,NA), 
pch=c(NA,15,NA,15), col=c("dodgerblue4",col2rgbA("dodgerblue3",0.5),"chartreuse4", col2rgbA("chartreuse3", 0.5)), bty='n', pt.cex 
= 2, inset = c(0,0.1)) 
   dev.off() 
 
   pdf(file=paste0(fig.path,spp,mode,"proj10.pdf")) 
    #### PROJECT 10 
    par(mfrow=c(2,1), mar=c(3,4,2,1)) 
    # Deterministic 
    plot(2018:2027, proj.med[2,1:10,keepers[1]],  
         xlim=c(2017.75,2027.25),  
         ylim=c(0,max(proj.med[,1:10,keepers])), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2018:2027, rev(2018:2027)), y = c(proj.med[1,1:10,keepers[1]], 
rev(proj.med[3,1:10,keepers[1]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2018:2027, rev(2018:2027)), y = c(proj.med[1,1:10,keepers[2]], 
rev(proj.med[3,1:10,keepers[2]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2018:2027, proj.med[2,1:10,keepers[1]], col="dodgerblue4", lwd=3) 
    lines(2018:2027, proj.med[2,1:10,keepers[2]], col="chartreuse4", lwd=3) 



139 

    yrpretty <- pretty(2018:2028)[pretty(2018:2028)>2018 & pretty(2018:2028) < 2028] 
    axis(1, yrpretty, yrpretty) 
    mtext("Deterministic", side=3, font=3) 
    fig.lab("W. Pac. Leatherbacks", xscale=0.85, yscale=0.925, cex = 1) 
 
    # Stochastic 
    par(mar=c(4,4,1,1)) 
    plot(2018:2027, proj.med[2,1:10,keepers[3]],  
         xlim=c(2017.75,2027.25),  
         ylim=c(0,max(proj.med[,1:10,keepers])), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2018:2027, rev(2018:2027)), y = c(proj.med[1,1:10,keepers[3]], 
rev(proj.med[3,1:10,keepers[3]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2018:2027, rev(2018:2027)), y = c(proj.med[1,1:10,keepers[4]], 
rev(proj.med[3,1:10,keepers[4]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2018:2027, proj.med[2,1:10,keepers[3]], col="dodgerblue4", lwd=3) 
    lines(2018:2027, proj.med[2,1:10,keepers[4]], col="chartreuse4", lwd=3) 
    axis(1, yrpretty, yrpretty) 
    mtext("Stochastic", side=3, font=3) 
    fig.lab("W. Pac. Leatherbacks", xscale=0.85, yscale=0.925, cex = 1) 
    legend("bottomleft", legend=c(expression(paste(N[j] -F," Median")), expression(paste(N[j] -F," 
95%CI")),expression(paste(N[j]," Median")), expression(paste(N[j]," 95%CI"))), lty=c(1,NA,1,NA), lwd=c(3,NA,3,NA), 
pch=c(NA,15,NA,15), col=c("dodgerblue4",col2rgbA("dodgerblue3",0.5),"chartreuse4", col2rgbA("chartreuse3", 0.5)), bty='n', pt.cex 
= 2) 
   dev.off() 
 
   pdf(file=paste0(fig.path,spp,mode,"diff100.pdf")) 
    ###PROJECT 100 
    par(mfrow=c(2,1), mar=c(3,4,2,1)) 
    # Deterministic 
    plot(2018:2117, proj.diff.det[2,],  
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         xlim=c(2017,2118),  
         ylim=range(pretty(range(proj.diff.det))), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2018:2117, rev(2018:2117)), y = c(proj.diff.det[1,], rev(proj.diff.det[3,])), 
border=FALSE, col=col2rgbA("darkorchid", 0.5)) 
    lines(2018:2117, proj.diff.det[2,], col="darkorchid4", lwd=3) 
    yrpretty <- pretty(2018:2118)[pretty(2018:2118)>2018 & pretty(2018:2118) < 2118] 
    axis(1, yrpretty, yrpretty) 
    mtext("Deterministic", side=3, font=3) 
    fig.lab("W. Pac. Leatherbacks", xscale=0.85, yscale=0.925, cex = 1) 
 
    # Stochastic 
    par(mar=c(4,4,1,1)) 
    plot(2018:2117, proj.diff.sto[2,],  
         xlim=c(2017,2118),  
         ylim=range(pretty(range(proj.diff.sto))), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2018:2117, rev(2018:2117)), y = c(proj.diff.sto[1,], rev(proj.diff.sto[3,])), 
border=FALSE, col=col2rgbA("darkorchid", 0.5)) 
    lines(2018:2117, proj.diff.sto[2,], col="darkorchid4", lwd=3) 
    yrpretty <- pretty(2018:2118)[pretty(2018:2118)>2018 & pretty(2018:2118) < 2118] 
    axis(1, yrpretty, yrpretty) 
    mtext("Stochastic", side=3, font=3) 
    fig.lab("W. Pac. Leatherbacks", xscale=0.85, yscale=0.925, cex = 1) 
    legend("bottomleft", legend=c(expression(paste(N[j] - (N[j]-F)," Median")), expression(paste(N[j] - 
(N[j]-F)," 95%CI"))), lty=c(1,NA,1,NA), lwd=c(3,NA,3,NA), pch=c(NA,15,NA,15), 
col=c("darkorchid4",col2rgbA("darkorchid",0.5)), bty='n', pt.cex = 2, inset = c(0,0.1)) 
   dev.off() 
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   pdf(file=paste0(fig.path,spp,mode,"diff10.pdf")) 
    #### PROJECT 10 
    par(mfrow=c(2,1), mar=c(3,4,2,1)) 
    # Deterministic 
    plot(2018:2027, proj.diff.det[2,1:10],  
         xlim=c(2017.75,2027.25),  
         ylim=range(pretty(range(proj.diff.det[,1:10]))), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2018:2027, rev(2018:2027)), y = c(proj.diff.det[1,1:10], rev(proj.diff.det[3,1:10])), 
border=FALSE, col=col2rgbA("darkorchid", 0.5)) 
    lines(2018:2027, proj.diff.det[2,1:10], col="darkorchid4", lwd=3) 
    yrpretty <- pretty(2018:2028)[pretty(2018:2028)>2018 & pretty(2018:2028) < 2028] 
    axis(1, yrpretty, yrpretty) 
    mtext("Deterministic", side=3, font=3) 
    fig.lab("W. Pac. Leatherbacks", xscale=0.85, yscale=0.925, cex = 1) 
 
    # Stochastic 
    par(mar=c(4,4,1,1)) 
    plot(2018:2027, proj.diff.sto[2,1:10],  
         xlim=c(2017.75,2027.25),  
         ylim=range(pretty(range(proj.diff.sto[,1:10]))), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2018:2027, rev(2018:2027)), y = c(proj.diff.sto[1,1:10], rev(proj.diff.sto[3,1:10])), 
border=FALSE, col=col2rgbA("darkorchid", 0.5)) 
    lines(2018:2027, proj.diff.sto[2,1:10], col="darkorchid4", lwd=3) 
    yrpretty <- pretty(2018:2028)[pretty(2018:2028)>2018 & pretty(2018:2028) < 2028] 
    axis(1, yrpretty, yrpretty) 
    mtext("Stochastic", side=3, font=3) 
    fig.lab("W. Pac. Leatherbacks", xscale=0.85, yscale=0.925, cex = 1) 
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    legend("bottomleft", legend=c(expression(paste(N[j] - (N[j]-F)," Median")), expression(paste(N[j] - 
(N[j]-F)," 95%CI"))), lty=c(1,NA,1,NA), lwd=c(3,NA,3,NA), pch=c(NA,15,NA,15), 
col=c("darkorchid4",col2rgbA("darkorchid",0.5)), bty='n', pt.cex = 2, inset = c(0,0.1)) 
   dev.off() 
 
