Bigeye Tuna Catch and Allocation Limits for Pelagic Longline Fisheries in U.S. Pacific Island Territories

DRAFT

Supplemental Environmental Assessment, including a Regulatory Impact Review

(RIN 0648-XP010)

June 16, 2020

Responsible Federal Agency: Pacific Islands Regional Office (PIRO)
National Marine Fisheries Service (NMFS)
National Oceanic & Atmospheric Administration (NOAA)

Responsible Official: Michael D. Tosatto
Regional Administrator, PIRO
1845 Wasp Blvd., Bldg. 176
Honolulu, HI 96818
Tel (808) 725-5000
Fax (808) 725-5215

Responsible Council: Kitty Simonds
Executive Director
Western Pacific Fishery Management Council (WPFMC)
1164 Bishop St., Ste. 1400
Honolulu, HI 96813
Tel (808) 522-8220
Fax (808) 522-8226

Supplements the Environmental Assessment: Bigeye Tuna Catch and Allocation Limits for Pelagic Longline Fisheries in U.S. Pacific Island Territories. June 27, 2019, prepared by NMFS and the Council.

If you need assistance with this document, please contact NMFS at 808-725-5000.
Abstract

NMFS proposes to implement the Council-recommended U.S. participating territory longline bigeye tuna catch and allocation limits for 2020, and, depending on future recommendations, again each year through 2023. Specifically, NMFS proposes to specify a 2,000 metric ton (t) annual longline bigeye tuna catch limit for each U.S. participating territory (American Samoa, Commonwealth of the Northern Mariana Islands (CNMI), and Guam) and allow each territory to allocate up to 1,500 t of its annual bigeye tuna catch limit to a U.S. longline vessel(s) permitted under the Fishery Ecosystem Plan for Pelagic Fisheries of the Western Pacific (FEP) and identified in a specified fishing agreement. The total allocations, however, would not exceed 3,000 t of bigeye tuna in a given year. As an accountability measure, NMFS would monitor, attribute, and restrict (if necessary) catches of longline-caught bigeye tuna, including catches made under a specified fishing agreement.

The proposed catch limits for U.S. participating territories and the total allocation limits the Council recommended in 2020, and may recommend in future years, are identical to those that NMFS specified each year from 2014 through 2019. The Council’s recommendation would allow a U.S participating territory to transfer a maximum of 1,500 t bigeye tuna annually, provided that the total allocation for all territories may not exceed 3,000 t per year. The proposed catch and allocation limits would continue to support the long-term sustainability of fishery resources of the U.S. Pacific Islands.

This Supplemental Environmental Assessment (SEA) supplements the analysis in the June 27, 2019, environmental assessment entitled, “Bigeye Tuna Catch and Allocation Limits for Pelagic Longline Fisheries in U.S. Pacific Island Territories,” prepared by NMFS and the Council, which resulted in a finding of no significant impact. This SEA contains an updated analysis of potential effects of the Hawaii longline fisheries on sea turtles and other resources, in light of new information with bearing on the environmental effects analysis of the 2019 EA.

NMFS requests public comment on the proposed rule for the 2020 bigeye tuna catch and allocation limits for U.S. participating territories, and requests comments on the environmental effects analysis in the 2019 EA as supplemented by this SEA. Instructions on how to comment on the proposed rule and this draft SEA are available by searching for RIN 0648-XP010 at www.regulations.gov, or by contacting the responsible official or Council at the above addresses. NMFS will consider comments received by the deadline specified in the proposed rule.
Bigeye Tuna Catch and Allocation Limits for Pelagic Longline Fisheries
in U.S. Pacific Island Territories

Draft Supplemental Environmental Assessment, including a Regulatory Impact Review

Contents
Abstract ........................................................................................................................................... 2
1 Introduction ............................................................................................................................. 6
  1.1 Background and Overview of the Proposed Action ....................................................... 6
  1.2 Supplementing the 2019 EA ........................................................................................ 7
  1.3 Preparers and Reviewers ............................................................................................. 8
  1.4 Summary of the Proposed Action ............................................................................... 8
  1.5 Purpose and Need for Action ..................................................................................... 9
  1.6 Action Area .................................................................................................................. 9
  1.7 Decision to be Made .................................................................................................... 9
  1.8 Scope of the Analysis .................................................................................................. 9
  1.9 Public Involvement ..................................................................................................... 9
  1.10 How to comment on this draft SEA ....................................................................... 10
2 Alternatives Considered and Expected Fishery Outcomes .............................................. 10
3 Existing Environmental Effects Analysis ............................................................................ 11
  3.1 Target and Non-Target Stocks ................................................................................. 11
  3.2 Fishing .......................................................................................................................... 12
  3.3 Protected Species ....................................................................................................... 15
  3.4 Marine Habitats, Critical Habitat and Essential Fish Habitat .................................. 19
  3.5 Management Setting .................................................................................................. 20
  3.6 Cumulative Effects ..................................................................................................... 20
4 Supplemental Analysis – Potential Effects of the Alternatives on Selected ESA-Listed
  Species ..................................................................................................................................... 22
  4.1 New Information Informing Analysis of Potential Effects on ESA-listed Species ...... 22
    4.1.1 Shallow-set Longline Fishery Biological Opinion ............................................. 22
    4.1.2 Updated Population Assessments for the North Pacific Loggerhead and Western Paciﬁc Leatherback Turtles ................................................................. 26
  4.2 Summary of Potential Effects of Alternatives on Protected Species considering New Information ................................................................................................................. 30
    4.2.1 Potential effects of the deep-set longline fishery on North Pacific loggerhead and Western Paciﬁc leatherback turtles .............................................................. 30
Table 1. Projected interactions between the Hawaii shallow-set longline fishery and listed sea turtles, oceanic whitetip shark, giant manta ray, and Guadalupe fur seal in a year, and estimates of mortalities.

Figure

Figure 1. Population projection results for North Pacific loggerhead turtles (left) and Western Pacific leatherback turtles (right). Model projections are of annual females in natural log space.
Figures show 10,000 model projection runs for 100 years into the future from the final data year.
1 Introduction

1.1 Background and Overview of the Proposed Action

NMFS and the Council manage pelagic fisheries of the Pacific Islands Region in accordance with the FEP and implementing regulations at 50 CFR Part 665. NMFS proposes to implement the Council’s recommendation for U.S. participating territory1 longline bigeye tuna catch and allocation limits for 2020 through 2023. The use of an annual bigeye tuna catch and allocation specification has been an ongoing management measure for western Pacific Pelagic deep-set longline fisheries in Hawaii and the U.S. territories of American Samoa, Guam, and the CNMI since 2014. In June 2019, NMFS and the Council completed an environmental assessment (EA) entitled, “Bigeye Tuna Catch and Allocation Limits for Pelagic Longline Fisheries in U.S. Pacific Island Territories (RIN 0648-XG925)” (referred to here as the “2019 EA”), which as attached at Appendix B (NMFS and WPFMC 2019). The 2019 EA describes the background of the fishery management program, details the processes to be used in developing recommended catch and allocation limits, and analyzes the potential environmental effects of a range of alternatives for annual territorial bigeye tuna catch and allocation specifications from 2019 through 2023.

Most recently, in 2019, NMFS implemented a 2,000 t bigeye tuna catch limit for each U.S. participating territory in the western Pacific and allowed each U.S participating territory to allocate up to 1,000 t of its bigeye tuna catch limit to vessels fishing under specified fishing agreements for the 2019 fishing year (84 FR 34321; July 18, 2019). That year, the fishery attained the U.S. longline western and central Pacific Ocean (WCPO) bigeye tuna catch limit of 3,554 t, entered into two sequential allocation agreements, and closed four days before the end of the calendar year.

Council Recommendation for the 2020 Territorial Bigeye Tuna Catch and Allocation Limits

At its 181st meeting held March 10–12, 2020, in Honolulu, Hawaii, after considering information about the recent fishery performance, effects of Hawaii longline fisheries on protected species, and public comments, the Council recommended a catch limit of 2,000 t for each US participating territory (i.e., Guam, the CNMI, and American Samoa) and specified that each US participating territory can allocate up to 1,500 t of their bigeye tuna catch limit through specified fishing agreements with eligible US longline vessels permitted under the Pelagic FEP. The Council further recommended, however, that NMFS not authorize more than 3,000 t in total allocations in 2020.

The Council noted the effects of the recommended limits are commensurate with the status quo and the increased per-agreement allocation option adds flexibility to the agreements between vessels and territories as provided for under the framework by allowing the Hawaii longline

---

1 “U.S. participating territory means a U.S. participating territory to the Convention on the Conservation and Management of Highly Migratory Fish Stocks in the Western and Central Pacific Ocean (including any annexes, amendments, or protocols that are in force, or have come into force, for the United States), and includes American Samoa, Guam, and the Northern Mariana Islands.” (50 CFR 665.800).
fishery to potentially enter into fewer fishing agreements in a single year, without exceeding the total 3,000 t allocation limit. Accordingly, this is the same annual catch limit (2,000 t per territory) and would establish the same total annual allocation limit (3,000 t) that the Hawaii deep-set longline fishery has operated under in accordance with the FEP since 2014. The expected outcome of the proposed 2020 catch and allocation limits are consistent with those anticipated in the 2019 EA under Alternative 2, Outcome C; potential environmental impacts associated with the proposed action are expected to be consistent with those analyzed in the 2019 EA under Alternatives 2 and 3.

1.2 Supplementing the 2019 EA

In 2019, NMFS and the Council prepared an EA to analyze the effects of specifying annual U.S. participating territory bigeye tuna catch and allocation limits under three alternatives for fishing year 2019 through 2023 (NMFS and WPFMC 2019). The proposed catch and allocation limits being considered for 2020 and, potentially through 2023, are part of the same ongoing management activity that was analyzed in the 2019 EA and the purpose and need for action are also unchanged.

Pursuant to the FEP, the Council reviews bigeye tuna catch and allocation limits at least annually to ensure consistency with the FEP, Magnuson-Stevens Act, WCPFC decisions, and other applicable laws. Based on this review, the Council recommends to NMFS whether the catch and allocation limits should be approved for the fishing year, which begins on January 1 and ends on December 31. The proposed action, as analyzed by the 2019 EA and applicable to this SEA, is NMFS’ implementation of the Council’s recommendations for territorial bigeye tuna catch and allocation limits, for fishing years 2019–2023. Following regulatory compliance and public reviews and through NMFS approval of the proposed specifications, NMFS would authorize each U.S. territory to allocate and transfer bigeye tuna limits to a U.S. longline fishing vessel(s) permitted under the FEP and identified in a specified fishing agreement applicable to the territory.

NMFS expects the Council would recommend territorial bigeye tuna catch and allocation limits in the reasonably foreseeable future similar or identical to those analyzed in the 2019 EA as the Council previously recommended 2,000 t catch and 1,000 t allocation limits for each fishing year from 2014 through 2018.2 For the purposes of this document, the reasonably foreseeable future is 2019 through 2023.3

We prepared this SEA in accordance with the National Environmental Policy Act (NEPA; 42 U.S.C. 4321, et seq.) and related authorities, such as the Council on Environmental Quality’s (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR Parts 1500 – 1508) and NOAA’s “Policy and Procedures for Compliance with the National Environmental Policy Act and Related Authorities Companion Manual for NOAA Administrative Order (NAO) 216-6A - Effective Jan 13, 2017” (Companion Manual). Under NOAA’s guidance in NAO 216-

---

2 See WPFMC and NMFS (2014), NMFS (2015c), NMFS (2016), and NMFS 2018(g).
3 The Council and NMFS have identified 2019 through the end of 2023 as the timeframe for analysis in this EA, because analyses more than five years old should generally be reexamined to determine whether supplemental information is needed.
6A Companion Manual (section 5), “The decision maker must prepare a supplement to an EIS or EA if, after preparation of the document, but prior to completion of the action analyzed in the EIS or EA: a) there are substantial changes in the proposed action that are relevant to environmental concerns; or b) there are significant new circumstances or there is new information relevant to environmental issues bearing on the proposed action or its impacts.” NMFS may use existing NOAA environmental analyses to analyze effects of a proposed action when doing so will build on work that has already been done, to avoid redundancy and provide a coherent and logical record of the analytical and decision-making process.

NMFS determined that supplementation of the 2019 EA is appropriate to consider new information relevant to environmental issues bearing on the proposed action. This new information includes the potential population-level impacts of the Hawaii shallow-set longline and Hawaii and American deep-set longline fisheries on leatherback and loggerhead sea turtles (Martin et al., 2020, and Martin et al., in prep.), information in the 2019 Biological Opinion on the potential effects of the Hawaii shallow-set longline fishery on certain listed species (NMFS 2019f) and information in recent endangered species act reviews (NMFS 2020a, b). NMFS also considers recent fishery performance in relation to the previous environmental effects analysis.

1.3 Preparers and Reviewers

Preparers:
- Phyllis Ha, Resource Management Specialist - NEPA, PIRO Sustainable Fisheries Division (SFD)
- Mark Fitchett, Pelagic Fisheries Ecosystems Scientist, WPFMC
- Asuka Ishizaki, Protected Species Coordinator, WPFMC
- Michelle McGregor, Economist, PIRO SFD

Reviewers:
- Ariel Jacobs, NEPA Coordinator, PIRO
- Jarad Makaiau, Fish and Wildlife Administrator, PIRO SFD
- Mark Fox, Fish and Wildlife Administrator, PIRO SFD
- Lynn Rassel, Fishery Management Specialist PIRO SFD
- Sarah Ellgen, Natural Resource Management Specialist, PIRO SFD

1.4 Summary of the Proposed Action

NMFS proposes to implement the Council’s recommendation for territorial bigeye tuna catch and allocation limits, for fishing years 2020 and, depending on future recommendations from the Council, again through 2023. NMFS proposes to specify a 2,000 t longline bigeye tuna catch limit for each U.S. participating territory and allow each territory to allocate up to 1,500 t of bigeye tuna to U.S. longline vessels fishing under a specified fishing agreement, with the total annual allocation not to exceed 3,000 t of bigeye tuna. The proposed action for 2020 is consistent

with the proposed action described in section 1.3 of the 2019 EA, which we incorporate by reference.

1.5 Purpose and Need for Action

The purpose and need for this action is the same as described in the 2019 EA, section 1.4, which is incorporated by reference.

1.6 Action Area

The action area is the same as described in the 2019 EA, section 1.5, which is incorporated by reference.

1.7 Decision to be Made

The 2019 EA, as supplemented by this SEA, supports NMFS decisions as described in section 1.6 of the 2019 EA. The documents will support the NMFS decision whether to approve, disapprove, or partially approve the Council’s recommendations regarding bigeye tuna catch and/or allocation limits in 2020, and possibly annually, through 2023. They will also support a determination of whether or not the proposed action would have a significant environmental effect. If found to have a significant effect, NMFS would prepare an environmental impact statement.

1.8 Scope of the Analysis

The scope of the analysis as described in the 2019 EA, section 1.7, is an evaluation of the environmental and economic effects of annual bigeye tuna catch and allocation limits applicable to U.S. participating territories in years 2019 through 2023, and that section is incorporated by reference. This SEA focuses on new information about effects of the proposed action on leatherback and loggerhead turtles which has become available since publication of the 2019 EA.

1.9 Public Involvement

Council meetings and the development of the 2019–2023 bigeye tuna catch and allocation limits for U.S. participating territories alternatives are described in section 1.9 of the 2019 EA, which is incorporated by reference. We provide the following updated information:

The proposed 2020 catch and allocation limit alternatives were presented at public meetings of the Council’s Hawaii Advisory Panel (February 21, 2020, in Honolulu, HI), American Samoa Advisory Panel (February 26, 2020, in Pago Pago, Tutuila, AS), CNMI Advisory Panel (February 27, 2020, in Garapan, MP), Guam Advisory Panel (February 27, 2020, Mangilao, GU, and the Council’s 135th Scientific and Statistical Committee (SSC) meeting (March 3–5, 2020, in Honolulu, HI). The Council made its recommendation at its 181st meeting March 10–13, 2020, in Honolulu, HI.
1.10 How to comment on this draft SEA

NMFS requests public comment on the proposed rule each year and for the 2020 bigeye tuna catch and allocation limits for U.S. participating territories, and requests comments on this supplemental EA. Instructions on how to comment on the proposed rule and this draft SEA are available by searching on RIN 0648-XP010 at www.regulations.gov, or by contacting the responsible official or Council at the above addresses.

NMFS will consider comments received by the deadline specified in the proposed rule.

2 Alternatives Considered and Expected Fishery Outcomes

The alternatives considered in this SEA are the same as the alternatives described in Section 2 of the 2019 EA, and an additional total or cumulative allocation limit has been added to Alternative 2. We incorporate Section 2 in its entirety and describe the content briefly below.


Section 2.2, “Description of the Alternatives” is incorporated in its entirety. “Features Common to all Alternatives” in the 2019 EA assumes the U.S. longline catch limit under the Western Pacific Fishery Commission’s Conservation and Management Measure (CMM) 2018-01 would remain in place through 2023. The current WCPO U.S. longline bigeye tuna limit and EPO U.S. large longline vessel limit for bigeye tuna are the same as the limits set in 2019. The restrictions applicable to the fishery participants upon attaining a limit and attribution of catches made by vessels fishing under specified fishing agreements are described in this section of the 2019 EA.

Alternative 1, “No specification of territorial catch or allocation limits (No Action)” and its expected fishery outcome is described in section 2.2.1 of the 2019 EA. This section describes fishing and other effects in the absence of catch or allocation limits.

Alternative 2, “Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit” is the preferred/status quo alternative. The expected fishery outcomes under one, two, or three specified fishing agreements are described in section 2.2.2 of the 2019 EA. We note that the Council’s 2020 recommendation is consistent with Alternative 2, Potential Outcome C (three specified fishing agreements and partial utilization of territorial limits in Guam and CNMI, which have no active longline fishery) and our analysis assumes that the proposed action could result in up to 3,000 t of bigeye tuna being allocated in a year. This Outcome contains an evaluation of the effects of maximum use of the allocated tuna and partial utilization of territorial limits based on recent catches in the American Samoa longline fishery).

Alternative 2, “Potential Outcome D” (three specified fishing agreements and full utilization of territorial limits) is also possible, though unlikely because Guam and CNMI do not have active longline fishing.

Alternative 3, “Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit” and expected fishery outcomes is described in section 2.2.3 of the 2019 EA. Potential Outcome E (three specified fishing agreements and
maximum allocation of territorial limits) describes the potential fishery outcomes of a maximum use of bigeye tuna in the territories and by the U.S. fishery. Potential Outcome F (three specified fishing agreements and maximum allocation of territorial limit for Guam and the CNMI and 1,500 t allocation for American Samoa) is considered a more likely scenario than Outcome E, should the allocation limit be up to 2,000 t, because our analysis assumes American Samoa would reserve 500 t of its 2,000 t limit for its active longline fleet. The analysis of the effects of Alternative 3 cover the potential effects of the Council’s 2020 recommendation.

We considered whether, in light of the Council’s recommended 2020 territorial bigeye tuna catch and allocation limits, the alternatives examined in the 2019 EA remain reasonable. Because the Council’s 2020 recommendation merely changes the amount of allocation available to each Territory, but does not change total catch and allocation limits that may be harvested annually, NMFS concludes that the Council’s 2020 recommendation is not a substantial change and that the range of alternatives examined does not require supplementation.

Table 2, “Comparison of Features of the Alternatives” on page 24 of the 2019 EA is incorporated by reference. The features of the alternatives remain the same. For the proposed 2020 specification, we consider the features under Alternative 2, Outcomes C and D.

3 Existing Environmental Effects Analysis

We incorporate by reference, the description of the affected environment in section 3 of the 2019 EA which describes the baseline condition of resources and the longline fisheries of the Pacific Islands Region in the action area under recent fishery conditions. We summarize the information in the 2019 EA here and describe any new information and its relevance to the environmental effects analysis.

The longline fisheries of the Pacific Islands Region continued to fish as described in section 3.2 of the 2019 EA, and we summarize recent fishing below in section 3.2 of this SEA.

3.1 Target and Non-Target Stocks

Section 3.1 of the 2019 EA describes the stocks and stock status of pelagic MUS managed under the FEP that longline fisheries of the western Pacific harvest including several species of tuna, billfish, and sharks. With the exception of oceanic white-tip shark, which we discuss in the next section (new information), we have no new information about the status of any of the affected stocks, or about the relative contribution of western Pacific pelagic fisheries toward stock status with bearing on the environmental effects analysis in the 2019 EA. As described below, the U.S. longline fisheries continue to fish in a manner consistent with the analysis in the 2019 EA. Recent catches of bigeye tuna remained well below the estimates used in the environmental effects analysis for Alternatives 1 and 2 (WPFMC 2019; NMFS, in prep. a, b) and, thus, we may rely on the analysis in the 2019 EA in section 4.1 “Potential Effects on WCPO Bigeye Tuna,” which is incorporated in its entirely. In summary, based on catch projections describe in the 2019 EA, none of the alternatives would cause the WCPO bigeye stock to be subject to overfishing or become overfished when projected to 2045 (Kingma and Bigelow 2019, NMFS and WPFMC 2019) and U.S. longline catch of Eastern Pacific Ocean (EPO) bigeye tuna would not influence stock status under any of the alternatives (NMFS and WPFMC 2019).
3.2 Fishing

Section 3.2 of the 2019 EA “Socioeconomic Setting,” describes the U.S. fisheries in the WCPO and their associated fishing communities and the information is incorporated by reference. The section describes, in turn, U.S. longline fisheries in Hawaii (section 3.2.1), American Samoa (section 3.2.2), the Mariana Archipelago (section 3.2.3), and Hawaii troll and handline fisheries (section 3.2.4).

We reviewed recent information about fishery performance from the Council’s 2018 Annual Stock Assessment and Fishery Evaluation Report for U.S. Pacific Island Pelagic Fisheries Ecosystem Plan (2018 SAFE Report) (WPFMC 2019) and preliminary fishery catch and published and participation information from NMFS Pacific Islands Fisheries Science Center (PIFSC) presented at the Council’s 181st meeting (NMFS, in prep. a, b), and compared the information to the baseline described in the 2019 EA. The information shows U.S. longline fisheries of the Pacific Islands Region continued to fish as described in section 3.2 of the 2019 EA and allows us to incorporate the analysis in the 2019 EA that is based on fishing activity, into this SEA. Based on these sources, highlights of longline fishing activity in the western Pacific longline fisheries since the 2019 EA was completed include:

- NMFS implemented the U.S. participating territory bigeye tuna catch and allocation limit specifications for 2019 on July 18, 2019 (84 FR 34321). In both 2018 and 2019, less than 2,000 t of bigeye tuna was allocated each year by two U.S. participating territories to U.S. longline fishing vessels fishing under specified fishing agreements, continuing the trend described in the 2019 EA. In 2019, the Hawaii deep-set longline fishery closed four days before the end of the fishing year after it was estimated the fishery would attain its bigeye tuna catch quota for 2019 and catch limit under the second specified fishing agreement.

- Recent fishing effort (compared here in terms of number of hooks set) increased since 2017. In 2018, there were 143 active deep-set longline vessels fishing around Hawaii compared with 145 active vessels in 2017. In 2018, the deep-set longline fishery set 58.4 million (M) hooks; compared with 53.5 million hooks in 2017. In 2019, preliminary estimates indicate 150 vessels deployed 63.1 million hooks. The 2019 EA recognized a recent trend of increasing number of hooks set and estimated that the fishery could potentially deploy up to 60.9 million hooks annually given potential increase in fishing effort and new entrants under latent permits (2019 EA, section 4.5.3).

- The Hawaii shallow-set longline fishery closed early in 2018 due to settlement agreement resulting from litigation in May 2018, and closed early again in 2019, having reached the limit for loggerhead sea turtle interactions in March 2019. Early closure of the fishery likely resulted in displacement of fishing days from shallow-set to deep-set fishing. Peak months for the shallow-set fishery are October through mid-May. At 2,800 hooks per set per day (approximate 2019 average, Pacific Islands Regional Observer Program data), the 15 vessels that participated in the shallow-set longline fishery in 2019 would have likely exerted less effort (i.e., approximately 3.75 to 4.49 million fewer hooks) in the deep-set fishery in 2019, had the shallow-set fishery been operating through peak months.

- Despite the additional vessels participating in the Hawaii deep-set longline fishery, catches of bigeye tuna in 2018 (218,576 fish) and 2019 (222,750 fish) were comparable
to catches in 2017 (224,391 fish) reported in the 2019 EA (in Table 7) and remained well below the projected maximums used in the 2019 EA to evaluate the potential environmental effects of Alternatives 2 and 3 on bigeye tuna stocks.

- The number of participants in the American Samoa deep-set longline fishery increased slightly in 2019 (17 active vessels) compared with 2017 (15 active vessels), but effort declined in terms of number of trips, sets, and hooks. As a result, catches of albacore and other PMUS decreased in 2018 and 2019. Information from the WPFMC Pelagic SAFE Report (WPFMC 2019) showed that CPUE, landings, and revenues in the American Samoa deep-set longline fishery have decreased since the 2019 EA was completed; yet overall, the fishery continues to fish in a manner consistent with that analyzed in the 2019 EA.

  In 2018 American Samoa longline fishing vessels fishing in the South Pacific Ocean (SPO) caught approximately 53 t of bigeye tuna and dual permitted American Samoa fishing vessels fishing in the North Pacific Ocean caught approximately 358 t (preliminary data from K. Bigelow, PIFSC, to M. Fitchett, WPFMC, 2020) for a total American Samoa longline fleet catch of 411 t. Thus, the estimate of the recent 5-year average total catch of bigeye tuna by the American Samoa longline fishery of 512 t that was used in the analysis in the 2019 EA, continues to be a valid description of the fishery baseline, and the environmental effects analysis based on this estimate in the 2019 is still applicable.

- We have no new information about catches from the U.S. longline fisheries in the WCPO or the EPO (Section 3.2.5, Tables 17 and 18 in the 2019 EA); or U.S. Purse Seine Vessels (Section 3.2.6 of the 2019 EA and Table 19) with bearing on the environmental effects analysis in the 2019 EA and incorporate that information by reference.

The remaining sections in section 3.2 of the 2019 EA remain unchanged and are incorporated by reference including section 3.2.7, “Fishing Communities,” which describes the FEP’s definition of members of fishing communities in the Pacific Islands Region; and section 3.2.7.1, “American Samoa Cultural Fishing Practices,” which provides information about cultural fishing, involvement of the American Samoa government and public on the meaning of “cultural fishing,” and recognition of the importance of fish catch for perpetuating Fa’ā Samoa, and other considerations.

In summary, recent catches (2018 and 2019) by FEP-permitted longline vessels from the Pacific Islands Region are consistent with trends analyzed in the 2019 EA. The 2019 EA acknowledged the possibility that vessels from the Hawaii shallow-set longline fishery could enter the deep-set longline fishery if the shallow-set longline fishery were to close early, and total catch of bigeye tuna was well below the total catches analyzed for each alternative. The decline in catch and fishing effort in the American Samoa fishery is consistent with variable effort over time and does not change the fishery baseline used in the analysis. Therefore, we may continue to rely on the existing description of the fishery baseline in the environmental effects analysis of the 2019 EA.

Given the fact that longline fishing in the Pacific Islands Region is consistent with the analysis in the 2019 EA, we incorporate by reference the effects analysis contained in section 4.4 of the 2019 EA (Potential Effects on Socio-economic setting) in its entirety, summarized as follows:
• Section 4.4.1 describes socio-economic effects of not specifying annual catch or allocation limits (Alternative 1) and describes mostly adverse effects on fisheries in the U.S. participating territories, the Hawaii longline fisheries, and Hawaii seafood consumers. This section also describes that the no-action alternative is unlikely to adversely affect cultural fishing practices.

• Section 4.4.2 describes socio-economic effects of specifying annual catch of 2,000 t and an allocation limit of up to 1,000 t for each territory under Alternative 2 and describes positive effects on fisheries and fishing communities in the U.S. participating territories and the Hawaii as a result of U.S. participating territories being able to enter into specified fishing agreements. This section describes the fact that U.S. participating territory governments control the amount of catch allocated and, therefore, the American Samoa Government is expected to reserve a portion of their catch limit for local vessels and reduce potential effects to local fishery participants. The section also notes that U.S. participating territories develop catch history within WCPFC managed fisheries and benefit from fisheries development funds. This section also describes that Alternative 2 is unlikely to adversely affect cultural fishing practices in American Samoa. We note that the proposed change in the amount of bigeye tuna that could be allocated under a single allocation agreement (up to 1,500 t per territory, but not exceeding a total allocation of 3,000 t of bigeye tuna annually) is not likely to change the socio-economic effects of Alternative 2 as analyzed in the 2019 EA. This is because the proposed changes would continue to limit total allocations to 3,000 t for all three territories combined, which is the maximum allocation allowed in previous years. There is no change to the environmental effects based on this change as it is a minor change.

• Section 4.4.3 describes socio-economic effects of specifying annual catch of 2,000 t and allocation limit of up to 2,000 t per territory under Alternative 3 and describes positive effects on fisheries and fishing communities in the U.S. participating territories and the Hawaii as a result of U.S. participating territories being able to enter into specified fishing agreements. The section describes the fact that U.S. participating territory governments control the amount of catch allocated. It also notes that U.S. participating territories develop catch history within WCPFC managed fisheries and benefit from fisheries development funds.

In the 2019 EA, section 4.4.3 describes that the increased allocation limit of up to 2,000 t per territory under Alternative 3 (compared with an allocation limit of 1,000 t under Alternative 2) could reduce disruption in the Hawaii deep-set longline fishery because the fishery could potentially operate under fewer specified fishing agreements in a year and because the opportunity to enter into fishing agreements reduces the need for U.S. longline vessels to fishing grounds in the EPO, which is further from Hawaii and increases fuel costs. Under the Council’s 2020 recommendation, the difference between Alternatives 3 and 2 in terms of the potential reduction in the number of specified fishing agreements likely needed in a year would be reduced. This is a minor change.

This section also describes that Alternative 3 is unlikely to adversely affect cultural fishing practices in American Samoa.
3.3 Protected Species

Section 3.3 of the 2019 EA, “Protected Species,” describes the baseline with respect to potential interactions between western Pacific longline fisheries and protected species (including marine mammals, sea turtles, and seabirds) and the information is incorporated by reference. The section generally describes ESA requirements and consultations, ESA-listed species with the potential to interact with longline vessels permitted under the FEP (Table 20, in the 2019 EA), the list of valid biological opinions (BiOps), the description of steps involved in completing a BiOp, and recent Section 7 consultations for the Hawaii deep-set, Hawaii shallow-set, and American Samoa longline fisheries under the ESA. The section continues with information about the Marine Mammal Protection Act (MMPA) including the potential for interactions with longline fisheries of the western Pacific and permits covering the Hawaii shallow-set and deep-set longline fisheries.

Following are highlights of other information incorporated by reference from the 2019 EA and updated information that support this SEA:

- Section 3.3.1 (Sea Turtles), provides basic information about ESA-listed sea turtles that longline fisheries may interact with, risks posed by longline fishing, management of western Pacific longline fisheries to mitigate adverse effects on sea turtles, and determinations from recent BiOps.
- Section 3.3.1.1, Hawaii deep-set longline fishery interaction information is incorporated by reference, including:
  - Table 21 (Annual sea turtles interactions expanded from observed data to fleet-wide estimates for the Hawaii deep-set longline fishery, 2008 – 2018); and
  - A summary of the September 19, 2014 BiOp (NMFS 2014) and the 2017 Supplemental BiOp (NMFS 2017) for the deep-set longline fishery including Table 22 (Estimated sea turtle interactions and mortalities in the Hawaii deep-set longline fishery… in the 2014 BiOp as supplemented (2017)...), and information from the October 4, 2018 BE (NMFS 2018d), which includes estimates of sea turtle interactions, mortalities and population level impacts in the Hawaii deep-set longline fleet (Table 23).

A review of information on recent annual interactions between the deep-set longline fishery and protected species shows that incidental interactions in the 2018 and 2019 fishing years remained below the estimated interaction levels described and analyzed in the 2019 EA.

- Section 3.3.1.2 of the 2019 EA discusses recent interactions between the shallow-set longline fishery and sea turtles, and information about historical observations and consultations is incorporated by reference. Information in the EA about population level effects of the Hawaii shallow-set longline fishery on listed turtles is no longer current, and we will replace Table 26 and related passages with more recent information from the 2019 BiOp for the Hawaii shallow-set longline fishery (see Section 4 of this SEA for discussion of new information).
• Section 3.3.1.3 of the 2019 EA describes interactions between the American Samoa longline fishery and listed turtles. A review of information on recent annual interactions between the American Samoa deep-set longline fishery and listed turtles shows that incidental interactions in the 2018 and 2019 fishing years remained below the estimated interaction levels described and analyzed in the 2019 EA.

• Section 3.3.1.4 describes the lack of activity and effects from Guam and CNMI longline fisheries on sea turtles) and is incorporated by reference.

• Section 3.3.2 and 3.3.3 describes interactions between the western Pacific longline fisheries and marine mammals and seabirds, respectively, and is incorporated by reference. A review of recent annual interactions between the Hawaii deep-set, Hawaii shallow-set and American Samoa longline fisheries and marine mammals and sea birds shows that incidental interactions in the 2018 and 2019 fishing years remained consistent with levels that were described and analyzed in the 2019 EA.

• Section 3.3.4 of the 2019 EA provides general information related to longline fishery interactions with listed sharks and rays and related consultations under the ESA and is incorporated by reference.

• Section 3.3.4.1 describes interactions between the Hawaii deep-set longline fishery and listed sharks and rays and we incorporate that section by reference. A review of information on recent annual interactions between the Hawaii deep-set longline fishery and listed sharks and rays shows that incidental interactions in the 2018 and 2019 fishing years remained below the estimated interaction levels described and analyzed in the 2019 EA. New information and updated effects analysis for these species is described in section 4 below.

• Section 3.3.4.2 describes interactions between the Hawaii shallow-set longline fishery and listed sharks and rays and we incorporate that section by reference. New information about interactions between western Pacific longline fisheries and listed sharks and rays is available from the 2019 BiOp for the Hawaii shallow-set longline fishery. The new information and updated effects analysis for these species is described in section 4, below.

• Section 3.3.4.3, describes interactions between the American Samoa longline fishery and listed sharks and rays and we incorporate that section by reference. Information on recent annual interactions between the American Samoa deep-set longline fishery and listed sharks and rays shows that incidental interactions in the 2018 and 2019 fishing years remained below the estimated interaction levels described and analyzed in the 2019 EA.

\[\text{5} \text{ 2019 observations of interactions with protected species by the American Samoa longline fishery is posted online at: https://www.fisheries.noaa.gov/pacific-islands/fisheries-observers/pacific-islands-longline-quarterly-and-annual-reports.}\]
We also have new information about the fishery’s potential effects on giant manta rays oceanic whitetip sharks in the WCPO that is summarized in section 4 below.

- We have no new information about the Guam and CNMI longline fisheries that would change information in the EA in section 3.3.4.4 (effects on listed sharks or giant manta ray) or change information in section 3.3.5 of the EA (effects on listed corals or chambered nautilus). The longline fisheries in Guam and CNMI remain inactive and the potential effects of a reactivated fishery have already been considered. Therefore, these sections are incorporated by reference.

**Updated information regarding protected species interactions with longline fisheries of the Pacific Islands Region**

The following is new information about protected species since the 2019 EA was completed.

- NMFS completed an Endangered Species Act (ESA) consultation on the continued authorization of the Hawaii shallow-set longline fishery, which concluded with the issuance of a Biological Opinion on June 26, 2019 (2019 BiOp: NMFS 2019f). The 2019 BiOp documents extensive analysis and conclusions that the shallow-set longline fishery may adversely affect, but would not jeopardize the continued recovery or survival of any ESA-listed species or designated critical habitat. The 2019 BiOp also references the species that may be affected, but would not likely be adversely affected by the shallow-set longline fishery.

- The 2019 BiOp for the shallow-set longline fishery includes a number of provisions (Reasonable and Prudent Measures and Terms and Conditions) that are intended to mitigate the impact of interactions between the shallow-set longline fishery and listed loggerhead and leatherback turtles. In a recent separate action, the Council developed Amendment 10 to the FEP to reduce overall incidental capture and mortality of leatherback and loggerhead sea turtles, consistent with the ITS in the 2019 BiOp (NMFS 2019), while also facilitating the continued operation of the shallow-set longline fishery to meet U.S. market demands for sustainably-caught swordfish. Specifically, Amendment 10 revises the annual fleet interaction limit (“hard cap”) for leatherback sea turtles from 26 to 16, removes the loggerhead hard cap, and establishes an individual fishing trip limit of 2 leatherback and 5 loggerhead turtle interactions. The Amendment would also establish associated accountability measures for individual vessels that reach the trip limit for either sea turtle species (WPFMC and NMFS 2020). Amendment 10 was approved on April 23, 2020, in accordance with Section 304(a)3 of the Magnuson-Stevens Fishery Conservation and Management Act and NMFS is currently in the process of developing the final rule.

- Because Amendment 10 implements the requirements of the 2019 shallow-set BiOp and that BiOp concluded the continued operation of the fishery would not jeopardize the continued recovery or survival of any ESA-listed species or designated critical habitat, NMFS does not expect that the actions implemented under Alternative 10, which directly affect operations in the Hawaii shallow-set longline fishery, would have cumulative effects on sea turtles that have not already been considered in either the 2019 BiOp, the 2020 review of the Hawaii deep-set longline fishery during the period of ESA consultation (NMFS 2020b), or this draft SEA.
Information about the status of endangered loggerhead and leatherback sea turtles and the potential effects of the Hawaii deep-set longline fishery on these species, as well as updated information on the status of threatened oceanic white-tip sharks and giant manta rays that was included in the 2019 BiOp for the shallow-set longline fishery (NMFS 2019f) is now available and is considered in an updated analysis of potential effects of both the Hawaii and American Samoa deep-set longline fisheries on these species in section 4 below.

NMFS completed an updated review of the potential effects of the Hawaii deep-set longline fishery on listed species during the period of consultation under the ESA (NMFS 2020b). The review concluded with the finding that the continued operation of the Hawaii deep-set longline fishery during the period of consultation under ESA will not violate ESA sections 7(a)(2) or 7(d), and that the findings and conclusions of the 2014 Biological Opinion, as supplemented, remain valid and effective. The agency found that the fishery is not likely to jeopardize the continued existence of species listed as threatened or endangered, result in the destruction or adverse modification of designated critical habitat, and would not result in the agency making irreversible or irrevocable commitments of resources during the period of extended consultation under the ESA. We applied information from that updated review in the updated effects analysis for selected listed species in section 4, below.

NMFS completed an updated review of the potential effects of the American Samoa deep-set longline fishery on listed species during the period of consultation under the ESA (NMFS 2020a). NMFS concluded that the fishery is not likely to jeopardize the continued existence of species listed as threatened or endangered or result in the destruction or adverse modification of designated critical habitat during the period of consultation, and will not violate ESA sections 7(a)(2) or 7(d). The review concluded with the finding that the continued operation of the American Samoa longline fishery, as currently managed under the Pelagics FEP during the period of extended consultation, does not constitute an irreversible or irrevocable commitment of resources that would foreclose the formulation of RPAs. We applied information from that updated review in the updated effects analysis for selected listed species in section 4, below.

**Updated information related to marine mammals**

NMFS’ List of Fisheries for 2020 was published in accordance with the Marine Mammal Protection Act, on April 16, 2020 (85 FR; 21079) and contains no changes that alter the environmental effects analysis of the 2019 EA. The fisheries remain classified as described in the EA (section 5.4). The 2020 List of Fisheries includes minor proposed changes that would not change the analysis in the 2019 EA. The changes include increasing participation in the Category I Hawaii deep-set longline fishery from 142 to 145 vessels/persons; modifying the Category II Hawaii shallow-set longline fishery from 13 to 18 vessels/persons; and modifying the Category II American Samoa longline fishery from 20 to 15 vessels/persons. These changes generally comport with the description of participation and effort in the fisheries (section 3.2 of the 2019 EA) and trends noted in this SEA. We note participation data is likely collected using different metrics than the numbers the Council uses in its SAFE Reports, which we rely on.
• NMFS made changes to the List of Fisheries that are relevant to the longline fisheries of the Pacific Islands and their potential effects on marine mammals. NMFS removed certain stocks from the list of marine mammal species /stocks incidentally killed or injured in the Category I Hawaii deep set longline fishery. NMFS removed the Hawaii stock of sperm whale from the list for the Hawaii deep-set longline fishery; removed the Hawaii stock of short-finned pilot whale for the Hawaii shallow-set longline fishery; and removed an Unknown stock of Cuvier’s beaked whale and an unknown stock of bottlenose dolphin for the America Samoa longline fishery. These proposed changes do not affect the analysis of effects on marine mammals in the 2019 EA, because none of the longline fisheries of the Pacific Islands Region are known to have interacted with these stocks.

3.4 Marine Habitats, Critical Habitat and Essential Fish Habitat

Information in section 3.4 of the 2019 EA (Marine Habitats Critical Habitats, and Essential Fish Habitat) is basic and factual and we incorporate the following sections from the 2019 EA in their entirety: Leatherback sea turtle critical habitat (section 3.4.1), Monk seal critical habitat (section 3.4.2), and main Hawaiian Islands (MHI) insular false killer whale (IFKW) critical habitat (section 3.4.3).

We have new sources of information that update information in the 2019 EA but which don’t change the analysis of effects on critical habitat described in the 2019 EA, section 4.6. After a detailed review of the fishery and critical habitat, NMFS concluded that the Hawaii shallow-set longline fishery does not have the potential to adversely modify critical habitat of leatherback turtle, monk seal or MHI IFKW (NMFS 2019f).

NMFS substantiated the conclusions of the 2019 EA (section 4.6), with respect to effects of deep-set longline fishing around Hawaii and American Samoa on critical habitat during the period of consultation in its updated ESA sections 7(a)(2) and 7(d) memoranda (NMFS 2020a, b). Longline fishing activity around Hawaii and American Samoa does not occur in any area designated as critical habitat. NMFS confirmed that it has no new information about the effects of the Hawaii deep-set longline fishery on MHI IFKW critical habitat and the effects analysis in the 2018 BE (NMFS 2018d) remains unchanged during the period of extended consultation. Specifically, NMFS continues to expect that the Hawaii deep-set fishery would have an insignificant effect on prey species considered a component of the MHI IFKW critical habitat and that the continued fishing during the period of consultation would represent an insignificant contribution to the long-term reduction in quantity, quality, or availability of MHI IFKW prey species over the range of the fish stocks that these whales encounter. This conclusion applies for all outcomes of the two action alternatives, as described in the 2019 EA, section 4.6.

We have no new information that would change the description of Essential Fish Habitat (section 3.4.4 of the 2019 EA) or the analysis of effects of the alternatives on marine habitats in section 4.6 of the 2019 EA and we incorporate those sections by reference. Section 3.4.4 of the 2019 EA provides basic information about EFH, background information on EFH in the action areas, and summarizes the features, extent, and life stages in Table 43. As described in section 4.6, none of the western Pacific pelagic fisheries are known to have large adverse effects on marine habitats,
and none of the alternatives are likely to change the fishery in any way that would lead to substantial physical, chemical, or biological alterations to marine habitats.

### 3.5 Management Setting

We have no new information regarding the management setting in section 3.5 of the 2019 EA and incorporate that section by reference. The section describes ongoing management of the fishery in recent years which includes management of the territorial bigeye tuna catch and effort limits. This section accurately describes administrative processes used by NMFS and the Council that would continue under either alternative. We note that the allocation limit per agreement would change from 1,000 t of bigeye tuna up to 1,500 t per territory, with a total allocation limit of 3,000 to total in a year. This change does not affect the analysis of potential effects of the alternatives on the management setting in section 4.7 of the 2019 EA.

### 3.6 Cumulative Effects

The proposed action falls well within the potential outcomes of both action alternatives 2 and 3 previously analyzed in the 2019 EA. With the exception of information from recent reviews under the ESA including the 2019 BiOp (NMFS 2019f), the 2020 ESA sections 7(a)(2) and 7(d) memoranda for the Hawaii and American Samoa deep-set longline fisheries (NMFS 2020a, b), and the recent review of the potential effects of the Hawaii shallow-set longline fishery on loggerhead and leatherback turtles (Martin et al., 2020), which we discuss in the next section, we have no new information with bearing on the “Potential Cumulative Effects” as analyzed in section 4.8 of the 2019 EA and we incorporate information in that section in its entirety. Information we incorporate from section 4.8 of the 2019 EA includes:

- A general description of cumulative impact analysis, explaining that section 3 of the 2019 EA comprises the elements of the human environment that the proposed action may affect.
- A description of resources the alternatives would not have a potential to affect that are not included in the cumulative effects analysis.
- Section 4.8.1.1 of the 2019 EA describes past, present and reasonably foreseeable fishery management actions and actions by others, and external factors that are considered by NMFS and the Council and others when considering management actions. We have no new management actions, information on international management actions, or external factors with bearing on this cumulative effects analysis.
- We have no new information regarding external factors such as oceanic environmental factors; the same factors listed in the 2019 EA continue to affect fisheries and target and non-target stocks and continue to be considered by fishery scientists and managers.

Section 4.8.1.2 describes cumulative effects on target and non-target stocks and expects that the alternatives would have minor effects on the status of target and non-target stocks. None of the alternatives, including the effects of implementing the proposed change in allocation limits would change the fisheries’ overall low level of effects on stocks. The remainder of section 4.8.1.2 of the 2019 EA describes projected fishing by the U.S. longline fisheries, and explains that the level of effort and associated catches would be within recent historical baseline levels or continue along the same modest
increasing trend. Among the reasons that prevent the fishery from having large cumulative adverse effects are the fact that overall catch limits, the limited number of permits, and the requirement that the U.S. fishery can only fish under one specified agreement at a time, are expected to control expansion which in turn would prevent large adverse effects on target and non-target stocks. Other factors considered in the EA, are the location where most of the U.S. longline fishery fishes is outside of the area of heavy purse seine and longline fishing. The section describes that the analysis in Kingma and Bigelow (2019), which was used in the 2019 EA, considered full implementation of the proposed action for both of the action alternatives and no-action alternative on the status of bigeye tuna in 2045 and found that even after considering other sources of fishing mortality, the proposed action under both alternatives would not result in overfishing or an overfished stock for WCPO bigeye tuna.

- Section 4.8.2, of the 2019 EA contains an analysis of cumulative effects on the socio-economic setting. It describes challenges the affected fisheries face as well as opportunities from external factors and describes that specified fishing agreements available under alternatives 2 and 3 would provide opportunities for participating territories to develop their fisheries and would provide the Hawaii fishery with the opportunity to provide U.S. markets with sustainably caught fish including bigeye tuna. The action alternatives would reduce the potential for foreign imports of fish that could be a feature of Alternative 1.

- Section 4.8.2.2 of the 2019 EA describes potential cumulative effects on fishery participants and communities if the proposed management actions continue year after year. It concludes that alternatives 2 and 3 would provide minor to moderate benefits to fishery participants as compared to alternative 1 by providing more stability in the commercial fishery and providing opportunities for sustainable fisheries development funding.

- Section 4.8.3 of the 2019 EA describes cumulative effects on protected species. It describes ongoing data collection and monitoring, mitigation and work by the Council and NMFS with fishermen to develop mitigation methods, conduct protected species workshops for all longline permit holders, and consultations. Section 4.8.3.2 describes that the Council and NMFS have taken steps to reduce sea turtle and seabird interactions in the longline fisheries and cites previous BiOps, the 2018 BE for the Hawaii deep-set longline fishery and findings of those reviews. As was described in that section, Hawaii longline vessels fishing under specified fishing agreements would likely continue to operate in a manner consistent with historical fishing patterns and locations. The section describes NMFS finding in the 2018 BE for the deep-set longline fishery that the fishery would operate throughout any given year and the assumption that fishery conditions wouldn’t change (NMFS 2018d). These assumptions and findings described in that section are applicable to the current proposed action. We incorporate the conclusions of the section that none of the alternatives would result in substantial changes to western Pacific pelagic longline fisheries and substantial impacts to protected species for fishing years 2019 – 2023 are not expected.

- We describe new information that has bearing on the environmental effects analysis relative to selected ESA-listed species in section 4 of this SEA below.
• Section 4.8.4 describes potential effects of the proposed action and alternatives with respect to climate change and the potential effects of the action on greenhouse gas emissions and is incorporated by reference. It describes that effects of climate change on target and non-target stocks caught by the Hawaii deep-set longline fisheries have been considered indirectly because catch and allocation limits recommended by the Council were based on recent fishery catches (including all fishing mortality on the stock), and in consideration of the most recent stock status. NMFS also considers the potential effects of climate change on ESA-listed species in the BiOp for each fishery when issuing its incidental take statements. The analysis in the 2019 EA describes that climate change would affect resources in a similar way regardless of which alternative is selected and monitoring and research will continue to consider effects of climate change, fishing and other environmental factors.

• Section 4.8.4 describes a qualitative comparison of potential greenhouse gas emissions and explains that none of the outcomes is expected to result in a large change to greenhouse gas emissions. This is because under Alternative 1, if the Hawaii deep-set longline fishery closes, some vessels may fish in the EPO; and, even if the fishery remains open longer, under Alternatives 2 and 3, fishing later in the year may be closer to the Hawaiian Archipelago than the EPO.

4 Supplemental Analysis – Potential Effects of the Alternatives on Selected ESA-Listed Species

4.1 New Information Informing Analysis of Potential Effects on ESA-listed Species

NMFS and the Council have new information to consider that has bearing on the environmental effects analysis in the 2019 EA. The information and an updated analysis of effects is included here to supplement the previous analysis.

4.1.1 Shallow-set Longline Fishery Biological Opinion

After the 2019 EA was finalized, NMFS completed an ESA section 7 consultation considering the potential impacts of the continued authorization of the Hawaii shallow-set longline fishery on listed species. NMFS issued a no-jeopardy BiOp on June 26, 2019 (NMFS 2019f). The level of impacts analyzed in the 2019 BiOp are based on the anticipated level of interactions with ESA-listed species by the shallow-set fishery that were generated by PIFSC using a Bayesian inferential approach (McCracken 2018) and that were described in the environmental baseline in the 2019 EA.

As described in the 2019 EA, on April 20, 2018, NMFS requested reinitiation of formal consultation under ESA Section 7 for the continued authorization of the shallow-set fishery as currently managed under the existing regulatory framework of the FEP and other applicable laws. Consistent with 50 CFR 402.16, NMFS reinitiated consultation because the shallow-set fishery met three of the four possible reinitiation triggers established in the previous Biological Opinion for the fishery. The fishery interacted with ESA-listed Guadalupe fur seals in 2016 and 2017, a species previously unknown to interact with the fishery, and exceeded the authorized amount of take of olive ridley sea turtles in early 2018. Revision of the green turtle listing under
distinct population segments (DPSs; 81 FR 20058), listing of the oceanic whitetip shark (83 FR 4153) and giant manta ray (83 FR 2916) as a threatened species, and designation of MHI IFKW critical habitat (83 FR 35062) also triggered the requirement for NMFS to reinitiate consultation. Finally, on May 4, 2018, the portion of the 2012 shallow-set BiOp pertaining to loggerhead turtles was vacated and remanded to NMFS under a stipulated settlement agreement and court order.

Beyond the aforementioned reinitiation triggers, and to provide for a more comprehensive assessment, NMFS reinitiated consultation on all listed resources that occur where the shallow-set fishery operates. In total, 49 listed resources comprised of 40 listed species and nine critical habitat designations occur within the area the shallow-set fishery operates, and effects of the shallow-set longline fishery on ESA-listed species were analyzed in the 2019 BiOp. These also include listed fish, marine invertebrates, and other critical habitat associated with shallow-set longline vessels transiting areas off of California (Long Beach, San Francisco, and San Diego). The approach to the assessment in the 2019 BiOp is divided into the following four sequential steps:

1. Identifying those physical, chemical, or biotic aspects of the shallow-set fishery that are known or are likely to have individual, interactive, or cumulative direct and indirect effects on the environment (i.e., “potential stressors”). As part of this step, NMFS also identified the spatial, or geographic, extent of any potential stressors whilst recognizing that the spatial extent of those stressors may change with time (also known as the “action area”).

2. Exposure analysis, identifies the listed species and designated critical habitat (collectively, listed resources) that are likely to co-occur with these potential stressors in space and time, as well as the intensity, duration, and frequency of those stressors on listed resources.

3. Response analysis, NMFS examined the best scientific and commercial data available to determine whether and how those listed resources are likely to respond given their exposure.

4. NMFS identified and analyzed the probable risks posed to listed individuals that are likely to be exposed to the shallow-set fishery’s effects. Specifically, NMFS focused on three variables in the jeopardy definition that determine a species likelihood of survival and recovery in the wild: reductions in the species’ reproduction, number of individuals in the population, and distribution.

The exposure analysis for the loggerhead sea turtle, leatherback sea turtle, green sea turtle, olive ridley sea turtle, Guadalupe fur seal, oceanic whitetip shark, and giant manta ray focuses on hooking and entanglements that have been observed and reported in the shallow-set fishery. The 2019 BiOp analyzes impacts based on the anticipated level of interactions in the shallow-set fishery derived from predictions generated by PIFSC using a Bayesian inferential approach (McCracken 2018). The predictions, described in Table 1 below, are based on observer data from 2005–2017 for all species except for loggerheads. For loggerhead predictions, PIFSC used data from 2005–2018 to account for the higher number of interactions observed in 2018. For each of these species, PIFSC generated a predicted anticipated level of interactions for the mean, 80th percentile, and 95th percentile values for a predicted distribution of interactions over 1-year and multi-year (i.e., 2- and 3-year) periods. The percentile values reflect the probability that the
observed interactions for the predicted period (e.g., 1, 2 or 3 years) would be less than or equal to
the value (e.g., we expect the fishery to take fewer than or up to 36 loggerhead sea turtles in a
given year). These predicted anticipated levels of interactions generated by PIFSC have the
following three major assumptions:

1. The predictions assume that the characteristics of the fishery do not change in the future
   compared to the observed period (i.e., 2004 – 2018);
2. The model assumes that the annual number of interactions is independent between years,
   given that insufficient information exists at this time to make informed predictions of
   future multi-year patterns in interactions. 
3. The model assumes that the fishery has operated throughout the year for every year
   included in the analysis and did not truncate the predicted takes due to fishery closures
   (i.e., the analysis did not include annual fleet-wide interaction limits for either
   loggerheads or leatherbacks).

The multi-year prediction of anticipated level of take generated by the Bayesian inferential
approach takes into account the inter-annual variability in the number of observed interactions
over time. Statistically, the probability that observed interactions would be at the upper end of
the 1-year predicted range over several consecutive years is low. The multi-year predictions
reflect a distribution of predicted values that incorporate the inter-annual variability in the
observed data and smooth out the uncertainty associated with the predictions over a longer
period. As a result, the 95th percentile values of the predicted 2-year and 3-year total interactions
are lower than the 1-year predictions at the same percentile level multiplied by two or three
years.

Table 1, below, summarizes the number of sea turtle, oceanic whitetip shark, giant manta ray,
and Guadalupe fur seal interactions expected from the shallow-set longline fishery (operating as
considered in the 2019 BiOp) during a single calendar year. The table also includes total
mortalities (males and females, adults and juveniles) associated with the estimated number of
interactions.

Table 1. Projected interactions between the Hawaii shallow-set longline fishery and listed sea
turtles, oceanic whitetip shark, giant manta ray, and Guadalupe fur seal in a year, and estimates
of mortalities.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of Interactions (Annual)</th>
<th>Number of Mortalities (Annual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leatherback Sea Turtle</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>Loggerhead Sea Turtle</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>Olive Ridley Sea Turtle*</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

*While potential patterns in interactions (e.g., higher interactions tend to be observed in consecutive
years) are seen for some species in the observed data since 2004, the data have not been assessed to
evaluate the significance or to explore the underlying factors.
<table>
<thead>
<tr>
<th>Species</th>
<th>Number of Interactions (Annual)</th>
<th>Number of Mortalities (Annual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Sea Turtle (all DPSs)</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Oceanic Whitetip Shark**</td>
<td>102</td>
<td>32</td>
</tr>
<tr>
<td>Giant Manta Ray**</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Guadalupe Fur Seal</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

The total number of interactions for the species and populations can be any combination from the listed populations for olive ridley sea turtles or green sea turtles. The anticipated number killed for green turtles is 0-1 annually, which we rounded to one.

**An ITS is not required to provide protective coverage for the Giant manta ray and oceanic whitetip shark because there are no take prohibitions under ESA section 4(d) for these species. Consistent with the decision in Center for Biological Diversity v. Salazar, 695 F.3d 893 (9th Cir. 2012), however, this ITS is included to serve as a check on the no-jeopardy conclusion by providing a reinitiation trigger if the level of take analyzed in the biological opinion is exceeded.


Based on the analysis in the 2019 BiOp, NMFS concluded that the shallow-set fishery may affect, but is not likely to adversely affect the following:

- Hawksbill sea turtle;
- MHI IFKW;
- Humpback whale (Mexico DPS);
- Fin whale;
- Blue whale;
- North Pacific right whale;
- Sei whale;
- Sperm whale;
- Eastern Pacific scalloped hammerhead shark; or
- Listed fish and invertebrate species common to transiting areas off the coast of California (Central California coast Coho salmon, Central Valley spring-run Chinook salmon, Sacramento River winter-run Chinook salmon, Central California coast steelhead, California coast steelhead, Southern North American green sturgeon, Black abalone, and White abalone).

Additionally, after reviewing the current status, the environmental baseline for the action area, the effects of the fishery and the cumulative effects, NMFS concluded in the 2019 BiOp that the continued authorization of the shallow-set fishery is not likely to jeopardize the continued existence of the following:

- North Pacific loggerhead sea turtle;
- Leatherback sea turtle;
- Olive ridley sea turtle;
• Eastern Pacific green sea turtle, Central North Pacific green sea turtle, East Indian-West Pacific green sea turtle, Central West Pacific green sea turtle, Southwest Pacific green sea turtle, Central South Pacific green sea turtle;
• Oceanic whitetip shark;
• Giant manta ray; or
• Guadalupe fur seal.

The 2019 BiOp also concluded that the shallow-set fishery is not likely to adversely modify designated critical habitat for the following:

• Leatherback sea turtle;
• Hawaiian monk seal;
• MHI IFKW;
• Steller sea lion; and
• Listed fish and invertebrate species common to transiting areas off the coast of California (Central California coast Coho salmon, Sacramento River winter-run Chinook salmon, California coast steelhead, Southern North American green sturgeon, and Black abalone).

4.1.2 Updated Population Assessments for the North Pacific Loggerhead and Western Pacific Leatherback Turtles

The information here supersedes information in the 2019 EA found in Section 3.3.1.2, regarding then anticipated population-level effects of loggerhead, leatherback, green and olive ridley turtles incidentally captured in the Hawaii shallow-set longline fishery, which are based on an earlier analysis approach.

Shallow-Set Longline Fishery

PIFSC conducted population assessments of the North Pacific loggerhead and Western Pacific leatherback turtles to support the ESA Section 7 consultation for the shallow-set fishery (NMFS 2019f). The assessment utilized a Bayesian state-space population viability analysis (PVA) using nest counts as index of abundance to estimate population growth rate and to generate population projections (Fig. 1). More complex demographic models were determined to be not suitable due to the lack of population-specific demographic data.

Nest count data from three nesting beaches, representing approximately 52% of loggerhead turtle nesting in Japan, were used for the North Pacific loggerhead turtle PVA. Modeling results, as described in the 2019 BiOp, estimated that the current mean total reproductive female abundance for the portion of the population included in the assessment is 3,632 (95% CI range = 2,976-4,468), and the mean long-term population growth rate (r) was estimated at 2.4% annually (95% CI range = -10.8%-5.6%). More recently, Martin et al. (2020) updated the current mean total reproductive female abundance to a 4,541 (95% CI range = 4074-4063), and the mean r to 2.3% annually (95% CI range = -11.1% – 15.6%). Projections show a low probability (less than 25% probability on average) that the North Pacific loggerhead turtle population would fall below 12.5% to 50% abundance thresholds within 100 years. Based on the estimates derived from the PVA model, NMFS estimates that the total number of nesting females in the population is 6,984
individuals, and the total estimated population of all age classes and both sexes is 341,071 individuals (NMFS 2019f).

Nest count data from two nesting beaches representing approximately 75% of nesting for the Western Pacific leatherback population were used for the PVA. Due to missing count data, an auto-regressive time series model was used to fill in the missing data in the nest count time series prior to proceeding with the PVA model. Modeling results, as described in the 2019 BiOp, estimated that the current mean total reproductive female abundance for the portion of the population included in the assessment is 1,180 (95% CI range = 949-1,479), and the mean long-term population growth rate (r) was estimated at -5.3% annually (95% CI range = -16.4%-5.9%), and later updated by Martin et al. (2020) to -6.1% annually (95% CI range = -23.85-12.2%). Projections show a high probability (greater than 91% probability on average) that the Western Pacific leatherback turtle population would fall below 12.5% to 50% abundance thresholds within 100 years. In the 2019 BiOp, NMFS (2019f) estimates that the total number of adult leatherback turtles in the Western Pacific population is 1,851 (range 1,488-2,320), and the total estimated population of all age classes and both sexes is 175,000 (range 68,000-360,000).

![Figure 1](image1.png)

Figure 1. Population projection results for North Pacific loggerhead turtles (left) and Western Pacific leatherback turtles (right). Model projections are of annual females in natural log space. Figures show 10,000 model projection runs for 100 years into the future from the final data year.

Following the issuance of the 2019 BiOp, PIFSC completed a study (referred to here as a “take model”) to assess the population level impacts of post-interaction mortality of loggerhead and leatherback turtle interactions in the shallow-set fishery (Martin et al. 2020). The model builds upon the PVA considered in the 2019 BiOp. For each species, the modeling framework shows the probability of the population being above or below abundance thresholds (50%, 25%, 12.5% of current annual nesters) within a 100-year simulation time frame, and the number of years (mean, median, & 95% credible interval) to reach each threshold for both “take” and “no take”
scenarios (i.e., the population trends with and without the take associated with the fishery). The model is divided into three main components:

1. Data imputations for monthly nest counts for leatherback turtles nesting in Indonesia due to low, or no monitoring using a Bayesian state-space model;
2. A trend analysis of nest count data to estimate population growth rates and current abundance for both species; and
3. A population viability analysis including future projections of annual nester population size and assessment of the impacts of anticipated take levels on the projections of both species.

The take level evaluated in the model was derived from predictions generated by PIFSC using a Bayesian inferential approach (McCracken 2018) and analyzed in the 2019 BiOp. Results for both species suggest that the fishery’s anticipated take has negligible effects on the long-term population trends, with no discernable changes to the probabilities of the populations falling below abundance thresholds between the “no take” and “take” scenarios for the future (Martin et al. 2020).

For the North Pacific loggerhead turtle, the model suggests the population is increasing at 2.3% per year. When accounting for the anticipated level of take by the shallow-set longline fishery on this projection, the model shows no discernable difference in the population trend or the probability of the population falling below abundance thresholds within the 100-year projection period. For the leatherback turtle, the difference in the population trend only becomes apparent after the year 2060 and suggests the population would go extinct roughly 5 years sooner than in the “no take” scenario (around 2110 vs. 2115). However, this 5-year difference is statistically insignificant, and the actual population difference of the 5 year divergence represents less than 1 adult nester. Importantly, the difference seen between the “no take” and “take” scenarios in the 100-year projection is not seen in the 10-year projection (see Martin et al. (2020); Figs. 22 and 23). As described in Martin et al. (2020), projections out to 10 years into the future are more relevant biologically for management purposes than to 100 years given the estimated uncertainty in the population parameters. Specifically, the effects of the environmental or anthropogenic drivers on the population would be lagged; therefore, we think the first 10 years is largely based on the previously observed trend but after that we do not have sufficient information to account for uncertainty of the drivers that affect the populations.

Additionally, the trend was analyzed with historical impacts from the fishery removed (i.e., by adding back the adult nesters to the population); however, there was no difference between the trends for the “take” and “no take” scenarios for either species for the past.

At the 134th SSC and 180th Council Meetings, PIFSC summarized the external peer-review comments on the model, which indicated that the model approach was appropriate and adequate given the limited data available. The SSC further endorsed the model as the best scientific

---

7 We clarify that in the population effects studies, Martin et al. (2020), used the term “take associated with the fishery” to refer to post-interaction mortality. Note that this definition of “take” differs from the ESA definition of “take” (16 U.S.C., 1532, section 3(19)).
information available for evaluating the impacts of the fishery on loggerhead and leatherback turtle populations.

Deep-set longline Fishery

PIFSC applied the take model developed for the shallow-set longline fishery to the Hawaii deep-set longline fishery to evaluate population level impacts of loggerhead and leatherback turtle interactions. The model results were presented at the 135th SSC and 181st Council Meeting in March 2020, and are described in a publication that is being prepared to supplement the shallow-set longline take analysis. The primary difference between the shallow-set and deep-set applications of the model is the additional step needed to account for the approximately 20 percent observer coverage rate in the deep-set fishery compared to 100 percent in the shallow-set fishery. Specifically, the model draws from multivariate normal distributions informed by the historical observed interactions to assign length and mortality rate for the estimated unobserved takes when converting the historical take from the deep-set fishery into adult nester equivalents before incorporating those take back into the population as part of the retrospective analysis. The future take level evaluated in the model was the anticipated level of interactions in the deep-set fishery derived from predictions generated by PIFSC using a Bayesian inferential approach (McCracken 2019b) and analyzed in the Biological Evaluation reinitiating consultation for the Hawaii deep-set longline fishery (NMFS 2018d). The model assigns length and probability of mortality to the anticipated take level from the same multivariate normal distribution described above.

Results of the take model for the deep-set longline fishery show no discernable difference in the North Pacific loggerhead population trend or the probability of the population falling below abundance thresholds (50%, 25%, 12.5% of current annual nesters) within the 100-year projection period between the “no take” and “take” scenarios.

For Western Pacific leatherback turtles, the difference in the population trend only becomes discernable after the year 2060, with the median projection suggesting that the population would go extinct roughly 20 years sooner in the “take” scenario compared to the “no take” scenario (around year 2095 vs. year 2115) in the deep-set take model. However, the actual population difference of the 20 year divergence represents approximately 1 adult nester. The deep-set model results also show negligible differences between the “no take” and “take” scenarios in the mean number of years to reach the abundance thresholds. For example, the mean number of years to reach the 50% abundance threshold under the no take scenario is 12.89 years, whereas for the take scenario is 12.83 (or a difference of 0.06 year or 22 days). Similarly, the mean number of years to reach the 12.5% abundance threshold under the no take scenario is 36.29 years compared to 35.81 years in the take scenario (or a difference of 0.48 years or a difference of 175 days).
4.2 Summary of Potential Effects of Alternatives on Protected Species considering New Information

4.2.1 Potential effects of the Hawaii deep-set longline fishery on North Pacific loggerhead and Western Pacific leatherback turtles

Preliminary data from the Pacific Islands Regional Observer Program and data from the Council’s 2018 Pelagic SAFE Report indicate that protected species interactions observed in the Hawaii deep-set longline fishery since publication of the 2019 EA remain within the anticipated levels analyzed in the 2019 EA (WPFMC 2019; PIRO observer data online8). The PIFSC take model study indicates that the level of take by the deep-set longline fishery is expected to have insubstantial effects on the loggerhead and leatherback turtle populations.

The 2020 catch and allocation limit specification is expected to have similar outcomes to the preferred alternative analyzed in the 2019 EA, with no more than 3,000 t of allocations to be authorized through specified fishing agreements. Neither action alternative is expected to result in large fishery expansions because the fishery is capacity limited in terms of the number of participants and size of vessels and because of other constraints such as catch quotas. As such, we anticipate no change to the deep-set longline fishery and expect catch and effort to remain within the levels analyzed in the 2019 EA for each of the action alternatives and effects of the fishery on sea turtles would be consistent with the findings of the 2014 BiOp, as supplemented in 2017. In April, 2020, NMFS completed an updated analysis of potential effects of the Hawaii deep-set longline fishery on listed species during ongoing consultation, as part of ESA sections 7(a)(2) and 7(d) compliance (NMFS 2020b). That review concluded that during the period of consultation, the Hawaii deep-set longline fishery is not expected to have impacts that reduce appreciably the survival or recovery of the North Pacific loggerhead in the wild. Information from an updated population viability analysis is described above, and helps us determine that Hawaii deep-set longline fishery is not having an appreciable effect on population trends in North Pacific loggerhead or leatherback turtles. Furthermore, because neither action alternative would change the manner in which the fishery operates in a way that would substantially alter interaction levels in the Hawaii deep-set longline fishery, neither alternative is likely to have large and adverse effects on leatherback and loggerhead turtles.

4.2.2 Potential effects of the shallow-set longline fishery on North Pacific loggerhead and Western Pacific leatherback turtles

We consider the potential effects of the proposed action and alternatives for U.S. participating territory catch and allocation limits in light of effects of the shallow-set longline fishery. Preliminary data from the Pacific Islands Regional Observer Program and information in the Council’s 2018 Pelagics FEP SAFE Report (WPFMC 2019) indicates that protected species interactions observed in the Hawaii shallow-set longline fisheries since publication of the 2019 EA remain below the anticipated levels analyzed in the 2019 EA and below the incidental take

---

statement (ITS) in the 2019 BiOp (NMFS 2019f). The PIFSC take model study (Martin et al. 2020) indicates that the Hawaii shallow-set longline fishery is expected to have insubstantial effects on all turtle species as described in the 2019 BiOp (NMFS 2019f) and would not have the potential to jeopardize the survival or recovery of the species. We note that in the 10-year future time frame, Martin et al. (2020) found no discernible difference between the “no-take” and “take” scenarios for either species, and found the 10-year future time frame more biologically relevant for use in impact assessments. These conclusions consider other sources of mortality including take in other western Pacific and international fisheries (including the Hawaii deep-set longline fishery) and consider beneficial impacts of other work being done by the Council and NMFS that support conservation and recovery of the two species.

4.2.3 Potential effects of the Hawaii longline fisheries on other ESA-listed species

Hawaii longline fisheries interact with ESA-listed sharks and giant manta rays. Effects of the fisheries operating under the catch and allocation limits program were considered in the 2019 EA (deep-set longline fishery effects on sharks and rays: sections 3.3.4.1, 4.5); and shallow-set longline fishery effects on ESA-listed sharks and rays (sections 3.3.4.2 and 4.5).

Our review of potential effects of the Hawaii deep-set longline fishery on listed species during the ongoing ESA Section 7 consultation (NMFS 2020b) and in support of this supplemental environmental effects analysis shows first that NMFS has no new information about interactions between the fishery and giant manta ray since NMFS reinitiated consultation and potential effects of the alternatives on giant manta ray in 2018. The fishery has interacted with a limited number of giant manta rays consistent with the estimated levels used in the 2018 BE (NMFS 2018d) which supported initiation of ESA consultation and levels considered in the 2019 EA. In its April 15, 2020 memorandum developed in accordance with the ESA sections 7(a)(2) and 7(d), NMFS found that the potential effects of the action (continued operation of the Hawaii deep-set longline fishery, under the FEP) during the period of extended consultation would not reduce appreciably either the survival or recovery of giant manta rays in the wild. NMFS expects the overall population to remain large enough to maintain genetic heterogeneity, broad demographic representation, and successful reproduction, and to retain the potential for recovery (NMFS 2020b).

In its 2020 ESA sections 7(a)(2) and 7(d) memo (NMFS 2020b), NMFS addressed potential effects of the Hawaii deep-set longline fishery on oceanic whitetip sharks during the extended period of consultation. Interactions with listed oceanic whitetip sharks in 2018 and 2019 did not exceed recent levels anticipated in the 2019 EA. According to the information NMFS relied on in its request for initiation of consultation under the ESA (NMFS 2018d), the fishery is expected, on average, to interact with 1,708 oceanic whitetip sharks annually and not exceed 3,185 interactions in a given year. Estimating a 76.5% post-release survival rate, NMFS anticipates that 2,437 sharks that could, potentially interact with the fishery, would be released alive, and 748 would be released dead. In its 2020 review under ESA sections 7(a)(2) and 7(d), NMFS considered the potential effects of the Hawaii deep-set longline fishery on sharks in both the WCPO and EPO during the period of consultation, by conservatively applying all mortalities in the fishery to the WCPO stock. NMFS estimated that 748 mortalities would represent a removal of 0.096% of the estimated number of individuals in the WCPO and explained that the impact
would likely be lower if population estimates could be calculated for the EPO stock because some of the mortality could be applied to the EPO stock.

NMFS has new information that provides an estimate of oceanic whitetip shark population in the WCPO and to support an analysis of effects of the Hawaii longline fisheries on that population. In July 2019, a team of international scientists completed a new stock assessment for the oceanic whitetip shark in the WCPO (Tremblay-Boyer et al. 2019). This was the first stock assessment since the WCPFC enacted CMM 2011-04, a no-retention measure for oceanic whitetip sharks that was applied to WCPFC Members, Cooperating Non-Members and Participating Territories and went into effect in 2013. The 2019 stock assessment provided updated biological information that required NMFS to re-evaluate the effects of the fishery on this species. In summary, the 2019 stock assessment found that fishing mortality reference points for WCPO oceanic whitetip shark improved by nearly half in the period since CMM 2011-04 became active, which covers the last four years of the assessment’s time-span (2013–2016), and a slight increase in spawning biomass since 2013. The assessment also indicates that the WCPO population of oceanic whitetip shark continues to decline due to overfishing, and that current catch in the WCPO (all fisheries and gear types combined) is estimated at about 3,000 t annually. Because the 2019 assessment assumes that oceanic whitetip sharks mature at 4–8 years, the assessment results indicate that overall stock recovery is expected to be slow in the period following the conservation measure while the spawning biomass rebuilds.

Final indicators of stock status and key management quantities contained in the 2019 assessment are determined from summary statistics over 648 model runs accounting for assumptions about life-history parameters and impact(s) of fishing underpinning the assessment. Using the underlying data over the 648 models in the structural uncertainty grid described in Tremblay-Boyer et al. (2019), and provided to NMFS from the assessment authors, the median value of the current total number of individuals in the WCPO is 775,214. It is important to note that a new development in the assessment was the inclusion of discard mortality scenarios in the historical catches. This was a key step to account for the potential impacts of the no-retention measure for oceanic whitetip sharks. Three scenarios were included in the uncertainty grid assuming 25%, 43.75% and 100% mortality on the discards, accounting for mortality at different stages of the discarding process from the catch event and crew handling to post-release mortality.

PIFSC is conducting a study to assess the post-release survival rates of oceanic whitetip sharks released alive in the Hawaii deep-set and American Samoa longline fisheries. Hutchinson and Bigelow (2019) found that the condition of bycatch sharks at release (“good” versus “injured”) and the amount trailing gear left on the animals were the two factors that had the largest effect on post release mortality. Animals released in good condition without trailing gear had the highest rates of survival. This study is ongoing.

In conclusion, based on the information before the agency as described above, NMFS does not expect that the effects of the deep-set longline fishery, operating as it has in recent years (which would be consistent with operations under Alternatives 2 and 3) during the period of extended consultation would reduce appreciably either the survival or recovery of oceanic whitetip sharks in the wild. NMFS expects the overall population to remain large enough to maintain genetic heterogeneity, broad demographic representation, and successful reproduction, and to retain the potential for recovery.
In its April 15, 2020, ESA Sections 7(a)(2) and 7(d) memo (NMFS 2020b), NMFS documented that since October 4, 2018, the Hawaii deep-set longline fishery has had one observed interaction with a green sea turtle. When expanded (multiplied by a factor of 5) to account for unobserved fishing, one interaction results in an expansion to approximately five green turtle interactions. Interactions with the green sea turtle during the period of reinitiated consultation remain below those previously analyzed in the October 4, 2018, ESA determination (NMFS 2018d). Accordingly, anticipated impacts to the green turtle during the period of extended consultation will remain unchanged from those analyzed in the October 4, 2018, ESA determination. That is, NMFS does not expect that the effects of the fishery during consultation would reduce appreciably either the survival or recovery of green sea turtles from the East Pacific DPS. NMFS expects the overall populations to remain large enough to maintain genetic heterogeneity, broad demographic representation, and successful reproduction, and to retain the potential for recovery. We add that the fishery would continue to fish as it has in recent years under Alternatives 2 and 3, and to have the same level of interactions with green turtles as was considered in the 2019 EA. For this reason, we conclude the alternatives would not have the potential for large and adverse effects on green turtles.

The NMFS 2020 ESA, sections 7(a)(2) and 7(d) memorandum (NMFS 2020b), considered that olive ridley turtle interactions in the Hawaii deep-set longline fishery remained below the level predicted in the 2018 BE (NMFS 2018d), and considered new information from PIFSC. In summary, the PIFSC ANE analyses indicate that predicted interactions of equal to or less than 48 interactions with the Western Pacific population and 132 interactions with the eastern Pacific population would represent very small rates of interaction and would have insubstantial impacts on both populations (i.e., < 0.1% portion of the current nesting). Because of this, NMFS did not expect that the effects of the action during consultation would reduce appreciably either the survival or recovery of these populations of olive ridley turtles. We add that the fishery would continue to fish as it has in recent years under alternatives 2 and 3, and to have the same level of interactions with olive ridleys as was considered in the 2019 EA. For this reason, we conclude that none of the proposed alternatives would have the potential for large and adverse effects on olive ridley turtles.

4.2.4 Potential effects of the American Samoa longline fishery in the South Pacific Ocean on selected listed species

The American Samoa longline fishery interacts with ESA-listed sea turtles, sharks and giant manta rays. Effects of the fisheries operating under the catch and allocation limits program on listed species were considered in the 2019 EA (Section 3.3.4.3, and 4.5). Preliminary data from the Pacific Islands Regional Observer Program9 and information in the Council’s 2018 SAFE Report (WPFMC 2019) indicate that protected species interactions recently observed in the American Samoa longline fisheries remain were similar to interactions analyzed in the 2019 EA. We have an updated review of the potential effects of the American Samoa longline fishery on

---

9 2019 interaction data from the PIROP annual reports is posted at: https://www.fisheries.noaa.gov/pacific-islands/fisheries-observers/pacific-islands-longline-quarterly-and-annual-reports
green, hawksbill, and olive ridley sea turtles; giant manta ray, oceanic whitetip shark, and chambered nautilus contained in the 2020 ESA sections 7(a)(2) and 7(d) memorandum on the potential effects of the fishery during the period of extended ESA consultation (NMFS 2020a). The 2020 ESA determination estimated that fishing effort would be similar to that considered in the 2019 ESA section 7(a)(2) and 7(d) memorandum for the American Samoa longline fishery (NMFS 2019g) and the BE (NMFS 2019b), and the American Samoa longline fishery is expected to continue to fish at general levels of effort that have occurred in the fishery in recent years: 18 vessels annually, setting 2,269 sets, and deploying around 6,369,788 hooks (NMFS 2020a, referencing NMFS 2019g). Although interactions with some species, described above, exceeded the ITS in the 2015 BiOp, after a review in its 2020 ESA sections 7(a)(2) and 7(d) memorandum, NMFS concluded that the effects do not raise conservation concerns and the BiOp remains valid.

The 2019 EA referenced the 2019 ESA determination (NMFS 2019g) and concluded that the American Samoa longline fishery is expected to have insubstantial effects on listed species (see baseline, EA, sections 3.3.1.3 (sea turtles) and 3.3.4.3 (sharks and rays); and the effects analysis for Alternative 1 (section 4.5.1), Alternative 2, the preferred alternative (EA, section 4.5.2), and Alternative 3 (EA, Section 4.5.3). We supplement that analysis here for giant manta ray, oceanic whitetip sharks, green, hawksbill, and olive ridley turtles based on the updated analysis in the 2020 ESA determination (NMFS, 2020a).

**Giant Manta Ray**

Giant manta ray interactions in the fishery are rare events. NMFS estimates that the American Samoa longline fishery would interact with no more than 38 giant manta rays in a given year, based on estimates provided by PIFSC (McCracken 2019a) based on interactions observed from 2012–2017. We confirm that recent interactions remain well below this level (3 interactions expanded from interactions with unidentified manta rays in 2019) (NMFS 2020a). Estimating a 96.7% at-vessel survival rate, 37 out of 38 rays that could potentially interact in a given year with the fishery would be released alive. NMFS documents a lack of identified subpopulations of giant manta rays near American Samoa, and cites Miller and Klimovich (2016) who concluded in their status review that incidental catch of giant manta rays in U.S. longline fisheries is likely to have minimal effects on the population.

In its 2020 ESA memorandum, dated May 6, 2020, NMFS reiterated its previous findings in its April 3, 2019 ESA determination (NMFS 2019g), that potential effects of the continued operation of the American Samoa deep-set longline fishery, operating as it has in recent years under the FEP, during the period of extended consultation would not reduce appreciably either the survival or recovery of giant manta rays in the wild. NMFS expects the overall population to remain large enough to maintain genetic heterogeneity, broad demographic representation, and successful reproduction, and to retain the potential for recovery (NMFS 2020a). NMFS further concluded that impacts to listed giant manta rays by the fishery during the period of consultation will not violate section 7(a)(2).

We add that the fishery would continue to fish as it has in recent years under Alternatives 2 and 3, and would have the same level of interactions with giant manta ray as was considered in the
2019, in the 2019 EA, and the 2020 ESA determination. For this reason, we conclude the action alternatives would not have the potential for large and adverse effects on giant manta rays.

