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Bigeye tuna (Thunnus obesus) are the primary target species of 

Hawaii's most valuable commercial fishery, a longline fishery with 

landings that are valued at over $100 million (NMFS, 2018b) and 

that account for nearly half the United States tuna landings (NMFS, 

2018a, 2018b). A reliable predictor of targeted species catch rates 

could help the fishery time fishing activity and plan capital improve-

ments. It could also  potentially  inform adaptive management and 

facilitate ecosystem-based fisheries management.

Due to their high commercial value, bigeye and other tunas are 

well studied. Surveys of larval (Nishikawa, Honma, Ueyanagi, & 

Kikiawa, 1985) and adult (Kume, 1969) bigeye tuna extend back over 

50 years, and their life history, physiology, and habitat (e.g., Block 

& Stevens, 2001, and references therein; Lehodey et al., 2010 and 

references therein, Muhling et al., 2017 and references therein) are 

relatively well understood. Pacific bigeye tuna are also regularly 

assessed (most recently by Vincent, Pilling, & Hampton, 2018; Xu, 

Minte-Vera, Maaunder, & Aires-da-Silva, 2018).

Despite bigeye tuna being routinely studied, factors influ-

encing their recruitment remain poorly understood (e.g., Abascal 

et al., 2018; Xu et al., 2018). ENSO cycles are thought to influence 

bigeye recruitment strength in the eastern Pacific Ocean, though 

the exact nature of this relationship is unclear (Xu et al., 2018). 

Although larval foraging success is an important component of re-

cruitment (Llopiz & Hobday, 2015; Muhling et al., 2017), it is not 

currently possible to quantify the effects to a population level. 

Thus, environmental and ecosystem metrics for recruitment are 

not routinely incorporated into bigeye tuna stock assessments or 

management.

A recent study of interannual variability in the Hawaii longline 

fleet's catch determined that high catch rates of small ( 15 kg) big< -

eye tuna precede peaks in overall catch rates by two years (Wren 

and Polovina, in review). This relationship is due to the age struc-

ture of the longline catch, which is dominated by 4- to 5-year-old 

fish. The smaller size class coincides with fish that are two years old, 

hence the two-year time lag between catch rates of small bigeye and 

overall catch.
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Bigeye tuna are of global economic importance and are the primary target species of 

Hawaii's most valuable commercial fishery. Due to their high commercial value, bigeye 

tuna are relatively well studied and routinely assessed. Larval and adult bigeye sur-

veys have been conducted for many years and are supported by ongoing research on 

their physiology and life history. Yet, modeling stock dynamics and estimating future 

catch rates remain challenging. Here, we show that an appropriately lagged meas-

ure of phytoplankton size is a robust predictor of catch rates in Hawaii's bigeye tuna 

fishery with a forecast window of four years. We present a fishery-independent tool 

with the potential to improve stock assessments, aid dynamic fisheries management, 

and allow Hawaii's commercial longline fishing industry to better plan for the future.
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The recruitment indicator developed by Wren and Polovina (in re-

view) raises two important points: one, there is coherent age structure 

across the bigeye tuna population targeted by Hawaii's longline fleet; 

and two, it is possible to identify the timing of recruitment of distinct 

cohorts to the fishery. The presence of larval bigeye tuna across much 

of the fishery's footprint further supports these points (Nishikawa 

et al., 1985; Reglero, Tittensor, Álvarez-Berastegui, Aparicio-González, 

& Worm, 2014). Here, we build on these results and propose using an 

environmental driver of bigeye tuna recruitment as a forecasting tool. 

We hypothesize that median phytoplankton size, M
D50

, can be used to 

forecast bigeye tuna catch rates four years in advance. We take M
D50

 

to be a proxy for the quality of food available to larval and juvenile 

bigeye tuna, with greater M
D50

 values indicative of higher food qual-

ity. Greater MD50 values would indicate that there are more large phy-

toplankton and in turn more prey available for the zooplankton upon 

which larval bigeye tuna feed. Increased prey availability would then 

lead to more bigeye tuna surviving to reach adulthood (Hjort, 1914). 