  }else{ 
   pdf(file=paste0(fig.path,spp,mode,"proj100.pdf")) 
    ###PROJECT 100 
    par(mfrow=c(2,1), mar=c(3,4,2,1)) 
    # Deterministic 
    plot(2016:2115, proj.med[2,,keepers[1]],  
         xlim=c(2015,2116),  
         ylim=c(0,max(proj.med[2,,keepers])),  
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2016:2115, rev(2016:2115)), y = c(proj.med[1,,keepers[1]], 
rev(proj.med[3,,keepers[1]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2016:2115, rev(2016:2115)), y = c(proj.med[1,,keepers[2]], 
rev(proj.med[3,,keepers[2]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2016:2115, proj.med[2,,keepers[1]], col="dodgerblue4", lwd=3) 
    lines(2016:2115, proj.med[2,,keepers[2]], col="chartreuse4", lwd=3) 
    yrpretty <- pretty(2016:2116)[pretty(2016:2116)>2016 & pretty(2016:2116) < 2116] 
    axis(1, yrpretty, yrpretty) 
    mtext("Deterministic", side=3, font=3) 
    fig.lab("N. Pac. Loggerheads", xscale=0.15, yscale=0.925, cex = 1) 
 
    # Stochastic 
    par(mar=c(4,4,1,1)) 
    plot(2016:2115, proj.med[2,,keepers[3]],  
         xlim=c(2015,2116),  
         ylim=c(0,max(proj.med[2,,keepers])),  
         type='n', las=1, xlab="Years",  
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         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2016:2115, rev(2016:2115)), y = c(proj.med[1,,keepers[3]], 
rev(proj.med[3,,keepers[3]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2016:2115, rev(2016:2115)), y = c(proj.med[1,,keepers[4]], 
rev(proj.med[3,,keepers[4]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2016:2115, proj.med[2,,keepers[3]], col="dodgerblue4", lwd=3) 
    lines(2016:2115, proj.med[2,,keepers[4]], col="chartreuse4", lwd=3) 
    axis(1, yrpretty, yrpretty) 
    mtext("Stochastic", side=3, font=3) 
    fig.lab("N. Pac. Loggerheads", xscale=0.15, yscale=0.925, cex = 1) 
    legend("topleft", legend=c(expression(paste(N[j] -F," Median")), expression(paste(N[j] -F," 
95%CI")),expression(paste(N[j]," Median")), expression(paste(N[j]," 95%CI"))), lty=c(1,NA,1,NA), lwd=c(3,NA,3,NA), 
pch=c(NA,15,NA,15), col=c("dodgerblue4",col2rgbA("dodgerblue3",0.5),"chartreuse4", col2rgbA("chartreuse3", 0.5)), bty='n', pt.cex 
= 2, inset = c(0,0.1)) 
   dev.off() 
 
   pdf(file=paste0(fig.path,spp,mode,"logproj100.pdf")) 
    ###PROJECT 100 
    par(mfrow=c(2,1), mar=c(3,4,2,1)) 
    # Deterministic 
    plot(2016:2115, proj.log.med[2,,keepers[1]],  
         xlim=c(2015,2116),  
         ylim=c(0.0001,max(proj.log.med[,,keepers])), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2016:2115, rev(2016:2115)), y = c(proj.log.med[1,,keepers[1]], 
rev(proj.log.med[3,,keepers[1]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2016:2115, rev(2016:2115)), y = c(proj.log.med[1,,keepers[2]], 
rev(proj.log.med[3,,keepers[2]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2016:2115, proj.log.med[2,,keepers[1]], col="dodgerblue4", lwd=3) 
    lines(2016:2115, proj.log.med[2,,keepers[2]], col="chartreuse4", lwd=3) 
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    yrpretty <- pretty(2016:2116)[pretty(2016:2116)>2016 & pretty(2016:2116) < 2116] 
    axis(1, yrpretty, yrpretty) 
    mtext("Deterministic", side=3, font=3) 
    fig.lab("N. Pac. Loggerheads", xscale=0.15, yscale=0.925, cex = 1) 
 
    # Stochastic 
    par(mar=c(4,4,1,1)) 
    plot(2016:2115, proj.log.med[2,,keepers[3]],  
         xlim=c(2015,2116),  
         ylim=c(0.0001,max(proj.log.med[,,keepers])),  
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2016:2115, rev(2016:2115)), y = c(proj.log.med[1,,keepers[3]], 
rev(proj.log.med[3,,keepers[3]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2016:2115, rev(2016:2115)), y = c(proj.log.med[1,,keepers[4]], 
rev(proj.log.med[3,,keepers[4]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2016:2115, proj.log.med[2,,keepers[3]], col="dodgerblue4", lwd=3) 
    lines(2016:2115, proj.log.med[2,,keepers[4]], col="chartreuse4", lwd=3) 
    axis(1, yrpretty, yrpretty) 
    mtext("Stochastic", side=3, font=3) 
    fig.lab("N. Pac. Loggerheads", xscale=0.15, yscale=0.925, cex = 1) 
    legend("topleft", legend=c(expression(paste(N[j] -F," Median")), expression(paste(N[j] -F," 
95%CI")),expression(paste(N[j]," Median")), expression(paste(N[j]," 95%CI"))), lty=c(1,NA,1,NA), lwd=c(3,NA,3,NA), 
pch=c(NA,15,NA,15), col=c("dodgerblue4",col2rgbA("dodgerblue3",0.5),"chartreuse4", col2rgbA("chartreuse3", 0.5)), bty='n', pt.cex 
= 2, inset=c(0,0.1)) 
   dev.off() 
 
   pdf(file=paste0(fig.path,spp,mode,"proj10.pdf")) 
    #### PROJECT 10 
    par(mfrow=c(2,1), mar=c(3,4,2,1)) 
    # Deterministic 
    plot(2016:2025, proj.med[2,1:10,keepers[1]],  
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         xlim=c(2015.75,2025.25),  
         ylim=c(0,max(proj.med[,1:10,keepers])), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2016:2025, rev(2016:2025)), y = c(proj.med[1,1:10,keepers[1]], 
rev(proj.med[3,1:10,keepers[1]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2016:2025, rev(2016:2025)), y = c(proj.med[1,1:10,keepers[2]], 
rev(proj.med[3,1:10,keepers[2]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2016:2025, proj.med[2,1:10,keepers[1]], col="dodgerblue4", lwd=3) 
    lines(2016:2025, proj.med[2,1:10,keepers[2]], col="chartreuse4", lwd=3) 
    yrpretty <- pretty(2016:2026)[pretty(2016:2026)>2016 & pretty(2016:2026) < 2026] 
    axis(1, yrpretty, yrpretty) 
    mtext("Deterministic", side=3, font=3) 
    fig.lab("N. Pac. Loggerheads", xscale=0.15, yscale=0.925, cex = 1) 
 