**Oceanic Whitetip Shark**

In its 2020 ESA determination, NMFS also addressed potential effects of the American Samoa deep-set longline fishery on oceanic whitetip sharks during the extended period of consultation. First, based on recent interactions, NMFS does not expect the fishery to exceed interaction levels anticipated in the 2019 BE (NMFS 2019b). The fishery is expected, on average, to interact with no more than 1,110 oceanic whitetip sharks in a given year based on observations from 2012–2017. That estimate is conservative as it includes 50 interactions with oceanic white-tip sharks that occurred within the American Samoa Large Vessel Prohibited Area (LVPA) seaward of 12 nm from Tutuila, Manua Islands, and Swains Island. Because these areas are currently closed to longline fishing by large vessels (> 50 ft), the estimate takes into account the potential for interactions in these areas should management of the LVPA change to allow fishing by large longline vessels in the future. Recent interactions between the fishery and oceanic whitetip sharks have remained below the projected level of interactions (NMFS 2020a; NMFS and WPFMC 2019). In its 2020 ESA section 7(a)(2) and 7(d) memorandum, dated May 6, 2020, NMFS estimated that based on new information received since the 2019 ESA memorandum (dated April 3, 2019), observers documented around 117 interactions with whitetip sharks. Applying an expansion factor of 6.37 (based on 15.7% observer coverage) to observed interactions to account for unobserved fishing trips, the total estimated number of interactions was 745 (NMFS 2020a).

NMFS has new information regarding the estimated oceanic whitetip shark population in the WCPO with which to support its updated analysis of effects of the American Samoa deep-set longline fishery on oceanic whitetip sharks. In July 2019, a team of international scientists completed a new stock assessment for the oceanic whitetip shark in the WCPO (Tremblay-Boyer et al. 2019). This was the first stock assessment since the WCPFC enacted CMM 2011-04, a no-retention measure for oceanic whitetip sharks that was applied to WCPFC Members, Cooperating Non-Members and Participating Territories and went into effect in 2013.

To summarize the applicable findings, the 2019 stock assessment found that fishing mortality reference points for WCPO oceanic whitetip shark improved by nearly half in the period since CMM 2011-04 became active, which covers the last four years of the assessment’s time-span (2013–2016), and a slight increase in spawning biomass since 2013. The assessment also indicates that the WCPO population of oceanic whitetip shark continues to decline due to overfishing, and that current catch in the WCPO (all fisheries and gear types combined) is estimated at about 3,000 t annually. Because the 2019 assessment assumes that oceanic whitetip sharks mature at between 4 and 8 years, the assessment results indicate that overall stock recovery is expected to be slow in the period following the conservation measure while the spawning biomass rebuilds.

---

Final indicators of stock status and key management quantities contained in the 2019 assessment are determined from summary statistics over 648 model runs accounting for assumptions about life-history parameters and impact[s] of fishing underpinning the assessment. Using the underlying data over the 648 models in the structural uncertainty grid described in Tremblay-Boyer et al. (2019), and provided to NMFS from the assessment authors, the median value of the current total number of individuals in the WCPO is 775,214. It is important to note that a new development in the assessment was the inclusion of discard mortality scenarios in the historical catches. This was a key step to account for the potential impacts of the no-retention measure for oceanic whitetip sharks. Three scenarios were included in the uncertainty grid assuming 25%, 43.75% and 100% mortality on the discards, accounting for mortality at different stages of the discarding process from the catch event and crew handling to post-release mortality.

The fishery releases all of the oceanic whitetip sharks caught. As described in the 2020 ESA determination (NMFS 2020a), estimating a 66.6% at-vessel post-release survival rate, NMFS anticipates that 740 of the 1,110 sharks the fishery could potentially interact with annually would be released alive. This means 370 sharks would be released dead. This represents a removal of 0.048% of the estimated number of individuals in the WCPO (370/775,214 x 100). The impact would likely be lower if population estimates could be calculated for the EPO stock because some of the mortality from the Hawaii deep-set longline fishery could be applied to the EPO stock.

PIFSC is conducting a study to assess the post-release survival rates of oceanic whitetip sharks released alive in the Hawaii deep-set and American Samoa longline fisheries. Hutchinson and Bigelow (2019) found that the condition of bycatch sharks at release (“good” versus “injured”) and the amount trailing gear left on the animals were the two factors that had the largest effect on post release mortality. Animals released in good condition without trailing gear had the highest rates of survival. This study is ongoing.

NMFS concluded in its ESA determination (NMFS 2020a) that the effects of the American Samoa deep-set longline fishery, operating as it has in recent years under the FEP (which would be consistent with operations under Alternatives 2 and 3) during the period of extended consultation, would not reduce appreciably either the survival or recovery of oceanic whitetip sharks in the wild. NMFS expects the overall population to remain large enough to maintain genetic heterogeneity, broad demographic representation, and successful reproduction, and to retain the potential for recovery. NMFS further concluded that impacts to listed giant manta rays by the fishery during the period of consultation will not violate section 7(a)(2).

We add that the fishery would continue to fish as it has in recent years under Alternatives 2 and 3, and would have the same level of interactions with oceanic whitetip sharks that was considered in the 2019 BE, in the 2019 EA, and the 2020 ESA determination. For this reason, we conclude the alternatives would not have the potential for large and adverse effects on oceanic whitetip sharks.

**Green Sea Turtle**

In its May 6, 2020 ESA sections 7(a)(2) and 7(d) memo (NMFS 2020a), NMFS reviewed effects of the American Samoa deep-set longline fishery during the extended period of consultation for
effects on all five distinct population segments (DPSs) of green turtles found in the area. Based on estimates by PIFSC of estimated interaction rates, NMFS expects the fishery to interact with 47 or fewer green sea turtles annually. As described in the 2019 EA and based on more recent fishery data, interactions have been well below the upper estimated level. In its 2020 ESA section 7(a)(2) and 7(d) memorandum, dated May 6, 2020, NMFS estimated that based on new information received since the 2019 ESA memorandum (dated April 3, 2019), the fishery had four observed interactions which were expanded to approximately 26 interactions to account for unobserved fishing trips (NMFS 2020a).

In its 2020 ESA determination, NMFS describes a detailed analysis of the potential effects of the estimated level of interactions in terms of changes to nesting populations. That analysis is not repeated here, but is available in the memorandum (NMFS 2020a). Based on fishery operations and information in the analysis, NMFS concluded that predicted interactions of equal to or less than 47 green turtles in any given year would represent a very small proportion (less than 0.1% of the current nesting population) for any of the DPSs and thus, the fishery was found to be having an insubstantial impact on the survival and recovery of any of the individual five DPSs (East Indian-West Pacific) Central West Pacific, Southwest Pacific, Central South Pacific, and East Pacific DPS) of green turtles the fishery interacts with. NMFS expects the overall populations to remain large enough to maintain genetic heterogeneity, broad demographic representation, and successful reproduction, and to retain the potential for recovery. NMFS concluded in its ESA determination that the impact to the green sea turtle by the fishery during the period of extended consultation will not violate section 7(a)(2).

We add that the fishery would continue to fish as it has in recent years under Alternatives 2 and 3, and would have the same level of interactions with green turtles as was considered in the 2019 EA. For this reason, we conclude the alternatives would not have the potential for large and adverse effects on green turtles.

**Hawksbill Sea Turtle**

In its May 6, 2020 ESA sections 7(a)(2) and 7(d) memo (NMFS 2020a), NMFS reviewed effects of the American Samoa deep-set longline fishery during the extended period of consultation for effects on hawksbill turtles. Interactions between this fishery and hawksbill turtles are rare (one in 2016 and two in 2018), and all have been dead when boarded. Based on estimates by PIFSC of estimated interaction rates, NMFS expects the fishery to interact with 8 or fewer hawksbill turtles annually (based on observed interactions from 2012–2018).

The NMFS 2020 ESA determination describes a population impact analysis on the three turtle interactions that is not repeated here. The outcome of the analysis showed that using a conservative estimate for nesting female abundance of 1,500 turtles to represent nesting assemblages of the eastern, central and western Pacific, interactions of equal to or fewer than eight interactions with hawksbill sea turtle in any given year would be a very small proportion of the nesting population (<0.1%). Based on the information in the analysis, NMFS expects that the fishery would not reduce appreciably either the survival or recovery of the hawksbill sea turtle. NMFS expects the overall population to remain large enough to maintain genetic heterogeneity, broad demographic representation, and successful reproduction, and to retain the potential for recovery. NMFS concluded that the impact to the western and eastern Pacific populations of
hawksbill sea turtle by the fishery during the period of extended consultation will not violate section 7(a)(2).

We add that the fishery would continue to fish as it has in recent years under Alternatives 2 and 3, and would have the same level of interactions with hawksbill turtles as was considered in the 2019 EA. For this reason, we conclude the alternatives would not have the potential for large and adverse effects on hawksbill sea turtles.

**Olive Ridley Turtle**

In its May 6, 2020 ESA sections 7(a)(2) and 7(d) memorandum, NMFS considered the potential effects of the American Samoa deep-set longline fishery on olive ridley turtles. The species is particularly susceptible to deep-set longlining because of its deep foraging. Based on PIFSC estimated predictions of anticipated annual interactions, NMFS expects the fishery to have 28 olive ridley turtle interactions in a year based on observed interactions from 2012–2017. NMFS describes new information received since April 3, 2019, that shows the fishery has had interactions with 3 olive ridleys. Multiplied by the appropriate factor to account for 15.7% observer coverage, the estimated number of interactions was 19, well below the levels considered in the 2015 BiOp (NMFS 2015b).

Olive ridley turtles that interact with the American Samoa longline fishery are predominantly (60%) from the western /Indo Pacific stock and 40% from Mexico/Costa Rica/Central America stock origin, based on genetic testing of five sampled individuals (NMFS 2020a). The NMFS 2020 ESA determination describes a population impact analysis. The analysis used a nesting abundance for the eastern Pacific nesting population of olive ridleys of over a million nesters annually (SWOT 2010, NMFS 2014, cited in NMFS 2020a); and estimates of 205,000 turtles as the number of nesters from the western Pacific population (Shanker et al. 2004, Whiting et al. 2007, cited in NMFS 2020a). The number of interactions with eastern Pacific olive ridley turtles (up to 12 per year) and 17 interactions with olive ridley turtles from the western Pacific, would both represent a very small proportion of the nesting population (<0.1%) Based on the information in the analysis, NMFS expects that the fishery would not reduce appreciably either the survival or recovery of the hawksbill sea turtle during the period of extended consultation. NMFS expects the overall population to remain large enough to maintain genetic heterogeneity, broad demographic representation, and successful reproduction, and to retain the potential for recovery. NMFS concluded that the impact to the western and eastern Pacific populations of olive ridley sea turtle by the fishery during the period of extended consultation will not violate section 7(a)(2).

We add that the fishery would continue to fish as it has in recent years under Alternatives 2 and 3, and to have the same level of interactions with olive ridleys as was considered in the 2019 EA, and consistent with the 2015 BiOp. For this reason, we conclude that none of the proposed alternatives would have the potential for large and adverse effects on olive ridley turtles.

**Chambered Nautilus**

In its 2020 ESA determination, NMFS had no new information with bearing on the analysis in the 2019 EA. Longline vessels do not fish in nearshore areas where nautilus occur such as in
coral reefs, steep-sloped reefs and forereefs. NMFS found a very low likelihood for vessels to become grounded when transiting to and from fishing grounds and that it was very unlikely nautilus would be exposed to wastes or discharge. NMFS concluded that the fishery will not reduce appreciably either the survival or recovery of the chambered nautilus. NMFS expects the overall population to remain large enough to maintain genetic heterogeneity, broad demographic representation, and successful reproduction, and to retain the potential for recovery. NMFS concluded the fishery during the period of extended consultation will not violate section 7(a)(2).

4.3 Potential Effects of the Alternatives on MHI IFKW Critical Habitat

In its April 2020 ESA sections 7(a)(2) and 7(d) memorandum (NMFS 2020b), NMFS confirmed that there is no new information that suggests the Hawaii deep-set longline fishery is having a significant contribution to a long-term reduction in quantity, quality, or availability of MHI IFKW prey species since reinitiation of consultation. Further, the February 21, 2019 closure of the Southern Exclusion Zone (SEZ) for all vessels registered under the Hawaii longline limited access program eliminated all fishing effort in the SEZ. NMFS anticipates that effects to MHI IFKW critical habitat was considered in the 2018 BE for the fishery (NMFS 2018d), specifically, the deep-set fishery is expected to be having an insignificant effect on prey species considered a component of MHI IFKW critical habitat, and that continued fishing during the period of consultation would represent an insignificant contribution to the long-term reduction in quantity, quality, or availability of MHI IFKW prey species over the range of fish stocks encountered by these whales. The memorandum concludes that the continued operation of the deep-set fishery is not likely to adversely modify MHI IFKW critical habitat during the period of consultation.

We add to this conclusion that, as described in the 2019 EA (section 4.6), under the outcomes associated with the alternatives, NMFS does not anticipate any adverse effects to marine habitat, particularly critical habitat. The 2019 EA describes that U.S. landings in the WCPA of prey species for MHI IFKW are generally less than one percent for prey species with estimated biomass (NMFS 2018b), and international and domestic management measures strive to ensure the sustainability of these stocks. Other conditions that prevent adverse effects on critical habitat are that MHI IFKW has the ability to shift prey items to meet their energetic needs and the longline fisheries do not harvest MHI IFKW prey in area designated as critical habitat. For these reasons, we conclude that none of the alternatives would result in large and adverse effects on critical habitat of MHI IFKW.

4.4 Potential Cumulative Effects of the Alternatives on Selected ESA-Listed Species

Based on the new information described above, the longline fisheries of the western Pacific continue to be operated in accordance with applicable fishery regulations and the Pacific Pelagic FEP, and are operating consistent with requirements of the ESA and other applicable laws. Our analysis shows that the Hawaii deep-set longline fishery operating without the benefit of the proposed action, may close before the year end. Some vessels could fish in the EPO or join the shallow-set longline fishery. Under Alternatives 2 and 3, the Hawaii deep-set longline fishery is expected to be able to fish throughout the year. However, the fishery is not expected to expand substantially because the fishery is limited in terms of number of permits available, and due to the regulatory constraints that include catch quotas. Incidental interactions in the fishery are monitored, and effects of those interactions continue to be subject to review under the ESA.
Interactions continue to be relatively rare events in both fisheries and remain below projected levels that have been reviewed under the ESA and MMPA.

Longline fisheries of the Pacific Islands Region are subject to a suite of management regulations that allow NMFS and the Council to monitor interactions and catch, fishing locations, and provide other requirements to help reduce the potential for and severity of interactions with listed species. Past requirements including gear restrictions, and operational requirements have reduced the numbers of interactions with listed species and seabirds substantially.

The ESA consultation for the shallow-set longline fishery considered effects on listed sea turtles in the context of all other stressors on the various species, including sea turtles including authorized take in other fisheries. The 2019 BiOp for the shallow-set longline fishery (NMFS 2019f) documents our finding that the shallow-set longline fishery operating at expected capacity would not jeopardize the continued survival and recovery of listed sea turtles, oceanic whitetip sharks and giant manta rays. The 2019 and 2020 ESA sections 7(a)(2) and 7(d) memoranda covering the American Samoa deep-set longline fishery (NMFS 2020a), and the Hawaii deep-set longline fishery (NMFS 2020b), respectively also concluded that anticipated levels of take in these fisheries would not likely jeopardize the survival or recovery of listed species, or result in adverse modification of critical habitat during the period of consultation. Those memoranda also considered the latest population and critical habitat information.

Based on our updated review of effects, none of the action alternatives would result in changes to the fishery that would have the potential to have substantial adverse effects on ESA-listed species in any manner that has not been considered under change the effects of the fisheries operating at their full potential have been considered in this SEA, the 2019 EA, ESA consultations, and MMPA authorizations.

Monitoring, mitigation measures, and continued research and other conservation measures will continue to apply and applied in the fishery to prevent large and adverse cumulative effects of fishing. We further conclude that both action alternatives provide more stability in the fishery which reduces the potential for less stringently monitored or regulated fisheries to replace sustainably caught seafood in the U.S. markets.

4.5 Summary Table of Effects of Alternatives

We incorporate Table 45 from the 2019 EA (shown at the beginning of section 4 of the 2019 EA) in its entirety. The table summarizes potential effects of the three alternatives. We add a minor change under “Management Setting,” Alternative 2 and Alternative 3, that the proposed 1,500 t bigeye tuna allocation limit with a 3,000 t total annual bigeye tuna allocation limit is a slight management change from recent years that is not expected to change environmental effects, and could reduce the number of specified fishing agreements required in a given year under either Alternative.

5 Applicable Laws

Section 303 of the Magnuson-Stevens Act requires that any fishery management plan prepared by any fishery management council or by the Secretary of Commerce contain conservation and
management measures that are consistent with the National Standards of the Act, other provisions of the Act, regulations implementing recommendations by international fishery management organizations and any other applicable law. This section identifies provisions of the other applicable laws that the NMFS and the Council have identified the proposed action must comply with, and rational for why this action is consistent with each applicable law.

5.1 National Environmental Policy Act

In accordance with the National Environmental Policy Act (NEPA), CEQ implementing regulations, and NOAA Administrative Order (NAO) 216-6A – Compliance with the National Environmental Policy Act, Executive Orders 12114, Environmental Effects Abroad of Major Federal Actions; 11988 and 13690, Floodplain Management; and 11990, Protection of Wetland, NMFS must consider the effects of its proposals on the environment before taking action. As part of this process, NMFS and the Council provide opportunities for the involvement of interested and affected members of the public before a decision is made. NMFS and the Council prepared this supplement to the 2019 EA (NMFS & WPFMC 2019) in accordance with NEPA and its implementing regulations, as well as NAO 216-6A and its associated Companion Manual.

The NMFS Regional Administrator will use information in this SEA and the 2019 EA to consider the effects of the proposed action on the human environment, taking into consideration public comments on the proposed action presented in this document, and to determine whether the proposed action would have a significant environmental impact requiring the preparation of an environmental impact statement.

5.2 Coastal Zone Management Act

The Coastal Zone Management Act requires a determination that a recommended management measure has no effect on the land, water uses, or natural resources of the coastal zone or is consistent to the maximum extent practicable with an affected state’s enforceable coastal zone management program. On April 2, 2019, NMFS requested Federal consistency reviews from American Samoa, Guam, the Northern Mariana Islands, and Hawaii and requested the programs’ review of and concurrence with its determinations.

5.3 Endangered Species Act

The Endangered Species Act (ESA) provides for the protection and conservation of threatened and endangered species. Section 7(a)(2) of the ESA requires Federal agencies to ensure that any action authorized, funded, or carried out by such agencies is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of the critical habitat of such species. Pursuant to Section 7 of the ESA, NMFS has evaluated the pelagic longline fisheries of Hawaii, American Samoa, Guam, and the Northern Mariana Islands for potential effects to ESA-listed species under the jurisdiction of NMFS. The conclusions of these consultations are briefly summarized in section 5.3 of the 2019 EA and are incorporated here by reference with the following updated information about the Hawaii longline fishery.

On June 26, 2019, NMFS completed a Biological Opinion that concluded the Hawaii shallow-set fishery would adversely affect, but was not likely to jeopardize endangered leatherback sea
turtles, endangered North Pacific loggerhead sea turtles; threatened green sea turtles from the Eastern Pacific, Central North Pacific, East Indian-West Pacific, Southwest Pacific distinct population segments (DPS), endangered green sea turtles in the Central West Pacific and Central South Pacific DPSs; threatened olive ridley sea turtles and olive ridley sea turtles from the endangered Mexico breeding population, threatened oceanic whitetip sharks, threatened manta rays; and threatened Guadalupe fur seals (NMFS 2019f). The BiOp included an incidental take statement for leatherback sea turtle, loggerhead sea turtle, olive ridley sea turtle, green sea turtle, oceanic whitetip shark, giant manta ray, and Guadalupe fur seal. The 2019 BiOp also included not likely to adversely affect determinations for a number of listed species as summarized in this document in section 4.1.1 above.

On October 4, 2018, and again on April 15, 2020, under the authority of ESA sections 7(a)(2) and 7(d), NMFS concluded, in the respective memoranda that the conduct of the Hawaii deep-set longline fishery during the period of ESA consultation will not violate ESA Sections 7(a)(2) and 7(d), and that the conclusions in the 2014 BiOp, as supplemented, remain valid and effective. Information from the April 15, 2020 review is incorporated into the supplemental analysis in this SEA, section 4.

On April 3, 2019, and again on May 6, 2020, under the authority of ESA sections 7(a)(2) and 7(d), NMFS documented in the respective memoranda that the conduct of the American Samoa deep-set longline fishery during the period of ESA consultation will not violate ESA Sections 7(a)(2) and 7(d), and that the conclusions in the 2015 BiOp remain valid and effective. We incorporate information about the effects of the fishery on from the most recent ESA Biological Evaluation (NMFS 2019) and new information with bearing on the environmental effects analysis of the 2019 EA into this SEA, section 4.

### 5.4 Marine Mammal Protection Act

The MMPA prohibits, with certain exceptions, the take of marine mammals in the U.S. and by U.S. citizens on the high seas, and the importation of marine mammals and marine mammal products into the United States. The MMPA gives NMFS, as delegated by the Secretary of Commerce, the authority and duties for all cetaceans (whales, dolphins, and porpoises) and pinnipeds (seals and sea lions, except walruses). With this responsibility, NMFS required to prepare and periodically review stock assessments of marine mammal stocks.

Under Section 118 of the MMPA, NMFS must publish, at least annually, a List of Fisheries that classifies U.S. commercial fisheries into one of three categories. These categories are based on the level of serious injury and mortality of marine mammals that occurs incidental to each fishery. Specifically, the MMPA mandates that each fishery be classified according to whether it has frequent, occasional, or a remote likelihood of or no known incidental mortality or serious injury of marine mammals. A Category 1 fishery is one with frequent incidental mortality and serious injury of marine mammals. A Category 2 fishery is one with occasional incidental mortality and serious injury of marine mammals. A Category 3 fishery is one with a remote likelihood or no known incidental mortality and serious injury of marine mammals.

According to the 2019 List of Fisheries (84 FR 22051, May 16, 2019), and again in the 2020 List of Fisheries (85 FR 21079; April 16, 2020), the Hawaii deep-set longline fishery is a Category I
fishery, and the Hawaii shallow-set and American Samoa longline fisheries are Category II fisheries. Because there has been no documented interaction with marine mammals in longline fisheries of Guam and the CNMI and because those fisheries have been inactive since 2011, they are not classified in the 2019 List of Fisheries. The 2020 List of Fisheries made minor changes to information about fishery interactions with marine mammals that is summarized in the SEA (section 3).

As described in the 2019 EA, On October 16, 2014, NMF issued a permit under the MMPA section 101(a)(5)(E), addressing the Hawaii deep-set and shallow-set longline fisheries’ interactions with depleted stocks of marine mammals (9 FR 62105). The permit authorizes the incidental, but not intentional, taking of ESA-listed humpback whales, sperm whales, and main Hawaiian Islands insular false killer whales. In authorizing this permit, NMFS determined that incidental taking by the Hawaii longline fisheries would have a negligible impact on the affected stocks of marine mammals. NMFS has prepared a draft negligible impact determination, and the permit under MMPA section 101(a)(5)(E) remains valid and effective until replaced in accordance with 5 U.S.C. § 558(c). The Hawaii deep-set and shallow-set longline fisheries operate under the permit issued in accordance with the MMPA section 101(a)(5)(E), which addresses the longline fisheries’ interactions with depleted stocks of marine mammals (79 FR 62105) as described in section 5.4 of the 2019 EA.

As described in section 5.4 of the 2019 EA, under the proposed action, and due to existing fishery requirements (e.g., limited entry), NMFS does not expect U.S. longline fisheries to expand or change operations (e.g., area fished, number of vessels fishing, number of trips per year, number of hooks per set, depth of hooks, or gear deployment techniques). The EA and this SEA indicate longline fishing effort in the Hawaii longline fisheries over time may gradually increase, but as described in section 3.3 of this SEA, interaction rates remain within levels authorized and NMFS has no information to believe that this increase would result in a material change in the future conduct of the fishery that would introduce effects to marine mammals to an extent not considered in previous ESA consultations or by the List of Fishery’s classifications and the Section 118 commercial fishery take authorization. As described in this SEA, regardless of which alternative is selected, the Hawaii longline vessels operating under specified fishing agreements would likely continue to operate in a manner consistent with historical fishing patterns and in locations within the EEZ around Hawaii and adjacent high seas throughout each year.

In summary, because none of the alternatives would modify vessel operations or other aspects of the longline fisheries of American Samoa, Guam, the CNMI, and Hawaii in a way that substantially modifies interaction rates with marine mammals, longline fisheries as conducted under the proposed action and alternative are not expected to affect marine mammals in any manner not previously considered or authorized by the commercial fishing take exemption under Section 118 of the MMPA.

5.5 National Historic Preservation Act

The National Historic Preservation Act requires Federal agencies undergo a review process for all federally funded and permitted projects that will affect sites listed on, or eligible for listing on, the National Register of Historic Places. There are presently no known districts, sites,
highways, cultural resources structures or objects listed in or eligible for listing in the National Register of Historic Places in the EEZ around American Samoa, Guam, CNMI, Hawaii, and the Pacific Remote Island Areas, or in adjacent areas of the high seas in international waters where pelagic longline fishing activities are conducted. Because longline fisheries are conducted in deep waters far offshore and do not affect bottom features, neither current nor future longline fishing activities would be expected to affect submerged resources such as shipwrecks that could occur in offshore areas.

5.6 Executive Order (E.O) 12866 (Regulatory Impact Review)

The regulatory philosophy of E.O. 12866 stresses that, in deciding whether and how to regulate, agencies should assess all costs and benefits of all regulatory alternatives and choose those approaches that maximize the net benefits to the society. NMFS prepared a draft Regulatory Impact Review (see Appendix A).

A “significant regulatory action” means any regulatory action that is likely to result in a rule that may –

1. Have an annual effect on the economy of $100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal government or communities;
2. Create a serious inconsistency or otherwise interfere with an action taken or planned by another agency;
3. Materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof; or
4. Raise novel legal or policy issues arising out of legal mandates, the President’s priorities, or the principles set forth in the Executive Order (E.O.).

Based on the costs and benefits discussed in the draft RIR (Appendix A) and the above criteria, none of the alternatives appears to have the potential to constitute a “significant” action under E.O. 12866.

5.7 E.O. 13132 (Federalism)

The objective of E.O. 13132 is to guarantee the Constitution's division of governmental responsibilities between the Federal government and the states. Federalism implications are defined as having substantial direct effects on states or local governments (individually or collectively), on the relationship between the national government and the states, or on the distribution of power and responsibilities among the various levels of government. This action is not expected to contain policies with federalism implications because it would not affect or alter the relationship between the Federal government and the governments of the American Samoa, Guam, the CNMI, or Hawaii.

5.8 Information Quality Act

The information in this document complies with the Information Quality Act and NOAA standards (NOAA Information Quality Guidelines, September 30, 2002) that recognize information quality is composed of three elements: utility, integrity, and objectivity. National
Standard 2 of the Magnuson-Stevens Act states that an FMP's conservation and management measures shall be based upon the best scientific information available. In accordance with this national standard, the information product (i.e., this Supplemental EA and relevant portions of the 2019 EA) incorporates the best biological, social, and economic information available to date, including the most recent biological information on, and assessment of, the pelagic fishery resources and protected resources, and the most recent information available on fishing communities, including their dependence on pelagic longline fisheries, and up-to-date economic information (landings, revenues, etc.). The policy choices, i.e., proposed management measures, contained in the information product are supported by the available scientific information. The management measures are designed to meet the conservation goals and objectives of the Pelagic FEP and the Magnuson-Stevens Act, and other applicable laws.

The data and analyses used to develop and analyze the measures contained in the information product are presented in this SEA and in the relevant portions of the 2019 EA. Furthermore, all reference materials utilized in the discussion and analyses are properly referenced within the appropriate sections of the SEA and 2019 EA. The information products were prepared by Council and NMFS staff based on information provided by PIFSC and PIRO, and from published sources. The information product was reviewed by PIRO and PIFSC staff, and NMFS Headquarters (including the Office of Sustainable Fisheries). Legal review was performed by NOAA General Counsel Pacific Islands and General Counsel for Enforcement and Litigation for consistency with applicable laws, including but not limited to the Magnuson-Stevens Act, National Environmental Policy Act, Administrative Procedure Act, Paperwork Reduction Act, Coastal Zone Management Act, Endangered Species Act, Marine Mammal Protection Act, and Executive Orders 13132 and 12866.

5.9 Paperwork Reduction Act

The purpose of the Paperwork Reduction Act is to minimize the paperwork burden on the public resulting from the collection of information by or for the Federal government. It is intended to ensure that the information collected under the proposed action is needed and is collected in an efficient manner (44 U.S.C. 3501(1)). The proposed action would not establish any new permitting or reporting requirements.

5.10 Administrative Procedure Act

All Federal rulemaking is governed under the provisions of the Administrative Procedure Act (APA) (5 U.S.C. Subchapter II) which establishes a “notice and comment” procedure to enable public participation in the rulemaking process. Under the APA, NMFS is required to publish notification of proposed rules in the Federal Register and to solicit, consider and respond to public comment on those rules before they are finalized. The APA also establishes a 30-day waiting period from the time a final rule is published until it becomes effective, with certain exceptions.

Territorial catch and allocation limit actions comply with the provisions of the APA. In developing annual specifications and AM recommendations, the Council holds public meetings, provides opportunities for the public to comment on the proposed methods, specifications and recommendations, and the Council considers comments from the public and advisory bodies in
making its recommendations. NMFS will publish proposed specifications and solicit public comments on the proposed rule and this SEA and the 2019 EA in the Federal Register. After considering public comments, NMFS will publish in the Federal Register a final specification, which will become effective 30 days after publication, unless an exception to waive the 30-day delay of effectiveness period applies.

5.11 Regulatory Flexibility Act

The Regulatory Flexibility Act (5 U.S.C. 601 et seq.) requires government agencies to assess and present the impact of their regulatory actions on small entities including small businesses, small organizations, and small governmental jurisdictions. The assessment is done by preparing a Regulatory Flexibility Analysis and Final Regulatory Flexibility Analysis (FRFA) for each proposed and final rule, respectively. Under the RFA, an agency does not need to conduct an IRFA or FRFA if a certification can be made that the proposed rule, if adopted, will not have a significant adverse economic impact on a substantial number of small entities.

Based on the available information presented in this SEA and the 2019 EA, NMFS has preliminarily determined that all vessels federally permitted under Pelagic FEP are small entities under the SBA’s definition of a small entity, i.e., they are engaged in the business of fish harvesting (NAICS Code: 114111), are independently owned or operated, are not dominant in their field of operation, and have annual gross receipts not in excess of $11 million.

NMFS further found that, even though this proposed action would apply to a substantial number of vessels, the implementation of this action would not result in significant adverse economic impact to individual vessels. Furthermore, there would be little, if any, disproportionate adverse economic impacts from the proposed rule based on gear type, or relative vessel size. The proposed rule also will not place a substantial number of small entities, or any segment of small entities, at a significant competitive disadvantage to large entities.

NMFS does not expect the proposed action to have a significant economic impact on a substantial number of small entities. As such, an initial regulatory flexibility analysis is not required and none has been prepared.

5.12 E.O. 12898 (Environmental Justice)

On February 11, 1994, President Clinton issued E.O. 12898, “Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations.” E.O. 12898 provides that “each Federal agency shall make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations.” E.O. 12898 also provides for agencies to collect, maintain, and analyze information on patterns of subsistence consumption of fish, vegetation, or wildlife. That agency action may also affect subsistence patterns of consumption and indicate the potential for disproportionately high and adverse human health or environmental effects on low-income populations, and minority populations. A memorandum by President Clinton, which
accompanied E.O. 12898, made it clear that environmental justice should be considered when conducting NEPA analyses.11

The longline fisheries of Hawaii, American Samoa, Guam, and the CNMI are not known to have a large adverse environmental effect on stocks of fish that may be caught by subsistence fisherman, or on other marine resources that may be targeted for subsistence consumption. The fishery does not pollute marine waters and so does not have adverse effects to human health or on marine life. NMFS and the Council manage fisheries through Federal regulations that are intended to conserve marine resources and habitats to enhance the economic and social well-being of fishing communities, including members of minority populations and low-income populations.

NMFS does not expect the proposed action to have large effects to the environment that would result in a disproportionately large and adverse effect on minority or low-income populations. Therefore, there would not be a disproportionately high and adverse impact to minority or low-income populations with respect to the availability of fish, other environmental effects, or health effects if NMFS implements the proposed action.

6 References

We incorporate section 6 from the 2019 EA in its entire and continue the numbering of references from citations here.


11 “Each Federal agency should analyze the environmental effects, including human health, economic, and social effects of Federal actions, including effects on minority populations, low-income populations, and Indian tribes, when such analysis is required by NEPA. Memorandum from the president to the Heads of Departments and Agencies. Comprehensive Presidential Documents No. 279 (February 11, 1994).”


NMFS. 2019g. ESA Section 7 Consultation on the Continued Operation of the American Samoa Deep-set Longline Fishery – Section 7(a)(2) and 7(d) Determinations; Likelihood of Jeopardy and Commitment of Resources During Consultation. April 3, 2019.

NMFS. 2020a, Endangered Species Act Section 7 Consultation on the Continued Operation of the American Samoa Pelagic Longline Fishery – Section 7(a)(2) and 7(d) Determinations; Likelihood of Jeopardy and Commitment of Resources During Consultation – Extension. May 6, 2020.


WPFMC and NMFS. 2014. Amendment 7 to the Fishery Ecosystem Plan for Pelagic Fisheries of the Western Pacific Region. Regarding the Use and Assignment of Catch and Effort Limits of Pelagic Management Unit Species by the U.S. Pacific Island Territories and Specification of Annual Bigeye Tuna Catch Limits for the U.S. Pacific Island Territories: Including an Environmental Assessment and Regulatory Impact Review RIN 0648-BD46; March 27, 2017.

1. Introduction

This document is a regulatory impact review (RIR) prepared under Executive Order (E.O.) 12866, “Regulatory Planning and Review.” The regulatory philosophy of E.O.12866 stresses that, in deciding whether and how to regulate, agencies should assess all costs and benefits of all regulatory alternatives and choose those approaches that maximize the net benefits to the society. To comply with E.O. 12866, the National Marine Fisheries Service (NMFS) prepares an RIR for regulatory actions that are of public interest. The RIR provides an overview of the problems, policy objectives, and anticipated impacts of regulatory actions. The regulatory philosophy of E.O. 12866 is reflected in the following statement:

In deciding whether and how to regulate, agencies should assess all costs and benefits of available regulatory alternatives, including the alternative of not regulating. Costs and benefits shall be understood to include both quantifiable measures (to the fullest extent that these can be usefully estimated) and qualitative measures of costs and benefits that are difficult to quantify, but nevertheless essential to consider. Further, in choosing among alternative regulatory approaches, agencies should select those approaches that maximize net benefits (including potential economic, environmental, public health and safety, and other advantages, distributive impacts; and equity), unless a statute requires another regulatory approach.

This RIR supports implementation of Council recommendations for territorial bigeye tuna catch and allocation limits, for fishing year 2020. NMFS proposes to specify a Council-recommended catch limit of 2,000 metric tons (t) of longline-caught bigeye tuna for each of the pelagic longline fisheries of American Samoa, Guam and the Commonwealth of the Northern Mariana Islands (CNMI) in 2020. Along with the proposed specification, NMFS also proposes to authorize each U.S. territory to allocate and transfer, up to 1,500 t of its 2,000 t bigeye tuna limit to a U.S. longline fishing vessel or vessels identified in a specified fishing agreement. The total allocations across the U.S. territories would not exceed 3,000 t of bigeye tuna in fishing year 2020.

2. Problem Statement and Management Objective

The purpose of this action is to establish bigeye tuna catch and allocation limits for longline fisheries of each U.S. participating territory (American Samoa, Guam, and the CNMI) for 2020, and support the development of fisheries in those territories consistent with Amendment 7 to the Pelagic FEP and fishery development provisions of the Magnuson-Stevens Act. The proposed catch limits for 2020 are needed to 1) prevent bigeye overfishing, 2) support fisheries development in US territories, and 3) promote the availability of sustainably caught bigeye from U.S. vessels supplying the Hawaii seafood market during the culturally important end of year season of peak demand. The need for this action is to ensure that NMFS and the Council manage allocations of longline caught bigeye tuna under specified fishing agreements consistent with the conservation needs of the stock.
A detailed description of the problem and the management objective are presented in Sections 1.3 and 1.4 of the 2019 Environmental Assessment for the Bigeye Tuna Catch and Allocation Limits for Pelagic Longline Fisheries in the U.S. Pacific Island Territories (2019 EA). NMFS and the Council have also prepared a Supplemental Environmental Assessment (SEA) which considers new information about the proposed action and also considers new information relevant to the environmental effects that may have bearing on the impacts.

3. Description of the Fisheries

Section 3.2 of the 2019 EA provides an overview of the pelagic fisheries of the U.S. participating territories and Hawaii. These include the Hawaii longline fishery (Section 3.2.1); American Samoa longline fishery (Section 3.2.2), Mariana Archipelago longline fishery (Section 3.2.3); and Hawaii troll and handline fisheries (Section 3.2.4). Section 3.2.5 presents specific information on U.S. longline catches of bigeye tuna in the Pacific, and Section 3.2.6 presents specific information on U.S. purse seine catches of bigeye in the western and central Pacific. The SEA provided new information regarding Hawaii-based and American Samoa-based longline fisheries along with an assessment that these longline fisheries continued to see trends as described in the 2019 EA.

4. Description of the Alternatives

This section describes the alternative longline bigeye tuna catch and allocation limits for American Samoa, Guam, and the CNMI for 2020. Please see Section 2.2 of the 2019 EA and Section 2 of the SEA for more details on each of the alternatives.

Alternative 1: No Specification of Territorial Catch or Allocation Limits (No Action)

Under Alternative 1, the three participating U.S. would not be subject to a bigeye tuna catch limit and they would not be able to allocate any catch under a specified fishing agreement.

Alternative 2: Specify for each U.S. participating territory, a 2,000 t catch limit and 1,000 t allocation limit (Preferred)

Under Alternative 2, NMFS would implement the Council’s recommendation by specifying a catch limit of 2,000 t of bigeye tuna for each U.S. participating territory. NMFS would also authorize the three U.S. participating territories to each allocate up to 1,500 t of their 2,000 t bigeye limit to FEP-permitted longline vessels identified in a specified fishing agreement with a U.S. territory. The total amount allocated across the U.S. participating territories cannot exceed 3,000 t of bigeye tuna in 2020, which is the same allocation limit across territories that was implemented for 2019.

Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 of the catch limit

Under Alternative 3, NMFS would specify a catch limit of 2,000 t of bigeye tuna for each U.S. participating territory. NMFS would also authorize the three U.S. territories to each allocate up to their entire 2,000 t bigeye limit to FEP-permitted longline vessels identified in a specified fishing agreement with a U.S. territory.
5. Analysis of Alternatives

This section describes potential economic effects of alternatives that were considered and evaluates the impacts of the action alternatives relative to the no-action alternative. In addition to the analysis below, Section 4.4 of the 2019 EA and Section 2 of the SEA provide more information on impacts to longline fishery participants and fishing communities.

**Alternative 1: No Specification of Territorial Catch or Allocation Limits (No Action)**

**U.S. longline fishery (Hawaii-based):**

The U.S. longline fishery based in Hawaii would be subject to a catch limit of 3,554 t and would likely reach the catch limit before the end of the year. Without the option of receiving an allocation of catch through an agreement with any participating territory, vessels in this fishery can no longer retain bigeye tuna caught in the WCPO upon reaching the catch limit. If the shallow-set longline fishery, which targets swordfish, closes early in the year upon reaching the turtle interaction limit for loggerhead or leatherback sea turtles, participants in that fishery could switch to deep-set longline fishing, which would result in the Hawaii deep-set longline fishery reaching the U.S. bigeye tuna catch limit even earlier.

Once the limit is reached, owners and operators of vessels in the Hawaii fleet have few other options besides tying up their boats for the remainder of the calendar year. Vessels that also have an American Samoa longline limited access permit (dual-permit holders) would be able to catch and retain bigeye tuna as long as it is caught outside the U.S. EEZ surrounding the Hawaiian Archipelago. Based on recent fishery performance from 2014-2018, NMFS anticipates that vessels operating in the longline fishery of American Samoa (including dual-permitted holders) would catch approximately 512 t of bigeye tuna each year, although catch attributed to American Samoa would be expected to be higher during a period of extended closure. This is because vessels with dual permits might choose to fish for and land more bigeye tuna into Hawaii (which, under international fishing regulations at 50 CFR 600.224 are attributed to American Samoa) if the Hawaii-based boats are subject to a closure, because the closure would reduce the overall supply of fish landed in Hawaii leading to a higher price per pound of bigeye tuna.

In the event of a closure, Hawaii-based longline vessels may also fish for bigeye tuna in the Eastern Pacific Ocean (EPO), although larger boats, specifically those that exceed 24 meters in length are also subject to a 750 t bigeye tuna catch limit in the EPO (As of April 2020, 35 out of 146 vessels in the Hawaii longline fishery are greater than 24 m). Vessels could also switch to targeting swordfish. However, NMFS closes the shallow-set longline fishery if it reaches a loggerhead or leatherback sea turtle interaction hard cap. Some vessels might stop fishing altogether until the end of the fishing year, if the option to switch to targeting swordfish is not available. On March 19, 2019, pursuant to the court-approved settlement agreement discussed in Section 3.3.1.2 of the EA, NMFS closed the Hawaii shallow-set fishery through December 31, 2019 (84 FR 11654, March 28, 2019) for reaching the annual interaction limit of 17 loggerhead sea turtles. As of April 2020, the shallow-set longline fishery remains open with year-to-date leatherback turtle and loggerhead interactions of two and 13, respectively. ([https://www.fisheries.noaa.gov/pacific-islands/bycatch/sea-turtle-interactions-hawaii-shallow-set-longline-fishery](https://www.fisheries.noaa.gov/pacific-islands/bycatch/sea-turtle-interactions-hawaii-shallow-set-longline-fishery), accessed April 7, 2020). On February 4, 2020, NMFS published a proposed
rule, which would modify the sea turtle caps from 26 to 16 for leatherbacks and remove the cap for loggerheads. The rule, if implemented as proposed, would also create individual trip limits of two leatherbacks and five loggerheads with additional accountability measures.

**American Samoa, Guam, and the CNMI longline fisheries:**

Bigeye catch by longline vessels based in American Samoa, Guam, and the CNMI, as U.S. participating territories, would not be subject to a bigeye tuna catch limit. Recent fishery performance and the current lack of active longline vessels in the CNMI and Guam, suggest that longline vessels based in CNMI and Guam are unlikely to fish for bigeye tuna in 2020. The American Samoa longline fishery sees more activity by comparison. Bigeye tuna catches by longline vessels possessing an American Samoa limited entry permit averaged 512 t from 2014 through 2018. These landings included those that possessed longline limited entry permits for both American Samoa and Hawaii (hereafter, dual permitted vessels). Possessing both permits enabled these dual permitted vessels to attribute fish landed in Hawaii, but caught outside of the Hawaii EEZ, to American Samoa. Of the average 512 t caught by American Samoa longline vessels, dual permitted vessels fishing on the high seas accounted for an average 442 t, while vessels possessing a single American Samoa permit accounted for 70 t of the landings. Once the Hawaii longline vessels are no longer able to retain bigeye tuna caught in the WCPO, dual permit holders might expect to earn a higher price per pound of bigeye tuna as compared to what they might earn for that same fish prior to the fishery reaching the limit. They might also increase fishing effort and/or number of trips to land more bigeye tuna in Hawaii with the potential to earn additional revenue.

**Markets, consumers, and wholesalers:**

Alternative 1 will result in a drop in the supply of locally-caught fresh bigeye tuna in Hawaii and elsewhere. Consumers and wholesalers may be expected to pay higher prices per pound for fresh (and possibly frozen) bigeye tuna provided by other sources. The drop in this supply can be offset by dual permitted vessels’ bigeye tuna landings, and landings from longline vessels fishing in the EPO. The offset will not be enough to completely meet demand for fresh tuna, especially at the end of the year, when demand for fresh bigeye tuna peaks. Because of this, bigeye tuna imports into Hawaii will likely increase to help offset U.S. demand.

**Fisheries fund:**

Under Alternative 1, no funds would be deposited into the Western Pacific Sustainable Fisheries Fund to support fisheries development projects identified through an approved territorial Marine Conservation Plan (MCP). As a result, there would be fewer opportunities for fisheries development in the U.S. participating territories, including improvements to fishery infrastructure.
**Administration and Enforcement:**

Under Alternative 1, with the lack of territory bigeye specifications and specified fishing agreements, actions associated with tracking and assigning catches made under territory arrangements would not be required.

**Alternative 2: Specify for each U.S. participating territory, a 2,000 t catch limit and 1,000 t allocation limit (Preferred)**

Under Alternative 2, several potential scenarios may occur, depending on the number of specified fishing agreements approved by NMFS. The possible outcomes under the varying number of agreements are discussed more fully in Section 4.4.2 of the 2019 EA and Section 2 of the SEA. Depending if and when the catch limit is reached before the end of the year, a single fishing agreement allocating up to 1,500 t of catch may or may not allow the U.S. longline vessels to fish and supply locally caught bigeye tuna through the end of the year. Having two or three specified fishing agreements with U.S. participating territories would increase the likelihood that the U.S. deep-set longline fishery continues to fish through the end of the year and allows for potential additional catch of 3,000 t of bigeye tuna in 2020.

**U.S. longline fishery (Hawaii-based):**

Under Alternative 2, participants in the Hawaii deep-set longline fishery listed on any specified fishing agreement would expect to see positive benefits, while those that are not listed, would see impacts similar to no action. Since most participants in this fishery primarily fish for bigeye tuna in the WCPO, rather than the EPO, enabling many of these participants to fish in this area throughout the year would allow them to continue to earn higher revenues than if they were no longer able to do so (as under the no action alternative). The net gain to this fishery would depend on the number of approved specified fishing agreements.

**American Samoa, Guam, and the CNMI longline fisheries:**

Impacts to the Guam and CNMI longline fisheries should be the same as under the no action alternative, because of the lack of recent longline activity with no active vessels based in those locations. As mentioned under Alternative 1, during a fishery closure, dual permitted vessels can expect a boost in revenue if they continue to fish. This could come from higher prices per pound for bigeye tuna because of the continued demand for locally caught fresh tuna as well as a potential increased fishing effort to take advantage of the higher prices. As the number of fishing agreements increases, with the reduced likelihood of extended closure to U.S. longline vessels to retain bigeye tuna, it becomes less likely that this increase in fishing effort by dual permitted vessels would occur. If only one agreement is implemented, one might expect overall fishing effort by dual permitted vessels to be higher in that year, compared to the case where two or three agreements are implemented. NMFS expects American Samoa limited entry permit holders that are not dual permit holders to fish about the same amount as in recent years; these longliners target albacore to sell to canneries.
Markets, consumers, and wholesalers:

Compared with Alternative 1, Alternative 2 would yield a higher supply of locally-caught fresh bigeye tuna to consumers in Hawaii and elsewhere. If the number of specified fishing agreements enables the Hawaii deep-set longline fishery to fish for and supply bigeye tuna throughout the year, then markets would not be disrupted. Should the U.S. longline fishery reach the bigeye tuna annual limit, consumers, wholesalers, retailers and restaurants would not have to rely on imports, dual permitted vessel landings, EPO landings, and landings by troll and handline boats to help meet market demand, and/or pay higher prices for the same quality of bigeye tuna.

Fisheries fund:

Specified fishing agreements under this alternative would help provide financial support for responsible fisheries development projects identified in the MCPs for U.S. participating territories by providing funds for these projects. If more agreements are executed, more monies may be available through the Western Pacific Sustainable Fisheries Fund to support fishery development projects.

Administration and Enforcement:

Administrative costs under Alternative 2 would be slightly higher than under Alternative 1. Such costs may be generated from in-season monitoring of the WCPO longline catch limits, management costs associated with announcements and notifications of catch prohibition, and monitoring and attributing catches made by vessels identified in specified fishing agreements. Enforcement costs should be about the same as under Alternative 1.

Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and up to 2,000 t allocation limit

Under Alternative 3, the possible outcomes depending on the number of agreements are discussed more fully in Section 4.4.3 of the 2019 EA. Should the catch limit be reached in November or earlier, a single fishing agreement allocating 2,000 t of catch might not allow U.S. longline vessels to supply locally-caught bigeye tuna through the end of the year, whereas two specified fishing agreements would likely be sufficient.

U.S. longline fishery (Hawaii-based):

Under Alternative 3, participants in the Hawaii deep-set longline fishery listed on any specified fishing agreement would expect to see positive benefits, while those that are not listed, would see the impacts similar to no action. Since most participants in this fishery primarily fish for bigeye tuna in the WCPO, rather than the EPO, enabling many of these participants to fish in this area throughout the year would allow them to continue to earn higher revenues than if they were no longer able to do so (as under the no action alternative). The net gain to this fishery would depend on the number of approved specified fishing agreements.
American Samoa, Guam, and the CNMI longline fisheries:

Impacts to the Guam and CNMI longline fisheries should be the same as under the no action alternative and Alternative 2, because of the lack of recent longline activity with no vessels currently based in these locations. Guam and CNMI would also be more likely to allocate the full 2,000 t. Vessels possessing an American Samoa longline limited access permit would likely catch about 512 t of bigeye tuna based on annual average catch between 2014 and 2018. Catch could include catch landed in American Samoa or caught by dual permit holders and subsequently attributed to American Samoa. Because of this, the American Samoa government could control the amount of catch to be allocated in order to reserve some portion of the 2,000 t limit for the local vessels in order to reduce potential effects to local fishery participants. However, if the American Samoa government did allocate the entire 2,000 t limit to the U.S. longline fleet, NMFS would have to prohibit retention of bigeye tuna in the local albacore targeting fleet and by dual-permitted vessels. This would also mean that during the time that the U.S. longline fleet is closed to fishing for bigeye tuna, dual permitted vessels would not be able to land bigeye tuna caught outside the U.S. EEZ around Hawaii in Hawaii and earn the temporarily higher revenue during the closure period.

Markets, consumers, and wholesalers:

Compared with Alternative 1, and similar to Alternative 2, Alternative 3 would yield a higher supply of locally-caught fresh bigeye tuna to consumers in Hawaii and elsewhere. If the number of specified fishing agreements enables the Hawaii deep-set longline fishery to supply bigeye tuna throughout the year, then markets would not be disrupted. Consumers, wholesalers, retailers and restaurants would not have to rely on imports, dual permitted vessel landings, EPO landings, and landings by troll and handline boats to help meet market demand, and/or pay higher prices.

Fisheries fund:

Similar to Alternative 2, specified fishing agreements under Alternative 3 would help provide financial support for responsible fisheries development projects identified in the MCPs for U.S. participating territories by providing funds for these projects. If more agreements are executed, more monies may be available through the Western Pacific Sustainable Fisheries Fund to support fishery development projects.

Administration and Enforcement:

Administrative costs under Alternative 3 would be slightly higher than under Alternative 1 and similar to Alternative 2. Enforcement costs should be about the same as under Alternatives 1 and 2.

Comparing Net Benefits between alternatives:

Implementing the Council-preferred Alternative 2, or Alternative 3, may generate a positive net benefit relative to the no action alternative. The preferred action would result in a very small potential negative impact to bigeye tuna stocks and possibly to some domestic fishing entities such as dual permitted vessels and troll and handline boats that might otherwise receive higher prices for bigeye tuna. But these may be offset by the incremental benefits to the U.S. longline
fishery based in Hawaii as a whole, consumers, and to fisheries development in territories that are party to the specified fishing agreement through the end of the calendar year.
Appendix B. 2019 Environmental Assessment, Bigeye Tuna Catch and Allocation Limits for Pelagic Longline Fisheries in U.S. Pacific Island Territories (RIN 0648-XG925)
FINDING OF NO SIGNIFICANT IMPACT

Bigeye Tuna Catch and Allocation Limits for Pelagic Longline Fisheries in U.S. Pacific Island Territories (RIN 0648-XG925)

July 1, 2019

The National Marine Fisheries Service (NMFS) prepared this Finding of No Significant Impact (FONSI) according to the following guidance:

- National Oceanic and Atmospheric Administration (NOAA) Administrative Order (NAO) 216-6A, “Compliance with the National Environmental Policy Act, Executive Orders 12114 (Environmental Effects Abroad of Major Federal Actions), 11988 and 13690 (Floodplain Management), and 11990 (Protection of Wetlands); and its associated Companion Manual (January 13, 2017); and
- Council on Environmental Quality (CEQ) significance criteria at 40 CFR 1508.27(b).

Background and Federal Action

The National Marine Fisheries Service (NMFS) will specify 2019 territorial limits for longline-caught bigeye tuna under the authority of the Magnuson-Stevens Fishery Conservation and Management Act. Consistent with the Fishery Ecosystem Plan for Pelagic Fisheries of the Western Pacific (Pelagics FEP), the Western Pacific Fishery Management Council (Council) recommended that NMFS specify a catch limit of 2,000 metric tons (t) of longline-caught bigeye tuna for each U.S. Pacific territory (American Samoa, Guam, and the Northern Mariana Islands). The Council also recommended that NMFS authorize each territory to transfer up to 1,000 t of its limit to U.S. longline fishing vessels in a valid specified fishing agreement (50 CFR 665.819). As an accountability measure, NMFS will monitor U.S. longline catches. When NMFS projects that the fishery will reach a territorial catch or allocation limit, NMFS will prohibit the retention of bigeye tuna. The proposed action (Alternative 2) provides for the sustainable harvest of bigeye tuna while supporting fisheries development projects in the U.S. Pacific territories.

Environmental Assessment

NMFS prepared an environmental assessment (EA), dated June 27, 2019, that analyzed the potential impacts on the human environment from establishing the proposed catch and allocation limits in fishing years 2019 – 2023. The fishing year begins on January 1 and ends on December 31. The EA considered three management alternatives, including the proposed action and the no-action alternative. The EA analyzes the following three alternatives for catch and allocation limit specifications in detail:

- Alternative 1: NMFS would not specify a territorial bigeye tuna catch or allocation limit (No Management Action).
• Alternative 2: NMFS would specify, for each territory, a 2,000 t catch limit and 1,000 t allocation limit (Preferred/Status Quo).
• Alternative 3: NMFS would specify, for each territory, a 2,000 t catch limit and 2,000 t allocation limit.

The preferred alternative is Alternative 2. The EA indicates that this alternative would not result in adverse effects on the long-term sustainability of bigeye tuna, other non-target species, bycatch species, protected species, or adversely affect marine habitats, or result in large changes to any western Pacific longline fishery if implemented annually in fishing years 2019-2023. The EA concluded that an annual specification, including for fishing year 2019, of a 2,000 t catch limit and 1,000 t allocation limit for each territory would not significantly affect the long-term sustainability of fishery resources of the U.S. Pacific islands. Overall, the proposed action does not change the manner in which the longline fisheries are conducted or the effects of the fishery on any resources.

Significance Analysis

The Council on Environmental Quality (CEQ) Regulations state that the determination of significance using an analysis of effects requires examination of both context and intensity, and lists ten criteria for intensity (40 CFR 1508.27). In addition, the Companion Manual for National Oceanic and Atmospheric Administration Administrative Order 216-6A provides sixteen criteria, the same ten as the CEQ Regulations and six additional, for determining whether the impacts of a proposed action are significant. Each criterion is discussed below with respect to the proposed action, considered individually and in combination with the others.

1. Can the proposed action reasonably be expected to cause both beneficial and adverse impacts that overall may result in a significant effect, even if the effect will be beneficial?

No. The EA did not identify significant impacts to the human environment. Under the proposed action, NMFS does not expect significant adverse effects on target and non-target stocks (EA Sections 4.1 to 4.3); the socio-economic setting (EA Section 4.4); protected species (EA Section 4.5); marine habitats, critical habitat, or essential fish habitat (EA Section 4.6); or the management setting (EA Section 4.7). This action may have minor beneficial effects to safety-at-sea for the Hawaii longline fishery (EA Section 4.4.1) and to the fishing communities in Hawaii and the U.S. Pacific Island territories (EA Section 4.4.2).

2. Can the proposed action reasonably be expected to significantly affect public health or safety?

No. This action might have some positive benefits to safety-at-sea for the Hawaii longline fishery by allowing fishery participants to enter into specified fishing agreements to fish in the WCPO after the Western and Central Pacific Fisheries Commission (WCPFC)-mandated longline limit is reached. The opportunity for longline vessels to enter into specified fishing agreements with the U.S. participating territories, and for fishing in the WCPO under territorial bigeye tuna allocation limits, might benefit small vessels in the Hawaii longline fishery. This is because, when the U.S. longline fishery reaches the WCPO catch limit for bigeye tuna, all longline vessels
must either stop fishing or fish for bigeye tuna in the Eastern Pacific Ocean (EPO), which is further from Hawaii than some fishing grounds in the WCPO. During one of the most active hurricane seasons in the EPO on record in 2015, higher market prices due to reduced availability during a closure may have incentivized smaller vessels, which are not subject to the EPO bigeye tuna limit if under 24 m in length, to fish in the EPO rather than tie up. The positive effects are not considered significant, however, because under the proposed action and no-action, vessels would continue to monitor weather and sea conditions (EA, Section 4.4.1).

3. Can the proposed action reasonably be expected to result in significant impacts to unique characteristics of the geographic area, such as proximity to historic or cultural resources, park lands, prime farmlands, wetlands, wild and scenic rivers, or ecologically critical areas?

No. NMFS does not expect substantial physical, chemical, or biological alterations to habitat. Longline fishing does not occur in marine protected areas, marine sanctuaries, or marine monuments and existing longline fishing practices will not change under the proposed action so no impacts are anticipated (EA, Section 4.6).

The pelagic longline fleets under the proposed action do not operate within estuarine waters or have the potential to affect wetlands. Furthermore, because pelagic longline fishing activities authorized occur offshore and in deep oceanic waters away from land, populated areas, and marine protected areas such as marine national monuments, the proposed action would not have an effect on air/water quality, coral reefs, or benthic marine habitats beyond those considered in Section 3.3.5 (EA, Section 3.6).

4. Are the proposed action’s effects on the quality of the human environment likely to be highly controversial?

No. The implementing framework regulations of the Pelagics FEP, and the 2014 catch and allocation limit specifications (which are identical to the 2019 proposed action), were previously the subject of litigation (Conservation Council for Hawai‘i, et al., v. NMFS (D. Hawaii 2015)). In December 2015, the U.S. District Court of Hawaii ruled in favor of NOAA, finding that NMFS’ approval of both the framework rule implementing Amendment 7 and the 2014 specifications were consistent with WCPFC decisions and applicable law.

The effects of the proposed action, as analyzed in the EA, are not likely to be highly controversial. The analysis of the potential outcomes under the proposed action considered varying numbers of fishing agreements, and corresponding allocations, as well as partial or full utilization of the bigeye tuna catch limit for the U.S. participating territories. In the EA, Alternative 2 Outcome D represents the maximum potential impact of the preferred alternative. The analysis in the EA showed that the proposed action would not affect the sustainability of any fish stock or marine resource (see Answer, Question 12).

NMFS does not expect the potential impacts of Outcome D to be controversial because the WCPFC acknowledges U.S. participating territories’ transfer of bigeye tuna to U.S. longline vessels through specified fishing agreements. Also, the most recent bigeye tuna assessment for the
WCPO indicates that the stock is not subject to overfishing and is not overfished, and would remain as such under the proposed action. We note that NMFS monitors the fisheries and would require that Council management measures prevent overfishing, should future stock assessments indicate that target or non-target stocks are subject to overfishing or overfished.

Additionally, the Hawaii longline fishery will continue to operate in accordance with regulations intended to prevent and reduce adverse impacts to the environment. NMFS will base future catch and allocation limits on the best available scientific and commercial information about stock status, and will develop the limits considering applicable international conservation and management measures for highly migratory species. Future catch and allocation limits will be subject to additional environmental review under the National Environmental Policy Act (NEPA), Endangered Species Act (ESA), the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act), and other applicable law, to ensure the sustainability of target and non-target stocks, the conservation of protected species and the human environment, and consistency with all applicable international obligations.

5. Are the proposed action’s effects on the human environment likely to be highly uncertain or involve unique or unknown risks?

No. The EA did not identify impacts to the human environment that are likely to be highly uncertain or involve unique or unknown risks. Under the proposed action, the Hawaii fishery should continue to fish within historical effort levels. U.S. fisheries will continue to comply with all applicable international conservation and management measures and will continue to fish in accordance with provisions of applicable laws intended for the conservation of fish stocks and protection of the environment. Under the proposed action, the Hawaii longline fishery will continue to comply with existing observer and reporting requirements; NMFS will be able to identify and address any unanticipated impacts to fish stocks or protected species. We will include new information regarding stock status and impacts to the environment in annual reviews of catch and allocation limits, as appropriate.

6. Can the proposed action reasonably be expected to establish a precedent for future actions with significant effects or represent a decision in principle about a future consideration?

No. The proposed action supports establishment of territorial bigeye tuna catch and allocation limits for each U.S. participating territory (i.e., American Samoa, Guam and the Northern Mariana Islands) in 2019. At its 176th meeting, from March 19-21, 2019, in Honolulu, Hawaii, the Council recommended a 2,000 t bigeye tuna catch limit and 1,000 t allocation limit for fishing year 2019. NMFS would specify the 2,000 t bigeye tuna catch limit and also authorize each territory to allocate and transfer up to 1,000 t of its 2,000-t bigeye tuna limit to U.S. longline fishing vessels identified in a valid specified fishing agreement. The 2019 specifications, as recommended by the Council, will end on December 31, 2019. Under the proposed action, the Hawaii longline fishery will continue to operate in accordance with regulations intended to prevent and reduce adverse impacts to the environment. Future catch and allocation limits, if recommended by the Council, will be based on the best available scientific and commercial information on stock status. NMFS and the Council would annually develop and review these limits considering...
applicable international conservation and management measures for highly migratory species. Future catch and allocation limits would also be subject to environmental review and approval under NEPA, ESA, the Magnuson-Stevens Act, and other applicable law, to ensure the sustainability of target and non-target stocks, the conservation of protected species and the human environment, and consistency with all applicable international obligations. For these reasons, this action would not automatically lead to approval of future actions that could have significant impacts.

7. Is the proposed action related to other actions that when considered together will have individually insignificant but cumulatively significant impacts?

No. The impacts of the Hawaii longline fishery fishing under territorial bigeye tuna catch and allocation limits will not have cumulatively significant impacts when considered together with past, present and reasonably foreseeable actions by NMFS, Hawaii-managed fisheries, or by others. NMFS evaluated the potential for cumulative effects of the action on target and non-target stocks, ocean productivity related to climate change, protected species, catch rates of target and non-target species, and fishing communities. None of the pelagic longline fisheries are expected to change under the proposed action, and the fishery would continue to be managed sustainably. As documented in the EA, the fisheries are not known to be having substantial adverse effects on any protected species, including recently listed species. For these reasons, NMFS does not expect the proposed action to result in cumulatively significant impacts (EA, Section 4.8).

8. Can the proposed action reasonably be expected to adversely affect districts, sites, highways, structures, or objects listed in or eligible for listing in the National Register of Historic Places or may cause loss or destruction of significant scientific, cultural, or historical resources?

No. We have not identified such resources in the areas affected by commercial longline fishing (EA, Section 3.6).

9. Can the proposed action reasonably be expected to have a significant impact on endangered or threatened species, or their critical habitat as defined under the Endangered Species Act of 1973?

No. Potential effects of the proposed action on endangered or threatened species, marine mammals, or critical habitat of these species are described in Section 4.5 of the EA. The baseline conditions in the EA are based on a detailed review of the operation of the Hawaii and American Samoa longline fisheries, expected level of interactions, and the potential effects of the annual levels of interactions on these species.

The information in the EA indicates that under all alternatives considered, the proposed action is expected to result in levels of interactions similar to those analyzed in association with the operation of the fisheries, which do not have a substantial effect on any listed species; therefore, none of the alternatives are expected to have large adverse effects on ESA-listed species. Under the proposed action, NMFS expects overall populations of listed species that interact with the fishery to remain large enough to maintain genetic heterogeneity, broad demographic representation, and
successful reproduction, and to retain the potential for recovery. Longline fishing activities do
not occur in identified critical habitat. When prey species are considered features of essential
habitat, either prey species are not caught by the fishery, stocks are subject to domestic or inter-
national management and other management controls and fished sustainably, or the listed species
is capable of diversifying their diet in response to changes in the availability of prey species. For
these reasons, NMFS does not expect the proposed action to adversely impact critical habitat.

NMFS expects to complete the ESA Section 7 consultations addressing the Hawaii deep-set and
shallow-set longline fisheries and the American Samoa deep-set longline fishery and issue new
biological opinions for the fisheries. Consultation for the Hawaii deep-set fishery was reinitiated
on October 4, 2018; for the shallow-set fishery, April 20, 2018; and for the American Samoa
depth-set longline fishery, April 3, 2019. If the information in the biological opinions indicates
the continued operation of the fisheries would result in impacts to listed species that are substan-
tially different from the expected levels of interactions and associated impacts found in Section
3.3 of the EA, NMFS would evaluate that information to determine whether it changes our un-
derstanding of the potential effects of the proposed action and prepare supplemental environmen-
tal analyses as appropriate. To meet our management mandates, NMFS, the Council, and interna-
tional fishery management organizations such as the WCPFC and IATTC would continue to de-
velop protected species mitigation measures as resource issues are identified through reporting
and monitoring.

10. Can the proposed action reasonably be expected to threaten a violation of Federal, state,
or local law or requirements imposed for environmental protection?

No. The Council, which includes representatives from American Samoa, Guam, the CNMI, and
Hawaii, develop territorial bigeye tuna catch and allocation limits in accordance with the Mag-
nuson-Stevens Act and other applicable laws. Council deliberations take place in public forums
and the Council provides opportunities for public comments during development of its recom-
mendations. NMFS and Council staff developed the EA and coordinated with territory and state
government natural resource agencies and the public, and no comment was provided that leads
NMFS to find that the proposed action would be inconsistent with applicable laws (EA Section
5). Further, after consultation with Hawaii and the U.S. participating territories, NMFS deter-
mined that this action is consistent to the maximum extent possible with all relevant approved
coastal zone management policies.

11. Can the proposed action reasonably be expected to adversely affect stocks of marine
mammals as defined in the Marine Mammal Protection Act?

No. Impacts to marine mammals are described in Section 4.5 of the EA. The baseline conditions
in the EA are based on a detailed review of the operation of the Hawaii and American Samoa
longline fisheries, expected level of interactions, and its potential impact on these mammals. We
note that all Western Pacific longline fisheries operate under a suite of management measures de-
signed to prevent and reduce the severity of interactions with marine mammals, and that help
NMFS and the Council to monitor such interactions. The proposed action would not change the
way any fishery is conducted, and would continue to require the same management measures
that are currently in place. For these reasons, the proposed action is not expected to have a substantial effect on any marine mammal stock.

12. Can the proposed action reasonably be expected to adversely affect managed fish species?

Target Stocks

No. The U.S. longline fishing vessels primarily target bigeye tuna. According to the most recent (2017) stock assessment as updated (2018) for WCPO bigeye tuna endorsed by the WPCFC Scientific Committee, it appears the stock is not experiencing overfishing (94% probability) and is not in an overfished condition (100% probability).

The EA analyzes potential effects on WCPO bigeye tuna by projecting the potential status of the WCPO bigeye tuna stock under the catch assumptions associated with multiple potential outcomes for the alternatives. As described in the EA, overfishing occurs when the fishing mortality rate (F/FMSY ratio) is greater than 1.0 for one year or more. NMFS considers a stock overfished when the total stock biomass (B/BMSY ratio) falls below the minimum size stock threshold (MSST). For bigeye tuna, MSST is considered to be breached if the B/BMSY ratio falls below 0.6.

The analysis of the potential outcomes under the proposed action considered varying numbers of fishing agreements, and corresponding allocations, as well as partial or full utilization of the bigeye limit set for the U.S. territories.

In the EA, Alternative 2 Outcome D represents the maximum potential impact of the preferred alternative. Outcome D assumes all three U.S. territories would enter into a fishing agreement and each allocate 1,000 t of their 2,000-t bigeye tuna catch limit to U.S. fishing vessels through the agreements. Outcome D also assumes that each of the three U.S. territories would catch 1,000 t of bigeye tuna (3,000 t) each year, and that U.S. pelagic fisheries would harvest each of the territory’s allocation limit of 1,000 t of bigeye tuna under three specified fishing agreements each year (another 3,000 t).1

If NMFS did not allow any U.S. participating territory to annually allocate any tuna to Hawaii longline vessels (Alternative 1), and assuming annual implementation of the provisions of WCPFC’s current management measure for tropical tunas (WCPFC 2018-01), the analysis in the EA projects that $F_{2045}/F_{MSY}$ would be 0.82, meaning that WCPO bigeye would be below the overfishing threshold in 2045. With respect to spawning biomass, the analysis indicates that $SB_{2045}/SB_{F=0}$ is 0.38, which is above the WCPFC limit reference point or LRP ($SB_{2045}/SB_{F=0} = 0.20$) and Pelagics FEP’s MSST ($B/B_{MSY} 0.6$).2 The WCPO bigeye stock would not be subject to overfishing or in an overfished condition when projected to 2045 under Alternative 1.

---

1 NMFS does not consider Outcome D to be the most likely outcome because out of the three territories, only American Samoa currently has a longline fishery, which primarily targets albacore, and none of the territories have demonstrated the capacity to harvest the full amount of its authorized bigeye limit. Nevertheless, because we authorize the amount under Outcome D, we have analyzed its potential impact on WCPO bigeye tuna.

2 Under the status determination criteria specified in the Pelagics FEP, WCPO bigeye tuna is overfished when $SB/ SB_{MSY} = 0.6$. This is equivalent to $SB/ SB_{F=0} = 0.14$. 
Under Outcome D, the projected median mortality would be $F_{2045}/F_{MSY} = 0.86$, or not subject to overfishing. Under Outcome D, median total biomass would be $SB_{2045}/SB_{F=0} = 0.37$, which means the stock would not be in an overfished condition under Outcome D in 2045.

NMFS expects Alternative 2 Outcome C is a more likely outcome to occur each year than Outcome D. Outcome C assumes each territory would not fully utilize the remaining 1,000 t of its catch limit, which is consistent with the current state of the territorial longline fisheries (currently neither Guam nor the Northern Mariana Islands has longline fisheries capable of targeting bigeye and the American Samoa longline fishery primarily targets albacore). Under Alternative 2-Outcome C, bigeye tuna would not be subject to overfishing or overfished because the projected median fishing mortality would be $F_{2045}/F_{MSY} = 0.85$ and the median total biomass would be $SB_{2045}/SB_{F=0} = 0.37$. The average annual catch of longline-caught WCPO bigeye tuna from 2014-2017 is 5,639 t, which is closest to Outcome B, under which the projected fishing mortality would be $F_{2045}/F_{MSY} = 0.84$ and the median total biomass would be $SB_{2045}/SB_{F=0} = 0.37$, or not subject to overfishing or overfished.

The most recent stock assessment of bigeye tuna in the EPO indicates that $F/F_{MSY} = 1.15$ and $SB_{2014-2016}/SB_{MSY} = 1.02$ (Xu et al. 2018). NMFS has not determined this assessment to represent the best scientific information for making status determinations because of questions and concerns identified by the Inter-American Tropical Tuna Commission’s (IATTC) scientific advisory committee at its 9th meeting held May 14-28, 2018 (see Section 3.1.1 of the EA). In 2017, total bigeye tuna landings in the EPO by the longline fisheries in Hawaii, American Samoa, Guam, and the CNMI was 2,690 t (WPFMC 2018) or 2.8 percent of the estimated MSY of 95,491 t (Xu et al. 2018) and 2.8 percent of the total 2017 catch of 97,519 t (IATTC 2018). The impact of the purse-seine fishery on the bigeye stock is far greater than that of the longline fishery (Xu et al. 2018). Given the U.S. longline fleet’s small contribution to overall fishing mortality, NMFS does not anticipate that the Hawaii-based longline fleet would influence stock dynamics of bigeye tuna in the EPO. Because NMFS, the Council, and regional fishery management organizations such as the IATTC adjust fishery management measures based on the best available information to prevent overfishing and NMFS does not expect the U.S. longline catch of EPO bigeye tuna would influence stock status, NMFS does not expect Alternatives 1, 2 or 3 to substantially affect the EPO bigeye tuna stock.

Based on these analyses, NMFS does not expect the proposed action to jeopardize the sustainability of the target species.

**Non-Target Stocks**

No. Under this action, U.S. longline fisheries in Hawaii and the U.S. territories will continue to comply with all federal regulations implementing international conservation and management measures adopted by WCPFC, and domestic conservation and existing management under the Pelagics FEP to ensure that fishing is sustainable. Potential effects to non-target stocks are discussed in Section 4.3 of the EA. Catches of non-target species in the Hawaii longline fishery are driven by the fishing effort for bigeye tuna. If fishing effort for bigeye tuna increases, the catches of other target and non-target stocks would be expected to increase with the increases in fishing.
effort. The predicted level of fishing effort by the U.S. participating territories and the Hawaii longline fishery under Alternatives 2 and 3 are expected to result in catches of non-target species similar to historical baseline levels, although there could be slightly less effort by Hawaii-based fisheries under Alternative 1 compared to Alternatives 2 and 3 (EA Sections 4.1.1.2 and 4.1.4) and more effort under Alternative 3. The U.S. longline fisheries account for a small proportion of overall catch of non-target stocks. Even with an increase in catch in the deep-set sector of the Hawaii longline fishery under increased levels of effort, NMFS expects the proportion of increased catch would remain low in comparison to MSY or total catch for all species in 2019.

NMFS will continue to monitor all longline fisheries for information on catch, bycatch, and discards, and interactions with protected species. Fishery monitoring allows NMFS and the Council to respond to potential needs to reduce bycatch and mortality of bycatch. Longline vessels that fish under specified fishing agreements under the action will still be required to submit logbooks, carry observers when requested by NMFS, and carry and operate a vessel monitoring system (VMS) unit. Because NMFS, the Council, and RFMOs adjust fishery management measures based on the best available information to prevent overfishing and NMFS does not expect the U.S. longline catch of non-target stocks would influence stock status of these species, the potential effects of the alternatives on non-target stocks are not substantial.

13. Can the proposed action reasonably be expected to adversely affect essential fish habitat as defined under the Magnuson-Stevens Fishery Conservation and Management Act?

No. Section 4.6 of the EA describes the impacts on essential fish habitat (EFH) and habitat areas of particular concern (HAPC). The proposed action would not change the way any longline fishery is conducted, and would not adversely impact the marine habitat, particularly EFH or HAPC. NMFS knows of no western Pacific pelagic fishery that has large adverse impacts to habitats, and so none of the alternatives is likely to lead to substantial physical, chemical, or biological alterations to the habitat.

Longline fishing involves suspending baited hooks in the upper surface layers of the water column, which does not materially impact benthic marine habitat under typical operations. Derelict longline gear may impact marine benthic habitats; however, the loss of longline gear during normal fishing operations is not believed to be at levels that result in significant or adverse impacts to EFH, HAPC, or the marine habitat.

14. Can the proposed action reasonably be expected to adversely affect vulnerable marine or coastal ecosystems, including but not limited to, deep coral ecosystems?

No. Section 4.6 of the EA describes the impacts on marine habitats. None of the alternatives considered would adversely impact the marine habitat, including vulnerable marine and coastal ecosystems, including marine protected areas (MPAs), marine sanctuaries, or marine monuments. NMFS knows of no western Pacific pelagic fishery that has large adverse impacts to habitats, and so none of the alternatives is likely to lead to substantial physical, chemical, or biological alterations to the habitat. Longline fishing does not occur in coastal areas or MPAs, so the proposed action would not impact these vulnerable or protected ecosystems.
Longline fishing involves suspending baited hooks in the upper surface layers of the water column, which does not materially impact benthic marine habitat under typical operations. Derelict longline gear may impact marine benthic habitats; however, the loss of longline gear during normal fishing operations is not believed to be at levels that result in significant or adverse impacts to vulnerable marine ecosystems including deep coral beds.

15. Can the proposed action reasonably be expected to adversely affect biodiversity or ecosystem functioning (e.g., benthic productivity, predator-prey relationships, etc.)?

No. NMFS is not aware of studies that show effects from pelagic longline fisheries to species fecundity or negative predator/prey relationships that result in adverse changes to food web dynamics. Without management to ensure fishing is sustainable, the removal of top predator pelagic species such as bigeye tuna, yellowfin tuna, and billfish above natural mortality rates has the potential to cause major imbalances or wide-ranging change to ecosystem functions and habitats. However, both international and domestic fishery managers are controlling catches throughout the Pacific. NMFS expects such control to improve stock status and prevent imbalances or wide-ranging changes to ecosystem function. Additionally, NMFS does not expect the proposed action to result in fishing effort above baseline levels of operation. Therefore, NMFS does not analyze effects on biodiversity and/or ecosystem function in the EA (EA, Section 3.6).

16. Can the proposed action reasonably be expected to result in the introduction or spread of a nonindigenous species?

No. This action would not change the conduct of longline fisheries, and these fisheries are not known to be spreading or introducing non-indigenous species (EA, Section 3.6).

Summary and Other Findings

NMFS also considered the effects of climate change on the resources considered in the EA and the potential effects of the alternatives considered in the face of climate change (EA, Section 4.8.4). Monitoring of stock status would continue, and allow detection of impacts to stocks that might be occurring because of climate change. NMFS and the Council could modify fishery management provisions to ensure that all fisheries remain sustainably managed. NMFS does not expect the action to result in a change in the fishery’s conduct, so there would be no change in greenhouse gas emissions.

NMFS does not expect the conduct of U.S. longline fisheries in the Pacific Islands under the proposed action to have significant adverse impacts to the physical marine environment, target or non-target fish species, protected resources, fishery participants and communities, or state and federal enforcement or fisheries administration. The Hawaii longline fishery will continue to operate in accordance with provisions of the Pelagics FEP, other applicable regulations, and with authorizations undertaken in accordance with the ESA and MMPA. These regulations and authorizations will help ensure the sustainable management of the affected stock, consistent with conservation and management objectives under applicable law and WCPFC decisions.
Determination

In view of the information presented in this document and the analysis contained in the supporting EA prepared for bigeye tuna catch and allocation limits for pelagic longline fisheries in U.S. Pacific island territories effective in 2019-2023, it is hereby determined that the 2019 bigeye tuna catch and allocation limits for pelagic longline fisheries in U.S. Pacific island territories will not significantly impact the quality of the human environment. In addition, all beneficial and adverse impacts of the proposed action have been addressed to reach the conclusion of no significant impacts. Accordingly, preparation of an environmental impact statement for this action is not necessary.

Michael D. Tosatto
Regional Administrator

July 1, 2019

Environmental Assessment

Bigeye Tuna Catch and Allocation Limits for Pelagic Longline Fisheries in U.S. Pacific Island Territories
(RIN 0648-XG925)

June 27, 2019

Responsible Federal Agency: Pacific Islands Regional Office (PIRO)
National Marine Fisheries Service (NMFS)
National Oceanic & Atmospheric Administration (NOAA)

Responsible Official: Michael D. Tosatto
Regional Administrator, PIRO
1845 Wasp Blvd., Bldg. 176
Honolulu, HI 96818
Tel (808) 725-5000
Fax (808) 725-5215

Responsible Council: Western Pacific Fishery Management Council
1164 Bishop Street, Suite 1400
Honolulu, HI 96813
Tel (808) 522-8220
Fax (808) 522-8226

Abstract

The Western Pacific Fishery Management Council (Council) and National Marine Fisheries Service (NMFS) will establish bigeye tuna territorial catch and allocation limits for each U.S. participating territory in the western and central Pacific Ocean, as recommended annually by the Council, for years 2019 through 2023, pursuant to the Fishery Ecosystem Plan for the Pacific Pelagic Fisheries of the Western Pacific Region (Pelagics FEP). NMFS would authorize each U.S. territory to allocate and transfer bigeye tuna limits to a U.S. longline fishing vessel(s) permitted under the Pelagics FEP and identified in a specified fishing agreement applicable to the territory. Criteria for a specified fishing agreement and the process for attributing longline-caught bigeye tuna made by vessels of the U.S. participating territories and U.S. vessels identified in an approved specified fishing agreement are codified in 50 CFR 665.819. Catch and allocation limits would be in effect until the end of the relevant fishing year.

This environmental assessment (EA) considers the following alternatives for catch and allocation limit specifications in detail:
• Alternative 1: NMFS would not specify annual territorial bigeye tuna catch or allocation limits (No Action).
• Alternative 2: NMFS would specify, for each territory, an annual 2,000 metric ton (t) catch limit and 1,000 t allocation limit (Preferred/Status Quo).
• Alternative 3: NMFS would specify, for each territory, an annual 2,000 t catch limit and up to a 2,000 t allocation limit.

The alternatives are identical to those analyzed in the EA supporting the 2018 Bigeye Tuna Catch and Allocation Limits for Pelagic Longline Fisheries in the U.S. Pacific Island Territories (NMFS 2018g). The analysis in this EA indicates that none of the three action alternatives for catch and allocation limits and accountability measures are expected to result in adverse effects on the long-term sustainability of bigeye tuna, other non-target species, bycatch species, protected species, or adversely affect marine habitats, or result in large changes to any western Pacific longline fishery in a given year from 2019 through 2023.

At its 176th meeting, from March 19-21, 2019, in Honolulu, Hawaii, the Council recommended a 2,000 t bigeye tuna catch limit and 1,000 t allocation limit for fishing year 2019, which is NMFS’ preferred alternative in this EA. The Western Pacific longline fisheries have operated under this preferred alternative since 2014. NMFS’ issuance of any future territorial bigeye tuna catch and allocation limits will be based on Council recommendations, which will in turn be based on the best available scientific information relevant to management objectives. Future proposed catch and allocation limits will be subject to additional review by NMFS and opportunities for public comment.

NMFS provided the public with a review and comment period on the draft EA; we received a comment that resulted in a technical correction to Table 32. Copies of this EA and final rule are found under RIN 0648-XG925 at www.regulations.gov, or by contacting the responsible official or Council at the above addresses.

