
An integrated Catch-MSY model for data poor stocks

Steven Martell

September 30, 2015

Abstract

An age-structured Catch-MSY model was developed to address the large number

of stocks for which there is a historical time series of catch data, and sparse axillary

information on trends in abundance, or trends in mean size, or estimates of density.

The model is parameterized in terms of MSY and FMSY, from which values of unfished

biomass and the steepness of the stock-recruitment relationship are derived. Parameter

distributions are estimated based on non-statistical criterion, and in cases where there

are biomass or composition data, a statistical criterion is also incorporated to update

the distributions for model parameters. The age-structured model herein requires addi-

tional life-history information that is summarized by the single intrinsic rate of increase

r in the Schaefer biomass production model. For data poor stocks, this information

can be supplemented with life-history invariants information rather than specifying a

range of r values based on a subjective and arbitrary choice of resilience for each stock.

The catch-MSY method can first be though of as a tool for exploring Tier 5 methods

for setting Annual Catch Limits and then has the potential to graduate to Tier 3, or

higher, methods if sufficient information exists to statistically estimate stock status

and management related parameters (MSY and FMSY).
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Introduction

There are a large number of fish and invertebrate species that are listed in fisheries manage-

ment plans and each of these species requires an Annual Catch Limits (ACL). However, for a

vast majority of these species there is insufficient data to conduct routine stock assessments

to determine stock status and set appropriate ACLs. The current practice for setting ACLs

for many of these data poor species is based solely on: (a) the historical catch information,

or (b) use of ratios such as change in mean size or spawning potential ratio (SPR) to infer

depletion, or (c) comparative studies on local density in heavily depleted versus near pristine

habitats using under water visual census (UWVC).

There are a number of data poor approaches available in the literature that attempt to

address data poor stocks. Among these methods that are currently being considered by the

Western Pacific Fisheries Management Council (WPFMC) are: (1) the Catch-MSY approach

(Martell and Froese, 2012), (2) changes in mean-size to determine the overall mortality rate

(Beverton and Holt, 1993), and (3) use of underwater visual transect and tow-board data

to estimate fish density in near pristine and exploited reefs. Each of these methods has

their own strengths and weaknesses. For example, the catch-MSY approach is not appro-

priate for determining current stock status or the long-term sustainable fishing mortality

rate. But, the method is very useful for approximating the long-term maximum sustain-

able yield (MSY). The change in mean-size approach and spawning potential ratios (SPR)

require information on growth and natural mortality and are reasonable proxies for deter-

mining appropriate harvest rates and can give some indication on the current exploitation

status if the change in mean size is known. However, their weakness depends on unbiased

growth parameters, reasonably accurate age-at-recruitment to the fishery, and relatively sta-

ble recruitment (along with a number of other untestable assumptions). Underwater visual

surveys provide estimates of population density, but the limitations of this method is spa-
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tial expansion and the assumptions about what constitutes appropriate habitat. It is clear

that each of these methods alone is insufficient to determine both the current stock status

and reasonable estimates of the underlying stock productivity that are necessary for setting

model-based Annual Catch Limits (ACLs).

Many age-structured assessment models are parameterized in terms of unfished spawn-

ing stock biomass (B0) and the steepness of the stock recruitment relationship (h). These

parameters are then estimated by fitting a model to time series data on relative abundance,

which may or may not include additional axillary information on the composition of the

catch, tagging data, changes in mean weight, etc. These two parameters are key in deter-

mining the MSY-based reference points, where B0 provides the overall scaling information

for MSY, and the steepness of the stock-recruitment relationship provides key information on

the optimal harvest rate FMSY. Many authors have noted that there is no simple analytical

transformation of B0 and h into MSY and FMSY when using age or size-structured models.

However, the inverse transformation does have a unique analytical solution (Schnute and

Richards, 1998). Forrest et al. (2008) develops the Management Oriented Parameterization

approach in an age-structured model and provides a comparisons of methods using a single

case study and concludes with identical results using either approach.