    # Stochastic 
    par(mar=c(4,4,1,1)) 
    plot(2016:2025, proj.med[2,1:10,keepers[3]],  
         xlim=c(2015.75,2025.25),  
         ylim=c(0,max(proj.med[,1:10,keepers])), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2016:2025, rev(2016:2025)), y = c(proj.med[1,1:10,keepers[3]], 
rev(proj.med[3,1:10,keepers[3]])), border=FALSE, col=col2rgbA("dodgerblue3", 0.5)) 
    polygon(x = c(2016:2025, rev(2016:2025)), y = c(proj.med[1,1:10,keepers[4]], 
rev(proj.med[3,1:10,keepers[4]])), border=FALSE, col=col2rgbA("chartreuse3", 0.5)) 
    lines(2016:2025, proj.med[2,1:10,keepers[3]], col="dodgerblue4", lwd=3) 
    lines(2016:2025, proj.med[2,1:10,keepers[4]], col="chartreuse4", lwd=3) 
    axis(1, yrpretty, yrpretty) 
    mtext("Stochastic", side=3, font=3) 
    fig.lab("N. Pac. Loggerheads", xscale=0.15, yscale=0.925, cex = 1) 
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    legend("topleft", legend=c(expression(paste(N[j] -F," Median")), expression(paste(N[j] -F," 
95%CI")),expression(paste(N[j]," Median")), expression(paste(N[j]," 95%CI"))), lty=c(1,NA,1,NA), lwd=c(3,NA,3,NA), 
pch=c(NA,15,NA,15), col=c("dodgerblue4",col2rgbA("dodgerblue3",0.5),"chartreuse4", col2rgbA("chartreuse3", 0.5)), bty='n', pt.cex 
= 2, inset = c(0,0.1)) 
   dev.off() 
 
   pdf(file=paste0(fig.path,spp,mode,"diff100.pdf")) 
    ###PROJECT 100 
    par(mfrow=c(2,1), mar=c(3,4,2,1)) 
    # Deterministic 
    plot(2016:2115, proj.diff.det[2,],  
         xlim=c(2015,2116),  
         ylim=range(pretty(range(proj.diff.det))),  
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2016:2115, rev(2016:2115)), y = c(proj.diff.det[1,], rev(proj.diff.det[3,])), 
border=FALSE, col=col2rgbA("darkorchid", 0.5)) 
    lines(2016:2115, proj.diff.det[2,], col="darkorchid4", lwd=3) 
    yrpretty <- pretty(2016:2116)[pretty(2016:2116)>2016 & pretty(2016:2116) < 2116] 
    axis(1, yrpretty, yrpretty) 
    mtext("Deterministic", side=3, font=3) 
    fig.lab("N. Pac. Loggerheads", xscale=0.15, yscale=0.925, cex = 1) 
 
    # Stochastic 
    par(mar=c(4,4,1,1)) 
    plot(2016:2115, proj.diff.sto[2,],  
         xlim=c(2015,2116),  
         ylim=range(pretty(range(proj.diff.sto))),  
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
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    polygon(x = c(2016:2115, rev(2016:2115)), y = c(proj.diff.sto[1,], rev(proj.diff.sto[3,])), 
border=FALSE, col=col2rgbA("darkorchid", 0.5)) 
    lines(2016:2115, proj.diff.sto[2,], col="darkorchid4", lwd=3) 
    yrpretty <- pretty(2016:2116)[pretty(2016:2116)>2016 & pretty(2016:2116) < 2116] 
    axis(1, yrpretty, yrpretty) 
    mtext("Stochastic", side=3, font=3) 
    fig.lab("N. Pac. Loggerheads", xscale=0.15, yscale=0.925, cex = 1) 
    legend("topleft", legend=c(expression(paste(N[j] - (N[j]-F)," Median")), expression(paste(N[j] - (N[j]-
F)," 95%CI"))), lty=c(1,NA,1,NA), lwd=c(3,NA,3,NA), pch=c(NA,15,NA,15), col=c("darkorchid4",col2rgbA("darkorchid",0.5)), 
bty='n', pt.cex = 2, inset = c(0,0.1)) 
   dev.off() 
 
   pdf(file=paste0(fig.path,spp,mode,"diff10.pdf")) 
    #### PROJECT 10 
    par(mfrow=c(2,1), mar=c(3,4,2,1)) 
    # Deterministic 
    plot(2016:2025, proj.diff.det[2,1:10],  
         xlim=c(2015.75,2025.25),  
         ylim=range(pretty(range(proj.diff.det[,1:10]))), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2016:2025, rev(2016:2025)), y = c(proj.diff.det[1,1:10], rev(proj.diff.det[3,1:10])), 
border=FALSE, col=col2rgbA("darkorchid", 0.5)) 
    lines(2016:2025, proj.diff.det[2,1:10], col="darkorchid4", lwd=3) 
    yrpretty <- pretty(2016:2026)[pretty(2016:2026)>2016 & pretty(2016:2026) < 2026] 
    axis(1, yrpretty, yrpretty) 
    mtext("Deterministic", side=3, font=3) 
    fig.lab("N. Pac. Loggerheads", xscale=0.15, yscale=0.925, cex = 1) 
 
    # Stochastic 
    par(mar=c(4,4,1,1)) 
    plot(2016:2025, proj.diff.sto[2,1:10],  
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         xlim=c(2015.75,2025.25),  
         ylim=range(pretty(range(proj.diff.sto[,1:10]))), 
         type='n', las=1, xlab="Years",  
         xaxt='n', ylab="Annual Nesters",  
         yaxs='i', xaxs='i') 
    polygon(x = c(2016:2025, rev(2016:2025)), y = c(proj.diff.sto[1,1:10], rev(proj.diff.sto[3,1:10])), 
border=FALSE, col=col2rgbA("darkorchid", 0.5)) 
    lines(2016:2025, proj.diff.sto[2,1:10], col="darkorchid4", lwd=3) 
    yrpretty <- pretty(2016:2026)[pretty(2016:2026)>2016 & pretty(2016:2026) < 2026] 
    axis(1, yrpretty, yrpretty) 
    mtext("Stochastic", side=3, font=3) 
    fig.lab("N. Pac. Loggerheads", xscale=0.15, yscale=0.925, cex = 1) 
    legend("topleft", legend=c(expression(paste(N[j] - (N[j]-F)," Median")), expression(paste(N[j] - (N[j]-
F)," 95%CI"))), lty=c(1,NA,1,NA), lwd=c(3,NA,3,NA), pch=c(NA,15,NA,15), col=c("darkorchid4",col2rgbA("darkorchid",0.5)), 
bty='n', pt.cex = 2, inset = c(0,0.1)) 
   dev.off() 
  } 
  
 return(list(tab.yr = tab.yr, 
             tab.prob = tab.prob)) 
} 
cor.lab <- function(x, y, xscale, yscale, cex=1.2, adj=c(0.5,0.5)){ 
 xpt <- par('usr')[1]+abs(diff(par('usr')[1:2]))*xscale 
 ypt <- par('usr')[3]+abs(diff(par('usr')[3:4]))*yscale 
 
 cor <- round(cor(x,y),2) 
 
 text(xpt, ypt, cor, xpd=NA, cex=cex, adj=adj) 
} 
kde.plot <- function(x, y, n=100){ 
 kde <- MASS::kde2d(x, y, n=n) 
 kde$z <- kde$z/max(kde$z) 
 contour(kde, levels=c(0.05, 0.5), col='black', drawlabels=FALSE, add=TRUE, lwd=c(1,3)) 
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} 
plot.joint <- function(trend, spp, graph){ 
 d.u <- density(trend$U, adj=2) 
 d.N0 <- density(trend$N0, adj=2) 
 d.Q <- density(trend$Q, adj=2) 
 
 d.u$y <- d.u$y/max(d.u$y) 
 d.N0$y <- d.N0$y/max(d.N0$y) 
 d.Q$y <- d.Q$y/max(d.Q$y) 
 