*If you need assistance with this document, please contact NMFS at 808-725-5000.*
## ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANE</td>
<td>Adult nesting equivalency</td>
</tr>
<tr>
<td>APA</td>
<td>Administrative Procedure Act</td>
</tr>
<tr>
<td>B</td>
<td>Biomass</td>
</tr>
<tr>
<td>BE</td>
<td>biological evaluation</td>
</tr>
<tr>
<td>BET</td>
<td>bigeye tuna</td>
</tr>
<tr>
<td>BiOp</td>
<td>Biological Opinion</td>
</tr>
<tr>
<td>CMM</td>
<td>Conservation and management measure</td>
</tr>
<tr>
<td>CNMI</td>
<td>Commonwealth of the Northern Mariana Islands</td>
</tr>
<tr>
<td>CNP</td>
<td>Central North Pacific</td>
</tr>
<tr>
<td>CPUE</td>
<td>Catch per unit of effort</td>
</tr>
<tr>
<td>Convention</td>
<td>Convention for the Conservation and Management of Highly Migratory Fish Stocks in the Western and Central Pacific Ocean</td>
</tr>
<tr>
<td>Council</td>
<td>Western Pacific Fishery Management Council</td>
</tr>
<tr>
<td>DSLL</td>
<td>deep-set longline</td>
</tr>
<tr>
<td>DPS</td>
<td>Distinct population segment</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental assessment</td>
</tr>
<tr>
<td>EEZ</td>
<td>Exclusive economic zone</td>
</tr>
<tr>
<td>EFH</td>
<td>Essential fish habitat</td>
</tr>
<tr>
<td>EPO</td>
<td>Eastern Pacific Ocean</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>F</td>
<td>Fishing mortality</td>
</tr>
<tr>
<td>FAD</td>
<td>Fish aggregation device</td>
</tr>
<tr>
<td>FEP</td>
<td>Fishery ecosystem plan</td>
</tr>
<tr>
<td>FMP</td>
<td>Fishery management plan</td>
</tr>
<tr>
<td>FR</td>
<td><em>Federal Register</em></td>
</tr>
<tr>
<td>HAPC</td>
<td>Habitat areas of particular concern</td>
</tr>
<tr>
<td>HI</td>
<td>Hawaii</td>
</tr>
<tr>
<td>HMS</td>
<td>highly migratory species</td>
</tr>
<tr>
<td>IATTC</td>
<td>Inter-American Tropical Tuna Commission</td>
</tr>
<tr>
<td>IFKW</td>
<td>insular false killer whale</td>
</tr>
<tr>
<td>ISC</td>
<td>International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific Ocean</td>
</tr>
<tr>
<td>ITS</td>
<td>Incidental take statement</td>
</tr>
<tr>
<td>lb</td>
<td>Pound(s)</td>
</tr>
<tr>
<td>LRP</td>
<td>Limit reference point</td>
</tr>
<tr>
<td>LVPA</td>
<td>large vessel prohibited area</td>
</tr>
<tr>
<td>M</td>
<td>Natural mortality rate</td>
</tr>
<tr>
<td>Magnuson-Stevens Act</td>
<td>Magnuson-Stevens Fishery Conservation and Management Act</td>
</tr>
<tr>
<td>MCP</td>
<td>Marine Conservation Plan</td>
</tr>
<tr>
<td>MHI</td>
<td>Main Hawaiian Islands</td>
</tr>
<tr>
<td>MFMT</td>
<td>Maximum fishing mortality threshold</td>
</tr>
<tr>
<td>MMPA</td>
<td>Marine Mammal Protection Act</td>
</tr>
<tr>
<td>MPA</td>
<td>marine protected area</td>
</tr>
<tr>
<td>MSST</td>
<td>Minimum stock size threshold</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MSY</td>
<td>Maximum sustainable yield</td>
</tr>
<tr>
<td>MUS</td>
<td>Management unit species</td>
</tr>
<tr>
<td>M&amp;SI</td>
<td>Mortalities or serious injuries</td>
</tr>
<tr>
<td>NAO</td>
<td>NOAA Administrative Order</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NEPO</td>
<td>northeast Pacific Ocean</td>
</tr>
<tr>
<td>nm</td>
<td>Nautical mile(s)</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NPO</td>
<td>North Pacific Ocean</td>
</tr>
<tr>
<td>NS</td>
<td>National Standard</td>
</tr>
<tr>
<td>NWHI</td>
<td>Northwestern Hawaiian Islands</td>
</tr>
<tr>
<td>OLE</td>
<td>Office of Law Enforcement</td>
</tr>
<tr>
<td>Pelagics FEP</td>
<td>Fishery Ecosystem Plan for Pelagic Fisheries of the Western Pacific Region</td>
</tr>
<tr>
<td>PBR</td>
<td>Potential biological removal</td>
</tr>
<tr>
<td>PIFSC</td>
<td>Pacific Islands Fisheries Science Center</td>
</tr>
<tr>
<td>PIRO</td>
<td>Pacific Islands Regional Office</td>
</tr>
<tr>
<td>PRIA</td>
<td>Pacific Remote Island Areas</td>
</tr>
<tr>
<td>PT</td>
<td>Participating Territory</td>
</tr>
<tr>
<td>RA</td>
<td>Regional Administrator</td>
</tr>
<tr>
<td>RFMOs</td>
<td>regional fishery management organizations</td>
</tr>
<tr>
<td>SAR</td>
<td>stock assessment report</td>
</tr>
<tr>
<td>SB</td>
<td>spawning biomass</td>
</tr>
<tr>
<td>SC</td>
<td>Scientific Committee of the WCPFC</td>
</tr>
<tr>
<td>SDC</td>
<td>status determination criteria</td>
</tr>
<tr>
<td>SEZ</td>
<td>southern exclusion zone</td>
</tr>
<tr>
<td>SIDS</td>
<td>Small Island Developing States</td>
</tr>
<tr>
<td>SPC</td>
<td>Secretariat of the Pacific Community</td>
</tr>
<tr>
<td>SPO</td>
<td>South Pacific Ocean</td>
</tr>
<tr>
<td>SPTT</td>
<td>South Pacific Tuna Treaty</td>
</tr>
<tr>
<td>t</td>
<td>Metric ton(s)</td>
</tr>
<tr>
<td>USCG</td>
<td>U.S. Coast Guard</td>
</tr>
<tr>
<td>U.S. FWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>WCNPO</td>
<td>Western and central North Pacific Ocean</td>
</tr>
<tr>
<td>WCPFC</td>
<td>Western and Central Pacific Fisheries Commission</td>
</tr>
<tr>
<td>WCPO</td>
<td>Western and central Pacific Ocean</td>
</tr>
<tr>
<td>WP SFF</td>
<td>Western Pacific Sustainable Fisheries Fund</td>
</tr>
<tr>
<td>WPFMC</td>
<td>Western Pacific Fishery Management Council</td>
</tr>
</tbody>
</table>
# CONTENTS

1 INTRODUCTION ............................................................................................................ 11
1.1 Overview of Bigeye Tuna Management in the Western and Central Pacific Ocean .... 11
1.2 Overview of Catch and Allocation Limit Specification Process ................................ 12
1.3 Proposed Federal Action ............................................................................................ 13
1.4 Purpose and Need for Action .................................................................................... 14
1.5 Action Area ............................................................................................................... 15
1.6 Decision(s) to be Made ............................................................................................. 15
1.7 Scope of this Analysis ............................................................................................... 15
1.8 List of Preparers ....................................................................................................... 16
1.9 Public Involvement .................................................................................................. 16

2 DESCRIPTION OF THE ALTERNATIVES ................................................................... 16
2.1 Development of the Alternatives .............................................................................. 17
2.2 Description of the Alternatives ................................................................................ 17
2.2.1 Alternative 1: No specification of territorial catch or allocation limits (No Action).... 18
2.2.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo) ................................................. 19
2.2.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit ................................................. 21
2.3 Comparison of Features of the Alternatives ............................................................ 23
2.4 Alternatives Considered, but Rejected from Further Analysis .................................. 29

3 AFFECTED ENVIRONMENT ........................................................................................ 29
3.1 Target and Non-Target Stocks .................................................................................. 29
3.1.1 Bigeye Tuna ........................................................................................................ 35
3.1.2 Yellowfin Tuna .................................................................................................... 39
3.1.3 Skipjack Tuna ...................................................................................................... 39
3.1.4 North Pacific Albacore ....................................................................................... 40
3.1.5 South Pacific Albacore ....................................................................................... 40
3.1.6 North Pacific Bluefin Tuna ................................................................................ 40
3.1.7 North Pacific Swordfish ...................................................................................... 41
3.1.8 Striped Marlin ..................................................................................................... 42
3.1.9 Pacific Blue Marlin ............................................................................................. 43
3.1.10 North Pacific Blue Shark .................................................................................. 43
3.1.11 North Pacific Shortfin Mako Shark ................................................................. 43
3.1.12 Silky shark ........................................................................................................ 43
3.2 Socioeconomic Setting ............................................................................................. 44
3.2.1 Hawaii Longline Fisheries .................................................................................. 45
3.2.2 American Samoa Longline Fishery .................................................................... 54
3.2.3 Mariana Archipelago Longline Fisheries ............................................................ 59
3.2.4 Hawaii Troll and Handline Fisheries .................................................................. 59
3.2.5 Catches by U.S. Longline Vessels in the Pacific .................................................. 61
3.2.6 Bigeye Tuna Catches by U.S. Purse Seine Vessels in the WCPO ......................... 65
3.2.7 Fishing Communities .......................................................................................... 66
Environmental Assessment  Territorial Bigeye Tuna Catch and Allocation Limits

3.3  Protected Species .............................................................................................................. 68
  3.3.1 Sea Turtles .................................................................................................................... 74
  3.3.2 Marine Mammals .......................................................................................................... 86
  3.3.3 Seabirds ......................................................................................................................... 95
  3.3.4 Sharks and Rays .......................................................................................................... 102
  3.3.5 Corals and Chambered Nautilus ................................................................................. 108
3.4  Marine Habitats, Critical Habitat, and Essential Fish Habitat ........................................ 109
  3.4.1 Leatherback Sea Turtle Critical Habitat ..................................................................... 109
  3.4.2 Monk Seal Critical Habitat ......................................................................................... 109
  3.4.3 Main Hawaiian Islands Insular False Killer Whale Critical Habitat ......................... 110
  3.4.4 Essential Fish Habitat ................................................................................................. 111
3.5  Management Setting ....................................................................................................... 119
3.6  Resources Eliminated from Detailed Study .................................................................... 121

4  ENVIRONMENTAL EFFECTS OF THE ALTERNATIVES ...................................... 122
4.1  Potential Effects on WCPO Bigeye Tuna ...................................................................... 125
  4.1.1 Alternative 1: No specification of territorial catch or allocation limits (No Action). 128
  4.1.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo) 128
  4.1.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit 130
4.2  Potential Effects on EPO Bigeye Tuna .......................................................................... 132
  4.2.1 Alternative 1: No specification of territorial catch or allocation limits (No Action). 132
  4.2.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo) 133
  4.2.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit 133
4.3  Potential Effects on Non-Target Stocks ........................................................................ 134
  4.3.1 Alternative 1: No specification of territorial catch or allocation limits (No Action). 134
  4.3.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo) 136
  4.3.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit 139
4.4  Potential Effects on Socio-economic Setting ................................................................ 140
  4.4.1 Alternative 1: No specification of territorial catch or allocation limits (No Action). 140
  4.4.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo) 142
  4.4.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit 144
4.5  Potential Effects on Protected Species ........................................................................ 147
  4.5.1 Alternative 1: No specification of territorial catch or allocation limits (No Action). 147
  4.5.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo) 151
  4.5.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit 152
4.6  Potential Effects on Marine Habitats, Critical Habitat and Essential Fish Habitat 153
4.7  Potential Effects on Management Setting 154
Table 8. Released catch, retained catch, and total catch of pelagic MUS (number of fish) caught in the Hawaii shallow-set longline fishery, 2017. ................................................................. 51
Table 9. Number of American Samoa permitted and active (operating in the SPO) longline fishing vessels by size class from 2008-2017................................................................. 56
Table 10. Fishing effort in the American Samoa longline fishery, 2008-2017. ......................... 56
Table 11: American Samoa-based Longline Fishery Landings (t), 2013-2017.......................... 57
Table 12: Number of fish kept, released and percent released for all American Samoa longline vessels during 2017................................................................. 59
Table 13. Catch and revenue for the MHI troll fishery, 2008-2017. ........................................... 60
Table 14. Catch and revenue information for the MHI handline fishery, 2008-2017. ................. 60
Table 15. Longline landings (t) by species and species group for U.S. and U.S. participating territory longline vessels operating in the WCPFC statistical area, 2015-2017. Source: NMFS (2018b). Note: Weights are rounded to the nearest whole number. ......................... 62
Table 16. Bigeye tuna catch (t) by U.S. Hawaii and U.S. participating territory longline fisheries in the WCPO (2015-2017)................................................................................. 63
Table 17: Bigeye tuna catch (t) by longline (LL), purse seine (PS), and other fisheries (OF) in the WCPO, EPO, and total combined contribution by U.S. longline (LL) vessels (Hawaii and U.S. territories including fishing agreements). ........................................................................ 64
Table 18. Bigeye tuna catch (t) in the WCPO, EPO, and total combined contribution by U.S. longline (LL) vessels (Hawaii and US Territory including fishing agreements). ................. 65
Table 19. Number of vessels and tuna catch (t) by the U.S. purse seine fleet, 2013-2017. ........ 66
Table 20. ESA-listed species with the potential to interact with longline vessels permitted under the Pelagics FEP ................................................................................................. 69
Table 21. Annual sea turtles interactions expanded from observed data to fleet-wide estimates for the Hawaii deep-set longline fishery, 2008-2018. ......................................................... 75
Table 22. Estimated sea turtle interactions and mortalities in the Hawaii deep-set longline fishery over three consecutive years (3-year ITS) in the 2014 BiOp as supplemented (2017) for each DPS where applicable. ............................................................... 75
Table 23. Sea turtle interactions, mortalities, and population level impacts in the Hawaii deep-set longline fleet. ........................................................................................................ 78
Table 24. Annual number of observed sets (based on begin set date) and observed interactions (based on interaction date) of loggerhead, leatherback, green and olive ridley turtles in the Hawaii shallow-set longline fishery, 2004-2018. ........................................................................... 79
Table 25. Estimated sea turtle interactions and mortalities in the Hawaii shallow-set fishery over two consecutive calendar years in NMFS 2012 biological opinion. .......... 80
Table 26. Population level effect metrics for ESA-listed sea turtle populations over a 1-year period. .................................................................................................................... 81
Table 27. Annual sea turtle interactions expanded from observer data to fleet-wide estimates for the American Samoa Longline Fishery, from 2006-2018. ............................................. 82
Table 28. Estimates of sea turtle interactions and mortalities in the American Samoa longline fishery over three consecutive years (3-year ITS) in the NMFS 2015 biological opinion. 83
Table 29. Population level effect metrics for ESA-listed sea turtle populations over a 1-year period. .................................................................................................................... 84
Table 30: Sea turtle interaction and mortality estimates in the Guam and CNMI longline fisheries in the 2001 biological opinion. ............................................................... 86
Table 31. Estimated annual marine mammal interactions (including mortalities, and serious and non-serious injuries) with the Hawaii deep-set longline fishery from 2008-2018. ............... 88
Table 32. ESA-listed marine mammal interactions and population impact metrics. ................. 89
Table 33. Mean estimated annual mortality and serious injury (M&SI) and PBR by marine mammal stocks with observed interactions in the Hawaii deep-set longline fishery. .......... 90
Table 34. Observed annual marine mammal interactions (including mortalities, serious injuries, and non-serious injuries) with the Hawaii shallow-set longline fishery from 2008-2018. ... 91
Table 35. Summary of mean annual mortality and serious injury (M&SI) and potential biological removal (PBR) by marine mammal stocks with observed interactions in the Hawaii shallow-set longline fishery. ................................................................................................................................. 94
Table 36. Number of marine mammal interactions (including mortalities, and serious and non-serious injuries) observed in the American Samoa longline fishery, 2006-2018. .......... 94
Table 37. Estimated total interactions with albatrosses in the Hawaii deep-set longline fisheries, 2005-2018. ................................................................................................................................. 97
Table 38. Number of albatross interactions observed in the Hawaii shallow-set longline fishery, 2005-2018. ................................................................................................................................. 100
Table 39. Total incidental take authorized under the three-year MBTA Special Purpose Permit for the Hawaii shallow-set longline fishery. .................................................................................................................................. 101
Table 40. Estimated total ESA-listed shark and ray interactions with the Hawaii deep-set longline fishery for 2004-2017. ................................................................................................................................. 103
Table 41. Total ESA-listed shark and ray interactions with the Hawaii shallow-set longline fishery for 2004-2017. ................................................................................................................................. 105
Table 42. Estimated total ESA-listed shark and ray interactions with the American Samoa longline fishery for 2006-2017. ................................................................................................................................. 106
Table 43. EFH designations for all MUS of Western Pacific FEPS. .............................................. 113
Table 44. Habitat areas of particular concern for MUS of all Western Pacific FEPS. ................. 119
Table 45. Summary of potential effects of the alternatives on the human environment. .......... 123
Table 46. F/F_{MSY} and S/B_{SB=0} values in 2045 based on SPC projections for each of the alternatives. ................................................................................................................................. 127
Table 47. Potential outcomes associated with Options 2 and 3. ..................................................... 4
Table 48. 2019 and 2020 longline bigeye catch limits and 2017 reported longline bigeye catches for six WCPFC members. ................................................................................................................................. 5
Table 49. Bigeye Tuna Catch (t) by U.S. and Territorial Longline Fisheries in the western and central Pacific Ocean 2012–2017. ......................................................................................................................... 10
Table 50. Methodology to determine scalars on U.S. longline bigeye catches to evaluate potential outcomes of the proposed action. ........................................................................................................ 12
Table 51. Projections related to Options 1, and 2 with percent change in F_{2045}/F_{MSY} and S_{2045}/S_{BF=0}, at various scalars of U.S. BET catch. ................................................................................................................................. 14
Table 52. Projections related to Option 3(a) with percent change in F_{2045}/F_{MSY} and S_{2045}/S_{BF=0}, at various scalars of U.S. BET catch. ................................................................................................................................. 15
Table 53. Projections related to Option 3 (b) with percent change in F_{2045}/F_{MSY} and S_{2045}/S_{BF=0}, at various scalars of US BET catch. ................................................................................................................................. 16
Table 54. Projections related to Option 3 (c) with percent change in F_{2045}/F_{MSY} and S_{2045}/S_{BF=0}, at various scalars of U.S. BET catch. ................................................................................................................................. 17
Table 55. Projections related to Option 4 with percent change in F_{2045}/F_{MSY} and S_{2045}/S_{BF=0} at various scalars of US BET catch. ................................................................................................................................. 18
FIGURES

Figure 1. Distribution of cumulative bigeye tuna catch from 2008-2017 by 5-degree squares of latitude and longitude and by fishing gear in the nine sub-regions of the WCPO bigeye tuna assessment.......................................................... 37

Figure 2. Operating area of the Hawaii deep-set longline fleet, shown in average number of hooks (millions) per five degree square for years 2008-2017. .................................................. 46

Figure 3. Location of shallow sets made by the Hawaii longline fishery from 2009–2016. Some sets do not appear on the map due to confidentiality............................................................... 48

Figure 4. Tuna CPUE for the Hawai‘i-permitted deep-set longline fishery, 2008-2017........ 51

Figure 5. Catch and revenue for the Hawai‘i-permitted deep-set longline fishery, 2008-2017 ... 53

Figure 6. Catch and revenue for the Hawaii-permitted shallow-set longline fishery, 2008-2017. 53

Figure 7. Operating area of the American Samoa longline fleet, shown in average number of hooks (millions) per five degree square for years 2008-2017. .................................................. 55

Figure 8. Landings, revenue, and price for American Samoa longline fishery from 2008-2017 adjusted to 2017 dollars. ........................................................................................................ 58

Figure 9. Map depicting the overlap of federal longline fishing area with the MHI IFKW range. .............................................................................................................................. 111
1 INTRODUCTION

1.1 Overview of Bigeye Tuna Management in the Western and Central Pacific Ocean

The Western Pacific Fishery Management Council (Council or WPFMC) and the National Marine Fisheries Service (NMFS) manage fishing for pelagic management unit species (MUS) in the U.S. Exclusive Economic Zone (EEZ or federal waters, generally 3-200 nautical miles or nm from shore) around American Samoa, Guam, the Commonwealth of the Northern Mariana Islands (CNMI) and Hawaii, and on the high seas through the Fishery Ecosystem Plan for Pelagic Fisheries of the Western Pacific Region (Pelagics FEP) as authorized by the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act; 16 U.S.C. § 1801 et seq.).

Bigeye tuna (Thunnus obesus) is an important component of tuna fisheries throughout the Pacific Ocean, harvested predominantly by purse seine and longline fleets of several nations. In the western and central Pacific Ocean or WCPO (generally west of 150° W) bigeye tuna was previously assessed as experiencing overfishing (69 FR 78397, December 30, 2004), but currently is not experiencing overfishing based on the latest stock assessment (McKechnie et al. 2017) as updated (Vincent et al. 2018). Bigeye has not been in an overfished condition according to stock status determination criteria (SDC) described in the Pelagics FEP (WPFMC 2009).

Since 2006, the Western and Central Pacific Fisheries Commission (WCPFC) has adopted conservation and management measures (CMMs) aimed at reducing fishing mortality of bigeye tuna in the WCPO, including catch and effort limits that are applicable to longline and purse seine fisheries of WCPFC member countries. For the purpose of WCPFC membership, the United States is a WCPFC member, while the U.S. territories of American Samoa and Guam and the CNMI are each a participating territory (PT) to the WCPFC (hereafter, U.S. participating territory). The U.S. participating territories have limited participation rights at WCPFC, as described by Article 43 of the Convention for the Conservation and Management of Highly Migratory Fish Stocks in the Western and Central Pacific Ocean (WCPF Convention) and the WCPFC Rules of Procedure.

The most recent WCPFC CMM that applies to WCPO bigeye tuna is CMM 2018-01. The CMM provides a U.S. longline bigeye limit for 2019-2020 of 3,554 metric tons (t), which was the same limit in place for 2016 and 2018 (Table 1). The 3,554 t limit for the United States is only applicable to U.S. longline fisheries in Hawaii and the West Coast of the United States. The limit does not apply to longline fisheries of the U.S. participating territories, as the WCPFC treats each as separate from the U.S. for the purpose of tropical tuna catch or effort limits. Furthermore, the WCPFC attributes catch and effort of U.S.-flagged vessels operating under agreements with its PTs to the U.S. participating territories, and not to the United States (see Paragraph 9 of CMM 2018-01). WCPFC has not placed limits on the amount of bigeye transferrable from U.S. participating territories and other Small Island Developing States (SIDS) \(^1\) under agreements.

\(^1\) CMM 2018-01 defines “SIDS” as inclusive of PTs. See Paragraph 6.
Table 1. Longline bigeye catch limits for WCPFC CCMs

<table>
<thead>
<tr>
<th>WCPFC CMM</th>
<th>2016 Catch Limit (t)</th>
<th>2017 Catch Limit (t)</th>
<th>2018 Catch Limit (t)</th>
<th>2019-2020 Catch Limit (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>18,265</td>
<td>16,680</td>
<td>17,765</td>
<td>17,765</td>
</tr>
<tr>
<td>Korea</td>
<td>13,942</td>
<td>12,869</td>
<td>13,942</td>
<td>13,942</td>
</tr>
<tr>
<td>Chinese Taipei</td>
<td>10,481</td>
<td>9,675</td>
<td>10,481</td>
<td>10,481</td>
</tr>
<tr>
<td>China</td>
<td>8,224</td>
<td>7,049</td>
<td>8,724</td>
<td>8,724</td>
</tr>
<tr>
<td>Indonesia</td>
<td>5,889</td>
<td>5,889</td>
<td>5,889</td>
<td>5,889</td>
</tr>
<tr>
<td>USA</td>
<td>3,554</td>
<td>3,345</td>
<td>3,554</td>
<td>3,554</td>
</tr>
<tr>
<td>NZ, AU, EU, PI,</td>
<td>2,000</td>
<td>2,000</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>SIDS/PTs</td>
<td>No limit</td>
<td>No limit</td>
<td>No limit</td>
<td>No limit</td>
</tr>
</tbody>
</table>

Source: WCPFC (2018a)

CMM 2018-01 also provides that each WCPFC member country that is not a SIDS that caught less than 2,000 t of tuna in 2004 ensures that its catch does not exceed 2,000 t in 2019 and 2020. Paragraph 5 of CMM 2018-01 makes clear, however, that nothing shall prejudice the rights and obligations of SIDS and PTs seeking to develop their domestic fisheries. This provision of CMM 2018-01 addresses Article 30 of the WCPF Convention. Specifically, Article 30 of the WCPF Convention recognizes the special needs of SIDS and PTs. CMMs must take into account that SIDS and PTs are economically vulnerable and heavily dependent on their fisheries, and should not be placed at a disadvantage in developing their fisheries as a result of measures intended to reduce the impact on tuna and other fish stocks by more developed nations. In giving effect to paragraph 7 and Article 30, WCPFC does not apply the 2,000 t bigeye tuna limit to SIDS and PTs, which includes the U.S. participating territories. Thus, there are no current WCPFC-agreed upon catch limits or fishing effort for bigeye tuna in longline fisheries of SIDS and PTs, including American Samoa, Guam, and the CNMI.

1.2 Overview of Catch and Allocation Limit Specification Process

In 2014, the Council developed and NMFS approved Amendment 7 to the Pelagics FEP (WPFMC 2014). Amendment 7 established a process under the authority of the Magnuson-Stevens Act to specify catch and/or effort limits for pelagic fisheries in the U.S. participating territories, as recommended by the Council.\(^2\) The process also allows NMFS to authorize the government of each U.S. participating territory to allocate a portion of its catch or fishing effort limit of pelagic MUS to a U.S. fishing vessel permitted under the Pelagics FEP through specified fishing agreements to support fisheries development in the U.S. participating territories. Regulations implementing Amendment 7 became effective on October 24, 2014 (see 50 CFR 665.819).

\(^2\) At its 173rd meeting held June 11-13, 2018, in Wailea, Maui, the Council recommended amending the Pelagics FEP and implementing regulations to remove the requirement for establishing a separate total catch or effort limit for the U.S. participating territories prior to establishing allocation limits, and the requirement that the Council must annually specify catch and allocation limits by permitting the Council to recommend that NMFS promulgate multi-year catch and/or allocation limits in regulations.
Amendment 7 also established criteria that a specified fishing agreement must satisfy, which include among other requirements, that agreements identify those vessels subject to the agreement, and that such vessels land fish in the territory, or deposit funds into the Western Pacific Sustainable Fisheries Fund (WP SFF). Pursuant to Section 204(e)(4) of the Magnuson-Stevens Act, funds deposited into the WP SFF may be used for the implementation of a marine conservation plan (MCP).³

When operating under a valid specified fishing agreement, federal regulations (50 CFR 665.819) require NMFS to attribute bigeye tuna catches made by vessels identified in the agreement to the territory to which the agreement applies seven days before NMFS projects the U.S. longline bigeye tuna limit will be reached, or upon the effective date of the agreement, whichever is later. In reports to the WCPFC, NMFS attributes catches of bigeye tuna made by Hawaii-permitted longline vessels identified in a specified fishing agreement to the territory to which the agreement applies.

By entering into a specified fishing agreement with Hawaii-permitted longline vessels, funds are deposited into the WP SFF and made available to support fisheries development projects identified in the Guam MCP (82 FR 38876, August 16, 2017), the CNMI MCP (82 FR 37198, August 8, 2017), and the American Samoa MCP (83 FR 42490, August 22, 2018). If funds remain after all projects in the MCPs for the U.S. participating territories have been completed, funds may be used to support projects identified in the Pacific Remote Island Areas (PRIA) MCP (82 FR 37575, August 11, 2017). For more information on the territorial catch and allocation limit process, see Amendment 7 to the Pelagics FEP (WPFMC 2014), and implementing federal regulations at 50 CFR 665.819.

From 2014 through 2018, the Council has used the territorial catch, effort and allocation limit measure to recommend annual longline bigeye catch limits of 2,000 t for each U.S. participating territory and recommended that each territory could allocate up to 1,000 t of that limit pursuant to specified fishing agreements. NMFS has authorized either one or two specified fishing agreements between U.S. participating territory governments and Hawaii-based longline vessels each year.

### 1.3 Proposed Federal Action

Pursuant to the Pelagics FEP, the Council reviews bigeye tuna catch and allocation limits at least annually to ensure consistency with the Pelagics FEP, Magnuson-Stevens Act, WCPFC decisions, and other applicable laws. Based on this review, the Council recommends to NMFS whether the catch and allocation limits should be approved for the fishing year, which begins on January 1 and ends on December 31. The proposed action is NMFS’ implementation of the Council’s recommendations for territorial bigeye tuna catch and allocation limits, for fishing years 2019-2023. Following regulatory compliance and public reviews and through NMFS approval of the proposed specifications, NMFS would authorize each U.S. territory to allocate

---

³ MCPs are developed by the governors of each U.S. participating territory and describe planned marine conservation projects that may include, but are not limited to, development and implementation of sustainable marine resource development projects, fisheries monitoring and enforcement activities, and scientific research.
and transfer bigeye tuna limits to a U.S. longline fishing vessel(s) permitted under the Pelagics FEP and identified in a specified fishing agreement applicable to the territory. Criteria for a specified fishing agreement and the process for attributing longline caught bigeye tuna made by vessels of the U.S. participating territories and U.S. vessels identified in an approved specified fishing agreement are codified in 50 CFR 665.819. Under existing regulations, the specified catch and allocation limits would be in effect until they expire at the end of the relevant fishing year.

NMFS would monitor catches of bigeye tuna in the WCPO by the longline fisheries of each U.S. participating territory, including catches made by U.S. longline vessels operating under specified fishing agreements. As an accountability measure (AM), NMFS would prohibit the retention of longline-caught bigeye tuna by vessels in the applicable U.S. territory (if NMFS projects the fishery will reach the territorial catch limit), and/or by vessels operating under specified fishing agreements (if NMFS projects the fishery will reach the allocation limit). Pursuant to federal regulations at 50 CFR 664.819, if NMFS determines catch made by vessel(s) identified in a specified fishing agreement exceeds the allocated limit, NMFS would attribute any overage of the limit back to the U.S. or U.S. participating territory to which the vessel(s) is(are) registered and permitted.

While the Council expects a new bigeye tuna stock assessment and a new WCPFC tropical tuna measure will be available in late 2020, NMFS notes that both the WCPFC and the Council have established a general pattern of management for bigeye tuna. Based on the WCPFC’s CMMs on tropical tunas from 2008 through 2018, NMFS expects that provisions similar or identical to the provisions in CMM 2018-01 will likely be adopted by the WCPFC for the reasonably foreseeable future. Similarly, NMFS expects the Council would recommend territorial bigeye tuna catch and allocation limits in the reasonably foreseeable future similar or identical to those analyzed in this environmental assessment (EA), as the Council has recommended 2,000 t catch and 1,000 t allocation limits for each fishing year from 2014 through 2018. For the purposes of this document, the reasonably foreseeable future is 2019 through 2023.

### 1.4 Purpose and Need for Action

The purpose of this action is to establish a bigeye tuna catch and an allocation limit for longline fisheries of each U.S. participating territory (American Samoa, Guam, and the CNMI) that: 1) prevents bigeye overfishing, 2) supports fisheries development in U.S. territories, and 3) promotes the availability of sustainably caught bigeye from U.S. vessels supplying the Hawaiian seafood market during the culturally important end of year season of peak demand. The need for

---


6 The Council and NMFS have identified 2019 through the end of 2023 as the timeframe for analysis in this EA, because analyses more than five years old should generally be reexamined to determine whether supplemental information is needed.
this action is to ensure that NMFS and the Council manage allocations of longline caught bigeye
tuna under specified fishing agreements consistent with the conservation needs of the stock.

1.5 Action Area

The action area where U.S. longline vessels operate is the EEZ around Hawaii, American Samoa,
Guam, the CNMI, the PRIA, and the adjacent high seas. However, under the proposed action, the
catch and allocation limits apply only to bigeye tuna caught by longline gear in the WCPO
(generally west of 150° W) and does not apply to bigeye tuna caught by longline gear in the
eastern Pacific Ocean (EPO; generally east of 150° W).

1.6 Decision(s) to be Made

NMFS will use this document to support a decision whether to approve, disapprove, or partially
approve Council recommendations regarding bigeye tuna catch and/or allocation limits
applicable in 2019 through 2023. The RA will use the information in this EA to make a
determination about whether the proposed action would constitute a major federal action that has
the potential to affect the quality of the environment significantly. If NMFS determines the
action would not significantly affect the quality of the environment, NMFS will prepare a
Finding of No Significant Impact. If NMFS determines the proposed action is a major federal
action that would significantly affect the quality of the environment, NMFS would prepare an
environmental impact statement before taking action.

1.7 Scope of this Analysis

The purpose of this EA is to provide decision-makers and the public with an evaluation of the
environmental and economic effects of territorial bigeye tuna catch and allocation limits in 2019-
2023. The analytical portion of this EA – Chapters 3 and 4 – examines the direct, indirect, and
cumulative effects of the proposed action on the physical, biological, and human environment. In
this EA we analyze alternatives that include allocation limits up to 2,000 t because this captures
the range of options the Council has formally considered in recent years.

NMFS notes that specific Council and agency actions may be subject to change, as the WCPFC
may adopt new or different measures not within the scope of the EA or the Council may
recommend limits not within the scope of this EA. After NMFS receives a Council
recommendation for territorial bigeye tuna catch and allocation limits, NMFS would consider
whether the recommendation is substantially different from the alternatives for bigeye tuna catch
and allocation limits analyzed in this document. If the effects that would result from
implementation of the recommendation are covered by the analysis in this EA, and if the analysis
remains valid in light of any new information or circumstances, NMFS would consider this
document to be sufficient to support the Council’s recommendation. NMFS, however, would
supplement this EA if it is found that there are substantial changes to the territorial bigeye tuna
limits that are relevant to environmental concerns, or there are significant new circumstances or
information relevant to environmental issues bearing on the territorial bigeye tuna limits or its
impacts.
1.8 List of Preparers

Authors:
- Eric Kingma, PhD- International Fisheries, Pelagics, Enforcement, and National Environmental Policy Act (NEPA) Coordinator, WPFMC
- Rebecca Walker- Fishery Management Specialist, NMFS Pacific Islands Regional Office (PIRO) Sustainable Fisheries Division (SFD)

Reviewers:
- Ariel Jacobs, NEPA Coordinator, PIRO

1.9 Public Involvement

Council meetings and meetings of the Council’s advisory bodies are open to the public and are noticed in the Federal Register and local newspapers and publications and on the Council’s website (www.wpcouncil.org). Meeting agendas provide opportunities for public comment.

The Council generally considers annual bigeye tuna catch and allocation limits at its first meeting following the December regular session of the WCPFC. In making its recommendation, the Council considers advice, if offered, from its Scientific and Statistical Committee (SSC) and Advisory Panels, which meet and consider Council actions prior to Council meetings.

At its 176th meeting held March 19-21, 2019, the Council considered and discussed issues relevant to bigeye tuna catch and allocation limits for the U.S. participating territories, including the most recent (2018) bigeye stock assessment, the recommendations of the Council’s Scientific and Statistical Committee (SSC) made at the 131st SSC meeting to held March 12-14, 2019, and other relevant information. For fishing year 2019, the Council recommended 2,000 t catch and 1,000 t allocation limits for each U.S. participating territory, which NMFS has identified as its preferred alternative in this EA.

On June 6, 2019, NMFS published the proposed 2019 territorial bigeye tuna catch and allocation specifications, and requested public review and comments on the proposed specification and draft EA dated May 20, 2019 (84 FR 26394). The comment period ended June 21, 2019. NMFS received one comment on the draft EA, which resulted in a technical correction, and comments from the public on the 2019 specifications. NMFS considered public comments in finalizing the EA and in making its decision on the proposed action, and responds to comments in the final specification.

2 DESCRIPTION OF THE ALTERNATIVES

This section describes alternatives for longline bigeye tuna catch and allocation limits for American Samoa, Guam, and the CNMI and the expected fishery outcomes that would occur under each alternative. Each alternative assumes that the Council will recommend and NMFS will specify the territorial bigeye tuna catch and allocation limits on an annual basis in the following years through 2023. Table 2 provides a comparison of the features of the alternatives considered and possible fishery outcomes.
2.1 Development of the Alternatives

From 2014 to 2018, the Council has recommended annual longline bigeye catch limits of 2,000 t for each U.S. participating territory and recommended that each territory could allocate up to 1,000 t of that limit. The Council made these recommendations taking into account WCPFC decisions, Magnuson-Stevens Act requirements, other applicable law, and bigeye tuna stock status. Prior to 2017, the Secretariat of the Pacific Community (SPC), the science provider to the WCPFC, assessed bigeye tuna as experiencing overfishing. As previously mentioned, the best scientific information available indicates that bigeye is no longer experiencing overfishing. In light of the updated and improved stock status of WCPO bigeye tuna (Vincent et al. 2018), the Council considered the projected impact of various catch and attribution scenarios on the stock (Appendix A) and outcomes from WCPFC’s December 2018 meeting in making its recommendation for the 2019 fishing year. For future bigeye tuna catch limits, the Council will consider the best scientific information available and catch and effort limits from the WCPFC’s most recent meeting in order to recommend whether NMFS should approve bigeye tuna catch and/or effort limits for the fishing year.

2.2 Description of the Alternatives

Features Common to all Alternatives

In accordance with CMM 2018-01 adopted by the WCPFC, the U.S. longline bigeye limit for the WCPO remains at 3,554 t for 2019 and 2020. For the purposes of estimating effects of the alternatives on WCPO bigeye tuna, NMFS assumes that this catch limit would remain in place each year for 2019 - 2023. NMFS implemented this limit in 2018, which remains in place unless modified or rescinded (83 FR 33851, July 18, 2018; 50 CFR 300.224(a). If NMFS projects vessels will reach the catch limit, NMFS would prohibit the retention of longline-caught bigeye tuna in the WCPO for the remainder of the calendar year. Once the prohibition on bigeye tuna retention is in effect, Hawaii longline vessels that target bigeye tuna in the WCPO may shift fishing effort for bigeye tuna into the EPO. Vessels may also switch to targeting swordfish if the shallow-set fishery is open and bigeye tuna caught by these vessels in the WCPO would count toward the U.S. longline bigeye limit.

In the EPO, the Inter-American Tropical Tuna Commission (IATTC) has adopted and NMFS has implemented an annual bigeye tuna limit applicable to U.S. longline vessels of 750 t for vessels greater than 24 m (78.7 ft) in length for the years 2018-2020 (83 FR 15503, April 11, 2018). The limit does not apply to vessels shorter than 24 m in length. As of February 2019, 34 out of 144 vessels in the Hawaii longline fishery are greater than 24 m. If NMFS projects vessels greater than 24 m will reach the catch limit, NMFS would prohibit the retention of longline-caught bigeye tuna by vessels longer than 24 m in the EPO for the remainder of the calendar year. However, the remaining 110 vessels shorter than 24 m may retain longline-caught bigeye tuna in the EPO.

Consistent with WCPFC decisions and articles of the WCPF Convention applicable to SIDS and PTs, U.S. longline vessels that are not subject to the U.S. longline bigeye limit for the WCPO include vessels that land bigeye tuna in a U.S. territory and vessels that have an American Samoa and Hawaii longline permit (hereafter, dual permitted vessels) and land in Hawaii, provided the
fish was not caught in the U.S. EEZ around Hawaii. Additionally, if catch and attribution limits for bigeye tuna are recommended and approved, bigeye tuna caught by the eligible U.S. longline vessels fishing under a specified fishing agreement with a U.S. territory would not be counted toward the U.S. longline bigeye tuna limit. Rather, in accordance with 50 CFR 300.224, NMFS attributes catches of bigeye tuna by these vessels to the applicable U.S. participating territory because the vessels are fishing under the territory’s established limit. When operating under a valid specified fishing agreement, federal regulations at 50 CFR 665.819 require NMFS to attribute bigeye tuna catches made by vessels identified in the agreement to the territory to which the agreement applies seven days before the U.S. limit is projected to be reached, or upon effective date of the agreement, whichever is later.

2.2.1 Alternative 1: No specification of territorial catch or allocation limits (No Action)

Under Alternative 1, NMFS would not specify a bigeye tuna catch or allocation limit for any U.S. participating territory. We provide this alternative for comparison with the other alternatives, but it does not meet the purpose and need for the action.

Expected Fishery Outcome

Under Alternative 1, longline fisheries of American Samoa, Guam, and the CNMI would not be subject to a bigeye tuna catch limit; they would also not be able to allocate any catch under a specified fishing agreement.

Based on recent fishery performance data, NMFS anticipates that vessels operating in the longline fisheries of American Samoa would catch approximately 541 t of bigeye tuna each year on average. This amount represents the combined average annual bigeye tuna caught in 2012-2017 by American Samoa longline permitted vessels fishing in the South Pacific Ocean (SPO) within or nearby the EEZ around American Samoa (97 t), and in the North Pacific Ocean (NPO) outside the U.S. EEZ around Hawaii by dual permitted vessels (444 t) (see Appendix A, Kingma and Bigelow (2019)). NMFS does not expect longline vessels in CNMI or Guam to catch bigeye tuna in the near future because there are no active longline vessels based in those islands and fisheries development is currently incremental. High docking costs along with poor market access contribute to the lack of longline fishing in the Marianas (WPFMC 2014). Based on recent historical fishery performance, NMFS anticipates that vessels operating in the Hawaii longline fishery would catch the entire U.S. bigeye tuna limit of 3,554 t by November or earlier.

Under Alternative 1, the expected total bigeye tuna catch in the WCPO for longline fisheries managed under the Pelagics FEP would be 4,095 t. This represents the combined anticipated catch of bigeye tuna by the U.S. longline fisheries from Hawaii (3,554 t), American Samoa (541 t), Guam (0 t) and the CNMI (0 t) \((3,554 + 541 + 0 + 0 = 4,095)\).

Without any Council-recommended specifications for catch and allocation limits for the U.S. participating territories, NMFS would not authorize any specified fishing agreements. The U.S. participating territories could not allocate bigeye tuna catch to eligible U.S. longline vessels permitted under the FEP and no funds would be available for deposit into the WP SFF. Consequently, there would be no funding from specified fishing agreements available to fund fishery development projects identified in an approved territorial MCP, and fewer opportunities
for fisheries development by the U.S. participating territories, including improvements to existing fishery infrastructure.

The Hawaii longline fishery would likely catch the U.S. WCPO bigeye tuna limit prior to the end of each fishing year, resulting in a WCPO closure under this alternative. In the event of a closure in the WCPO, the Hawaii-based longline fleet may see increased trip lengths, increased exposure to rougher seas in the EPO, race to fish conditions associated with uncertainty over applicable limits, and differential economic impacts on different segments of the fleet (Ayers et al. 2018). Imported fish caught in less regulated foreign fisheries may fill the demand for bigeye tuna, and reduced availability may affect the supply of fresh bigeye tuna in the culturally important holiday season. Hawaii troll and handline vessels may change targeting behavior to bigeye tuna during a closure and experience increased revenue (Richmond et al. 2015). Finally, if the shallow-set fishery is open, Hawaii-based longline vessels may switch to targeting swordfish to continue fishing in the WCPO during a closure.

2.2.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo)

Under Alternative 2, NMFS would implement a catch limit of 2,000 t of bigeye tuna for each U.S. participating territory. This catch limit is more restrictive than CMM 2018-01, which places no limits on SIDS and PTs (see Section 1.1). NMFS would also authorize the three U.S. participating territories to each allocate up to 1,000 t of their 2,000 t bigeye limit to FEP-permitted longline vessels identified in a specified fishing agreement with a U.S. territory. Specified fishing agreements under this alternative would support responsible fisheries development in the U.S. participating territories by providing funds for territorial MCPs.

As an AM, NMFS would prohibit the retention of longline-caught bigeye tuna by vessels in the applicable U.S. territory (if NMFS projects the territorial limit will be reached), and/or by vessels operating under the applicable specified fishing agreement (if NMFS projects the allocation limit will be reached). Pursuant to federal regulations at 50 CFR 664.819, if NMFS determines catch made by vessel(s) identified in a specified fishing agreement exceeds the allocated limit, NMFS will attribute any overage of the limit back to the U.S. or U.S. participating territory to which the vessel(s) is(are) registered and permitted.

This alternative is identical to the bigeye tuna catch and allocation limit specifications NMFS implemented in 2014 (79 FR 64097, October 28, 2014), 2015 (80 FR 61767, October 14, 2015; 80 FR 68778, November 6, 2015), 2016 (81 FR 63145, September 14, 2016), 2017 (82 FR 47644, October 13, 2017), and 2018 (83 FR 53399, October 23, 2018), and is the Council’s recommended alternative.

Expected Fishery Outcomes

Under this alternative, NMFS evaluates the range of effects to the WCPO bigeye tuna stock and other fishery resources assuming that NMFS could authorize one, two, or three specified fishing agreements based on a potential Council recommendation for a 2,000 t catch limit and 1,000 t allocation limit for each U.S. participating territory. Thus, under Alternative 2 the four distinct possible fishery outcomes for catch of bigeye tuna include authorization of one specified fishing
agreement (A), two specified fishing agreements (B), three specified fishing agreements (C), and three specified fishing agreements with maximum use of the territorial catch limits (D), so that the total bigeye tuna catch would include the full 2,000 t catch limit.

NMFS does not expect longline vessels based in CNMI or Guam to catch bigeye tuna in the near future because there are currently no active longline fisheries based in those territories and fisheries development is currently incremental. For American Samoa, NMFS expects annual bigeye tuna catches by longline vessels possessing an American Samoa limited access permit to be similar to the average annual catch from 2012-2017, which is approximately 541 t. Therefore, limiting the amount of bigeye tuna a U.S. participating territory could allocate to 1,000 t ensures that some quota (1,000 t) would remain available for American Samoa longline fishery participants.

Based on recent levels of bigeye tuna catch by longline vessels to which the U.S. bigeye tuna limit applies, the U.S. longline fleet could reach the U.S. bigeye tuna limit of 3,554 t by November or earlier. Once the prohibition occurs, NMFS anticipates that territorial governments and/or vessels in the Hawaii longline fishery will seek to negotiate a specified fishing agreement to allocate a portion of a territory’s 1,000 t limit. Because federal regulations prohibit a vessel from participating in more than one specified fishing agreement at a time, U.S. longline permitted vessels from Hawaii would enter into specified fishing agreements sequentially, with one or more U.S. territories, as has occurred annually from 2014 to 2018.

**Potential Outcome A: One Specified Fishing Agreement**

Under Outcome A, NMFS would authorize a single specified fishing agreement. Like Alternative 1, NMFS expects vessels operating under an American Samoa longline permit to catch about 541 t of bigeye tuna annually. This is the average level of catch for the period 2012-2017. As previously discussed, NMFS does not expect longline vessels in CNMI or Guam to catch bigeye tuna in the near future. We expect vessels operating in the Hawaii longline fishery to catch 3,554 t of bigeye tuna every year. With one specified fishing agreement, the expected bigeye tuna catch under Outcome A is 5,095 t. This amount represents the combined assumed catch of bigeye tuna by the longline fisheries of the U.S. participating territories of American Samoa (541 t), Guam (0 t), CMMI (0 t) and by the U.S. longline fisheries from Hawaii (3,554), plus an allocation of the maximum of 1,000 t under one specified fishing agreement.

**Potential Outcome B: Two Specified Fishing Agreements**

Under Outcome B, NMFS would authorize two specified fishing agreements, and would maintain the same assumptions for catch by American Samoa, Guam, CNMI, and Hawaii longline vessels as Outcome A. With two agreements, the expected annual bigeye tuna catch under Outcome B is 6,095 t. This amount represents the combined assumed catch of bigeye tuna by the longline fisheries of the U.S. participating territories of American Samoa (541 t), Guam (0 t), CMMI (0 t) and by the U.S. longline fisheries from Hawaii (3,554), plus an allocation of 2,000 t under two specified fishing agreements.
Potential Outcome C: Three Specified Fishing Agreements and Partial Utilization of Territorial Limits

Under Outcome C, NMFS would authorize three specified fishing agreements and would maintain the same catch assumptions for American Samoa, Guam, CNMI, and Hawaii longline vessels as Outcome A. With three agreements, the expected annual longline bigeye tuna catch under Outcome C is 7,095 t. This amount assumes only partial use of the territorial catch limits and represents the combined assumed catch of bigeye tuna by the longline fisheries of the U.S. participating territories of American Samoa (541 t), Guam (0 t), CMMI (0 t) and by the U.S. longline fisheries from Hawaii (3,554), plus an allocation of 3,000 t under three specified fishing agreements.

Potential Outcome D: Three Specified Fishing Agreements and Full Utilization of Territorial Limits

Under Outcome D, NMFS would authorize three specified fishing agreements and assumes that each territory would fully utilize its catch limit of 2,000 t. Specifically, Outcome D assumes that all three U.S. territories - American Samoa, Guam and the CNMI - would each catch 1,000 t of bigeye tuna (3,000 t), and each territory would also allocate their 1,000 t of bigeye tuna under three specified fishing agreements (3,000 t), for a total of 6,000 t. Outcome D also assumes the Hawaii longline fishery would catch 3,554 t every year, for a total of 9,554 t under this scenario. NMFS does not anticipate this scenario would occur in the foreseeable future due to lack of longline vessels operating out of Guam and the CNMI in recent years, but we analyze the scenario as the maximum authorized potential effect on the environment, including the WCPO bigeye tuna stock.

Discussion

Under Outcomes A through D, we do not expect that the longline fisheries based in Hawaii and the U.S. participating territories would change the manner in which they fish, including gear types used, effort, species targeted, area fished, seasons fished, or intensity of fishing. Additionally, NMFS does not expect the effort of these fisheries to deviate from the recent increasing trend (NMFS 2018d) due to existing regulatory constraints, including allocation limits and limited entry programs. NMFS expects that the available amount of bigeye tuna would continue to drive catch of both target and non-target species.

2.2.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit

Under Alternative 3, NMFS would specify a catch limit of 2,000 t of bigeye tuna for each U.S. participating territory and authorize the three U.S. territories to each allocate up to their entire 2,000 t bigeye limit to FEP-permitted longline vessels identified in a specified fishing agreement with a U.S. territory. As an AM, NMFS would prohibit the retention of longline-caught bigeye tuna by vessels in the applicable U.S. territory (if NMFS projects the territorial limit will be reached), and/or by vessels operating under the applicable specified fishing agreement (if NMFS projects the allocation limit will be reached). Pursuant to federal regulations at 50 CFR 665.819, if NMFS determines catch made by vessel(s) identified in a specified fishing agreement exceeds
the allocated limit, NMFS will attribute any overage of the limit back to the U.S. or U.S. participating territory to which the vessel(s) is(are) registered and permitted.

Expected Fishery Outcomes

Under Alternative 3, each U.S. participating territory would be subject to a total longline bigeye tuna catch limit (2,000 t), and would be able to allocate their entire catch limit of 2,000 t to FEP-permitted longline vessels identified in a specified fishing agreement. Like Alternative 1, NMFS does not expect bigeye tuna to be caught by longline vessels based in CNMI or Guam in the near future because there are currently no active longline fisheries based in those islands. Therefore, under this alternative, it is possible for the CNMI and Guam to allocate all 2,000 t of its limit to vessels identified in a specified fishing agreement.

American Samoa would have the ability allocate away all 2,000 t of its limit to vessels identified in a specified fishing agreement, or allocate only a portion of its bigeye tuna limit while retaining a portion for its local fleet. The American Samoa longline fleet landed an average of approximately 541 t annually from 2012-2017, with 97 t from vessels operating in the SPO and 444 t from dual permitted vessels operating in the NPO.

Based on recent levels of bigeye tuna catch by longline vessels to which the U.S. bigeye tuna limit applies, the U.S. longline fleet could reach the assumed U.S. bigeye tuna limit of 3,554 t by November or earlier. Once the prohibition occurs, NMFS expects that territorial governments and/or vessels in the Hawaii longline fishery will seek to negotiate a specified fishing agreement to allocate a portion of a territory’s allocation limit. Because federal regulations prohibit a vessel from participating in more than one specified fishing agreement at a time, U.S. longline permitted vessels from Hawaii would enter into specified fishing agreements sequentially, with one or more U.S. territories.

**Potential Outcome E: Three Specified Fishing Agreements and Maximum Allocation of Territorial Limits**

Under Alternative 3, there are several distinct possible fishery outcomes for total catch of bigeye tuna, ranging from one specified fishing agreement (3,554 t from the U.S. limit, plus 2,000 t catch and allocation limit = 5,554 t) to all three specified fishing agreements (3,554 t from the U.S. limit, plus 6,000 t catch and allocation limit = 9,554 t). Under three specified fishing agreements, the maximum allowable catch, however, would be 3,554 t plus 6,000 t in allocations, or 9,554 t. This EA analyzes 9,554 t as the expected fishery Outcome E under Alternative 3. Under Outcome E, all three territories would each allocate all 2,000 t of their catch limit, and American Samoa would not retain any bigeye tuna for its local fleet.

**Potential Outcome F: Three Specified Fishing Agreements and Maximum Allocation of Territorial Limit for Guam and the CNMI and 1,500 t Allocation for American Samoa**

Because NMFS does not expect American Samoa to allocate its entire 2,000 t catch limit to U.S. longline vessels, we also analyze a more plausible outcome (Outcome F), where NMFS would authorize all three specified fishing agreements, with Guam and the CNMI each allocating the maximum of 2,000 t, while American Samoa allocates 1,500 t of its 2,000 t limit for a total of 5,500 t in allocations. Under this scenario (Outcome F), American Samoa would retain 500 t for
its local fleet. Thus, the maximum allowable catch of bigeye tuna under Outcome F would be 9,554 t, with 3,554 t from the U.S. limit, 2,000 t of allocation each from the Guam and the CNMI, plus 1,500 t from the American Samoa allocation, and 500 t from American Samoa catch. While total bigeye mortality would be the same as in Outcome E (i.e., 9,554 t) under this outcome, there are slightly different socioeconomic effects for American Samoa.

**Discussion**

Under Outcomes E and F, we do not expect that the longline fisheries based in Hawaii and the U.S. participating territories would change the manner in which they fish, including gear types used, species targeted, area fished, seasons fished, or intensity of fishing. Under higher allocation limits, catch of target and non-target stocks and interactions with protected species could increase in the Hawaii deep-set longline fleet if fishing activity increases, as the catch of bigeye tuna drives fleet dynamics in the longline fishery as a whole. Even under higher allocation limits, we expect that protected species interactions would remain within the conservative levels analyzed in Section 3.3 and the proportion of harvested target and non-target stocks compared to the its maximum sustainable yield (MSY) or overall catch to remain low. For these reasons, we do not expect that the impacts would be substantial. NMFS and the Council would continue to develop mitigation measures as fishery management issues are identified.

**2.3 Comparison of Features of the Alternatives**

Table 2 summarizes and compares the features of the alternatives.
### Table 2. Comparison of Features of the Alternatives.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Alternative 1: No Action</th>
<th>Alternative 2: 2,000 t Catch Limit and 1,000 t Allocation Limit for each U.S. Territory</th>
<th>Alternative 3: 2,000 t Catch Limit and up to 2,000 t Allocation Limit for each U.S. Territory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No catch and allocation limits for U.S. territories, and no fishing agreements</td>
<td>Outcome A 1 fishing agreement and 1,000 t allocation</td>
<td>Outcome B 2 fishing agreements and 2,000 t allocation</td>
</tr>
<tr>
<td></td>
<td>Longline-caught bigeye tuna (BET) catch limit for each U.S. participating territory</td>
<td>2,000 t</td>
<td>2,000 t</td>
</tr>
<tr>
<td></td>
<td>BET limit each U.S. participating territory may allocate to Pelagic FEP permitted longline vessels</td>
<td>1,000 t</td>
<td>1,000 t</td>
</tr>
<tr>
<td></td>
<td>Outcome D 3 fishing agreements and 3,000 t allocation and full utilization of BET limit in U.S. territories</td>
<td>Outcome E 3 fishing agreements and 6,000 t allocation</td>
<td>Outcome F 3 fishing agreements and 5,500 t allocation and full utilization of American Samoa BET limit</td>
</tr>
</tbody>
</table>

Longline-caught bigeye tuna (BET) catch limit for each U.S. participating territory.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Alternative 1: No Action</th>
<th>Alternative 2: 2,000 t Catch Limit and 1,000 t Allocation Limit for each U.S. Territory</th>
<th>Alternative 3: 2,000 t Catch Limit and up to 2,000 t Allocation Limit for each U.S. Territory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No catch and allocation limits for U.S. territories, and no fishing agreements</td>
<td>Outcome A 1 fishing agreement and 1,000 t allocation</td>
<td>Outcome B 2 fishing agreements and 2,000 t allocation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outcome C 3 fishing agreements and 3,000 t allocation and partial utilization of BET limit in U.S. territories</td>
<td>Outcome D 3 fishing agreements and 3,000 t allocation and full utilization of BET limit in U.S. territories</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcome E 3 fishing agreements and 6,000 t allocation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcome F 3 fishing agreements and 5,500 t allocation and full utilization of American Samoa BET limit</td>
</tr>
<tr>
<td>AMs to ensure the longline BET catch and allocation limits are not exceeded</td>
<td>None needed (no catch or allocation limits)</td>
<td>If the territorial longline BET catch limit is projected to be reached, NMFS would prohibit the retention of longline-caught BET by vessels in the applicable U.S. territory; if the longline BET allocation limit is projected to be reached, NMFS would prohibit the retention of longline-caught BET by vessels operating under specified fishing agreements.</td>
<td></td>
</tr>
<tr>
<td>Expected annual amount of longline caught BET that would be attributed to the U.S. (Hawaii) longline vessels</td>
<td>3,554 t</td>
<td>3,554 t</td>
<td>3,554 t</td>
</tr>
<tr>
<td>Topic</td>
<td>Alternative 1: No Action</td>
<td>Alternative 2: 2,000 t Catch Limit and 1,000 t Allocation Limit for each U.S. Territory</td>
<td>Alternative 3: 2,000 t Catch Limit and up to 2,000 t Allocation Limit for each U.S. Territory</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>---------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>No catch and allocation limits for U.S. territories, and no fishing agreements</td>
<td>Outcome A 1 fishing agreement and 1,000 t allocation</td>
<td>Outcome B 2 fishing agreements and 2,000 t allocation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outcome D 3 fishing agreements and 3,000 t allocation and full utilization of BET limit in U.S. territories</td>
<td>Outcome E 3 fishing agreements and 6,000 t allocation</td>
</tr>
<tr>
<td></td>
<td>Expected annual number of specified fishing agreements</td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected annual amount of BET that would be allocated to the Hawaii longline fishery under specified fishing agreements</td>
<td>None</td>
<td>1,000 t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Alternative 1: No Action</td>
<td>Alternative 2: 2,000 t Catch Limit and 1,000 t Allocation Limit for each U.S. Territory</td>
<td>Alternative 3: 2,000 t Catch Limit and up to 2,000 t Allocation Limit for each U.S. Territory</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>-----------------------------------------------------------------</td>
<td>-----------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>No catch and allocation limits for U.S. territories, and no fishing agreements</td>
<td>Outcome A 1 fishing agreement and 1,000 t allocation</td>
<td>Outcome B 2 fishing agreements and 2,000 t allocation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outcome C 3 fishing agreements and 3,000 t allocation and partial utilization of BET limit in U.S. territories</td>
<td>Outcome D 3 fishing agreements and 3,000 t allocation and full utilization of BET limit in U.S. territories</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcome E 3 fishing agreements and 6,000 t allocation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcome F 3 fishing agreements and 5,500 t allocation and full utilization of American Samoa BET limit</td>
</tr>
<tr>
<td>Expected annual amount of BET caught by longline vessels in the three U.S. participating territories</td>
<td>541 t</td>
<td>541 t</td>
<td>541 t</td>
</tr>
<tr>
<td>Expected annual amount of BET caught by Hawaii and U.S. territory longline vessels combined</td>
<td>4,095 t</td>
<td>5,095 t</td>
<td>6,095 t</td>
</tr>
<tr>
<td>Fishery Activity (based on WCPO likely to close by November or third or fourth quarter)</td>
<td>WCPO likely to close by November or third or fourth</td>
<td>WCPO could close in fourth quarter. Less</td>
<td>WCPO unlikely to close; less</td>
</tr>
<tr>
<td>Topic</td>
<td>Alternative 1: No Action</td>
<td>Alternative 2: 2,000 t Catch Limit and 1,000 t Allocation Limit for each U.S. Territory</td>
<td>Alternative 3: 2,000 t Catch Limit and up to 2,000 t Allocation Limit for each U.S. Territory</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>No catch and allocation limits for U.S. territories, and no fishing agreements</td>
<td>Outcome A 1 fishing agreement and 1,000 t allocation</td>
<td>Outcome B 2 fishing agreements and 2,000 t allocation</td>
<td>Outcome C 3 fishing agreements and 3,000 t allocation and partial utilization of BET limit in U.S. territories</td>
</tr>
<tr>
<td></td>
<td>quarter of the year. Less effort in EPO compared to Alternative 1. However, EPO could close to large vessels, if one fishing agreement allocation is exhausted.</td>
<td>effort in EPO compared to Alt. 1 and Alt. 2 Outcome A. However, EPO could close to large vessels, if two fishing agreement allocation is exhausted. Less activity in EPO than Alt 1 or Alt 2 Outcome A.</td>
<td>activity in EPO. American Samoa vessels unable to retain bigeye tuna.</td>
</tr>
<tr>
<td>most recent 5 year period)</td>
<td>earlier; EPO likely to close to large vessels, shortly after WCPO closure.</td>
<td>activity in EPO.</td>
<td>activity in EPO. American Samoa likely able to retain bigeye throughout the year.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4 Alternatives Considered, but Rejected from Further Analysis

The Council and NMFS did not consider additional alternatives for bigeye tuna catch and allocation limits for U.S. participating territories that met the purpose and need for the proposed action. If the Council considers additional alternatives for territorial bigeye tuna catch limits in later years, NMFS will evaluate whether the alternatives are substantially different from those presented in this document and whether the analysis in this document can support a decision on whether to approve resulting recommendations.

3 AFFECTED ENVIRONMENT

This chapter describes the baseline condition of resources in the action area under recent fishery conditions. The environmental resources that are potentially affected include target and non-target species (including bycatch), protected resources, and marine habitat. This chapter also describes fishery participants, fishing communities, the management setting, and resources eliminated from detailed study. NMFS derives the information in this chapter from longline and observer reports, required under the Pelagics FEP, the scientific literature, and other available information from regional fishery management organizations (RFMOs) such as the WCPFC or IATTC.

3.1 Target and Non-Target Stocks

This section identifies the pelagic MUS managed under the Pelagics FEP that the longline fisheries of American Samoa, Guam, the CNMI and Hawaii harvest. They include several species of tuna, billfish and sharks shown in Table 3. This section also briefly summarizes the status of pelagic MUS where known. For a comprehensive discussion of the biology and life history of pelagic MUS, see the Pelagics FEP (WPFMC 2009).

The Pelagics FEP (WPFMC 2009) includes SDC, also known as limit reference points (LRPs) for overfishing and overfished conditions. Specifically, overfishing occurs when the fishing mortality rate (F) for one or more years is greater than the maximum fishing mortality threshold (MFMT), which is the fishing mortality rate that produces maximum sustainable yield (FMSY). Thus, if the F/FMSY ratio is greater than 1.0, overfishing is occurring.

A stock is considered overfished when its biomass (B) has declined below the minimum stock size threshold (MSST), or the level that jeopardizes the capacity of the stock to produce MSY on a continuing basis (BMSY). Specifically, the BMSST = (1-M)BMSY, where M is the natural mortality rate of the stock, or one half of BMSY, whichever is greater. For example, if the natural mortality rate of a stock is 0.35, BMSST = 0.65*BMSY. Thus, if the B/BMSY ratio for the stock falls below 0.65, the stock is overfished. If a stock has a natural mortality rate greater than 0.6, MSST is set at the default of 0.5*BMSY (because 1 - 0.6 = 0.4, and 0.5 is greater than 0.4). For such a stock, the stock is overfished when the B/BMSY ratio falls below 0.5. It is important to note that NMFS’ National Standard 1 guidelines at 50 CFR 665.310(e)(1)(i)(C) defines BMSY as the long-term average size of the stock measured in terms of spawning biomass (SB) or other appropriate measure of the stock’s reproductive potential that would be achieved by fishing at BMSY. Thus, whenever available, NMFS uses estimates of SB in determining the status of a stock. When
estimates of SB are not available, NMFS may use estimates of total biomass (B), or other reasonable proxies for determining stock status.

Table 3 shows the stock status determinations of pelagic MUS measured against the SDCs of the Pelagics FEP, based on the most recent stock assessment for the stock. For some pelagic MUS, the SDC specified in the Pelagics FEP differs from the SDC or LRPs adopted by the WCPFC and IATTC. Additionally, in some cases, the LRPs adopted by the WCPFC for a particular stock of fish differs from the LRPs adopted by the IATTC. Finally, in other cases, no stock assessments are available and fishery management organizations must infer stock status from other indicators or not at all. For the purposes of stock status determinations, NMFS uses the SDCs specified in the Pelagics FEP.
Table 3. Estimates of stock status in relation to Pelagics FEP overfishing and overfished SDCs for pelagic MUS.

<table>
<thead>
<tr>
<th>Stock</th>
<th>Overfishing reference point</th>
<th>Is overfishing occurring?</th>
<th>Approaching Overfishing (2 yr)</th>
<th>Overfished reference point</th>
<th>Is the stock overfished?</th>
<th>Approaching Overfished (2 yr)</th>
<th>Assessment results</th>
<th>Natural mortality$^1$</th>
<th>MSST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skipjack Tuna (WCPO)</td>
<td>F/F MSY=0.45</td>
<td>No</td>
<td>No</td>
<td>SB$<em>{2015}$/SB$</em>{MSY}$=2.56, SB$<em>{2015}$/SB$</em>{F=0}$=0.58</td>
<td>No</td>
<td>No</td>
<td>McKechnie et al. (2016) WCPFC (2017b)</td>
<td>&gt;0.5 yr$^{-1}$</td>
<td>0.5 B$_{MSY}$</td>
</tr>
<tr>
<td>Skipjack Tuna (EPO)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>No</td>
<td>Unknown</td>
<td>Maunder (2018)</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Yellowfin Tuna (WCPO)</td>
<td>F/F MSY=0.74</td>
<td>No</td>
<td>No</td>
<td>SB$<em>{2012-2015}$/SB$</em>{MSY}$=1.41, SB$<em>{2012-2015}$/SB$</em>{F=0}$=0.33</td>
<td>No</td>
<td>No</td>
<td>Tremblay-Boyer et al. (2017) WCPFC (2017b)</td>
<td>0.8-1.6 yr$^{-1}$</td>
<td>0.5 B$_{MSY}$</td>
</tr>
<tr>
<td>Yellowfin Tuna (EPO)</td>
<td>F/F MSY=1.01</td>
<td>Yes, because F&gt;MFMT</td>
<td>Not applicable</td>
<td>SB$<em>{2015-2017}$/SB$</em>{MSY}$=1.08, B$<em>{2015-2017}$/B$</em>{MSY}$=1.35</td>
<td>No</td>
<td>No</td>
<td>Minte-Vera et al. (2018)</td>
<td>0.2-0.7 yr$^{-1}$</td>
<td>0.5 B$_{MSY}$</td>
</tr>
<tr>
<td>Albacore (S. Pacific)</td>
<td>F/F MSY=0.20</td>
<td>No</td>
<td>No</td>
<td>SB$<em>{2013-2016}$/SB$</em>{MSY}$=3.3, SB$<em>{2013-2016}$/SB$</em>{F=0}$=0.52,</td>
<td>No</td>
<td>No</td>
<td>Tremblay-Boyer et al. (2018) WCPFC (2018b)</td>
<td>0.3 yr$^{-1}$</td>
<td>~0.6 B$_{MSY}$</td>
</tr>
<tr>
<td>Albacore (N. Pacific)</td>
<td>F/F MSY=0.61</td>
<td>No</td>
<td>No</td>
<td>SB$<em>{2015}$/SB$</em>{F=0}$=0.40</td>
<td>No</td>
<td>No</td>
<td>ISC (2017b)</td>
<td>0.4 yr$^{-1}$</td>
<td>0.6 B$_{MSY}$</td>
</tr>
<tr>
<td>Bigeye Tuna (WCPO)</td>
<td>F/F MSY=0.77</td>
<td>No</td>
<td>No</td>
<td>SB$<em>{2012-2015}$/SB$</em>{MSY}$=1.38, SB$<em>{2012-2015}$/SB$</em>{F=0}$=0.36</td>
<td>No, because SSB&lt;MSST</td>
<td>No</td>
<td>Vincent et al. (2018) WCPFC (2018b)</td>
<td>0.4 yr$^{-1}$</td>
<td>0.6 B$_{MSY}$</td>
</tr>
<tr>
<td>Bigeye Tuna (EPO)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Maunder et al. (2018a)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Pacific Bluefin Tuna</td>
<td>F/F MSY =1.17</td>
<td>Yes, because F&gt;MFMT</td>
<td>Not applicable</td>
<td>SB$_{2016}$/MSST=0.21</td>
<td>Yes, because SSB&lt;MSST</td>
<td>Not applicable</td>
<td>ISC (2018a)</td>
<td>0.25-1.6 yr$^{-1}$</td>
<td>~0.75 B$_{MSY}$</td>
</tr>
<tr>
<td>Blue Marlin (Pacific)</td>
<td>F/F MSY=0.81</td>
<td>No</td>
<td>Unknown</td>
<td>SB$<em>{2012-2014}$/SB$</em>{MSY}$=1.23</td>
<td>No</td>
<td>Unknown</td>
<td>ISC (2016)</td>
<td>0.22-0.42 yr$^{-1}$</td>
<td>~0.7 B$_{MSY}$</td>
</tr>
<tr>
<td>Stock</td>
<td>Overfishing reference point</td>
<td>Is overfishing occurring?</td>
<td>Approaching Overfishing (2 yr)</td>
<td>Overfished reference point</td>
<td>Is the stock overfished?</td>
<td>Approaching Overfished (2 yr)</td>
<td>Assessment results</td>
<td>Natural mortality</td>
<td>MSST</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Swordfish (WCNPO)</td>
<td>$F_{2013-2015}/F_{MFSY}=0.45$</td>
<td>No</td>
<td>Unknown</td>
<td>$SB_{2016}/SB_{MFSY}=1.87$</td>
<td>No</td>
<td>Unknown</td>
<td>ISC (2018b)</td>
<td>0.22-0.42 yr⁻¹</td>
<td>~0.7 B$_{MSY}$</td>
</tr>
<tr>
<td>Swordfish (EPO)</td>
<td>$F_{2012}/F_{MFSY}= 1.11$</td>
<td>Yes, because $F &gt; MFMT$</td>
<td>Not applicable</td>
<td>$SB_{2012}/SB_{MFSY} =1.87$</td>
<td>No</td>
<td>Unknown</td>
<td>ISC (2014)</td>
<td>0.35 yr⁻¹</td>
<td>0.65 B$_{MSY}$</td>
</tr>
<tr>
<td>Striped Marlin WC (N. Pacific)</td>
<td>$F/F_{MFSY}=1.49$</td>
<td>Yes, because $F&gt;MFMT$</td>
<td>Not applicable</td>
<td>$SB_{2013}/SB_{MFSY}=0.39$</td>
<td>Yes, because $SSB_{2013}&lt;MS_{ST}$</td>
<td>Not applicable</td>
<td>ISC (2015b)</td>
<td>0.4 yr⁻¹</td>
<td>0.6 $SB_{MSY}$</td>
</tr>
<tr>
<td>Striped Marlin (NEPO)</td>
<td>Not provided in assessment</td>
<td>No</td>
<td>No</td>
<td>$SB_{2009}/SB_{MFSY}=1.5$</td>
<td>No</td>
<td>Unknown</td>
<td>Hinton and Maunder (2011)</td>
<td>0.5 yr⁻¹</td>
<td>0.5 B$_{MSY}$</td>
</tr>
<tr>
<td>Blue Shark (N. Pacific)</td>
<td>$F/F_{MFSY}=0.38$</td>
<td>No</td>
<td>Unknown</td>
<td>$SB_{2012-2014}/SB_{MFSY}=1.69$</td>
<td>No</td>
<td>Unknown</td>
<td>ISC (2017a)</td>
<td>0.145-0.785 yr⁻¹</td>
<td>~0.8 B$_{MSY}$</td>
</tr>
<tr>
<td>Oceanic white-tip shark (WCPO)</td>
<td>$F/F_{MFSY}=6.69$</td>
<td>Yes</td>
<td>Not applicable</td>
<td>$SB/SM_{MFSY}=0.15$</td>
<td>Yes</td>
<td>Not applicable</td>
<td>Rice and Harley (2012b)</td>
<td>0.18 yr⁻¹</td>
<td>0.82 B$_{MSY}$</td>
</tr>
<tr>
<td>Silky shark (WCPO)</td>
<td>$F/F_{MFSY}=1.61$</td>
<td>Yes</td>
<td>Not applicable</td>
<td>$SB_{2016}/SB_{MFSY}=1.18$</td>
<td>No</td>
<td>Unknown</td>
<td>Clarke et al. (2018)</td>
<td>0.18 yr⁻¹</td>
<td>0.82 B$_{MSY}$</td>
</tr>
<tr>
<td>Silky Shark (EPO)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>No</td>
<td>Unknown</td>
<td>Lennert-Cody et al. (2018)</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Longfin mako shark (N. Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Shortfin mako shark (N. Pacific)</td>
<td>$F/F_{MFSY}=0.62$</td>
<td>No</td>
<td>Unknown</td>
<td>$SA_{2016}/SA_{MFSY}=1.36$</td>
<td>No</td>
<td>Unknown</td>
<td>ISC (2018c)</td>
<td>0.128 yr⁻¹</td>
<td>0.872 B$_{MSY}$</td>
</tr>
<tr>
<td>Common thresher shark (N. Pacific)</td>
<td>$F/F_{MFSY}=0.21$</td>
<td>No</td>
<td>Unknown</td>
<td>$SB/SM_{MFSY}=1.4$</td>
<td>No</td>
<td>Unknown</td>
<td>Teo et al. (2018)</td>
<td>0.04 yr⁻¹</td>
<td>0.96 B$_{MSY}$</td>
</tr>
<tr>
<td>Bigeye thresher</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
### Environmental Assessment

<table>
<thead>
<tr>
<th>Stock</th>
<th>Overfishing reference point</th>
<th>Is overfishing occurring?</th>
<th>Approaching Overfishing (2 yr)</th>
<th>Overfished reference point</th>
<th>Is the stock overfished?</th>
<th>Approaching Overfished (2 yr)</th>
<th>Assessment results</th>
<th>Natural mortality</th>
<th>MSST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shark (N. Pacific)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelagic thresher shark (N. Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Salmon shark (N. Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Mahimahí (Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Wahoo (Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Opah (Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Pomfret (family Bramidae, W. Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black marlin (Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Shortbill spearfish (Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Sailfish (Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Kawakawa (Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Oilfish (family)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Stock</td>
<td>Overfishing reference point</td>
<td>Is overfishing occurring?</td>
<td>Approaching Overfishing (2 yr)</td>
<td>Overfished reference point</td>
<td>Is the stock overfished?</td>
<td>Approaching Overfished (2 yr)</td>
<td>Assessment results</td>
<td>Natural mortality(^1)</td>
<td>MSST</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Gempylidae, Pacific</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Other tuna relatives (Auxis spp., Allothunnus spp., and Scomber spp., Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Squids (Pacific)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Source: WPFMC (2018a) and those assessments listed in the “Assessment results” column.

\(^1\) Estimates based on Boggs et al. (2000) or assumed in the assessments.
3.1.1 Bigeye Tuna

**WCPO**

The Secretariat of the Pacific Community (SPC) prepared the most recent stock assessment for WCPO bigeye tuna in July 2017, updated August 2018, which covers bigeye tuna from Indonesia in the far western Pacific, to 150° W in the central Pacific Ocean (McKechnie et al. 2017; Vincent et al. 2018). The 2017 and 2018 assessment reports update the 2014 stock assessment by incorporating additional bigeye catch data from 2013-2015, and investigating alternative regional bigeye tuna stock structure in combination with a new bigeye tuna growth curve. The new growth curve is based on age at length parameters directly observed from otoliths, rather than estimated internally in the assessment model. The new growth model suggests bigeye tuna is more productive than previously assumed. The newly introduced alternative regional structure is based on composition of fisheries in equatorial waters south of 10°N and homogeneity of fisheries operating north of 10°N, which notably includes the area of operation of the Hawaii-based longline fleet in a single continuous region). Unlike the 2014 stock assessment, which identified four model variants that most plausibly reflected the condition of the stock, the 2017 stock assessment identifies 72 plausible model variants. The models make up a grid to explore the interactions among axes of uncertainty, known as a structural uncertainty grid (McKechnie et al. 2017). The 2018 assessment update revisited the uncertainty grid with respect to the exclusive use of new growth information and alternative regional structure scenarios (Vincent et al. 2018).

The WCPFC Scientific Committee (SC) reviewed and endorsed the 2017 bigeye stock assessment at its Thirteenth Regular Session (SC13) as the most advanced and comprehensive assessment yet conducted for this species (WCPFC 2017b). At the Fourteenth Regular Session of the Science Committee (SC14), the SC also endorsed the use of the assessment model uncertainty grid as best available scientific information to characterize stock status and management advice. SC14 recommended that SPC retain only model runs with newest growth information, comprising 36 model configurations and noted variance in the assessment results with respect to regional stock structure. The consensus weighting considered all options within the four axes of uncertainty for steepness, tagging dispersion, size frequency and regional structure to be equally likely. The resulting uncertainty grid was used to characterize stock status, to summarize reference points and to calculate the probability of breaching the WCPFC-adopted spawning biomass limit reference point (0.2*SBF=0) and the probability of Frecent exceeding FMSY (WCPFC 2018b).

Based on the uncertainty grid adopted by SC14, the WCPO bigeye tuna spawning biomass is likely above the MSST of the Pelagics FEP and the WCPFC’s biomass LRP. Additionally, recent F is likely below FMSY (MFMT). Therefore noting the level of uncertainties in the current assessment it appears that the stock is not experiencing overfishing (94% probability, 34 of 36 models) and it appears that the stock is not in an overfished condition (100% probability) with respect to WCPFC-adopted LRP in 2015 (SBlast/SMSY). The central tendency of relative recent SB under the selected new and old growth curve model weightings in the absence of fishing was median (SBrecent/SBF=0) = 0.42 with a range of 0.251 to 0.452 and (SBlast/SMSY = 1.624) with a range of 1.146 and 2.187 (Table 4). There was a roughly 6% probability (2 out of 36 models)
that the recent spawning biomass (SB\textsubscript{recent,2012-2015}) had breached the adopted LRP (WCPFC 2018b).

The central tendency of relative recent fishing mortality under the SC14’s selected new growth model configurations was median (F\textsubscript{recent}/F\textsubscript{MSY}) = 0.768 with a range of 0.592 to 1.058 (Table 4). There was a roughly 6% probability (2 out of 36 models) that the recent fishing mortality was above F\textsubscript{MSY} (WCPFC 2018b).

Table 4: Summary of reference points using WCPFC SC structural uncertainty grid

<table>
<thead>
<tr>
<th>Source: Vincent et al. (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>C\textsubscript{latest}</td>
</tr>
<tr>
<td>YF\textsubscript{recent}</td>
</tr>
<tr>
<td>f\textsubscript{mult}</td>
</tr>
<tr>
<td>F\textsubscript{MSY}</td>
</tr>
<tr>
<td>MSY</td>
</tr>
<tr>
<td>F\textsubscript{recent}/F\textsubscript{MSY}</td>
</tr>
<tr>
<td>SB\textsubscript{0}</td>
</tr>
<tr>
<td>SB\textsubscript{F=0}</td>
</tr>
<tr>
<td>SB\textsubscript{MSY}</td>
</tr>
<tr>
<td>SB\textsubscript{MSY}/SB\textsubscript{0}</td>
</tr>
<tr>
<td>SB\textsubscript{MSY}/SB\textsubscript{F=0}</td>
</tr>
<tr>
<td>SB\textsubscript{MSY}/SB\textsubscript{0}</td>
</tr>
<tr>
<td>SB\textsubscript{MSY}/SB\textsubscript{F=0}</td>
</tr>
<tr>
<td>SB\textsubscript{MSY}/SB\textsubscript{F=0}</td>
</tr>
<tr>
<td>SB\textsubscript{MSY}/SB\textsubscript{F=0}</td>
</tr>
<tr>
<td>SB\textsubscript{MSY}/SB\textsubscript{F=0}</td>
</tr>
</tbody>
</table>

SC14 determined that although the new assessment is a significant improvement in relation to the 2014 assessment, the SC advised that the amount of uncertainty in the stock status results for the 2017 and 2018 assessment reports is higher than for the previous assessment due to the inclusion of new information on bigeye tuna growth and regional structures. The SC also noted continued higher levels of depletion in the equatorial and western Pacific (specifically Regions 3, 4, 7 and 8 of the stock assessment) and the associated higher levels of impact, especially with respect to disproportionally higher juvenile bigeye tuna fishing mortality in these regions due to the associated purse-seine fisheries and the “other” fisheries within the western Pacific which tend to select smaller individuals (WCPFC 2018b). Formerly, the reviewers of the fishery management performance of the WCPFC recognized the disparity in effects to the stock between evaluated regions in the stock assessment and recommended that the WCPFC consider adopting spatial management measures to end overfishing of bigeye tuna (Hazin et al. 2012). Bigeye tuna is no longer considered subject to overfishing. According to the Pelagics FEP SDCs, the WCPO bigeye tuna stock is not overfished or experiencing overfishing.

The majority of fishing effort by the U.S. longline fishery operating out of Hawaii occurs north of 20° N in Region 2 (Figure 1). Moreover, 98% of bigeye tuna caught by this fishery occurs north of 10° N, which is above the core equatorial zone of the heaviest purse seine and longline fishing (NMFS unpublished data).
Figure 1. Distribution of cumulative bigeye tuna catch from 2008-2017 by 5-degree squares of latitude and longitude and by fishing gear in the nine sub-regions of the WCPO bigeye tuna assessment.