The 4-year forecast window is based on the age structure of the catch, 

as described above. M
D50

 can be derived from publicly available sat-

ellite remotely sensed data (Barnes, Irigoien, De Oliveira, Maxwell, & 

  -

ments for bigeye tuna and other species.

Being able to anticipate fishery performance with some confi-

dence could also help improve fishery management. Recent stock as-

sessments have intermittently identified bigeye tuna as experiencing 

overfishing in the western and central Pacific (Abascal et al., 2018; 

Harley, Davies, Hampton, & McKechnie, 2014; McKechnie, Pilling, & 

Hampton, 2017) and eastern Pacific (Abascal et al., 2018; Aires-da-

Silva & Maunder, 2015; Xu et al., 2018). Such determinations indicate 

a potential strain on the fishery's ecological sustainability. Knowing  

in advance which years may produce lower catch rates resulting from 

reduced abundance could enable fishery managers to take adap-

tive measures and avoid further stressing the population (Tommasi 

et al., 2017). Such an approach—using size structure at the base of the 

food web to inform estimates of top predator abundance—would be a 

step toward ecosystem-based fisheries management (EBFM; Pikitch 

et al., 2004), which has yet to be implemented in Hawaii's longline  

fishery.

 |
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We estimated median phytoplankton cell mass in pg C (MB50) follow-

ing the methodology of Barnes et al. (2011) as shown in Equation 1: 

where chl-a is chlorophyll-a in mg/m3, and SST is sea surface tempera-

ture in °C. We then transformed cell mass to cell size in equivalent  

spherical diameter (ESD) in m, hereafter  M
D50

, following Equation 2 

(Menden-Deuer  & Lessard, 2000; Polovina  & Woodworth, 2012). 

Chl-a data came from the European Space Agency's Ocean Colour  

Climate Change Initiative (OC-CCI) version 3.1, which blends data  

from the SeaWiFS, MODIS, and VIIRS sensors into a single time series 

(Sathyendranath et al., 2018). SST data came from NOAA Pathfinder  

v5.3 (Casey, Brandon, Cornillon, & Evans, 2010; Saha et al., 2018). M
D50

 

was calculated for each pixel of the 4-km grid common to both the chl-a 

and SST data. We average MD50  over the calendar year, to match the  

management time frame of this fishery, and over the spatial domain of 



 |

Hawaii's bigeye tuna longline fishery sets their hooks 100–400 m 

below the surface during the daytime (Bigelow, Musyl, Poisson, & 

Kleiber, 2006). In recent years, vessels set an average of 2,700 hooks 

per set and total fleet effort increased steadily from 20 million hooks 

in 2000 to 58.5 million hooks in 2018 (PIFSC, 2019b). Catch per unit 

effort (CPUE; number of bigeye tuna caught per 1,000 hooks set; 

Figure 2) was determined from vessel logbooks, which are kept by all 

vessel masters and include the date, time, and location of all effort 

set, as well as catch (in numbers) of all commercially valuable fish. 

(1)ogl 10


MB50


 =0.929


log10 (chl a− )


 − 0.043 (SST) + 1.340

(2)M
D50  =2.138


M

B50

0.355

  Map showing the footprint 

of Hawaii's longline fishery for bigeye tuna  120˚E 150˚E   180˚ 150˚W 120˚W 90˚W
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Logbook data are maintained by the Pacific Islands Fisheries Science 

Center (PIFSC; PIFSC, 2019c).

The size distributions of bigeye tuna were determined from dealer 

data (PIFSC, 2019a). Dealer data contain processed (gilled and gut-

ted) weight records from all Hawaii commercial fish buyers. To obtain 

whole fish weights, we applied a non-linear conversion factor to the 

weight record (Langley, Okamoto, Williams, Miyabe, & Bigelow, 2006). 

Smaller fish are sometimes sold as a group and the record consists 

of multiple fish with a total weight for the group. In these instances, 

we do not know the precise weight of each fish so we attributed the 

mean weight to each fish in the group. We examine fish size structure 

 

scale matches that used in both recent bigeye tuna stock assessments 

(Vincent et al., 2018) as well as historical surveys (Kume, 1969).