 samp <- sample(1:nrow(trend), floor(0.5*nrow(trend))) 
 pdf(file=paste0(fig.path,spp,"joint_post.pdf")) 
  par(mfrow=c(3,3), mar=c(4,4,1,1), cex.axis=1.1, cex.lab=1.1) 
 for(i in 1:9){ 
  if(i ==1) { 
   #1 
   plot(d.u$x, d.u$y, type='l', xlab='U', ylab='Rel. Density', ylim=c(0,1), yaxt='n', las=1) 
   axis(2, at=pretty(c(0,1)), las=1) 
  } 
  if(i==2){ 
   #2 
   plot(trend$U, trend$N0, pch=".", col='grey80', xlab='U', ylab=expression(N[0]), las=1) 
   kde.plot(trend$U[samp], trend$N0[samp], n=100) 
  } 
  if(i==3){ 
   #3 
   plot(trend$U[samp], trend$Q[samp], pch=".", col='grey80',xlab='U', ylab='Q', las=1) 
   kde.plot(trend$U, trend$Q, n=100) 
  } 
  if(i==4){ 
   #4 
   plot.new() 
   box() 
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   cor.lab(trend$U, trend$N0, xscale=0.5, yscale=0.5, cex=1.4) 
   fig.lab(expression(paste("U, ",N[0])), xscale=0.15, yscale=0.1, cex=1.1) 
  } 
  if(i==5){ 
   #5 
   plot(d.N0$x, d.N0$y, type='l', xlab=expression(N[0]), ylab='Rel. Density', ylim=c(0,1), yaxt='n', las=1) 
   axis(2, at=pretty(c(0,1)), las=1) 
  } 
  if(i==6){ 
   #6 
   plot(trend$N0[samp], trend$Q[samp], pch=".", col='grey80',xlab=expression(N[0]), ylab='Q', las=1) 
   kde.plot(trend$N0, trend$Q, n=100) 
  } 
  if(i==7){ 
   #7 
   plot.new() 
   box() 
   cor.lab(trend$U, trend$Q, xscale=0.5, yscale=0.5, cex=1.4) 
   fig.lab("U, Q", xscale=0.15, yscale=0.1, cex=1.1) 
  } 
  if(i==8){ 
   #8 
   plot.new() 
   box() 
   cor.lab(trend$N0, trend$Q, xscale=0.5, yscale=0.5, cex=1.4) 
   fig.lab(expression(paste(N[0],", Q")), xscale=0.15, yscale=0.1, cex=1.1) 
  } 
  if(i==9){ 
   #9 
   plot(d.Q$x, d.Q$y, type='l', xlab='Q', ylab='Rel. Density', ylim=c(0,1), yaxt='n', las=1) 
   axis(2, at=pretty(c(0,1)), las=1) 
  } 
  if(i==graph) legend("topright", legend=c("0.05", "0.5"), lwd=c(1,3), bty='n') 
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 } 
 dev.off() 
} 
mvnorm <- " 
 functions { 
  matrix cov_matrix_2d(vector sigma, real rho) { 
      matrix[2,2] Sigma; 
      Sigma[1,1] = square(sigma[1]); 
      Sigma[2,2] = square(sigma[2]); 
      Sigma[1,2] = sigma[1] * sigma[2] * rho; 
      Sigma[2,1] = Sigma[1,2]; 
      return Sigma; 
    } 
 } 
 data { 
  int<lower=1> N; //number of obs 
  vector[2] x[N]; //lengths and mortality 
  int<lower=1> nyear; //number of years 
  int<lower=1> year[N]; //year pointer 
  vector[nyear] rtl; // realized take 
 } 
 parameters { 
  real<lower=-1, upper=1> rho; //correlation 
  vector<lower=0>[2] sigma; //sigma of mus 
  real beta0; //int for rtl 
  real beta1; //slope for rtl 
  real mu0; //mu for m 
 } 
 transformed parameters{ 
  vector[2] mu[nyear]; 
  for(y in 1:nyear){ 
   mu[y,1] = beta0 + beta1*rtl[y]; 
   mu[y,2] = mu0; 
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  } 
 } 
 model { 
  mu0 ~ normal(0,2); 
  beta0 ~ normal(0,2); 
  beta1 ~ normal(0,2); 
  sigma ~ normal(0,2); 
  (rho + 1) / 2 ~ beta(2, 2); 
 
  for(n in 1:N){ 
   x[n] ~ multi_normal(mu[year[n]], cov_matrix_2d(sigma, rho)); 
  } 
 }" 
mv.DC.init <- function(chain_id){ 
 lm <- lm(log(Len)~Year, data=DC.td.df) 
 
 beta0 <- rnorm(1, coef(lm)[1], abs(coef(lm)[1]*0.1)) 
 beta1 <- rnorm(1, coef(lm)[2], abs(coef(lm)[2]*0.1)) 
 
 mu0 <- rnorm(1, 0, 1) 
 
 sigma <- rtruncnorm(2, a=0, mean = apply(DC.td.dat$x, 2, sd), sd = apply(DC.td.dat$x, 2, sd)*0.1) 
 rho <- rtruncnorm(1, a=-1, b=1, cor(DC.td.dat$x)[1,2], abs(cor(DC.td.dat$x)[1,2]*0.1)) 
 
 return(list(beta0 = beta0, 
             beta1 = beta1, 
             mu0 = mu0, 
             sigma = sigma, 
             rho = rho)) 
} 
mv.CC.init <- function(chain_id){ 
 lm <- lm(log(Len)~Year, data=CC.td.df) 
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 beta0 <- rnorm(1, coef(lm)[1], abs(coef(lm)[1]*0.1)) 
 beta1 <- rnorm(1, coef(lm)[2], abs(coef(lm)[2]*0.1)) 
 
 mu0 <- rnorm(1, 0, 1) 
 
 sigma <- rtruncnorm(2, a=0, mean = apply(CC.td.dat$x, 2, sd), sd = apply(CC.td.dat$x, 2, sd)*0.1) 
 rho <- rtruncnorm(1, a=-1, b=1, cor(CC.td.dat$x)[1,2], abs(cor(CC.td.dat$x)[1,2]*0.1)) 
 
 return(list(beta0 = beta0, 
             beta1 = beta1, 
             mu0 = mu0, 
             sigma = sigma, 
             rho = rho)) 
} 
vbgm_stan_l0_ln <- " 
 data{ 
  int<lower=1> n_obs; //number of observations 
  vector<lower=0>[n_obs] age; //ages of fish 
  vector<lower=0>[n_obs] l; //length of fish 
  int<lower=1> nseq; 
  vector<lower=0>[nseq] seq_ages; 
  int<lower=1> n_hatchlings; 
  vector<lower=0>[n_hatchlings] hatchling_size; 
  real<lower=0> nester_size; 
  real<lower=0> nester_sd; 
 } 
 parameters{ 
  real<lower=0> Linf; //L infinity 
  real<lower=0> K; //vb K 
  real<lower=0> Lknot; //t knot 
 
  real<lower=0> sigma_obs; //sigma_obs 
  real<lower=0> sigma_Lknot; //sigma_obs 
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 } 
 model{ 
  vector[n_obs] Lpred; 
  Linf ~ normal(nester_size, nester_sd); 
  K ~ normal(0.1, 0.5); 
  Lknot ~ normal(4, 0.2); 
 
  sigma_obs ~ normal(0, 1); 
  sigma_Lknot ~ normal(0, 1); 
 
  for(i in 1:n_obs){ 
   Lpred[i] = Linf - (Linf-Lknot)*exp(-K*age[i]); 
    target += lognormal_lpdf(l[i]|log(Lpred[i]), sigma_obs); 
  } 
  for(i in 1:n_hatchlings){ 
   target += lognormal_lpdf(hatchling_size[i]|log(Lknot),sigma_Lknot); 
  } 
 } 
 generated quantities{ 
  real Amat; 
  real tknot; 
  vector[nseq] Lage; 
  Amat = (1/K)*log((Linf-Lknot)/(Linf*(1-0.975))); 
  tknot = (1/K)*log((Linf-Lknot)/Linf); 
 
  for(i in 1:nseq){ 
   Lage[i] = Linf - (Linf-Lknot)*exp(-K*seq_ages[i]); 
  } 
}" 
init.vbgm.l0 <- function(chain_id){ 
 return(list(Linf = rtruncnorm(1, a=0, mean=nester_size, sd=nester_sd), 
          K = rtruncnorm(1, a=0, mean=0.1, sd=0.01), 
          Lknot = rtruncnorm(1,a=0, mean=hatchling_size,sd=hatchling_sd), 
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          sigma_obs = rtruncnorm(1, a=0, mean=1, sd=0.01), 
    sigma_Lknot = rtruncnorm(1, a=0, mean=1, sd=0.01))) 
} 