Figure 1 shows the sub-regional spatial stratification used in stock assessment for the WCPF Convention area. The Hawaii deep-set longline fishery fishes predominately in Region 2.

Source: Brouwer et al. (2018).

In 2017, total WCPO bigeye tuna landings by the longline fisheries in Hawaii, American Samoa, Guam, and the CNMI was 5,358 t (Table 15) or less than 4 percent of the estimated median MSY of 159,020 t (Vincent et al. 2018). U.S. and U.S. participating territory longline catches make up 3 percent of the estimated total catch of WCPO bigeye tuna (Table 17).

EPO

The IATTC assessed bigeye tuna in the EPO in 2018 and the assessment results indicate $F/F_{MSY} = 1.15$ and $SB_{2014-2016}/SB_{MSY} = 1.02$ (Xu et al. 2018). This substantial change in the reference points from the previous year’s assessment, which were $F/F_{MSY} = 0.87$ and $SB_{2014-2016}/SB_{MSY} = 1.23$ (Aires-da-Silva et al. 2017), triggered IATTC to investigate the cause of the change. The authors attribute the change in status to new data for the indices of relative abundance, based on longline catch-per-unit-effort (CPUE), which resulted in lower estimates of recent biomass. Such changes caused by the addition of new data indicate that the model is mis-specified (Maunder et al. 2018b). There is substantial uncertainty in the estimate of current fishing mortality and in the model assumptions used (Xu et al. 2018) and the relative contribution of assessment uncertainty and variability in the relationship between fleet capacity and fishing mortality to the overfishing reference point are also unknown (Maunder et al. 2018b). NMFS has not accepted the Xu et al. (2018) assessment as suitable for making stock status determinations for EPO bigeye tuna (NMFS 2018h).
The EPO bigeye tuna stock assessment (Xu et al. 2018) assumes a single stock that is randomly mixed within the EPO. Tagging data do not support this assumption. The pattern of recruitment evident in the EPO bigeye assessment in which recruitment suddenly increases in the mid-1990s, corresponding to a substantial increase in purse-seine catches in the equatorial region, could also indicate that this assumption contributes to assessment uncertainty (Valero et al. 2018).

IATTC scientists (Valero et al. 2018) explored the spatial structure of the EPO BET stock using a systematic division of the EPO and an integrated model. The integrated model divided the EPO based on a central area (between 5°N and 5°S from 110°W to 85°W) and re-defined the fisheries used in the most current assessment by their spatial overlap with this central area. Where enough data were available for the systematic division, larger biomass declines were modeled in the equatorial areas while other areas showed either flat biomass trajectories or smaller declines. In the integrated model, the spawning biomass ratio showed a steeper declining trend and a more depleted stock status in the central area than the current assessment estimates for the entire EPO (Valero et al. 2018).

Because the longline CPUE is the main driver of the stock’s abundance estimate, increased purse-seine catch in the equatorial regions in the mid-1990s appears to force the model to increase recruitment to support the increase in catch without a reduction in the abundance index. Models that reflect the localized dynamics of the longline and purse seine catches and the associated local longline CPUE indices do not show the increased recruitment in the mid-90s, and show greater depletion of the stocks in the equatorial regions (Valero et al. 2018). These results suggest that alternative spatial management measures should be evaluated (Valero et al. 2018).

Purse seiners rarely catch bigeye tuna north of 10°N in the EPO (Xu et al. 2018), and the majority of the U.S. longline fleet’s fishing pressure occurs north of 20° N (Figure 1). The impact of the purse-seine fishery on the bigeye stock is far greater than that of the longline fishery (Xu et al. 2018). Because the usefulness of the current bigeye assessment (Xu et al. 2018) has been questioned, IATTC staff developed a suite of stock indicators for bigeye based on purse seine data (Maunder et al. 2018a). These indicators show increasing fishing mortality and reduced abundance over time, and are at or above their reference levels. The results indicate that additional purse seine measures are required (Maunder et al. 2018a).

NMFS has noted that the EPO bigeye tuna stock is under increasing fishing pressure, especially from the purse seine fish aggregating device (FAD) fishery. The report on indicators for bigeye stock status, however, does not provide the information required by the Pelagic FEP for making a status determination (NMFS 2018h). In 2017, total bigeye tuna landings in the EPO by the longline fisheries in Hawaii, American Samoa, Guam, and the CNMI was 2,690 t (WPFMC 2018a) or 2.8 percent of the estimated MSY of 95,491 t (Xu et al. 2018) and 2.8 percent of the total 2017 catch (IATTC 2018).
3.1.2 Yellowfin Tuna

**WCPO**

Tremblay-Boyer et al. (2017) conducted the most recent stock assessment for yellowfin tuna in the WCPO. Yellowfin is not subject to overfishing or overfished. Similar to the bigeye assessment, the SC endorsed a weighted assessment model uncertainty grid to characterize stock status. SC13 noted that the central tendency of relative recent spawning biomass was median \((SB_{recent}/SB_{F=0}) = 0.33\) with a probable range of 0.20 to 0.41 (80% probable range), and that there was a roughly 8% probability (4 out of 48 models) that the recent spawning biomass had breached the WCPFC limit reference point. The central tendency of relative recent fishing mortality was median \((F_{recent}/F_{MSY}) = 0.74\) with an 80% probability interval of 0.62 to 0.97, and there was a roughly 4% probability (2 out of 48 models) that the recent fishing mortality was above \(F_{MSY}\) (WCPFC 2017b). In 2017, total yellowfin tuna landings by the longline fisheries in Hawaii, American Samoa, Guam, and the CNMI was 2,587 t (Table 15) or less than 1 percent of the estimated MSY. Of the 2,587 t, the longline fleet based in Hawaii accounted for 1,761 t with the remainder landed by the American Samoa longline fishery.

**EPO**

The IATTC assessed yellowfin tuna in the EPO in 2018 and found that the stock is subject to overfishing \((F/F_{MSY} = 1.01)\) and is not overfished \((SB_{2015-2017}/SB_{MSY}=1.08)\) (Minte-Vera et al. 2018). In 2017, U.S. longline fisheries landed 530 t of yellowfin tuna in the EPO (WPFMC 2018), or less than one percent of the estimated MSY of 264,283 t (Minte-Vera et al. 2018). The 2017 U.S. longline total is 0.25 percent of the 2017 total catch of yellowfin in the EPO (IATTC 2018).

3.1.3 Skipjack Tuna

**WCPO**

McKechnie et al. (2016) conducted the most recent assessment of skipjack tuna in the WCPO using data up to 2015. The median estimates of the ratio of current fishing mortality to fishing mortality at MSY \((F_{2011}/F_{MSY}) =0.48\) indicate that overfishing of skipjack is not occurring in the WCPO. Nor is the stock in an overfished state with spawning biomass to spawning biomass at MSY \((SB_{2011}/SB_{MSY}) = 2.15\). Fishing pressure and recruitment variability (influenced by environmental conditions) will continue to be the primary influences on stock size and fishery performance (McKechnie et al. 2016). McKechnie et al. (2016) estimate MSY at 1,875,600 t. In 2017, total skipjack tuna landings by the longline fisheries in Hawaii, American Samoa, Guam, and the CNMI was 254 t (Table 15), or less than 1 percent of the estimated MSY. Of the 254 t, the Hawaii longline fishery accounted for 157 t with the remainder landed by the American Samoa longline fishery.

**EPO**

A reliable index of abundance does not exist for EPO skipjack tuna, and nor do tagging studies for this stock comparable to studies that have occurred in the WCPO. In the absence of a stock assessment, IATTC infers the status of skipjack tuna in the EPO from bigeye tuna in the EPO.
most recently based on the work of Maunder (2018). Biomass and recruitment of skipjack tuna have increased over the last 20 years; however, the exploitation rate has fluctuated around its average since the mid-1990s. The data- and model-based indicators have yet to detect any adverse impacts of the fishery on the stock (Maunder 2018).

3.1.4 North Pacific Albacore

The International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC) in 2017 completed the most recent stock assessment of North Pacific albacore, which uses data through 2015 (ISC 2017b). The assessment indicates that: a) the stock is likely not overfished relative to the limit reference point adopted by the WCPFC (20%SSB_current, F=0), and b) no F-based reference points have been adopted to evaluate overfishing, but stock status was evaluated against seven potential LMRs and current fishing intensity (F2012-2014) is below six of the seven reference points except for F50%. In 2017, total albacore tuna landings in the North Pacific by the longline fisheries in Hawaii, American Samoa, Guam, and the CNMI was 90 t (Table 15), or less than 1 percent of the estimated MSY. The Hawaii longline fishery made nearly all of the landings.

3.1.5 South Pacific Albacore

Tremblay-Boyer et al. (2018) completed the most recent stock assessment of South Pacific albacore using data through 2016. The new assessment used previously unavailable operational-level longline data, a simplified regional structure, a geostatistical model to standardize the CPUE, and reported results using a structural uncertainty grid in the same approach used for the most recent WCPO bigeye tuna assessment (Tremblay-Boyer et al. 2018).

The median level of spawning biomass depletion over all 72 models in the structural uncertainty grid was (SB_recent/SB_F=0) = 0.52 with a range of 0.32 to 0.72 and recent spawning biomass relative to spawning biomass at MSY was median (SB_recent/MSY) = 3.3 with a range of 1.58 to 9.67. The central tendency of relative recent fishing mortality was median (F_recent/F_MSY) = 0.2 with a range of 0.06 to 0.53 (Tremblay-Boyer et al. 2018). Results indicate the stock is not subject to overfishing and the stock is not overfished under the Pelagics FEP and there is a 0% probability that the stock has breached the WCPFC LRPs (WCPFC 2018b).

The 2018 assessment estimated MSY at an average of 100,074 t across all models in the structural uncertainty grid (Tremblay-Boyer et al. 2018). In 2017, total South Pacific albacore tuna landings by the longline fisheries in Hawaii, American Samoa, Guam, and the CNMI was 1,381 t (Table 15), or 1.4 percent of the estimated MSY. The American Samoa longline fishery accounted for all of the landings.

3.1.6 North Pacific Bluefin Tuna

Scientists consider Pacific bluefin tuna as a single North Pacific-wide stock. The most recent assessment of the status of Pacific bluefin tuna used data through 2016, and concluded that the stock is still experiencing overfishing and is overfished (ISC 2018a). The ISC assessment estimated the F/F_MSY = 1.17 and SB/MSST= 0.21. Current spawning biomass is estimated at 21,000 t in 2016, up from near a near historical low in 2010 (ISC 2018a).
The U.S. longline fleet rarely catches Pacific bluefin tuna (NMFS 2018b). In 2017, total North Pacific bluefin tuna landings by all U.S. longline fisheries was 1 t (Table 15), or much less than one percent of current spawning biomass. At such a low percentage of fishing mortality, the relative impact of the U.S. longline fisheries on the stock is negligible and therefore overfishing of the stock is due to excessive international fishing pressure. NMFS continues to work with the Pacific and Western Pacific Councils and the State Department to ensure that WCPFC and IATTC adopt effective management measures to end overfishing and rebuild the stock.

3.1.7 North Pacific Swordfish

Based on the best scientific information available, the swordfish population in the North Pacific is comprised of two stocks, separated by a roughly diagonal boundary extending from Baja California, Mexico, to the Equator. These are the western central North Pacific Ocean (WCNPO) stock, distributed in the western and central Pacific Ocean, and the EPO stock, distributed in the eastern Pacific Ocean.

Hawaii-permitted deep-set fishing operations north of the equator may land no more than 25 swordfish per trip, if only circle hooks are used; and 10 swordfish per trip, if any other type of hook is used. These limits do not apply if an observer is on board.

**WCNPO**

The results of the most recent assessment (ISC 2018b) support the conclusion that the WCNPO stock is not subject to overfishing because \( F_{2013-2015}/F_{MSY} = 0.45 \), and is not overfished because \( SB_{2016}/SB_{MSY} = 1.87 \). The 2018 stock assessment estimated MSY for the WCNPO stock at 14,941 t (ISC 2018b). In 2017, total landings of swordfish by all U.S. longline fisheries in the NPO was 1,617 t (WPFMC 2018a) or approximately 11 percent of the estimated MSY. The Hawaii longline fishery made nearly all of the landings.

**EPO**

The results of the most recent assessment (ISC 2014), using data through 2012, support a conclusion that the EPO stock is now subject to overfishing because \( F_{2012}/F_{MSY} = 1.11 \), but is not overfished because \( B_{2012}/B_{MSY} = 1.87 \). The 2014 stock assessment estimated MSY for the EPO stock at 5,490 t (ISC 2014). Based on federal logbook records, catch of swordfish by the U.S. longline vessels operating within the boundary of the EPO stock is less than 5 t annually in years 2004-2018 (NMFS unpublished data). This amount (<5 t) is less than 1 percent of the estimated MSY; therefore, the relative impact of the U.S. longline fisheries on the stock is negligible.

In March of 2016, the Council responded to the requirement under the Magnuson-Stevens Act that the Council develop recommendations for domestic regulations to address the relative impact of the domestic fishing fleet on the stock, and develop recommendations to the Secretary of State and Congress for international actions to end overfishing of the EPO swordfish stock. The Council recommended continued logbook and observer program monitoring by NMFS of the incidental catch of swordfish in the EPO in the HI deep-set longline fishery, and noted that any non-retention of EPO swordfish is not warranted for the Hawaii deep-set longline fishery because (1) fishing mortality is primarily the result of overfishing pressure at the international level; (2) Hawaii fishermen harvest an insignificant fraction of EPO swordfish and (3) non-
retention would disadvantage Hawaii fishermen while providing negligible conservation benefits. The WPFMC further recommended the US delegation to the IATTC put forward a proposal that the IATTC take action to eliminate overfishing on this stock by reducing the fishing mortality on North Pacific EPO swordfish by at least 10 percent. NMFS continues to work with the Pacific and Western Pacific Councils and the State Department to ensure that the IATTC adopt effective management measures to end overfishing and rebuild the stock.

3.1.8 Striped Marlin

Genetic and tagging studies suggest that striped marlin in the Pacific is comprised of three stocks: southwest Pacific Ocean, WCNPO, and north east Pacific Ocean (NEPO). Stock assessments are available for the WCNPO stock (ISC 2015b) and the NEPO stock (Hinton and Maunder 2011).

**WCNPO**

The results of a 2015 stock assessment (ISC 2015b) indicate the WCNPO stock of striped marlin continues to be subject to overfishing (F/F\text{MSY} = 1.49) and overfished (SB/SB\text{MSY} = 0.39). The 2015 stock assessment estimated MSY at 5,657 t. CMM 2010-01 for North Pacific striped marlin adopted by the WCPFC requires members and cooperating non-members to limit striped marlin landings by all gears from their highest catches from 2000-2003, and then further reduce catches by 10 percent in 2011, 15 percent in 2012, and 20 percent in 2013. The SIDS and PTs are exempt from catch limits under the measure. The highest striped marlin catch by U.S. fisheries between 2000 and 2003 was 571 t. Thus, a 20 percent reduction from 571 t is 457 t. The Hawaii longline fishery accounts for more than 90 percent of the total U.S. catch of this stock, with the remainder made by Hawaii small-scale troll fisheries. Since 2013, total landings of WCNPO striped marlin by all U.S. fisheries combined have never exceeded 425 t (NMFS 2018b).

In 2017, total WCNPO striped marlin (or striped marlin caught in the WCPO) landings by all U.S. fisheries was 336 t, with the Hawaii longline fisheries accounting for 286 t, the American Samoa longline fishery accounting for 48 t, and the Hawaii troll fisheries accounting for 8 t (NMFS 2018b) or about 6 percent of MSY for all U.S. fisheries. Thus, overfishing of the stock is due to excessive international fishing pressure and the IATTC and WCPFC have inadequate measures in place to address the issue. Nonetheless, NMFS continues to work with the Pacific and Western Pacific Fishery Management Councils, and the State Department to ensure that the WCPFC and IATTC adopt effective management measures to end overfishing.

**NEPO**

The results of the 2011 stock assessment (Hinton and Maunder 2011) indicate that the NEPO striped marlin stock is not overfished or experiencing overfishing. The stock biomass has increased from a low of about 2,600 t in 2003, and was estimated to be about 5,100 t in 2009. There has been an increasing trend in the estimated ratio of the observed annual spawning biomasses to the spawning biomass (SB) in the unexploited stock, which has doubled from about 0.19 in 2003 to about 0.38 in 2009. The estimated ratio of spawning biomass in 2009 to that expected to provide catch at the level of MSY, SB\text{2009}/SB\text{MSY}, was about 1.5, which indicates that the spawning biomass was above the level expected to support MSY. The estimated recent levels
of fishing effort (average 2007-2009) were below those expected at MSY (Hinton and Maunder 2011). Between 2013 and 2017, Hawaii longline catches of NEPO striped marlin (or striped marlin caught in the EPO) ranged between 63 and 77 t annually, which is no greater than 3 percent of the stock’s biomass (WPFMC 2018a).

3.1.9 Pacific Blue Marlin

The 2016 stock assessment by the ISC Billfish Working Group (ISC 2016) which uses data through 2014 indicates Pacific blue marlin is not experiencing overfishing ($F_{2014}/F_{MSY} = 0.88$).

Applying the 2014 spawning biomass estimates of 24,809 t, and the spawning biomass at MSY of 19,858 t, the ratio of SB/MSB is 1.25 indicating the stock is not overfished. In 2017, total blue marlin landings by all longline fisheries in Hawaii, American Samoa, Guam, and the CNMI was 606 t (Table 15), or approximately 3 percent of the estimated MSY. Of the 606 t, the Hawaii longline fishery accounted for 485 t with the remainder caught by the American Samoa longline fishery.

3.1.10 North Pacific Blue Shark

The results of the 2017 assessment (ISC 2017a) indicate the North Pacific blue shark is not subject to overfishing ($F_{2012-2014}/F_{MSY} = 0.37$), and is not overfished ($SB_{2012-2014}/SB_{MSY} = 1.71$). The 2017 stock assessment estimated SBMSY at 179,539 t. In 2017, total blue shark landings by all U.S. longline fisheries was 0 t (Table 15). Nearly all blue sharks caught in US longline fisheries are returned to the sea alive, with some discarded dead as well.

3.1.11 North Pacific Shortfin Mako Shark

In 2018, ISC concluded the first full stock assessment of shortfin mako shark in the North Pacific Ocean (ISC 2018c). Previous abundance indices showed conflicting trends from which stock status could not be determined (ISC 2015a). The new assessment used data through 2016, and assumed a single stock in the NPO (ISC 2018c). The results indicate that the stock is likely (>50%) not subject to overfishing because $F_{2013-2015}/F_{MSY} = 0.62$, and is likely (>50%) not overfished because $SA_{0}/SA_{MSY} = 1.36$. Spawning abundance ($SA$) was used instead of spawning biomass because the size of mature female sharks does not appear to affect the number of pups produced (ISC 2018c).

ISC estimated the MSY at 3,127 t (ISC 2018c). In 2017, total mako shark landings by all U.S. longline fisheries in the North Pacific Ocean was 71 t (Table 15), or 2.3 percent of the MSY.

3.1.12 Silky shark

Silky sharks have a restricted habitat range compared to the other HMS but within this range, they dominate both longline and purse seine catches (Rice and Harley 2013). Research conflicts on stock boundaries of silky sharks, which complicates development of a pan-Pacific assessment model (Clarke et al. 2018). Additionally, CPUE indices from WCPO and EPO fisheries show correlations with oceanographic conditions, so may not represent reliable indices of abundance and may bias indicators of stock status (Clarke et al. 2018; Lennert-Cody et al. 2018). Based on apparent declines and in the absence of better scientific information, both the WCPFC and the
IATTC implemented precautionary measures to prohibit vessels from retaining any part or carcass of a silky shark, except to assist WCPFC observers in collection of samples. A pan-Pacific assessment was completed in 2018, but the authors cautioned that estimates of stock status reference points for determining whether the stock is experiencing overfishing or is overfished are unreliable and should not be used as the basis for management advice (Clarke et al. 2018).

**WCPO**

The assessment by Rice and Harley (2013) for the WCPO concluded that catches at the time were higher than the MSY (5,331 t versus 1,994 t), and further catch at current levels of fishing mortality would continue to deplete the stock below MSY. Overfishing is occurring because \(F/F_{MSY} = 4.32\) and stock is overfished because \(SB/ SB_{MSY} = 0.72\). Bycatch from the longline fishery accounts for the greatest impact to the stock, but there are also impacts from the associated purse seine fishery, which catches predominantly juvenile individuals. Given the bycatch nature of fishery impacts, mitigation measures provide the best opportunity to improve the status of the silky shark population (Rice and Harley 2013) and SC9 recommended that the WCPFC also consider measures directed at targeted catch, such as from shark lines (WCPFC 2012). In 2017, total silky shark landings by all U.S. longline fisheries in the WCPO was 0 t (Table 15), demonstrating full compliance with requirements to discard silky sharks.

Clarke et al. (2018) assessed silky sharks in the WCPO in 2018, given the difficulty of assessing a pan-Pacific stock. The assessment results were that \(F_{2016}/F_{MSY} = 1.607\) and \(SB_{2016}/SB_0 = 0.469\), with a 72 percent probability that current biomass is above biomass at MSY (Clarke et al. 2018).

**EPO**

Uncertainties in fishery data prevent the use of conventional stock assessment models to assess the EPO stock (Lennert-Cody et al. 2018). Bycatch rates of silky shark north of the Equator in the EPO of all three size classes analyzed by Aires-da-Silva et al. (2015) indicate a declining trend, which begins in the mid-2000s for the large size class. The standardized CPUE index shows a possible increase in recent years, preceded by a period of stability following a sharp decline in the mid-1990s. The recent increase could be a result of adults migrating into the area from the west or an effect of fishing closer to the coast. For the southern stock, a similar declining trend appears in bycatch rates. CPUE sharply declined during 1994-2004, and has remained stable since then (Aires-da-Silva et al. 2015).

### 3.2 Socioeconomic Setting

The socioeconomic setting includes U.S. fisheries in the WCPO as well as their associated fishing communities, which are described in this section.

U.S. and territorial longline fisheries are comprised of the Hawaii deep-set tuna longline fleet (including several vessels based on the U.S. West Coast), the Hawaii shallow-set swordfish longline fleet, and the American Samoa deep-set albacore longline fleet. In the past, several deep-set tuna longline vessels were based in Guam and the CNMI, but there has been no longline fishing in these locations since 2011. Longline is a type of fishing gear consisting of a mainline that exceeds 1 nm (6,076 ft) in length that is suspended horizontally in the water column, from
which branchlines with hooks are attached. Longline deployment is referred to as “setting,” and the gear, once deployed, is referred to as a “set.” Sets are normally left drifting for several hours before they are retrieved, along with any catch. In shallow-set longline fishing, the gear is configured so that the hooks remain above 100 meters (m) in depth to target swordfish near the surface. In deep-set longline fishing, the gear is configured so that all of the hooks fall below 100 m to target deeper-dwelling tunas.

Troll and handline fishing also occurs on a commercial and non-commercial basis in Hawaii, American Samoa, Guam, and CNMI, representing relatively small annual catches of pelagic MUS, including bigeye tuna, compared to catches by domestic and foreign longline and purse seine fleets operating in the WCPO. Therefore, troll and handline catch are analyzed in this EA as part of the baseline condition affecting this stock. The proposed action is not expected to adversely affect the troll and handline vessels in terms of revenue, catch, effort, or area fished because the catch and allocation limits would only apply to longline vessels. However, Hawaii troll and handline vessels may increase bigeye tuna targeting activity in the event of a longline closure. Therefore, catch and revenue from this fleet are discussed in this section. About 80 percent of troll and handline landings in the management area are made by Hawaii vessels (WPFMC 2018a).

3.2.1 Hawaii Longline Fisheries

Domestic longline fishing around Hawaii consists of two separately managed fisheries. The deep-set fishery targets bigeye tuna in the EEZ around Hawaii and on the high seas at an average target depth of 167 m (WPFMC 2009). The shallow-set fishery targets swordfish (Xiphias gladius) to the north of the Hawaiian Islands. NMFS and the Council manage the fisheries under a single limited-access permit program. Some Hawaii-permitted vessels also hold American Samoa longline permits. The number of dual-permitted vessels has ranged between 13 and 25 over the last five years (NMFS unpublished data). Dual-permitted vessels land their catch in Hawaii or American Samoa.

3.2.1.1 Longline Fishing Area

Fishing locations may vary seasonally based on oceanographic conditions, catch rates of target species, and management measures, among others. The deep-set fishery operates in the deep, pelagic waters around the Hawaiian archipelago throughout the year, mostly within 300-400 nm (556-741 km) of the main Hawaiian Islands (MHI). However, federal regulations and other applicable laws prohibit longline fishing inside the 200 nm U.S. EEZ around the Northwestern Hawaiian Islands, to minimize interactions with protected species shoreward from 50 nm. Longline fishing within 50 to 75 nm from the shoreline in the MHI is prohibited to minimize the potential for gear conflicts with small boat fisheries and interactions with protected species.

Federal regulations temporarily prohibit longline fishing in the Southern Exclusion Zone (SEZ), an area in the EEZ south of Hawaii (84 FR 5356, February 21, 2019). An SEZ closure is triggered under regulations implementing the False Killer Whale Take Reduction Plan if there are two or more observed serious injuries or mortalities of false killer whales in the EEZ around Hawaii in a given year. One observed mortality and one observed serious injury occurred in January of 2019 (84 FR 5356). The SEZ was closed to deep-set longline fishing between July 18
– December 31, 2018 (83 FR 33484, July 18, 2018) following four false killer whale serious injuries in the Hawaii deep-set longline fishery that occurred inside the EEZ around Hawaii during that calendar year. Because the 2019 observed false killer whale mortality and serious injury occurred in the calendar year following an SEZ closure, the SEZ will be closed until one or more of the criteria found at 50 CFR 229.37(e)(5) are met.7

Some longline fishing also occurs in the U.S. EEZ around U.S. Pacific Remote Island Areas (PRIA) of Kingman Reef and Palmyra Atoll (5° N). Figure 2 shows the distribution of fishing effort by the Hawaii deep-set longline fleet as the annual average number of hooks per 5 degree square in millions of hooks over the years 2008 to 2017.

Figure 2. Operating area of the Hawaii deep-set longline fleet, shown in average number of hooks (millions) per five degree square for years 2008-2017.

In general, deep-set longline vessels operate out of Hawaii ports, with the vast majority based in Honolulu. Infrequently, deep-set trips originate from other ports such as Long Beach or San

Francisco, California, or Pago Pago, American Samoa, and then fishermen land their catches in Hawaii. Fishermen departing from California begin fishing on the high seas, outside the EEZ. Fishermen departing from American Samoa usually begin fishing near the Equator or farther north in the North Pacific where they expect higher catch rates of bigeye tuna.

The shallow-set (swordfish-targeting) longline fishery operates in the U.S. EEZ around Hawaii and on the high seas to the north and northeast of the MHI seasonally (Figure 3). Effort typically increases in October and peaks in March, after which effort declines through the summer months.
For both the deep- and shallow-set fisheries, federal regulations prohibit the longline vessels from operating within any marine national monument, including monument areas encompassing the U.S. EEZ around Johnston Atoll, and Jarvis and Wake Islands.

### 3.2.1.2 Fishing Participation

NMFS manages Hawaii’s deep-set and shallow-set longline fishery under a single limited access fishery with a maximum of 164 vessel permits. Based on logbook data, 145 permitted vessels conducted longline fishing activities in 2017. Of these vessels, 29 were greater than 24 m in length, and 18 vessels participated in the Hawaii-based swordfish fishery. In the event the fishery reaches both of the U.S. bigeye tuna catch limits and NMFS restricts fishing in the WCPO and the EPO, larger vessels would not be able to fish for bigeye tuna in either zone. However, Hawaii-based longline vessels less than 24 m (102 in 2017) may fish in the EPO for the remainder of the year, as the current catch limits in the EPO would not apply to vessels less than 24 m.

### 3.2.1.3 Fishing Effort

From 2004-2012, the annual number of vessels that participated in the deep-set fishery remained relatively stable, ranging from 124 to 129. The number of active vessels has increased since 2012, with 145 vessels operating in 2017. In 2017, 145 deep-set longline vessels made 1,539 trips with 19,674 sets and deployed 53.5 million hooks (Table 5).

Table 5. Number of active longline vessels and fishing effort in the Hawaii deep-set fishery, 2008-2017 (includes effort in both WCPO and EPO).

<table>
<thead>
<tr>
<th>Year</th>
<th>Vessels making deep-sets</th>
<th>Deep-set fishing effort (millions of hooks)</th>
<th>Deep-set fishing effort (trips)</th>
<th>Deep-set fishing effort (sets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>127</td>
<td>40.1</td>
<td>1,384</td>
<td>17,923</td>
</tr>
<tr>
<td>2009</td>
<td>127</td>
<td>37.9</td>
<td>1,257</td>
<td>16,860</td>
</tr>
<tr>
<td>2010</td>
<td>122</td>
<td>37.4</td>
<td>1,211</td>
<td>16,152</td>
</tr>
<tr>
<td>2011</td>
<td>129</td>
<td>40.9</td>
<td>1,312</td>
<td>17,260</td>
</tr>
<tr>
<td>2012</td>
<td>128</td>
<td>44.3</td>
<td>1,365</td>
<td>18,180</td>
</tr>
<tr>
<td>2013</td>
<td>135</td>
<td>46.9</td>
<td>1,386</td>
<td>18,803</td>
</tr>
<tr>
<td>2014</td>
<td>139</td>
<td>45.8</td>
<td>1,355</td>
<td>17,831</td>
</tr>
<tr>
<td>2015</td>
<td>143</td>
<td>47.6</td>
<td>1,452</td>
<td>18,519</td>
</tr>
<tr>
<td>2016</td>
<td>142</td>
<td>51.2</td>
<td>1,480</td>
<td>19,391</td>
</tr>
</tbody>
</table>
The number of vessels participating in the shallow-set fishery has declined over time from a high of 35 vessels in 2006 to a low of 15 vessels in 2016, and the numbers of trips and hooks have been more variable (Table 6). The shallow-set longline fishery is subject to an annual hard cap for the numbers of interactions with leatherback and loggerhead sea turtles. If the fishery reaches the hard cap, under current regulations, the fishery is subject to closure.8

### Table 6. Number of active longline vessels and fishing effort in the Hawaii shallow-set fishery, 2008-2017 (includes effort in both WCPO and EPO).

<table>
<thead>
<tr>
<th>Year</th>
<th>Active Vessels</th>
<th>Number of Trips</th>
<th>Number of Sets</th>
<th>Number of Hooks (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>27</td>
<td>92</td>
<td>1,595</td>
<td>1.5</td>
</tr>
<tr>
<td>2009</td>
<td>28</td>
<td>112</td>
<td>1,762</td>
<td>1.7</td>
</tr>
<tr>
<td>2010</td>
<td>28</td>
<td>114</td>
<td>1,871</td>
<td>1.8</td>
</tr>
<tr>
<td>2011</td>
<td>20</td>
<td>82</td>
<td>1,447</td>
<td>1.5</td>
</tr>
<tr>
<td>2012</td>
<td>18</td>
<td>83</td>
<td>1,352</td>
<td>1.4</td>
</tr>
<tr>
<td>2013</td>
<td>15</td>
<td>58</td>
<td>961</td>
<td>1.1</td>
</tr>
<tr>
<td>2014</td>
<td>20</td>
<td>81</td>
<td>1,329</td>
<td>1.5</td>
</tr>
<tr>
<td>2015</td>
<td>22</td>
<td>69</td>
<td>1,130</td>
<td>1.3</td>
</tr>
<tr>
<td>2016</td>
<td>13</td>
<td>46</td>
<td>727</td>
<td>0.8</td>
</tr>
<tr>
<td>2017</td>
<td>18</td>
<td>61</td>
<td>949</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Source: WPFMC (2018a).

### Catch Information

Table 7 shows the released catch, retained catch, and total catch of pelagic MUS caught in Hawaii deep-set longline fishery in 2017. Bigeye tuna are the primary targeted species, while yellowfin tuna makes up a large component of the catch. Skipjack tuna, pomfret, mahimahi, ono, oilfish, and spearfish are also important components of the catch. Nearly all sharks are released.

---

8 The fishery has reached the hard cap three times since its implementation in 2004 (2006, 2011, 2019), and also closed May 8, 2018, pursuant to a settlement agreement and court order. For more information, see Section 3.3.1.2.
Table 7. Released catch, retained catch, and total catch of pelagic MUS (number of fish) and other fish caught in Hawaii deep-set longline fishery, 2017.

<table>
<thead>
<tr>
<th>Deep-set longline fishery</th>
<th>Released catch</th>
<th>Percent released</th>
<th>Retained catch</th>
<th>Total Catch</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tuna</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albacore</td>
<td>21</td>
<td>0.5</td>
<td>4,087</td>
<td>4,108</td>
</tr>
<tr>
<td>Bigeye tuna</td>
<td>4,016</td>
<td>1.8</td>
<td>220,375</td>
<td>224,391</td>
</tr>
<tr>
<td>Blackfin tuna</td>
<td>2</td>
<td>15.4</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Skipjack tuna</td>
<td>595</td>
<td>2.2</td>
<td>25,990</td>
<td>26,585</td>
</tr>
<tr>
<td>Yellowfin tuna</td>
<td>1,613</td>
<td>2.0</td>
<td>78,007</td>
<td>79,620</td>
</tr>
<tr>
<td>Other tuna</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Total tunas</strong></td>
<td>6,247</td>
<td>1.9</td>
<td>328,470</td>
<td>334,717</td>
</tr>
<tr>
<td><strong>Billfish</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swordfish</td>
<td>315</td>
<td>5.6</td>
<td>5,261</td>
<td>5,576</td>
</tr>
<tr>
<td>Blue marlin</td>
<td>32</td>
<td>0.4</td>
<td>7,986</td>
<td>8,018</td>
</tr>
<tr>
<td>Striped marlin</td>
<td>134</td>
<td>1.0</td>
<td>12,885</td>
<td>13,019</td>
</tr>
<tr>
<td>Spearfish</td>
<td>162</td>
<td>0.8</td>
<td>20,506</td>
<td>20,668</td>
</tr>
<tr>
<td>Other marlin</td>
<td>4</td>
<td>0.7</td>
<td>544</td>
<td>548</td>
</tr>
<tr>
<td><strong>Total billfish</strong></td>
<td>647</td>
<td>1.4</td>
<td>47,182</td>
<td>47,829</td>
</tr>
<tr>
<td><strong>Other PMUS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahi mahi</td>
<td>344</td>
<td>0.7</td>
<td>45,802</td>
<td>46,146</td>
</tr>
<tr>
<td>Wahoo</td>
<td>128</td>
<td>0.5</td>
<td>25,298</td>
<td>25,426</td>
</tr>
<tr>
<td>Moonfish</td>
<td>121</td>
<td>0.5</td>
<td>24,673</td>
<td>24,794</td>
</tr>
<tr>
<td>Oilfish</td>
<td>2,099</td>
<td>11.5</td>
<td>16,153</td>
<td>18,252</td>
</tr>
<tr>
<td>Pomfret</td>
<td>346</td>
<td>0.5</td>
<td>67,390</td>
<td>67,736</td>
</tr>
<tr>
<td><strong>Total other PMUS</strong></td>
<td>3,038</td>
<td>1.7</td>
<td>179,316</td>
<td>182,354</td>
</tr>
<tr>
<td><strong>Non-PMUS fish</strong></td>
<td>3,634</td>
<td>89.2</td>
<td>442</td>
<td>4,076</td>
</tr>
<tr>
<td><strong>Total non-shark</strong></td>
<td>15,566</td>
<td>2.4</td>
<td>555,410</td>
<td>568,976</td>
</tr>
<tr>
<td><strong>PMUS Sharks</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue shark</td>
<td>86,650</td>
<td>100.0</td>
<td>0</td>
<td>86,650</td>
</tr>
<tr>
<td>Mako shark</td>
<td>3,829</td>
<td>86.5</td>
<td>596</td>
<td>4,425</td>
</tr>
<tr>
<td>Thresher shark</td>
<td>7,092</td>
<td>99.5</td>
<td>39</td>
<td>7,131</td>
</tr>
<tr>
<td>Oceanic Whitetip shark</td>
<td>537</td>
<td>100.0</td>
<td>0</td>
<td>537</td>
</tr>
<tr>
<td>Silky shark</td>
<td>242</td>
<td>99.6</td>
<td>1</td>
<td>243</td>
</tr>
<tr>
<td><strong>Total PMUS sharks</strong></td>
<td>98,350</td>
<td>99.4</td>
<td>636</td>
<td>98,986</td>
</tr>
<tr>
<td><strong>Non-PMUS sharks</strong></td>
<td>721</td>
<td>99.7</td>
<td>2</td>
<td>723</td>
</tr>
<tr>
<td><strong>Grand Total</strong></td>
<td>112,637</td>
<td>16.8</td>
<td>556,048</td>
<td>668,685</td>
</tr>
</tbody>
</table>

Source: WPFMC (2018a).
Bigeye tuna CPUE has ranged between 3.0 and 4.8 fish per 1,000 hooks over the years 2008-2017 (Figure 4).

**Figure 4: Tuna CPUE for the Hawai`i-permitted deep-set longline fishery, 2008-2017**
Source: WPFMC (2018a).

Table 8 shows the released catch, retained catch, and total catch of pelagic MUS caught in the Hawaii shallow-set longline fishery. Swordfish is the targeted species and largest component of the catch, and bigeye tuna, yellowfin tuna, and mahimahi also make up important components of the catch. Most sharks are released.

**Table 8. Released catch, retained catch, and total catch of pelagic MUS (number of fish) caught in the Hawaii shallow-set longline fishery, 2017.**
### Shallow-set longline fishery

<table>
<thead>
<tr>
<th>Tuna</th>
<th>Released catch</th>
<th>Percent released</th>
<th>Retained catch</th>
<th>Total Catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albacore</td>
<td>32</td>
<td>11.1</td>
<td>255</td>
<td>287</td>
</tr>
<tr>
<td>Bigeye tuna</td>
<td>215</td>
<td>14.1</td>
<td>1,315</td>
<td>1,530</td>
</tr>
<tr>
<td>Bluefin tuna</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Skipjack tuna</td>
<td>0</td>
<td>0.0</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td>Yellowfin tuna</td>
<td>98</td>
<td>6.3</td>
<td>1,455</td>
<td>1,553</td>
</tr>
<tr>
<td>Other tuna</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Total tunas</strong></td>
<td><strong>345</strong></td>
<td><strong>10.0</strong></td>
<td><strong>3,105</strong></td>
<td><strong>3,450</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Billfish</th>
<th>Released catch</th>
<th>Percent released</th>
<th>Retained catch</th>
<th>Total Catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swordfish</td>
<td>1,109</td>
<td>8.0</td>
<td>12,819</td>
<td>13,928</td>
</tr>
<tr>
<td>Blue marlin</td>
<td>4</td>
<td>6.9</td>
<td>54</td>
<td>58</td>
</tr>
<tr>
<td>Striped marlin</td>
<td>73</td>
<td>17.8</td>
<td>338</td>
<td>411</td>
</tr>
<tr>
<td>Spearfish</td>
<td>11</td>
<td>6.9</td>
<td>149</td>
<td>160</td>
</tr>
<tr>
<td>Other marlin</td>
<td>2</td>
<td>10.5</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td><strong>Total billfish</strong></td>
<td><strong>1,199</strong></td>
<td><strong>8.2</strong></td>
<td><strong>13,377</strong></td>
<td><strong>14,576</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other PMUS</th>
<th>Released catch</th>
<th>Percent released</th>
<th>Retained catch</th>
<th>Total Catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahimahi</td>
<td>41</td>
<td>3.2</td>
<td>1,260</td>
<td>1,301</td>
</tr>
<tr>
<td>Wahoo</td>
<td>0</td>
<td>0.0</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>Moonfish</td>
<td>47</td>
<td>10.9</td>
<td>384</td>
<td>431</td>
</tr>
<tr>
<td>Oilfish</td>
<td>344</td>
<td>45.1</td>
<td>418</td>
<td>762</td>
</tr>
<tr>
<td>Pomfret</td>
<td>9</td>
<td>23.1</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td><strong>Total other PMUS</strong></td>
<td><strong>441</strong></td>
<td><strong>16.9</strong></td>
<td><strong>2,166</strong></td>
<td><strong>2,607</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-PMUS fish</th>
<th>Released catch</th>
<th>Percent released</th>
<th>Retained catch</th>
<th>Total Catch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>46.7</td>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total non-shark</th>
<th>Released catch</th>
<th>Percent released</th>
<th>Retained catch</th>
<th>Total Catch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,992</td>
<td>9.6</td>
<td>18,656</td>
<td>20,648</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PMUS Sharks</th>
<th>Released catch</th>
<th>Percent released</th>
<th>Retained catch</th>
<th>Total Catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue shark</td>
<td>9,638</td>
<td>100.0</td>
<td>0</td>
<td>9,638</td>
</tr>
<tr>
<td>Mako shark</td>
<td>843</td>
<td>75.8</td>
<td>269</td>
<td>1,112</td>
</tr>
<tr>
<td>Thresher shark</td>
<td>71</td>
<td>97.3</td>
<td>2</td>
<td>73</td>
</tr>
<tr>
<td>Oceanic Whitetip shark</td>
<td>22</td>
<td>100.0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Silky shark</td>
<td>7</td>
<td>100.0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td><strong>Total PMUS sharks</strong></td>
<td><strong>10,581</strong></td>
<td><strong>97.5</strong></td>
<td><strong>271</strong></td>
<td><strong>10,852</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-PMUS sharks</th>
<th>Released catch</th>
<th>Percent released</th>
<th>Retained catch</th>
<th>Total Catch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>100.0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

| **Grand Total** | **12,578** | **39.9** | **18,927** | **31,505** |

Source: WPFMC (2018a).

### 3.2.1.5 Revenue

In 2017, Hawaii-based longline vessels landed approximately 32.73 million pounds of pelagic fish valued at $96.1 million (Figure 5). The average catch over years 2008-2017 was 25.43 million pounds valued at $84.3 million (WPFMC 2018a).
In 2017, the Hawaii shallow-set longline fishery landed approximately 2.99 million pounds of pelagic MUS valued at approximately $4.23 million (Figure 6). The average catch over years 2008-2017 was 3.13 million pounds valued at about $5.35 million (WPFMC 2018a).
3.2.1.6 Non-Target Species and Bycatch

Table 7 in section 3.2.1.4 provides an estimate of bycatch species in the Hawaii deep-set longline fishery. The deep-set longline fishery released some 111,702 fish in 2017. Sharks accounted for 85 percent of the deep-set longline bycatch. With the exception for mako shark, there is almost no demand for sharks in Hawaii. Of all shark species combined, 99 percent of the deep-set longline shark catch was released, most alive. Conversely, bycatch rate for the deep-set longline fishery was only 2 percent for targeted and incidentally caught non-shark pelagic MUS in 2017. Generally, most marketable species such as tuna and billfish have low discard rates. Although the fishery does not target striped marlin and other miscellaneous pelagic catch such as mahimahi, bluefin tuna, and wahoo, these species are highly marketable and have low rates of discard at less than 5 percent.

Table 8 in section 3.2.1.4 provides an estimate of bycatch species in the Hawaii shallow-set fishery. The shallow-set longline fishery released 12,008 fish in 2017. Sharks accounted for 91% of the shallow-set longline bycatch. Of all shark species combined, 99% of the shallow-set longline shark catch was released. Conversely, the bycatch rate for the shallow-set longline fishery was 9% for targeted and incidentally caught pelagic species in 2017. Since shallow-set longline trips are often longer than deep-set trips, the higher release rate by the shallow-set sector is to conserve space for swordfish and forego keeping other pelagic species due to their short shelf life.

3.2.2 American Samoa Longline Fishery

The longline fishery based in American Samoa is a limited access fishery with a maximum of 60 vessels under the federal permit program. Vessels range in size from under 40 to over 70 ft long. The fishery primarily targets albacore for canning in the local Pago Pago cannery, although the fishery also catches and retains other tunas (e.g., bigeye, yellowfin, and skipjack), and other pelagic MUS (e.g., billfish, mahimahi, wahoo, oilfish, moonfish (opah), and sharks) for sale and home consumption. The target depth for albacore tuna is approximately 100–300 m (WPFMC 2009). Troll and handline fishing also occurs on a commercial and non-commercial basis in American Samoa, representing relatively small annual catches of yellowfin and skipjack tunas, and other pelagic MUS. Troll and handline fisheries in American Samoa do not catch bigeye tuna.

3.2.2.1 Longline Fishing Area

American Samoa longline fishing vessels operate in the EEZ around American Samoa, on the high seas in international waters, and occasionally in the EEZs of countries adjacent to American Samoa. Additionally, around 25 American Samoa longline limited access permit holders also hold Hawaii longline limited access permits. As previously noted, vessels possessing both an American Samoa and a Hawaii longline limited access permit have an exception to fishery restrictions on the retention on bigeye tuna in the WCPO and may continue to land fish in Hawaii, if NMFS prohibits catch and retention of bigeye tuna in the WCPO when the fishery reaches the U.S. WCPO limit. Federal regulations prohibit fishing within the Large Vessel Prohibited Area (LVPA) for vessels greater than 50 feet in length (generally within 50 nm of emergent lands), and commercial fishing within marine national monuments. Figure 7 shows the
distribution of fishing effort by the American Samoa deep-set longline fleet in millions of hooks per five degree square of latitude and longitude in years 2008-2017.

Figure 7. Operating area of the American Samoa longline fleet, shown in average number of hooks (millions) per five degree square for years 2008-2017.

3.2.2.2 Fishing Participation

As previously mentioned, NMFS manages the American Samoa pelagic longline fishery as a limited access fishery with a maximum of 60 vessel permits based on vessel length as follows:

- Class A Permits – vessels less than or equal to 40 ft
- Class B Permits – vessels over 40 ft to 50 ft
- Class C Permits – vessels over 50 ft to 70 ft
- Class D Permits – vessels over 70 ft

The limited access program also caps the maximum number of permits for each vessel size class that results in a limit of 60 vessels in the fishery. NMFS has fixed the maximum number of available permits for the fishery at 16 permits for Class A vessels, five permits for Class B vessels, 12 for Class C vessels, and 27 for Class D vessels. Since the permit program’s inception,
active participation in the fishery is primarily the larger Class C and D vessels. 15 permitted vessels conducted longline fishing activities in American Samoa in 2017 (WPFMC 2018a). Table 9 shows the number of permits of each class in the time period 2008-2017.

Table 9. Number of American Samoa permitted and active (operating in the SPO) longline fishing vessels by size class from 2008-2017.

<table>
<thead>
<tr>
<th>Year</th>
<th>Class A Permits</th>
<th>Class A Active</th>
<th>Class B Permits</th>
<th>Class B Active</th>
<th>Class C Permits</th>
<th>Class C Active</th>
<th>Class D Permits</th>
<th>Class D Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>17</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>2009</td>
<td>16</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>2010</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>12</td>
<td>7</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>2011</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>12</td>
<td>8</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>2012</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>11</td>
<td>8</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>2013</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>11</td>
<td>7</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>2014</td>
<td>14</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>12</td>
<td>7</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>2015</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>12</td>
<td>6</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>2016</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>12</td>
<td>5</td>
<td>27</td>
<td>13</td>
</tr>
<tr>
<td>2017</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>11</td>
<td>5</td>
<td>27</td>
<td>9</td>
</tr>
</tbody>
</table>

Source: WPFMC (2018a).

3.2.2.3 Fishing Effort

Effort in the American Samoa deep-set longline fishery peaked in 2007, when 29 vessels participated and deployed 5,920 sets with approximately 17,554,000 hooks (NMFS 2015b). Since that time, fishery statistics across all categories have generally declined (Table 10). In 2017, 15 of 48 permitted vessels made 135 trips and deployed 2,333 sets with 6.62 million hooks (WPFMC 2018a).


<table>
<thead>
<tr>
<th>Year</th>
<th>Vessels making deep-sets</th>
<th>Deep-set fishing effort (thousand hooks)</th>
<th>Deep-set fishing effort (trips)*</th>
<th>Deep-set fishing effort (sets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>29</td>
<td>14,444</td>
<td>280</td>
<td>4,754</td>
</tr>
<tr>
<td>2009</td>
<td>26</td>
<td>15,076</td>
<td>195</td>
<td>4,910</td>
</tr>
<tr>
<td>2010</td>
<td>26</td>
<td>13,184</td>
<td>265</td>
<td>4,537</td>
</tr>
<tr>
<td>2011</td>
<td>24</td>
<td>11,074</td>
<td>276</td>
<td>3,891</td>
</tr>
<tr>
<td>2012</td>
<td>25</td>
<td>12,112</td>
<td>211</td>
<td>4,210</td>
</tr>
<tr>
<td>2013</td>
<td>22</td>
<td>10,184</td>
<td>104</td>
<td>3,411</td>
</tr>
<tr>
<td>2014</td>
<td>23</td>
<td>7,667</td>
<td>196</td>
<td>2,748</td>
</tr>
</tbody>
</table>
### 3.2.2.4 Catch Information

The American Samoa longline fleet targets south Pacific albacore tuna, which makes up the majority of the landings in all years (Table 11). Table 11 provides catch statistics associated with the American Samoa-based longline fishery.

**Table 11: American Samoa-based Longline Fishery Landings (t), 2013-2017.**

<table>
<thead>
<tr>
<th>Species</th>
<th>2017</th>
<th>2016</th>
<th>2015</th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Pelagic Landings (t)</td>
<td>2,155</td>
<td>2,167</td>
<td>2,405</td>
<td>2,192</td>
<td>2,828</td>
</tr>
<tr>
<td>South Pacific Albacore (t)</td>
<td>1,381</td>
<td>1,517</td>
<td>1,855</td>
<td>1,430</td>
<td>2,128</td>
</tr>
<tr>
<td>Yellowfin Tuna (t)</td>
<td>533</td>
<td>386</td>
<td>255</td>
<td>424</td>
<td>390</td>
</tr>
<tr>
<td>Bigeye Tuna (t)</td>
<td>64</td>
<td>72</td>
<td>116</td>
<td>82</td>
<td>84</td>
</tr>
<tr>
<td>Skipjack Tuna (t)</td>
<td>63</td>
<td>94</td>
<td>67</td>
<td>116</td>
<td>66</td>
</tr>
<tr>
<td>Wahoo (t)</td>
<td>48</td>
<td>47</td>
<td>58</td>
<td>75</td>
<td>87</td>
</tr>
<tr>
<td>Blue marlin (t)</td>
<td>38</td>
<td>30</td>
<td>25</td>
<td>28</td>
<td>31</td>
</tr>
</tbody>
</table>

Note: all other species (e.g., mahimahi, swordfish, etc.) landed are less than one percent of total landings.

Source: NMFS (2018b)

### 3.2.2.5 Revenue

In 2017, the American Samoa longline fleet landed approximately 4.8 million pounds of pelagic species with an estimated revenue of $4.7 million. Landings and revenue have generally declined over the last five years (Figure 8).
Figure 8. Landings, revenue, and price for American Samoa longline fishery from 2008-2017 adjusted to 2017 dollars.
Source: WPFMC (2018a).

3.2.2.6 Non-Target Species and Bycatch

Table 12 shows the number of fish kept and released in the American Samoa longline fishery during 2017. Fish are released for various reasons including quality, size, handling and storage difficulties, and as well as marketing issues. Fishermen released nearly all sharks and oilfish and a high percentage of certain billfish, which are important to the non-commercial fishery. Overall, fishermen released 10 percent of the total number of fish caught.
Environmental Assessment

3.2.3 Mariana Archipelago Longline Fisheries

The area where longline fishing vessels based in the CNMI and Guam historically have operated is the EEZ around the CNMI and Guam. Historically, fewer than three longline companies have actively fished in the EEZ around Guam and the CNMI. For this reason catch and effort information is confidential. Since 2011, there has been no longline fishing activities around the CNMI or Guam, and NMFS does not expect longline fishing activities to occur in the near future. High operating costs associated with vessel docking along with poor market access may be contributing factors to the lack of longline fishing in the Marianas (WPFMC 2014).

3.2.4 Hawaii Troll and Handline Fisheries

Trolling and, to lesser extent, handline fishing is the largest pelagic fishery in Hawaii in terms of participation, although it catches annually a relatively modest volume of fish compared to longline gear. Troll and handline catches are dominated by yellowfin tuna in Hawaii. Other
commonly caught troll catches include mahimahi, wahoo, and blue marlin. The number of days fished by MHI troll fishermen has been dropping since a peak in 2012, with 1,394 fishermen logging 20,742 days fished around the MHI in 2017. There were 484 MHI handline fishermen that fished 4,526 days in 2017, both below their respective long-term averages (WPFMC 2018a).

3.2.4.1 Catch and Revenue

In the years 2013-2017, U.S. tropical troll and handline fisheries caught between 139 and 541 t of bigeye tuna, compared to between 804 and 973 t of yellowfin tuna (NMFS 2018b). Total catch and revenue information for these fisheries are found in Table 13 and Table 14.


<table>
<thead>
<tr>
<th>Year</th>
<th>Catch (1,000 lbs)</th>
<th>Adjusted revenue ($1,000)</th>
<th>Nominal revenue ($1,000)</th>
<th>Honolulu CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>2,971</td>
<td>$6,324</td>
<td>$5,456</td>
<td>228.9</td>
</tr>
<tr>
<td>2009</td>
<td>2,958</td>
<td>$5,802</td>
<td>$5,030</td>
<td>230.0</td>
</tr>
<tr>
<td>2010</td>
<td>2,855</td>
<td>$6,110</td>
<td>$5,410</td>
<td>234.9</td>
</tr>
<tr>
<td>2011</td>
<td>2,966</td>
<td>$6,280</td>
<td>$5,766</td>
<td>243.6</td>
</tr>
<tr>
<td>2012</td>
<td>3,690</td>
<td>$9,138</td>
<td>$8,594</td>
<td>249.5</td>
</tr>
<tr>
<td>2013</td>
<td>3,117</td>
<td>$7,874</td>
<td>$7,350</td>
<td>253.9</td>
</tr>
<tr>
<td>2014</td>
<td>3,486</td>
<td>$8,837</td>
<td>$8,368</td>
<td>257.6</td>
</tr>
<tr>
<td>2015</td>
<td>3,094</td>
<td>$8,117</td>
<td>$7,763</td>
<td>260.2</td>
</tr>
<tr>
<td>2016</td>
<td>2,582</td>
<td>$7,750</td>
<td>$7,558</td>
<td>265.3</td>
</tr>
<tr>
<td>2017</td>
<td>2,146</td>
<td>$6,419</td>
<td>$6,419</td>
<td>272.0</td>
</tr>
</tbody>
</table>

Average 2,986.5  $7,265.0  $6,771.4  
SD 429.8  $1,218.3  $1,314.9

Source: WPFMC (2018a).


<table>
<thead>
<tr>
<th>Year</th>
<th>Catch (1,000 lbs)</th>
<th>Adjusted revenue ($1,000)</th>
<th>Nominal revenue ($1,000)</th>
<th>Honolulu CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>701</td>
<td>$1,640</td>
<td>$1,415</td>
<td>228.9</td>
</tr>
<tr>
<td>2009</td>
<td>1,067</td>
<td>$2,019</td>
<td>$1,750</td>
<td>230.0</td>
</tr>
<tr>
<td>2010</td>
<td>933</td>
<td>$2,153</td>
<td>$1,906</td>
<td>234.9</td>
</tr>
<tr>
<td>2011</td>
<td>1,129</td>
<td>$2,322</td>
<td>$2,132</td>
<td>243.6</td>
</tr>
<tr>
<td>2012</td>
<td>1,602</td>
<td>$3,574</td>
<td>$3,361</td>
<td>249.5</td>
</tr>
<tr>
<td>2013</td>
<td>1,282</td>
<td>$3,606</td>
<td>$3,366</td>
<td>253.9</td>
</tr>
<tr>
<td>2014</td>
<td>1,161</td>
<td>$3,105</td>
<td>$2,940</td>
<td>257.6</td>
</tr>
<tr>
<td>2015</td>
<td>1,200</td>
<td>$3,028</td>
<td>$2,896</td>
<td>260.2</td>
</tr>
<tr>
<td>2016</td>
<td>785</td>
<td>$2,424</td>
<td>$2,364</td>
<td>265.3</td>
</tr>
<tr>
<td>2017</td>
<td>933</td>
<td>$2,833</td>
<td>$2,833</td>
<td>272.0</td>
</tr>
</tbody>
</table>

Average 1,079.4  $2,670.5  $2,496.5  
SD 260.5  $664.3  $683.2

Source: WPFMC (2018a).
3.2.5 Catches by U.S. Longline Vessels in the Pacific

The Hawaii deep-set longline fishery, and secondarily the American Samoa longline fishery, catch the majority of longline catches of FEP-permitted vessels in the Pacific. As described earlier, the CNMI and Guam longline fisheries are not active, but catches under specified fishing agreements by vessels permitted under the FEP are attributed to the territory to which the agreement applies.

Table 15 shows the total U.S. catches of pelagic MUS in the WCPO by Hawaii and U.S. territorial longline fisheries from 2015-2017. Table 16 provides a detailed breakdown of U.S. longline catches of bigeye tuna in the WCPO by U.S. longline fisheries based on data in Table 15.
Table 15. Longline landings (t) by species and species group for U.S. and U.S. participating territory longline vessels operating in the WCPFC statistical area, 2015-2017. Source: NMFS (2018b). Note: Weights are rounded to the nearest whole number.

<table>
<thead>
<tr>
<th>Vessels</th>
<th>U.S. in North Pacific Ocean</th>
<th>CNMI in North Pacific Ocean</th>
<th>Guam in North Pacific Ocean</th>
<th>American Samoa in North Pacific Ocean</th>
<th>American Samoa in South Pacific Ocean</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albacore, North Pacific</td>
<td>972</td>
<td>208</td>
<td>197</td>
<td>0</td>
<td>16</td>
<td>34</td>
</tr>
<tr>
<td>Albacore, South Pacific</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bigeye tuna</td>
<td>2968</td>
<td>3747</td>
<td>3427</td>
<td>997</td>
<td>879</td>
<td>999</td>
</tr>
<tr>
<td>Pacific bluefin tuna</td>
<td>127</td>
<td>126</td>
<td>116</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Skipjack tuna</td>
<td>157</td>
<td>186</td>
<td>176</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yellowfin tuna</td>
<td>1761</td>
<td>1935</td>
<td>1801</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other tuna</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL TUNA</td>
<td>4960</td>
<td>5234</td>
<td>4482</td>
<td>997</td>
<td>879</td>
<td>999</td>
</tr>
<tr>
<td>Black marlin</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blue marlin</td>
<td>485</td>
<td>419</td>
<td>445</td>
<td>84</td>
<td>57</td>
<td>55</td>
</tr>
<tr>
<td>Sailfish</td>
<td>9</td>
<td>15</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Spearfish</td>
<td>206</td>
<td>251</td>
<td>188</td>
<td>26</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>Striped marlin, North Pacific</td>
<td>286</td>
<td>280</td>
<td>378</td>
<td>48</td>
<td>48</td>
<td>36</td>
</tr>
<tr>
<td>Striped marlin, South Pacific</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other marlins</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Swordfish, North Pacific</td>
<td>924</td>
<td>596</td>
<td>665</td>
<td>49</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td>Swordfish, South Pacific</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL BILLFISH</td>
<td>1910</td>
<td>1562</td>
<td>1688</td>
<td>209</td>
<td>179</td>
<td>133</td>
</tr>
<tr>
<td>Blue shark</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mako shark</td>
<td>30</td>
<td>37</td>
<td>35</td>
<td>5</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Thresher</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Other sharks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oceanic whitetip shark</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Silky shark</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hammerhead shark</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tiger shark</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Porbeagle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL SHARKS</td>
<td>32</td>
<td>40</td>
<td>40</td>
<td>6</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Mahimahi</td>
<td>147</td>
<td>202</td>
<td>199</td>
<td>22</td>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td>Moonfish</td>
<td>258</td>
<td>304</td>
<td>279</td>
<td>61</td>
<td>74</td>
<td>55</td>
</tr>
<tr>
<td>Oilfish</td>
<td>93</td>
<td>160</td>
<td>165</td>
<td>21</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>Pomfret</td>
<td>261</td>
<td>339</td>
<td>380</td>
<td>38</td>
<td>46</td>
<td>39</td>
</tr>
<tr>
<td>Wahoo</td>
<td>218</td>
<td>309</td>
<td>256</td>
<td>35</td>
<td>47</td>
<td>27</td>
</tr>
<tr>
<td>Other fish</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL OTHER</td>
<td>980</td>
<td>1322</td>
<td>1285</td>
<td>178</td>
<td>224</td>
<td>164</td>
</tr>
<tr>
<td>GEAR TOTAL</td>
<td>7883</td>
<td>8158</td>
<td>7495</td>
<td>997</td>
<td>879</td>
<td>999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Hawaii longline permitted vessels</td>
<td>Catch Hawaii longline-permitted vessels applicable to the U.S. bigeye tuna catch limit</td>
<td>2,968</td>
<td>3,747</td>
<td>3,427</td>
<td>3,381</td>
</tr>
<tr>
<td></td>
<td>Catch allocated to Hawaii longline-permitted vessels from a U.S. territory</td>
<td>1,755 (997 from the CNMI and 758 from American Samoa)</td>
<td>1,811 (879 from CNMI and 932 from Guam)</td>
<td>1,855 (999 from CNMI and 856 from Guam)</td>
<td>1,807</td>
</tr>
<tr>
<td>American Samoa longline permitted vessels</td>
<td>Catch by dual permitted U.S. Hawaii/American Samoa longline vessels on the high seas</td>
<td>572</td>
<td>586</td>
<td>441</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Catch by American Samoa longline permitted vessel in the EEZ around American Samoa</td>
<td>64</td>
<td>72</td>
<td>116</td>
<td>84</td>
</tr>
<tr>
<td>Total Catch in WCPO</td>
<td>5,358</td>
<td>6,216</td>
<td>5,840</td>
<td>5,805</td>
<td>5,750</td>
</tr>
</tbody>
</table>

Source: Table 15 above and Kingma and Bigelow (2019)

Table 17 and Table 18 show the total catches of bigeye tuna by gear type including contributions by the U.S. longline fishery as a percentage of the WCPO longline bigeye tuna catch (10.35 percent in 2017), the total EPO longline bigeye tuna catch (8.64 percent in 2017), the total WCPO bigeye tuna catch (4.37 percent in 2017), total EPO bigeye tuna catch (2.76 percent in 2017), and the total Pacific-wide bigeye tuna catch (3.66 percent in 2017), respectively.
Table 17: Bigeye tuna catch (t) by longline (LL), purse seine (PS), and other fisheries (OF) in the WCPO, EPO, and total combined contribution by U.S. longline (LL) vessels (Hawaii and U.S. territories including fishing agreements).

<table>
<thead>
<tr>
<th>Year</th>
<th>WCPO</th>
<th>EPO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LL</td>
<td>PS</td>
</tr>
<tr>
<td>2007</td>
<td>76,661</td>
<td>50,124</td>
</tr>
<tr>
<td>2008</td>
<td>77,151</td>
<td>58,414</td>
</tr>
<tr>
<td>2009</td>
<td>76,107</td>
<td>58,543</td>
</tr>
<tr>
<td>2010</td>
<td>64,135</td>
<td>57,025</td>
</tr>
<tr>
<td>2011</td>
<td>69,820</td>
<td>73,644</td>
</tr>
<tr>
<td>2012</td>
<td>75,150</td>
<td>64,183</td>
</tr>
<tr>
<td>2013</td>
<td>55,574</td>
<td>70,767</td>
</tr>
<tr>
<td>2014</td>
<td>68,164</td>
<td>66,192</td>
</tr>
<tr>
<td>2015</td>
<td>65,765</td>
<td>49,418</td>
</tr>
<tr>
<td>2016</td>
<td>58,034</td>
<td>61,239</td>
</tr>
<tr>
<td>2017</td>
<td>51,765</td>
<td>58,945</td>
</tr>
</tbody>
</table>

Sources: Table 89 from WCPFC (2018c) for WCPO gear totals and Table A-2a from IATTC (2018) for EPO gear totals, unless otherwise noted.


3. Not available.

Calculations: NMFS

Note: There is no attribution of bigeye tuna caught in the EPO to U.S. territory longline vessels.
Table 18. Bigeye tuna catch (t) in the WCPO, EPO, and total combined contribution by U.S. longline (LL) vessels (Hawaii and US Territory including fishing agreements).

<table>
<thead>
<tr>
<th>Year</th>
<th>WCPO</th>
<th>EPO</th>
<th>Total</th>
<th>U.S. LL Total¹</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>138,656</td>
<td>94,260</td>
<td>232,916</td>
<td>6,016</td>
<td>2.58</td>
</tr>
<tr>
<td>2008</td>
<td>149,059</td>
<td>103,350</td>
<td>252,409</td>
<td>6,058</td>
<td>2.40</td>
</tr>
<tr>
<td>2009</td>
<td>147,666</td>
<td>109,255</td>
<td>256,921</td>
<td>4,720</td>
<td>1.84</td>
</tr>
<tr>
<td>2010</td>
<td>132,293</td>
<td>95,408</td>
<td>227,701</td>
<td>5,420</td>
<td>2.38</td>
</tr>
<tr>
<td>2011</td>
<td>154,391</td>
<td>89,460</td>
<td>243,851</td>
<td>5,878</td>
<td>2.41</td>
</tr>
<tr>
<td>2012</td>
<td>155,702</td>
<td>102,687</td>
<td>258,389</td>
<td>6,037</td>
<td>2.34</td>
</tr>
<tr>
<td>2013</td>
<td>143,156</td>
<td>86,063</td>
<td>229,219</td>
<td>6,577</td>
<td>2.87</td>
</tr>
<tr>
<td>2014</td>
<td>153,876</td>
<td>96,045</td>
<td>249,921</td>
<td>7,214</td>
<td>2.89</td>
</tr>
<tr>
<td>2015</td>
<td>135,457</td>
<td>104,755</td>
<td>240,212</td>
<td>8,890</td>
<td>3.70</td>
</tr>
<tr>
<td>2016</td>
<td>144,407</td>
<td>92,801</td>
<td>237,208</td>
<td>8,300</td>
<td>3.50</td>
</tr>
<tr>
<td>2017</td>
<td>122,630</td>
<td>97,519</td>
<td>220,149</td>
<td>8,048</td>
<td>3.66</td>
</tr>
</tbody>
</table>

Sources: Table 89 from WCPFC (2018c), Table A-2a from IATTC (2018) for EPO total, others noted.
Calculations: NMFS
Note: There is no catch of bigeye tuna in the EPO by U.S. territory longline vessels.

### 3.2.6 Bigeye Tuna Catches by U.S. Purse Seine Vessels in the WCPO

The U.S.-flagged purse seine fleet has been fishing in the WCPO since the early 1980s. The South Pacific Tuna Treaty (SPTT) largely governs the fishing activities of U.S. purse seine vessels in the WCPO. The SPTT manages access of U.S. purse seine vessels to the EEZs of Pacific Islands Parties to the SPTT and provides for technical assistance in the area of Pacific island country fisheries development. The SPTT is implemented domestically by regulations (50 CFR 300, Subpart D) issued under authority of the South Pacific Tuna Act of 1988 (SPTA; 16 U.S.C. 973-973r).

From 1997-2010, the U.S. purse seine fleet in the WCPO conducted 6 percent of its effort in the U.S. EEZ, 22 percent on the high seas, and the remainder in the EEZs of Pacific Island Parties to the SPTT (unpublished NMFS data). Participation in the U.S. WCPO purse seine fishery increased from the late 1980s to the mid-1990s, and then gradually decreased until reaching a low of 13 vessels in 2006. From 2011 - 2017, participation has since increased to about the levels.
of the mid 1990s, and has been relatively stable for the past five years. The U.S. WCPO purse seine fleet numbered at 34 vessels in 2017 (NMFS 2018b).

Skipjack tuna generally account for around 80 percent of the U.S. purse seine catch, yellowfin tuna for about 16 percent, and bigeye tuna for the remaining portion (about 4 percent) (See Table 19).

Table 19. Number of vessels and tuna catch (t) by the U.S. purse seine fleet, 2013-2017.

<table>
<thead>
<tr>
<th>Year</th>
<th>Vessels *</th>
<th>Skipjack</th>
<th>Yellowfin</th>
<th>Bigeye</th>
<th>Total tuna Catch (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US reported Catch</td>
<td>SPC estimated catch</td>
<td>US reported Catch</td>
<td>SPC estimated catch</td>
<td>US reported Catch</td>
</tr>
<tr>
<td>2013</td>
<td>40</td>
<td>226,609</td>
<td>207,182</td>
<td>23,277</td>
<td>34,383</td>
</tr>
<tr>
<td>2014</td>
<td>40</td>
<td>269,243</td>
<td>262,138</td>
<td>40,959</td>
<td>40,655</td>
</tr>
<tr>
<td>2015</td>
<td>39</td>
<td>219,550</td>
<td>207,527</td>
<td>17,019</td>
<td>25,074</td>
</tr>
<tr>
<td>2016</td>
<td>37</td>
<td>178,284</td>
<td>168,994</td>
<td>18,162</td>
<td>24,529</td>
</tr>
<tr>
<td>2017</td>
<td>34</td>
<td>138,744</td>
<td>129,999</td>
<td>23,144</td>
<td>28,302</td>
</tr>
</tbody>
</table>

Sources: SPC (2018a) and NMFS (2018b).
Note: Estimates are based on aggregate data and raised logbook data with species composition adjusted using observer sampling with grab sample bias correction, which accounts for differences in the annual catch estimates provided by the U.S. (SPC 2018a).
*US reported vessel numbers or purse seine catch.
+SPC estimated total US purse seine tuna catch.

3.2.7 Fishing Communities

The Magnuson-Stevens Act defines a fishing community as “...a community that is substantially dependent upon or substantially engaged in the harvest or processing of fishery resources to meet social and economic needs, and includes fishing vessel owners, operators, and crew, and fish processors that are based in such communities” (16 U.S.C. § 1802(16)). NMFS further specifies in the National Standard guidelines that a fishing community is “...a social or economic group whose members reside in a specific location and share a common dependency on commercial, recreational, or subsistence fishing or on directly related fisheries dependent services and industries (for example, boatyards, ice suppliers, tackle shops).” National Standard 8 of the Magnuson-Stevens Act requires that conservation and management measures shall, consistent with the conservation requirements of the act (including the prevention of overfishing and the rebuilding of overfished stocks), take into account the importance of fishery resources to fishing
communities to (a) provide for the sustained participation of such communities and (b) to the extent practicable, minimize adverse economic effects to such communities.

In 1999, the Council identified American Samoa, Guam, and the CNMI each as a fishing community. The Secretary of Commerce approved this definition on April 19, 1999 (64 FR 19067). In 2002, the Council identified each island -- Kauai, Niihau, Oahu, Maui, Molokai, Lanai, and Hawaii -- as a fishing community. The Secretary of Commerce subsequently approved these definitions on August 5, 2003 (68 FR 46112).

### 3.2.7.1 American Samoa Cultural Fishing Practices

In 2017, a federal judge set aside a NMFS rulemaking that provided an exemption for longliners to fish within certain areas of the LVPA. In her decision, the Court found that NMFS did not consider its obligations under the Deeds of Cession of Chiefs of Tutuila to the United States Government (1900) and the Deeds of Cession of Manu’a Islands (1904) (collectively, the Instruments) codified at 48 U.S.C. § 1661. In so holding, the Court determined that the Instruments of Cession constitute “other applicable law” for purposes of the Magnuson-Stevens Act, and that NMFS did not properly consider whether the LVPA rule protected and preserved American Samoan cultural fishing practices.

NMFS, however, disagrees that the Instruments - which make no mention of cultural fishing or cultural fishing practices in marine areas that were at the time part of the high seas - are applicable law under the Magnuson-Stevens Act. NMFS has appealed this decision to the Ninth Circuit Court of Appeals.

“Cultural fishing” is a relatively new term and is not readily defined (Kleiber and Leong 2018). It is widely held that cultures and societies change and evolve but also maintain central core values. As with other studies of culture, “cultural fishing” is context dependent – definitions from other areas may not be suitable for American Samoa. American Samoa culture is often framed in terms of Fa’a Samoa, or the “Samoan Way” which govern local social norms and practices. This includes core values and practices such as Tautua or “service” which involves the broad collective sharing of labor, resources, income, and social and political support to strengthen the Aiga (family groups), the village, and the role of chiefs in perpetuating Fa’a Samoa. In a fisheries context this may mean the distribution of catch within the Aiga, or the use of fish at specific ceremonial events. Cultural fishing also encompasses the day-to-day practices of subsistence. These values and practices endure in the face of significant technological change.

The Council has solicited comments from the American Samoan government and from the American Samoan public on the meaning of cultural fishing during development of a revised LVPA action. The NMFS Pacific Islands Fisheries Science Center (PIFSC) also conducted social science research and interviews in American Samoa on the meaning of cultural fishing. Some

---


10 Territory of American Samoa v. NMFS et al., No. 17-17081.
general themes that emerged from these public comments and research include: a) importance of the catch being shared with the community in the form of Tautua in perpetuation of Fa’a Samoa, b) motivation for cultural fishing being linked to community service rather than profits, c) cultural fishing includes commercial fishing in order to pay for expenses associated with fishing, d), the offshore banks are important for alia vessels and other small vessels trolling and bottomfishing, e) fishing gear does not have to be limited to traditional methods and can be modern gear including longline fishing, and f) not just indigenous Samoans engage in cultural fishing.

3.3 Protected Species

Longline and other pelagic fishing vessels operating in the western Pacific and targeting pelagic species have the potential to interact with a range of protected species (such as marine mammals, sea turtles, and seabirds). Table 20 lists the species listed as endangered or threatened under the Endangered Species Act (ESA) that have the potential to interact with longline fisheries managed under the Pelagics FEP. This section provides the recent annual estimated or observed interactions of the longline fisheries with protected species, and a summary of the effects of the standard operation of the longline fisheries permitted under the Pelagics FEP with a comparison to incidental take statements (ITS) where relevant. We consider recent interaction levels to be the baseline condition for comparison of environmental effects of the alternatives in Section 4.

Species Protected under the Endangered Species Act (ESA)

The ESA provides for the conservation of species that are endangered or threatened, and the conservation of the ecosystems on which they depend. Section 7(a)(2) of the ESA requires each federal agency to ensure that any action they authorize, fund, or carry out is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of designated critical habitat of such species. To “jeopardize” means to reduce appreciably the likelihood of survival and recovery of a species in the wild by reducing its numbers, reproduction, or distribution. When a federal agency’s action “may affect” an ESA-listed species, that agency is required to consult formally with NMFS (for marine species, some anadromous species, and their designated critical habitats) or the U.S. Fish and Wildlife Service (U.S. FWS) for terrestrial and freshwater species or their designated critical habitat. The product of formal consultation is the Service’s biological opinion (BiOp). Federal agencies need not engage in formal consultation if they have concluded that an action “may affect, but is not likely to adversely affect” ESA-listed species or their designated critical habitat, and NMFS or U.S. FWS concur with that conclusion (see ESA section 7 Formal Consultation; 50 CFR 402.14(b)).

The ESA also prohibits the taking11 of listed species except under limited circumstances. Western Pacific fisheries authorized under the Pelagics FEP operate in accordance with ITS set by ESA consultations, including applicable terms and conditions. The consultations consider the

11 The definition of “take” includes to harass, harm, hunt, shoot, wound, kill, trap, capture, collect, or attempt to engage in any such conduct. 50 CFR 402.02.
potential interactions of fisheries with listed species, the effects of interactions on the survival and recovery of listed species, and the protection of designated critical habitat.

As provided in 50 CFR 402.16, NMFS is required to reinitiate formal consultation if:

1. the amount or extent of the incidental take is exceeded;
2. new information reveals effects of the agency action that may affect listed species or critical habitat in a manner or to an extent not considered in an opinion;
3. the agency action is subsequently modified in a manner that causes an effect to the listed species or critical habitat not considered in the opinion; or
4. a new species is listed or critical habitat designated that may be affected by the action.

Table 20. ESA-listed species with the potential to interact with longline vessels permitted under the Pelagics FEP

<table>
<thead>
<tr>
<th>Species</th>
<th>ESA status</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sea Turtles</strong></td>
<td></td>
</tr>
<tr>
<td>Central North Pacific green turtle distinct population segment (DPS) (<em>Chelonia mydas</em>)</td>
<td>Threatened</td>
</tr>
<tr>
<td>East Pacific green turtle DPS (<em>Chelonia mydas</em>)</td>
<td>Threatened</td>
</tr>
<tr>
<td>Central South Pacific green turtle DPS (<em>Chelonia mydas</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Central West Pacific green turtle DPS (<em>Chelonia mydas</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>East Indian-West Pacific green turtle DPS (<em>Chelonia mydas</em>)</td>
<td>Threatened</td>
</tr>
<tr>
<td>Southwest Pacific green turtle DPS (<em>Chelonia mydas</em>)</td>
<td>Threatened</td>
</tr>
<tr>
<td>Hawksbill turtle (<em>Eretmochelys imbricata</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Leatherback turtle (<em>Dermochelys coriacea</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>North Pacific loggerhead turtle DPS (<em>Caretta caretta</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>South Pacific loggerhead turtle DPS (<em>Caretta caretta</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Olive ridley turtle (<em>Lepidochelys olivacea</em>)</td>
<td>Threatened, except for Mexico’s nesting population which is Endangered</td>
</tr>
<tr>
<td><strong>Marine Mammals</strong></td>
<td></td>
</tr>
<tr>
<td>Blue whale (<em>Balaenoptera musculus</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Fin whale (<em>Balaenoptera physalus</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Hawaiian monk seal (<em>Neomonachus schauinslandi</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Main Hawaiian Islands insular false killer whale DPS (<em>Pseudorca crassidens</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>North Pacific right whale (<em>Eubalaena japonica</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Sei whale (<em>Balaenoptera borealis</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Sperm whale (<em>Physeter macrocephalus</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Guadalupe fur seal (<em>Arctocephalus townsendi</em>)</td>
<td>Threatened</td>
</tr>
<tr>
<td><strong>Seabirds</strong></td>
<td></td>
</tr>
</tbody>
</table>
Environmental Assessment

<table>
<thead>
<tr>
<th>Species</th>
<th>ESA status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaiian dark-rumped petrel (<em>Pterodroma phaeopygia sandwichensis</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Newell’s shearwater (<em>Puffinus auricularis newelli</em>)</td>
<td>Threatened</td>
</tr>
<tr>
<td>Short-tailed albatross (<em>Phoebastria albatrus</em>)</td>
<td>Endangered</td>
</tr>
<tr>
<td><strong>Sharks and Rays</strong></td>
<td></td>
</tr>
<tr>
<td>Scalloped hammerhead Indo-West Pacific DPS</td>
<td>Threatened</td>
</tr>
<tr>
<td>Scalloped hammerhead Eastern Pacific DPS</td>
<td>Endangered</td>
</tr>
<tr>
<td>Oceanic white tip (<em>Carcharhinus longimanus</em>)</td>
<td>Threatened</td>
</tr>
<tr>
<td>Giant manta ray (<em>Manta birostris</em>)</td>
<td>Threatened</td>
</tr>
<tr>
<td><strong>Corals and Marine Invertebrates</strong></td>
<td></td>
</tr>
<tr>
<td><em>Acropora globiceps</em></td>
<td>Threatened</td>
</tr>
<tr>
<td><em>Acropora jacquelineae</em></td>
<td>Threatened</td>
</tr>
<tr>
<td><em>Acropora retusa</em></td>
<td>Threatened</td>
</tr>
<tr>
<td><em>Acropora speciose</em></td>
<td>Threatened</td>
</tr>
<tr>
<td><em>Euphyllia paradivisa</em></td>
<td>Threatened</td>
</tr>
<tr>
<td><em>Isopora crateriformis</em></td>
<td>Threatened</td>
</tr>
<tr>
<td><em>Seriatopora aculeate</em></td>
<td>Threatened</td>
</tr>
<tr>
<td>Chambered nautilus (<em>Nautilus pompilius</em>)</td>
<td>Threatened</td>
</tr>
</tbody>
</table>


The following list identifies the valid BiOps under which western Pacific longline fisheries currently operate. This section summarizes much of the information contained in these documents to describe baseline conditions. For further information, contact NMFS using the contact information at the beginning of the document.

NMFS. 2001. Biological Opinion on Authorization of Pelagic Fisheries under the Fishery Management Plan for the Pelagic Fisheries of the Western Pacific Region. This BiOp covers longline fisheries in Guam and the CNMI.

NMFS. 2010. Endangered Species Act Section 7 Consultation Biological Opinion on Measures to Reduce Interactions between Green Sea Turtles and the American Samoa-based Longline Fishery-Implementation of an Amendment to the Fishery Ecosystem Plan for Pelagic Fisheries of the Western Pacific Region.
Analyses in the BiOps are comprised of several steps, designed to determine the effects of the fisheries on protected species. First, NMFS or U.S. FWS identifies the probable risks the action poses to listed individuals that are likely exposed to an action’s direct and indirect effects. The total annual number of interactions expected in the fishery, or an interaction rate, represents the probable risks. NMFS uses Bayesian inference techniques appropriate to count data to estimate annual interactions, and assumes both that the underlying process that generates the interactions – fishing effort, gear, area, etc. – do not change and that the subject fishery will remain open year-round (McCracken 2019; McCracken 2018b). The Bayesian methods produce estimates of the credible interval, or the probability that the interaction level is within a specified range of values. In this EA, NMFS uses the 95% credible interval, indicating that we are confident with 95% probability that, given the source data from the observer data sets, the number of interactions (mortality or captures) is within the anticipated number of annual interactions. This is a conservative credible interval, as it also means it is only 5% likely that we have underestimated the level of annual interactions.

In addition to interactions, collisions with fishing vessels represent another potential stressor for some species associated with the proposed action. NMFS or U.S. FWS then integrates the individual risks to identify consequences to the populations those individuals represent, using methods appropriate to the populations under study. Finally, NMFS or U.S. FWS determines the consequences of those population-level risks to the species those populations comprise.