Dealer data were also used together with logbook data to deter-

mine weight per unit effort (WPUE; Figure 2). Because not all bigeye 

caught are sold, to calculate WPUE for each trip, we took the mean 

sold weight of bigeye recorded in the dealer data and multiplied it by 

the number of bigeye recorded in the logbook data. We then divided 

that total weight per trip by the effort from the logbook data and, 

finally, aggregated the WPUE by year.

 |

To test our hypothesis that M
D50

 can be used to forecast bigeye tuna 

catch rates four years in advance, we evaluated the correlation be-

tween annual time series of 4-year-lagged M
D50

, SST, and chl-a and 

both CPUE and WPUE. For significant correlations (  .05), linear p <

regressions were used to create CPUE and WPUE forecasts. The 

skill of these forecasts was evaluated based on two metrics: skill 

over climatology (i.e., long-term mean) and skill over persistence. 

Climatology was defined as the average CPUE or WPUE through the 

year prior to the forecast year (e.g., the 2005 CPUE climatology fore-

cast value was the 1995–2004 average). Persistence was defined as 

the CPUE or WPUE of the previous year (e.g., the 2005 CPUE per-

sistence forecast value was 2004 CPUE). The skill was measured by 

summing over the forecast period (2002–2018) the absolute values 

  Time series of bigeye tuna WPUE (dark blue), bigeye tuna CPUE (light blue), and 4-year-lagged MD50 (green). Dotted lines 
represent years that are outside the common time period and therefore omitted from our forecast analysis (though these years were used in 

climatological and persistence forecasts of CPUE and WPUE) [Colour figure can be viewed at wileyonlinelibrary.com]
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of the difference between each year's forecast and observation. 

Lower values indicate greater skill.

 |

The bigeye tuna caught by Hawaii's longline fleet exhibit clear cohort 

structure (Figure 3). Cohorts generally first appear with a minimum 

weight of approximately 10 kg and persist through a maximum size of 

near 70 kg. Individual cohorts persist for roughly two years, though 

the timing of their emergence and disappearance fluctuates (i.e., co-

horts do not seem to exhibit distinct seasonal timing or spacing).

Annual bigeye tuna CPUE and 4-year-lagged M
D50

 were cor-

related with a Pearson correlation coefficient, r, of .4828 (p = 0.0497; 

Figure 4). Annual bigeye tuna WPUE and 4-year-lagged MD50  were 

 correlated with  0.0268; Figure 4). Correlations r p =  0.5352 (   =

between 4-year-lagged SST and both CPUE and WPUE were not 

significant (p = 0.0641 and p = 0.0562, respectively), nor were cor-

relations between 4-year-lagged chl-a and both CPUE and WPUE 

(   0.0888 and  p = p = 0.0637, respectively).

We found that our forecasts of CPUE and WPUE out-performed 

both climatology and persistence. Skill scores for CPUE forecasts 

based on MD50, climatology, and persistence were 6.9, 9.2, and 10.0 

fish per 1,000 hooks, respectively. Skill scores for WPUE forecasts 

based on MD50, climatology, and persistence were 184, 220, and 

309 kg per 1,000 hooks, respectively.

 |

We found that median phytoplankton size (M
D50

) is an informative 

predictor of bigeye tuna catch rates in Hawaii's deep-set longline fish-

ery with a 4-year forecast window. Using variability in MD50  proved 

more skillful than either climatology or persistence. Such a predictor 

may help the fleet time capital improvements as well as improve stock 

assessments for bigeye tuna and other species. Phytoplankton size 

has the potential to be a powerful forecasting tool because it is both 

fishery-independent and based on publicly available satellite data.

Our environmental predictor of bigeye tuna recruitment to 

Hawaii's longline fishery, M
D50

, has a strong foundation in ecological 

theory. Hjort (1914) hypothesized that fishes' larval and juvenile life 

stages are the critically important stages in determining year class 

strength as measured by numerical abundance and that survival 

through these stages is determined largely by the quality of food 

available at first feeding. In other words, better food quality (here, 

MD50) should lead to higher numbers of fish surviving through larval 

and juvenile phases. In turn, increased numerical abundance would 

be expected to lead to higher CPUE, all else being equal. Furthermore, 

size-based ecological theory demonstrates  that  ecosystems  with  

more large phytoplankton have more large fish than ecosystems 

with smaller phytoplankton (Blanchard, Heneghan, Everett, Trebilco, 

& Richardson, 2017; Sheldon, Prakash, & Sutcliffe, 1972). This is 

borne out in the relationship we see between M
D50

 and WPUE.