C. Projections 
### Bayesian state-space model for estimating long-term trend in nest count time series data 
### Original model estimation code adapted from Boyd et al. (2016) paper; code provided by C. Boyd 
### Future projections and evaluation of probabilities code by S. Martin  
### with input from T. Eguchi, B. Langseth, A. Yau, J. Baker, T. Jones, R. Ahrens, Z. Siders, N. Ducharme-Barth 
 
#setwd(save.dir) 
require(ggplot2) 
 
##============================================================================== 
# SELECT MODELING OPTION BELOW depending on what model we're using (**FINAL** options only here for this script):  
##============================================================================== 
# --------------------------------------- 
# 1. Set up Loggerheads Model = singleUQ (using 3 time series of nest counts from Yakushima) 
# --------------------------------------- 
if(scenario=="Cc_Yakushima_sUQ"){ 
    # name of file directory to save model results into 
  if (file.exists(save.dir)){                               # if file directory exists, set wd to it 
    setwd(file.path(save.dir)) 
  } else {                                                  # if file directory doesn't exist, create it, then set wd to it 
    dir.create(file.path(save.dir)) 
    setwd(file.path(save.dir)) 
  } 
  rdatafile <- paste(scenario, ".RData", sep="")        # can use load(file=rdatafile) if you've already run code and want to re-load results 
  file.tag <- paste(scenario,"_", Sys.Date(), sep="")   # to add to output file names below 
  thedata <- thedata.loggers[2:31, c(1,6,5,7)]  # remove first row due to all NAs; put beach w/ first year of data in first data column 
  data.cols <- 2:4                              # columns of Annual Females data to analyze 
  data.rows <- 1:30                             # rows=Years of data to analyze; must start with a value rather than NA for at least 1 time series 
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  write.csv(thedata[data.rows , c(1,data.cols)], file=paste(file.tag,"_0_data_used.csv",sep=""),quote=FALSE, row.names=FALSE) # 
export actual data feeding into model 
  modl <- "singleUQ" 
  data.type <- "Annual_Females"                 # this is from when we were testing variants of Annual vs. Total Femals vs. Nests 
  pop.name <- c("Inakahama", "Maehama", "Yotsuse")   # code below uses these population names, e.g., for plots 
  pop.name.combo <- "N. Pacific Loggerheads - Yakushima 3 beaches"   # code below uses for plots 
  remig <- remigLH 
  clutch.freq <- clutch.freqLH 
} 
 
# --------------------------------------- 
# 2. Set up Leatherbacks Model = singleUQ (with JM and W separate time series BUT *same* trend/process) 
# 2A. Uses ** MEDIAN ** nest count estimates from Tomo's imputation model output 
# 2B. Uses ** LOW ** (lower 95% CI) nest count estimates from Tomo's imputation model output 
# 2C. Uses ** HIGH ** (upper 95% CI) nest count estimates from Tomo's imputation model output 
# --------------------------------------- 
if(scenario=="Dc_JM&W_MEDIAN_sUQ"|scenario=="Dc_JM&W_LOW_sUQ"|scenario=="Dc_JM&W_HIGH_sUQ") { 
  if (file.exists(save.dir)){ 
    setwd(file.path(save.dir)) 
  } else { 
    dir.create(file.path(save.dir)) 
    setwd(file.path(save.dir)) 
  } 
  rdatafile <- paste(scenario, ".RData", sep="")       # can use load(file=rdatafile) if you've already run code and want to re-load results 
  file.tag <- paste(scenario,"_", Sys.Date(), sep="")  # to add to output file names below 
  thedata <- thedata.leathers 
  data.cols <- 2:3               # columns of Annual Females data to analyze 
  data.rows <- 1:17              # need to start with a value rather than NA for at least 1 time series 
  write.csv(thedata[data.rows , c(1,data.cols)], file=paste(file.tag,"_0_data_used.csv",sep=""),quote=FALSE, row.names=FALSE) # 
export actual data feeding into model 
  modl <- "singleUQ" 
  data.type <- "Annual_Females"   # this is from when we were testing variants of Annual vs. Total Femals vs. Nests 
  pop.name <- c("Jamursba Medi Leatherback Turtles", "Wermon Leatherback Turtles") 
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  pop.name.combo <- "Western Pacific Leatherback Turtles" 
  remig <- remigLB            # remigration interval in years (for run sum period) 
  clutch.freq <- clutch.freqLB 
} 
##============================================================================== 
 
 
##============================================================================== 
# PLOT DATA 
##============================================================================== 
 
# SINGLE TIME SERIES:  
# --------------------------------------- 
if(length(pop.name)==1) {            
  png(filename=paste(file.tag,"_0", "_data_rawNests.png", sep=""), width=650, height=575, units="px") 
  par(mfrow=c(1,1), mar=c(5, 5, 4, 2) + 0.1) 
  plot(thedata[,1], clutch.freq*thedata[ ,data.cols], pch=19,  
       ylim=range(clutch.freq*thedata[ ,data.cols], na.rm=T), xlab="Season", ylab="Nest Counts", main=pop.name,  
       cex.lab=1.5, cex.axis=1.5, cex.main=2, cex=1.75) 
  lines(thedata[,1], clutch.freq*thedata[ ,data.cols], lwd=2, cex=1.5) 
  dev.off() 
   
  png(filename=paste(file.tag,"_1", "_data_lnFemales.png", sep=""), width=650, height=575, units="px") 
  par(mfrow=c(1,1), mar=c(5, 5, 4, 2) + 0.1) 
  plot(thedata[,1], log(thedata[ ,data.cols]), pch=19, ylim=range(log(thedata[ ,data.cols]), na.rm=T),  
       xlab="Season", ylab="Ln(Annual Females)", main=pop.name,  
       cex.lab=1.5, cex.axis=1.5, cex.main=2, cex=1.75) 
  lines(thedata[,1], log(thedata[ ,data.cols]), lwd=2, cex=1.5) 
  dev.off() 
} 
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# MULTIPLE TIME SERIES: 
# --------------------------------------- 
if(length(pop.name)>1) { 
  for (i in 1:length(pop.name)) { 
    png(filename=paste(file.tag,"_0.", i, "_data_rawNests.png", sep=""), width=650, height=575, units="px") 
    par(mfrow=c(1,1), mar=c(5, 5, 4, 2) + 0.1) 
    plot(thedata[,1], clutch.freq*thedata[,i+1], pch=19,  
         ylim=range(clutch.freq*thedata[,i+1], na.rm=T), xlab="Season", ylab="Nest Counts", main=pop.name[i],  
         cex.lab=1.5, cex.axis=1.5, cex.main=2, cex=1.75) 
    lines(thedata[,1], clutch.freq*thedata[,i+1], lwd=2, cex=1.5) 
    dev.off() 
  } 
   
  for (i in 1:length(pop.name)) { 
     png(filename=paste(file.tag,"_1.", i, "_data_lnFemales.png", sep=""), width=650, height=575, units="px") 
     par(mfrow=c(1,1), mar=c(5, 5, 4, 2) + 0.1) 
     plot(thedata[,1], log(thedata[,i+1]), pch=19, ylim=range(log(thedata[,i+1]), na.rm=T),  
          xlab="Season", ylab="Ln(Annual Females)", main=pop.name[i],  
         cex.lab=1.5, cex.axis=1.5, cex.main=2, cex=1.75) 
     lines(thedata[,1], log(thedata[,i+1]), lwd=2, cex=1.5) 
     dev.off() 
  } 
} 
##============================================================================== 
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##============================================================================== 
# TRANSFORM DATA: into natural log (Ln) space for the model 
##============================================================================== 
log.data <- log(thedata[data.rows , data.cols])     # Ln(TOTAL NUMBER OF FEMALES) 
data.mat <- t(log.data)    # tranpose to have rows = time series and cols = years of data 
data.mat 
##============================================================================== 
 