Consultation for the Hawaii deep-set fishery was reinitiated on October 4, 2018, due to reaching several reinitiation triggers. The fishery exceeded the ITS for east Pacific green sea turtle DPS in mid-2018. Listing of the oceanic whitetip shark (83 FR 4153) and giant manta ray (83 FR 2916) as threatened species, and designation of MHI insular false killer whale (IFKW) critical habitat (83 FR 35062) also triggered the requirement for reinitiated consultation.

---

Consultation for the Hawaii shallow-set longline fishery was reinitiated on April 20, 2018, due to reaching several reinitiation triggers. The fishery interacted with ESA-listed Guadalupe fur seals in 2016 and 2017, a species previously unknown to interact with the fishery, and exceeded the olive ridley sea turtle ITS in early 2018. NMFS’s revision of the green turtle listing under distinct population segments (DPSs; 81 FR 20058), listing of the oceanic whitetip shark (83 FR 4153) and giant manta ray (83 FR 2916) as threatened species, and designation of main Hawaiian Islands insular false killer whale critical habitat (83 FR 35062) also triggered the requirement for reinitiated consultation. Finally, on May 4, 2018, the portion of the 2012 shallow-set BiOp pertaining to loggerhead turtles was vacated and remanded to NMFS under a stipulated settlement agreement and court order.

Consultation for the American Samoa deep-set longline fishery was reinitiated on April 3, 2019, due to reaching several reinitiation triggers. The fishery exceeded the ITS for the east Indian west Pacific, southwest Pacific, central South Pacific, and east Pacific green sea turtle DPS; hawksbill; and olive ridley sea turtles in 2018. Listing of the oceanic whitetip shark (83 FR 4153), giant manta ray (83 FR 2916), and chambered nautilus (83 FR 48976) as threatened species also triggered the requirement for reinitiated consultation.

**Species Protected under the Marine Mammal Protection Act**

The Marine Mammal Protection Act (MMPA) prohibits, with certain exceptions, the take of marine mammals in the U.S. EEZ and by U.S. citizens on the high seas, and the importation of marine mammals and marine mammal products into the United States. The MMPA authorizes the Secretary of Commerce to protect and conserve all cetaceans (whales, dolphins, and porpoises) and pinnipeds (seals and sea lions, except walruses). The MMPA requires NMFS to prepare and periodically review marine mammal stock assessments. See 16 U.S.C. § 1361, et seq.

Pursuant to the MMPA, NMFS has promulgated specific regulations that govern the incidental take of marine mammals during fishing operations (50 CFR 229). Under Section 118 of the MMPA, NMFS must publish, at least annually, a List of Fisheries that classifies U.S. commercial fisheries into three categories, based on relative frequency of incidental mortality and serious injury to marine mammals in each fishery:

- **Category I** designates fisheries with frequent serious injuries and mortalities incidental to commercial fishing. Annual mortality and serious injury of a stock in a given fishery is by itself responsible for the annual removal of greater than or equal to 50 percent or more of any stock’s potential biological removal (PBR) level (i.e., frequent incidental mortality and serious injuries of marine mammals).
- **Category II** designates fisheries with occasional serious injuries and mortalities incidental to commercial fishing. Annual mortality and serious injury of a stock in a given fishery is, collectively with other fisheries, responsible for the annual removal of greater than 10 percent of any stock’s PBR level, and is by itself responsible for the annual removal of between 1 and less than 50 percent, exclusive, of any stock’s PBR level (i.e., occasional incidental mortality and serious injuries of marine mammals).
- **Category III** designates fisheries with a remote likelihood or no known serious injuries or mortalities. A Category III fishery is, collectively with other fisheries, responsible for the
annual removal of 10 percent or less of any stock’s PBR level; or collectively with other fisheries, more than 10 percent of any stock’s PBR level, but is by itself responsible for the annual removal of 1 percent or less of PBR level (i.e., a remote likelihood or no known incidental mortality and serious injuries of marine mammals).

According to the 2019 List of Fisheries (84 FR 22051, May 16, 2019), the Hawaii deep-set longline fishery is a Category I fishery, and the Hawaii shallow-set longline fishery and American Samoa longline fishery are Category II fisheries. Among other requirements, owners of vessels or gear engaging in a Category I or II fishery are required under 50 CFR 229.4 to obtain a marine mammal authorization to lawfully take incidentally, non-ESA listed marine mammals by registering with NMFS’ marine mammal authorization program. The CNMI and Guam longline fisheries are inactive and not designated at this time.

Section 101(a)(5)(E) of the MMPA requires the Secretary of Commerce to allow the incidental, but not intentional, taking of individuals from marine mammal stocks that are designated as depleted because of a listing as threatened or endangered under the ESA in the course of commercial fishing operations if it is determined that three criteria are met:

1. Incidental mortality and serious injury will have a negligible impact on the affected species or stock;

2. A recovery plan has been developed or is being developed; and

3. Where required under Section 118 of the MMPA, a monitoring program has been established, vessels engaged in such fisheries are registered in accordance with Section 118 of the MMPA, and a take reduction plan has been developed or is being developed for such species or stock.

On October 16, 2014, NMFS authorized a permit under the MMPA section 101(a)(5)(E), addressing the shallow-set and deep-set fisheries’ interactions with ESA-listed species or depleted stocks of marine mammals (79 FR 62106). The permit authorizes the incidental, but not intentional, taking of ESA-listed humpback whales (central North Pacific or CNP stock), sperm whales (Hawaii stock), and MHI insular false killer whales to vessels registered in the Hawaii deep-set and shallow-set fisheries. In issuing this permit, NMFS determined that incidental taking by the Hawaii longline fisheries will have a negligible impact on the affected stocks of marine mammals. Since the issuance of this permit, the CNP humpback whale was designated a DPS and is not a listed species under the ESA (81 FR 62259, September 8, 2016).

Monitoring

NMFS monitors fishery interactions with protected species using at-sea observers, among other means. The NMFS Observer Program monitors interactions on 100 percent of shallow-set fishing trips and on approximately 20 percent of all Hawaii and American Samoa deep-set longline trips, although past coverage in the American Samoa was lower due to federal funding constraints. PIFSC generates fleet-wide estimates of interactions for the longline fisheries using methods described in McCracken (McCracken 2019; 2009; 2010; 2011a; 2011b; 2012; 2013; 2014a; 2014b; 2014c; 2015; 2016; 2017a; 2017b; 2017c; 2017d; McCracken 2018b), when available. When these data are not available, NMFS estimates fleet-wide interactions by
expanding observed takes using an expansion factor based on the observer coverage rate. For example, because the Hawaii deep-set longline fishery was observed at a 20.4 percent coverage rate in 2017, NMFS multiplied each observed interaction by 4.9 to estimate interactions at a 100 percent coverage rate.

### 3.3.1 Sea Turtles

All Pacific sea turtles are listed under the ESA as either threatened or endangered except for the flatback turtle (*Natator depressus*). This species is native to Australia and does not occur in the action area, and thus is not addressed in this document. The species which occur in the area of operation of the Pelagics FEP longline fleets can be found in Table 20. In addition to the BiOps listed in the previous section, more detailed information, including the range, abundance, status, and threats of the listed sea turtles, can be found in the status reviews, 5-year reviews, and recovery plans for each species on the NMFS species pages found at the following website: [http://www.fpir.noaa.gov/PRD/prd_esa_section_4.html](http://www.fpir.noaa.gov/PRD/prd_esa_section_4.html).

All sea turtles, being air-breathers, are typically found closer to the surface, e.g., in the upper 100 m of the ocean’s surface; however, some turtles are also susceptible to deep-set longlining because of deeper foraging behavior. Therefore, sea turtles are vulnerable to longline fishing gear in the Hawaii and American Samoa longline fisheries through hooking and entanglement. Other pelagic fisheries impacts are primarily limited to the potential for collisions with sea turtles.

The Council and NMFS manage the longline fisheries permitted under the Pelagics FEP through several measures that mitigate the potential for turtle interactions and injury if interactions occur. These measures include training and handling requirements for reducing the severity of interactions, the requirement to carry an observer on a fishing trip if requested, and a requirement for owners and operators of longline vessels to attend a protected species education workshop annually. Additionally, federal regulations require closure of the Hawaii shallow-set fishery once the fishery reaches loggerhead or leatherback hard cap limits and require the use of large circle hooks and mackerel-type fish bait when shallow-setting north of the Equator. Vessels in the American Samoa longline fleet that are longer than 40 m also have specific requirements for gear configuration which result in setting gear at a minimum depth of about 100 m.

After considering a range of potential effects to sea turtles, NMFS, in the 2001, 2010, 2012–2013, 2014 as supplemented (2017), and 2015 BiOps listed above, determined that the pelagic fisheries of the western Pacific operating in accordance with the Pelagics FEP and implementing regulations, would not jeopardize the survival or recovery of any listed sea turtles. Within each BiOp, NMFS has authorized a certain level of interactions (incidental take) of species which the fishery may adversely affect through ITS for these fisheries.

#### 3.3.1.1 Hawaii Deep-set Longline Fishery

---

13 On May 4, 2018, the portion of the 2012 BiOp on the operation of the shallow-set longline fishery pertaining to loggerhead turtles was vacated and remanded to NMFS under a stipulated settlement agreement and court order.
Table 21 summarizes the fleet-wide sea turtle interaction estimates for the Hawaii deep-set longline fishery from 2008 through 2018.

Table 21. Annual sea turtles interactions expanded from observed data to fleet-wide estimates for the Hawaii deep-set longline fishery, 2008-2018.

<table>
<thead>
<tr>
<th>Year</th>
<th>Sea Turtle Species</th>
<th>Green</th>
<th>Leatherback</th>
<th>N. Pacific Loggerhead</th>
<th>Olive Ridley</th>
<th>Unidentified hardshell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*2017 and 2018 estimates expanded by multiplying observed interactions by 4.9 as there was 20.4% observer coverage in 2017 and 2018. Fractional estimates are rounded up to nearest whole number. Because preliminary observed interactions are reported by date of trip arrival and observer coverage rates are reported by date of trip departure, interaction data may vary from other sources.
Source: WPFMC (2018a), NMFS (2019c)

On September 19, 2014, NMFS issued a no-jeopardy BiOp (2014 BiOp) for the deep-set longline fishery, which authorizes over a three-year period, the incidental take of green, leatherback, North Pacific loggerhead, and olive ridley sea turtles (NMFS 2014). ITS for green, loggerhead and olive ridley turtles were subsequently exceeded, and NMFS issued a no-jeopardy supplemental BiOp (2017 BiOp) on March 24, 2017, authorizing the incidental take of these species or DPS over a three-year period. NMFS in its 2014 BiOp as supplemented (2017) concluded that the Hawaii deep-set longline fishery as managed under the Pelagics FEP is not likely to jeopardize the continued existence or recovery of any sea turtle species.

The ITS from the 2014 BiOps as supplemented (2017) are shown in Table 22. There are two thresholds for incidental take in the fishery: the estimated number of interactions and the number of interactions that result in mortality over a three-year period. The ITS calculated in the 2014 BiOp were based on observed interaction data from 2008 through June 30, 2014 (end of 2nd quarter 2014). The ITS calculated in the supplement (2017) were based on observed interaction data from 2008 through June 30, 2016 (end of 2nd quarter 2016).

Table 22. Estimated sea turtle interactions and mortalities in the Hawaii deep-set longline fishery over three consecutive years (3-year ITS) in the 2014 BiOp as supplemented (2017) for each DPS where applicable.

<table>
<thead>
<tr>
<th>Sea turtle species</th>
<th>3-year ITS in 2014 BiOp</th>
<th>3-year ITS in supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interactions</td>
<td>Mortalities</td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leatherback</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Pacific Loggerhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olive Ridley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified hardshell</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Based on NMFS observer data for the Hawaii deep-set longline fishery for the most recent quarters since the 2014 BiOp data cutoff of June 30, 2014, the fishery has not exceeded the ITS for leatherback turtles.

The new ITS for green turtle DPS’s, olive ridley turtle populations and North Pacific DPS of loggerhead turtles in the supplement (2017) to the 2014 BiOp has a monitoring period starting in July 1, 2016. From July 2017 through July 2018, the NMFS Observer Program reported seven fishery interactions with green sea turtles. These interactions, when expanded to the unobserved fishery and applying a genetic proration of 0.70 percent for the East Pacific DPS, exceeds the ITS of 12 interactions for the East Pacific DPS. NMFS reinitiated ESA Section 7 consultation for the Hawaii deep-set longline fishery on October 4, 2018 (NMFS 2018d).

In the October 4, 2018, request for reinitiation of ESA Section 7 consultation on the operation of the Hawaii deep-set longline fishery, NMFS found that the continued operation of the deep-set longline fleet is likely to adversely affect the east Pacific, central North Pacific, east Indian-west Pacific, southwest Pacific, central west Pacific, and central South Pacific DPS of the green turtle, western Pacific population of the leatherback, North Pacific loggerhead DPS, and eastern and western Pacific populations of olive ridley sea turtles in the biological evaluation (BE) supporting reinitiation.

NMFS estimated the Hawaii deep-set longline fishery could interact with up to 40 green, 43 leatherback, 28 loggerhead, and 179 olive ridley sea turtles annually (NMFS 2018d). These predictions, generated by PIFSC using Bayesian data analysis methods appropriate for count data (McCracken 2018a), used observed interactions in the fishery from 2002-2017. The unidentified hardshell interactions in 2016 (Table 21) are accounted for proportionately amongst the green, loggerhead, and olive ridley 2016 interaction estimates. We considered the number of green sea turtles likely to die from boat collisions and found the number of mortalities to be effectively zero (0.09) and therefore discountable (NMFS 2018d).

Using post-hooking mortality criteria described in Ryder et al. (2004), NMFS estimated that 91.6 percent of all green turtle, 40.7 percent of leatherback, 62.4 percent of loggerhead, and 93.9...
percent of olive ridley interactions would result in mortality (NMFS 2018d). NMFS applied these post-hooking mortality rates to the interaction estimates to yield the annual number of mortalities expected to occur for each affected sea turtle population from the continued operation of the deep-set longline fleet (Table 23).

NMFS used methodologies appropriate for the available data to estimate interactions or mortalities for relevant populations of the sea turtle species. In order to estimate the interactions for each of the six green sea turtle DPS, NMFS allocated a portion of the expected take to each DPS in the same proportion present in historical observer samples attributed to each DPS. NMFS used the upper 95% confidence interval for each proportion to account for a small sample size of 14 turtles (NMFS 2018d). The proportion attributed to each DPS was rounded up to the nearest whole number to calculate the anticipated interactions for each green sea turtle DPS. The expected take is 32 in the east Pacific, 18 in the central North Pacific, 12 in the east Indian-west Pacific, 10 each in the southwest Pacific and central South Pacific, and 8 in the central west Pacific DPS (NMFS 2018d).

NMFS expects almost all (95 percent) leatherback turtles directly affected by this action to belong to the western Pacific population with the remaining 5 percent attributed to the eastern Pacific population, based on genetic samples from 21 leatherbacks (NMFS 2018d). The North Pacific DPS is the only loggerhead DPS which has the potential to interact with the deep-set longline fishery (NMFS 2018d), so NMFS attributes all interactions and mortalities to this DPS.

For olive ridley sea turtles, NMFS estimated from genetic samples that 73 percent of the take occurs from the eastern Pacific DPS and 27 percent from the Western Pacific. NMFS used these proportions to attribute mortalities to the eastern and western Pacific DPSs. NMFS used the ratio from a sample size of 153 olive ridley turtles, which was substantially larger than the green turtle sample size. NMFS did not adjust the olive ridley DPS mortality estimates based on the upper 95% confidence interval. Table 23 shows interaction and mortality estimates for sea turtles.

In order to analyze the effect of sea turtle interactions at the population level, the BE compared the number of turtles that are predicted to die from the operation of the deep-set longline fleet that would have otherwise be expected to reach breeding age (adult nesting equivalency or ANE) to the total number of breeding females in each population. Counts of adult females on nesting beaches are the only abundance data available for sea turtles. In order to calculate the ANE, three adjustment factors are required: 1) adult equivalence of juveniles (probability of juveniles naturally surviving to become adults), 2) ratio of females in the population (female to male sex ratio), and 3) probability that a turtle will die if it interacts with the fishery. Risk to the population is also expressed in the number of years it takes to kill the equivalent of one adult female in each DPS. Where breeding female abundance is not available for a population, DPS or nesting population, NMFS determines the population effects based on the frequency of expected adult nester mortality.

Table 23 also shows the ANE, number of breeding females, proportion of nesting population where available, and years to kill the equivalent of one female in each turtle species, population, breeding population, or DPS. For more details on the process and rationale used to develop population level impacts, please see the 2014 BiOp as supplemented (2017) (NMFS 2014; 2017) and biological evaluation prepared for the reinitiation (NMFS 2018d).
NMFS estimates that the fishery may kill between 0.001 percent (east Indian-west Pacific, southwest Pacific, and central west Pacific green turtle DPS) to 0.1 percent (western Pacific leatherback) of the population every year, with population impacts for the remaining nine sea turtle DPS falling in between. For context, a change in the population of 0.1% represents a change in the population growth rate ($r$) equivalent to 0.001; $r = 0.03$ is a typical growth rate for an increasing population. NMFS does not expect the fishery to cause more than a single adult female mortality ranging between every half year (for the north Pacific loggerhead DPS) to every 11 years (for the central west Pacific DPS) for green and loggerhead species. When considered at the population level for leatherbacks, NMFS does not expect adult female mortalities to occur greater than between once every four months and 4.5 years. No more than 13 (western Pacific DPS) and 35.7 (eastern Pacific DPS) olive ridley adult females are expected to die as a result of the fishery every year, and the proportion of nester abundance remains low. The information indicates that for each sea turtle species, adult female mortalities associated with the estimated annual level of interactions do not substantially affect the population growth rate.

Under the 2014 BiOp as supplemented (2017), the overall population for each sea turtle species was expected to remain large enough to maintain genetic heterogeneity, broad demographic representation, and successful reproduction, and to retain the potential for recovery. This conclusion remains valid for the impacts of the Hawaii deep-set longline fleet on all species and DPS of sea turtles. On October 4, 2018, NMFS determined that the conduct of the fishery during the period of consultation will not violate ESA Sections 7(a)(2) and 7(d); that is, the operation of the fishery is not likely to jeopardize the continued existence of species listed as threatened or endangered, result in the destruction or adverse modification of designated critical habitat, nor will it result in the making irreversible or irretrievable commitments of resources. Based on the low proportion of annual mortalities compared to the population sizes, NMFS expects the effect of the operation of the Hawaii deep-set longline fishery on all sea turtle species to be insubstantial.

**Table 23. Sea turtle interactions, mortalities, and population level impacts in the Hawaii deep-set longline fleet.**

<table>
<thead>
<tr>
<th>DPS</th>
<th>Annual Interactions</th>
<th>Annual Mortalities</th>
<th>ANE</th>
<th>Nester abundance</th>
<th>Proportion of nesting population</th>
<th>Years to adult female mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>40</td>
<td>37</td>
<td>0.4</td>
<td>20,112</td>
<td>0.00002</td>
<td>2.5</td>
</tr>
<tr>
<td>East Pacific DPS</td>
<td>32</td>
<td>NA</td>
<td>0.2</td>
<td>3,846</td>
<td>0.00005</td>
<td>5</td>
</tr>
<tr>
<td>Central North Pacific DPS</td>
<td>18</td>
<td>NA</td>
<td>0.14</td>
<td>77,009</td>
<td>0.00001</td>
<td>7.14</td>
</tr>
<tr>
<td>East Indian-West Pacific DPS</td>
<td>12</td>
<td>NA</td>
<td>0.11</td>
<td>83,058</td>
<td>0.00001</td>
<td>9.09</td>
</tr>
<tr>
<td>Southwest Pacific DPS</td>
<td>10</td>
<td>NA</td>
<td>0.09</td>
<td>6,518</td>
<td>0.00001</td>
<td>11.11</td>
</tr>
<tr>
<td>Central West Pacific DPS</td>
<td>8</td>
<td>NA</td>
<td>0.11</td>
<td>2,677</td>
<td>0.00004</td>
<td>9.09</td>
</tr>
<tr>
<td>Central South Pacific DPS</td>
<td>10</td>
<td>NA</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.1.2 Hawaii Shallow-set Longline Fishery

Table 24 summarizes the fleet-wide estimates for the Hawaii shallow-set longline fishery from 2004 to 2018.

Table 24. Annual number of observed sets (based on begin set date) and observed interactions (based on interaction date) of loggerhead, leatherback, green and olive ridley turtles in the Hawaii shallow-set longline fishery, 2004-2018.

<table>
<thead>
<tr>
<th>Year</th>
<th>Annual number of observed sets</th>
<th>Observed Interactions (100% Coverage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Loggerhead</td>
</tr>
<tr>
<td>2004</td>
<td>135</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>1645</td>
<td>12</td>
</tr>
<tr>
<td>2006</td>
<td>850</td>
<td>17</td>
</tr>
<tr>
<td>2007</td>
<td>1570</td>
<td>15</td>
</tr>
<tr>
<td>2008</td>
<td>1605</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>1761</td>
<td>3</td>
</tr>
<tr>
<td>2010</td>
<td>1875</td>
<td>7</td>
</tr>
<tr>
<td>2011</td>
<td>1463</td>
<td>12</td>
</tr>
<tr>
<td>2012</td>
<td>1369</td>
<td>5</td>
</tr>
<tr>
<td>2013</td>
<td>961</td>
<td>5</td>
</tr>
<tr>
<td>2014</td>
<td>1337</td>
<td>15</td>
</tr>
<tr>
<td>2015</td>
<td>1156</td>
<td>13</td>
</tr>
<tr>
<td>2016</td>
<td>727</td>
<td>15</td>
</tr>
<tr>
<td>2017</td>
<td>973</td>
<td>21</td>
</tr>
<tr>
<td>2018</td>
<td>476</td>
<td>38</td>
</tr>
<tr>
<td>Average (2005-2018)</td>
<td>1,330</td>
<td>12.4</td>
</tr>
</tbody>
</table>

a Fishery closed on March 20, 2006, as a result of reaching the loggerhead hard cap of 17.
b Fishery closed on November 18, 2011 as a result of reaching the leatherback hard cap of 16.
Fishery closed on May 8, 2018, pursuant to the stipulated settlement agreement and court order. 2004 and 2018 data omitted from calculation of the long-term average due the fishery closures during peak season. Source: NMFS (2018e; 2019d)

On March 31, 2012, NMFS issued a BiOp concluding that the Hawaii shallow-set longline fishery as managed under the Pelagics FEP is not likely to jeopardize the continued existence or recovery of any sea turtle species (NMFS 2012). Table 25 shows the ITS from the 2012 BiOp. The 1-year ITS for loggerhead and leatherback turtles are used as a hard cap for interactions in any given year, and NMFS closes the fishery when reached. The 2-year ITS are used for purposes of reinitiating ESA Section 7 consultation if fishery interactions reach these numbers in any given two-year time period.

Table 25. Estimated sea turtle interactions and mortalities in the Hawaii shallow-set fishery over two consecutive calendar years in NMFS 2012 biological opinion.

<table>
<thead>
<tr>
<th>Sea turtle species</th>
<th>1-year</th>
<th></th>
<th>2-year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interactions</td>
<td>Mortalities</td>
<td>Interactions</td>
<td>Mortalities</td>
</tr>
<tr>
<td>N. Pacific loggerhead (^a)</td>
<td>34</td>
<td>7</td>
<td>68</td>
<td>14</td>
</tr>
<tr>
<td>Leatherback</td>
<td>26</td>
<td>6</td>
<td>52</td>
<td>12</td>
</tr>
<tr>
<td>Olive ridley</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Green</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

\(^a\) The portion of the 2012 BiOp pertaining to loggerhead turtles was vacated and remanded to NMFS under a stipulated settlement agreement and court order on May 4, 2018. Source: NMFS (2012)

Based on observer data over the monitoring period beginning in Quarter 1 of 2012, take of leatherback and green sea turtles has remained below the ITS for the shallow-set longline fishery.

a new BiOp and hard cap limit issued by NMFS. All remaining provisions of the 2012 BiOp remain in full force and effect.

The fishery exceeded the olive ridley ITS in early 2018. Additionally, described above, the loggerhead portion of the 2012 BiOp was vacated on May 4, 2018. ESA Section 7 consultation for the Hawaii shallow-set longline fishery was reinitiated on April 20, 2018.

In our request for reinitiation of ESA Section 7 consultation on the operation of the shallow-set longline fishery, NMFS found that the continued operation of the Hawaii shallow-set longline fleet is likely to adversely affect the central north Pacific DPS and east Pacific DPS of the green, western Pacific population of the leatherback, North Pacific loggerhead DPS, and eastern and western Pacific populations of olive ridley sea turtles. NMFS estimated the shallow-set fishery could interact with up to five green, 21 leatherback, 37 loggerhead, and five olive ridley sea turtles annually (NMFS 2018e). These predictions, generated by PIFSC using Bayesian data analysis methods appropriate for count data (McCracken 2018a), used observed interactions in the fishery from January 1, 2005 through December 31, 2017. For North Pacific loggerhead sea turtles, the predictions are based on observed interactions from January 1, 2005 through January 31, 2018, to account for loggerhead interactions observed in the first month of 2018.

The population-level effects of the anticipated level of sea turtle interactions in the Hawaii shallow-set longline fishery is quantified in the BE as the number of adult females removed from the populations (ANE), using the same methods as NMFS used for the deep-set fishery. The resulting ANEs and proportion of nesting population are summarized in Table 26.

Table 26. Population level effect metrics for ESA-listed sea turtle populations over a 1-year period.

<table>
<thead>
<tr>
<th>Species</th>
<th>Total Anticipated Annual Interactions</th>
<th>Annual Mortalities</th>
<th>ANE</th>
<th>Estimated Total Nesters</th>
<th>Proportion of Nesting Population</th>
<th>Years to adult female mortality*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loggerhead turtle (North Pacific DPS)</td>
<td>37</td>
<td>6</td>
<td>0.676</td>
<td>8,632</td>
<td>0.000049</td>
<td>1.48</td>
</tr>
<tr>
<td>Leatherback turtle</td>
<td>21</td>
<td>5</td>
<td>1.502</td>
<td>2,750</td>
<td>0.00052</td>
<td>0.67</td>
</tr>
<tr>
<td>Olive ridley turtle (eastern Pacific population)</td>
<td>4</td>
<td>1</td>
<td>0.118</td>
<td>&gt;1 million (annual)</td>
<td>&lt; 0.000001</td>
<td>8.47</td>
</tr>
<tr>
<td>Olive ridley turtle (western Pacific population)</td>
<td>2</td>
<td>1</td>
<td>0.06</td>
<td>205,000</td>
<td>&lt; 0.000001</td>
<td>16.67</td>
</tr>
<tr>
<td>Green turtle (eastern Pacific DPS)</td>
<td>3</td>
<td>1</td>
<td>0.006</td>
<td>20,062</td>
<td>&lt; 0.000001</td>
<td>166.67</td>
</tr>
</tbody>
</table>
### Species

<table>
<thead>
<tr>
<th>Species</th>
<th>Total Anticipated Annual Interactions</th>
<th>Annual Mortalities</th>
<th>ANE</th>
<th>Estimated Total Nesters</th>
<th>Proportion of Nesting Population</th>
<th>Years to adult female mortality*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle (central North Pacific DPS)</td>
<td>3</td>
<td>1</td>
<td>0.006</td>
<td>3,846</td>
<td>0.000002</td>
<td>166.67</td>
</tr>
</tbody>
</table>

Source: NMFS (2018e).
*Calculated by the authors.

NMFS estimates that the fishery would kill between less than 0.0001 percent (for the eastern Pacific green DPS and eastern and western Pacific populations of the olive ridley) to 0.0052 percent (leatherback) of the population every year, with population impacts for North Pacific loggerhead and central North Pacific green DPS falling in between. For context, a change in the population of 0.1% represents a change in the population growth rate ($r$) equivalent to 0.001; $r = 0.03$ is a typical growth rate for an increasing population.

NMFS expects the fishery to cause a single adult female mortality ranging between every 0.67 (for leatherback) to every 166.67 years (for the eastern Pacific and central North Pacific green DPS) for green, leatherback and loggerhead species. The information indicates that for each sea turtle species, adult female mortalities associated with the estimated annual level of interactions do not substantially affect the population growth rate. On October 4, 2018, NMFS determined that the conduct of the fishery during the period of consultation will not violate ESA Sections 7(a)(2) and 7(d).

### 3.3.1.3 American Samoa Longline Fishery

Table 27 summarizes the fleet-wide sea turtle interaction estimates for the American Samoa longline fishery from 2006 through 2018.

#### Table 27. Annual sea turtle interactions expanded from observer data to fleet-wide estimates for the American Samoa Longline Fishery, from 2006-2018.

<table>
<thead>
<tr>
<th>Year</th>
<th>Green</th>
<th>Leatherback</th>
<th>Olive Ridley</th>
<th>Hawksbill</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>32</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>19</td>
<td>13</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>17</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>22</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>21</td>
<td>5</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>2017¹</td>
<td>20</td>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2018²</td>
<td>23</td>
<td>6</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>
2017 estimates expanded by multiplying observed interactions by 5 as there was 20% observer coverage in 2017. Fractional estimates rounded up to nearest whole number.

2018 estimates expanded by multiplying observed interactions by 5.7 as there was 17.5% observer coverage in 2018. Fractional estimates rounded up to the nearest whole number. Because preliminary observed interactions are reported by date of trip arrival and observer coverage rates are reported by date of trip departure, interaction data may vary from other sources.

Source: WPFMC (2018a) and NMFS (2019a)

On October 30, 2015, NMFS issued a no-jeopardy biological opinion (2015 BiOp) for the American Samoa longline fishery, which authorizes over a three-year period, the incidental take of green, hawksbill, leatherback, loggerhead and olive ridley sea turtles (NMFS 2015b). These ITSs are shown in Table 28. NMFS began monitoring the American Samoa longline fishery ITS in the third quarter of 2015 and uses a rolling three-year period to track incidental take.

Table 28. Estimates of sea turtle interactions and mortalities in the American Samoa longline fishery over three consecutive years (3-year ITS) in the NMFS 2015 biological opinion.

<table>
<thead>
<tr>
<th>Sea turtle species</th>
<th>3-year Incidental Take Statement in 2015 BiOp</th>
<th>Interactions</th>
<th>Mortalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loggerhead turtle (South Pacific DPS)</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Leatherback turtle</td>
<td>69</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Olive Ridley turtle</td>
<td>33</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Green turtlea</td>
<td>60</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Green turtle (Central South Pacific DPS)a</td>
<td>30</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Green turtle (Southwest Pacific DPS)a</td>
<td>20</td>
<td>17.82</td>
<td></td>
</tr>
<tr>
<td>Green turtle (East Pacific DPS)a</td>
<td>7</td>
<td>6.48</td>
<td></td>
</tr>
<tr>
<td>Green turtle (Central West Pacific DPS)a</td>
<td>2</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>Green turtle (East Indian-West Pacific DPS)a</td>
<td>1</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>Hawksbill turtle</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

a The green turtle DPS-specific ITSs became effective in May 2016 when the DPS listings were finalized.


Based on NMFS observer data since the 2015 BiOp data cutoff of June 30, 2015, the fishery has not exceeded the ITS for leatherback, central west Pacific DPS of green, or the South Pacific DPS of loggerhead sea turtles. The fishery exceeded the ITS for four DPS of green (east Indian west Pacific, southwest Pacific, central South Pacific, and east Pacific), hawksbill, and olive ridley sea turtles in 2018. ESA Section 7 consultation for the American Samoa deep-set longline fishery was reinitiated on April 3, 2019.

In our request for reinitiation of ESA Section 7 consultation on the operation of the American Samoa longline fishery, NMFS found that the continued operation of the longline fleet is likely to adversely affect the east Indian west Pacific, central west Pacific, southwest Pacific, central South Pacific, and east Pacific DPS of the green, western Pacific population of the leatherback, South Pacific loggerhead DPS, and eastern and western Pacific populations of olive ridley sea turtles. NMFS estimated the American Samoa fishery could interact with up to 47 green, 8 hawksbill, 30 leatherback, two loggerhead, and 28 olive ridley sea turtles annually (NMFS 2019b). These predictions, generated by PIFSC using Bayesian data analysis methods
appropriate for count data (McCracken in prep) used observed interactions in the fishery from January 1, 2012 through December 31, 2017, as not all relevant catch records and other modeling variables were available through the end of 2018. For the hawksbill, South Pacific loggerhead DPS, and unidentified hardshell sea turtles, the predictions are based on observed interactions from 2012 through 2018, to account for two interactions with hawksbills in 2018 and zero data points for loggerhead and unidentified sea turtle interactions. Interaction data prior to 2012 were not included in the predictions, because green sea turtle mitigation measures, under which the fishery currently operates, were implemented in the fishery in September of 2011.

PIFSC quantifies the population-level effects of the anticipated level of sea turtle interactions in the American Samoa longline fishery as the number of adult females removed from the populations (ANE), where data are available, using the same methods as NMFS used for the Hawaii deep-set fishery (NMFS unpublished data). The resulting ANEs and proportion of nesting population are summarized in Table 29.

**Table 29. Population level effect metrics for ESA-listed sea turtle populations over a 1-year period.**

<table>
<thead>
<tr>
<th>Species</th>
<th>Total Anticipated Annual Interactions</th>
<th>Annual Mortalities</th>
<th>ANE</th>
<th>Estimated Total Nesters</th>
<th>Proportion of Nesting Population</th>
<th>Years to adult female mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Indian West Pacific green DPS</td>
<td>5.4</td>
<td>5</td>
<td>0.03</td>
<td>67,796</td>
<td>&lt;0.000001</td>
<td>30.2</td>
</tr>
<tr>
<td>Central West Pacific green DPS</td>
<td>11.6</td>
<td>11</td>
<td>0.07</td>
<td>6,551</td>
<td>0.00001</td>
<td>15.1</td>
</tr>
<tr>
<td>Southwest Pacific green DPS</td>
<td>21.9</td>
<td>21</td>
<td>0.12</td>
<td>82,810</td>
<td>&lt;0.000001</td>
<td>8.2</td>
</tr>
<tr>
<td>Central South Pacific green DPS</td>
<td>34.3</td>
<td>32</td>
<td>0.19</td>
<td>3,118</td>
<td>&lt;0.00006</td>
<td>5.2</td>
</tr>
<tr>
<td>Eastern Pacific green DPS</td>
<td>10.9</td>
<td>10</td>
<td>0.06</td>
<td>19,744</td>
<td>0.000003</td>
<td>16.4</td>
</tr>
<tr>
<td>Hawksbill sea turtle</td>
<td>8</td>
<td>8</td>
<td>0.10</td>
<td>1,500</td>
<td>0.00006</td>
<td>10.3</td>
</tr>
<tr>
<td>Western Pacific leatherback</td>
<td>30</td>
<td>21</td>
<td>0.86</td>
<td>1,388</td>
<td>0.0006</td>
<td>1.2</td>
</tr>
<tr>
<td>Species</td>
<td>Total Anticipated Annual Interactions</td>
<td>Annual Mortalities</td>
<td>ANE</td>
<td>Estimated Total Nesters</td>
<td>Proportion of Nesting Population</td>
<td>Years to adult female mortality</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------------------------</td>
<td>--------------------</td>
<td>-----</td>
<td>-------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Eastern Pacific olive ridley</td>
<td>12</td>
<td>8</td>
<td>1.59</td>
<td>&gt;1,000,000</td>
<td>0.000008</td>
<td>0.68</td>
</tr>
<tr>
<td>Western Pacific olive ridley</td>
<td>17</td>
<td>12</td>
<td>2.26</td>
<td>205,000</td>
<td>0.000002</td>
<td>0.44</td>
</tr>
<tr>
<td>South Pacific loggerhead DPS</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1,300</td>
<td>0.0015</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Source: NMFS (2019b) and NMFS unpublished data).

NMFS estimates that the fishery would kill between less than 0.0001 percent (for the east India west Pacific and southwest Pacific green DPS) to 0.15 percent (South Pacific loggerhead DPS) of the population every year, with population impacts for remaining sea turtle populations falling in between. For context, a change in the population of 0.1% represents a change in the population growth rate \( r \) equivalent to 0.001; \( r = 0.03 \) is a typical growth rate for an increasing population.

NMFS expects the fishery to cause a single adult female mortality ranging between every 0.44 (for western Pacific olive ridley) to every 30.2 years (for the east Indian west Pacific green DPS) for all sea turtle populations. The information indicates that for each sea turtle species, adult female mortalities associated with the estimated annual level of interactions do not substantially affect the population growth rate.

Under the 2015 BiOp, the overall population for each sea turtle species was expected to remain large enough to maintain genetic heterogeneity, broad demographic representation, and successful reproduction, and to retain the potential for recovery. This conclusion remains valid for the impacts of the American Samoa deep-set longline fleet on all species and DPS of sea turtles. On April 3, 2019, NMFS determined that the conduct of the fishery during the period of consultation will not violate ESA Sections 7(a)(2) and 7(d); that is, the operation of the fishery is not likely to jeopardize the continued existence of species listed as threatened or endangered, result in the destruction or adverse modification of designated critical habitat, nor will it result in an irreversible or irreplaceable commitment of resources. Based on the information in the updated BE analysis, NMFS expects the effects of the operation of the American Samoa longline fishery on all sea turtle species to be insubstantial.

### 3.3.1.4 Guam and CNMI Longline Fisheries

NMFS concluded a formal consultation and issued a BiOp (2001 BiOp) for the pelagic fisheries in the western Pacific on March 29, 2001 (NMFS 2001). In the 2001 BiOp, NMFS examined the impact of Guam and CNMI longline fisheries on endangered species. At the time, there were
three permitted longline vessels in Guam and one in the CNMI, but none were active. Although neither of these longline fisheries were active at the time, NMFS utilized fishery information from American Samoa longline fishery to estimate incidental take and mortality of ESA-listed species. The BiOp analyzed the annual effort of longline fishing in the 1998 American Samoa fishery (26 vessels and 2,359 trips). The 2001 BiOp established ITS for sea turtles for the Guam and CNMI longline fisheries and determined that this level of anticipated take is not likely to result in jeopardy to the green turtle, leatherback turtle, loggerhead turtle, or olive ridley turtle under the regulations for the Guam and CNMI longline fisheries. Although this BiOp did not discuss hawksbill sea turtles, they are considered hard shell turtles and are included in the ITS. The BiOp also concludes that the fisheries are not likely to adversely affect ESA-listed marine mammals or critical habitat that has been designated. See Table 30 for the number of sea turtle authorized to be taken in the Guam and CNMI longline fisheries.

Table 30: Sea turtle interaction and mortality estimates in the Guam and CNMI longline fisheries in the 2001 biological opinion.

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Annual Estimated Incidental Take (All Species Combined)</th>
<th>Annual Estimated Incidental Mortality (All Species Combined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guam Longline</td>
<td>3 hardshell turtles, 1 leatherback</td>
<td>1 hardshell turtle</td>
</tr>
<tr>
<td>CNMI Longline</td>
<td>3 hardshell turtles, 1 leatherback</td>
<td>3 hardshell turtles, 1 leatherback</td>
</tr>
</tbody>
</table>


There were no observed or reported interactions with sea turtles in the CNMI longline fishery (from the two to four vessels that were active from 2008 to 2012). Currently there are no active longline vessels in Guam or CNMI; therefore, there have been no observed or reported interactions with a sea turtle. There were no observed or reported interactions with sea turtles in the CNMI longline fishery from the vessels that were active from 2008 to 2011.

3.3.2 Marine Mammals

ESA-listed marine mammal species that have been observed or may occur in the area where Pelagics FEP fisheries operate include the following species:

- Blue whale (*Balaenoptera musculus*)
- Fin whale (*Balaenoptera physalus*)
- Guadalupe fur seal (*Arctocephalus townsendi*)
- Hawaiian monk seal (*Neomonachus schauinslandi*)
- Humpback whale (*Megaptera novaeangliae*)
  - Mexico DPS (threatened)
  - Central America DPS (endangered)
  - Western North Pacific DPS (endangered)
- Main Hawaiian Islands insular false killer whale (MHI IFKW) DPS (*Pseudorca crassidens*)
- North Pacific right whale (*Eubalaena japonica*)
- Sei whale (*Balaenoptera borealis*)
- Sperm whale (*Physeter macrocephalus*)
Detailed information on these species’ geographic range, abundance, bycatch estimates, and status can be found in the most recent stock assessment reports (SARs), available online at: https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessment-reports-region. Additional, recent information may be found on the NMFS species pages found at the following website: http://www.fpir.noaa.gov/PRD/prd_esa_section_4.html.

On September 8, 2016 (81 FR 62259), NMFS published a final rule to reclassify the humpback whale into 14 DPS under the ESA, of which four DPSs were listed as threatened or endangered. The remaining ten DPSs were not listed under the ESA, including the Hawaii DPS and the Oceania DPS, which occur in areas where the Hawaii and American Samoa longline fisheries operate, respectively. Based on research, observer, and logbook data, marine mammals not listed under the ESA that may occur in the region and that may be affected by the fisheries managed under the Pelagics FEP include the following species:

- Blainville’s beaked whale (*Mesoplodon densirostris*)
- Bryde’s whale (*Balaenoptera edeni*)
- Bottlenose dolphin (*Tursiops truncatus*)
- Common dolphin (*Delphinus delphis*)
- Cuvier’s beaked whale (*Ziphius cavirostris*)
- Dwarf sperm whale (*Kogia sima*)
- False killer whale (*Pseudorca crassidens*) other than the MHI Insular DPS
- Fraser’s dolphin (*Lagenodelphis hosei*)
- Killer whale (*Orcinus orca*)
- Longman’s beaked whale (*Indopacetus pacificus*)
- Melon-headed whale (*Peponocephala electra*)
- Minke whale (*Balaenoptera acutorostrata*)
- Northern fur seal (*Callorhinus ursinus*)
- Pacific white-sided dolphin (*Lagenorhynchus obliquidens*)
- Pantropical spotted dolphin (*Stenella attenuata*)
- Pilot whale, short-finned (*Globicephala macrorhynchus*)
- Pygmy killer whale (*Feresa attenuata*)
- Pygmy sperm whale (*Kogia breviceps*)
- Risso’s dolphin (*Grampus griseus*)
- Rough-toothed dolphin (*Steno bredanensis*)
- Spinner dolphin (*Stenella longirostris*)
- Striped dolphin (*Stenella coeruleoalba*)

Detailed information on these species’ geographic range, abundance, bycatch estimates, and status can be found in the most recent SARs, available online at: https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessment-reports-region.

Marine mammals are primarily vulnerable to Hawaii and American Samoa longline fisheries through hooking and entanglement. Although blue whales, North Pacific right whales, and sei whales occur within the action area and could potentially interact with the Pelagics FEP fisheries, fishermen and observers have not reported any incidental hooking or entanglements of
these species in these fisheries. Other potential impacts to marine mammals from the operation of fisheries include collisions with vessels, exposure to waste and discharge, and disturbance from human activity and equipment.

The Council and NMFS manage the longline fisheries permitted under the Pelagics FEP through several measures that mitigate the potential for marine mammal interactions and injury if interactions occur. These measures include the requirement to carry an observer on a fishing trip if requested, and a requirement for owners and operators of longline vessels to attend a protected species education workshop annually. Additionally, longline closed areas generally within 30 to 75 nm of each U.S. island archipelago serve as de facto protection for island-associated stocks of marine mammals.

After considering a range of potential effects to marine mammals, NMFS, in the 2012 and 2014 BiOps as supplemented (2017) for the Hawaii longline fisheries, determined that the pelagic fisheries of the western Pacific operating in accordance with the Pelagics FEP and implementing regulations would not jeopardize the survival or recovery of any listed marine mammals. Within each BiOp, NMFS has authorized a certain level of interactions (ITS) of species which the fishery may adversely affect through ITS for these fisheries. NMFS determined that incidental taking by the Hawaii longline fisheries will have a negligible impact on the affected stocks of marine mammals through issuance of its MMPA section 101(a)(5)(E) permit. NMFS has determined that the American Samoa longline fishery is not likely to adversely affect the humpback or sperm whale, and will not affect the blue, fin, or sei whale species.

### 3.3.2.1 Hawaii Deep-set Longline Fishery

Table 31 shows the fleet-wide marine mammal interaction estimates for the Hawaii deep-set longline fishery from 2008 through 2018.

### Table 31. Estimated annual marine mammal interactions (including mortalities, and serious and non-serious injuries) with the Hawaii deep-set longline fishery from 2008-2018.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Risso's dolphin</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Short-finned pilot whale</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>False killer whale</td>
<td>11</td>
<td>55</td>
<td>19</td>
<td>10</td>
<td>15</td>
<td>22</td>
<td>55</td>
<td>21</td>
<td>35</td>
<td>39</td>
<td>59</td>
</tr>
<tr>
<td>Pantropical spotted dolphin</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Striped dolphin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Pigmy killer whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><em>Kogia</em> species</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Humpback whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sperm whale</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
NMFS estimates the effect of the fishery on ESA-listed marine mammals by comparing the expected mortalities, derived from observed interactions, to the stock’s PBR and relative proportion of the affected population, where data are available (NMFS 2018d). NMFS reinitiated consultation on the deep-set fishery on October 4, 2018.

In our request for reinitiation, NMFS estimated the deep-set fishery could interact with up to 3 sperm whales and 0.130 MHI IFKW. These predictions, generated by PIFSC using Bayesian data analysis methods appropriate for count data (McCracken 2018a), used observed interactions in the fishery from 2002 through 2017. NMFS has assigned prorated interactions to the population of MHI IFKW based on interactions with pelagic false killer whales, and on interactions with false killer whales from unknown populations and unidentified blackfish.

NMFS estimated the number of mortalities and serious injuries (M&SI) for each marine mammal stock based on previous injury determinations for each stock of ESA-listed marine mammal. NMFS expects up to 2 sperm whale mortalities and 0.102 MHI IFKW mortalities, or one MHI IFKW mortality approximately every 10 years.

The PBR for sperm whales is 14 animals and for MHI IFKWs is 0.3 animals annually (Carretta et al. 2018). M&SI estimates for both stocks of ESA-listed marine mammals are below PBR. The proportion of the sperm whale stock expected to be removed annually is 0.00086 or 0.086 percent of the stock, which can be considered negligible. The M&SI estimate for MHI false killer whales is just under PBR, but NMFS does not expect the mortality of one individual approximately every 10 years to increase the risk of extinction for this population. Table 32 shows the observed interactions since 2004, future level of annual interactions, expected M&SI, stock abundance, and PBR for the marine mammals analyzed in the request for reinitiation.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough-toothed dolphin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unidentified cetacean²</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Unidentified whale²</td>
<td>9</td>
<td>15</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unidentified dolphin²</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

¹2017 and 2018 estimates expanded by multiplying observed interactions by 4.9 as there was 20.4% observer coverage in 2017 and 2018. Fractional estimates are rounded up to nearest whole number. Because preliminary observed interactions are reported by date of trip arrival and observer coverage rates are reported by date of trip departure, interaction data may vary from other sources.
²Unidentified species identification based on PIRO Observer Program classifications. Unidentified cetacean species refers to a marine mammal not including pinnipeds (seal or sea lion); unidentified whale refers to a large whale; and unidentified dolphin refers to a small cetacean with a visible beak. Further classifications based on observer description, sketches, photos and videos may be available from PIFSC.
Source: WPFMC (2018a), NMFS (2019c)
For all species of endangered marine mammals expected to interact with the Hawaii deep-set longline fleet, the 2014 BiOp found that the continued operation of the Hawaii longline fleet would not result in an appreciable reduction in the numbers, distribution, or reproduction of the marine mammals. Based on the information, NMFS concluded that the Hawaii deep-set longline fishery as managed under the Pelagics FEP is not likely to jeopardize the continued existence or recovery of these ESA-listed marine mammals. Based on the information in the updated BE analysis, NMFS expects the effect of the action on these ESA-listed marine mammal species to be insubstantial.

NMFS monitors the effects of the fishery on non-ESA listed marine mammals through comparison of the average level of interactions which result in M&SI to a stock’s PBR. For most marine mammal stocks where the PBR is available, the number of observed takes of marine mammal species in the deep-set longline fishery inside the U.S. EEZ around Hawaii is well below the PBR in the time period covered by the most current stock assessment report (Table 33).

**Table 33. Mean estimated annual mortality and serious injury (M&SI) and PBR by marine mammal stocks with observed interactions in the Hawaii deep-set longline fishery.**

<table>
<thead>
<tr>
<th>Stock</th>
<th>Years Included in 2017 SAR</th>
<th>Outside EEZ Mean Estimated Annual M&amp;SI</th>
<th>Inside EEZ Mean Estimated Annual M&amp;SI</th>
<th>PBR (Inside EEZ only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottlenose dolphin, HI Pelagic</td>
<td>2011-2015</td>
<td>2.2</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>Pantropical spotted dolphin, HI Pelagic</td>
<td>2011-2015</td>
<td>0&lt;sup&gt;c&lt;/sup&gt;</td>
<td>0&lt;sup&gt;c&lt;/sup&gt;</td>
<td>403</td>
</tr>
<tr>
<td>Rough-toothed dolphin, HI</td>
<td>2011-2015</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>Risso’s dolphin, HI</td>
<td>2011-2015</td>
<td>0.9</td>
<td>0.6</td>
<td>42</td>
</tr>
</tbody>
</table>
False killer whales have interacted with deep-set longline gear more than other marine mammal species and NMFS has implemented changes to the operations of the fishery based on the recommendations of the False Killer Whale Take Reduction Team to reduce incidental interactions. The mitigation requirements include the use of circle hooks, a permanently closed area, and an EEZ interaction limit, which, when reached, triggers a southern longline fishing exclusion zone (see 50 CFR 229.37). This interaction limit (two observed false killer whale serious injuries or mortalities within the U.S EEZ around Hawaii in a calendar year) was reached in 2018, triggering temporary closure of the SEZ to deep-set longline fishing for the remainder of 2018 (83 FR 33484, July 18, 2018). The deep-set longline fishery also reached this trigger in January of 2019 (84 FR 5356, February 21, 2019). Because an observed false killer whale mortality or serious injury in the EEZ around Hawaii met the established trigger in the subsequent calendar year following an SEZ closure, the SEZ will be closed until one or more of the four criteria described in the False Killer Whale Take Reduction Plan regulations at 50 CFR 229.37(e)(5) (please see the plan for more information).

3.3.2.2 Hawaii Shallow-set Longline Fishery

Table 34 provides total marine mammal interactions observed in the shallow-set fishery from 2008 through 2018.

Table 34. Observed annual marine mammal interactions (including mortalities, serious injuries, and non-serious injuries) with the Hawaii shallow-set longline fishery from 2008-2018.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackfish*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Short-beaked Common dolphin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Risso's dolphin</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
There has not been an interaction with a sperm whale in the shallow-set longline fishery since the deep-set and shallow-set longline fisheries were split in 2004 for management purposes (NMFS 2012). Prior to the separation of the fisheries, there was an interaction in 1999 with a vessel that was targeting swordfish, and one in 2002 with an experimental fishery that was testing sea turtle mitigation gear similar to what is used in the shallow-set longline fishery now. The interaction occurred on a control set and the sperm whale was entangled in the mainline; the mainline was cut and the animal escaped with no line attached (Boggs 2002). There have been no observed interactions between the MHI IFKW stock and the shallow-set longline fishery.
On March 31, 2012, NMFS issued a no-jeopardy biological opinion (2012 BiOp) for the shallow-set longline fishery, and authorized incidental take of humpback whales (NMFS 2012). On September 8, 2016 (81 FR 62260), NMFS published a final rule dividing humpback whales into 14 DPS and delisted nine DPS from ESA. Hawaii humpback whale DPS is one of the nine stocks no longer warranted for listing under ESA, and therefore NMFS does not monitor take against the ITS.

On February 27, 2015, gear from a Hawaii shallow-set longline vessel entangled a fin whale slightly more than 200 miles from the coast of California. The crew released the animal with no gear attached. NMFS preliminarily determined that this interaction did not result in a serious injury because the crew and NMFS observer were able to disentangle the whale after they cut the mainline. The observer recorded only superficial wounds on the whale, the crew released the whale with no gear attached, and the observer saw the whale diving after release. NMFS previously determined that the shallow-set fishery was not likely to adversely affect fin whales based on the discountable likelihood that a fin whale would be hooked or entangled by the shallow-set fishery or hit by a vessel, and because of the low densities of these whales.

However, in response to this event, NMFS reinitiated ESA section 7 consultation to evaluate the potential impacts of Hawaii shallow-set longline fishery on fin whales. Given the long history of 100% observer coverage in the shallow-set fishery and the lack of observed or reported interaction with a fin whales, NMFS considers the recent interaction an isolated event. Additionally, given the low densities of fin whales in the action area of the shallow-set fishery (Carretta et al. 2018) NMFS considers it extremely unlikely that another interaction in the fishery would occur. For these reasons, NMFS determined that the Hawaii shallow-set longline fishery is not likely to adversely affect fin whales and documented its determination in a memorandum of concurrence dated September 16, 2015.

The Hawaii shallow-set longline fishery interacted with ESA-listed Guadalupe fur seals in 2016 and 2017, outside of the U.S. EEZ off the coast of California. This species was previously not known to interact with the shallow-set fishery and was not included in the 2012 BiOp. Consultation for this species was included in the ongoing consultation reinitiated on April 20, 2018 (NMFS 2018e).

In our request for reinitiation of ESA Section 7 consultation on the operation of the shallow-set longline fishery, NMFS estimated the shallow-set fishery could interact with up to 14 Guadalupe fur seals, including prorated unidentified pinniped and unidentified sea lions. These predictions, generated by PIFSC using Bayesian data analysis methods appropriate for count data (McCracken 2018a), used observed interactions in the fishery from January 1, 2013 through December 31, 2017.

The abundance of Guadalupe fur seals is estimated at approximately 20,000 animals, and NMFS estimates the PBR to be 542 animals per year (Carretta et al. 2017). The fishery’s anticipated level of mortality amounts to 13 Guadalupe fur seal mortalities in a given year or 2.39% of the current PBR of Guadalupe fur seals per year, and therefore has insubstantial impacts.

NMFS monitors the effects of the fishery on non-ESA listed marine mammals through comparison of the average level of interactions which result in (M&SI) to a stock’s PBR. For
marine mammal stocks where the PBR is available, the mean annual M&SI for the shallow-set longline fishery inside the EEZ around Hawaii is well below the corresponding PBR in the time period covered by the current stock assessment report (Table 35).

**Table 35. Summary of mean annual mortality and serious injury (M&SI) and potential biological removal (PBR) by marine mammal stocks with observed interactions in the Hawaii shallow-set longline fishery.**

<table>
<thead>
<tr>
<th>Stock</th>
<th>Years Included in 2017 SARs</th>
<th>Outside EEZ*</th>
<th>Inside EEZ</th>
<th>PBR (Inside EEZ only)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottlenose dolphin, HI Pelagic</td>
<td>2011-2015</td>
<td>2</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>Risso’s dolphin, HI</td>
<td>2011-2015</td>
<td>3.2</td>
<td>0</td>
<td>82</td>
</tr>
<tr>
<td>Rough-toothed dolphin, HI</td>
<td>2011-2015</td>
<td>0</td>
<td>1</td>
<td>423</td>
</tr>
<tr>
<td>Striped dolphin, HI</td>
<td>2011-2015</td>
<td>0.6</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>Blainville’s beaked whale, HI</td>
<td>2011-2015</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>False killer whale, HI Pelagic</td>
<td>2011-2015</td>
<td>0.1</td>
<td>0.1</td>
<td>9.3</td>
</tr>
<tr>
<td>Short-finned pilot whale, HI</td>
<td>2011-2015</td>
<td>0.1</td>
<td>0</td>
<td>106</td>
</tr>
<tr>
<td><em>Kogia</em> spp. whale (Pygmy or dwarf sperm whale), HI</td>
<td>2007-2011</td>
<td>Pygmy = 0</td>
<td>Dwarf = 0</td>
<td>undetermined</td>
</tr>
<tr>
<td>Humpback whale, Central North Pacific</td>
<td>2009-2013</td>
<td>0.2b</td>
<td>0</td>
<td>83b</td>
</tr>
<tr>
<td>Fin whale, HI</td>
<td>2011-2015</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Guadalupe fur seal, CA</td>
<td>2010-2014</td>
<td>0d</td>
<td>0</td>
<td>542d</td>
</tr>
</tbody>
</table>

* PBR estimates are not available for portions of the stock outside of the U.S EEZ around Hawai`i, except for the Central North Pacific stock of humpback whales for which PBR applies to the entire stock.
+ PBR and M&SI for the Central North Pacific stock for humpback whales apply to the entire stock.
+ PBR estimates for Hawai`i stocks are only available for portions of the stock within the U.S. EEZ around Hawai`i.
+ PBR and M&SI estimates for the Guadalupe fur seal use data from 2010-2014, which only include data from the U.S. West Coast and therefore do not include the seals taken in 2016 and 2017 in the Hawai`i shallow-set longline fishery. The M&SI estimate is only for the Hawai`i shallow-set longline fishery, and the PBR estimate applies to the entire population.

Source: WPFMC (2018a).

### 3.3.2.3 American Samoa Longline Fishery

Table 36 summarizes the fleet-wide marine mammal interactions in the American Samoa longline fishery from 2006-2018.

**Table 36. Number of marine mammal interactions (including mortalities, and serious and non-serious injuries) observed in the American Samoa longline fishery, 2006-2018.**
Environmental Assessment

### Territorial Bigeye Tuna Catch and Allocation Limits

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough-toothed dolphin</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Cuvier’s beaked whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>False killer whale</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Short-finned pilot whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unidentified cetacean</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1. 2017 estimates expanded by multiplying observed interactions by 5 as there was 20% observer coverage in 2017. Fractional estimates rounded up to nearest whole number.
2. 2018 estimates expanded by multiplying observed interactions by 5.7 as there was 17.5% observer coverage in 2018. Fractional estimates rounded up to the nearest whole number. Because preliminary observed interactions are reported by date of trip arrival and observer coverage rates are reported by date of trip departure, interaction data may vary from other sources.

Source: WPFMC (2018a) and NMFS (2019a)

To date, fishermen and observers have not reported any humpback or sperm whale interactions in the American Samoa longline fishery, and as such, this fishery is not likely to adversely affect these ESA-listed marine mammals. Because the blue, fin, and sei whale have not been confirmed in the area of operation of the fishery, the fishery would have no effects on these marine mammals.

Recent estimates of the total (extrapolated) number of marine mammal interactions in the American Samoa longline fishery are not available. However, based on 2006-2008 data, the total estimated number of serious injuries and mortalities for marine mammals per year in the American Samoa longline fishery is 3.6 rough-toothed dolphins (coefficient of variation=0.6) and 7.8 false killer whales (coefficient of variation=1.7) (Carretta et al. 2017). No abundance estimates are available and PBR cannot be calculated for either of these stocks (Carretta et al. 2017) and, therefore, potential population impacts are unknown.

### 3.3.2.4 Guam and CNMI Longline Fisheries

With no active longline fishery in Guam or the CNMI, there are no interactions with marine mammals reported for the past several years.

### 3.3.3 Seabirds

The endangered short-tailed albatross, threatened Newell’s shearwater, and endangered Hawaiian dark-rumped petrel have ranges that overlap the fishing grounds of the Hawaii longline fisheries. The short-tailed albatross has a range that overlaps the pelagic fisheries operating around the CNMI and Guam. In addition, three other seabirds in the South Pacific were
determined to be endangered under the ESA in 2009: the Chatham petrel (*Pterodroma axillaris*), Fiji petrel (*Pseudobulweria macgillivrayi*), and the magenta petrel (*Pterodroma magentae*). However, apart from Newell’s shearwater, which was sighted on Tutuila only once in 1993 and considered an accidental visitor, the ranges of the other three species are assumed not to overlap with that of the American Samoa longline fishery or other pelagic fisheries north of the Equator (see sources cited in WPFMC 2011). A comprehensive description of the species’ distribution, population status, threats, and recovery strategy can be found in the species’ recovery plans.14

On October 7, 2011, in response to a petition to list the black-footed albatross under the ESA, the U.S. FWS found that the Hawaiian Islands breeding population and the Japanese Islands breeding population of the black-footed albatross are separate DPS, as defined by the DPS policy (76 FR 62503). However, the U.S. FWS also found that neither DPS of the black-footed albatross warranted listing under the ESA. The U.S. FWS observed that fisheries should continue to minimize black-footed albatross bycatch through implementing effective bycatch minimization measures, and concluded that Hawaii-based longline fishing is not a significant threat to the black-footed albatross.

All seabirds are protected under the Migratory Bird Treaty Act (MBTA). In addition to the ESA-listed seabirds, the Hawaii longline fisheries occasionally interact with other seabirds such as albatrosses, Northern fulmar, sooty shearwaters, and gulls.

Seabirds are vulnerable to fisheries through hooking and entanglement, which may result in injury or mortality. Albatrosses that forage by diving are some of the most vulnerable species to bycatch in fisheries (Brothers et al. 1999). These species are long-lived, have delayed sexual maturity, small clutches and long generation times, resulting in populations that are highly sensitive to changes in adult mortality. Twenty of the world’s 21 albatross species are now at least near threatened with extinction according to the IUCN (IUCN 2017), and incidental catch in fisheries, especially longline fisheries, is considered one of the principal threats to many of these species (Veran et al. 2007).

The Council and NMFS manage the longline fisheries permitted under the Pelagics FEP through several measures that mitigate the potential for seabird interactions and injury to seabirds if interactions occur. These measures include the requirement to carry an observer on a fishing trip if requested, and a requirement for owners and operators of longline vessels to attend a protected species education workshop annually.

Deep-set fishing operations north of 23° N latitude and all shallow-set vessels are required to comply with seabird mitigation regulations that the Council and NMFS intended to reduce interactions between seabirds and Hawaii longline fishing vessels (50 CFR 665.815), implemented in 2002 with regulatory adjustments effective in 2006. Longline fishermen must employ measures that are specific to side-setting or stern-setting, and may include blue-dyed bait, weighted branch lines, strategic offal discards, setting from the side of the vessel, using a “bird curtain”, or a hydraulic line-setting machine, among others. These measures help deter birds from becoming hooked or entangled while attempting to feed on bait or catch. The WCPFC

---

agreed to similar mitigation measures for longline vessels greater than 24 meters or more in overall length north of 23°N, effective June 30, 2008 (WCPFC 2007) and for one mitigation method required for vessels shorter than 24 m in 2017 (WCPFC 2017a).

Shallow-set vessels must begin setting one hour after local sunset and complete setting one hour before local sunrise. Seabirds likely drown if the interaction occurs during gear deployment (setting), but during gear retrieval (hauling), seabirds may be released alive when fishermen promptly apply seabird handling and release techniques. These measures resulted in a reduction of over 90% in total seabird interactions by 2006 in the deep-set and shallow-set fisheries combined (Fossen 2007).

Since NMFS initiated the observer programs in Hawaii in 1994 and American Samoa in 2006, there have been no observed interactions between ESA-listed seabird species and the fisheries under the Pelagics FEP. After considering a range of potential effects to seabirds, U.S. FWS, in its 2012 BiOp, determined that the Hawaii deep-set and shallow-set fisheries of the western Pacific operating in accordance with the Pelagics FEP and implementing regulations, would not jeopardize the survival or recovery of any listed seabirds. U.S. FWS has authorized a certain level of interactions (incidental take) of short-tailed albatross which the fishery may adversely affect through ITS for these fisheries.

3.3.3.1 Hawaii Deep-set Longline Fishery

Table 37 contains the numbers of albatross that have interacted with the Hawaii deep-set longline fisheries from 2005 through 2018 based on observed interactions by the NMFS Observer Program. In addition, from 2005 through 2018, based on expansions from observed sets, the deep-set fishery interacted with 27 red-footed boobies, nine brown boobies, 249 unidentified shearwaters, seven unidentified albatrosses, one unidentified gull, and 65 sooty shearwaters (NMFS 2019c; WPFMC 2018a).

Table 37. Estimated total interactions with albatrosses in the Hawaii deep-set longline fisheries, 2005-2018.

<table>
<thead>
<tr>
<th>Year</th>
<th>Laysan</th>
<th>Black-footed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>43</td>
<td>82</td>
</tr>
<tr>
<td>2006</td>
<td>7</td>
<td>70</td>
</tr>
<tr>
<td>2007</td>
<td>44</td>
<td>77</td>
</tr>
<tr>
<td>2008</td>
<td>55</td>
<td>118</td>
</tr>
<tr>
<td>2009</td>
<td>60</td>
<td>110</td>
</tr>
<tr>
<td>2010</td>
<td>155</td>
<td>65</td>
</tr>
<tr>
<td>2011</td>
<td>187</td>
<td>73</td>
</tr>
<tr>
<td>2012</td>
<td>136</td>
<td>167</td>
</tr>
<tr>
<td>2013</td>
<td>236</td>
<td>257</td>
</tr>
<tr>
<td>2014</td>
<td>77</td>
<td>175</td>
</tr>
<tr>
<td>2015</td>
<td>119</td>
<td>541</td>
</tr>
<tr>
<td>2016</td>
<td>166</td>
<td>485</td>
</tr>
<tr>
<td>2017*</td>
<td>186</td>
<td>475</td>
</tr>
<tr>
<td>2018*</td>
<td>162</td>
<td>951</td>
</tr>
</tbody>
</table>
2017 and 2018 estimates expanded by multiplying observed interactions by 4.9 as there was 20.4% observer coverage levels in 2017 and 2018. Fractional estimates are rounded up to nearest whole number. Because preliminary observed interactions are reported by date of trip arrival and observer coverage rates are reported by date of trip departure, interaction data may vary from other sources. Source: WPFMC (2018a), NMFS (2019c)

Based on observer data, nearly all seabirds hooked or entangled in the Hawaii deep-set longline fishery are dead, since interactions presumably occur during the setting.

Gilman et al. (2016) have linked gradual increases in albatross interactions observed in the Hawaii deep-set longline fishery from 2004 to 2014 with reduced ocean productivity. Results from an analysis of seabird interaction rates in the Hawaii deep-set longline fishery indicate that seabird interaction rates significantly increased as annual mean multivariate El Nino southern oscillation index values increased, meaning that decreasing ocean productivity may have contributed to the increasing trend in seabird catch rates. The analysis also showed a significant increasing trend in the number of albatrosses attending vessels, which may also be contributing to the increasing seabird catch rates (Gilman et al. 2016).

PIFSC estimated that between 1994 and 1999, an average of 1,175 Laysan albatrosses and 1,388 black-footed albatrosses were incidentally captured and presumed killed in the Hawaii longline fishery each year (WPFMC 2005). These average annual incidental catches represented about 0.46% and 0.05% of the estimated 1998 worldwide black-footed and Laysan albatross populations, respectively (WPFMC 2005). After the implementation of seabird mitigation measures the fleet incidentally caught 113 albatrosses (65 black-footed and 51 Laysan) in 2002 and 257 albatrosses (111 black-footed and 146 Laysan) in 2003 (WPFMC 2005), showing a decrease in the annual number of interactions. Between the years 2005 and 2014 (Table 37), interactions with black-footed and Laysan albatross remained relatively stable in both the deep-set and shallow-set longline fisheries. In recent years, incidental catch of black-footed albatross has shown an increasing trend in the Hawaii deep-set longline fishery, with an average of 500 interactions annually for years 2015-2017 and 119 annual interactions in the years 2005-2014. When combined with shallow-set interactions (Table 38) for purpose of comparison with historical highs, the Hawaii longline fleet has interacted with an average of 544 black-footed albatross annually in the years 2014-2017, which is below the historical high.

The black-footed albatross population exhibits an increasing trend from 1996 to 2016, with a breeding population of approximately 69,969 pairs in 2017 (ACAP 2017). The Laysan albatross population was stable over the time period 1996 to 2016, with a breeding pair population of 666,658 pairs in 2017 (ACAP 2017). Both Hawaii longline fisheries have a low level of interactions with the black-footed and Laysan albatross species compared to the number of breeding pairs. Based on the population estimates, the fisheries likely have very little effect on these populations (NMFS 2018a).

The Council has explored the recent observed increase in interactions with seabirds in the Hawaii deep-set longline fishery. In November 2017, the Council convened a workshop to review recent increased albatross interactions in the Hawaii fishery; explore possible factors responsible for this increase; evaluate albatross population impacts; and provide input for future data collection, analysis, and models (WPFMC 2018a). A black-footed albatross population model indicated that the recent increase in albatross interactions is unlikely to significantly affect population growth.
as long as the increase is limited to the Hawaii longline fishery or is episodic (WPFMC 2018a). While reliable North Pacific-wide bycatch estimates are not available, available information on Alaska fisheries bycatch suggest that the 2015-2016 increase in black-footed albatross interactions is unlikely to be basin-wide (WPFMC 2018b). The full workshop report is not yet available.

The Council convened a second seabird workshop in September 2018 to review seabird mitigation requirements and the best scientific information available for Hawaii’s pelagic longline fisheries, considering operational aspects of the fisheries, seasonal and spatial distributions of seabird interactions, alternative bycatch mitigation measures and findings from cost-benefit analyses. Participants discussed potential modifications to seabird regulations for the Hawaii deep-set longline fishery (WPFMC 2018c). The Council at its 174th Meeting in October 2018 received a report of the September 2018 Workshop and recommended: 1) enhancing outreach and training efforts to ensure proper application of existing seabird mitigation measure requirements; 2) NMFS provide support for research and development for alternative measures with potential to replace blue-dyed bait, with high priority placed on identifying suitable designs for tori lines; and 3) encourage submission of Experimental Fishing Permit applications for testing alternative measures without the use of blue-dyed bait to allow comparison of measure effectiveness with and without blue-dyed bait. The Council additionally directed staff to prepare a discussion paper for the March 2019 Council Meeting to evaluate the effect of potential removal of blue-dyed bait without additional replacement measures on seabird interaction rates.

The Council at its 176th meeting held March 19-21, 2019 endorsed the strategies for identifying alternative mitigation measures and improving seabird measure effectiveness for the Hawaii longline fishery as outlined in the discussion paper, including addressing captain effects through strategic outreach, identifying tori line designs suitable for the Hawaii fishery, encouraging trials for making minor modifications to existing required measures, and progressing international bycatch assessments for North Pacific albatross species. The Council further directed staff to work with industry, NMFS, Pelagic Plan Team and other expertise as appropriate to identify draft minimum standards for tori lines, taking into consideration existing standards established for other fisheries, designs currently used voluntarily by Hawaii longline vessel operators, and diversity of vessel size and configuration in the Hawaii longline fishery.

NMFS consulted with the U.S. FWS on effects to endangered species from the Hawaii longline fisheries in a 2012 BiOp (U.S.FWS 2012). U.S. FWS considered that the deep-set fishery might affect short-tailed albatross and authorized the take of two short-tailed albatrosses, even though there were no documented interactions with this species. For purposes of analysis, U.S. FWS used the black-footed albatross as a proxy species, modeling annual take based on the average 2004-2010 rate of black-footed albatross interactions. U.S. FWS estimated 76.9 annual injuries and mortalities of black-footed albatrosses.

Accounting for a fall-off rate (seabirds present observed hooked during gear setting but not upon retrieval) of 31% (Gilman et al. 2003; Gilman et al. 2008), U.S. FWS converted the average interactions to a proportion of the overall black-footed albatross population. U.S. FWS adjusted this proportion for the short-tailed albatross population using the fraction of the short-tailed albatross range that overlaps with the Hawaii-based longline fishery and the most recent population assessment comparable to black-footed albatross data. The estimated take of short-
tailed albatrosses based on historical data, scaled to the area of overlap between the species’ range and the fishery, is 0.21 albatross per year or more than one (1.07) albatross over five years (U.S.FWS 2012). This is 0.0066 percent of the population (proportion of the population = 0.21/3181 = .000066).

U.S. FWS conducted a population viability analysis in 1999, which found that an annual loss of about 82 subadults and 12 adults would lead to eventual extinction of the species based on a population size at that time of 1,362 birds. The population had increased to 3,181 birds at the time of the 2012 BiOp, and the current total annual estimated loss of reproductive contribution due to adverse effects by US fisheries fell short of 94 birds (three birds over five years in Hawaii fisheries and three per year in Alaska). Based on this information, U.S. FWS concluded that the deep-set longline fishery in Hawaii may slow population growth of short-tailed albatross, but is not anticipated to jeopardize the continued existence of the species (U.S.FWS 2012). The fishery has not had an observed interaction with a short-tailed albatross.

Overall, levels of seabird interactions remain low and NMFS, the Council and international management organizations are monitoring seabird bycatch and developing management measures in response to impacts. At this time, it is not expected that the Hawaii deep-set longline fleet has substantial impacts on seabird populations including black-footed or Laysan albatross populations.

### 3.3.3.2 Hawaii Shallow-Set Longline Fishery

Table 38 contains the numbers of albatross that have interacted with the Hawaii shallow-set longline fisheries from 2005 through 2018 based on observed interactions by the NMFS Observer Program. In addition, from 2004 through 2018, based on observed sets, the shallow-set fishery interacted with one northern fulmar, four sooty shearwaters, and one unidentified gull (WPFMC 2018a).

**Table 38. Number of albatross interactions observed in the Hawaii shallow-set longline fishery, 2005-2018.**

<table>
<thead>
<tr>
<th>Year</th>
<th>Laysan</th>
<th>Black-footed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>62</td>
<td>7</td>
</tr>
<tr>
<td>2006</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>2007</td>
<td>39</td>
<td>8</td>
</tr>
<tr>
<td>2008</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>2009</td>
<td>81</td>
<td>29</td>
</tr>
<tr>
<td>2010</td>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>2011</td>
<td>49</td>
<td>19</td>
</tr>
<tr>
<td>2012</td>
<td>61</td>
<td>37</td>
</tr>
<tr>
<td>2013</td>
<td>46</td>
<td>28</td>
</tr>
<tr>
<td>2014</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>2015</td>
<td>45</td>
<td>41</td>
</tr>
<tr>
<td>2016</td>
<td>26</td>
<td>40</td>
</tr>
<tr>
<td>2017</td>
<td>6</td>
<td>51</td>
</tr>
</tbody>
</table>
In 2012, the U.S. FWS issued a special permit for the shallow-set fishery under the MBTA. This permit authorizes incidental take of certain seabirds in the Hawaii shallow-set fishery over a period of three years (U.S.FWS 2012). The permit and ITS were renewed in 2015 (Table 39).

Table 39. Total incidental take authorized under the three-year MBTA Special Purpose Permit for the Hawaii shallow-set longline fishery.

<table>
<thead>
<tr>
<th>Species</th>
<th>Authorized incidental take (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-footed albatross</td>
<td>191 per three years (2015-2017)</td>
</tr>
<tr>
<td>Laysan albatross</td>
<td>430 per three years (2015-2017)</td>
</tr>
<tr>
<td>Short-tailed albatross</td>
<td>1 (not to exceed 1 per 5 years)</td>
</tr>
<tr>
<td>Sooty shearwater</td>
<td>10 per year</td>
</tr>
<tr>
<td>Northern fulmar</td>
<td>10 per year</td>
</tr>
</tbody>
</table>

Source: U.S.FWS (2012)

On December 27, 2017, the Ninth Circuit Court of Appeals issued a split decision that reversed the district court’s decision upholding the MBTA permit. Turtle Island Restoration Network v. NMFS & FWS, 13-17123 (9th Cir. 2017). The Ninth Circuit majority opinion found that FWS improperly relied upon the special use permit to authorize the incidental take of sea birds by a commercial fishery. The permit expired on its own terms in March 2018 and NMFS determined that it would not reapply for the permit.

NMFS consulted with the U.S. FWS on effects to endangered species from the Hawaii longline fisheries in a 2012 BiOp (U.S.FWS 2012). U.S. FWS considered that the shallow-set fishery might affect short-tailed albatross and authorized the take of one short-tailed albatross every five years, even though there were no documented interactions with this species. For purposes of analysis, U.S. FWS used the same methods described for the deep-set fishery in section 3.3.3.1. U.S. FWS estimated 13.1 annual injuries and mortalities of black-footed albatrosses in the shallow-set longline fleet, which results in an estimated take of 0.034 short-tailed albatross per year or less than one (0.17) albatross over five years (U.S.FWS 2012). This is 0.001 percent of the population (proportion of the population = 0.034/3,181 = .00001).

U.S. FWS conducted a population viability analysis in 1999, which found that an annual loss of about 82 subadults and 12 adults would lead to eventual extinction of the species based on a population size at that time of 1,362 birds. The population had increased to 3,181 birds at the time of the 2012 BiOp, and the current total annual estimated loss of reproductive contribution due to adverse effects by US fisheries fell short of 94 birds (three birds over five years in Hawaii fisheries and three per year in Alaska). Based on this information, U.S. FWS concluded that the shallow-set longline fishery in Hawaii may slow population growth of short-tailed albatross, but is not anticipated to jeopardize the continued existence of the species (U.S.FWS 2012). The shallow-set longline fishery has not caught a short-tailed albatross.
3.3.3.3 American Samoa Longline Fishery

Many seabird species may occur in the area of operation of the American Samoa longline fishery, similar to Hawaii, Guam, and CNMI. Observers have recorded two interactions with unidentified shearwaters, one unidentified frigate bird, and 13 black-footed albatross (in the NPO) in the American Samoa longline fishery from 2006-2018 (NMFS 2019a; WPFMC 2018a).

3.3.3.4 Guam and CNMI Longline Fisheries

Seabird interactions have not been reported or observed in the Guam or CNMI longline fisheries. Since 2012, there have been no active longline vessels in Guam or CNMI. Thus, there are no reports of interactions with seabirds.

3.3.4 Sharks and Rays

ESA-listed shark or ray (elasmobranch) species that have been observed or may occur in the area where Pelagics FEP fisheries operate include the scalloped hammerhead shark, oceanic whitetip shark, and giant manta ray. Sharks and rays are vulnerable to longline fisheries through hooking and entanglement.

The Council and NMFS manage the longline fisheries permitted under the Pelagics FEP through several measures that mitigate the potential for shark and ray interactions. These measures include the requirement to carry an observer on a fishing trip if requested, and a requirement for owners and operators of longline vessels to attend a protected species education workshop annually. Additionally, in accordance with WCPFC CMM 2011-01, Hawaii and American Samoa longline vessels release all oceanic white tip sharks incidentally caught in the WCPO. In the EPO, the IATTC has banned retention of oceanic whitetip shark and mobulid rays, including giant manta rays.

After considering a range of potential effects to scalloped hammerhead shark, NMFS, in its 2014 and 2015 BiOps, determined that the Hawaii and American Samoa deep-set fisheries operating in accordance with the Pelagics FEP and implementing regulations, would not jeopardize the survival or recovery of scalloped hammerhead sharks. NMFS has authorized a certain level of interactions (incidental take) of scalloped hammerhead sharks which the fishery may interact with through ITS for these fisheries.

On April 20, 2018, NMFS reinitiated formal consultation for the Hawaii shallow-set longline fishery to evaluate the impact of the fishery on oceanic whitetip shark and giant manta ray, among other reasons. On October 4, 2018, NMFS reinitiated formal consultation for the Hawaii deep-set longline fishery to evaluate the impact of the fishery on oceanic whitetip shark and giant manta ray, among other reasons. On April 3, 2019, NMFS reinitiated formal consultation on the operation of the American Samoa deep-set longline fishery to evaluate the impact of the fishery on oceanic whitetip shark and giant manta ray, and for exceeding take of several species of sea turtles.
3.3.4.1 Hawaii Deep-set Longline Fishery

Table 40 shows the fleet-wide interaction estimates for the Hawaii deep-set longline fishery from 2006-2017.

### Table 40. Estimated total ESA-listed shark and ray interactions with the Hawaii deep-set longline fishery for 2004-2017.

<table>
<thead>
<tr>
<th>Year</th>
<th>Scalloped Hammerhead</th>
<th>Oceanic Whitetip</th>
<th>Giant Manta Ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>9</td>
<td>1764</td>
<td>4</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>1307</td>
<td>8</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>1561</td>
<td>9</td>
</tr>
<tr>
<td>2007</td>
<td>5</td>
<td>1303</td>
<td>10</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>664</td>
<td>9</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>1184</td>
<td>19</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>1199</td>
<td>81</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>1108</td>
<td>5</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>843</td>
<td>10</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>961</td>
<td>5</td>
</tr>
<tr>
<td>2014</td>
<td>0</td>
<td>1798</td>
<td>14</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>2578</td>
<td>10</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
<td>2104</td>
<td>20</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>1186</td>
<td>5</td>
</tr>
</tbody>
</table>

Source: WPFMC (2018a)

Scalloped hammerhead shark interactions in the Hawaii deep-set fishery are rare, unpredictable events. Since 2004, there have been three observed interactions with scalloped hammerhead sharks in the Hawaii deep-set fishery in the area of the threatened Indo-West Pacific DPS (NMFS 2014). NMFS has no records of any interactions with scalloped hammerhead sharks from the Eastern Pacific DPS (NMFS Observer Program, unpublished data). NMFS in its no-jeopardy 2014 BiOp authorized the take of six Indo-West Pacific scalloped hammerhead sharks, with up to three mortalities over a three year period (NMFS 2014).

In the request for reinitiation of ESA Section 7 consultation for the Hawaii deep-set longline fishery, NMFS estimated that there could be up to 5 interactions with scalloped hammerhead sharks annually in the fishery. At a 65.7 percent post-release survival rate, we anticipate that 4 (5 x 0.657 = 3.2, rounded to 4) of the 5 sharks would be released alive while one would be released dead (NMFS 2018d).