In this paper, the hypothesis is that the combination of two or more of the above general

methods into a single integrative framework will compliment the strengths and weaknesses

of each approach, making the integrated framework more informative about stock status and

setting appropriate ACLs for data poor species. The simple Catch-MSY model, as suggested

by Martell and Froese (2012), is extended into a age-structured model that is parameterized

using the maximum sustainable yield (MSY) as the global scaling parameter, and FMSY as

the global rate parameter (instead of steepness or intrinsic rate of growth). The advantage

over this parameterization is that prior information on historical removals (as is used in the

Tier 5 approach) can be used to directly inform the population model rather than having to
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specify prior distributions for the population carrying capacity and intrinsic rate of growth

as suggested by Martell and Froese (2012) and Sabater and Kleiber (2014).

Summary of CIE review

A review of the Augmented Catch-MSY model was conducted by three CIE reviewers in

Honolulu, Hawaii from the 30th June to the 3rd July 2014. The following bullet points are

my summary of those review comments.

• All reviewers noted a lack of model documentation, and many referred to the code

itself to understand the model structure.

Response: The new Integrated Catch-MSY model is implemented as an R-package

with proper package documentation and vignettes to help guide users of proper use

and full documentation of the implemented methods and algorithms.

• Caution is warranted in the interpretation of the distribution of MSY estimates; is is

not a proper distribution that is grounded in statistical methods (i.e., posterior density

or likelihood profile).

Response: The new Integrated Catch-MSY model is parameterized using MSY and

FMSY as leading parameters from which unfished biomass and steepness are derived

conditional on assumed age-at-entry (i.e., selectivity). In cases where there are in-

dependent estimate of biomass (or trends in biomass) there is the flexibility to use

Maximum Likelihood methods, or Importance Sampling to construct a joint posterior

density. In cases where there is no data in which to make a formal statistical compar-

ison, the resulting distribution of MSY values is conditioned solely on the catch data

and the joint prior density for MSY and FMSY.
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• More simulation and robustness testing, including Management Strategy Evaluation

for this data-poor model.

Response: There was extensive simulation testing of the original Catch-MSY method

developed by Martell and Froese (2012) by Rosenberg et al. (2014). In those simulation

studies, the authors also examined the performance of the Catch-MSY method and

concluded that over a wide range of depletion levels the Catch-MSY method performed

relatively well. Moreover, in the original paper, estimates of MSY were compared with

other assessments; these were primarily on temperate stocks. No such comparisons have

been conducted for the new Integrated Catch-MSY package developed for this project.

Furthermore, the effort required to conduct a formal Management Strategy Evaluation

(MSE) requires a number of additional components, including specifying objectives in

which to develop performance measures and the specification of an operating model

to generate alternative states of nature. I agree with the CIE reviewers that this is an

important step in developing a management procedure, but not a necessary condition

for evaluating the use of a population model to serve as a guide in determining the

minimum levels of productivity required to support the historical catch data. Such

methods were originally developed by Kimura and Tagart (1982); Kimura et al. (1984).

• Develop a formal statistical setting when including biomass data.

Response: The original Catch-MSY model was based on a Bernoulli (accept/reject) and

not really based on any sort of sampling theory and probabilities. The new Integrated

Catch-MSY model maintains this same accept/reject criterion for cases where only

catch data exist. There is also the option of including more formal statistical criterion

where trends in biomass, or absolute estimates are evaluated assuming log-normal error

distributions. There is also a likelihood criterion for changes in mean size. Lastly, there

is an option for using a joint prior distribution with a user specified variance covariance
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matrix for a multivariate normal distribution.

R-package

An R-package (R Core Team, 2015) called catchMSY was developed for this project which

contains all of the necessary routines for implementing the Integrated Catch-MSY model.