 
##============================================================================== 
## Model setup definitions and priors 
##============================================================================== 
# Model options: 
# 1: single population process (singleUQ) 
# 2: independent trend, independent variance, covariance 
# 3: independent population processes 
 
# Data 
dat <- data.mat     # matrix with rows = different time series and cols = years of data within those time series 
n.yrs <- ncol(dat) 
n.timeseries <- nrow(dat) 
Y <- rbind(dat, NA)   # add a row (ie time series of data) to trick jagsUI into NOT converting single time series matrix to vector 
Y 
 
# Set priors 
a_mean <- 0 
a_sd <- 4 
 
u_mean <- 0 
u_sd <- 0.05 
 
q_alpha <- 8 
q_beta <- 2 
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r_alpha <- 8 
r_beta <- 2 
 
 
# Note: The initial state, x0, is treated as a model parameter.  
# the prior matters for Wermon - setting mean to first JM data point skews Wermon to JM trend due to poor W data 
# making it specific to each time series for independentUQ 
 
# for singleUQ, set mean of X0 based on first time series (first data point of it)  
if(modl=="singleUQ") { 
  x0_mean <- dat[1,1]     # take the first data point of first time series (JM for leathers) 
  x0_sd <- 10             # we went with wide sd by testing for both JM and W for leathers; 10 works to make it super wide so as to not 
influence Wermon 
} 
 
 
# Set MCMC parameters 
n.samples <- 10000   # 1000; bumped up to 5000 per CB after geweke.diag for deviance in chain 1 looked high at 2.1830; gives 
10,000 across the 2 chains 
mcmc.chains <- 2     # 2 is min; AY uses 3 
mcmc.thin <- 50      # 50-100 is more than safe; 500 seems excessive per AY 
mcmc.burn <- 5000    # 1000; also bumped up to 5000 (same as n.samples) per CB after geweke.diag for deviance in chain 1 still 
looked high at 2.2 
samples2Save <- (mcmc.burn + n.samples) * mcmc.thin 
##============================================================================== 
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##============================================================================== 
# Model 1:  'singleUQ' ... multiple time series -> single population process (trend) 
# This is the final one we are using (7/31/19), not the Independent UQ model below, but left that in for now 
##============================================================================== 
if(modl=="singleUQ"){ 
   
  # Model-specific parameters 
  whichPop <- rep(1,n.timeseries) # multiple time series -> single population process 
  n.states <- max(whichPop) 
   
  Z <- matrix(0,n.timeseries+1,n.states+1)   # matrix with rows as n.timeseries and cols as n.states (pops) 
  Z[n.timeseries+1, ] <- NA                  # add a row of NAs to keep jagsUI from converting single time series matrix into vector 
  Z[ , n.states+1] <- NA                     # add a col of NAs to keep jagsUI from converting single state matrix into vector 
  for(i in 1:length(whichPop)) Z[i,whichPop[i]] <- 1 
  Z 
   
  jags.data <- 
list("Y","n.yrs","n.timeseries","Z","a_mean","a_sd","u_mean","u_sd","q_alpha","q_beta","r_alpha","r_beta","x0_mean","x0_sd") 
  jags.params <- c("A", "U", "Q", "R", "X0", "X") 
  model.loc <- paste(main.folder, "singleUQ.txt", sep="") 
   
  # Run model 
  set.seed <- 132 
  jags.model <- jags(jags.data,  
                     inits = NULL,  
                     parameters.to.save= jags.params,  
                     model.file=model.loc,  
                     n.chains = mcmc.chains,  
                     n.burnin = mcmc.burn*mcmc.thin,  
                     n.thin = mcmc.thin,  
                     n.iter = samples2Save,  
                     DIC = T,  
                     parallel=T,  
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                     seed=set.seed) 
  print(jags.model) 
} 
##============================================================================== 
 
 
##============================================================================== 
# DIAGNOSTICS: Trace plots - CB didn't like the ones from jagsUI so these were her own...  
##============================================================================== 
labpar<-c("U", "Q", "R", "X0", "deviance") 
xx <- 1:n.samples 
 
outs <- array(NA, c(n.samples, 2, length(labpar)))  # order is: rows, cols, matrices: 5 matrices w/ nrows=n.samples, ncols=5) 
# row, col, matrix 
outs[,1,1] <- jags.model$sims.list$U[1:n.samples] 
outs[,2,1] <- jags.model$sims.list$U[(n.samples+1):(n.samples*2)] 
outs[,1,2] <- jags.model$sims.list$Q[1:n.samples] 
outs[,2,2] <- jags.model$sims.list$Q[(n.samples+1):(n.samples*2)] 
outs[,1,3] <- jags.model$sims.list$R[1:n.samples] 
outs[,2,3] <- jags.model$sims.list$R[(n.samples+1):(n.samples*2)] 
outs[,1,4] <- jags.model$sims.list$X0[1:n.samples] 
outs[,2,4] <- jags.model$sims.list$X0[(n.samples+1):(n.samples*2)] 
outs[,1,5] <- jags.model$sims.list$deviance[1:n.samples] 
outs[,2,5] <- jags.model$sims.list$deviance[(n.samples+1):(n.samples*2)] 
 
png(filename=paste(file.tag,"_3_Trace_plots.png", sep=""), width=650, height=575, units="px") 
par(mfrow=c(2, 3)) 
for(j in 1:length(labpar)) { 
  plot(xx, outs[,1,j], xlab="cycle number", ylab=labpar[j],type='b',pch=16, ylim=range(outs[,,j])) 
  lines(xx, outs[,2,j], type='b',pch=16, col="gray50") 
} 
dev.off() 
##============================================================================== 
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##============================================================================== 
# MORE DIAGNOSTICS - export to files 
##============================================================================== 
McmcList <- vector("list",mcmc.chains) 
for(i in 1:length(McmcList)) McmcList[[i]] <- as.mcmc(outs[,i,]) 
 
# Write model diagnostics to txt file 
sink(paste(file.tag,"_4_model_diagnostics_", modl, ".txt", sep="")) # open file 
print("effectiveSize(McmcList[[1]])") 
print(effectiveSize(McmcList[[1]])) 
cat("\n") 
 
print("effectiveSize(McmcList[[2]])") 
print(effectiveSize(McmcList[[2]])) 
cat("\n") 
 
print("geweke.diag(McmcList[[1]])") 
print(geweke.diag(McmcList[[1]])) # the test statistic is the standard z score for the equality of two means - value greater than 1.96 
(p<0.05) two-tailed 
#cat("\n") 
 
print("geweke.diag(McmcList[[2]])") 
print(geweke.diag(McmcList[[2]])) 
#cat("\n") 
 
print("gelman.diag(McmcList)") 
print(gelman.diag(McmcList)) # values of the statistic should be small for each parameter (i.e. 1.00-1.05). 
sink()   # close file 
##============================================================================== 
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##============================================================================== 
# WRITE the model file"jags.model" to a txt file 
##============================================================================== 
file.jags <- paste(file.tag,"_2_Jags_model_", modl, ".txt", sep="")  
sink(file.jags) # open file 
print(jags.model) 
sink()   # close file 
##============================================================================== 
 
 
 
##============================================================================== 
# PLOT MODEL FIT GRAPH: with data points, median model predicted counts, 95% CI band shading 
##============================================================================== 
# Define a color for confidence interval bounds on plot 
col2rgb("gray", alpha=TRUE) # get specs on gray color to use in polygon and tweak transparency 
mygray <- rgb(red=190, green=190, blue=190, alpha=200, maxColorValue=255) 
 
# PLOT model fit line (estimated trend line) on top of the data  with 95% CI shading 
jags.model$q50$X   # median 
length(jags.model$q50$X)  # should be number of years of data  
 