Based on a population estimate of 11,280 adults, NMFS estimates one annual mortality represents 0.009 percent (1/11,280*100=0.00886) of the population. In the 2014 BiOp, NMFS determined the takes of scalloped hammerhead sharks associated with the operation of the fishery are not expected to cause an appreciable reduction in the likelihood of both the survival and recovery of the DPS (NMFS 2014). Due to the small level of take NMFS considered the fishery’s effects on the Indo-West Pacific scalloped hammerhead shark DPS from the Hawaii deep-set longline fishing operations to be negligible (NMFS 2018d).
Consultation for the oceanic whitetip shark and giant manta ray were included in the ongoing consultation reinitiated on October 4, 2018 (NMFS 2018d). In our request for reinitiation of ESA Section 7 consultation on the operation of the Hawaii deep-set longline fishery, NMFS estimated the fishery could interact with up to 3,185 oceanic white tips sharks and 84 giant manta rays, based on a conservative 95% credible interval. The observer interaction data also includes other mobulidae categories that may include giant manta rays. These categories are “unidentified ray” and “manta/mobula,” which NMFS prorates to provide an estimate of giant manta ray interactions. These predictions, generated by PIFSC using Bayesian data analysis methods appropriate for count data used observed interactions in the fishery from 2002-2017.

The stock assessment for the oceanic whitetip shark (Rice and Harley 2012a) estimated current biomass of oceanic whitetip sharks in the WCPO to be 7,295 t and current catch at 2,001 t annually. The FAO (2013) estimates 7,295 t of shark biomass would be equivalent to roughly 200,000 individuals. At an average 76.9 percent post-release survival rate, NMFS estimates that the anticipated level of interactions in any given year of equal to or less than 3,185 oceanic whitetip sharks represents 735 mortalities or 0.367% (735/200,000*100) of the estimated number of individuals in the WCPO (NMFS 2018d). Population estimates of oceanic whitetip sharks in the EPO are unavailable, and thus this population-level impact is a conservative estimate.

A preliminary analysis of annual standardized catch per unit of effort (CPUE) for oceanic whitetip shark for 1995-2014 conducted as part of the 2016 Status Review Report (Young et al. 2016) indicated that the population in the area of the Hawaii longline fishery operation might have stabilized in recent years. Observer data from 2015 and 2016 indicate that the nominal CPUE was approximately the same or slightly higher than 2014 (NMFS Observer data, unpublished), but these data are not standardized and should be interpreted with caution. Based on this information, the negligible proportion of the population that may be affected by the operation of the longline fleet, and the high proportion of sharks released alive, the impact of the Hawaii deep-set longline fishery on the oceanic whitetip shark population is likely to be minimal.

NMFS estimates in the BE that the anticipated level of interactions for giant manta rays in any given year of equal to or less than 84 would lead to 6 giant manta ray mortalities, based on a 92.7 percent post-release survival rate. There is no historical or current global abundance estimates or stock assessments for giant manta rays. Most estimates of subpopulations are based on anecdotal observations, and range from around 100-1,500 (Miller and Klimovich 2016). Little information is available on the abundance of giant manta rays in the high seas area in the central north Pacific where the Hawaii deep-set longline fishery operates. Nevertheless, the 2016 NMFS Status Review Report for the giant manta ray concluded that the incidental catch of this species in U.S. longline fisheries are likely to be having minimal effects on the population (Miller and Klimovich 2016). Based on this expert opinion, and the high likelihood that giant manta rays will be released alive in this fishery, NMFS does not expect that the fishery’s effects on the giant manta ray population are substantial.

3.3.4.2 Hawaii Shallow-set Longline Fishery

Table 41 shows the fleet-wide observed interactions of ESA-listed sharks and rays for the Hawaii shallow-set longline fishery from 2004-2017.
Table 41. Total ESA-listed shark and ray interactions with the Hawaii shallow-set longline fishery for 2004-2017.

<table>
<thead>
<tr>
<th>Year</th>
<th>Scalloped Hammerhead</th>
<th>Oceanic Whitetip</th>
<th>Giant Manta Ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>348</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>98</td>
<td>5</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>90</td>
<td>6</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>78</td>
<td>3</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>0</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>29</td>
<td>2</td>
</tr>
</tbody>
</table>

Source: WPFMC (2018a)

The Hawaii shallow-set longline fishery generally occurs within the range of the Central Pacific DPS of scalloped hammerhead shark; this DPS was not listed under the ESA. The shallow-set fishery does not occur within the range of the Indo-West Pacific DPS; however a portion of the shallow-set fishery does fall within the range of the Eastern Pacific DPS. There have been no recorded or observed takes of hammerhead sharks in the shallow-set longline fishery in the area of the Eastern Pacific DPS, and therefore NMFS does not expect that impacts to this species are substantial.

Consultation for the oceanic whitetip shark and giant manta ray were included in the ongoing consultation reinitiated on April 20, 2018 (NMFS 2018e). In our request for reinitiation of ESA Section 7 consultation on the operation of the shallow-set longline fishery, NMFS estimated the shallow-set fishery could interact with up to 227 oceanic white tips sharks and 10 giant manta rays, including prorated manta/mobula, based on a conservative 95% credible interval. Manta/mobula is used when a fisheries observer is unable to distinguish whether the ray is a Manta (giant or reef) or a Mobula, or if the observer is able to confirm it is a Reef Manta (*Manta alfredi*). These predictions, generated by PIFSC using Bayesian data analysis methods appropriate for count data (McCracken 2018a), used observed interactions in the fishery from January 1, 2013 through November 18, 2017, as not all relevant catch records were available through the end of 2017.

The stock assessment for the oceanic whitetip shark (Rice and Harley 2012a) estimated current biomass of oceanic whitetip sharks in the WCPO to be 7,295 t and current catch at 2,001 t annually. The FAO (2013) estimates 7,295 t of shark biomass would be equivalent to roughly 200,000 individuals. At an average 87.1 percent post-release survival rate, NMFS estimates that the anticipated level of interactions in any given year of equal to or less than 227 oceanic whitetip sharks represents 29 mortalities or 0.0145% (29/200,000*100) of the estimated number
of individuals in the WCPO (NMFS 2018e). Population estimates of oceanic whitetip sharks in the EPO are unavailable, and thus this population-level impact is a conservative estimate. Based on the negligible proportion of the population that this fishery may affect and the high proportion of sharks released alive, the impact of the Hawaii shallow-set longline fishery on the oceanic whitetip shark population is likely to be minimal.

NMFS estimates in the BE that the anticipated level of interactions for giant manta rays in any given year of equal to or less than 10 would lead to 3 giant manta ray mortalities (NMFS 2018e). There is no historical or current global abundance estimates or stock assessments for giant manta rays. Most estimates of subpopulations are based on anecdotal observations, and range from around 100-1,500 (Miller and Klimovich 2016). Little information is available on the abundance of giant manta rays in the high seas area in the central north Pacific where the Hawaii shallow-set longline fishery operates. Nevertheless, the 2016 NMFS Status Review Report for the giant manta ray concluded that the incidental catch of this species in U.S. longline fisheries are likely to have minimal effects on the population (Miller and Klimovich 2016). Based on this expert opinion, NMFS does not expect the effects of this fishery on the giant manta ray population are substantial.

3.3.4.3 American Samoa Longline Fishery

Table 42 shows the fleet-wide interaction estimates for the American Samoa longline fishery from 2006-2017.

Table 42. Estimated total ESA-listed shark and ray interactions with the American Samoa longline fishery for 2006-2017.

<table>
<thead>
<tr>
<th>Year</th>
<th>Scalloped Hammerhead</th>
<th>Oceanic Whitetip</th>
<th>Giant Manta Ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>13</td>
<td>568</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>15</td>
<td>873</td>
<td>0</td>
</tr>
<tr>
<td>2018</td>
<td>0</td>
<td>750</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>584</td>
<td>13</td>
</tr>
<tr>
<td>2010</td>
<td>17</td>
<td>520</td>
<td>12</td>
</tr>
<tr>
<td>2011</td>
<td>7</td>
<td>348</td>
<td>9</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>359</td>
<td>15</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>454</td>
<td>10</td>
</tr>
<tr>
<td>2014</td>
<td>6</td>
<td>536</td>
<td>5</td>
</tr>
<tr>
<td>2015</td>
<td>3</td>
<td>764</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>5</td>
<td>1015</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>5</td>
<td>315</td>
<td>0</td>
</tr>
<tr>
<td>2018</td>
<td>18</td>
<td>616</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: 2018 estimates expanded by multiplying observed interactions by 5.7 as there was 17.5% observer coverage in 2018. Fractional estimates rounded up to the nearest whole number.
Source: WPFMC (2018a) and NMFS (2019b)

Scalloped hammerhead shark interactions in the American Samoa longline fishery are rare, unpredictable events. Since the first full year of implementation of the sea turtle mitigation requirements in 2012, there have been seven observed interactions with Indo-West Pacific
scalloped hammerhead sharks in the American Samoa longline fishery (NMFS 2019b). NMFS in its no-jeopardy 2015 BiOp authorized the take of up to 36 Indo-Western Pacific scalloped hammerhead sharks, with up to 12 mortalities over a three year period (NMFS 2015a).

In the request for reinitiation of ESA Section 7 consultation for the American Samoa deep-set longline fishery, NMFS estimated that there could be up to 21 interactions with scalloped hammerhead sharks annually in the fishery. At a 77.8 percent post-release survival rate, we anticipate that 17 (21 x 0.778 = 16.3, rounded to 17) of the 21 sharks would be released alive while four would be released dead (NMFS 2019b).

Based on a population estimate of 11,280 adults (NMFS 2015b), NMFS estimates four annual mortalities represents 0.04 percent (4/11,280*100=0.04) of the population. Due to the small level of take NMFS considers the fishery’s effects on the Indo-West Pacific scalloped hammerhead shark DPS from the American Samoa deep-set longline fishing operations to be small. NMFS in its 2015 BiOp concluded that the American Samoa longline fishery as managed under the Pelagics FEP is not likely to jeopardize the continued existence or recovery of the Indo-West Pacific scalloped hammerhead DPS. There is no new information that would lead us to reconsider the conclusions reached in the no-jeopardy 2015 BiOp. Moreover, incidental take remains within levels estimated and authorized.

Consultation for the oceanic whitetip shark and giant manta ray were included in the ongoing consultation reinitiated on April 3, 2019 (NMFS 2019b). In our request for reinitiation of ESA Section 7 consultation on the operation of the American Samoa deep-set longline fishery, NMFS estimated the fishery could interact with up to 1,110 oceanic white tip sharks and 38 giant manta rays annually, based on a conservative 95% credible interval. The observer interaction data also includes other mobulidae categories that may include giant manta rays. These categories are “unidentified ray” and “manta/mobula,” which NMFS prorates to provide an estimate of giant manta ray interactions. These predictions, generated by PIFSC using Bayesian data analysis methods appropriate for count data used observed interactions in the fishery from 2012-2017.

The stock assessment for the oceanic whitetip shark (Rice and Harley 2012a) estimated current biomass of oceanic whitetip sharks in the WCPO to be 7,295 t and current catch at 2,001 t annually. The FAO (2013) estimates 7,295 t of shark biomass would be equivalent to roughly 200,000 individuals. At an average 66.6% post-release survival rate (NMFS unpublished data), NMFS estimates the anticipated level of interactions in any given year of equal to or less than 1,110 sharks represents 370 mortalities or 0.19% (370/200,000*100) of the estimated number of individuals in the WCPO. Based on the negligible proportion of the population affected by the operation of the longline fleet and the high proportion of sharks released alive, the impact of the American Samoa longline fishery on the oceanic whitetip shark population is likely to be minimal.

Based on an average post-release survival rate of 96.7%, NMFS expects up to one giant manta ray mortality annually (38 x 0.967 = 36.7, rounded to 37 alive leaves one mortality). There is no historical or current global abundance estimate or stock assessment for giant manta rays. Most estimates of subpopulations are based on anecdotal diver or fisherman observations, which are subject to bias, and range from around 100-1,500 (Miller and Klimovich 2016). Little information is available on the abundance of giant manta rays in U.S. EEZ around American
Samoa where the American Samoa longline fishery operates. Nevertheless, the 2016 NMFS Status Review Report for the giant manta ray concluded that the incidental catch of this species in U.S. longline fisheries are likely to have minimal effects on the population (Miller and Klimovich 2016). Based on this expert opinion, and the high likelihood that giant manta rays will be released alive in this fishery, NMFS does not expect that effects from the operation of the American Samoa longline fishery on the giant manta ray population would be substantial.

3.3.4.4 Guam and CNMI Longline Fisheries

Since 2012, there have been no active longline vessels in Guam or CNMI. Thus, there are no reports of interactions with sharks or rays by longliners in the Marianas

3.3.5 Corals and Chambered Nautilus

On September 10, 2014, NMFS listed 20 species of corals as threatened under the ESA (79 FR 53851). Fifteen of the newly listed species occur in the Indo-Pacific, and five in the Caribbean. Of those that occur in the Indo-Pacific, NMFS assumes only eight occur in waters under U.S. jurisdiction, while none occur in Hawaiian waters (79 FR 53851). NMFS listed the chambered nautilus, which occurs in waters around American Samoa, as threatened under the ESA on September 28, 2018 (83 FR 48976).

Coral reefs form on solid substrate but only within suitable environmental conditions that allow the deposition rates of corals and other reef calcifiers to exceed the rates of physical, chemical, and biological erosion. In the U.S. Pacific Islands, coral reef habitat occurs immediately within waters from 0-3 nm of shore, although some coral reef habitat can be found further offshore.

Chambered nautilus are opportunistic scavengers which live in close association with steep-sloped fore reefs and associated sandy, silty or muddy-bottomed substrates, ranging from shallow water (rarely) to about 500 m (CITES 2016). The animals may be vulnerable to longline fisheries through impacts from fishing gear, collisions with vessels or exposure to wastes and discharges.

Pelagic fisheries generally operate dozens to hundreds of miles offshore, far away from the islands and coral reef habitat areas, to target pelagic fish species in the water column. Federal regulations prohibit longline fishing generally within 50-75 nm from shoreline of Hawaii, 50 nm from the shoreline of Guam, and 30 nm from the shoreline of the CNMI. In American Samoa, federal regulations prohibit all fishing vessels greater than 50 ft in length, including longline vessels, from fishing generally within 50 nm of the shoreline. In the Pacific Remote Islands, federal regulations prohibit all commercial fishing generally within 50 nm of all islands, and within the entire U.S. EEZ around Jarvis, Wake, and Johnston Atoll.

To access fishing grounds, pelagic fishing vessels have to transit areas where ESA-listed corals and the chambered nautilus may occur in American Samoa. Fishing vessels actively avoid preferred habitats of the listed corals and chambered nautilus, such as coral reef structures, steep-sloped reefs, and fore reefs, to avoid damage to their hulls.

Longline vessels do not deploy gear in waters above coral reef structures, steep-sloped reefs, or fore reefs to mitigate the loss of gear through snagging and entanglements. Although longline
vessels fish at 100-400 m deep – within the vertical range of the chambered nautilus – fishermen are far more likely to deploy gear in the open water column where the chambered nautilus does not occur (due to risk of predation and physiological constraints). There have been no observer interactions with longline fishing gear and the chambered nautilus. Additionally, pelagic fishing activities do not involve anchoring and, therefore, there is no potential for anchor damage during fishing activities.

While exposure of corals and the chambered nautilus to waste from fishing vessels may occasionally occur, NMFS does not anticipate that this would be a serious stressor for the chambered nautilus or listed corals. Federal laws and regulations strictly regulate the discharge of oil, garbage, waste, plastics, and hazardous substances into ocean waters under a variety of laws, including the Clean Water Act, Oil Pollution Act of 1990, the Act to Prevention Pollution from Ships, MARPOL 1973/1978, and the Ocean Dumping Act. Violations of these laws may result in severe civil penalties, criminal fines, and imprisonment. Although disposal of plastics at sea is prohibited at both the federal and international level, discharges of other legally allowable vessel wastes have the potential to impact ESA-listed species, including the chambered nautilus. However, the pelagic longline fisheries operate over a large area, and due to the spatial separation between fishery operations and areas where the chambered nautilus may occur (i.e. vessel transiting areas and reef structures), any hydrocarbon-based chemicals such as fuel oils, gasoline, lubricants, and hydraulic fluids that may enter the marine environment during fishing operations will likely be infrequent, small, and quickly diluted or dispersed. The same is true for vessel transit in and out of port.

3.4 Marine Habitats, Critical Habitat, and Essential Fish Habitat

3.4.1 Leatherback Sea Turtle Critical Habitat

On January 26, 2012, NMFS designated critical habitat for leatherback sea turtles off the west coast of the U.S., including areas off Washington, Oregon, and California (77 FR 4170). Because Hawaii longline vessels may occasionally transit through the U.S. EEZ to and from west coast ports, NMFS evaluated the fishery for potential effects to leatherback sea turtle critical habitat in the 2014 BiOp for the deep-set fishery (NMFS 2014). Because NMFS prohibits longline fishing within the EEZ off the west coast, NMFS determined that the deep-set longline fishery may affect, but is not likely to adversely modify designated critical habitat for leatherback sea turtles. NMFS came to a similar conclusion for the shallow-set longline fishery in its 2012 BiOp (NMFS 2012).

3.4.2 Monk Seal Critical Habitat

On August 21, 2015, NMFS published a final rule (80 FR 50926) designating critical habitat for the Hawaiian monk seal (*Neomonachus schauinslandi*) in the MHI and expanding monk seal critical habitat in the Northwestern Hawaiian Islands (NWHI). NMFS identified features that are essential for the conservation of monk seals, including areas preferred for pupping and nursing, areas that support adequate prey quality and quantity for foraging, and areas for hauling out, resting, or molting. Accordingly, NMFS identified critical habitat in certain areas in the MHI, and around designated islands in the NWHI, to include, generally, from the beach to the 200-m
depth contour and the seafloor and the waters and habitat within 10 m of the seafloor. Specific critical habitat boundaries can be found in the final rule.

In response to the critical habitat designation, NMFS reinitiated ESA Section 7 consultation to evaluate the potential effects of the Hawaii deep-set longline fishery on monk seal critical habitat. Because monk seals do not prey on species targeted by the Hawaii deep-set or shallow-set longline fisheries and longline vessels are prohibited from fishing within the footprint of monk seal critical habitat, NMFS determined that the Hawaii deep-set and shallow-set longline fishery may affect, but are not likely to adversely modify monk seal critical habitat. NMFS documented its determinations in a memorandum of concurrence dated September 16, 2015.

3.4.3 Main Hawaiian Islands Insular False Killer Whale Critical Habitat

On July 24, 2018, NMFS designated critical habitat for the MHI IFKW DPS (83 FR 35062). The critical habitat area encompasses waters from 45 to 3,200 m deep around the MHI. Based on considerations of economic and national security impacts, NMFS excluded certain areas from designation because the benefits of exclusion outweigh the benefits of inclusion, and exclusion would not result in extinction of the species. NMFS identified a single essential feature with four characteristics that describe how island-associated marine habitat is essential to MHI IFKWs, as follows:

1. Adequate space for movement and use within shelf and slope habitat;
2. Prey species of sufficient quantity, quality, and availability to support individual growth, reproduction, and development, as well as overall population growth;
3. Waters free of pollutants of a type and amount harmful to insular false killer whales; and
4. Sound levels that will not significantly impair false killer whales' use or occupancy.

Additional details are available in the Biological Report (NMFS 2018f) and draft Economic Report (Cardno 2018) associated with the final rule.

Federal regulations prohibit longline fishing in the MHI longline prohibited area, which extends about 50 to 75 nm around the MHI, depending on the location (Figure 9). This results in an effective closure of the deep-set longline fishery in most of MHI IFKW range.
Figure 9. Map depicting the overlap of federal longline fishing area with the MHI IFKW range.

Fishing activities that may affect MHI IFKW DPS critical habitat include those that reduce the quantity, quality, or availability of MHI IFKW DPS prey species. The MHI IFKW DPS Status Review indicated that fisheries might affect MHI IFKW prey resources in two ways: (1) by removing potential prey in the immediate vicinity of false killer whales, and (2) by contributing to the long-term reduction of prey biomass over the range of the fish stocks that these whales encounter (Oleson et al. 2012).

MHI IFKW critical habitat was included in the request for reinitiation for the Hawaii deep-set and shallow-set longline fisheries. Overlapping species in longline fishery catches and the MHI IFKW diet include opah, wahoo, mahimahi, monchong, swordfish, blue marlin, and bigeye, skipjack, yellowfin, and albacore tuna. Available information on the stock status of pelagic fish species known to be part of MHI IFKW prey indicate that stocks are generally stable or improving (see Section 3.1). U.S. landings in the WCPO compared to each stock’s total estimated biomass are less than one percent for prey species with estimated biomass (NMFS 2018b), and international and domestic management measures strive to ensure the sustainability of these stocks. Additionally, the diversity in IFKW diet likely indicates the whales shift to available prey items to meet their energetic needs. The longline fisheries do not harvest MHI IFKW prey in the area designated as critical habitat.

Based on this information, NMFS concluded that the longline fisheries have insignificant effects on prey species considered a component of the MHI IFKW critical habitat and that the operation of the Hawaii longline fisheries represents an insignificant contribution to the long-term reduction in quantity, quality, or availability of MHI IFKW prey species over the range of the fish stocks that these whales encounter (NMFS 2018d; 2018e).

3.4.4 Essential Fish Habitat

The Magnuson-Stevens Act defines essential fish habitat (EFH) as those waters and substrate necessary for federally managed species to spawn, breed, feed, and/or grow to maturity. Federal agencies whose action may adversely affect EFH must consult with NMFS in order to conserve and enhance federal fisheries habitat. Habitat areas of particular concern (HAPC) are subsets of
EFH that merit special conservation attention because they meet at least one of the following four considerations:

1) provide important ecological function;
2) are sensitive to environmental degradation;
3) include a habitat type that is/will be stressed by development;
4) include a habitat type that is rare.

HAPC are afforded the same regulatory protection as EFH and do not exclude activities from occurring in the area, such as fishing, diving, swimming or surfing.

An “adverse effect” to EFH is anything that reduces the quantity and/or quality of EFH. It may include a wide variety of impacts such as:

1) direct impacts (e.g., contamination or physical disruption);
2) indirect impacts (e.g., loss of prey, reduction in species’ fecundity); or site-specific/habitat wide impacts, including individual, cumulative or synergistic consequences of actions.

In 1999, the Council developed and NMFS approved EFH and HAPC designations for management unit species (MUS) of the Bottomfish and Seamount Groundfish (FMP) (Amendment 6), Crustacean FMP (Amendment 10), Pelagic FMP (Amendment 8), and Precious Corals FMP (Amendment 4) (74 FR 19067, April 19, 1999). NMFS approved additional EFH and HAPC designations for coral reef ecosystem species in 2004 as part of the implementation of the Coral Reef Ecosystem FMP (69 FR 8336, February 24, 2004). NMFS also approved EFH designations for deepwater shrimp through an amendment to the Crustaceans FMP in 2008 (73 FR 70603, November 21, 2008).

Ten years later, in 2009, the Council developed and NMFS approved five archipelagic-based fishery ecosystem plans (FEPs). The FEPs incorporated and reorganized elements of the Councils’ species-based FMPs into a spatially oriented management plan (75 FR 2198, January 14, 2010). EFH definitions and related provisions for all FMP fishery resources were subsequently carried forward into the respective FEPs. In 2016, the WPFMC revised EFH and HAPC designations for Hawaii bottomfish and seamount groundfish through an amendment to the Hawaii Archipelago FEP (81 FR 7494). Finally, EFH and HAPC designations for crustacean and coral reef ecosystem MUS in American Samoa, Guam, and the CNMI and coral reef ecosystem MUS in Hawaii were removed as a result of a separate Council and NMFS action to reclassify MUS as ecosystem component species (84 FR 2767, February 8, 2019).

NMFS considers all EFH in determining whether a proposed fishery management action may affect EFH. Table 43 provides the designated areas of EFH and Table 44 provides the HAPC for all FEP MUS by life stage. U.S. and U.S. participating territory longline fisheries are not known to adversely affect EFH.
### Table 43. EFH designations for all MUS of Western Pacific FEPS.

<table>
<thead>
<tr>
<th>FEP</th>
<th>Fishery</th>
<th>Stock or Stock Complex</th>
<th>Life Stage(s)</th>
<th>EFH Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelagic</td>
<td>All pelagic fisheries</td>
<td>Tropical and temperate</td>
<td>Egg/larval</td>
<td>The water column down to a depth of 200 m (100 fm) from the shoreline to the outer limit of the EEZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Juvenile/adult</td>
<td>The water column down to a depth of 1,000 m (500 fm)</td>
</tr>
<tr>
<td>American Samoa, Mariana, and Pacific Remote Island Area (PRIA)</td>
<td>Bottomfish</td>
<td>Shallow-water and deep-water complexes</td>
<td>Egg/larval</td>
<td>The water column extending from the shoreline to the outer limit of the EEZ down to a depth of 400 m (200 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Juvenile/adult</td>
<td>The water column and all bottom habitat extending from the shoreline to a depth of 400 m (200 fm)</td>
</tr>
<tr>
<td>PRIA</td>
<td>Coral Reef Ecosystem</td>
<td>Currently harvested coral reef taxa, Labridae</td>
<td>Egg/larval</td>
<td>The water column and all bottom habitat from the shoreline to the outer boundary of the EEZ to a depth of 100 m (50 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Currently harvested coral reef taxa, Octopodidae</td>
<td>Egg</td>
<td>All coral, rocky, and sand-bottom areas from 0 to 100 m (50 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Currently harvested coral reef taxa, Carcharhinidae</td>
<td>Egg/larval</td>
<td>No designation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other currently harvested coral reef taxa</td>
<td>Egg/larval</td>
<td>The water column from the shoreline to the outer boundary of the EEZ to a depth of 100 m (50 fm)</td>
</tr>
<tr>
<td>FEP</td>
<td>Fishery</td>
<td>Stock or Stock Complex</td>
<td>Life Stage(s)</td>
<td>EFH Designation</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------</td>
<td>-------------------------------------------------------------</td>
<td>---------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PRCA</td>
<td>Coral Reef Ecosystem</td>
<td>Currently harvested coral reef taxa, Carcharhinidae, Labridae</td>
<td>Juvenile/adult</td>
<td>All bottom habitat and the adjacent water column from 0 to 100 m (50 fm) to the outer extent of the EEZ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Currently harvested coral reef taxa, Holocentridae and Muraenidae</td>
<td>Juvenile/adult</td>
<td>All rocky and coral areas and the adjacent water column from 0 to 100 m (50 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Currently harvested coral reef taxa, Kuhliidae</td>
<td>Juvenile/adult</td>
<td>All bottom habitat and the adjacent water column from 0 to 50 m (25 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Currently harvested coral reef taxa, Kyphosidae</td>
<td>Adult</td>
<td>All rocky and coral bottom habitat and the adjacent water column from 0 to 30 m (15 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Currently harvested coral reef taxa, Mullidae, Octopodidae, Polynemidae, Priacanthidae</td>
<td>Juvenile/adult</td>
<td>All rocky/coral bottom and sand bottom habitat and the adjacent water column from 0 to 100 m (50 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Currently harvested coral reef taxa, Mugilidae</td>
<td>Juvenile/adult</td>
<td>All sand and mud bottom and the adjacent water column from 0 to 50 m (25 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Currently harvested coral reef taxa, Scombridae (dogtooth tuna), Sphyraenidae</td>
<td>Juvenile/adult</td>
<td>Only the water column from the shoreline to the outer boundary of the EEZ to a depth of 100 m (50 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Currently harvested coral reef taxa, Aquarium Species/Taxa</td>
<td>Juvenile/adult</td>
<td>Coral, rubble, and other hard-bottom features and the adjacent water column from 0 to 100 m (50 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other currently harvested coral reef taxa</td>
<td>Juvenile/adult</td>
<td>All bottom habitat and the adjacent water column from 0 to 100 m (50 fm)</td>
</tr>
<tr>
<td>FEP</td>
<td>Fishery</td>
<td>Stock or Stock Complex</td>
<td>Life Stage(s)</td>
<td>EFH Designation</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-----------------------------------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PRIA</td>
<td>Coral Reef Ecosystem</td>
<td>Potentially harvested coral reef taxa</td>
<td>All life stages</td>
<td>The water column and all bottom habitat from the shoreline to the outer boundary of the EEZ to a depth of 100 m (50 fm)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Crustaceans</td>
<td>Kona crab</td>
<td>Egg/larval</td>
<td>The water column from the shoreline to the outer limit of the EEZ down to a depth of 150 m (75 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Juvenile/adult</td>
<td>All of the bottom habitat from the shoreline to a depth of 100 m (50 fm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deepwater shrimp</td>
<td>Egg/larval</td>
<td>The water column and associated outer reef slopes between 550 and 700 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Juvenile/adult</td>
<td>The outer reef slopes at depths between 300-700 m</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Bottomfish</td>
<td>Shallow stock: <em>Aprion virescens</em></td>
<td>Egg</td>
<td>Pelagic zone of the water column in depths from the surface to 240 m, extending from the official US baseline to a line on which each point is 50 miles from the baseline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Post-hatch pelagic</td>
<td>Pelagic zone of the water column in depths from the surface to 240 m, extending from the official US baseline to the EEZ boundary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Post-settlement</td>
<td>Benthic or benthopelagic zones, including all bottom habitats, in depths from the surface to 240 m bounded by the official US baseline and 240 m isobath</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sub-adult/adult</td>
<td>Benthopelagic zone, including all bottom habitats, in depths from the surface to 240 m bounded by the official US baseline and 240 m isobath.</td>
</tr>
<tr>
<td>FEP</td>
<td>Fishery</td>
<td>Stock or Stock Complex</td>
<td>Life Stage(s)</td>
<td>EFH Designation</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>-------------------------------------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Bottomfish</td>
<td>Intermediate stocks: <em>Aphareus rutilans</em>, <em>Pristipomoides filamentosus</em>, <em>Hyporthodus quernus</em></td>
<td>Eggs</td>
<td>Pelagic zone of the water column in depths from the surface to 280 m (<em>A. rutilans</em> and <em>P. filamentosus</em>) or 320 m (<em>H. quernus</em>) extending from the official US baseline to a line on which each point is 50 miles from the baseline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Post-hatch pelagic</td>
<td>Pelagic zone of the water column in depths from the surface 280 m (<em>A. rutilans</em> and <em>P. filamentosus</em>) or 320 m (<em>H. quernus</em>), extending from the official US baseline to the EEZ boundary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Post-settlement</td>
<td>Benthic (<em>H. quernus</em> and <em>A. rutilans</em>) or benthopelagic (<em>A. rutilans</em> and <em>P. filamentosus</em>) zones, including all bottom habitats, in depths from the surface to 280 m (<em>A. rutilans</em> and <em>P. filamentosus</em>) or 320 m (<em>H. quernus</em>) bounded by the 40 m isobath and 100 m (<em>P. filamentosus</em>), 280 m (<em>A. rutilans</em>) or 320 m (<em>H. quernus</em>) isobaths</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sub-adult/adult</td>
<td>Benthic (<em>H. quernus</em>) or benthopelagic (<em>A. rutilans</em> and <em>P. filamentosus</em>) zones, including all bottom habitats, in depths from the surface to 280 m (<em>A. rutilans</em> and <em>P. filamentosus</em>) or 320 m (<em>H. quernus</em>) bounded by the 40 m isobath and 280 m (<em>A. rutilans</em> and <em>P. filamentosus</em>) or 320 m (<em>H. quernus</em>) isobaths</td>
</tr>
<tr>
<td>Deep</td>
<td>Bottomfish</td>
<td>Deep stocks: <em>Etelis carbunculus</em>, <em>Etelis coruscans</em>, <em>Pristipomoides seiboldii</em>, <em>Pristipomoides zonatus</em></td>
<td>Eggs</td>
<td>Pelagic zone of the water column in depths from the surface to 400 m, extending from the official US baseline to a line on which each point is 50 miles from the baseline</td>
</tr>
<tr>
<td>FEP</td>
<td>Fishery</td>
<td>Stock or Stock Complex</td>
<td>Life Stage(s)</td>
<td>EFH Designation</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------------------------------------------------------------</td>
<td>-------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Bottomfish</td>
<td>Deep stocks: <em>Etelis carbunculus</em>, <em>Etelis coruscans</em>, <em>Pristipomoides seiboldii</em>, <em>Pristipomoides zonatus</em></td>
<td>Post-hatch pelagic</td>
<td>Pelagic zone of the water column in depths from the surface to 400 m, extending from the official US baseline to the EEZ boundary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Post-settlement</td>
<td>Benthic zone, including all bottom habitats, in depths from 80 to 400 m bounded by the official US baseline and 400 m isobath</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sub-adult/adult</td>
<td>Benthic (<em>E. carbunculus</em> and <em>P. zonatus</em>) or benthopelagic (<em>E. coruscans</em>) zones, including all bottom habitats, in depths from 80 to 400 m bounded by the official US baseline and 400 m isobaths</td>
</tr>
<tr>
<td></td>
<td>Precious Coral</td>
<td>Deep-water</td>
<td>Eggs and post-hatch pelagic</td>
<td>Pelagic zone of the water column in depths from the surface to 600 m, bounded by the official US baseline and 600 m isobath, in waters within the EEZ that are west of 180°W and north of 28°N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Post-settlement</td>
<td>Benthic or benthopelagic zone in depths from 120 m to 600 m bounded by the 120 m and 600 m isobaths, in all waters and bottom habitat, within the EEZ that are west of 180°W and north of 28°N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sub-adult/adult</td>
<td>Benthopelagic zone in depths from 120 m to 600 m bounded by the 120 m and 600 m isobaths, in all waters and bottom habitat, within the EEZ that are west of 180°W and north of 28°N</td>
</tr>
</tbody>
</table>

**Seamount groundfish**

- **Post-settlement**: Benthic or benthopelagic zone in depths from 120 m to 600 m bounded by the 120 m and 600 m isobaths, in all waters and bottom habitat, within the EEZ that are west of 180°W and north of 28°N.

**Sub-adult/adult**: Benthopelagic zone in depths from 120 m to 600 m bounded by the 120 m and 600 m isobaths, in all waters and bottom habitat, within the EEZ that are west of 180°W and north of 28°N.

**Precious Coral**

- **Deep-water**: Benthic

Six known precious coral beds located off Keahole Point, Makapuu, Kaena Point, Wespac bed, Brooks Bank, and 180 Fathom Bank.
<table>
<thead>
<tr>
<th>FEP</th>
<th>Fishery</th>
<th>Stock or Stock Complex</th>
<th>Life Stage(s)</th>
<th>EFH Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii</td>
<td>Precious Coral</td>
<td>Shallow-water</td>
<td>Benthic</td>
<td>Three beds known for black corals in the MHI between Milolii and South Point on the Big Island, the Auau Channel, and the southern border of Kauai</td>
</tr>
</tbody>
</table>
Table 44. Habitat areas of particular concern for MUS of all Western Pacific FEPs.

<table>
<thead>
<tr>
<th>FEP</th>
<th>Fishery</th>
<th>Stock or Stock Complex</th>
<th>HAPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelagic</td>
<td>All pelagic fisheries</td>
<td>Temperate and tropical species</td>
<td>Water column from the surface down to a depth of 1,000 m (500 fm) above all seamounts and banks with summits shallower that 2,000 m (1,000 fm) within the EEZ</td>
</tr>
<tr>
<td>American Samoa, Mariana, Pacific Remote Island Areas (PRIA)</td>
<td>Bottomfish</td>
<td>Shallow- and deep-water</td>
<td>All slopes and escarpments between 40 m and 280 m (20 and 140 fm)</td>
</tr>
<tr>
<td>PRIA</td>
<td>Coral Reef Ecosystem</td>
<td>Currently and potentially harvested coral reef taxa</td>
<td>All coral reef habitat in the Pacific Remote Island Areas</td>
</tr>
<tr>
<td>Crustaceans</td>
<td>Kona crab</td>
<td>All banks in the NWHI with summits less than or equal to 30 m (15 fm) from the surface</td>
<td></td>
</tr>
<tr>
<td>Precious Coral</td>
<td>Deep-water</td>
<td>Makapuu, Wespac, and Brooks Bank bed</td>
<td></td>
</tr>
<tr>
<td>Shallow-water</td>
<td>Auau Channel bed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>Bottomfish</td>
<td>All bottomfish stocks</td>
<td>Discrete areas at Kaena Point, Kaneohe Bay, Makapuu Point, Penguin Bank, Pailolo Channel, North Kahoolawe, and Hilo (please see Amendment 4 to the Hawaii Archipelago FEP, Section 3.3.3 for GPS coordinates of the locations and Appendix 2 for maps)</td>
</tr>
<tr>
<td>Seamount groundfish</td>
<td>Congruent with EFH (See Table 43).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5 Management Setting

NMFS and the Council conduct several administrative processes relevant to managing territorial bigeye tuna catch and effort limits, including but not limited to monitoring the effectiveness of catch or effort limits; in-season catch monitoring; enforcement; and publication of catch limits, specified fishing agreements, and closures.

Annually, the Council reviews whether territorial catch, effort and allocation limits are consistent with the conservation needs of fish stocks, management objectives of the WCPFC and the Pelagics FEP, and the needs of fishing communities. The Council has performed this review annually since the implementation of Amendment 7 in 2014. Additionally, NMFS determines the status of internationally managed stocks through stock assessments produced by various scientific bodies. These bodies provide advice to the WCPFC in the WCPO and IATTC in the EPO. NMFS reviews the assessments and notifies the appropriate Council if overfishing is
occurring or if a stock is overfished. If the Council and NMFS consider that the stock is overfished due to international fishing pressure, NMFS and the Councils work with the State Department to put management measures into place internationally. If U.S. fisheries are responsible for the stock status, Councils and NMFS develop management measures to end overfishing. This work would not change under the alternatives.

NMFS PIFSC forecasts when applicable catch or allocation limits may be reached by collecting and correcting catch data, and attributing catch to either the U.S. bigeye tuna catch limit in the WCPO or EPO, territory attributed catch, or American Samoa catch by dual permitted vessels. PIFSC estimates the in-season monitoring to cost about half of a full-time employee salary per year and $75,000 in administrative costs (WPFMC 2014). PIFSC has performed in-season catch monitoring throughout the year since 2011.

Regarding enforcement, the NOAA Office of Law Enforcement (OLE) and U.S. Coast Guard (USCG) monitor vessel compliance with applicable regulations and laws, including territorial catch/effort or allocation limits, through vessel monitoring systems and vessel boarding at sea.

Publication of catch, effort and allocation limits occurs after the Council makes a recommendation regarding the limits. NMFS implements the recommendations through notice-and-comment rulemaking, which involves a review for consistency with the Pelagics FEP, Magnuson-Stevens Act, WCPFC decisions, and other applicable laws. NMFS has implemented Council-recommended territorial catch and allocation limits for bigeye tuna under the Pelagics FEP every year since 2014.

Publication of specified fishing agreements occurs after receipt of the agreement from vessels party to the agreement and territorial governments. The Council and NMFS review each agreement for consistency with the Pelagics FEP and implementing regulations, the Magnuson-Stevens Act, and other applicable laws. Then, NMFS authorizes the agreements through notice in the Federal Register. NMFS and the Council have reviewed and NMFS has authorized one or two specified fishing agreements under the Pelagics FEP every year since 2014. The territorial catch, effort and allocation limit measure’s implementing regulations at 50 CFR 665.819 require that specified fishing agreements direct funds to the WP SFF to support fisheries development projects identified in a U.S. participating territory’s MCP, or that vessels operating under such agreements must land in the territory to which the agreement applies. Pursuant to Section 204(e) of the Magnuson-Stevens Act, the Council, in close coordination with a particular U.S. participating territory, would use the WP SFF to implement fishery development projects identified in that territory’s MCP. The administration of this funding is not considered part of the proposed action, and is analyzed as project details become available. The requirements for fishing agreements, and the approval and notice process would not change under the alternatives.

NMFS publishes notice of closures of the WCPO in the Federal Register seven days before we expect the fishery to reach the U.S. limit in the WCPO, territorial catch limits, or an allocation limit authorized through a specified fishing agreement. NMFS also sends letters to notify permit holders of impending closures. NMFS has closed the WCPO bigeye tuna fishery in 2015, 2016, and 2017 for 65, 48, and 39 days, respectively, (Ayers et al. 2018), through one Federal Register notice per year.
3.6 **Resources Eliminated from Detailed Study**

There are presently no known districts, sites, highways, cultural resources, structures or objects listed in or eligible for listing in the National Register of Historic Places in the EEZ around American Samoa, Guam, CNMI, and Hawaii, or in adjacent areas of the high seas in international waters where pelagic longline fishing activities are conducted. Additionally, longline fishing activities are not known to result in adverse effects to scientific, historic, archeological or cultural resources because fishing activities occur generally miles offshore. Therefore, the proposed action is not likely to affect historic resources.

The pelagic longline fleets under the proposed action do not operate within estuarine waters or have the potential to affect wetlands. Because pelagic longline fishing activities authorized occur offshore and in deep oceanic waters away from land, populated areas, and marine protected areas such as marine national monuments, the alternatives considered would not have an effect on air/water quality, coral reefs beyond those considered in Section 3.3.5, or benthic marine habitats.

Longline fishing is not known to be a potential vector for spreading alien species as most vessels fish far away from coastal areas offshore. The proposed action would not increase the potential for the spread of alien species into or within nearshore waters in Hawaii or any of the U.S. participating territories.

NMFS is not aware of studies that show effects from pelagic longline fisheries to species fecundity or negative predator/prey relationships that result in adverse changes to food web dynamics. Without management to ensure fishing is sustainable, the removal of top predator pelagic species such as bigeye tuna, yellowfin tuna, and billfish above natural mortality rates has the potential to cause major imbalances or wide-ranging change to ecosystem functions, biodiversity, and habitats. However, both international and domestic fishery managers are controlling catches throughout the Pacific. NMFS expects such control to improve stock status and prevent imbalances or wide-ranging changes to ecosystem function. Therefore, NMFS does not analyze effects on biodiversity and/or ecosystem function in this assessment.
4 ENVIRONMENTAL EFFECTS OF THE ALTERNATIVES

This section describes the potential effects of the alternatives on the components of the affected environment or other socio-economic elements identified in Section 3. The environmental resources that are potentially affected include the following: target and non-target species (including bycatch), protected resources, and marine habitat. This chapter also considers the effects to fishery participants, fishing communities, and the management setting. We discuss climate change impacts in the cumulative effects section.

Changes to fisheries in the U.S. participating territories may occur in the future if the proposed action is approved, and funding provided through specified fishing agreements under this action becomes available to support NMFS-approved fisheries development projects identified in a U.S. participating territory's MCP. However, it would be speculative at this time to attempt to evaluate environmental effects of potential projects without specific information on the type or scope of the funded projects. For this reason, potential effects of future fishery development projects are not analyzed in detail in this EA. Such projects are subject to separate environmental review when project details are known. Table 45 summarizes the potential environmental effects of the alternatives.
Table 45. Summary of potential effects of the alternatives on the human environment.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Alternative 1: No catch/effort or allocation limits for U.S. participating territories</th>
<th>Alternative 2: 2,000 t bigeye tuna catch limit and 1,000 t bigeye tuna allocation limit for each U.S. participating territory</th>
<th>Alternative 3: 2,000 t bigeye tuna catch and allocation limit for each U.S. participating territory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum projected WCPO bigeye tuna stock status in 2045(^1)</td>
<td>$F_{2045}/F_{MSY}$: 0.82 $SB_{2045}/SB_{F=0}$: 0.38</td>
<td>$F_{2045}/F_{MSY}$: 0.86 $SB_{2045}/SB_{F=0}$: 0.37</td>
<td>$F_{2045}/F_{MSY}$: 0.87 $SB_{2045}/SB_{F=0}$: 0.36</td>
</tr>
<tr>
<td>Catch of non-target stocks</td>
<td>Similar to recent years or reduced in Hawaii deep-set longline (HI DSLL) fishery</td>
<td>Similar to recent years in all fisheries</td>
<td>Similar to recent years or increase associated with maximum authorized catch of bigeye tuna in HI DSLL fishery</td>
</tr>
<tr>
<td></td>
<td>Similar to recent years in other longline fisheries</td>
<td></td>
<td>Similar to recent years in all other fisheries</td>
</tr>
<tr>
<td>Fishery participants – effort</td>
<td>Similar to recent years with WCPO closures or reduced in HI DSLL fishery</td>
<td>Similar to recent increasing trend in HI DSLL fishery</td>
<td>Similar to recent increasing trend in HI DSLL fishery or increase associated with maximum authorized catch of bigeye tuna</td>
</tr>
<tr>
<td></td>
<td>Similar to recent years in other longline fisheries</td>
<td>Similar to recent years in other longline fisheries</td>
<td>Similar to recent years in other longline fisheries</td>
</tr>
<tr>
<td>Fishery participants – area fished</td>
<td>Effort shifts to EPO if fishery closes</td>
<td>Similar to recent years in HI DSLL fishery</td>
<td>Similar to recent years in HI DSLL fishery</td>
</tr>
<tr>
<td></td>
<td>Similar to recent years in other fisheries</td>
<td>Similar to recent years in other fisheries</td>
<td>Similar to recent years in other fisheries</td>
</tr>
<tr>
<td>Fishery participants – target species</td>
<td>HI longline vessels may switch to targeting swordfish if fishery closes if shallow-set fishery is open; Hawaii troll and handline vessels may switch to target bigeye</td>
<td>HI longline vessels will choose which species to target</td>
<td>HI longline vessels will choose which species to target</td>
</tr>
<tr>
<td></td>
<td>Similar to recent years in other fisheries</td>
<td>Similar to recent years in other fisheries</td>
<td>Similar to recent years in other fisheries</td>
</tr>
</tbody>
</table>
### Alternative 1: No catch/effort or allocation limits for U.S. participating territories

Hawaii troll and handline vessels may see increased revenue during closures while HI DSLL fishery may see reduced revenue and differential impacts on different segments of fleet. HI vessels incentivized to fish in rougher conditions during closures.

### Alternative 2: 2,000 t bigeye tuna catch limit and 1,000 t bigeye tuna allocation limit for each U.S. participating territory

Similar to recent years in HI and other longline fisheries, except under Outcome F, American Samoa longline fishery would forego revenue from bigeye tuna.

### Alternative 3: 2,000 t bigeye tuna catch and allocation limit for each U.S. participating territory

Similar to recent years in HI and other longline fisheries except under Outcome F, American Samoa longline fishery would forego revenue from bigeye tuna.

### Fishery participants – socio-economic

- Hawaii troll and handline vessels may see increased revenue during closures while HI DSLL fishery may see reduced revenue and differential impacts on different segments of fleet. HI vessels incentivized to fish in rougher conditions during closures.
- Similar to recent years in HI and other longline fisheries.

### American Samoa cultural fishing

No effect

### Territorial fishing communities

- No fisheries development funding
- Benefits similar to recent years associated with fisheries development funding and establishing catch history with WCPFC
- Potential increase in benefits to territorial fishing communities from higher allocation limits; territories without specified fishing agreements would not receive funding in years when additional agreements are not necessary to prevent closure.

### Protected species

- Interactions within ITS or levels analyzed in BEs
- Interactions within ITS or levels analyzed in BEs
- Interactions within ITS or levels analyzed in BEs

### Marine Habitat, Critical Habitat, EFH

- No effect
- No effect
- No effect

### Management Setting

- Least administrative tasks
- No change from recent years
- No change from recent years

---

1 Maximums correspond to the highest assumed WCPO bigeye tuna mortality in the group of outcomes in Kingma and Bigelow (2019).
4.1 Potential Effects on WCPO Bigeye Tuna

Council staff with assistance from NMFS PIFSC and SPC conducted an analysis to evaluate the potential effects of various catch limit specifications on future WCPO bigeye stock status (Appendix A, Kingma and Bigelow 2019), based on an SPC modeling framework used for WCPFC decision-making (SPC 2018b).

At the WCPFC’s 15th Regular Session held December 10–14, 2018, in Honolulu, the SPC presented an evaluation of the outcomes of CMM 2017-01 on bigeye tuna stock status in years 2041-2045 (SPC 2018b). This evaluation was based on the 2017 bigeye tuna stock assessment (McKechnie et al. 2017) as updated (Vincent et al. 2018). The SPC conducted a thirty-year projection from 2015, rather than a 20-year projection, because the stock would not reach equilibrium within 20 years under the purse seine effort, longline catch, and recruitment assumptions used (G. Piling SPC, pers. comm. January 2018). Due to the computational complexity of the weighted models within the structural uncertainty grid, SPC conducted only deterministic projections based on scalars derived from various levels of implementation of CMM 2017-01, or future harvest scenarios. While the SPC evaluation of 2017-01 estimates the LRP values for three future harvest scenarios under two bigeye tuna recruitment hypotheses (long term or recent averages), the WCPFC Science Committee has agreed that for the purpose of evaluating the CMM the recent recruitment hypothesis is more appropriate because of the possibility of some bias in the estimates of early recruitment in the bigeye stock assessment (SPC 2014).

Stock projections indicate the \( F_{2041-44}/F_{MSY} \) would be 0.89 under full implementation of CMM 2017-01, or the most pessimistic future harvest scenario (SPC 2018b). In other words, if CMM 2017-01 were fully implemented each year until 2045, bigeye tuna would not be subject to overfishing in 2045 under the Pelagics FEP and WCPFC SDCs. The most pessimistic scenario assumes a U.S. catch of 3,554 t and U.S. participating territory catch of 2,000 t each. SPC (2018b) did not calculate spawning biomass and total biomass in 2045 versus biomass at MSY, focusing instead on the spawning biomass ratio in the absence of fishing \( (SB_{2045}/SB_{F=0}) \), which is WCPFC’s adopted interim LRP for bigeye tuna. The most pessimistic scenario projects that the \( SB_{2045}/SB_{F=0} \) would be 0.36 under the recent recruitment hypothesis, which does not breach the WCPFC’s interim LRP for biomass of bigeye tuna. The SC14 summary report indicated that recent \( SB_{2012-2015}/SB_{MSY} \) had a mean of 1.39 (WCPFC 2018b), which is well above the established overfished reference point \( (SB/ SB_{MSY} = 0.6) \) for bigeye tuna under the Pelagics FEP.

The analysis presented in Kingma and Bigelow (2019) utilizes the same modeling framework as utilized by the SPC in the evaluation for the WCPFC15 (SPC 2018b), but assumes different future harvest scenarios under the recent recruitment hypothesis only. Under all alternative scenarios, the analysis assumes the 3-month purse seine FAD closure within EEZs and the high seas and an additional two sequential months on the high seas by member countries. For longline catches, the analysis assumes member countries that have bigeye longline catches less than 2,000 t and SIDS and PTs without limits specified in CMM 2018-01 catch their average 2013-2015 levels. Kingma and Bigelow (2019) assumes that countries with annual longline bigeye limits in excess of 2,000 t would each catch their full annual limit each year, even if actual catches have been less (e.g., Japan and Indonesia). Japan, for example, caught nearly 6,000 t less than its limit in 2017, and Indonesia reported catches of 12 t in 2017, whereas its limit under CMM 2018-01 is...
maintained at 5,889 t. Therefore, the Kingma and Bigelow (2019) analysis of alternatives is conservative, assuming greater effects to WCPO bigeye under CMM 2018-01 each year than have been realized in recent years. Because Kingma and Bigelow (2019) applies the same modeling approach used by SPC (2018b), they could not generate SB/SBMSY projections under the outcomes considered in this analysis.

For U.S. and U.S. participating territory longline fleets, the Kingma and Bigelow (2019) baseline scenario reflects the average 2013-2015 catch or 2015 for bigeye catch by Hawaii-permitted longline vessels inclusive of two specified fishing agreements in 2015, one with the CNMI and the other with Guam. The remaining scenarios include the same assumptions for non-U.S. longline and purse seine fleets, but apply scalars on the 2015 U.S. and U.S. participating territory longline bigeye catch components to account for increased catch by the Hawaii-based longline fleet.

The Option 1 scenario in Kingma and Bigelow (2019) represents no action and no transfers of U.S. participating territory allocation to Hawaii longline vessels. Thus, the projection includes lower U.S. and U.S. participating territory catch than the 2015 baseline level. This scenario is equivalent to Alternative 1 identified in this EA.

The four potential scenarios for Option 2 in Kingma and Bigelow (2019) include total annual catch limits of 2,000 t per U.S. participating territory and allocation limits of 1,000, 2,000, or 3,000 metric tons of bigeye to permitted U.S. longline vessels from 1, 2, or 3 territories (A-C, respectively). Option 2 also includes a scenario which assumes full annual utilization of territorial catch limits up to a maximum of 6,000 t (D). These scenarios are equivalent to the fishery outcomes of the same letter in this EA.

Effects from Alternative 3 that reflect the implementation of fewer than 3 agreements or allocation limits below the maximum of 2,000 t are within the range provided under Outcomes E or F, which we do not reiterate for brevity. Outcome E in this EA, or three specified fishing agreements of 2,000 t each, is equivalent to the Option 2 Potential Outcome D scenario in Kingma and Bigelow (2019). This EA uses similar scenarios from Kingma and Bigelow (2019) to characterize potential effects on bigeye tuna from Outcome F under Alternative 3, or three specified fishing agreements (two for the full 2,000 t allocation limit and one for 1,500 t allocated from American Samoa). Since this amount of bigeye tuna allocation (5,500 t) was not modeled, we characterize the potential impact to the WCPO bigeye tuna stock based on upper and lower, or bracketed, theoretical catches of bigeye tuna.

Table 46 provides the assumptions in total longline catch, scaled catch, and the projected LRPs for WCPO bigeye tuna in 2045 under each of the alternatives. The WCPO bigeye tuna stock would not be overfished or subject to overfishing in 2045 under any of the fishery outcomes associated with the alternatives (Kingma and Bigelow 2019). The Kingma and Bigelow (2019) analysis models repeated catch of the maximum authorized amount of bigeye tuna each year through 2045, and so accounts for the impacts of authorizing the territorial bigeye tuna catch and allocation limits on the WCPO bigeye tuna stock in every year through 2045.
<table>
<thead>
<tr>
<th>Alternative 1: No Action</th>
<th>Alternative 2: 2,000 t Catch Limit and 1,000 t Allocation Limit for each U.S. Territory</th>
<th>Alternative 3: 2,000 t Catch Limit and up to 2,000 t Allocation Limit for each U.S. Territory</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Outcome A</strong></td>
<td><strong>Outcome B</strong></td>
<td><strong>Outcome C</strong></td>
</tr>
<tr>
<td>Total assumed BET Catch</td>
<td>4,095 t</td>
<td>5,095 t</td>
</tr>
<tr>
<td><strong>Percent Change</strong></td>
<td><strong>Percent Change</strong></td>
<td><strong>Percent Change</strong></td>
</tr>
<tr>
<td>F&lt;sub&gt;2045&lt;/sub&gt;/F&lt;sub&gt;MSY&lt;/sub&gt;</td>
<td>0.82 0.00 0.83 1.2</td>
<td>0.84 2.4 0.85 3.6</td>
</tr>
<tr>
<td>SB&lt;sub&gt;2045&lt;/sub&gt;/SB&lt;sub&gt;F=0&lt;/sub&gt;</td>
<td>0.38 0.00 0.37 -2.6</td>
<td>0.37 -2.6</td>
</tr>
</tbody>
</table>

Note: Under the Pelagic FEP, a stock is experiencing overfishing when F/F<sub>MSY</sub> &gt; 1.0. Because Kingma and Bigelow (2019) could not generate an MSY-based biomass reference point, we use the WCPFC’s adopted limit reference point to evaluate impacts to the bigeye tuna stock. WCPFC considers bigeye tuna overfished when SB/SB<sub>F=0</sub> &lt; 0.2.

* includes average catch (97 t) of bigeye from American Samoa longline permitted vessels based in the SPO

** this value includes 6,000 t of territory allocations, US limit of 3,554 t, and American Samoa (NPO and SPO) longline bigeye catch average of 541 t.

Source: Kingma and Bigelow (2019).
4.1.1 Alternative 1: No specification of territorial catch or allocation limits (No Action)

In this alternative, NMFS would not specify a bigeye tuna catch or allocation limit for any U.S. participating territory. Without specified fishing agreements, NMFS assumes the combined catch of bigeye tuna by the longline fisheries of the U.S. participating territories of American Samoa (541 t), Guam (0 t) and the CNMI (0 t) and the U.S. longline fisheries (3,554 t) in the WCPO would be 4,095 t (541 + 0 + 0 + 3,554 = 4,095 t).

Applying the Kingma and Bigelow (2019) analysis to Alternative 1, the WCPO bigeye tuna F_{2045}/F_{MSY} would be 0.82. This supports a conclusion that, under Alternative 1, in combination with the implementation assumptions of CMM 2018-01, WCPO bigeye tuna would not be subject to overfishing in 2045.

With respect to spawning biomass, the analysis indicates that SB_{2045}/SB_{F=0} is 0.38, which is above the WCPFC LRP (SB_{2045}/SB_{F=0} = 0.20) and Pelagics FEP’s MSST (B/B_{MSY} 0.6). These values are above the MSST of 0.6 and above the level necessary to produce MSY on a continuing basis. Under this alternative, bigeye stock status would not be in an overfished condition when projected to 2045. Therefore, potential effects on WCPO bigeye tuna from this alternative are not substantial.

4.1.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo)

In this alternative, NMFS would specify a bigeye tuna catch limit of 2,000 t and an allocation limit of 1,000 t for each U.S. participating territory. This section provides the projected stock status of WCPO bigeye tuna from Outcomes A-D. Outcomes A-D do not result in a change in the stock status of WCPO bigeye tuna, and the potential effects on WCPO bigeye tuna from these outcomes are not substantial.

Outcome A: One specified fishing agreement

Based on the information described in Section 2.2.1, under one specified fishing agreement, NMFS expects the combined catch of bigeye tuna by the longline fisheries of the U.S. territories (American Samoa, Guam and the CNMI) and the longline fisheries of Hawaii, including catch under one specified fishing agreement to be 5,095 t per year (541 + 0 + 0 + 3,554 + 1,000 = 5,095 t), in every year through the end of the analysis.

Under Outcome A, Kingma and Bigelow (2019) indicates that the projected F_{2045}/F_{MSY} = 0.83, and SB_{2045}/SB_{F=0} = 0.37 (see Appendix A). These values indicate bigeye tuna would not be subject to overfishing and not overfished in 2045 under an assumed annual catch of 5,095 t.

Compared to Alternative 1, Outcome A would result in a slight increase in the fishing mortality rate (F_{2045}/F_{MSY} = 0.83 vs 0.82 under Alternative 1) and a slight decrease in spawning biomass (SB_{2045}/SB_{F=0} = 0.38 vs 0.37 under Alternative 1). However, these changes are minor, such that

\[15\] Under the Pelagics FEP, WCPO bigeye tuna is overfished when SB/SB_{MSY} = 0.6. This is equivalent to SB/SB_{F=0} = 0.14.
the effects do not represent a change in the status of bigeye tuna stocks compared to Alternative 1.

Outcome B: Two specified fishing agreements
Based on the information described in Section 2.2, two specified fishing agreements would allow allocation of up to 2,000 t of bigeye tuna from two U.S. participating territories. Therefore, under Outcome B, the combined catch of bigeye tuna would be 6,095 t, which includes the longline fisheries of the U.S. territories of American Samoa (541 t), Guam (0 t), and the CNMI (0 t), plus the U.S. longline fisheries based in Hawaii (3,554 t) and the allocation of 2,000 t (541 t + 0 + 0 + 3,554 + 2,000 = 6,095 t).

Applying the Kingma and Bigelow (2019) analysis to Outcome B, the projected $F_{2045}/F_{MSY} = 0.84$, and $SB_{2045}/SB_{F=0} = 0.37$. These values are similar to projected values under one specified fishing agreement (described above). Compared to Alternative 1, Outcome B would result in a slight increase in the fishing mortality rate ($F_{2045}/F_{MSY} = 0.84$ vs. 0.82 under Alternative 1) and a slight decrease in spawning biomass ($SB_{2045}/SB_{F=0} = 0.37$ vs. 0.38 under Alternative 1). These changes are minor, such that the effects do not represent a change in the status of bigeye tuna stocks compared to Alternative 1. The projections associated with Outcome B indicate bigeye tuna would not be subject to overfishing and not overfished in 2045.

Outcome C: Three specified fishing agreements and Partial Utilization of Terr. Limits
Three specified fishing agreements would allocate up to 3,000 t of bigeye tuna from three U.S. participating territories. Therefore, under Outcome C, the combined catch of bigeye tuna would be 7,095 t. This figure represents the longline fisheries of the U.S. territories, American Samoa (541 t), Guam (0 t) and the CNMI (0 t), plus the U.S. longline fisheries in Hawaii (3,554 t), and the allocation (3,000 t) (541 + 0 + 0 + 3,554 + 3,000 = 7,095 t).

Applying the Kingma and Bigelow (2019) analysis to Outcome C, the projected $F_{2045}/F_{MSY} = 0.85$ and spawning biomass would be $SB_{2045}/SB_{F=0} = 0.37$. Compared to Alternative 1, Outcome C would result in a slight increase in the fishing mortality rate ($F_{2045}/F_{MSY} = 0.85$ vs. 0.82 under Alternative 1) and a slight decrease in spawning biomass ($SB_{2045}/SB_{F=0} = 0.37$ vs. 0.38 under Alternative 1). These values are less favorable for bigeye tuna compared to the recruitment projections under Outcomes A and B. However, these changes are minor, such that the effects do not represent a change in the status of bigeye tuna stocks compared to Alternative 1. The projections associated with Outcome C indicate bigeye tuna would not be subject to overfishing and not overfished in 2045.

Outcome D: Three specified fishing agreements and Full Utilization of Territorial Limits
Under this outcome, NMFS assumes three specified fishing agreements would allocate 3,000 t of bigeye and each territory would fully utilize the remaining 1,000 t of their 2,000 t limit. In Outcome D, the expected bigeye catch would be 9,554 t, which represents an assumed catch of the U.S. participating territories’ non-allocated limits, American Samoa (1,000 t), Guam (1,000 t), and the CNMI (1,000 t), added to the catch by U.S. longline fisheries from Hawaii (3,554 t), plus 3,000 t allocated under three specified fishing agreements (1,000 + 1,000 + 1,000 + 3,554 + 3,000 = 9,554 t).
Applying the Kingma and Bigelow (2019) analysis to Outcome D, the projected $F_{2045}/F_{MSY} = 0.86$ and the projected $SB_{2045}/SB_{F=0} = 0.37$. The projections associated with Outcome D indicate bigeye tuna would not be subject to overfishing and not overfished in 2045.

These values are similar to projections under Outcomes A, B and C; however, this outcome is unlikely to occur. This is because it requires longline fisheries in each of the U.S. territories to each catch 1,000 t of bigeye tuna (i.e., 3,000 t combined) every year in addition to 1,000 t allocations for each territory. As previously discussed, NMFS does not expect longline vessels in CNMI or Guam to catch bigeye tuna in the near future because there are currently no active longline vessels based in those islands and fisheries development is currently incremental. Additionally, it is unlikely that American Samoa permitted vessels would increase their catch to 1,000 t as participation in the American Samoa-based fishery has declined in recent years.

Compared to Alternative 1, Outcome D would result in a small increase in the fishing mortality rate ($F_{2045}/F_{MSY} = 0.86$ vs. 0.82 under Alternative 1) and a decrease in spawning biomass ($SB_{2045}/SB_{F=0} = 0.37$ vs 0.38 under Alternative 1). Although these values are less favorable for bigeye tuna compared to the values under Alternative 1, the effects of Outcome D do not represent a change in the status of bigeye tuna stocks and the WCPO stock would remain not subject to overfishing and not overfished in 2045; the same as under Alternative 1.

4.1.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit

In this alternative, NMFS would specify a 2,000 t catch and 2,000 t allocation limit for each U.S. participating territory. This section provides the projected stock status of WCPO bigeye tuna under Outcomes E-F. Outcomes E-F do not result in a change in the stock status of WCPO bigeye tuna, and the potential effects on WCPO bigeye tuna from these outcomes are not substantial.

**Outcome E**
Under Outcome E, with three specified fishing agreements totaling 6,000 t in allocation, the combined catch of bigeye tuna would be 9,554 t. This figure represents the longline fisheries of the U.S. participating territories of American Samoa (0 t), Guam (0 t) and the CNMI (0 t), plus the U.S. longline fisheries in Hawaii (3,554 t), and the allocation of 6,000 t ($0 + 0 + 0 + 3,554 + 6,000 = 9,554$). This is the same as Outcome D, resulting in a small increase in the fishing mortality rate ($F_{2045}/F_{MSY} = 0.86$ vs. 0.82 under Alternative 1) and a decrease in spawning biomass ($SB_{2045}/SB_{F=0} = 0.37$ vs 0.38 under Alternative 1). Although these values are less favorable for bigeye tuna compared to the values under Alternative 1, the effects of Outcome D do not represent a change in the status of bigeye tuna stocks and the WCPO stock would remain not subject to overfishing and not overfished in 2045; the same as under Alternative 1.

**Outcome F**
Under Outcome F, with three specified fishing agreements totaling 5,500 t in allocation (2,000 t each allocation for Guam and CNMI, and 1,500 t allocation for American Samoa with 500 t reserved for catch limit), the combined catch of bigeye tuna would be 9,554 t. This figure represents the longline fisheries of the U.S. territories, American Samoa (500 t), Guam (0 t) and the CNMI (0 t), plus the U.S. longline fisheries in Hawaii (3,554 t), and the allocation (5,500 t)
(500 + 0 + 0 + 3,554 + 5,500 = 9,554 t). Council and NMFS staff did not evaluate this scenario, as the model assumes a baseline catch of 541 t for American Samoa permitted vessels. However, two similar scenarios that bracket Outcome F catch levels were included in the analysis. Specifically, the Kingma and Bigelow (2019) analysis included Option 3 Potential Outcome M, where all three territories each allocate their entire 2,000 t limit (e.g., 6,000 t of allocations) and American Samoa vessels also maintains catch of 541 t and the U.S. fleet catches 3,554 t. Therefore, the combined catch of bigeye tuna under this upper bracket scenario would be 10,095 t, which we use as an upper limit to evaluate the potential effect of Outcome F. This figure represents the longline fisheries of the U.S. participating territories, American Samoa (541 t), Guam (0 t) and the CNMI (0 t), plus the U.S. longline fisheries in Hawaii (3,554 t), and maximum allocations under three fishing agreements (6,000 t) (541 + 0 + 0 + 3,554 + 6,000 = 10,095 t).

Applying the Kingma and Bigelow (2019) analysis, in the upper bracket scenario the projected \(F_{2045}/F_{MSY} = 0.87\) and spawning biomass would be \(SB_{2045}/SB_{F=0} = 0.36\). The stock would not be subject to overfishing or overfished in 2045 as a result of Option 3 Potential Outcome M. Compared to the Alternative 1, this scenario would result in an increase in the fishing mortality rate \(F_{2045}/F_{MSY} = 0.87\) vs. 0.82 under Alternative 1) and a decrease in spawning biomass \(SB_{2045}/SB_{F=0} = 0.36\) vs 0.38 under Alternative 1).

The Kingma and Bigelow (2019) analysis also included a lower bracket scenario, where all three territories would each allocate 1,500 t (4,500 t allocations) and American Samoa vessels also maintains catch of 541 t and the U.S. fleet catches 3,554 t, or Option 3 Potential Outcome J. Therefore, the combined catch of bigeye tuna under this lower bracket scenario would be 8,595 t. This figure represents the longline fisheries of the U.S. territories, American Samoa (541 t), Guam (0 t) and the CNMI (0 t), plus the U.S. longline fisheries in Hawaii (3,554 t), and the 1,500 t allocation under three specified fishing agreements (4,500 t) (541 + 0 + 0 + 3,554 + 4,500 = 8,595 t).

Applying the Council/PIFSC analysis, under the lower bracket scenario, the projected \(F_{2045}/F_{MSY} = 0.86\) and spawning biomass would be \(SB_{2045}/SB_{F=0} = 0.37\). The stock would not be subject to overfishing or overfished in 2045 as a result of this scenario. Compared to Alternative 1, this scenario would result in a slight increase in the fishing mortality rate \(F_{2045}/F_{MSY} = 0.86\) vs. 0.82 under Alternative 1) and a slight decrease in spawning biomass \(SB_{2045}/SB_{F=0} = 0.37\) vs 0.38 under Alternative 1).

The fishing mortality rate and spawning biomass ratios under Outcome F would fall within the values identified in the two bracket scenarios described above, or 0.86 < \(F_{2045}/F_{MSY}\) < 0.87 and 0.36 < \(SB_{2045}/SB_{F=0}\) < 0.37. The potential effects to WCPO bigeye tuna under fewer than three specified fishing agreements or allocation limits less than 2,000 t are less than those expected from operating under the full allocation limit, and so are not presented herein, but may be found within Potential Outcomes E-L in Appendix A. Although the expected fishing mortality rate and spawning biomass ratio under Outcome F are less favorable for bigeye tuna compared to the values under Alternative 1, the effects of Outcome F do not represent a change in the status of bigeye tuna stocks and the WCPO stock would remain not subject to overfishing and not overfished in 2045; the same as under Alternative 1.
4.2 Potential Effects on EPO Bigeye Tuna

This section describes the potential effects of the alternatives on the EPO bigeye tuna stock. The Hawaii-based longline fishery is the only longline fishery which catches EPO bigeye tuna, and therefore, the only fishery discussed in this section. Because NMFS, the Council, and RFMOs adjust fishery management measures based on the best available information to prevent overfishing and NMFS does not expect the U.S. longline catch of EPO bigeye tuna would influence stock status, the potential effects on WCPO bigeye tuna from these outcomes are not substantial.

4.2.1 Alternative 1: No specification of territorial catch or allocation limits (No Action)

Under Alternative 1, it is likely that the U.S. longline fishery would reach the U.S. bigeye limit of 3,554 t each year by November or earlier. If this occurs, NMFS would restrict retention of bigeye tuna in the WCPO by Hawaii longline fishing vessels. However, in accordance with federal regulations at 50 CFR 300.224, the limit does not apply to bigeye tuna caught by longline gear in the EPO (generally east of 150° W). The regulations also provide vessels operating in the longline fisheries of the U.S. participating territories with an exception to the restriction. The exception includes vessels that land bigeye tuna in a U.S. participating territory, vessels included in a specified fishing agreement under 50 CFR 665.819(d), and dual permitted vessels landing fish in Hawaii, provided the fish were not caught in the EEZ around Hawaii. NMFS attributes catches of bigeye tuna by exempted vessels to the applicable U.S. participating territory to which the vessel is associated in accordance with 50 CFR 300.224.

During a restriction in the WCPO, we would expect some U.S. longline vessels based in Hawaii to shift effort into the EPO. However, vessels 24 m in length and greater that fish for bigeye tuna in the EPO would be subject to the U.S. EPO bigeye tuna limit of 750 t established by the IATTC. The IATTC has not restricted the catch of vessels shorter than 24 m in the EPO. When the fishery reaches the EPO limit, NMFS would restrict retention of bigeye tuna by vessels longer than 24 m. Within the last five years, the U.S. EPO limit adopted by the IATTC was 500 t. During that time, when the limit was reached, vessels longer than 24 m were restricted from retaining bigeye tuna in the EPO between 50 and 141 days of the year; for the EPO and WCPO both, these vessels were restricted between 32 and 61 days of the year (Ayers et al. 2018). Between 2013 and 2017, under various closure scenarios, catch of U.S. longline bigeye tuna ranged between 2,043 and 3,050 t or less than 3 percent of the overall fishing mortality on bigeye tuna in the EPO (Table 17).

In the year 2015, NMFS closed the WCPO for about a fifth of the year (65 days), which is comparable, in terms of shifting effort, to the fishery closing at the end of October for the remainder of the year under this outcome. Total U.S. longline catch in the EPO during 2015 was 3,050 t, or 2.91 percent of total bigeye tuna fishing mortality for that year in the EPO (Table 17). Given the U.S. longline fleet’s small contribution to overall fishing mortality, NMFS does not anticipate that the Hawaii-based longline fleet would influence stock status of bigeye tuna in the EPO. The Council and NMFS monitor overfishing of all pelagic MUS and adjust management measures to prevent overfishing; therefore, NMFS does not expect Alternative 1 to substantially affect the EPO bigeye tuna stock in 2019 - 2023.
4.2.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo)

Hawaii longline vessels operating under specified fishing agreements under Outcomes A-D would likely continue to operate in a manner consistent with historical fishing patterns and in locations within the EEZ around Hawaii and adjacent high seas.

Under Alternative 2, catch of EPO bigeye tuna is not expected to increase by any appreciable amount compared to recent levels when the fishery operated under a specified fishing agreement. This is because Hawaii longline vessels would likely remain in the WCPO and not fish in the EPO. Because the EPO is distant from the Port of Honolulu, which increases the cost of fishing, (Ayers et al. 2018), NMFS expects fishing effort in the EPO to be lower when the WCPO is available for targeting bigeye tuna as vessels seek to keep fuel and other operating costs low.

The most recent stock assessment of bigeye tuna in the EPO indicates that $F/F_{MSY} = 1.15$ and $SB_{2014-2016}/SB_{MSY} = 1.02$ (Xu et al. 2018). These results are uncertain (see Section 3.1.1), and NMFS has not accepted the assessment for purposes of stock status determinations. In 2017, total bigeye tuna landings in the EPO by the longline fisheries in Hawaii, American Samoa, Guam, and the CNMI was 2,690 t (WPFMC 2018a) or 2.8 percent of the estimated MSY of 95,491 t (Xu et al. 2018) and 2.8 percent of the total 2017 catch of 97,519 t (IATTC 2018). The impact of the purse-seine fishery on the bigeye stock is far greater than that of the longline fishery (Xu et al. 2018). Given the U.S. longline fleet’s small contribution to overall fishing mortality, NMFS does not anticipate that the Hawaii-based longline fleet would influence stock status of bigeye tuna in the EPO. The Council and NMFS monitor overfishing of all pelagic MUS and adjust management measures to prevent overfishing; therefore, NMFS does not expect Alternative 2 to substantially affect the EPO bigeye tuna stock in 2019-2023. Compared to Alternative 1, NMFS expects less EPO bigeye tuna mortality because vessels would fish preferentially in the WCPO when the WCPO remains open.

4.2.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit

Under Alternative 3, Hawaii longline vessels operating under specified fishing agreements would likely continue to operate in a manner consistent with historical fishing patterns and in locations within the EEZ around Hawaii and adjacent high seas throughout the calendar year. Vessels would preferentially fish in the WCPO, as described in Section 4.2.2. Therefore, under these scenarios, we would expect a similar level of catch to Alternative 2. Given the U.S. longline fleet’s small contribution to overall fishing mortality, NMFS does not anticipate that the Hawaii-based longline fleet would influence stock status of bigeye tuna in the EPO in 2019-2023. The Council and NMFS monitor overfishing of all pelagic MUS and adjust management measures to prevent overfishing; therefore, NMFS does not expect Alternative 3 to substantially affect the EPO bigeye tuna stock. Compared to Alternative 1, NMFS expects less EPO bigeye tuna mortality because vessels would fish preferentially in the WCPO as long as the WCPO remains open.
4.3 Potential Effects on Non-Target Stocks

This section describes the potential effect of each of the bigeye tuna outcomes on non-target stocks identified in Section 3.1. Because NMFS, the Council, and RFMOs adjust fishery management measures based on the best available information to prevent overfishing and NMFS does not expect the U.S. longline catch of non-target stocks would influence stock status of these species, the potential effects on non-target stocks of the alternatives are not substantial.

4.3.1 Alternative 1: No specification of territorial catch or allocation limits (No Action)

Under Alternative 1, NMFS would not authorize any specified fishing agreements and would close the WCPO if the fishery reaches the U.S. limit for the WCPO, likely before November.

Hawaii longline fisheries

As described in Section 3.2.1, the combined Hawaii longline fishery (deep-set and shallow-set) is the largest fishery in terms of volume and value in Hawaii. The primary target species of the Hawaii deep-set longline fishery is bigeye tuna, but the fishery also lands other secondary non-target and incidentally-caught species of commercial value, including yellowfin tuna, swordfish, striped marlin, blue marlin, mahimahi, wahoo, monchong (pomfret), opah, escolar, and mako shark. Additionally, as the larger of the two longline fisheries, effort for bigeye tuna in the deep-set fishery influences catches of non-target species for the longline fishery as a whole.

NMFS expects that if the fishery reaches the WCPO U.S. longline limit for bigeye tuna and NMFS subsequently restricts retention of the species, a number of Hawaii longline vessels would likely shift fishing effort for bigeye tuna to the EPO, while other vessels may stop fishing altogether or switch to targeting swordfish if the shallow-set fishery is open. NMFS expects the catch of non-target species to be less than or similar to catch in recent years when the fishery has not operated throughout the year, because effort for bigeye tuna drives the catch of non-target species. Under Alternative 1, a shift to the EPO may potentially result in increased catch of EPO stocks.

If the shallow-set fishery is open, Hawaii shallow-set longline catches of non-target stocks and swordfish could continue under Alternative 1, as vessels may switch to targeting swordfish in the event of a WCPO closure. Without territorial catch or allocation limits, the fishery may close by November or earlier and more vessels may switch to targeting swordfish. NMFS expects catches of non-target stocks similar to or less than those in recent years in the shallow-set longline fishery under Alternative 1, as the WCPO bigeye tuna fishery has closed in recent years for portions of the year. The shallow-set fishery closed in May 11, 2018 and on March 19, 2019 for the remainder of each year. The shallow-set longline fishery may close when it catches a NMFS authorized limit of loggerhead or leatherback sea turtles. During a shallow-set closure, NMFS would not expect territorial bigeye tuna allocation limits to affect the operation of the shallow-set longline fishery.

Because the Council and NMFS closely monitor catches based on landings data, we expect to detect changes in the catch of non-target stocks and develop additional management measures, as appropriate. Given the limited entry status of the Hawaii longline fisheries (both deep-set and shallow-set), there is a low likelihood of the fisheries expanding under Alternative 1, and thus
substantial increases in catches of target or non-target species are not anticipated under this alternative. Should NMFS determine that any other target and non-target stocks are overfished or subject to overfishing, and WCPFC management measures appear ineffective, the Council would consider recommending future management measures to the Secretary of Commerce to rebuild the stock or reduce fishing mortality in consideration of the relative impact of the U.S. fleet on the stock. For these reasons, the Hawaii longline fisheries would not have a substantial effect on non-target stocks under Alternative 1.

**American Samoa longline fishery**

As described in Section 3.2.2, the largest pelagic fishery in American Samoa is the commercial longline fishery targeting albacore tuna, which vessels sell to the local Pago Pago cannery. The amount of albacore landed by the American Samoa longline fishery in 2017 was 3,045,774 lb (1,381 t) (WPFMC 2018a). WCPFC estimated the 2017 WCPO catch of south Pacific albacore at 90,664 t (Brouwer et al. 2018), thus the American Samoa longline fishery represents approximately 1.5 percent of the total annual south Pacific albacore catch. The stock of south Pacific albacore is not overfished and overfishing is not occurring (Tremblay-Boyer et al. 2018), but catch rates have declined over the last decade (WPFMC 2018a), resulting in difficult economic operating conditions for the American Samoa-based longline fleet.

There are 60 permits authorized under the American Samoa longline limited entry permit program, split among 4 vessel size categories (Class A (≤ 40.1 ft in length); Class B (40.1-50 ft); Class C (50.1-70 ft); Class D (> 70 ft). Some vessels holding Class B, C, and D American Samoa permits are also registered to a Hawaii longline permit, which allows them to fish in the EEZ around Hawaii and adjacent high seas and land fish in Hawaii.

NMFS strives to achieve an annual observer coverage rate of 20 percent in the American Samoa longline fishery. Bycatch of non-target species in the fishery is comprised mostly of sharks and other pelagic species, which fishermen do not retain due to little or no market value and mostly return alive. Bycatch levels are shown in Section 3.2.2.6. The majority of sharks caught in the fishery are returned alive to the sea. NMFS expects catches similar to those in recent years under Alternative 1; therefore, there are no potential effects from the American Samoa longline fishery on non-target stocks as a result of Alternative 1.

**CNMI and Guam longline fisheries**

As noted in Section 3.2.3, there has been no longline fishing in the EEZ around the CNMI or Guam since 2011, and NMFS does not expect longline fishing activities to occur in the near future under Alternative 1. High operating costs associated with vessel docking along with poor market access may be contributing factors to the lack of longline fishing in the Marianas (WPFMC 2014).

Without an active fishery in Guam or the CNMI, Alternative 1 is not expected to result in changes in the conduct of longline fisheries in Guam or the CNMI, including catch of target or non-target species, area fished, seasonality, or intensity of fishing. Therefore, there are no effects on non-target stocks as a result of the Guam and CNMI longline fisheries under Alternative 1.
4.3.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo)

Under Alternative 2, NMFS could authorize up to three specified fishery agreements allocating 1,000 t each to the Hawaii-based longline fleet.

Hawaii longline fisheries
Fishing effort for bigeye tuna drives catches of non-target species in the Hawaii deep-set longline fishery. Additionally, as the larger of the two longline fisheries, effort for bigeye tuna in the deep-set fishery influences catches of non-target species for the longline fishery as a whole. Based on recent levels of bigeye tuna catch by vessels to which the limit applies, it is likely that the fishery will reach the U.S. bigeye longline catch limit of 3,554 t by November or earlier. Hawaii longline vessels operating under specified fishing agreements would likely continue to operate in a manner consistent with historical fishing patterns and in locations within the EEZ around Hawaii and adjacent high seas throughout the calendar year.

Under Alternative 2, U.S. participating territories could enter into a specified fishing agreement with pelagic permitted vessels in Hawaii. Under a specified fishing agreement, pelagic permitted vessels would be able to fish to the allocation limit. Therefore, fishing effort under the Outcomes A-D could potentially be higher than under Alternative 1, and as such, the catch of non-target species could be higher than under Alternative 1. NMFS expects the catch to be similar to that of recent years, however, as Alternative 2 represents actions the Council recommended and NMFS implemented in 2014 through 2018. NMFS expects catch in the shallow-set sector, in years when the fishery is open throughout the year, would be similar to catch in years 2014-2017, as the shallow-set sector was authorized to operate during these years and vessels were authorized to fish for bigeye tuna pursuant to specified fishing agreements.