There are two major differences between the tools in the catchMSY package and the original

model devleoped by Martell and Froese (2012). First, the underlying population model is

an age-structured model. Second, the population model is parameterized using key policy

variables: (1) the Maximum Sustainable Yield, and (2) the instantaneous fishing mortality

rate that achieves MSY (see Martell et al., 2008, for full details).

The R-package can be installed directly from R using the devtools package. At the R

prompt use:

> devtools::install_github(smartell/catchMSY)

Model Documentation

The R-package contains four major subroutines for the population model, each of which are

documented within the package itself. The following documentation will focus on these four

major routines: (1) age schedule information, (2) deriving unfished biomass and steepness

from MSY and FMSY, (3) the age-structured population model, and lastly (4) the objective

function for maximum likelihood estimation and Importance Sampling. The catchMSY

package requires the creation of a stock ID object which contains all the necessary life-

history information, fishery specs, and time series data on historical catch and if available

abundance information and changes in catch composition.
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Age-schedule information

Length-at-age is assumed to follow the von Bertallanffy growth function (von Bertalanffy,

1938):

la = l∞(1− exp(−k ∗ (a− t0))) (1)

wa = a(la)
b (2)

ma =
[
1 + exp(−(a− a50%)/σa50%)

]−1
(3)

fa = wama (4)

va =

[
1.0 + exp

(
− ln(19)

{
a− a0.5

a0.95 − a0.5

})]−1

(5)

ιa =



1 a = 1

ιa−1 exp(−Ma) 1 > a ≥ A

ιa
1− exp(−Ma)

a = A

(6)

Given length-at-age (1), weight-at-age is given by the allometric relationship in (2) with

input parameters a and b. Maturity-at-age is assumed to follow a logistic curve with the

parameters defining the age at 50% maturity (a50%) and the standard deviation in age at

50% maturity (σa50%). Fecundity-at-age is assumed to be proportional to mature weight-at-

age (4). Vulnerability to the fishing gear is assumed to be age-specific using an asymptotic

logisitc curve parameterized using ages that are 50% and 95% vulnerable (5). Note that a

length-based selectivity function may also be desirable, as it is often easier to specify the

length rather than the age of fish that are captured in the fishery.

Survivorship to a given age is based on the natural mortality rate Ma and is a recursive

function (6). Note that the model assumes the oldest age-class is a plus group and contains
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individuals ages-A and older.

Deriving unfished biomass and steepness

Deriving B0 and h from MSY and FMSY is the inverse process of the (B0, h)→(MSY,FMSY)

transformation. Starting with the catch equation, first take the derivative of the catch

equation and set it to
∂Y

∂F
= 0. Next solve the equation for F which corresponds to FMSY.

Note that the Baranov catch equation is a transcendental equation with respect to F and

there is no analytical solution. However, the inverse problem does have an analytical solution

for steepness and the following describes the derivation of B0 and h given estimates of MSY

and FMSY.

The derivation of B0 and h given an initial guess for MSY (Ċ) and FMSY (ḟ) starts with

calculating the age-specific mortality rates and survivorship under fished conditions (ι̂).

za = Ma + ḟva (7)

sa = exp(−za) (8)

oa = (1− sa) (9)

qa = vaoa/za (10)

ι̂a =



1 a = 1

ι̂a−1 exp(−za) 1 > a ≥ A

ι̂a
oa

a = A

(11)

φq =
∑
a

ι̂awaqa (12)

Note that expressions (7)-(10) are intermediate vectors that simplify the algebra in the
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following equations. These vectors are the age-specific total mortality rate (7), age-specific

discrete survival rate (8), age-specific discrete mortality rate (9), and the age-specific fraction

that are vulnerable to harvest (10). The survivorship to a given age under fished conditions

is denoted by (11), and the per recruit yield for each unit of fishing mortality is given by

(12). Thus, the yield per recruit at MSY is given by YPR = ḟφq = FMSYφq.