# SINGLE TIME SERIES: 
# --------------------------------------- 
if(length(pop.name)==1){ 
  png(filename=paste(file.tag,"_6_model_fit_med95.png", sep=""), width=650, height=575, units="px") 
  par(mfrow=c(1,1), mar=c(5, 5, 4, 2) + 0.1) 
  #ylim.specs <- c(range(log.data, na.rm=T)[1]*.95, range(log.data, na.rm=T)[2]*1.05)  # add 5% to min & max values for y axis 
  y.low <- min(min(jags.model$q2.5$X), min(log.data, na.rm=T))        # min of data or CI 
  y.hi <- 1.05*max(max(jags.model$q97.5$X), max(log.data, na.rm=T))  # max of data or CI 
  ylim.specs <- c(y.low, y.hi) 
   
  plot(thedata[data.rows,1], log.data, pch=19, ylim=ylim.specs, xlab="Year", ylab="Ln(Annual Females)", main=pop.name,  
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       cex.lab=1.5, cex.axis=1.5, cex.main=2, cex=1.75) 
  polygon(x= c(thedata[data.rows,1][1], thedata[data.rows,1], rev(thedata[data.rows,1])),                      # add 95% CI shading from 
JAGS model output 
          y= c(jags.model$q2.5$X[1], jags.model$q97.5$X, rev(jags.model$q2.5$X)),  
          col=mygray, lty=0) 
  lines(thedata[data.rows,1], jags.model$q50$X, col="blue", lwd=2)         # plot median fit line (better than mean for Bayes) 
  points(thedata[data.rows,1], log.data, lwd=2, type="p", pch=16, cex=1.75) # add points back over CI shading 
  dev.off() 
} 
 
# MULTIPLE TIME SERIES: 
# --------------------------------------- 
if(length(pop.name)>1){ 
  y.vec.low <- jags.model$q2.5$X   # create vector with lower 95% values for X  
  y.vec.hi <- jags.model$q97.5$X   # create vector with upper 95% values for X 
   
  for (i in 2:length(pop.name)){   # for each time series, the X values are really X+A; put all in one vec to find min & max for plot 
limits 
    y.vec.low <- c(y.vec.low,  jags.model$q2.5$X + jags.model$q2.5$A[i]) 
    y.vec.hi <- c(y.vec.hi, jags.model$q97.5$X + jags.model$q97.5$A[i]) 
  } 
   
  y.low <- min(min(y.vec.low), min(log.data, na.rm=T))        # plot limits; min of data or CI 
  y.hi <- 1.05*max(max(y.vec.hi), max(log.data, na.rm=T))     # plot limits; max of data or CI 
  ylim.specs <- c(y.low, y.hi) 
   
  for (i in 1:length(pop.name)){ 
    png(filename=paste(file.tag,"_6.", i, "_model_fit_med95.png", sep=""), width=650, height=575, units="px") 
    par(mfrow=c(1,1), mar=c(5, 5, 4, 2) + 0.1) 
    plot(thedata[data.rows,1], log.data[data.rows,i], pch=19, ylim=ylim.specs, xlab="Year", ylab="Ln(Annual Females)", 
main=pop.name[i],  
         cex.lab=1.5, cex.axis=1.5, cex.main=2, cex=1.75) 
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  # Add in 'A' scaling factor from the model estimates  
    polygon(x= c(thedata[data.rows,1][1], thedata[data.rows,1], rev(thedata[data.rows,1])),                      # add 95% CI shading from 
JAGS model output 
            y= c(jags.model$q2.5$X[1]+jags.model$q2.5$A[i], jags.model$q97.5$X+jags.model$q97.5$A[i], 
rev(jags.model$q2.5$X+jags.model$q2.5$A[i])),  
            col=mygray, lty=0) 
    lines(thedata[,1], jags.model$q50$X+jags.model$q50$A[i], col="blue", lwd=2)         # plot median fit line (better than mean for 
Bayes) 
     
    points(thedata[,1], log.data[,i], lwd=2, type="p", pch=16, cex=1.75) # add points back over CI shading 
    dev.off() 
  } 
} 
# Save output 
saveRDS(jags.model, paste(file.tag, ".rds", sep=""))   # SLM: this is an R workspace file to re-load work thus far if needed 
##============================================================================== 
fy <- length(thedata[data.rows,1])       # final year of observed data; 22 for loggerheads; 17 for leatherbacks (JM) 
yrf=100                                  # 100 = years into the future 
nsim=10000                               # number of sim runs; length(jags.model$sims.list$X[ ,fy])   
 
Umed=jags.model$q50$U                    # for reporting results, median is best 
Umean=jags.model$mean$U                  # but for simulations, use mean, sd in distribution 
Usd=jags.model$sd$U 
Uvar=Usd^2 
Uci=c(jags.model$q2.5$U, jags.model$q97.5$U) 
 
lambda.mean=exp(Umean) 
lambda.med=exp(Umed) 
lambda.var=exp(Uvar) 
lambda.ci=exp(Uci) 
 
Qmed=jags.model$q50$Q 
Qmean=jags.model$mean$Q 
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Qsd=jags.model$sd$Q 
 
X.len <- length(jags.model$sims.list$X[,fy-0]) 
X.thin <- seq(from=1, to=X.len, by = X.len/nsim)  # make length of the X estimate vectors same as nsim, (thin by every other value 
from MCMC samples) 
 
# **SINGLE** time series 
# --------------------------------------- 
if(length(pop.name)==1){ 
  X.fym0 <- exp(jags.model$sims.list$X[,fy-0][X.thin])  # Number of Annual Females in final data year 
  X.fym1 <- exp(jags.model$sims.list$X[,fy-1][X.thin])  # final data year minus one 
  X.fym2 <- exp(jags.model$sims.list$X[,fy-2][X.thin])   
  X.fym3 <- exp(jags.model$sims.list$X[,fy-3][X.thin]) 
} 
 
# **MULTIPLE TIME SERIES** (e.g., for leatherbacks, need to account for X representing JM since A=0 and X+A representing W 
since A!=0) 
# e.g., Annual Females estimate for JM & W combined = exp(X) + exp(X+A), where first part is JM and second is for W. 
# --------------------------------------- 
if(length(pop.name)>1){ 
  X.fym0 <- exp(jags.model$sims.list$X[,fy-0][X.thin])  # Number of Annual Females in final data year 
  X.fym1 <- exp(jags.model$sims.list$X[,fy-1][X.thin])  # final data year minus one 
  X.fym2 <- exp(jags.model$sims.list$X[,fy-2][X.thin]) 
  X.fym3 <- exp(jags.model$sims.list$X[,fy-3][X.thin]) 
 
  for (i in 2:length(pop.name)){ 
    X.fym0 <- X.fym0 + exp(jags.model$sims.list$X[,fy-0][X.thin] + jags.model$sims.list$A[,i][X.thin])  # rescaling to correct 
magnitude 
    X.fym1 <- X.fym1 + exp(jags.model$sims.list$X[,fy-1][X.thin] + jags.model$sims.list$A[,i][X.thin]) 
    X.fym2 <- X.fym2 + exp(jags.model$sims.list$X[,fy-2][X.thin] + jags.model$sims.list$A[,i][X.thin]) 
    X.fym3 <- X.fym3 + exp(jags.model$sims.list$X[,fy-3][X.thin] + jags.model$sims.list$A[,i][X.thin]) 
  } 
} 
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###@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
## plot the fit 
 
X.total <- apply(cbind(jags.model$sims.list$X0,jags.model$sims.list$X), 2, function(v) rowSums(apply(jags.model$sims.list$A[,], 2, 
function(x) exp(v+x)))) 
 
X0.total <- rowSums(apply(jags.model$sims.list$A[,], 2, function(x) exp(jags.model$sims.list$X0+x))) 
 
X.total.med <- apply(log(X.total),2,median) 
 