As described in Section 3.1, recent catch levels of non-target stocks by the U.S. longline fleet, including the Hawaii longline fisheries, represent a small percent (generally less than 1 percent) of each stock’s estimated MSY. For non-target stocks that NMFS has determined to be subject to overfishing or overfished, the potential for additional catch under the Alternative 2 scenarios could result in additional impacts compared to Alternative 1.

As noted in Section 3.1.7, the EPO stock of North Pacific swordfish is subject to overfishing because $F_{2012}/F_{MSY} = 1.11$, but is not overfished because $B_{2012}/B_{MSY} = 1.87$ (ISC 2014). Based on federal logbook records, the catch of swordfish by Hawaii longline vessels operating within the boundary of the EPO stock is less than 5 t annually (NMFS unpublished data). This level of catch is around 1 percent of the stock’s estimated MSY of 5,490 t.

Under Alternative 2, catch of EPO swordfish is not expected to increase by any appreciable amount compared to 2012 levels when the fishery operated under a specified fishing agreement. This is because Hawaii longline vessels would likely remain in the WCPO (generally west of 150° W. long.) and not fish in the core area of the EPO swordfish stock. Because the EPO is distant from the Port of Honolulu, which increases the cost of fishing (Ayers et al. 2018), NMFS expects fishing effort in the EPO to be lower when the WCPO is available for targeting bigeye tuna as vessels seek to keep fuel and other operating costs low.
As noted in Section 3.1.8, WCNPO striped marlin is also subject to overfishing because the fishing mortality $F/F_{MSY}$ is $> 1.0$ (1.25) and is overfished because the spawning biomass (938 t) is lower than the MSST of 1,628 t (ISC 2015b). In 2017, total striped marlin catch by all U.S. longline fisheries and tropical troll fisheries in the NPO was 336 t. This level of catch is below the WCPFC-agreed upon U.S. catch limit of 457 t as proscribed in CMM 2010-01.

Since 2014, the U.S. longline fisheries in Hawaii operated under the same catch and allocation limits assumed for Alternative 2. For this reason, under Outcomes A-D, NMFS expects catch of WCNPO striped marlin to be similar to the level reported since 2014 which does not exceed the WCPFC-agreed upon limit of 457 t. Additionally, the Council has recommended NMFS implement this limit under the authority of the Magnuson-Stevens Act, and prohibit the retention of striped marlin by U.S. longline fishing vessels when NMFS projects 95 percent of the limit (or 435 t) to be reached. NMFS and the Council are currently developing an amendment to the Pelagics FEP to implement the limit and associated AM.

The WCPFC has agreed to other CMMs that limit the effort of fisheries that target North Pacific albacore and Pacific bluefin tuna. However, the U.S. longline fishery operating in the WCPO and longline fisheries of the U.S. participating territories do not target North Pacific albacore or bluefin tuna. Therefore, under Outcomes A-D, NMFS expects catches of North Pacific albacore by U.S. longline fisheries operating in the North Pacific to be similar to the level reported in 2017, which was 90 t (WPFMC 2018a), and represents less than 1 percent of the stock’s estimated MSY. For Pacific bluefin tuna, NMFS expects catches to be similar to the level reported in 2017, which was only 1 t (WPFMC 2018a).

Under Alternative 2, NMFS expects the yellowfin catch of all U.S. longline vessels operating in the WCPFC statistical area to be around the five year average of 1,477 t per year (NMFS 2018b). Yellowfin tuna is not subject to overfishing or in an overfished condition in the WCPO, according to the most recent stock assessment (Tremblay-Boyer et al. 2017). SPC, in their evaluation of CMM 2017-01, projected that under the most pessimistic future harvest scenario, which assumes a 35% increase in longline yellowfin catch, WCPO yellowfin tuna had less than a 17 percent chance of breaching the WCPFC’s LRPs in 2041-2045 (SPC 2018b).

The most recent stock assessment of yellowfin tuna in the EPO indicates that the stock is subject to overfishing ($F/F_{MSY} = 1.01$) and is not overfished ($SB_{2015-2017}/SB_{MSY}=1.08$) (Minte-Vera et al. 2018). The 2017 U.S. longline total catch of yellowfin tuna in the EPO is 0.25 percent of the 2017 total catch of yellowfin in the EPO (IATTC 2018), and therefore negligible. Given the U.S. longline fleet’s small contribution to overall fishing mortality, NMFS does not anticipate that the Hawaii-based longline fleet would influence stock dynamics of yellowfin tuna in the EPO. NMFS does not expect Alternative 2 to substantially affect the EPO yellowfin tuna stock. Yellowfin catches in the EPO are dominated by purse seine vessels, with around 4% of the total EPO yellowfin catch attributed to longline gear (IATTC 2018).

Under Alternative 2, all U.S. vessels will continue to be prohibited from retaining onboard oceanic white tip sharks and silky sharks. Because most sharks are released alive in this fishery, NMFS does not expect substantial impacts to these species under Alternative 2.
Hawaii shallow-set longline catches of non-target stocks and swordfish would be similar to their

catch described in Section 3.2.1.4 as vessels may choose which fish to target and NMFS has

implemented the recommendation associated with Alternative 2 from 2014-2018. In years in

which NMFS has closed the shallow-set longline fishery, catch would be lower than in recent

years, as vessels would continue targeting bigeye tuna.

For the reasons described above, the Hawaii longline fisheries would not have substantial effects

on non-target stocks under Alternative 2. Catches of non-target stocks would be higher than

under Alternative 1, as the fishery would continue operating under specified fishing agreements

after it reaches the U.S. bigeye tuna limit in the WCPO.

**American Samoa, Guam, and CNMI longline fisheries**

Because the component of the American Samoa longline fishery that operates in the SPO

primarily targets south Pacific albacore tuna, NMFS does not expect the fishery’s effects on non-
target stocks to increase above recent years.

If fisheries development leads to some longline vessels being able to diversify their landings

(i.e., in addition to frozen albacore), then catches of yellowfin and bigeye tunas, and other

pelagic species may increase under the Alternative 2 scenarios in the future. The number of

vessels that would diversify their catches and the amount of fish and species composition of

catches by these vessels are not predictable at this time. However, given that the Pelagic FEP

caps participation in the American Samoa longline limited entry program at 60 permits,

overcapitalization of the fleet is not likely, and the catch of target and non-target stocks by the

fishery is not expected to substantially increase over recent levels at this time. For these reasons,

there would be no substantial effects to target or non-target stocks from this fishery under

Alternative 2.

NMFS expects incremental, not rapid, fisheries development in the U.S. participating territories

that NMFS would monitor through logbooks and observer requirements; therefore, NMFS and

the Council would develop appropriate management measures to respond to any fishery

management concerns for non-target stocks. The American Samoa longline fleet operates

entirely within the WCPO. However, under Outcome D, NMFS assumes that American Samoa,

Guam and the CNMI would catch their full limit of 1,000 t for bigeye tuna. Catch of non-target

species would increase to a level associated with the increased catch of bigeye tuna. Using the

figures associated with the Hawaii longline fisheries as a predictor of potential effect for these

inactive fisheries, NMFS expects that the proportion of increased fishing mortality would remain

low in comparison to MSY for all species. NMFS expects this potential impact would not affect

the stock dynamics of the non-target stocks, and therefore the Guam and CNMI longline

fisheries would not substantially affect non-target stocks under Outcome D, or maximum use of

the 2,000 t catch limit with 1,000 t allocated to the U.S. longline fisheries.

The Council and NMFS will continue to monitor domestic catches of all pelagic MUS, and

continue to consider information from stock status reports as changes to fishery management are

contemplated and implemented. Ongoing and future monitoring and research will allow fishery

managers and scientists to consider and respond to new information regarding non-target stocks,

particularly those with unknown status.
4.3.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit

Fishing effort for bigeye tuna drives catches of non-target species in the Hawaii deep-set longline fishery. Additionally, as the larger of the two longline fisheries, effort for bigeye tuna in the deep-set fishery influences catches of non-target species for the longline fishery as a whole. Based on recent levels of bigeye tuna catch by vessels to which the limit applies, it is likely that the fishery will reach the assumed U.S. bigeye longline catch limit of 3,554 t by November or earlier every year. Hawaii longline vessels operating under specified fishing agreements would likely continue to operate in a manner consistent with historical fishing patterns and in locations within the EEZ around Hawaii and adjacent high seas throughout the calendar year.

Under Alternative 3, U.S. participating territories could enter into a specified fishing agreement with pelagic permitted vessels in Hawaii. This EA evaluates the impact to non-target stocks based on the assumption that three specified fishing agreements would be executed. As described in Section 3.1, recent catch levels of non-target stocks by the U.S. longline fleet, including the Hawaii longline fishery, represent a small percent (generally less than 1 percent) of each stock’s estimated MSY. Under a specified fishing agreement, pelagic permitted vessels would be able to fish to the allocation limit. Therefore, fishing effort under this alternative could potentially be higher than under Alternative 1, and as such, the catch of non-target species could be higher than under Alternative 1.

Hawaii shallow-set longline catches of non-target stocks and swordfish would be similar to their catch described in Section 3.2.1.4 as vessels may choose which fish to target. The shallow-set longline fleet re-opened on January 1, 2019, but closed on March 19, 2019, due to reaching the interaction hard cap for loggerhead sea turtles. Catch would be similar to 2014-2017 for years when the shallow-set segment is authorized to fish, or less in years when the shallow-set longline fishery closes.

Even with an increase in catch in the deep-set sector of the Hawaii longline fishery, NMFS expects the proportion of increased fishing mortality would remain low in comparison to MSY or total catch for all species in 2019-2023. Bigeye tuna limits and the limited entry permit program would continue to constrain the fishery. NMFS expects this potential impact would not affect the stock status of the non-target stocks, and that allocation limits will ensure that U.S. and U.S. participating territory longline fisheries continue to be managed sustainably, consistent with WCPFC CMMs and the Magnuson-Stevens Act. The process includes review of the best scientific information available by the Council to determine whether limits should be approved for the fishing year.

Under Outcome E, NMFS assumes American Samoa would allocate all of its bigeye tuna catch limit in a specified fishing agreement; therefore, NMFS would prohibit retention of bigeye tuna by American Samoa permitted vessels. NMFS assumes that the American Samoa-permitted vessels would continue fishing in the SPO in this circumstance, but would not retain bigeye tuna, so the catch of this non-target stock would not be affected.

For these reasons, the effects of the U.S. and U.S. participating territory longline fleets would not result in substantial effects on non-target stocks under Alternative 3.
4.4 Potential Effects on Socio-economic Setting

This section describes the potential effects of the bigeye tuna outcomes on the socio-economic setting identified in Section 3.2.

4.4.1 Alternative 1: No specification of territorial catch or allocation limits (No Action)

**Hawaii Longline Fisheries**

Under Alternative 1, NMFS would not specify bigeye tuna catch limits for the U.S. participating territories, and therefore a territory could not allocate any bigeye tuna to FEP-permitted vessels under a specified fishing agreement. This alternative would have effects on fisheries in the territories, the Hawaii longline fishery, and Hawaii seafood consumers, the magnitude of which depends upon when the fisheries reach the U.S. bigeye limit. This alternative would not take advantage of a mechanism to infuse capital into fisheries development projects identified in the MCPs, which result from the implementation of specified fishing agreements. Therefore, the fishing communities in American Samoa, Guam, and the CNMI would not receive funding from specified fishing agreements in order to implement fisheries development projects under Alternative 1.

If the U.S. longline limit for bigeye tuna is reached, NMFS would prohibit by notice the retention and landing of bigeye tuna in the WCPO. Thereafter, U.S. longline vessels fishing in the WCPO either must tie up for the remainder of the season, switch to targeting swordfish if the shallow-set fishery is open, or fish for bigeye tuna in the EPO. There could be a negative economic effects on certain longline vessels based in Hawaii that would not be able to fish in the EPO. For example, some of the Hawaii longline fleet’s smaller vessels may not transit to the EPO to fish. During WCPO closures, average trip costs increase and Hawaii longliners spend an average of two extra days at sea not fishing. These additional costs are associated with fishing in the more distant EPO (Ayers et al. 2018). Closures also may result in differential effects on certain segments of the Hawaii longline fleet. Hawaii and American Samoa dual-permitted vessels report high earnings during closures, whereas other vessels may not be able to fish or must travel farther (Ayers et al. 2018).

In addition to potential economic impacts described above, potential safety-at-sea issues arise under Alternative 1. Federal regulations limit Hawaii longline vessels to 101 ft and many active vessels range from 60 to 75 ft long. Fishing in the EPO for bigeye tuna generally involves longer trips and greater distances from the home port. During one of the most active hurricane seasons in the EPO on record in 2015, higher market prices due to reduced availability during a closure of the WCPO may have incentivized smaller vessels to fish in the EPO rather than tie up (Ayers et al. 2018). Fishing during the winter months, when strong storms are common in the North Pacific, may pose safety-at-sea concerns. Therefore, safety-at-sea issues arise if vessels have to travel greater distances and their operational areas are limited spatially while fishing for bigeye tuna in the WCPO is prohibited.

A prohibition on retention under Alternative 1 may reduce the supply of bigeye tuna caught by Hawaii longline vessels. This occurred in 2009 and 2010 (74 FR 68190, December 23, 2009; and 75 FR 68725, November 9, 2010). Because the restrictions in 2009 and 2010 occurred toward the end of the year (December 27 and November 22, respectively), and during the holiday season
when fresh, high-quality tuna is in high demand in Hawaii, members of the Oahu fishing community were concerned about price spikes or the reduced availability of preferred holiday fare.

A PIFSC study of the 2010 restriction found minor to moderately negative consequences to the Hawaii deep-set longline fishery and seafood consumers, though neither the longline industry nor seafood consumers experienced strictly negative impacts (Richmond et al. 2015). Many smaller longline vessels were not able to fish because they could not reach the EPO. Also, sub-premium quality tuna (though still good quality fish) was sold at a lower than average price.

As a direct result of the bigeye tuna restriction on longline fishery in the WCPO that went into effect on November 22, 2010, Hawaii troll and handline fishermen increased their catch of bigeye tuna and benefited economically from the sales of those tuna. In December 2010, revenue from bigeye tuna caught by small boat vessels was $166,430, up 533 percent from $26,291 in December 2009 when the longline restriction on bigeye occurred on December 29, 2009 (Richmond et al. 2015; WPFMC 2012). Adjusted revenue for the MHI troll fishery over the year in 2010, however, was 16% below its long-term average (WPFMC 2012). Under Alternative 1, if a longline fishery closure for WCPO bigeye tuna occurs, small vessels may experience economic benefits by providing fresh bigeye tuna for local markets, with longer closures resulting in potential greater economic benefits. However, these small vessel fleets are not able to replace the Hawaii longline fleet in terms of volume and value, as typically bigeye tuna caught by longline receives a higher price at market than troll- or handline-caught bigeye tuna. Therefore, there is a potential for limited supply of bigeye tuna for the larger seafood markets and higher prices for consumers.

**Hawaii Fishing Community**

During a catch and retention restriction in the WCPO, NMFS expects that fish vendors would import an increased amount of foreign caught bigeye tuna to Honolulu to fill any market gaps. Fresh bigeye tuna imports into Hawaii showed a large increase in 2012, declined some and then remained stable through 2017 indicating that there is substantial market demand for bigeye tuna in Hawaii, and vendors will likely find alternative sources when U.S. vessels cannot provide tuna (NMFS 2018c).

A potential consequence of Alternative 1 is that when U.S. fisheries are closed, less monitored and less environmentally friendly foreign fisheries targeting bigeye tuna would fill market gaps left by U.S. fisheries that are constrained by federal regulations (See Chan and Pan (2016)). Chan and Pan (2016) and Rausser et al. (2009) describe this “market transfer” effect for closures in the shallow-set longline fishery. Factors other than the absence of U.S. caught fish in the market may cause foreign fleets to increase catch of target species (Scorse et al. 2017). Consumer preference for sustainably caught fish may encourage consumers to forego bigeye tuna in the event of a closure rather than purchase imported seafood.

**American Samoa Fishing Community**

Under Alternative 1, NMFS would not authorize specified fishing agreements. Therefore, the fishing communities in American Samoa would not receive funding from specified fishing agreements, and the territory would derive funding for fisheries development projects identified in the MCP from other sources.
Alternative 1 is not expected to have an impact on American Samoa cultural fishing practices, because the outcome does not change where American Samoa longliners are allowed to fish, or where other gear types can fish, or how the fishermen use or share their fish. Thus, we expect that Alternative 1 would not adversely affect existing cultural fishing practices.

**Guam and CNMI Fishing Community**
Under Alternative 1, NMFS would not authorize specified fishing agreements. Therefore, the fishing communities in Guam and the CNMI would not receive funding from specified fishing agreements, and the jurisdictions would derive funding for fisheries development projects identified in the MCPs from other sources.

**4.4.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo)**

Under Alternative 2, the U.S. participating territories would have an annual 2,000-t longline limit for bigeye tuna and a limit of 1,000 t for bigeye tuna that could be allocated each year to FEP-permitted vessels. Alternative 2 is likely to have positive benefits for participants in Hawaii longline fisheries, and the fishing communities of Hawaii and the U.S. participating territories for the reasons described in this section.

**Hawaii Longline Fisheries**
Under Alternative 2, the Hawaii longline fishery participants may receive benefits from the ability to enter into agreements with a U.S. participating territory. In general, benefits from arrangements for fishery participants include a reduction in the need to fish for seasonally variable bigeye tuna in the EPO (which saves fuel costs), the ability to supply locally caught fresh, high quality tuna, and a stable income. The local community benefits from the continued availability of sustainable, fresh, high quality tuna and lower consumer prices due to consistent product availability, especially during times of peak demand such as the holiday season.

If the fishery reaches the U.S. bigeye tuna limit, some Hawaii longline vessels would begin to fish under a specified fishing agreement and NMFS would attribute their catch to the U.S. territory party to the agreement. As specified fishing agreements involve funding contributions from fishery participants, vessels have a choice of whether to enter into fishing agreements. In addition, the EPO may be available for most U.S. longline vessels based in Hawaii all year, since the EPO bigeye tuna catch limit applies to U.S. vessels over 24 m long and many longline vessels based in Hawaii are shorter. However, as mentioned, the availability of bigeye tuna in the EPO is seasonal.

Since the Hawaii longline fleet fishes predominately in the WCPO, fishermen are able to optimize their fishing schedule by choosing when to fish in certain areas, based on transit times and costs. As a less desirable option, fishing in the EPO usually means longer transit times, which results in higher trip costs (Ayers et al. 2018), fewer numbers of sets, and potentially poorer quality fish at auction. Further, profits could be lower for fishermen who must fish in the EPO due to the aforementioned factors including the seasonal and inter-annual availability of bigeye tuna in the EPO.
American Samoa Longline Fishery
The American Samoa-based longline fishery has around 15 active vessels, but the Pelagic FEP caps the fishery at 60 permits under the limited entry program. The fishery currently targets albacore when fishing in the South Pacific, and vessels with dual Hawaii and American Samoa permits target bigeye tuna when fishing out of Hawaii. The American Samoa longline fishery would need to diversify and likely add vessel capacity to reach a 2,000 t limit in the near term. However, if American Samoa entered into a specified fishing agreement, which allocated 1,000 t of bigeye tuna to other vessels, catches by American Samoa longline vessels fishing in the SPO and NPO, combined with the 1,000 t of allocated bigeye tuna could approach a 2,000 t limit. In 2012, for example, longline bigeye catches attributed to American Samoa totaled 1,505 t, with 771 t of that amount caught by Hawaii longline vessels operating under a specified fishing agreement with the territory (NMFS unpublished data).

If the American Samoa longline fishery reached the 2,000 t catch limit, and if the fishery was prohibited from retaining or landing bigeye tuna, adverse effects to fishery participants could result. However, any U.S. participating territory government that makes agreements with FEP-permitted vessels controls the amount of catch allocated (i.e., not allocate all 1,000 t), and thus could reserve a greater portion of the 2,000 t limit to local vessels and reduce potential effects to local fishery participants. If American Samoa reached the catch limit, the adverse effects would include foregone revenue from bigeye tuna. NMFS expects that American Samoa longliners would continue to fish in the SPO and not retain bigeye tuna in order to comply with a potential restriction. Dual-permitted vessels fishing for bigeye tuna in the NPO would fish under a specified fishing agreement from Guam or CNMI.

Under Alternative 2, the fishing community in American Samoa would benefit indirectly through fishery improvement projects funded from specified fishing agreements, with the number of territories benefiting depending on the number of agreements. Benefits are expected to vary per fisheries development project in magnitude of impact, depending on the fishery improvement projects implemented. If the government of American Samoa were to reserve a greater portion of its limit for local vessels, it may forego access to fisheries development funds. Fishery improvement projects are likely to involve improvements to or construction of infrastructure and facilities, upgrades to existing vessels, and vessel capacity, and the development of fishermen training programs. Funding from past agreements have supported fisheries development projects in American Samoa including boat ramps, ice machines and designs for longline dock extension (Kingma 2016).

Also under Alternative 2, the U.S. participating territories may receive positive benefits from developing catch history within WCPFC managed fisheries. American Samoa has domestic longline capacity with a history of targeting albacore, but not other species. The authorization of specified fishing agreements require attribution of catch to the territory to which the agreement applies, and demonstrate the aspirations of the U.S. participating territories to participate in the larger, internationally managed WCPO fisheries. Catch history is important for maintaining fisheries access should the WCPFC agree to catch limits for PTs, as historical catch has been used in the development of longline catch limits for bigeye tuna.
American Samoa Fishing Community
Territorial catch and allocation limits are intended to support fisheries development in American Samoa, consistent with MSA’s National Standards. NMFS does not expect Alternative 2 to have an impact on American Samoa cultural fishing practices, because the limits would not change where American Samoa longliners are allowed to fish, or where other gear types can fish, or how the fishermen use or share their fish. While under this alternative, the Government of American Samoa might allocate some bigeye quota to territory fishing arrangements that otherwise would be available for use by cultural fishermen, the limit reserved to the territory (1,000 t) substantially exceeds the amount of bigeye annually harvested by American Samoa fishermen. Moreover, this action does not mandate that any territory allocate any portion of its allocation limit to fishing arrangements. Thus, we expect that this action would not adversely affect existing cultural fishing practices.

Guam and CNMI Fishing Communities
Longline fisheries in Guam and CNMI have yet to develop much fishing capacity to harvest that quantity of bigeye tuna on an annual basis, so the limit would not affect current vessels located in the Marianas.

Under Alternative 2, the fishing community in Guam and the CNMI would benefit indirectly through fishery improvement projects funded from specified fishing arrangements, with the number of territories benefiting depending on the number of agreements. Benefits are expected to vary per fisheries development project in magnitude of impact, depending on the fishery improvement projects implemented. Fishery improvement projects are likely to involve improvements to or construction of infrastructure and facilities, upgrades to existing vessels, and vessel capacity, and the development of fishermen training programs. Funding from past agreements have supported fisheries development projects in the U.S. participating territories including a 250 ft fishing platform on Guam, and community MCP projects and improvements to Garapan Fishing Base in CNMI (Kingma 2016).

Also under Alternative 2, the U.S. participating territories may receive positive benefits from developing catch history within WCPFC managed fisheries. As mentioned, the WCPO supports the world’s largest tuna fishery; however, Guam and CNMI do not currently have the domestic fishing capacity to participate in the WCPO tuna fishery. The authorization of specified fishing agreements require attribution of catch to the territory to which the agreement applies, and demonstrate the aspirations of the U.S. participating territories to participate in the larger, internationally managed WCPO fisheries. Catch history is important for maintaining fisheries access should the WCPFC agree to catch limits for PTs, as historical catch has been used in the development of longline catch limits for bigeye tuna.

4.4.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit

Alternative 3 is likely to have positive benefits for participants in Hawaii longline fisheries, and the fishing communities of Hawaii and the U.S. participating territories for the reasons described in this section.
**Hawaii Longline Fisheries**

As opposed to Alternative 1, the Hawaii longline fishery participants may benefit from the ability to enter into agreements with a U.S. participating territory. In general, benefits from arrangements for fishery participants include a reduced incentive to fish for seasonally variable bigeye tuna in the EPO (which saves money), the ability to supply locally caught fish, consistent fishing grounds, and a stable income. The local community benefits from the continued availability of fresh, high quality tuna and lower consumer prices due to more product being available.

Like Alternative 2, if the fishery meets the U.S. bigeye tuna limit, Hawaii longline vessels could enter into a specified fishing agreement under which NMFS attributes their catch to the U.S. participating territory party to the agreement. In addition, the EPO may be available for most U.S. longline vessels based in Hawaii all year, since the EPO bigeye tuna catch limit applies to U.S. vessels over 24 m long and many longline vessels based in Hawaii are shorter. Increases from status quo in bigeye allocation limits could reduce disruption in the fishery as the fishery may not need their full authorized allocation limits in three specified fishing agreements in order to fish throughout the year in the WCPO. Fishing in the EPO during November and December is a less desirable option, as fishermen report that bigeye catches increase near the MHI during these months, whereas fishing in the EPO usually means longer transit times, which results in higher trip costs (Ayers et al. 2018), fewer numbers of sets, and potentially poorer quality fish at auction. Profits could be lower for fishermen who must fish in the EPO due to the aforementioned factors including the seasonal and inter-annual availability of bigeye tuna in the EPO.

**American Samoa Longline Fishery**

Alternative 3 would involve specified fishing agreements between the U.S. participating territories and FEP-permitted vessels, which results in funding to support fisheries development projects identified in a U.S. participating territory’s MCP. Fishing communities in American Samoa would benefit indirectly through fishery improvement projects funded from specified fishing arrangements. Under higher allocation limits, fewer specified fishing agreements may be necessary in order to minimize disruption in the Hawaii-based longline fishery and the funding may increase for higher amounts of bigeye tuna. Depending on which territories enter into specified fishing agreements, there may be reduced or increased funding available to American Samoa under Alternative 3. Benefits are expected to vary per fisheries development project in magnitude of impact, depending on the fishery improvement projects implemented. Fishery improvement projects are likely to involve improvements to or construction of infrastructure and facilities, upgrades to existing vessels, and vessel capacity, and the development of fishermen training programs. Funding from past agreements have supported fisheries development projects in American Samoa including boat ramps, ice machines and designs for longline dock extension (Kingma 2016).

Also under Alternative 3, the U.S. participating territories may receive positive benefits from developing catch history within WCPFC managed fisheries. American Samoa has domestic longline capacity with a history of targeting albacore, but not other species. The authorization of specified fishing agreements require attribution of catch to the territory to which the agreement applies, and demonstrate the aspirations of the U.S. participating territories to participate in the larger, internationally managed WCPO fisheries. Catch history is important for maintaining
fisheries access should the WCPFC agree to catch limits for PTs, as historical catch has been used in the development of longline catch limits for bigeye tuna.

Alternative 3 Outcome E may lead to increased effects on the American Samoa longline fishery if the territory chooses to allocate its entire quota in a specified fishing agreement. These impacts could be alleviated through monitoring and forecasting of fleet catches and the process by which the Council reviews specified fishing agreements prior to authorization. The government of American Samoa could control the amount of catch allocated and thus reserve a greater portion of the 2,000 t limit for local vessels and cultural fishermen and reduce potential effects to local fishery participants. If American Samoa were to enter into a specified fishing agreement for all 2,000 t, NMFS would have to prohibit retention of bigeye tuna in the local albacore targeting fleet and retention by dual-permitted vessels. NMFS attributes the bigeye tuna caught by dual-permitted vessels outside the EEZ around Hawaii to American Samoa. NMFS expects that American Samoa permitted vessels fishing in the SPO would continue fishing, but would forego revenue associated with bigeye tuna landings in the event of a bigeye tuna restriction.

**American Samoa Fishing Community**
The measure for establishing catch and/or allocation limits is intended to support fisheries development in American Samoa, consistent with MSA’s National Standards. NMFS does not expect Alternative 3 to have an impact on American Samoa cultural fishing practices, because the limits do not change where American Samoa longliners are allowed to fish, or where other gear types can fish, or how the fishermen use or share their fish. While under Alternative 3 Outcome E we assume the Government of American Samoa allocates all of its bigeye quota to territory fishing arrangements that otherwise would be available for use by cultural fishermen, this is not a realistic scenario and the territory would retain the ability to protect some bigeye quota for the use of cultural fishermen. This action does not mandate that any territory allocate any portion of its allocation limit to fishing arrangements. Thus, we expect that this action will not adversely affect existing cultural fishing practices.

**Guam and CNMI Longline Fisheries and Fishing Communities**
Longline fisheries in Guam and CNMI have yet to develop much fishing capacity to harvest that quantity of bigeye tuna on an annual basis, so the limit would not affect vessels located in the Marianas.

Under Alternative 3, NMFS expects the fishing community in Guam and the CNMI would benefit indirectly through fishery improvement projects funded from specified fishing arrangements, with the number of territories benefiting depending on the number of agreements. Benefits are expected to vary per fisheries development project in magnitude of impact, depending on the fishery improvement projects implemented. Fishery improvement projects are likely to involve improvements to or construction of infrastructure and facilities, upgrades to existing vessels, and vessel capacity, and the development of fishermen training programs. Funding from past agreements have supported fisheries development projects in the U.S. participating territories including a 250 ft fishing platform on Guam, and community MCP projects and improvements to Garapan Fishing Base in CNMI (Kingma 2016).

Under higher allocation limits, fewer specified fishing agreements may be necessary in order to minimize disruption in the Hawaii-based longline fishery and the funding may increase for
higher amounts of bigeye tuna. Depending on which territories enter into specified fishing agreements, there may be reduced or increased funding available to Guam or the CNMI under Alternative 3.

Also under Alternative 3, the U.S. participating territories may receive positive benefits from developing catch history within WCPFC managed fisheries. As mentioned, the WCPO supports the world’s largest tuna fishery; however, Guam and CNMI do not currently have the domestic fishing capacity to participate in the WCPO tuna fishery. The authorization of specified fishing agreements require attribution of catch to the territory to which the agreement applies, and demonstrate the aspirations of the U.S. participating territories to participate in the larger, internationally managed WCPFC fisheries. Catch history is important for maintaining fisheries access should the WCPFC agree to catch limits for PTs, as historical catch has been used in the development of longline catch limits for bigeye tuna.

4.5 Potential Effects on Protected Species

This section describes the potential effects of the alternatives for establishing territorial bigeye tuna catch and allocation limits in fishing years 2019-2023 on protected species identified in Section 3.3. Under all outcomes associated with the alternatives, the current and maximum foreseeable levels of fishing effort by longline fisheries managed under the FEP would continue to be subject to the level of take authorized under the ESA and regulations under other applicable laws. For example, in accordance with MMPA false killer whale take reduction plan regulations, deep-set longline fishing was temporarily prohibited in an area of the EEZ south of Hawaii, the SEZ, between July and December 2018 due to the fishery’s observed serious injury interactions with four false killer whales (83 FR 33484, July 18, 2018). The deep-set longline fishery also reached this trigger in January of 2019 (84 FR 5356, February 21, 2019). Because an observed false killer whale mortality or serious injury in the EEZ around Hawaii met the established trigger in the subsequent calendar year following an SEZ closure, the SEZ will be closed until one or more of the four criteria described in the False Killer Whale Take Reduction Plan regulations at 50 CFR 229.37(e)(5) (please see the plan for more information). As noted in Section 3.3, NMFS is required to re-initiate consultation under ESA Section 7 if any ITS applicable to any longline fishery is exceeded or another criterion for reinitiation is triggered. To meet our management mandates, NMFS, the Council, and international fishery management organizations such as the WCPFC and IATTC would continue to develop protected species mitigation measures as resource issues are identified through reporting and monitoring.

4.5.1 Alternative 1: No specification of territorial catch or allocation limits (No Action)

Under Alternative 1, NMFS would not authorize any specified fishing agreements and would close the WCPO after the fishery reaches the U.S. limit for the WCPO, likely before November.

Hawaii Longline Fisheries

During a bigeye catch and retention restriction under Alternative 1, NMFS expects Hawaii longline fishing effort to shift to the EPO, where interactions with protected species may also occur. Due to the distance and cost involved in transiting to the EPO, and potential for fewer boats to venture to that zone due to safety at sea issues, NMFS expects less overall effort than if
the WCPO remained open to fishing for bigeye tuna. Some boats may switch to targeting swordfish if the shallow-set fishery is open in the event of a WCPO closure.

In the 2014 BiOp as supplemented (2017), NMFS assumed the deep-set fishery would continue to operate throughout the year, deploying approximately 46,117,532 hooks. From 2004-2012, the annual number of vessels that participated in the deep-set fishery has remained relatively stable, ranging from 124 to 129, with a slight increasing trend beginning in 2013. In 2017, 145 deep-set longline vessels made 1,539 trips with 19,674 sets and deployed 53.5 million hooks (WPFMC 2018a). Although the number of hooks deployed has risen slightly, interactions have remained within expected levels with the exception of east Pacific green sea turtle DPS.

The 2018 BEs supporting reinitiation of Section 7 consultation for the deep-set and shallow-set longline fisheries assume that the recent conditions in the fishery will continue, and the fishery will remain open throughout the year. There is not a clear relationship between effort and interactions, that is, for the species which NMFS estimates annual interaction levels in the Hawaii deep-set longline fishery. An approximate proportional relationship between the number of fishing trips or the number of hooks deployed and the level of annual interactions has not been found (McCracken 2019). Therefore, under less fishing effort associated with Alternative 1, it is difficult to predict whether more or fewer interactions with protected species would occur. However, because NMFS has conservatively estimated the annual interactions levels using a 95% credible interval, NMFS expects Alternative 1 to result in protected species interactions within the predicted levels described in Section 3.3 which do not represent substantial effects on any species; therefore, we do not expect substantial impact on protected species under this alternative.

NMFS expects protected species interactions similar to those in recent years in the shallow-set longline fishery under Alternative 1, as the WCPO bigeye tuna fishery has closed in recent years for portions of the year. Therefore, NMFS expects Alternative 1 to result in protected species interactions within the level described in Section 3.3 which do not represent substantial effects on any species.

The Hawaii deep-set and shallow-set longline fisheries may interact with the recently listed oceanic whitetip shark and giant manta ray. These species were not included in the 2014 BiOp, as supplemented (2017) on the operation of the deep-set longline fishery or the 2012 BiOp on the operation of the shallow-set longline fishery. NMFS reinitiated ESA Section 7 consultation for the Hawaii deep-set longline fishery on October 4, 2018 and for the Hawaii shallow-set longline fishery on April 20, 2018.

The stock assessment for the oceanic whitetip shark (Rice and Harley 2012a) estimated current biomass of oceanic whitetip sharks in the WCPO to be 7,295 t and current catch at 2,001 t annually. The FAO (2013) estimates 7,295 t of shark biomass would be equivalent to roughly 200,000 individuals. At an average 76.9 percent post-release survival rate, NMFS conservatively estimates that the anticipated level of interactions in the deep-set fishery in any given year of up to 3,185 oceanic whitetip sharks represents 735 mortalities or 0.367% (735/200,000*100) of the estimated number of individuals in the WCPO (NMFS 2018d). At an average 87.1 percent post-release survival rate, NMFS conservatively estimates that the anticipated level of interactions in the shallow-set fishery in any given year of equal to or less than 227 oceanic whitetip sharks
represents 29 mortalities or 0.0145% (29/200,000*100) of the estimated number of individuals in the WCPO (NMFS 2018e). The estimate of 3,185 annual interactions in the deep-set fishery and 227 in the shallow-set fishery represent the level of interactions within the 95% credible interval. Population estimates of oceanic whitetip sharks in the EPO are unavailable, and thus this potential population-level effect is a conservative estimate.

A preliminary analysis of annual standardized CPUE for oceanic whitetip shark for 1995-2014 conducted as part of the 2016 Status Review Report (Young et al. 2016) indicated that the population in the area of the Hawaii longline fishery operation might have stabilized in recent years. Observer data from 2015 and 2016 indicate that the nominal CPUE was approximately the same or slightly higher than 2014 (NMFS Observer data, unpublished), but these data are not standardized and should be interpreted with caution. Based on this information, the negligible proportion of the population that may be affected by the operation of the longline fleet, and the high proportion of sharks released alive, the effect of the Hawaii longline fisheries on the oceanic whitetip shark population is likely to be minimal.

NMFS estimates in the 2018 BE for the deep-set fishery that the anticipated level of interactions for giant manta rays in any given year of equal to or less than 84 would lead to 6 giant manta ray mortalities, based on a 92.7 percent post-release survival rate (NMFS 2018d). NMFS estimates that for the shallow-set fishery, the anticipated level of interactions for giant manta rays in any given year of equal to or less than 10 would lead to 3 giant manta ray mortalities (NMFS 2018e). There is no historical or current global abundance estimates or stock assessments for giant manta rays. Most estimates of subpopulations are based on anecdotal observations, and range from around 100-1,500 (Miller and Klimovich 2016). Little information is available on the abundance of giant manta rays in the high seas area in the central north Pacific where the Hawaii deep-set longline fishery operates. Nevertheless, the 2016 NMFS Status Review Report for the giant manta ray concluded that the incidental catch of this species in U.S. longline fisheries are likely to have minimal effects on the population (Miller and Klimovich 2016). Based on this expert opinion, and the high likelihood that giant manta rays will be released alive in these fisheries, NMFS does not expect that effects from the operation of the Hawaii longline fisheries on the giant manta ray population would be substantial.

Based on available information to date, and as discussed in sections 3.3.4.1 and 3.3.4.2, NMFS expects the effects to these species by this fishery to be minimal. NMFS also notes that the protective regulations under Section 4(d) of the ESA were not deemed necessary or appropriate for the conservation of these two species at this time.

**American Samoa Longline Fishery**

NMFS issued a BiOp on October 30, 2015 that specifically evaluated the potential effects of the American Samoa longline fishery on leatherback and olive ridley sea turtles, the Indo-West Pacific scalloped hammerhead DPS and the six ESA listed reef corals (NMFS 2015b). NMFS determined that the fishery is not likely to jeopardize the continued existence of ESA-listed species under NMFS jurisdiction. The American Samoa longline fishery has not exceeded the authorized ITS for leatherback, central west Pacific DPS of green, or the South Pacific DPS of loggerhead sea turtles, or Indo-western Pacific DPS of scalloped hammerhead shark issued in the 2015 BiOp.
On May 12, 2010, NMFS determined that the American Samoa longline fishery would have no effects on the blue, fin, or sei whale because no reports of these whales have been confirmed in the area. Furthermore, on July 27, 2010, NMFS determined that the American Samoa longline fishery was not likely to adversely affect the humpback and sperm whale (NMFS 2010b). Unlike the blue, fin and sei whale, sperm and humpback whales have been confirmed in the area. These determinations remain valid. The fishery has no observed interactions with the above mentioned whales, and there is no new information to suggest that the fishery would have any effects beyond those already analyzed (NMFS 2019b).

NMFS reinitiated consultation on the operation of the American Samoa longline fishery on April 3, 2019, due to reaching several reinitiation triggers. The fishery exceeded the ITS for the east Indian west Pacific, southwest Pacific, central South Pacific, and east Pacific green sea turtle DPS; hawksbill; and olive ridley sea turtles in 2018. Listing of the oceanic whitetip shark (83 FR 4153), giant manta ray (83 FR 2916), and chambered nautilus (83 FR 48976) as threatened species also triggered the requirement for reinitiated consultation.

Under Alternative 1, NMFS expects fishing effort to remain at recent levels for the American Samoa longline fishery. Anticipated levels of interactions with protected species would be similar to or below recent levels (see Section 3.3). The potential effects on protected species as analyzed in the 2019 BE and no jeopardy 2015 BiOp, summarized in Section 3.3, are not substantial for any listed species; therefore, we do not anticipate that the effects on protected species under Alternative 1 would be substantial.

The American Samoa longline fishery may interact with the newly listed oceanic whitetip shark and giant manta ray. These species were not included in the 2015 BiOp. NMFS reinitiated ESA Section 7 consultation for the American Samoa deep-set longline fishery on April 3, 2019.

The stock assessment for the oceanic whitetip shark (Rice and Harley 2012a) estimated current biomass of oceanic whitetip sharks in the WCPO to be 7,295 t and current catch at 2,001 t annually. The FAO (2013) estimates 7,295 t of shark biomass would be equivalent to roughly 200,000 individuals. At an average 66.6% post-release survival rate (NMFS unpublished data), NMFS conservatively estimates the anticipated level of interactions in any given year of up to 1,110 sharks represents 370 mortalities or 0.19% (370/200,000*100) of the estimated number of individuals in the WCPO. The estimate of 1,110 sharks is the level of interactions associated with the 95% credible interval. Based on the negligible proportion of the population affected by the operation of the longline fleet and the high proportion of sharks released alive, the impact of the American Samoa longline fishery on the oceanic whitetip shark population is likely to be minimal.

Based on an average post-release survival rate of 96.7%, NMFS expects up to one giant manta ray mortality annually (38 x 0.967 = 36.7, rounded to 37 alive leaves one mortality). There is no historical or current global abundance estimate or stock assessment for giant manta rays. Most estimates of subpopulations are based on anecdotal diver or fisherman observations, which are subject to bias, and range from around 100-1,500 (Miller and Klimovich 2016). Little information is available on the abundance of giant manta rays in U.S. EEZ around American Samoa where the American Samoa longline fishery operates. Nevertheless, the 2016 NMFS Status Review Report for the giant manta ray concluded that the incidental catch of this species
in U.S. longline fisheries are likely to have minimal effects on the population (Miller and Klimovich 2016). Based on this expert opinion, and the high likelihood that giant manta rays will be released alive in this fishery, NMFS does not expect that effects from the operation of the American Samoa longline fishery on the giant manta ray population would be substantial.

Based on available information to date, and as more fully discussed in section 3.3.4.3, NMFS expects the impacts to these species by this fishery to be minimal. NMFS also notes that the protective regulations under Section 4(d) of the ESA were not deemed necessary or appropriate for the conservation of these two species at this time.

NMFS does not expect large adverse impacts to the chambered nautilus. Longline vessels avoid deploying gear in areas where chambered nautilus may occur; the animals live in close association with the substrate on coral reefs, fore reefs and deep reef slopes, which fishermen avoid to reduce the potential for loss of gear. This minimizes the risk of hooking and entanglement. Vessel strikes from transiting are unlikely, as the longline fishery avoids shallow areas to protect the vessel’s hull. Pelagic longline vessels do not anchor and therefore there are no impacts from anchoring or impacts to habitat from anchoring. Finally, discharge of pollutants from vessels will likely be infrequent, small, and quickly diluted or dispersed during transit and fishing operations. Due to the spatial separation between the fishery and the habitat of chambered nautilus and the reasons described above, NMFS expects that impacts to chambered nautilus from the operation of the fishery are extremely unlikely to occur (NMFS 2019b).

Guam and CNMI Longline Fisheries
Because the CNMI and Guam longline fisheries are not currently active, NMFS does not expect any interactions with protected species. Therefore, there would be no potential effects to protected species under Alternative 1.

4.5.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo)

Hawaii Longline Fisheries
Hawaii longline vessels operating under specified fishing agreements under Alternative 2 would likely continue to operate in a manner consistent with historical fishing patterns and in locations within the EEZ around Hawaii and adjacent high seas. The 2012 shallow-set BiOp and 2014 deep-set BiOp as supplemented (2017) evaluated the effects of the fisheries operating under specified fishing agreements and based on this information, NMFS has determined that the fishery would not jeopardize the continued existence of any ESA-listed species. The BE on the deep-set longline fishery evaluated effects to the eastern Pacific green sea turtle DPS, oceanic whitetip shark, and giant manta ray and found impacts to these populations are insubstantial (NMFS 2018d). The BE supporting reinitiation for the shallow-set fishery came to a similar conclusion for Guadalupe fur seal, oceanic whitetip shark, giant manta ray, and loggerhead sea turtles (NMFS 2018e).

Under Alternative 2, NMFS expects impacts to protected species from Hawaii longline vessels operating under one, two or three fishing agreements are expected to be within baseline levels identified in Section 3.3, which are not expected to result in large adverse effects to any protected species.
American Samoa Longline Fishery
Because the American Samoa longline fishery primarily targets south Pacific albacore tuna, the fishery’s impact on protected species under Alternative 2 is expected to be similar to levels identified in Section 3.3. As a result of Alternative 2, funding may become available to support fisheries development projects identified in the American Samoa MCP, which may lead to a diversification of the American Samoa longline fishery from primarily an albacore fishery to a fishery that is able to harvest and market other pelagic MUS such as bigeye and yellowfin tunas. However, such potential diversification is not expected to result in higher amounts of fishing effort by American Samoa longline vessels, but rather support the targeting and retention of various pelagic MUS, including bigeye tuna. Therefore, fishing effort levels are expected to be similar to recent years and interactions currently authorized or analyzed by NMFS are not expected to be exceeded under Alternative 2. Potential effects to protected species from the American Samoa longline fishery would not be substantial under Alternative 2.

Guam and CNMI Longline Fisheries
For Guam and CNMI, which do not currently have active longline vessels, it is not possible to estimate foreseeable levels of interactions with protected species. Fisheries development in Guam and CNMI is not expected to be rapid, but rather an iterative process; therefore, it is expected that any fisheries development resulting in increased participation in the near term would not result in levels of interactions currently authorized.

4.5.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit

Hawaii Longline Fisheries
Hawaii longline vessels under Alternative 3 would likely continue to operate in a manner consistent with historical fishing patterns and in locations within the EEZ around Hawaii and adjacent high seas throughout the calendar year. The 2012 shallow-set BiOp and 2014 deep-set BiOp as supplemented (2017) evaluated the effects of the fisheries operating under specified fishing agreements and based on this information, NMFS has determined that the fishery would not jeopardize the continued existence of any ESA-listed species. The BE on the deep-set longline fishery evaluated effects to the eastern Pacific green sea turtle DPS, oceanic whitetip shark, and giant manta ray and found impacts to these populations are insubstantial (NMFS 2018d). The BE supporting reinitiation for the shallow-set fishery came to a similar conclusion for Guadalupe fur seal, oceanic whitetip shark, giant manta ray, and loggerhead sea turtles (NMFS 2018e).

The 2018 BE supporting reinitiation of Section 7 consultation for the deep-set longline fishery assumes that the conditions in the fishery that generate interactions with protected species will continue without change and the fishery will remain open throughout the year. NMFS assumes the fishery could potentially deploy up to 60,938,785 hooks annually over the next five years, taking into account the potential increase in fishing effort from current participants in the fishery, as well as new entrants into the fishery under latent permits. NMFS has determined that impacts to protected species would be insubstantial under assumed increased levels of effort (NMFS 2018g). Under Alternative 3, impacts to protected species from Hawaii longline vessels operating under one, two or three fishing agreements are expected to be within levels identified Section 3.3, which are not expected to result in large adverse effects to any protected species.
NMFS expects Hawaii shallow-set longline interactions with protected species would be similar to those described in Section 3.3 under Alternative 3, as vessels may choose which fish to target.

**American Samoa Longline Fishery**
Because the American Samoa longline fishery primarily targets south Pacific albacore tuna, the fishery’s impact on protected species is expected to be similar to levels identified in Section 3.3. As a result of Alternative 3, funding may become available to support fisheries development projects identified in the American Samoa MCP, which may lead to a diversification of the American Samoa longline fishery from primarily an albacore fishery to a fishery that is able to harvest and market other pelagic MUS such as bigeye and yellowfin tunas. However, such potential diversification is not expected to result in higher amounts of fishing effort by American Samoa longline vessels, but rather support the targeting and retention of various pelagic MUS, including bigeye tuna. In Alternative 3 Outcome E, American Samoa would not retain any of its bigeye tuna catch limit, but NMFS expects that the fishery would continue fishing and not retain bigeye tuna rather than discontinue fishing. Therefore, fishing effort levels are expected to be similar to recent years and interactions currently authorized or analyzed by NMFS are not expected to be exceeded under Alternative 3. Potential effects to protected species from the American Samoa longline fishery would not be substantial under Alternative 3.

**Guam and CNMI Longline Fisheries**
For Guam and CNMI, which currently do not have active longline vessels, it is not possible to estimate foreseeable levels of interactions with protected species. Fisheries development in Guam and CNMI is not expected to be rapid, but rather an iterative process; therefore, it is expected that any fisheries development resulting in increased participation in the near term would not result in levels of interactions currently authorized.

### 4.6 Potential Effects on Marine Habitats, Critical Habitat and Essential Fish Habitat

Under all outcomes associated with the alternatives, NMFS does not anticipate any adverse effects to marine habitat, particularly critical habitat, EFH, HAPC, marine protected areas (MPAs), marine sanctuaries, or marine monuments. None of the western Pacific pelagic fisheries are known to have large adverse effects on marine habitats, and none of the alternatives are likely to change the fishery in any way that would lead to substantial physical, chemical, or biological alterations to marine habitats. Fishing activity would not occur in any area designated as critical habitat. Longline fishing does not occur in MPAs, marine sanctuaries or marine monuments and neither action alternative would change longline fishing effects on marine protected areas, so marine protected areas would not be affected.

MHI IFKW prey species are a characteristic of the essential feature of critical habitat for this DPS. U.S. landings in the WCPO compared to each stock’s total estimated biomass are generally less than one percent for prey species with estimated biomass (NMFS 2018b), and international and domestic management measures strive to ensure the sustainability of these stocks. Additionally, the diversity in IFKW diet likely indicates the whales shift to available prey items to meet their energetic needs. The longline fisheries do not harvest MHI IFKW prey in the area designated as critical habitat. Based on this available information, NMFS does not expect the Hawaii longline fisheries to contribute to the long-term reduction in quantity, quality, or
availability of MHI IFKW prey species over the range of the fish stocks that these whales encounter (NMFS 2018d; 2018e).

Longline fishing involves suspending baited hooks in the upper surface layers of the water column, which does not materially affect benthic marine habitat under typical operations. Derelict longline gear may impact marine benthic habitats, especially substrate such as corals if carried by currents to shallow depths; however, the loss of longline gear during normal fishing operations is not believed to be at levels that result in substantial or adverse effects to EFH, HAPC, or the marine habitat (WPFMC 2014).

When fishing, all longliners occasionally lose hooks, mainline, floats, float line, and branch lines, which include hooks, lead weights, and usually wire leaders in the deep-set fishery. Fishermen do try to recover gear, and are normally successful. The floats used in the fishery are marked to be visible from distance, even at night. Lost hooks are unlikely to have a major impact to the physical marine environment. First, hooks do not continue to ghost fish indefinitely since baits decompose. Second, hooks are made of steel and decompose over time. Most J-shaped and circle hooks are composed of steel and, depending on quality, the hooks will corrode. Hooks lost on the deep seabed in water just above freezing will corrode more slowly, and stainless steel hooks will corrode at a slower rate than non-stainless steel hooks.

In addition, Hawaii longline fishermen have participated in the Honolulu Harbor Derelict Fishing Gear Port Reception Program since 2006. Fishermen voluntarily dispose of retrieved derelict nets and spent longline gear in a receptacle in Honolulu Harbor. After transport to Schnitzer Steel Corporation, the nets are cut up for incineration at Honolulu City and County’s H-Power plant. The H-Power facility then incinerates the derelict fishing gear to generate electricity. This model private/public partnership will continue under all alternatives.

### 4.7 Potential Effects on Management Setting

This section describes the potential effects of the alternatives on the management setting identified in Section 3.5.

#### 4.7.1 Alternative 1: No specification of territorial catch or allocation limits (No Action)

Under Alternative 1, NMFS would experience a reduced administrative burden compared to recent years. While the Council is considering WCPFC decisions and whether to recommend catch/effort and allocation limits for pelagic MUS during the year, if the Council does not recommend any limits PIFSC could halt in-season catch monitoring when the Hawaii longline fisheries reach the U.S. limit in the WCPO and EPO; NMFS would not review or implement catch/effort or allocation limits; the Council and NMFS would not review any specified fishing agreements; and NMFS would not authorize any specified fishing agreements. NMFS would still publish a closure of the WCPO if the fishery reaches the U.S. limit and notify permit holders, and OLE and the USCG would enforce the closure. NMFS would continue to monitor the stock status of pelagic MUS and notify the Council of overfishing and overfished determinations.
4.7.2 Alternative 2: Specify for each U.S. participating territory a 2,000 t bigeye catch limit and 1,000 t bigeye allocation limit (Preferred/Status Quo)

Under Alternative 2, the administrative costs would be similar to that described in Section 3.5, including in-season monitoring of the U.S. WCPO longline catch limits for bigeye tuna, and regulatory and management costs associated with announcing a catch prohibition and notifying fishermen. Additional costs above Alternative 1 would result from monitoring and attributing catches made by vessels identified in a specified fishing agreement to the U.S. participating territory to which the agreement applies throughout the year, and authorizing each specified fishing agreement.

4.7.3 Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 t of the catch limit

Under Alternative 3, the administrative costs would be similar to those described in Alternative 2. Under 1,500 t and 2,000 t allocation limits, however, the vessels may enter into 1 specified fishing agreement rather than 1 to 2 each year. Also, if American Samoa were to allocate its entire quota, NMFS would issue a prohibition on retention of bigeye tuna for American Samoa permitted longline vessels and only attribute catch from vessels authorized to fish under a specified fishing agreement between American Samoa and longline vessels permitted under the Pelagics FEP to American Samoa.

4.8 Potential Cumulative Effects

Cumulative effects refer to the combined effects on the human environment that result from the incremental impact of the proposed action when added to other past, present, and reasonably foreseeable future actions, regardless of what agency (Federal or non-federal) or person undertakes such other actions. Further, cumulative effects can result from individually minor but collectively significant actions taking place over a period. The cumulative impact analysis examines whether the direct and indirect effects of the alternatives considered on a given resource, interact with the direct and indirect effects of other actions on that same resource to determine the overall, or cumulative effects, on that resource. Section 3 describes the elements of the human environment that the alternative actions considered may affect, or the baseline for assessing the direct and indirect effects of the alternatives, as presented in Section 2.

The cumulative effects analysis is organized by the following resources: target and non-target species, protected species, and the socio-economic setting. Because pelagic longline fishing activities authorized occur far offshore and in deep oceanic waters away from land, populated areas, and marine protected areas such as marine national monuments, the alternatives considered would not have an effect on air/water quality, coral reefs, or benthic marine habitats. As such, we do not consider these resources in the cumulative effects analysis.
4.8.1 Cumulative Effects on Target and Non-Target Stocks

4.8.1.1 Past, Present, and Reasonably Foreseeable Management Actions

**NMFS Management Actions**

The Council has recommended NMFS implement or authorize several actions, which are presently in various stages of development and/or review before approval by NMFS. These include the following actions:

- Modifications to the territorial catch and/or effort and allocation limits measure to allow for multi-year limits and establishing allocation limits without catch limits;
- American Samoa longline limited access permit program modifications to support fishery participation by small vessels (< 50ft) in the fishery and reduce program complexity;
- Exemption to the American Samoa LVPA;
- Establishing a framework for domestic catch and effort limits and specifying a striped marlin limit;
- Establishing a framework for sea turtle interactions in the Hawaii shallow-set longline fishery;
- Revising FEP management objectives and converting the FEPs to living documents;
- Modification to the American Samoa longline swordfish trip limit;
- Annual catch limits for American Samoa, Guam, and CNMI bottomfish and MHI Kona crab for fishing year 2019; and

In general, the alternatives considered would not have interactive effects with the proposed actions listed as they vary in management scope and impact. The public is afforded the opportunity to review and comment on the actions. The modification to the territorial catch and/or effort and allocation limits measure, however, is the mechanism used in this action to establish territorial longline bigeye tuna catch limits. The potential environmental effects of establishing limits for bigeye tuna each year have been considered in the previous sections in this chapter, as NMFS intends to use this EA to support territorial bigeye tuna specifications through 2023, and so will not be repeated in this section. The potential cumulative environmental effects of establishing bigeye tuna allocation limits without catch limits or multi-year limits for the territories are considered throughout this chapter, where relevant, as we consider this amendment to be a reasonably foreseeable future management action that may have incremental effects on the resources considered in this chapter. Because the Council has not considered territorial catch or allocation limits for other species in the past, we only consider the effects of multiyear catch limits and allocation limits without catch limits for bigeye tuna.

**International Management Actions**

Regardless of which alternative is selected and which fishery outcome occurs, both the WCPFC and IATTC will continue to review fishery performance, stock status, and adopt management measures that are applicable to fisheries that catch bigeye tuna. To meet the conservation and management objectives of these RFMOs, international cooperation is required. The United States
will continue to participate in these organizations and implement conservation and management measures that apply to U.S. fisheries.

**External Factors**

NMFS identified four major exogenous factors, other than fishing pressure from non-U.S. pelagic fisheries considered in the baseline description of the affected environment, as having the potential to contribute to cumulative effects on pelagic target and non-target stocks:

- Fluctuations in the pelagic ocean environment focusing on regime shifts
- Ocean noise
- Marine debris
- Ocean productivity related to global climate change

**Fluctuations in the Pelagic Ocean Environment**

Catch rates of pelagic fish species fluctuate temporally and spatially in relation to environmental factors (e.g., temperature) that influence the horizontal and vertical distribution and movement patterns of fish. Cyclical fluctuations in the pelagic environment affect pelagic habitats and prey availability at high frequency (e.g., seasonal latitudinal extension of warm ocean waters) and low frequency (e.g., El Niño Southern Oscillation-related longitudinal extension of warm ocean waters). Low or high levels of recruitment of pelagic fish species are also strongly related to fluctuations in the ocean environment.

The effects of such fluctuations on the catch rates of pelagic MUS obscure the effects of the combined fishing effort from Pacific pelagic fisheries. During an El Niño, for example, the purse seine fishery for skipjack tuna shifts over 1,000 km from the western to central equatorial Pacific in response to physical and biological effects to the pelagic ecosystem (Lehodey et al. 1997). Future ocean shifts are likely to cause changes in the abundance and distribution of pelagic fish resources, which could contribute to cumulative effects. For this reason, scientists need accurate and timely fisheries information to produce stock assessments that enable fishery managers to regulate harvests based on observed stock conditions.

**Oceanic Noise Pollution**

In the last 50 years, sound producing activities such as commercial shipping, hydrocarbon exploration and research, military sonar and other defense related-actions have increased ambient sound in the ocean (Hildebrand 2005). Ambient noise from shipping in the Pacific Ocean has doubled every decade for the last 40 years (McDonald et al. 2006). Noise pollution can affect commercially important fish stocks and marine mammals by making it more difficult to find food and mates, avoid predators, navigate, and communicate (Popper 2003). Studies of bluefin tuna in the Mediterranean suggest that noise pollution from shipping results in changes to schooling behavior, which could influence migration (Sara et al. 2007). The effects of noise pollution on bigeye tuna and other target and non-targets stocks are unknown, but given the above information and depending on exposure duration and life stage, increases in oceanic noise levels could potentially have adverse effects to target and non-target stocks.
Marine Debris

Derelict fishing gear such as drift nets have the ability to ghost fish, i.e., continue to catch and kill fish and other animals long after they have been lost or discarded. The amount of derelict fishing gear in the Pacific is not quantified nor is the amount of fish species killed by ghost nets known. Longline gear is not readily lost during normal fishing operations because the gear is equipped with radio transponder devices. In addition, Hawaii longline fishermen make efforts to prevent gear loss as well as participate in a voluntary derelict fishing net retrieval program based in Honolulu. Purse seine fisheries often used FADs to aggregate fish. While workers equip many of these FADs with radio transponders or beacons to locate them, the FAD themselves are made of netting or other loosely connected materials that have the potential to contribute to marine debris.

Ocean productivity related to global climate change

Using remotely sensed chlorophyll concentrations from satellite observations, Polovina et al. (2008) have found that over the past decade primary productivity in the subtropical and transition zone has declined an average of 1.5 percent per year with about a 3 percent per year decline occurring at the southern limit of the North Pacific Transition Zone. The expansion of the low chlorophyll waters is consistent with global warming scenarios based on increased vertical stratification in the mid-latitudes.

Expanding oligotrophic\textsuperscript{16} portions of the subtropical gyres in the world’s oceans in time will lead to a reduction in chlorophyll density and carrying capacity in the larger subtropical gyres, thus affecting the abundance of target and non-target species. In general, Polovina et al. (1994) have shown that large-scale climate cycles can affect winds, currents, ocean mixing, temperature regimes, nutrient recharge, and affect the productivity of all trophic levels in the North Pacific Ocean.

For example, a scientific study using the spatial ecosystem and population dynamics model (SEAPODYM) showed an eastern shift in the biomass of skipjack and yellowfin tuna over time, with a large and increasing uncertainty for the second half of the century. The effects of fishing on biomass strongly outweighed the decreases contributed to climate change in the first half of this century (Senina et al. 2018). In order to support the long-term sustainability target and non-target fish stocks, and taking into account potential impacts from climate change, continued research, improved fishery data collection, and coordination with international organizations, will be important to facilitate adaptive fishery management.

4.8.1.2 Cumulative Effects Analysis on Target and Non-Target Stocks

As described in Section 4, NMFS expects the direct and indirect impact of the alternatives considered would have minor effects on the status of target and non-target stocks through 2023, including bigeye tuna, with none expected to be substantial. U.S. fisheries including those of the territories are sustainably managed and are operating consistent with internationally agreed upon

\textsuperscript{16} Meaning waters where relatively little plant life or nutrients occur, but which are rich in dissolved oxygen.
CMMs. Fishermen use a range of fishing gears to harvest bigeye tuna, with primary impacts from longline and purse seine fisheries. In the WCPO, bigeye tuna is not overfished or experiencing overfishing according to LRPs described in the Pelagics FEP (WPFMC 2018a).

Alternatives 2 and 3 would involve NMFS oversight of limited allocation of bigeye tuna under three fishing arrangements. If the Council recommends multi-year catch or allocation limits, under the Council action to modify the territorial catch, effort, and allocation limits measure, NMFS expects that catches of non-target stocks by the Hawaii-based deep-set fishery would increase over catches in recent years. A reduced administrative burden under the establishment of multi-year limits may prevent a fishery closure in later years of implementation, so that the Hawaii-based deep-set longline fishery has an opportunity to harvest up to the maximum authorized catch and/or allocation limit, if all specified fishing agreements are authorized. While unexpected, the Hawaii-based deep-set longline fishery has closed under Alternative 2 due to reaching the catch limit before the allocation limits were in place in 2015, 2016, and 2017. If the deep-set fishery operates throughout the year, NMFS would expect reduced catches of EPO stocks, including EPO bigeye tuna, associated with the fishery remaining within the WCPO throughout the year, and increased catches of WCPO stocks over recent years. NMFS expects Hawaii shallow-set longline catches of non-target stocks and swordfish would be similar to their catch described in Section 3.2.1.4 under multi-year limits, as vessels may choose which fish to target, provided that the shallow-set sector is authorized to operate.

In accordance with federal regulations at 50 CFR 665.819, FEP permitted longline vessels can only operate under one specified fishing agreement at a time. Given this controlling measure, combined with the U.S. WCPO bigeye tuna catch limit of 3,554 t, and the current and expected levels of vessel participation, it is likely that the level of effort and associated catches would be within historical baseline levels or continue along the same modest increasing trend. Furthermore, the location of most U.S. longline fishing effort for bigeye tuna is expected to occur under all outcomes is an area in the central North Pacific with lower fishing mortality, as compared to the equatorial Pacific, which represents approximately 88 percent of fishing mortality on bigeye tuna in the WCPO. As discussed in Section 3.1.1, the majority of fishing effort by the Hawaii longline fishery occurs north of 20° N, and further 98% of bigeye tuna caught by the Hawaii longline fishery comes from north of 10° N and outside of the core equatorial zone of heavy purse seine and longline fishing (NMFS unpublished data).

Fishing effort for bigeye tuna drives catches of non-target species in the Hawaii longline fishery. If fishing effort for bigeye tuna increases, NMFS expects the catches of other target and non-target stocks to increase commensurate with the increases in catch of bigeye tuna. Even with an increase in catch in the deep-set fishery, however, NMFS expects the proportion of increased fishing mortality would remain low in comparison to MSY or total catch for all species. Bigeye tuna limits and the limited entry permit program would continue to constrain the fishery. NMFS expects this potential impact would not affect the stock status of the non-target stocks, and that multi-year limits would ensure that U.S. and U.S. participating territory longline fisheries continue to be managed sustainably, consistent with WCPFC CMMs and Magnuson-Stevens Act. The process includes review of the best scientific information available by the Council to determine whether limits should be established, modified, or rescinded. For these reasons, the U.S. and U.S. participating territory longline fleets are not expected to substantially impact non-
target stocks when considering the cumulative effect of operating under multi-year bigeye tuna limits.

As described above, several exogenous factors may affect target and non-target species. The industrial scale purse seine and longline fisheries have the largest influence on the condition of the stocks. The Kingma and Bigelow (2019) analysis of the proposed action on the status of bigeye tuna in 2045 in Appendix A assumed full implementation of all bigeye tuna longline quotas in each of the proposed action scenarios in every year through 2045, other sources of fishing mortality, and that the U.S. fisheries would continue to comply with applicable domestic and international conservation and management measures. If the Council did not recommend territorial bigeye tuna catch limits but did recommend a 2,000 t allocation limit for each of the territories, the total WCPO bigeye tuna fishing mortality for all U.S. and participating territory fleets would be 10,095 t (541 t for American Samoa, 0 t for Guam, 0 tons for CNMI, 3,554 t for the U.S. longline fleet, and 6,000 t in allocations). Applying the Council/PIFSC analysis to this scenario (Option M), the projected $F_{2045}/F_{MSY} = 0.87$ and spawning biomass would be $SB_{2045}/SB_{F=0} = 0.36$. Kingma and Bigelow (2019) also evaluated an option considering allocation limits up to 3,000 t without catch limits; under 3 fishing agreements, the projected $F_{2045}/F_{MSY} = 0.88$ and spawning biomass would be $SB_{2045}/SB_{F=0} = 0.36$. The projections associated with the maximum WCPO bigeye tuna fishing mortality considered under the alternatives in this EA and cumulative impacts associated with the Council’s action to modify the territorial catch, effort and allocation limits measure indicate bigeye tuna would not be subject to overfishing and not overfished in 2045. This means that annual allocation limits up to 3,000 t, achieved in full every year through 2045, would not result in overfishing or an overfished stock status determination for WCPO bigeye tuna.

Domestic bigeye tuna landings under the U.S. catch limit cannot supply the substantial demand for fresh and frozen tuna in the Hawaii market, which opens the market to foreign imports. NMFS expects that foreign imports would fill the market demand for bigeye tuna if NMFS restricts fishing for bigeye tuna in the WCPO, which is likely under Alternative 1. In this circumstance, we would assume the same amount of bigeye fishing mortality to satisfy the Hawaii market. Because foreign longline fisheries are not as well monitored in terms of target and non-target catches and landings and protected species interactions as compared to U.S. longline fisheries, the action alternatives would maintain the U.S. production of bigeye tuna through the highly monitored, environmentally responsible domestic longline fisheries. NMFS does not expect the effects to target and non-target stocks from the fishery outcomes under the alternatives, when combined with the cumulative effects, to result in large adverse effects on these stocks.

4.8.2 Cumulative Effects on Socio-Economic Setting

4.8.2.1 Past, Present, and Reasonably Forseeable Future Management Actions

As noted in Section 3.2.7, the Council has identified American Samoa, CNMI, Guam, and each of the inhabited Hawaiian Islands as a fishing community. In accordance with the Magnuson-Stevens Act, the Council and NMFS will continue to assess the impact of management actions on fishery participants and fishing communities, and where possible, minimize negative effects
while developing appropriate measures for the conservation and management of fishery resources.

**External Factors**

A number of wide-ranging factors (that change over time) that have the potential to affect fishing participants as well as fishing communities. Current factors may include, but are not limited to, high fuel costs, high costs of other equipment and supplies, increased seafood imports, and restricted access to traditional fishing grounds. High fuel and materials/supply costs affect fishing participants by increasing fishing costs. The effect is that fishery participants reduce the number of fishing trips, switch to less fuel-intensive fisheries, or simply do not go fishing at all. Some longline fishing in the western Pacific has shown contraction in recent years, for example longline fishing on small vessels in the American Samoa longline fishery.

The amount of imported seafood is also increasing, where the U.S. now imports nearly 85 percent of consumed seafood.17 The level of imports relates to market competition, where a glut of foreign fish products can flood the market and lower ex-vessel prices for U.S. fishermen. Once U.S. fish products lose market channels to imported seafood products, U.S. fishermen may find it difficult to regain those channels. As described previously, the territories face significant barriers to developing responsible longline fisheries, which include lack of infrastructure, transportation, and access to markets.

In addition, a reliance on foreign imports in Hawaii and the U.S. territories may affect local food security. At a broader level, a recent study by the Great Britain’s Royal Institute of International Affairs (Ambler-Edwards et al. 2009) has identified seven fundamental issues, which affect food production and food security. These are as follows:

1. Rapidly rising world population (population growth rates in the western Pacific range from 1-7%)
2. Nutrition transition, i.e., a shift from traditional staples to processed foods high in sugars, oils, and fats
3. The rising costs of energy (oil, gas, electricity)
4. Limited availability of agricultural land (especially critical on small islands)
5. Increasing demands for water for agricultural and food production
6. Climate change
7. Labor and urban drift

All of these seven fundamentals are especially critical to Hawaii and the U.S. participating territories. The development of domestic sustainable fisheries production in the western Pacific region would help to mitigate the effects of most of these fundamental issues by providing increased revenues for communities and developing fisheries that meet domestic consumption needs. Alternative 1 would not allow the territories to enter into specified fishing agreements whereas Alternatives 2 and 3 would allow for such agreements and could promote potential

---

17 http://www.fishwatch.gov/farmed_seafood/index.htm

161
opportunities to develop fisheries in the U.S. participating territories, which could help offset other factors that are affecting fishing communities in the U.S. participating territories.

Alternative 1 may lead to more foreign imports of bigeye tuna and other pelagic species to fill any market gaps in the Hawaii and U.S. seafood market that depend on fish products provided by Hawaii longline fishery throughout the year, which may impact Hawaii communities. Alternatives 2 and 3 would provide the Hawaii longline fishery the opportunity to supply U.S. markets with bigeye tuna caught in the WCPO through fishing agreements with one or more U.S. participating territory. The Hawaii longline fishery is the largest producer of fresh fish in the State of Hawaii and is an important supplier of quality seafood that supports Hawaii’s tourism economy and local seafood market.

4.8.2.2 Cumulative Effects Analysis on Fishery Participants and Fishing Communities

Regardless of the alternative, NMFS and the Council would continue to manage Western Pacific pelagic fisheries sustainably. The alternatives are not expected to result in a large change to the fisheries in terms of area fished, effort, harvests, or protected species interactions. Alternative 1 would not allow U.S. participating territories to make fishing agreements with FEP-permitted vessels. As a result, a territory could not allocate any bigeye tuna. Alternative 1 also does not provide long-term stability for fishery participants in the Hawaii longline fishery and vessel owners and captains would need to prepare for restrictions each year. However, this may encourage fishery participants to explore other management options, such as catch shares or individual fishing quotas.

Multi-year limits under a modified territorial catch, effort, and allocation limit measure may benefit fishery participants and fishing communities by eliminating the gap between a WCPO closure for reaching the U.S. limit and fishing under a specified fishing agreement. While unexpected, the Hawaii-based deep-set longline fishery has closed under Alternative 2 due to reaching the catch limit before the allocation limits were in place in 2015, 2016, and 2017. Under multi-year implementation, the administrative burden of annually specifying bigeye tuna catch limits would be reduced in years past the first year of implementation, provided that the Council and NMFS do not modify or rescind the catch limits. The Council’s annual review would determine whether established limits should be modified or rescinded, and a recommendation would trigger NMFS review and the associated administrative process. Multi-year limits could therefore ameliorate all of the fishery impacts resulting from a WCPO closure on the Hawaii longline fishery participants and fishing community identified under a modified measure, in years other than the first year of implementation. NMFS does not expect that multi-year limits would have any additional effects on the longline fisheries of American Samoa, Guam, or the CNMI, or on the U.S. participating territory fishing communities.

Also under a modified measure, if the Council does not recommend bigeye tuna catch limits but does recommend allocation limits, American Samoa would not need to reserve a portion of its catch limit for the local albacore targeting fleet or dual-permitted vessels in order to prevent a restriction on catch. Without an annual total catch limit, American Samoa longline limited entry permit holders would not be subject to potential closure for exceeding the catch limit.
Alternatives 2 and 3 would provide minor to moderate benefits to fishery participants and provide fisheries development funding to the U.S. territories through the WP SFF. NMFS expects these alternatives to result in the greatest short and long-term benefit to fishery participants by providing the most intensive management oversight of fishing arrangements, managing territorial catches of bigeye tuna, and long-term stability in the commercial pelagic fisheries. Such stability would result in fewer cumulative effects of external stressors on fishing participants and communities, as compared to Alternative 1.

4.8.3 Cumulative Effects on Protected Species

4.8.3.1 Past, Present, and Reasonably Foreseeable Future Management Actions

Through data collected from observer programs and other sources, the Council and NMFS will continue to monitor interactions between managed fisheries and protected species. NMFS scientists in association with other researchers will continue to collect biological samples to refine stock definitions as well as conduct surveys to monitor populations. The Council and NMFS will continue to conduct workshops with participation from fishermen to develop mitigation methods as appropriate, and NMFS will continue to conduct mandatory annual protected species workshops for all longline permit holders that teach how to identify protected species and how to reduce and mitigate interactions. Due to the recent listing of oceanic whitetip shark and giant manta ray, NMFS has reinitiated consultation on the operation of the Hawaii and American Samoa longline fisheries.

4.8.3.2 Cumulative Effects Analysis on Protected Species

As previously described in Section 3, the Council and NMFS have taken significant steps to reduce sea turtle and seabird interactions in longline fisheries, and conducts work and research to further reduce interactions. Longline fisheries managed under the Pelagics FEP are the benchmark for successful sea turtle and seabird interaction reductions (WPFMC 2009), and the successes of the Council and NMFS’ work have been transferred to other fleets in the region and serve as the basis for management measures in the WCPFC and IATTC.

Hawaii longline vessels operating under specified fishing agreements under multi-year catch or allocation limits would likely continue to operate in a manner consistent with historical fishing patterns and in locations within the EEZ around Hawaii and adjacent high seas throughout the calendar year. The 2012 shallow-set BiOp and 2014 deep-set BiOp as supplemented (2017) evaluated the effects of the fisheries operating under specified fishing agreements and based on this information, NMFS has determined that the fishery would not jeopardize the continued existence of any ESA-listed species. The BE on the deep-set longline fishery evaluated effects to the eastern Pacific green sea turtle DPS, oceanic whitetip shark, and giant manta ray and found impacts to these populations are insubstantial (NMFS 2018d). The BE supporting reinitiation for the shallow-set fishery came to a similar conclusion for Guadalupe fur seal, oceanic whitetip shark, giant manta ray, and loggerhead sea turtles (NMFS 2018e).

The 2018 deep-set longline BE assumed the fishery would operate throughout any given year under fishery conditions that do not change. NMFS has determined that impacts to protected species would be insubstantial under assumed increases in interactions conservatively associated
with the 95% credible interval (NMFS 2018g). NMFS expects Hawaii shallow-set longline interactions with protected species would be similar to those described in Section 3.3 under multiyear limits, as vessels may choose which fish to target, or less in years when the shallow-set fishery is not authorized to operate throughout the year. Under multi-year catch or allocation limits, impacts to protected species from Hawaii longline vessels operating under one, two or three fishing agreements are expected to be within the levels identified Section 3.3 and are not expected to result in large adverse effects to any protected species.

Because the American Samoa longline fishery primarily targets south Pacific albacore tuna, the fishery’s impact on protected species is expected to be within the levels identified in Section 3.3. As a result of multi-year allocation limits, funding may become available to support fisheries development projects identified in the American Samoa MCP, which may lead to a diversification of the American Samoa longline fishery from primarily an albacore fishery to a fishery that is able to harvest and market other pelagic MUS such as bigeye and yellowfin tunas. However, such potential diversification is not expected to result in higher amounts of fishing effort by American Samoa longline vessels, but rather support the targeting and retention of various pelagic MUS, including bigeye tuna. Therefore, fishing effort levels are expected to be similar to recent years and interactions under multi-year catch or allocation limits are not expected to be higher than those currently authorized or analyzed by NMFS. Potential effects to protected species from the American Samoa longline fishery would not be substantial under multi-year limits.

Under all alternatives and in consideration of potential modifications to the territorial catch, effort, and allocation limit measure, U.S. longline vessels would continue to be subject to strict measures to avoid and reduce protected species interactions and to reduce the severity of interactions when they do occur. Therefore, annual effects to protected species would be similar to current operation under all alternatives. The levels of interactions that NMFS authorizes in each fishery do consider the estimated effects to the same species by all fisheries where the domestic fishery operates, as well as cumulative effects including conservation actions, environmental factors, and activities affecting the same resources. Cumulative effects of the U.S. fleets have been considered and authorized in the BiOps that apply to the domestic longline and other pelagic fisheries in the western Pacific. None of the alternatives would result in substantial changes to western Pacific pelagic longline fisheries; therefore, NMFS does not anticipate substantial impacts to protected species in fishing years 2019-2023.

4.8.4 Climate Change

NMFS and the Council evaluated the potential effects of climate change on the resources considered in this document. We also considered the potential effects of the alternatives considered in the face of climate change.

A climate change impact analysis is a difficult undertaking given its global nature and interrelationships among sources, causes, mechanisms of actions and impacts. We focus our analysis on whether climate change is expected to impact resources that are the focus of this analysis including: target stocks (bigeye tuna), non-target stocks and bycatch of particular management interest (striped marlin and North Pacific swordfish stocks, and silky sharks), and on protected species.
Implications of climate change for the environmental effects of the alternatives
We note that the effects of climate change on these resources may be positive if climate change effects benefit a species’ prey base or otherwise enhance the species’ ability to survive and reproduce, or effects may be negative if the impacts reduce a species’ ability to survive and reproduce. Effects may also be neutral.

For the proposed action, the effects of climate change on target and non-target species that are caught by the Hawaii deep-set longline fishery have been considered indirectly because the bigeye tuna catch and allocation limits were based on recent fishery catches (including all fishing mortality on the stock), and in consideration of the most recent stock status. NMFS considers the effects of climate change on ESA-listed species in the BiOp for each fishery when issuing the ITS.

Climate change would have similar effects to the resources regardless of which alternative is selected. In the coming years, the Council and NMFS will continue to monitor domestic catches of all pelagic MUS, and continue to consider information from scientifically-derived stock status reports as future catch and allocation limits are made, and as changes to fishery management are contemplated and implemented. Ongoing and future monitoring and research will allow fishery managers and scientists to consider effects of climate change, fishing, and other environmental factors that are directly or indirectly affecting the resources.

Potential effects on climate change in terms of greenhouse gas emissions
NMFS authorizes the U.S. longline fishery to conduct fishing with or without territorial bigeye tuna limits. Management measures do not control any particular level of fishing effort other than capping vessel length and the number of permits available and, therefore, neither NMFS nor the Council controls where fishing vessels fish beyond existing restricted fishing areas, how long a fishing trip lasts, or other decisions made by individual fishermen. For this reason, our comparison of potential greenhouse gas emissions will be qualitative.

Under Alternative 1, NMFS would prohibit the Hawaii deep-set longline fishery from retaining bigeye tuna caught in the WCPO when the fishery reaches the U.S. limit, usually before the end of the year. When this happens, the Hawaii longline fleet may shift effort to the EPO (east of 150° W) or some vessels may switch to targeting swordfish if the shallow-set fishery is open. Under Alternatives 2 and 3 vessels in the Hawaii deep-set longline fleet are expected to travel farther throughout the year than they might under Alternative 1; however, much of the deep-set longline fishing toward the latter part of the year may be closer to the Hawaiian archipelago instead of the EPO. For these reasons, none of the outcomes is expected to result in a large change in greenhouse gas emissions.

5 APPLICABLE LAWS

Section 303 of the Magnuson-Stevens Act requires that any fishery management plan prepared by any fishery management council or by the Secretary of Commerce contain conservation and management measures that are consistent with the National Standards of the Act, other provisions of the Act, regulations implementing recommendations by international fishery management organizations and any other applicable law. This section identifies provisions of the
other applicable laws that the NMFS and the Council has identified the proposed action must comply with, and rational for why this action is consistent with each applicable law.

5.1 National Environmental Policy Act

In accordance with the National Environmental Policy Act (NEPA) and CEQ implementing regulations, and NOAA Administrative Order (NAO) 216-6A – Compliance with the National Environmental Policy Act, Executive Orders 12114, Environmental Effects Abroad of Major Federal Actions; 11988 and 13690, Floodplain Management; and 11990, Protection of Wetland, NMFS must consider the effects of its proposals on the environment before taking action. As part of this process, NMFS and the Council provide opportunities for the involvement of interested and affected members of the public before a decision is made. NMFS and the Council prepared this EA in accordance with NEPA and its implementing regulations, as well as NAO 216-6A. The Council and NMFS also developed the proposed action described in this EA in coordination with various federal and local government agencies that are represented on the Council.

On June 6, 2019, NMFS published the proposed 2019 territorial bigeye tuna catch and allocation specifications, and requested public review and comments on the proposed specification and draft EA dated May 20, 2019 (84 FR 26394). The comment period ended June 21, 2019. NMFS received one comment on the draft EA, which resulted in a technical correction to Table 32, and comments from the public on the 2019 specifications. NMFS considered public comments in finalizing the EA and in making its decision on the proposed action, and responds to comments in the final specification. The NMFS Regional Administrator will use this EA to consider the effects of the proposed action on the human environment, taking into consideration public comments on the proposed action presented in this document, and to determine whether the proposed action would have a significant environmental impact requiring the preparation of an environmental impact statement.