The theory underpinning our  forecast centers around foraging  

success, which is only one piece of the survival puzzle. Larval and 

juvenile bigeye tuna must also avoid being preyed upon themselves. 

Determining larval predation rates is challenging; however, purse 

seine data may be able to shed light on juvenile mortality. It would be 

interesting, in future studies, to incorporate purse seine data into our 

forecast to see whether it increases skillfulness. Finer-scale spatio-

temporal analyses could also reveal informative variations indicative 

of spawning and/or migration. To this end, knowledge of the location 

and timing of bigeye tuna spawning and subsequent recruitment could 

help further refine the forecast. While correlations with SST and chl-a 

were not significant, the -values were quite low, suggesting the envip -

ronment likely influences larval and juvenile bigeye tuna survival. The 

effect of interannual climate variability such as ENSO on tuna recruit-

ment in the equatorial Pacific (e.g., Lehodey, Chai, & Hampton, 2003) 

highlights the likelihood that the environment influences larval sur-

vival. It might be possible to determine a better predictor by using 

more advanced statistical techniques, such as generalized additive  

models (GAMs) or polynomial fitting, that take additional environ-

mental variables and climate indices into consideration. However, the 

parsimony in our method increases its utility. Fellow researchers can 

easily determine MD50 over their regions and time scales of interest 

following the methodology presented by Barnes et al. (2011), whereas 

explanatory variables in GAMs would vary by region, fishery, and 

species of interest. Insight gained through incorporating additional 

fishery data, such as purse seine catch, would similarly vary. More 

practically, the time series of M
D50

 used in our analysis could easily 

  Linear regression between 

bigeye tuna CPUE and MD50 (light blue) 

and between bigeye tuna WPUE and 
M
D50

 (dark blue) with the 95% confidence 

intervals shaded, left panel. Residuals 
from CPUE (light blue) and WPUE (dark 

blue) predicted from linear regression, 
right panel [Colour figure can be viewed at 

wileyonlinelibrary.com]
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be made available to both regional fishery managers and the fishing 

industry (sensu Howell, Kobayashi, Parker, Balasz, & Polovina, 2008). 

While results from more detailed analyses could also be made avail-

able, they would likely be harder to communicate.

We find the ability of MD50 to forecast WPUE particularly encour-

aging given that this fishery is managed based on an annual tonnage  

quota. In recent years, regional quotas have been met increasingly 

early in the year, and recent studies of Hawaii's longline fishery sug-

gest that the fishery is overcapitalized (Ayers, Hospital, & Boggs, 2018). 

The ability to forecast when the regional quota is likely to be reached 

earlier or later in the year could allow individual fishers to better time 

their trips (e.g., Hobday, Spillman, Eveson, & Hartog, 2016) or help the 

industry take collective action to optimize effort. Collective industry 

action could be particularly effective given that total annual catch and 

the timing of reaching regional quotas are strongly driven by total fish-

ing effort (PIFSC, 2019b). Our forecast also provides a mechanism by 

which scenarios for management strategy evaluations could be crafted. 

For example, the status quo could be tested alongside scenarios with 

annual quotas that fluctuate in response to M
D50

-based forecasts of 

relative fish abundance. These alternative strategies could then be eval-

uated for their effect on both stock status and fishery yield (Tommasi 

et al., 2017). Recent work has shown that including environmental co-

variates such as MD50 in stock assessments may reduce recruitment un-

certainty (Sculley, Ijimi, & Chang, 2018). Such an improvement would 

be particularly beneficial for bigeye tuna assessments given the spe-

cies' commercial importance and questionable stock status.

            

Drazen, 2018) and market dynamics, regulations (Ayers et al., 2018), 

and the environment (e.g., Bograd et al., 2019) will always limit how 

well fishery performance can be forecast. That said, we show that 

it is possible to forecast catch rates of bigeye tuna with some skill 

using publicly available, fishery-independent data. We also present 

a mechanism that could move us closer to finding an environmental 

predictor of tuna recruitment and implementing adaptive and eco-

system-based regional fishery management.
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