# X.fit <- apply(sapply(jags.model$sims.list$U, function(x) {x * seq(0,nrow(thedata))}), 1, function(x) x + log(X0.total)) 
 
X.q <- apply(log(X.total), 2, quantile, probs=c(0.025, 0.5, 0.975)) 
#X0 
den.X0 <- density(log(X0.total),adj=2) 
den.X0$y2 <- (den.X0$y/max(den.X0$y)) 
q.X0 <- quantile(log(X0.total), probs=c(0.025,0.975)) 
xid<- sapply(q.X0, function(x) {which.min(abs(x-den.X0$x))}) 
#N0 
den.N0 <- density(log(X.total[,ncol(X.total)]),adj=2) 
den.N0$y2 <- (den.N0$y/max(den.N0$y)) 
q.N0 <- quantile(log(X.total[,ncol(X.total)]), probs=c(0.025,0.975)) 
xid.n0<- sapply(q.N0, function(x) {which.min(abs(x-den.N0$x))}) 
 
yrange <- range(c(log(rowSums(thedata[,2:ncol(thedata)], na.rm=T)), den.X0$x)) 
 
png(filename=paste(file.tag,"_model_fit_U.png", sep=""), width=7, height=4.62, units="in", res=300) 
  layout(matrix(1:2,1,2),width=c(1,0.23)) 
  par(mar=c(4,4,1,1)) 
 
  plot(thedata[,1], log(rowSums(thedata[,2:ncol(thedata)], na.rm=T)), pch=16, type="n", las=1, ylab="log(Annual Nesters)", 
xlab="Season", ylim=range(pretty(yrange)), xlim=c(min(thedata[,1])-1.1, max(thedata[,1]+0.25)), xaxs='i') 
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  polygon(c(c(min(thedata[,1])-1,thedata[,1]), rev(c(min(thedata[,1])-1,thedata[,1]))), 
          c(X.q[1,], rev(X.q[3,])), 
          col='grey85', 
          border=FALSE) 
   
  lines(c(min(thedata[,1])-1,thedata[,1]), X.q[2,], lwd=3, col='gray50') 
 
  polygon(x = c(rep((thedata[1,1]-1), length(xid[1]:xid[2])),rev(den.X0$y2[xid[1]:xid[2]]+(thedata[1,1]-1))),  
          y = c(den.X0$x[xid[1]:xid[2]],rev(den.X0$x[xid[1]:xid[2]])),  
          lwd=2, border=FALSE,  
          col=col2rgbA("dodgerblue3", 0.3)) 
 
  polygon(x = c(rep(thedata[nrow(thedata),1], length(xid.n0[1]:xid.n0[2])),rev(-
den.N0$y2[xid.n0[1]:xid.n0[2]]+thedata[nrow(thedata),1])),  
          y = c(den.N0$x[xid.n0[1]:xid.n0[2]],rev(den.N0$x[xid.n0[1]:xid.n0[2]])),  
          lwd=2, border=FALSE,  
          col=col2rgbA("darkorchid3", 0.3)) 
 
  lines(den.X0$y2[xid[1]:xid[2]]+(thedata[1,1]-1), den.X0$x[xid[1]:xid[2]], lwd=2, col='dodgerblue3') 
  lines(-den.N0$y2[xid.n0[1]:xid.n0[2]]+thedata[nrow(thedata),1], den.N0$x[xid.n0[1]:xid.n0[2]], lwd=2, col='darkorchid3') 
 
  points(thedata[,1], log(rowSums(thedata[,2:ncol(thedata)], na.rm=T)), pch=16) 
  points(c(min(thedata[,1])-1,thedata[,1]), X.total.med, pch=16, col=c('dodgerblue3',rep('red',length(X.total)-2), "darkorchid3")) 
 
  par(mar=c(0,0,0,0)) 
  plot.new() 
  legend("center", legend=c(expression(sum(N[list(obs,j)],j,"")), expression(sum(T[j]+a[j],j,"")), "Median r", "95% r", 
expression(paste(T[0]," (95%CI)")), expression(paste(N[final]," (95% CI)"))), pch=c(16,16,NA,15,NA,NA), 
lwd=c(NA,NA,3,NA,2,2), pt.cex=c(1,1,NA,3,NA,NA), col=c("black","red","gray50","gray85","dodgerblue3","darkorchid3"), 
bty="n", y.intersp = 0.9, xpd=NA) 
  pop.name.combo2 <- gsub("Pacific ","Pac.\n",pop.name.combo) 
  if(grepl("Leatherback",pop.name.combo2)){ 
    pop.name.combo2 <- gsub("Western","W.",pop.name.combo2) 
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    pop.name.combo2 <- gsub(" Turtles","\n(JM & W)",pop.name.combo2) 
  }else{ 
    pop.name.combo2 <- gsub(" 3 beaches","\n(3 beaches)",pop.name.combo2) 
    pop.name.combo2 <- gsub(" - ","\n",pop.name.combo2) 
  } 
    
  fig.lab(pop.name.combo2, xscale=0.5, yscale=0.85, cex=1) 
dev.off() 
 
# POSTERIORS for Zach to input into the projections and take model component now (7/24/19) 
posts.out <- cbind("U"=jags.model$sims.list$U, "Q"=jags.model$sims.list$Q, "N_fym0"=X.fym0, "N_fym1"=X.fym1, 
"N_fym2"=X.fym2, "N_fym3"=X.fym3) 
head(posts.out) 
write.csv(posts.out, paste("Posteriors_U_and_AbundFinalYrs_", file.tag, ".csv", sep=""), row.names=FALSE) 
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Appendix IV:  Loggerhead von Bertalanffy Growth Model 

To estimate the von Bertalanffy Growth Model (von Bertalanffy 1934) (Eq. 26) parameters for 
loggerheads, the data from Tomaszewicz et al. (2015) of loggerhead ages and SCLs were used. 
The mean and standard deviation of nesting female sizes in Minabe, Japan from Hatase et al. 
(2002) was used to generate an informative normal prior on 𝐿𝐿∞ due to the limited number of 
adults in the Tomaszewicz data set (Eq. 27). Additionally, observations of 𝐿𝐿0, based on the 
hatchling size measured by Dodd Jr (1988), were assumed to come from a log-normal likelihood 
(Eq. 28). The age at maturity was derived from the von Bertalanffy growth model using Eq. 29. 

 Eq. 26 

 Eq. 27 

 Eq. 28 

 Eq. 29 

Where 𝐿𝐿𝑡𝑡 is the length at time 𝐵𝐵 and 𝑘𝑘 is the Brody growth rate coefficient. The model was 
implemented in STAN using RStan (Stan Development Team 2018) with 7,500 simulations per 
chain (5,000 discarded burnin and 2,500 kept) for 10,000 total simulations. All chains converge 
with  < 1.1 for all parameters (Gelman and Rubin 1992). The posteriors are shown in Figure 
A1. 
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Figure A1. Von Bertalanffy growth model parameters for North Pacific loggerhead turtles. 
Priors (in red) and posteriors (in black) with the 90% credible intervals in gray for the four 
parameters: three from the VBGM (𝒆𝒆𝒆𝒆𝒆𝒆𝒓𝒓𝒆𝒆𝒓𝒓𝒆𝒆𝒆𝒆𝒓𝒓 𝒗𝒗𝒓𝒓𝒓𝒓𝒗𝒗𝒆𝒆𝒆𝒆: 𝑳𝑳∞ = 𝟖𝟖𝟎𝟎. 𝟒𝟒 𝒄𝒄𝒆𝒆, 𝒌𝒌 = 𝟎𝟎. 𝟏𝟏𝟒𝟒 , 𝑳𝑳𝟎𝟎 =
𝟒𝟒. 𝟕𝟕 𝒄𝒄𝒆𝒆) and the fourth is the standard deviation of the observations, 𝝈𝝈. 
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