5.2 Coastal Zone Management Act

The Coastal Zone Management Act requires a determination that a recommended management measure has no effect on the land, water uses, or natural resources of the coastal zone or is consistent to the maximum extent practicable with an affected state’s enforceable coastal zone management program. On March 27, 2019, NMFS determined that the proposed specifications are consistent to the maximum extent practicable with the enforceable policies of the approved coastal zone management programs of American Samoa, Guam, the Northern Mariana Islands, and Hawaii and requested the programs’ review of and concurrence with its determinations. On April 2, 2019, Hawaii responded that it considers the action to be an implementing measure of the Fishery Ecosystem Plan for Pelagic Fisheries of the Western Pacific, which the Hawaii CZM Program previously reviewed and issued a consistency determination, and, therefore, is not subject to the federal consistency review by the Hawaii CZM Program. On May 17, 2019, Guam responded that the action is consistent to the maximum extent practicable with the approved development and resource policies of the Guam Coastal Management Program. American Samoa and the CNMI have not responded, so we infer consistency.
5.3 Endangered Species Act

The Endangered Species Act (ESA) provides for the protection and conservation of threatened and endangered species. Section 7(a)(2) of the ESA requires federal agencies to ensure that any action authorized, funded, or carried out by such agencies is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of the critical habitat of such species. Pursuant to Section 7 of the ESA, NMFS has evaluated the pelagic longline fisheries of Hawaii, American Samoa, Guam, and the Northern Mariana Islands for potential effects to ESA-listed species under the jurisdiction of NMFS. The conclusions of these consultations are briefly summarized below.

**Hawaii Deep-Set Longline Fishery**

On January 6, 2012, the U.S. FWS completed a biological opinion (BiOp) that concluded the Hawaii deep-set fishery would not jeopardize the short-tailed albatross, and included an incidental take statement for that species. The Hawaii deep-set longline fishery has not exceeded the authorized incidental take statement (ITS) for the short-tailed albatross.

On September 19, 2014, NMFS completed a no-jeopardy BiOp for the continued operation of the Hawaii deep-set pelagic longline fishery. NMFS determined that the fishery is not likely to jeopardize the continued existence or recovery of humpback whales, sperm whales, MHI insular false killer whale distinct population segment (DPS), North Pacific loggerhead turtles, leatherback turtles, olive ridley turtles, green turtles, or the Indo-West Pacific DPS of scalloped hammerhead sharks. NMFS anticipated that the fishery could interact with and adversely affect these species, and authorized ITS for each of these species.

On September 16, 2015, NMFS concurred with the agency determination that the continued authorization of the Hawaii deep-set longline fishery is not likely to adversely affect Hawaiian monk seal critical habitat, and fin whales.

On March 24, 2017, NMFS completed a no-jeopardy supplement to the 2014 BiOp for the continued operation of the Hawaii deep-set pelagic longline fishery. NMFS determined that the fishery is not likely to jeopardize the continued existence or recovery of the N. Pacific loggerhead sea turtle DPS, olive ridley sea turtles (endangered Mexico population and threatened global species), East Pacific green sea turtle DPS, Central North Pacific green sea turtle DPS, East Indian-west Pacific DPS, Southwest Pacific DPS, Central West Pacific DPS, and Central South Pacific DPS. NMFS anticipated that the fishery could interact with and adversely affect these species, and authorized incidental take statement (ITS) for each of these species.

On January 22, 2018, NMFS issued a final rule to list the giant manta ray as threatened species under the ESA (83 FR 2916). On January 30, 2018, NMFS issued a final rule to list the oceanic whitetip shark as threatened under the ESA (83 FR 4153). Both species occur in the action area of the Hawaii deep-set longline fishery. Neither species is subject to protective regulations under ESA section 4(d); and accordingly, take is not prohibited under ESA.

On October 4, 2018, NMFS reinitiated ESA Section 7 consultation for the deep-set fishery for all ESA-listed species under NMFS jurisdiction occurring in the action area due to three re-initiation triggers: listing of the oceanic whitetip shark and giant manta ray; designation of main Hawaiian
Islands insular false killer whale critical habitat; and exceeding the ITS for east Pacific green sea turtle DPS in mid-2018. The 2014 BiOp as supplemented (2017) remains valid for all species which the fishery may likely adversely affect except oceanic whitetip shark, and giant manta ray. On October 4, 2018, NMFS determined that the conduct of the fishery during the period of consultation will not violate ESA Sections 7(a)(2) and 7(d).

**Hawaii Shallow-set Longline Fishery**

On January 6, 2012, the USFWS completed a BiOp that concluded the Hawaii shallow-set fishery would not jeopardize the short-tailed albatross, and included an incidental take statement for that species. NMFS previously evaluated the potential impacts of this fishery on ESA-listed species under NMFS jurisdiction and their designated critical habitat. NMFS documented the determination in a no-jeopardy BiOp (January 30, 2012) and four separate letters of concurrence or no-effect determinations (August 27, 2008, October 6, 2014, March 2, 2015, and September 16, 2015).

In the 2012 BiOp, NMFS concluded that the continued operation of the shallow-set fishery would adversely affect, but was not likely to jeopardize the continued existence of the humpback whale, the loggerhead turtle, the leatherback turtle, the olive ridley turtle, or the green turtle, or result in destruction or adverse modification of designated critical habitat. The 2012 BiOp also included not likely to adversely affect determinations for the Hawaiian monk seal, the blue whale, the fin whale, the sei whale, the sperm whale, the North Pacific right whale, and the hawksbill sea turtle.

On September 10, 2014, NMFS published a final rule (79 FR 53852) that listed 20 new species of reef-building corals as threatened under the ESA. Of those, NMFS believes that seven occur in the EEZ. On October 6, 2014, NMFS determined that Pacific Island pelagic fisheries, including the shallow-set fishery, would not affect ESA-listed species of shallow reef-building corals. On March 2, 2015, NMFS determined that the continued authorization of the Hawaii shallow-set longline fishery is not likely to adversely affect the main Hawaiian Islands (MHI) insular false killer whale DPS and the Eastern Pacific scalloped hammerhead shark DPS. On September 16, 2015, NMFS determined that the continued authorization of the Hawaii shallow-set fishery is not likely to adversely affect Hawaiian monk seal critical habitat and fin whales.

On October 16, 2014, NMFS issued a permit under Section 101(a)(5)(E) of the Marine Mammal Protection Act also authorizing the shallow-set fishery to incidentally take humpback whales from the Central North Pacific stock (79 FR 62105). Please note that, since the date of that permit, the CNP humpback whale was designated a DPS and is not a listed species under the ESA (81 FR 62259, September 8, 2016).

On December 27, 2017, the United States Ninth Circuit Court of Appeals found that NMFS' no jeopardy determination with respect to the impact of the shallow-set fishery on North Pacific loggerheads was arbitrary and capricious. *Turtle Island Restoration Network, et al., v. Department of Commerce, et al.*, 878 F.3d 725 (2017). Upon remand to the district court and pursuant to a court-approved settlement agreement, the portions of the 2012 Bi Op discussing the North Pacific loggerhead were vacated.
This fishery also may interact with the newly listed giant manta ray and oceanic white tip shark. On April 20, 2018, NMFS reinitiated ESA Section 7 consultation for the shallow-set fishery for all ESA-listed species under NMFS jurisdiction occurring in the action area. On April 24, 2018, NMFS determined that the conduct of the fishery during the period of consultation will not violate ESA Sections 7(a)(2) and 7(d). On March 19, 2019, pursuant to the court-approved settlement agreement discussed above, NMFS closed the Hawaii-shallow set fishery through December 31, 2019 (84 FR 11654, March 28, 2019) for reaching the annual interaction limit of 17 loggerhead sea turtles. Therefore, the fishery is not authorized to operate for the remainder of 2019, and would have no effect on ESA-listed species for the remainder of 2019.

**American Samoa Longline Fisheries**

On October 30, 2015, NMFS issued a no-jeopardy BiOp on the continued operation of the American Samoa longline fishery. NMFS determined that the fishery is not likely to jeopardize the continued existence of green, leatherback, olive ridley, and hawksbill sea turtles, the South Pacific loggerhead sea turtle DPS, or the Indo-West Pacific scalloped hammerhead shark DPS. NMFS anticipated that the fishery could interact with and adversely affect these species, and authorized an ITS for each species. The American Samoa longline fishery has not exceeded the authorized levels of take for leatherback or loggerhead sea turtles or the Indo-West Pacific DPS of scalloped hammerhead shark in the BiOp.

NMFS also determined that, because there is no new information on fishery interactions with humpback or sperm whales, the previous NMFS determination of July 27, 2010, remains valid, i.e., the fishery is not likely to adversely those species. Similarly, because the there are no confirmed reports of blue, fin, or sei whales in the area of operation of the American Samoa longline fishery, the previous NMFS determination of May 12, 2010 that the fishery would have no effect on these species remains valid. NMFS also determined that the continued authorization of the fishery is not likely to adversely affect ESA-listed species of shallow-reef building corals because there is very limited reef habitat in the EEZ, and longline vessels fish far offshore, well beyond 3 nm from shore.

On January 22, 2018, NMFS issued a final rule to list the giant manta ray as threatened species under the ESA (83 FR 2916). On January 30, 2018, NMFS issued a final rule to list the oceanic whitetip shark as threatened under the ESA (83 FR 4153). Both species occur in the action area of the Hawaii deep-set longline fishery. Neither species is subject to protective regulations under ESA section 4(d); and accordingly, take is not prohibited under ESA. NMFS listed the chambered nautilus, which occurs in waters around American Samoa, as threatened under the ESA on September 28, 2018 (83 FR 48976).

On April 3, 2019, NMFS reinitiated ESA Section 7 consultation for the American Samoa deep-set fishery for all ESA-listed species under NMFS jurisdiction occurring in the action area due to several re-initiation triggers: listing of the oceanic whitetip shark, giant manta ray, and chambered nautilus; and exceeding the ITS for the east Indian west Pacific, southwest Pacific, central South Pacific, and east Pacific green sea turtle DPS; hawksbill; and olive ridley sea turtles in 2018. The 2015 BiOp as remains valid for all species which the fishery may likely adversely affect except oceanic whitetip shark, and giant manta ray. NMFS has determined that the American Samoa longline fishery is not likely to adversely affect the chambered nautilus. On
April 3, 2019, NMFS determined that the conduct of the fishery during the period of consultation will not violate ESA Sections 7(a)(2) and 7(d).

**Guam and the Northern Mariana Islands**

On March 29, 2001, NMFS completed a BiOp on the continued operation of the pelagic fisheries of the western Pacific, which considered the effects of all longline, troll, handline, and pole and line fisheries based in Hawaii, American Samoa, Guam, and the CNMI. NMFS determined that western Pacific pelagic fisheries are not likely to adversely affect any threatened or endangered marine mammal or the hawksbill sea turtle. In addition, NMFS determined that these fisheries were not likely to jeopardize the continued existence of green sea turtles, leatherback turtles, loggerhead turtles or olive ridley turtles and authorized an ITS for each of these species, which applied primarily to longline fisheries, although separate ITS were also provided non-longline fisheries of the western Pacific. The Guam and CNMI fisheries have not exceeded the authorized ITS for any species issued in the 2001 BiOp and is currently inactive. Therefore, the proposed action is not expected to affect endangered and threatened species or critical habitat in a manner not considered in previous ESA consultations.

5.4 Marine Mammal Protection Act

The MMPA prohibits, with certain exceptions, the take of marine mammals in the U.S. and by U.S. citizens on the high seas, and the importation of marine mammals and marine mammal products into the United States. The MMPA gives NMFS as delegated by the Secretary of Commerce, the authority and duties for all cetaceans (whales, dolphins, and porpoises) and pinnipeds (seals and sea lions, except walruses). With this responsibility, NMFS required to prepare and periodically review stock assessments of marine mammal stocks.

Under Section 118 of the MMPA, NMFS must publish, at least annually, a List of Fisheries that classifies U.S. commercial fisheries into one of three categories. These categories are based on the level of serious injury and mortality of marine mammals that occurs incidental to each fishery. Specifically, the MMPA mandates that each fishery be classified according to whether it has frequent, occasional, or a remote likelihood of or no known incidental mortality or serious injury of marine mammals. A Category 1 fishery is one with frequent incidental mortality and serious injury of marine mammals. A Category 2 fishery is one with occasional incidental morality and serious injury of marine mammals. A Category 3 fishery is one with a remote likelihood or no known incidental morality and serious injury of marine mammals.

According to the 2019 List of Fisheries (84 FR 22051, May 16, 2019), the Hawaii deep-set longline fishery is a Category I fishery, and the Hawaii shallow-set and American Samoa longline fisheries are Category II fisheries. Because there has been no documented interaction with marine mammals in longline fisheries of Guam and the CNMI and because those fisheries have been inactive since 2011, they are not classified in the 2019 List of Fisheries.

On October 16, 2014, NMFS issued a permit under the MMPA section 101(a)(5)(E), addressing the Hawaii deep-set and shallow-set longline fisheries’ interactions with depleted stocks of marine mammals (79 FR 62105). The permit authorizes the incidental, but not intentional, taking of ESA-listed humpback whales, sperm whales, and main Hawaiian insular false killer whales. In
authorizing this permit, NMFS determined that incidental taking by the Hawaii longline fisheries would have a negligible impact on the affected stocks of marine mammals. NMFS has prepared a draft negligible impact determination, and the permit under MMPA section 101(a)(5)(E) remains valid and effective until replaced in accordance with 5 U.S.C. § 558(c).

Under the proposed action, and due to existing fishery requirements (e.g., limited entry), NMFS does not expect U.S. longline fisheries to expand or change operations (e.g., area fished, number of vessels fishing, number of trips per year, number of hooks per set, depth of hooks, or gear deployment techniques).

NMFS does not expect longline vessels in the CNMI or Guam to catch bigeye tuna in the reasonably foreseeable future because there are currently no active longline fisheries based in those islands. In American Samoa, NMFS expects bigeye tuna catches by American Samoa longline vessels to be similar to the average annual catch in 2012-2017, approximately 541 t. As of 2017, effort in the American Samoa longline fishery by millions of hooks had declined to about half of that analyzed in the 2015 BiOp. Under this action, NMFS does not expect the proposed action would modify American Samoa longline, CNMI, or Guam fisheries operations in a manner that would result in an effect on any marine mammals that was not considered in previous ESA consultations or by the LOF’s classification and MMPA Section 118 commercial fishery take authorization.

Longline fishing effort over time may gradually increase if latent permits in the Hawaii-based longline fishery are activated; however, NMFS does not anticipate new entry and subsequent fishing effort into the fishery in the near future because the number of vessels that have participated in the past ten years has been relatively stable with only a slight increase in recent years. From 2004-2012, the annual number of vessels that participated in the deep-set fishery has remained relatively stable, ranging from 124 to 129, with a slight increasing trend beginning in 2013. In 2017, 145 deep-set longline vessels made 1,539 trips with 19,674 sets and deployed 53.5 million hooks. Although the number of hooks deployed in represents an increase of 3.21% from 2014 to 2017, interaction rates remain within levels authorized, and NMFS has no information to believe that this increase would result in a material change in the future conduct of the fishery that would introduce effects to marine mammals to an extent not considered in previous ESA consultations or by the LOF’s classification and the Section 118 commercial fishery take authorization. Under the proposed action, Hawaii longline vessels operating under specified fishing agreements would likely continue to operate in a manner consistent with historical fishing patterns and in locations within the EEZ around Hawaii and adjacent high seas throughout each year.

Because the proposed action would not modify vessel operations or other aspects of the longline fisheries of American Samoa, Guam, the CNMI, and Hawaii, longline fisheries as conducted under the proposed action are not expected to affect marine mammals in any manner not previously considered or authorized the commercial fishing take exemption under Section 118 of the MMPA.
5.5 National Historic Preservation Act

The National Historic Preservation Act requires federal agencies undergo a review process for all federally funded and permitted projects that will affect sites listed on, or eligible for listing on, the National Register of Historic Places. There are presently no known districts, sites, highways, cultural resources structures or objects listed in or eligible for listing in the National Register of Historic Places in the EEZ around American Samoa, Guam, CNMI, Hawaii, and the Pacific Remote Island Areas, or in adjacent areas of the high seas in international waters where pelagic longline fishing activities are conducted. Because longline fisheries are conducted in deep waters far offshore and do not affect bottom features, neither current nor future longline fishing activities would be expected to affect submerged resources such as shipwrecks that could occur in offshore areas.

5.6 Executive Order 12866 (Regulatory Impact Review)

A “significant regulatory action” means any regulatory action that is likely to result in a rule that may –

1. Have an annual effect on the economy of $100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal government or communities;
2. Create a serious inconsistency or otherwise interfere with an action taken or planned by another agency;
3. Materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof; or
4. Raise novel legal or policy issues arising out of legal mandates, the President's priorities, or the principles set forth in the Executive Order.

Based on the costs and benefits discussed in the RIR (Appendix B) and the above criteria, none of the alternatives appears to have the potential to constitute a “significant” action under EO 12866.

5.7 Executive Order 13132 (Federalism)

The objective of Executive Order 13132 is to guarantee the Constitution's division of governmental responsibilities between the federal government and the states. Federalism Implications (FI) is defined as having substantial direct effects on states or local governments (individually or collectively), on the relationship between the national government and the states, or on the distribution of power and responsibilities among the various levels of government. This action does not contain policies with FI under E.O. 13132, as it does not affect or alter the relationship between the federal government and the governments of the Territory of American Samoa, the Territory of Guam, the CNMI, or the State of Hawaii.

5.8 Information Quality Act

The information in this document complies with the Information Quality Act and NOAA standards (NOAA Information Quality Guidelines, September 30, 2002) that recognize information quality is composed of three elements: utility, integrity, and objectivity. National
Standard 2 of the Magnuson-Stevens Act states that an FMP's conservation and management measures shall be based upon the best scientific information available. In accordance with this national standard, the information product (i.e., this EA) incorporates the best biological, social, and economic information available to date, including the most recent biological information on, and assessment of, the pelagic fishery resources and protected resources, and the most recent information available on fishing communities, including their dependence on pelagic longline fisheries, and up-to-date economic information (landings, revenues, etc.). The policy choices, i.e., proposed management measures, contained in the information product are supported by the available scientific information. The management measures are designed to meet the conservation goals and objectives of the Pelagic FEP and the Magnuson-Stevens Act, and other applicable laws.

The data and analyses used to develop and analyze the measures contained in the information product are presented in this EA. Furthermore, all reference materials utilized in the discussion and analyses are properly referenced within the appropriate sections of the EA. The information product was prepared by Council and NMFS staff based on information provided by NMFS PIFSC and NMFS PIRO. The information product was reviewed by PIRO and PIFSC staff, and NMFS Headquarters (including the Office of Sustainable Fisheries). Legal review was performed by NOAA General Counsel Pacific Islands and General Counsel for Enforcement and Litigation for consistency with applicable laws, including but not limited to the Magnuson-Stevens Act, National Environmental Policy Act, Administrative Procedure Act, Paperwork Reduction Act, Coastal Zone Management Act, Endangered Species Act, Marine Mammal Protection Act, and Executive Orders 13132 and 12866.

5.9 Paperwork Reduction Act

The purpose of the Paperwork Reduction Act is to minimize the paperwork burden on the public resulting from the collection of information by or for the Federal government. It is intended to ensure that the information collected under the proposed action is needed and is collected in an efficient manner (44 U.S.C. 3501(1)). The proposed action would not establish any new permitting or reporting requirements not previously addressed.

5.10 Administrative Procedure Act

All federal rulemaking is governed under the provisions of the Administrative Procedure Act (APA) (5 U.S.C. Subchapter II) which establishes a “notice and comment” procedure to enable public participation in the rulemaking process. Under the APA, NMFS is required to publish notification of proposed rules in the Federal Register and to solicit, consider and respond to public comment on those rules before they are finalized. The APA also establishes a 30-day waiting period from the time a final rule is published until it becomes effective, with certain exceptions.

Territorial catch and allocation limit actions comply with the provisions of the APA. In developing annual specifications and AM recommendations, the Council holds public meetings, provides opportunities for the public to comment on the proposed methods, specifications and recommendations, and the Council considers comments from the public and advisory bodies in making its recommendations.
On June 6, 2019, NMFS published the proposed 2019 territorial bigeye tuna catch and allocation limits, and requested public review and comments on the proposed specification and draft EA dated May 20, 2019 (84 FR 26394). The comment period ended June 21, 2019. NMFS received one comment on the draft EA, which resulted in a technical correction, and comments from the public on the 2019 specifications. NMFS considered public comments in finalizing the EA and in making its decision on the proposed action, and responds to comments in the final specification.

This rule is not subject to the 30-day delayed effectiveness provision of the APA pursuant to 5 U.S.C. 553(d)(1) because it is a substantive rule that relieves a restriction. This rule allows U.S. vessels identified in a valid specified fishing agreement to resume fishing in the western and central Pacific Ocean (WCPO) if and when NMFS closes the longline fishery for bigeye tuna, both there and possibly in the eastern Pacific Ocean (EPO). Consistent with Conservation and Management Measure (CMM) 2018-01 adopted by the Western and Central Pacific Fisheries Commission (WCPFC) at its December 2018 meeting, the bigeye tuna catch limit applicable to U.S. longline fisheries in the western and central Pacific Ocean in 2019-2020 is 3,554 t. When NMFS projects the limit will be reached, NMFS must close the fishery for bigeye tuna in the WCPO. Regulations at 50 CFR 665.819 require NMFS to begin attributing longline caught bigeye tuna to the U.S. territory to which a fishing agreement applies seven days before the date NMFS projects the fishery will reach the WCPO U.S bigeye tuna limit, or upon the effective date of the agreement, whichever is later. Based on longline catch records to date, NMFS projects the current 3,554 t limit of WCPO bigeye tuna will be reached on August 29, 2019. This projected date is subject to change, and the projected date throughout 2019 has continued to fall earlier in the year as the fishing year progresses. If the effectiveness of this final rule is delayed past the date the WCPO bigeye tuna limit is reached, NMFS would be required to publish a temporary rule that restricts the Hawaii-based longline fishery for WCPO bigeye tuna until this final rule is effective. After the effective date, NMFS would remove the restrictions for U.S. vessels identified in a valid specified fishing agreement with a U.S. territory. By implementing this rule immediately, it allows the fishery to continue fishing without the uncertainty or disruption of a potential closure.

5.11 Regulatory Flexibility Act

The Regulatory Flexibility Act (5 U.S.C. 601 et seq.) requires government agencies to assess and present the impact of their regulatory actions on small entities including small businesses, small organizations, and small governmental jurisdictions. The assessment is done by preparing a Regulatory Flexibility Analysis and Final Regulatory Flexibility Analysis (FRFA) for each proposed and final rule, respectively. Under the RFA, an agency does not need to conduct an IRFA or FRFA if a certification can be made that the proposed rule, if adopted, would not have a significant adverse economic impact on a substantial number of small entities.

Based on the available information presented in this EA, NMFS has determined that all vessels federally permitted under Pelagic FEP are small entities under the SBA’s definition of a small entity, i.e., they are engaged in the business of fish harvesting (NAICS Code: 114111), are independently owned or operated, are not dominant in their field of operation, and have annual gross receipts not in excess of $11 million.
Even though this action would apply to a substantial number of vessels, the implementation of this action would not result in significant adverse economic impact to individual vessels. Furthermore, there would be little, if any, disproportionate adverse economic impacts from the rule based on gear type, or relative vessel size. The final rule also would not place a substantial number of small entities, or any segment of small entities, at a significant competitive disadvantage to large entities.

NMFS does not expect the proposed action to have a significant economic impact on a substantial number of small entities. As such, a final regulatory flexibility analysis is not required and none has been prepared.

5.12 Executive Order 12898 (Environmental Justice)

On February 11, 1994, President Clinton issued Executive Order 12898 (E.O. 12898), “Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations.” E.O. 12898 provides that “each Federal agency shall make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations.” E.O. 12898 also provides for agencies to collect, maintain, and analyze information on patterns of subsistence consumption of fish, vegetation, or wildlife. That agency action may also affect subsistence patterns of consumption and indicate the potential for disproportionately high and adverse human health or environmental effects on low-income populations, and minority populations. A memorandum by President Clinton, which accompanied E.O. 12898, made it clear that environmental justice should be considered when conducting NEPA analyses.18

The longline fisheries of Hawaii, American Samoa, Guam, and the Northern Mariana Islands are not known to have a large adverse environmental effect on stocks of fish that may be caught by subsistence fisherman, or on other marine resources that may be targeted for subsistence consumption. The fishery does not pollute marine waters and so does not have adverse effects to human health or on marine life. NMFS and the Council manage fisheries through federal regulations that are intended to conserve marine resources and habitats to enhance the economic and social well-being of fishing communities, including members of minority populations and low-income populations.

NMFS does not expect the proposed action to have large effects to the environment that would result in a disproportionately large and adverse effect on minority or low-income populations. Therefore, there would not be a disproportionately high and adverse impact to minority or low-income populations with respect to the availability of fish, other environmental effects, or health effects if NMFS implements the proposed action.

18 “Each Federal agency should analyze the environmental effects, including human health, economic, and social effects of Federal actions, including effects on minority populations, low-income populations, and Indian tribes, when such analysis is required by NEPA. Memorandum from the president to the Heads of Departments and Agencies. Comprehensive Presidential Documents No. 279 (February 11, 1994).
6 REFERENCES


CITES. 2016. Consideration of Proposals for Amendment of Appendices I and II. Paper presented at: 17th Meeting of the Conference of the PArties to CITES. Johannesburg, South Africa.


Maunder MN. 2018. Updated indicators of stock status for skipjack tuna in the eastern Pacific Ocean. Paper presented at: 9th Meeting of the Scientific Advisory Committee of the IATTC. La Jolla, California.


Maunder MN, Xu H, Minte-Vera CV, Aires-da-Silva A. 2018b. Investigation of the substantial change in the estimated $F$ multiplier for bigeye tuna in the eastern Pacific Ocean. Paper presented at: 9th Meeting of the Scientific Advisory Committee of the IATTC.


McCracken ML. 2015. American Samoa Longline Fishery Protected Species Takes and Cetaceans Takes Resulting in a Classification of Dead or Serious Injury for Years 2010 through 2013.


NMFS. 2018a. 2016 Annual Report Honolulu, HI Pacific Islands Regional Office


NMFS. 2018g. Environmental Assessment on 2018 Bigeye Tuna Catch and Allocation Limits in U.S. Pacific Island Territories including a Regulatory Impact Review Honolulu, HI. p. 203.


WCPFC. 2018a. Conservation and Management Measure for Bigeye, Yellowfin and Skipjack Tuna in the Western and Central Pacific Ocean p. 16.


WPFC. 2014. Amendment 7 to the Fishery Ecosystem Plan for Pelagic Fisheries of the Western Pacific Region. Regarding the Use and Assignment of Catch and Effort Limits of Pelagic Management Unit Species by the U.S. Pacific Island Territories and Specification of Annual Bigeye Tuna Catch Limits for the U.S. Pacific Island Territories, including an Environmental Assessment and Regulatory Impact Review. Honolulu, HI. p. 279.


APPENDIX A: EVALUATION OF PROPOSED TERRITORIAL BIGEYE TUNA CATCH AND ALLOCATION LIMITS
Evaluation of US Territorial Bigeye Tuna Catch and Allocation Limits1

Paper by Eric Kingmaa and Keith Bigelowb

a Western Pacific Fishery Management Council, 1164 Bishop Street, Honolulu, HI 96816 USA
b National Marine Fisheries Service, Pacific Islands Fisheries Science Center, Inouye Regional Center
1845 Wasp Boulevard, Building 176
Honolulu, HI 96818

Background

This report describes an evaluation of a proposed management action that considers longline bigeye tuna catch and allocation limits for the U.S. Participating Territories2 of American Samoa, Guam, and Northern Mariana Islands. This report evaluates the impact on bigeye stock status of the various catch and allocation limit specifications under consideration by the Western Pacific Regional Fishery Management Council.

Bigeye tuna is considered a Pacific-wide stock but is assessed separately in the western and central Pacific Ocean (WCPO) and the eastern Pacific Ocean (EPO). The most recent stock assessment for WCPO bigeye tuna was completed in July 2017 (McKechnie et al., 2017) and updated in 2018 (Vincent et al., 2018). The latest assessment incorporated bigeye catch data through 2015, and investigated alternative regional bigeye tuna spatial structure in combination with a new bigeye tuna growth curve, with the latter suggesting bigeye tuna is more productive than previously assumed.

The WCPFC Scientific Committee (SC) reviewed and endorsed the 2017 bigeye stock assessment at its Thirteenth Regular Session (SC13) as the most advanced and comprehensive assessment yet conducted for this species. At the Fourteenth Regular Session of the Science Committee (SC14), the SC also endorsed the use of the assessment model uncertainty grid as best available scientific information to characterize stock status and management advice. SC14 recommended to retain only model runs with the newest growth information, comprising 36 model configurations and noted variance in the assessment results with respect to regional stock structure. The consensus weighting considered all options to be equally likely within the four axes of uncertainty for steepness, tagging dispersion, size frequency and regional structure. The resulting uncertainty grid was used to characterize stock status, summarize reference points and to calculate the probability of breaching the Commission-adopted spawning biomass limit reference point ($0.2*SB_{F=0}$) and the probability of $F_{\text{recent}}$3 being greater than $F_{\text{MSY}}$ (WCPFC 2018).

Based on the uncertainty grid adopted by SC14, the WCPO bigeye tuna spawning biomass is likely above the MSST of the Pelagics FEP and the WCPFC’s biomass LRP. Additionally, $F_{\text{recent}}$ is likely below $F_{\text{MSY}}$ (MFMT). Therefore noting the level of uncertainties in the current

---

2 American Samoa, Guam, and the Northern Mariana Islands have Participating Territory (PT) status within the WCPFC and are provided different catch and effort limits than the United States under WCPFC conservation and management measures.
3 Average fishing mortality-at-age for a recent period (2011–2014).
assessment it appears that the stock is not experiencing overfishing (94% probability, 34 of 36 models) and it appears that the stock is not in an overfished condition (100% probability) in 2015 with respect to Commission-adopted LRP (SBlatest\(^4\)/SBMSY). The central tendency of relative SBrecent\(^5\) under the selected new growth curve model weightings in the absence of fishing was median (SBrecent/SBF=0) = 0.36 with a range of 0.25 to 0.45 and (median SBlatest/SBMSY = 1.62) with a range of 1.15 and 2.19.

At the WCPFC’s 15\(^{th}\) Regular Session (WCPFC15) held December 10–14, 2018, in Honolulu, the SPC presented an evaluation of the implementation of CMM 2017-01 on bigeye tuna stock status projected to year 2045 (SPC 2018).\(^6\) This evaluation was based on the 2017 bigeye tuna stock assessment (McKechnie et al., 2017) and updated by Vincent et al. 2018.

In 2017, the WCPFC adopted CMM 2017-01 which includes as an objective to have the bigeye spawning biomass depletion ratio (SB/SBF=0) to be maintained at or above the average SB/SBF=0 for 2012–2015. To achieve this objective, the Conservation and Management Measure (CMM) includes a number of provisions to be implemented including longline catch bigeye limits for certain member countries and seasonal purse seine Fish Aggregation Device (FAD) closures in exclusive economic zones (EEZs) as well as the high seas in the area between 20°N and 20°S. At WCPFC15, the commission adopted CMM 2018-01, which is essentially a roll-over of CMM 2017-01 and effective through 2020. Under CMM 2018-01, the U.S. longline bigeye limit is maintained at the 2016 level of 3,554 t. Five other members have longline bigeye catch limits specified in the measure, which also were maintained at their 2016 levels (Table 1), with the exception of China, which obtained a 500 t higher limit than provided in 2016 through a transfer from Japan. Under CMM 2018-01, other members catching less than 2,000 t are allowed to harvest up to 2,000 t, while Small Island Developing States (SIDS) and Participating Territories (PTs) longline bigeye catches continued to be unlimited under the measure. The U.S. territories of American Samoa, Guam and the Commonwealth of the Northern Mariana Islands are PTs, and under CMM 2018-01 have no catch limits on bigeye tuna.

\(^4\) SBlatest is for 2015.
\(^5\) SBrecent is for 2012–2015.
\(^6\) The SPC conducted a 30-year projection from 2016, rather than a 20-year projection due to the stock not reaching equilibrium in the 20-year horizon with the assumed purse seine effort and longline catch, and under the recruitment assumptions used. (G. Piling. SPC, pers. comm. January 2018).


**Evaluation of Territorial Bigeye Tuna Catch and Allocation Limits**

Pursuant to Amendment 7 of the PFEP, the Council is considering recommending the specification of bigeye tuna catch and allocation limits for each of the U.S. territories. Specification options under consideration include the following:

1. No specification of longline catch or allocation limits for any U.S. participating territory in 2019 (No catch or allocation limit);

   (Status quo): Specify for each U.S. participating territory, a 2,000-t longline catch limit and 1,000-t allocation limit in 2019;

2. Specification of a total longline bigeye limit of 2,000 t and allocation limits of up to 2,000 t for each U.S. participating Territory. For the purposes of this analysis, various allocation scenarios below are evaluated.
   
   a. 1,000-t allocation limit per territory
   
   b. 1,500-t allocation limit per territory
   
   c. 2,000-t allocation limit per territory

For each option, there are different levels of bigeye tuna limits that NMFS and the Council would authorize each U.S. territory to catch, or to allocate for use by Hawaii-permitted longline vessels under specified fishing agreements. Therefore, there are a range of potential outcomes with respect to a number of specified fishing agreements (i.e., 1, 2 or 3) that could be established in a given year, and the magnitude of the catch (e.g., 1,000; 1,500; or 2,000 t) per agreement. There are four potential outcomes for Option 2 (A–D) and 9 potential outcomes for Option 3 (E–M:Table 1).

<table>
<thead>
<tr>
<th>Option 2</th>
<th>Option 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential Outcome A: 1 agreement (1,000 t)</td>
<td>Potential Outcome E: 1 agreement (1,000 t)</td>
</tr>
<tr>
<td>Potential Outcome B: 2 agreements (2,000 t)</td>
<td>Potential Outcome F: 2 agreements (2,000 t)</td>
</tr>
<tr>
<td>Potential Outcome C: 3 agreements (3,000 t)</td>
<td>Potential Outcome G: 3 agreements (3,000 t)</td>
</tr>
<tr>
<td>Potential Outcome D: 3 agreements and full utilization of each Territory’s 2,000-t limit (6,000 t)</td>
<td>Potential Outcome H: 1 agreement (1,500 t)</td>
</tr>
</tbody>
</table>

| Potential Outcome I: 2 agreements (3,000 t) |
| Potential Outcome J: 3 agreements (4,500 t) |
Option 4 is also included herein. Option 4 includes total catch limits of 3,000 t per territory and potential allocations of up to 3,000 t per territory. The various outcomes listed above were not included for Option 4 as there would substantial repetition between potential outcomes associated with Options 2 and 3. However, two outcomes N and O for option 4 were evaluated: N = total catch limit of 3,000 mt per territory and potential allocation of up to 2,000 mt per territory, with total catch capped at 12,544; O = allocation limit of up to 3,000 mt per territory and potential catch of 12,998 (which includes an additional nominal amount of 541 t of American Samoa longline bigeye catch).

At the request of the Council and NMFS, SPC conducted projections for the options listed above and evaluated the potential outcomes in relation to the implementation of CMM 2018-01 with respect to future (2045) bigeye stock status. The projections were based on scalars to the Hawaii-permitted longline catch within the MULTIFAN-CL bigeye assessment model framework that represent the potential outcomes under the various options.

The SPC analysis assumes implementation of the CMM 2018-01, including the 3-month purse seine FAD closure within EEZs and the high seas and an additional two sequential months on the high seas by member countries. For longline catches, the SPC analysis assumed that countries with specified annual longline bigeye limits in excess of 2,000 t would each catch their full annual limit, even if actual catches have been less (e.g., Japan and Indonesia; Table 2). For member countries that have bigeye longline catches less than 2,000 t, and for SIDS and PTs without limits specified in CMM 2018-01, the SPC analysis assumed that the catches of these fleets would continue at their average 2013–2015 levels.

Table 48. 2019 and 2020 longline bigeye catch limits and 2017 reported longline bigeye catches for six WCPFC members.

<table>
<thead>
<tr>
<th>Member Countries, Participating Territories, and Cooperating Non-members</th>
<th>2019 and 2020 Longline Bigeye Catch Limit (t)</th>
<th>2017 Longline Bigeye Catch (t) Reported to WCPFC</th>
</tr>
</thead>
</table>

7 The projections for Outcome M include an additional nominal amount of 541 t of American Samoa longline bigeye catch.
## Member Countries, Participating Territories, and Cooperating Non-members

<table>
<thead>
<tr>
<th>Country</th>
<th>2019 and 2020 Longline Bigeye Catch Limit (t)</th>
<th>2017 Longline Bigeye Catch (t) Reported to WCPFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>17,765</td>
<td>11,669</td>
</tr>
<tr>
<td>Korea</td>
<td>13,942</td>
<td>10,220</td>
</tr>
<tr>
<td>Chinese Taipei</td>
<td>10,481</td>
<td>9,638</td>
</tr>
<tr>
<td>China</td>
<td>8,724</td>
<td>7,023</td>
</tr>
<tr>
<td>Indonesia</td>
<td>5,889</td>
<td>13</td>
</tr>
<tr>
<td>United States</td>
<td>3,554</td>
<td>2,968</td>
</tr>
</tbody>
</table>

Source: CMM 2018-01
Source: 2017 catch as reported by members to the WCPFC
Note: Hawaii longline vessels operating under the U.S. limit and U.S. Participating Territory agreements landed the respective tonnage of bigeye into Honolulu for years 2015, 2016, 2017: 5,723 t, 6,144 t and 5,295.

It is noted that member flag States with longline catches of bigeye of less than 2,000 t could increase their catch to this level and remain compliant with the CMM 2018-01, and further that longline fleets of SIDS and PTs are currently unrestricted and could increase their catches of bigeye to any level.

The SPC projections utilized the short-term future bigeye tuna recruitment hypothesis. Under the short-term recruitment hypothesis, future recruitment would remain on average consistent with 2004 to 2013 conditions. The WCPFC Science Committee has agreed that for the purpose of evaluating the CMM that the recent recruitment scenario is more appropriate because of the possibility of some bias in the estimates of early recruitment in the bigeye stock assessment (SPC 2014).

To evaluate the impacts on bigeye tuna stock status from the alternatives listed above, the SPC conducted 17 model scenario runs. The baseline scenario represents 2013–2015 average catch or 2015 for bigeye catch by Hawaii-permitted longline vessels inclusive of two specified fishing agreements in 2015, one with the CNMI and the other with Guam. All of the scenarios runs reflect implementation of CMM 2018-01, including the assumption that Japan and Indonesia would catch the full amount of their bigeye catch limit. Evaluation of the options and their associated scenarios utilize scalars applied to the 2015 U.S. longline bigeye catch to account for various bigeye tuna transfer levels associated with 0, 1, 2 or 3 specified fishing agreements. The Option 1 scenario represents no action in relation to the U.S. proposal to set territorial catch and allocation limits. Thus, with no transfers of Territorial allocation to Hawaii longline vessels, the Option 1 projection includes less catch than the 2015 level. The four potential outcomes for Option 2 include territorial transfers of 1,000, 2,000, and 3,000 t mt of bigeye to longline vessels from 1, 2, or 3 territories (A–C, respectively) and then also adding full utilization of territorial catch limits up to a maximum of 6,000-t mt (D). For Option 3, nine potential outcomes were
evaluated that reflect 1, 2, or 3 specified fishing agreements subject to various allocation limits per territory (1,000 t, 1,500 t, and 2,000 t).

The U.S. longline catch assumptions, which included potential transfer of allocations from U.S. territories to eligible U.S. vessels under the various scenarios were applied in WCPO bigeye stock assessment regions and projections were calculated using the scalars illustrated in Table 4. In accordance with Federal regulations at 50 CFR 300.224, bigeye tuna caught outside the Hawaii EEZ by longline vessels that are permitted to fish and land fish in both American Samoa and Hawaii (AS/HI Dual Permitted) is assigned to American Samoa even if the vessel does not initiate fishing from, or return to land fish in American Samoa. Such catches are shown separately, and were not scaled as they are already included in the baseline.

Results

Results of the projections are presented in Tables 5–8. SPC (2018) did not calculate values for spawning biomass and total biomass in 2045 versus biomass at MSY. Instead, they focused on the spawning biomass ratio instead on the spawning biomass ratio to that in the absence of fishing (SB/SBF=0), which is WCPFC’s adopted interim Limit Reference Point (LRP) for bigeye tuna. Specifically, WCPFC considers bigeye tuna to be overfished when SB/SBF=0 falls below 20 percent (SB/SBF=0 < 0.20).

The SC14 summary report indicated that recent SBrecent/SBMSY had a mean of 1.39, which is well above the established overfished reference point (0.6 SB/SBMSY) for bigeye tuna under the Fishery Ecosystem Plan for Pelagic Fisheries of the Western Pacific Region (PFEP). Notwithstanding, for all the projections, there is low probability that the ratio of biomass to biomass at MSY would breach the PFEP overfished stock status criteria and biomass would be greater than the level necessary to produce MSY on a continuing basis.8

Under Option 1, if CMM 2018-01 was implemented, and the total catch of bigeye by U.S. longline fisheries were held at the U.S. limit of 3,554 t, 541 t for the American Samoa longline fishery, and no specified fishing agreements, then the F2045/FMSY is projected to be 0.82, indicating the bigeye tuna would not be subject to overfishing, and spawning biomass (SB2045/SBF=0 = 0.38) would be above the WCPFC’s LRP.

Under Option 2, there are four distinct possible fishery outcomes depending on the number of specified fishing agreements authorized. Under Potential Outcome 2A, the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t, which is the average catch for 2012–2017. With one specified fishing agreement with 1,000 t of bigeye catch allocation transferred to Hawaii longline vessels from a U.S. territory, the projected F2045/FMSY = 0.83 and SB2045/SBF=0 = 0.37. This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome A.

---

8 The WPFMC reference point of 0.6SBmsy is approximately 0.14 SBF=0 for bigeye tuna. The potential outcome with the greatest impact to bigeye stock status is Option 4, Potential Outcome O, which is projected to result in SB2045/SBF=0 = 0.36. However, under this scenario, bigeye tuna stock status would remain above the WCPFC overfished limit reference point and the stock would not be overfished.
Under Potential Outcome 2(B), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With two specified fishing agreements with 2,000 t of bigeye catch allocation transferred to Hawaii longline vessels from U.S. territories, the projected $F_{2045}/F_{MSY} = 0.84$ and $SB_{2045}/SB_F=0 = 0.37$. This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome B.

Under Potential Outcome 2(C), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With three specified fishing agreements with 3,000 t of bigeye catch allocation transferred to Hawaii longline vessels from U.S. territories, the projected $F_{2045}/F_{MSY} = 0.85$ while $SB_{2045}/SB_F=0 = 0.37$. This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome C.

Under Potential Outcome 2(D), the U.S. Hawaii longline fleet would catch 3,554 t. With three fishing agreements, with 3,000 t of bigeye catch allocation transferred to Hawaii longline vessels from U.S. territories and full utilization of the remaining portion of their specified catch limit of 1,000 t) by longline fisheries of American Samoa, Guam and the Northern Mariana Islands (for a total of 3,000 t), the projected $F_{2045}/F_{MSY} = 0.86$ while $SB_{2045}/SB_F=0 = 0.37$. This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome D.

Under Option 3, there are an additional 9 potential outcomes (E-M). Under Potential Outcome 3(E), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With only one specified fishing agreement 1,000 t of bigeye catch allocated to Hawaii longline vessels, the projected $F_{2045}/F_{MSY} = 0.83$ and $SB_{2045}/SB_F=0 = 0.37$. This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome E.

Under Potential Outcome 3(F), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With two specified fishing agreements with 2,000 t of bigeye catch allocation transferred to Hawaii longline vessels from U.S. territories, the projected $F_{2045}/F_{MSY} = 0.84$ and $SB_{2045}/SB_F=0 = 0.37$. This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome F.

Under Potential Outcome 3(G), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With three specified fishing agreements with 3,000 t of bigeye catch allocation transferred to Hawaii longline vessels from U.S. territories, the projected $F_{2045}/F_{MSY} = 0.85$ while $SB_{2045}/SB_F=0 = 0.37$. This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome G.

Under Potential Outcome 3(H), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With only one specified fishing agreement with 1,500 t of bigeye catch allocated to Hawaii longline vessels, the projected $F_{2045}/F_{MSY} = 0.83$ and $SB_{2045}/SB_F=0 = 0.37$. This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome H.
Under Potential Outcome 3(I), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With two specified fishing agreements with 3,000 t of bigeye catch allocation transferred to Hawaii longline vessels from U.S. territories, the projected \( F_{2045}/F_{MSY} = 0.85 \) while \( SB_{2045}/SB_{F=0} = 0.37 \). This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome I.

Under Potential Outcome 3(J), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With two specified fishing agreements with 4,500 t of bigeye catch allocation transferred to Hawaii longline vessels from U.S. territories, the projected \( F_{2045}/F_{MSY} = 0.86 \) while \( SB_{2045}/SB_{F=0} = 0.37 \). This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome J.

Under Potential Outcome 3(K), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With one specified fishing agreement with 2,000 t of bigeye catch allocation transferred to Hawaii longline vessels from U.S. territories, the projected \( F_{2045}/F_{MSY} = 0.84 \) and \( SB_{2045}/SB_{F=0} = 0.37 \). This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome K.

Under Potential Outcome 3(L), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With two specified fishing agreements with 4,000 t of bigeye catch allocation transferred to Hawaii longline vessels from U.S. territories, the projected \( F_{2045}/F_{MSY} = 0.85 \) and \( SB_{2045}/SB_{F=0} = 0.37 \). This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome L.

Under Potential Outcome 3(M), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With three specified fishing agreements with up to 6,000 t of bigeye catch allocation transferred to Hawaii longline vessels from U.S. territories, including an additional nominal amount of 541 t of American Samoa longline bigeye catch, the projected \( F_{2045}/F_{MSY} = 0.87 \) and \( SB_{2045}/SB_{F=0} = 0.36 \). This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome M.

Under Potential Outcome 4(N), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With three specified fishing agreements of up to 3,000 t each of bigeye catch allocation (9,000 t total) transferred to Hawaii longline vessels from U.S. territories, the projected \( F_{2045}/F_{MSY} = 0.88 \) and \( SB_{2045}/SB_{F=0} = 0.36 \). This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome N.

Under Potential Outcome 4(O), the U.S. Hawaii longline fleet would catch 3,554 t, and the American Samoa longline fishery would catch 541 t. With three specified fishing agreements of up to 3,000 t each bigeye catch allocation (total 9,000 t) transferred to Hawaii longline vessels from U.S. territories, including an additional nominal amount of 541 t of American Samoa longline bigeye catch, the projected \( F_{2045}/F_{MSY} = 0.88 \) and \( SB_{2045}/SB_{F=0} = 0.36 \). This indicates that bigeye tuna would not be subject to overfishing and not overfished in 2045 as a result of Potential Outcome O.
Table 49. Bigeye Tuna Catch (t) by U.S. and Territorial Longline Fisheries in the western and central Pacific Ocean 2012–2017.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Catch allocated to Hawaii longline vessels through a specified fishing agreement with American Samoa</td>
<td>758</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>815 787</td>
</tr>
<tr>
<td>Catch allocated to Hawaii longline vessels through a specified fishing agreement with the CNMI</td>
<td>997</td>
<td>879</td>
<td>999</td>
<td>1,000</td>
<td>492</td>
<td></td>
<td>873</td>
</tr>
<tr>
<td>Catch allocated to Hawaii longline vessels through a specified fishing agreement with Guam</td>
<td></td>
<td>932</td>
<td>856</td>
<td></td>
<td></td>
<td></td>
<td>894</td>
</tr>
<tr>
<td>Dual permitted U.S. Hawaii/American Samoa longline vessels</td>
<td>572</td>
<td>588</td>
<td>441</td>
<td>236</td>
<td>305</td>
<td>523</td>
<td>444</td>
</tr>
<tr>
<td>American Samoa longline permitted vessel</td>
<td>64</td>
<td>72</td>
<td>116</td>
<td>82</td>
<td>84</td>
<td>164</td>
<td>97</td>
</tr>
<tr>
<td>Guam longline vessels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CNMI longline vessels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>Total Longline Bigeye Catch</td>
<td>5,359</td>
<td>6,216</td>
<td>5,839</td>
<td>5,141</td>
<td>4,535</td>
<td>5,162</td>
<td>5,375</td>
</tr>
</tbody>
</table>

Source: PIFSC 2018 U.S. Annual Part 1 Report to the WCPFC.
Table 50. Methodology to determine scalars on U.S. longline bigeye catches to evaluate potential outcomes of the proposed action.

<table>
<thead>
<tr>
<th>Runs</th>
<th>U.S. HI Longline Permitted Vessel BET Catch</th>
<th>AS/HI Dual Permitted Longline Vessel BET Catch</th>
<th>AS/GU/CN MI Longline BET Catch*</th>
<th>BET Allocations to HI Longline Vessels</th>
<th>Projected U.S. Longline BET Catch (Regions 2 and 4)*</th>
<th>Scalar on 2015 U.S. Longline BET Catch in SPC data (Regions 2 and 4)+</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 Baseline</td>
<td>3,427</td>
<td>441</td>
<td>116</td>
<td>1,855</td>
<td>5,723</td>
<td>1</td>
</tr>
<tr>
<td>Option 1: No action</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>0</td>
<td>3,998</td>
<td>0.69</td>
</tr>
<tr>
<td>Option . 2: 2,000-t catch limit/1,000-t allocation limit</td>
<td>See below</td>
<td>See below</td>
<td>See below</td>
<td>See below</td>
<td>See below</td>
<td>See below</td>
</tr>
<tr>
<td>Potential Outcome A</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>1,000</td>
<td>4,998</td>
<td>0.87</td>
</tr>
<tr>
<td>Potential Outcome B</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>2,000</td>
<td>5,998</td>
<td>1.05</td>
</tr>
<tr>
<td>Potential Outcome C</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>3,000</td>
<td>6,998</td>
<td>1.22</td>
</tr>
<tr>
<td>Potential Outcome D</td>
<td>3,554</td>
<td>0 (see next column)</td>
<td>6,000²</td>
<td>3,000</td>
<td>9,554</td>
<td>1.67</td>
</tr>
<tr>
<td>Option 3: 2,000-mt limit; allocation limits (1,000, 1,500, 2,000)</td>
<td>See below</td>
<td>See below</td>
<td>See below</td>
<td>See below</td>
<td>See below</td>
<td>See below</td>
</tr>
<tr>
<td>Potential outcome E (1,000)</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>1,000</td>
<td>4,998</td>
<td>0.87</td>
</tr>
<tr>
<td>Potential outcome F (2,000)</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>2,000</td>
<td>5,998</td>
<td>1.05</td>
</tr>
<tr>
<td>Potential outcome G (3,000)</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>3,000</td>
<td>6,963</td>
<td>1.22</td>
</tr>
<tr>
<td>Potential outcome H (1,500)</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>1,500</td>
<td>5,498</td>
<td>0.95</td>
</tr>
<tr>
<td>Potential outcome I (3,000)</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>3,000</td>
<td>6,998</td>
<td>1.22</td>
</tr>
<tr>
<td>Potential outcome J (4,500)</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>4500</td>
<td>8,498</td>
<td>1.48</td>
</tr>
</tbody>
</table>
### Appendix A

**Territorial Bigeye Tuna Catch and Allocation Limits**

<table>
<thead>
<tr>
<th>Runs</th>
<th>U.S. HI Longline Permitted Vessel BET Catch</th>
<th>AS/HI Dual Permitted Longline Vessel BET Catch</th>
<th>AS/GU/CNMI Longline BET Catch*</th>
<th>BET Allocations to HI Longline Vessels</th>
<th>Projected U.S. Longline BET Catch (Regions 2 and 4)*</th>
<th>Scalar on 2015 U.S. Longline BET Catch in SPC data (Regions 2 and 4)+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential outcome K (2,000)</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>2,000</td>
<td>5,998</td>
<td>1.05</td>
</tr>
<tr>
<td>Potential outcome L (4,000)</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>4,000</td>
<td>7,998</td>
<td>1.40</td>
</tr>
<tr>
<td>Potential Outcome M (6,000)</td>
<td>3,554</td>
<td>444¹</td>
<td>97</td>
<td>6,000</td>
<td>9,998</td>
<td>1.75</td>
</tr>
<tr>
<td>Option 4 Potential Outcome N</td>
<td>3,554</td>
<td>444¹</td>
<td>2,546</td>
<td>6,000</td>
<td>12,554</td>
<td>2.19</td>
</tr>
<tr>
<td>Option 4 Potential Outcome O</td>
<td>3,554</td>
<td>444</td>
<td>97</td>
<td>9,000</td>
<td>12,998</td>
<td>2.27</td>
</tr>
</tbody>
</table>

Notes:
* The model accounts for BET catch by U.S longline vessels landing in AS in Region 6, which was 116 in 2015 and averaged 120 t for the 2011–2016 period. The projected U.S. and American Samoa catches are accounted for in deterministic projections of BET stock status in 2045 in Tables 4–8. There were no reported longline BET landings in Guam or CNMI in 2015, and currently, there are no U.S. longline vessels active in Guam or CNMI.

¹ AS/HI LL dual permit catch (441 t) = average catch from dual American Samoa/Hawaii longline permitted vessels from 2012 to 2017.
² Potential Outcome D assumes each U.S. territory allocates 1,000 t to Hawaii longline permitted vessel and the remainder (1,000 t) of its specified catch limit is caught by longline vessels operating in the respective territory.
Table 51. Projections related to Options 1, and 2 with percent change in $F_{2045}/F_{MSY}$ and $SB_{2045}/SB_{F=0}$, at various scalars of U.S. BET catch.

<table>
<thead>
<tr>
<th>No. of Specified Fishing Agreements</th>
<th>Baseline Catch</th>
<th>Option 1: No Action</th>
<th>Option 2: 2,000-t Catch Limit and 1,000-t Allocation Limit for each U.S. Territory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015</td>
<td>No Fishing Agreements and No BET Transfers</td>
<td>1 Fishing Agreement and 1,000 t of BET Transfers</td>
</tr>
<tr>
<td>Scaled U.S. Longline BET Catch (Regions 2 and 4)</td>
<td>5,723 t</td>
<td>3,998 t</td>
<td>4,998 t</td>
</tr>
<tr>
<td>HI: 3,427</td>
<td>HI: 3,554</td>
<td>HI: 3,554</td>
<td>HI: 3,554</td>
</tr>
<tr>
<td>HI/AS Dual: 444 Transfers: 1,855</td>
<td>HI/AS Dual: 444 Transfers: 0</td>
<td>HI/AS Dual: 444 Transfers: 1,000 Transfers: 2,000</td>
<td>HI/AS Dual: 444 Transfers: 1,000 Transfers: 2,000</td>
</tr>
<tr>
<td>F$<em>{2045}/F</em>{MSY}$</td>
<td>0.73</td>
<td>0.82</td>
<td>0.83</td>
</tr>
<tr>
<td>SB$<em>{2045}/SB</em>{F=0}$</td>
<td>0.42</td>
<td>0.38</td>
<td>0.00</td>
</tr>
</tbody>
</table>
| Note: The percent change is calculated with respect to values associated with Alternative 1, which includes full implementation of CMM 2017-01, with no US territory catch transfers under specified fishing agreements. The baseline catch is the average (2013–2015) total purse seine associated effort and longline catch levels within the bigeye tuna stock assessment. All alternatives assume full implementation of CMM 2017-01.
Table 52. Projections related to Option 3(a) with percent change in $F_{2045}/F_{MSY}$ and $SB_{2045}/SB_{BF=0}$, at various scalars of U.S. BET catch.

<table>
<thead>
<tr>
<th>No. of Specified Fishing Agreements</th>
<th>Scaled U.S. Longline BET Catch (Regions 2 and 4)</th>
<th>Potential Outcome E</th>
<th>Potential Outcome F</th>
<th>Potential Outcome G</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Fishing Agreements and No BET Transfers</td>
<td>3,998 t HI: 3,554 HI/AS Dual: 444 Transfers: 0</td>
<td>4,998 t HI: 3,554 HI/AS Dual: 444 Transfers: 1,000</td>
<td>5,998 t HI: 3,554 HI/AS Dual: 444 Transfers: 2,000</td>
<td>6,998 t HI: 3,554 HI/AS Dual: 444 Transfers: 3,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Percent Change</th>
<th>Percent Change</th>
<th>Percent Change</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{2045}/F_{MSY}$</td>
<td>0.82</td>
<td>0.00</td>
<td>0.83</td>
<td>1.2</td>
</tr>
<tr>
<td>$SB_{2045}/SB_{BF=0}$</td>
<td>0.38</td>
<td>0.00</td>
<td>0.37</td>
<td>-2.6</td>
</tr>
</tbody>
</table>
Table 53. Projections related to Option 3 (b) with percent change in $F_{2045}/F_{MSY}$ and $SB_{2045}/SBF=0$, at various scalars of US BET catch.

<table>
<thead>
<tr>
<th>No. of Specified Fishing Agreements</th>
<th>Alternative 1: No Action</th>
<th>Alternative 3: 2,000-mt Catch Limits and Allocation Limits of 1,500 per Territory</th>
<th>Potential Outcome H</th>
<th>Potential Outcome I</th>
<th>Potential Outcome J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaled U.S. Longline BET Catch (Regions 2 and 4)</td>
<td>3,998 t</td>
<td>5,498 t</td>
<td>6,998 t</td>
<td>8,498 t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HI: 3,554</td>
<td>HI: 3,554</td>
<td>HI: 3,554</td>
<td>HI: 3,554</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HI/AS Dual: 444</td>
<td>HI/AS Dual: 444</td>
<td>HI/AS Dual: 444</td>
<td>HI/AS Dual: 444</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfers: 0</td>
<td>Transfers: 1,500</td>
<td>Transfers: 3,000</td>
<td>Transfers: 4,500</td>
<td></td>
</tr>
<tr>
<td>Percent Change</td>
<td>Percent Change</td>
<td>Percent Change</td>
<td>Percent Change</td>
<td>Percent Change</td>
<td></td>
</tr>
<tr>
<td>$F_{2045}/F_{MSY}$</td>
<td>0.82</td>
<td>0.83</td>
<td>0.85</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>$SB_{2045}/SBF=0$</td>
<td>0.38</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td></td>
</tr>
</tbody>
</table>
Table 54. Projections related to Option 3(c) with percent change in $F_{2045}/F_{M_{SY}}$ and $SB_{2045}/SB_{F=0}$, at various scalars of U.S. BET catch.

<table>
<thead>
<tr>
<th>No. of Specified Fishing Agreements</th>
<th>Alternative 1: No Action</th>
<th>Alternative 3: 2,000-mt Catch Limits and Allocations Limits of 2,000 per Territory</th>
<th>Potential Outcome K</th>
<th>Potential Outcome L</th>
<th>Potential Outcome M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scaled U.S. Longline BET Catch (Regions 2 and 4)</td>
<td></td>
<td>1 Fishing Agreement and 2,000 t of BET Transfers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Fishing Agreements and 4,000 t of BET Transfers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Fishing Agreements and 6,000 t of BET Transfers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Fishing Agreements and No BET Transfers</td>
<td></td>
<td>3,998 t</td>
<td>HI: 3,554</td>
<td>HI: 3,554</td>
<td>HI: 3,554</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HI/AS Dual: 444 Transfers: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,998 t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HI: 3,554</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HI/AS Dual: 444 Transfers: 2,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,998 t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HI: 3,554</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HI/AS Dual: 444 Transfers: 4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9,998 t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HI: 3,554</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HI/AS Dual: 444 Transfers: 6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Change</td>
<td>Percent Change</td>
<td>Percent Change</td>
<td>Percent Change</td>
<td>Percent Change</td>
<td>Percent Change</td>
</tr>
<tr>
<td>$F_{2045}/F_{M_{SY}}$</td>
<td>0.82</td>
<td>0.00</td>
<td>0.84</td>
<td>2.4</td>
<td>0.85</td>
</tr>
<tr>
<td>$SB_{2045}/SB_{F=0}$</td>
<td>0.38</td>
<td>0.00</td>
<td>0.37</td>
<td>-2.6</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Table 55. Projections related to Option 4 with percent change in F2045/FMSY and SB2045/SBF=0 at various scalars of US BET catch.

<table>
<thead>
<tr>
<th>No. of Specified Fishing Agreements</th>
<th>Option 1: No Action</th>
<th>Option 4: 3,000-t Catch Limits and Allocations Limits of up to 3,000 t per Territory</th>
<th>Potential Outcome N</th>
<th>Potential Outcome O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Fishing Agreements and No BET Transfers</td>
<td>3 Fishing Agreements and 3,000 t of BET Transfers and 6,000 mt of US territory catch combined</td>
<td>3 Fishing Agreements and 9,000 t of BET Transfers</td>
<td>12,998 t</td>
</tr>
<tr>
<td>Scaled U.S. Longline BET Catch (Regions 2 and 4)</td>
<td>3,998 t</td>
<td>12,554 t</td>
<td>12,998 t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HI: 3,554</td>
<td>HI: 3,554</td>
<td>HI: 3,554</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HI/AS Dual: 444</td>
<td>CNMI/GU/AS 6,000</td>
<td>HI/AS Dual: 444</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfers: 0</td>
<td>Transfers: 3,000</td>
<td>Transfers: 9,000</td>
<td></td>
</tr>
<tr>
<td>F2045/FMSY</td>
<td>0.82</td>
<td>0.00</td>
<td>0.88</td>
<td>7.3</td>
</tr>
<tr>
<td>SB2045/SBF=0</td>
<td>0.38</td>
<td>0.00</td>
<td>0.36</td>
<td>-5.2</td>
</tr>
</tbody>
</table>
Acknowledgements
The authors acknowledge and appreciate the work of Dr. Graham Pilling of SPC in conducting
the bigeye stock status projections included in this paper.

References
and central Pacific Ocean. Thirteenth Regular Session of the WCPFC Scientific
Committee. 9-17 August, 2017. Rarotonga, Cook Islands. WCPFC-SC13-2017-SA-WP-
05. Rev 1. 149 p.

of the WCPFC Scientific Committee. 9-17 August, 2017. Rarotonga, Cook Islands.


SPC (2017a). An evaluation of the management options for purse seine and longline fisheries
defined by the TT CMM Intersessional meeting- revision 1. Fourteenth Regular Session
29 p.

Fourteenth Regular Session of the WCPFC. 3-7 December 2017. Manila, Philippines.
21 p.

the 2017 WCPO bigeye stock assessment grid, and examination of the sensitivity of
estimates to alternative model spatial structures. Paper presented at: 14th Regular Session
of the Scientific Committee of the WCPFC. Busan, Republic of Korea.


APPENDIX B.  REGULATORY IMPACT REVIEW

1. Introduction

This document is a regulatory impact review (RIR) prepared under Executive Order (E.O.) 12866, “Regulatory Planning and Review.” The regulatory philosophy of E.O. 12866 stresses that, in deciding whether and how to regulate, agencies should assess all costs and benefits of all regulatory alternatives and choose those approaches that maximize the net benefits to the society. To comply with E.O. 12866, NMFS prepares an RIR for regulatory actions that are of public interest. The RIR provides an overview of the problems, policy objectives, and anticipated impacts of regulatory actions. The regulatory philosophy of E.O. 12866 is reflected in the following statement:

In deciding whether and how to regulate, agencies should assess all costs and benefits of available regulatory alternatives, including the alternative of not regulating. Costs and benefits shall be understood to include both quantifiable measures (to the fullest extent that these can be usefully estimated) and qualitative measures of costs and benefits that are difficult to quantify, but nevertheless essential to consider. Further, in choosing among alternative regulatory approaches, agencies should select those approaches that maximize net benefits (including potential economic, environmental, public health and safety, and other advantages, distributive impacts; and equity), unless a statute requires another regulatory approach.

This RIR is for NMFS’ implementation of the Council’s recommendations for territorial bigeye tuna catch and allocation limits, for fishing year 2019. The Council would recommend and NMFS would authorize each U.S. territory to allocate and transfer bigeye tuna limits to a U.S. longline fishing vessel(s) permitted under the Pelagics FEP and identified in a specified fishing agreement applicable to the territory. Criteria for a specified fishing agreement and the process for attributing longline caught bigeye tuna made by vessels of the U.S. participating territories and U.S. vessels identified in an approved specified fishing agreement are codified in 50 CFR 665.819. Under existing regulations, the specified catch and allocation limits would be in effect until they expire at the end of the relevant fishing year.

NMFS proposes to specify a Council-recommended catch limit of 2,000 metric tons (t) of longline-caught bigeye tuna for each of the pelagic longline fisheries of American Samoa, Guam and the Northern Mariana Islands in 2019. Along with the proposed specification, NMFS also proposes to authorize each U.S. territory to allocate and transfer, up to 1,000 t of its 2,000 t bigeye tuna limit to a U.S. longline fishing vessel or vessels identified in a specified fishing agreement.

2. Problem Statement and Management Objective

The purpose of this action is to establish bigeye tuna catch and allocation limits for longline fisheries of each U.S. participating territory (American Samoa, Guam, and the CNMI) for fishing year 2019, and support the development of fisheries in those territories consistent with Amendment 7 to the Pelagics FEP and fishery development provisions of the Magnuson-Stevens
Act. The proposed catch limits for 2019 are needed to 1) prevent bigeye overfishing, 2) support fisheries development in US territories, and 3) promote the availability of sustainably caught bigeye from U.S. vessels supplying the Hawaii seafood market during the culturally important end of year season of peak demand. The need for this action is to ensure that NMFS and the Council manage allocations of longline caught bigeye tuna under specified fishing agreements consistent with the conservation needs of the stock.

A detailed description of the problem and the management objective are presented in Sections 1.3 and 1.4 of the Environmental Assessment (EA).

3. Description of the Fisheries

Section 3.2 of the EA provides an overview of the pelagic fisheries of the U.S. participating territories and Hawaii. These include the Hawaii longline fisheries (Section 3.2.1); American Samoa longline fishery (Section 3.2.2), Mariana Archipelago longline fishery (Section 3.2.3); and Hawaii troll and handline (Section 3.2.4). Section 3.2.5 presents specific information on U.S. longline catches of bigeye tuna in the Pacific, and Section 3.2.6 presents specific information on U.S. purse seine catches of bigeye tuna in the Western and Central Pacific.

4. Description of the Alternatives

This section describes the alternative longline bigeye tuna catch and allocation limits for American Samoa, Guam, and the CNMI for 2019. Please see Section 2 of the EA for more details on each of the alternatives that NMFS analyzed.

Alternative 1: No Specification of Territorial Catch or Allocation Limits (No Action)

Under Alternative 1, NMFS would not specify a bigeye tuna catch or allocation limit for any U.S. participating territory.

Alternative 2: Specify for each U.S. participating territory, a 2,000 t catch limit and 1,000 t allocation limit (Preferred/Status Quo)

Under Alternative 2, NMFS would implement the Council’s recommendation by specifying a catch limit of 2,000 t of bigeye tuna for each U.S. participating territory. NMFS would also authorize the three U.S. participating territories to each allocate up to 1,000 t of their 2,000 t bigeye limit to FEP-permitted longline vessels identified in a specified fishing agreement with a U.S. territory. Alternative 2 is identical to the bigeye tuna catch and allocation limit specifications implemented annually beginning with the 2014 fishing year. As an AM, NMFS would prohibit the retention of longline-caught bigeye tuna by vessels in the applicable U.S. territory (if NMFS projects the territorial limit will be reached), and/or by vessels operating under the applicable specified fishing agreement (if NMFS projects the allocation limit will be reached).

Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and that each territory can allocate up to 2,000 of the catch limit
Under Alternative 3, NMFS would specify a catch limit of 2,000 t of bigeye tuna for each U.S. participating territory. NMFS would also authorize the three U.S. territories to each allocate up to their entire 2,000 t bigeye limit to FEP-permitted longline vessels identified in a specified fishing agreement with a U.S. territory. As an AM, NMFS would prohibit the retention of longline-caught bigeye tuna by vessels in the applicable U.S. territory (if NMFS projects the territorial limit will be reached), and/or by vessels operating under the applicable specified fishing agreement (if NMFS projects the allocation limit will be reached).

5. Analysis of Alternatives

This section describes potential economic effects of alternatives that were considered and evaluates the impacts of the action alternative relative to the no-action alternative.

**Alternative 1: No Specification of Territorial Catch or Allocation Limits (No Action)**

Under Alternative 1, longline fisheries of American Samoa, Guam, and the CNMI would not be subject to a bigeye tuna catch limit and they would not be able to allocate any catch under a specified fishing agreement. Section 4.4 of the EA provides more information on impacts to longline fishery participants and fishing communities.

**U.S. longline fishery (Hawaii-based):**

The U.S. longline fishery based in Hawaii would be subject to a catch limit of 3,554 t. This fishery would likely reach the catch limit by November or earlier. Without the option of receiving an allocation of catch through an agreement with any participating territory, vessels in this fishery can no longer retain bigeye tuna caught in the WCPO upon reaching the catch limit.

Once the limit is reached, owners and operators of vessels in the Hawaii fleet have few other options besides tying up their boats for the remainder of the calendar year. Vessels that also have an American Samoa longline limited access permit (dual-permit holders) would be able to catch and retain bigeye tuna as long as it is caught outside the U.S. EEZ surrounding the Hawaiian Archipelago. Based on recent fishery performance from 2012-2017, NMFS anticipates that vessels operating in the longline fishery of American Samoa would catch approximately 541 t of bigeye tuna each year, although catch attributed to American Samoa would be expected to be higher during a period of extended closure. This is because vessels with dual permits might choose to fish for and land more bigeye tuna into Hawaii (which can be attributed to American Samoa) if the Hawaii-based boats are subject to a closure, because the closure would reduce the overall supply of fish landed in Hawaii leading to a higher price per pound of bigeye tuna.

In the event of a closure, Hawaii-based longline vessels may also fish for bigeye tuna in the Eastern Pacific Ocean (EPO), although larger boats, specifically those that exceed 24 meters in length are also subject to a 750 t bigeye tuna catch limit in the EPO (As of February 2019, 34 out of 144 vessels in the Hawaiian longline fishery are greater than 24 m). Vessels could also switch to targeting swordfish. However, NMFS closes the shallow-set longline fishery if it reaches a loggerhead or leatherback sea turtle interaction hard cap. Some vessels might stop fishing altogether until the end of the fishing year, if the option to switch to targeting swordfish is not available. On March 19, 2019, pursuant to the court-approved settlement agreement discussed in Section 3.3.1.2 of the EA, NMFS closed the Hawaii-shallow set fishery through December 31,
2019 (84 FR 11654, March 28, 2019) for reaching the annual interaction limit of 17 loggerhead sea turtles. NMFS is currently preparing a biological opinion that addresses the continued operation of the shallow-set longline fishery, which may result in changes to the current annual interaction limits. NMFS would publish any changes in a future rulemaking. Some longline vessels would have the option of switching to shallow-set longline fishing, targeting swordfish, especially among those vessels already outfitted to make this switch, should NMFS re-open the shallow-set sector in 2019.

**American Samoa, Guam, and the CNMI longline fisheries:**

Bigeye catch by longline vessels based in American Samoa, Guam, and the CNMI, as U.S. participating territories, would not be subject to a bigeye tuna catch limit. Recent fishery performance and the current lack of active longline vessels in the CNMI and Guam, suggest that longline vessels based in CNMI and Guam are unlikely to fish for bigeye tuna in 2019. The American Samoa longline fishery sees more activity by comparison. Bigeye tuna catches by longline vessels possessing an American Samoa limited entry permit averaged 541 t from 2012 through 2017. These landings included those that possessed longline limited entry permits for both American Samoa and Hawaii (hereafter, dual permitted vessels). Possessing both permits enabled these dual permitted vessels to attribute fish landed in Hawaii, but caught outside of the Hawaii EEZ, to American Samoa. Of the average 541 t caught by American Samoa longline vessels, dual permitted vessels fishing on the high seas accounted for an average 444 t, while vessels possessing a single American Samoa permit accounted for 97 t. of the landings. Once the Hawaii longline vessels are no longer able to retain bigeye tuna caught in the WCPO, dual permit holders might expect to earn a higher price per pound of bigeye tuna as compared to what they might earn for that same fish prior to the fishery reaching the limit. They might also increase fishing effort and/or number of trips to land more bigeye tuna in Hawaii with the potential to earn additional revenue.

**Markets, consumers, and wholesalers:**

Alternative 1 would result in a drop in the supply of locally-caught fresh bigeye tuna in Hawaii. Consumers and wholesalers may be expected to pay higher price per pound for fresh (and possibly frozen) bigeye tuna provided by other sources. The drop in this supply can be offset by dual AS/HI longline permit holders’ bigeye tuna landings, and landings from longline vessels fishing in the EPO. The offset would not be enough to completely meet demand for fresh tuna, especially at the end of the year, when demand for fresh bigeye tuna peaks. Because of this, bigeye tuna imports into Hawaii would likely increase to help offset U.S. demand.

**Fisheries fund:**

As any agreement leading to the allocation or transfer of catch would in return provide contribution into the Western Pacific Sustainable Fisheries Fund to fund fisheries development projects as identified through an approved MCP for each territory, no funds would be deposited into this fund under Alternative 1. As a result, there would be fewer opportunities for fisheries development in the U.S. participating territories, including improvements to fishery infrastructure.
Administration and Enforcement:

Under Alternative 1, with the lack of territory bigeye specifications and specified fishing agreements, actions associated with tracking and assigning catches made under territory arrangements would not be required.

Alternative 2: Specify for each U.S. participating territory, a 2,000 t catch limit and 1,000 t allocation limit (Preferred/Status Quo)

Under Alternative 2, longline fisheries in the U.S. participating territories would each be subject to a 2,000 t catch limit for bigeye tuna. Each territory would also be able to allocate up to 1,000 t of its 2,000 t catch limit to FEP-permitted longline vessels under specified fishing agreements. The proposed allocation would provide up to 3,000 t of bigeye tuna to the U.S. longline fleet through specified fishing agreements, in addition to the 3,554 t provided under the U.S. bigeye tuna limit. Specified fishing agreements under this alternative would support responsible fisheries development in the U.S. participating territories by providing funds for approved MCPs.

Under Alternative 2, several potential scenarios may occur, depending on the number of specified fishing agreements developed, submitted to and approved by NMFS each year. U.S. participating territories could enter into specified fishing agreements with U.S. pelagic permitted vessels, up to three total, one for each territory. The possible outcomes under the varying number of agreements are discussed more fully in Section 4.4.2 of the EA. With the timing of reaching the catch limit projected to be by October 14, 2019 (NMFS unpublished data – subject to change), a single fishing agreement allocating 1,000 t of catch is not likely to allow the U.S. longline vessels to fish and supply locally caught bigeye tuna through the end of the year, whereas three (and possibly two) specified fishing agreements may.

American Samoa, Guam, and the CNMI longline fisheries:

Impacts to the Guam and CNMI longline fisheries should be the same as under the no action alternative, because of the lack of recent longline activity with no active vessels based in those locations. As mentioned under Alternative 1, during a fishery closure, dual AS/HI longline permit holders can expect a boost in revenue if they continue to fish. This could come from higher price per pound for bigeye tuna because of the continued demand for locally caught fresh tuna as well as a potential increased fishing effort to take advantage of the higher prices. As the number of fishing agreements increases, with the reduced likelihood of extended closure to U.S. longline vessels to retain bigeye tuna, it becomes less likely that this increase in fishing effort by dual AS/HI longline vessels would occur. If only one agreement is implemented, one might expect overall fishing effort by dual AS/HI longline permit holders to be higher in that year, compared to the case where two or three agreements are implemented. NMFS expects American Samoa limited entry permit holders that are not dual permit holders to fish about the same amount as in recent years; these longliners target albacore to sell to canneries.

With the potential increase in fishing effort by American Samoa longline vessels, if U.S. vessels enter into a specified fishing agreement with American Samoa utilizing the full amount, and with
an early enough closure of the U.S. fishery, the American Samoa longline fishery may possibly reach the allocation limit of 1,000 t.

**U.S. longline fishery (Hawaii-based):**

Under Alternative 2, participants in the Hawaii deep-set longline fishery listed on any specified fishing agreement would expect to see positive benefits, while those that are not listed, would see impacts similar to no action. Since most participants in this fishery primarily fish for bigeye tuna in the WCPO, rather than the EPO, enabling many of these participants to fish in this area throughout the year would allow them to continue to earn higher revenues than if they were no longer able to do so (as under the no action alternative). The net gain to this fishery would depend on the number of approved specified fishing agreements.

**Markets, consumers, and wholesalers:**

Compared with Alternative 1, Alternative 2 would yield a higher supply of locally-caught fresh bigeye tuna to consumers in Hawaii. If the number of specified fishing agreements enables the Hawaii deep-set longline fishery to fish for and supply bigeye tuna throughout the year, then markets would not be disrupted. Consumers, wholesalers, retailers and restaurants would not have to rely on imports, dual AS/HI longline permit holders’ bigeye tuna landings, landings from longline vessels fishing in the EPO and landings by troll and handline boats to help meet market demand for bigeye tuna, and/or pay a higher price per pound for the same quality of bigeye tuna.

** Fisheries fund:**

Specified fishing agreements under this alternative would help provide financial support for responsible fisheries development projects identified in the MCPs for U.S. participating territories by providing funds for these projects. If more agreements are executed, more monies may be available through the Western Pacific Sustainable Fisheries Fund to support fishery development projects.

**Administration and Enforcement:**

Administrative costs under Alternative 2 would be slightly higher than under Alternative 1. Administrative costs may be generated from activities such as in-season monitoring of the WCPO longline catch limits for bigeye tuna by NMFS, regulatory and management costs associated with announcements and notifications of catch prohibition, as well as additional costs from monitoring and attributing catches made by vessels identified in a specified fishing agreement with the U.S. participating territory to which the agreement applies. Enforcement costs should be about the same as under Alternative 1.

**Alternative 3: Specify for each U.S. participating territory, a 2,000 t catch limit and up to 2,000 t allocation limit**

Under Alternative 3, longline fisheries in the U.S. participating territories would each be subject to a 2,000 t catch limit for bigeye tuna. Each territory would also be able to allocate up to 2,000 t of its 2,000 t catch limit to FEP-permitted longline vessels under specified fishing agreements.
Specified fishing agreements under this alternative would support responsible fisheries development in the U.S. participating territories by providing funds for approved MCPs.

Under Alternative 3, several potential scenarios may occur, depending on the number of specified fishing agreements developed, submitted to and approved by NMFS each year. U.S. participating territories could enter into specified fishing agreements with U.S. pelagic permitted vessels, up to three total, one for each territory. The possible outcomes under the varying number of agreements are discussed more fully in Section 4.4.3 of the EA. With the timing of reaching the catch limit projected to be in November or earlier, a single fishing agreement allocating 2,000 t of catch might not allow the U.S. longline vessels to fish and supply locally-caught bigeye tuna through the end of the year, whereas two specified fishing agreements would likely be sufficient to allow the U.S. longline vessels to fish through the end of the year.

**American Samoa, Guam, and the CNMI longline fisheries:**

Impacts to the Guam and CNMI longline fisheries should be the same as under the no action alternative and Alternative 2, because of the lack of recent longline activity with no vessels currently based in these locations. Guam and CNMI would also be more likely to allocate the full 2,000 t. American Samoa-based vessels possessing a limited access permit would likely catch about 541 t of bigeye tuna based on annual average catch between 2012 and 2017. Because of this, the American Samoa government could control the amount of catch to be allocated in order to reserve some portion of the 2,000 t limit for the local vessels in order to reduce potential effects to local fishery participants. However, if the American Samoa government did allocate the entire 2,000 t limit to the U.S. longline fleet, NMFS would have to prohibit retention of bigeye tuna in the local albacore targeting fleet and by dual-permitted vessels. This would also mean that during the time that the U.S. longline fleet is closed to fishing for bigeye tuna, dual permitted vessels would not be able to land bigeye tuna caught outside the U.S. EEZ around Hawaii in Hawaii and earn the temporarily higher revenue during the closure period.

**U.S. longline fishery (Hawaii-based):**

Under Alternative 3, participants in the Hawaii deep-set longline fishery listed on any specified fishing agreement would expect to see positive benefits, while those that are not listed, would see the impacts similar to no action. Since most participants in this fishery primarily fish for bigeye tuna in the WCPO, rather than the EPO, enabling many of these participants to fish in this area throughout the year would allow them to continue to earn higher revenues than if they were no longer able to do so (as under the no action alternative). The net gain to this fishery would depend on the number of approved specified fishing agreements.

**Markets, consumers, and wholesalers:**

Compared with Alternative 1, and similar to Alternative 2, Alternative 3 would yield a higher supply of locally-caught fresh bigeye tuna to consumers in Hawaii. If the number of specified fishing agreements enables the Hawaii deep-set longline fishery to fish for and supply bigeye tuna throughout the year, then markets would not be disrupted. Consumers, wholesalers, retailers and restaurants would not have to rely on imports, dual AS/HI longline permit holders’ bigeye tuna landings, landings from longline vessels fishing in the EPO and landings by troll and
handline boats to help meet market demand for bigeye tuna, and/or pay a higher price per pound for the same quality of bigeye tuna.

*Fisheries fund:*

Similar to Alternative 2, specified fishing agreements under Alternative 3 would help provide financial support for responsible fisheries development projects identified in the MCPs for U.S. participating territories by providing funds for these projects. If more agreements are executed, more monies may be available through the Western Pacific Sustainable Fisheries Fund to support fishery development projects.

*Administration and Enforcement:*

Administrative costs under Alternative 3 would be slightly higher than under Alternative 1 and similar to Alternative 2. Administrative costs may be generated from activities such as in-season monitoring of the WCPO longline catch limits for bigeye tuna by NMFS, regulatory and management costs associated with announcements and notifications of catch prohibition, as well as additional costs from monitoring and attributing catches made by vessels identified in a specified fishing agreement with the U.S. participating territory to which the agreement applies. Enforcement costs should be about the same as under Alternatives 1 and 2.

*Comparing Net Benefits between alternatives:*

Implementing the Council-preferred action (Alternative 2), or Alternative 3, may generate a positive net benefit relative to the no action alternative. The preferred action would result in a very small potential negative impact to bigeye tuna stocks and possibly to some domestic fishing entities such as dual permitted vessels and troll and handline boats that might receive higher prices for bigeye tuna. But these may be offset by the incremental benefits to the U.S. longline fishery based in Hawaii as a whole, consumers, and to fisheries development in territories that are party to the specified fishing agreement through the end of the calendar year.