Given YPR, the equilibrium yield at FMSYis given by Ċ = ḟ Ṙφq. So the next step is to

derive the equilibrium recruitment at MSY. This is done by solving the previous equation for

RMSY = Ċ/(ḟφq). Note that the ‘ ˙ ’ notation denotes variables at MSY; example, Ṙ denotes

the recruitment at MSY levels of spawning biomass. It is also worth mentioning again, that

ḟ and Ċ are initial guesses at what the true underlying MSY values are, and these are akin

to the r− k pairs in the original Catch-MSY method outlined in Martell and Froese (2012).

The implied steepness of the stock recruitment relationship is determined by ḟ , along

with the age-schedule information that determines the relative fecundity required to sustain

the yield per recruit. The details of this derivation are fully documented in Martell et al.

(2008) which result in the following expression for recruitment compensation (κ) for the

Beverton-Holt stock recruitment model:

κ = φe/φf −
ḟφq

φe
φ2
f

∂φf

∂ḟ

φq + ḟ
∂φq

∂ḟ

(13)

h =
κ

κ+ 4
(14)

κ =
4h

1− h
(15)

The relationship between recruitment compensation κ and steepness as defined by Mace

and Doonan (1988) is given by (14), and the reverse transformation by (15). In (13), φe and

φf represent the spawning biomass per recruit in unfished and fished conditions, respectively.
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The rate of change in spawning biomass per recruit with respect to changes in ḟ is denoted

by
∂φf

∂ḟ
and the rate of change in the yield per recruit with respect to ḟ is given by

∂φq

∂ḟ
.

The following partial derivatives are used to calculate the change in spawning stock biomass

with respect to ḟ and the change in yield per recruit with respect to ḟ s:

∂ι̂a

∂ḟ
=



0, a = 1

∂ι̂a−1

∂ḟ
− ιa−1sa−1va−1 1 < a ≤ A

∂ι̂a−1

∂ḟ
− ιa−1sa−1va−1sa

o2
a

a = A

(16)

∂φf

∂ḟ
=
∑
a

fa
∂ι̂a

∂ḟ
(17)

∂φq

∂ḟ
=
∑
a

waqa
∂ι̂a

∂ḟ
+ ι̂a

wav
2
a

za

(
sa −

oa
za

)
(18)

Recruitment is assumed to follow a Beverton-Holt stock recruitment model:

R =
soB

1 + βB
(19)

where B is the spawning stock biomass, so is the maximum juvenile survival rate from egg to

age-1, so/β is the asymptote of the function at infinite B, and R is defined as the number of

age-1 recruits. This function can be re-parametrized using the spawning biomass per recruit
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incidence functions (φe, φf ) and the recruitment compensation ratio κ as

Ṙ = R0
κ− φe/φf
κ− 1

(20)

and solving for the unfished recruitment R0

R0 = Ṙ
κ− 1

κ− φe/φf
(21)

B0 = R0φe (22)

Note that (20) implies a constraint where the recruitment compensation ratio must be greater

than 1.0, otherwise the function results in negative recruitment or is undefined if κ = 1.0. In

addition, there is a limit where φe/φf = κ that corresponds to the maximum fishing mortality

rate that would lead to extinction (or FMAX), which simply implies that FMSY< FMAX.

To determine the unfished spawning stock biomass, first calculate the unfished equilibrium

recruitment using (21), then use (22) to compute B0.

Age-structured population model

Assuming the model starts at unfished conditions, the initial numbers-at-age are initialized

using the survivorship under unfished conditions (23).

Initial states

Nt,a = R0ιa, t = 1,∀a (23)

so = κ/φe (24)

β = (κ− 1)/B0 (25)

The stock recruitment parameters (24,25) are initialized using the recruitment compensation

ratio (κ) and the unfished spawning biomass (B0).
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The spawning biomass in any given year is the sum of products between the numbers-

at-age and the fecundity-at-age (26). The total age-specific mortality rate is given by (27),

and the instantaneous fishing mortality rate conditioned on the observed catch (see next

sub-section).

Dynamic states (t > 1)

Bt =
∑
a

Nt,afa (26)

zt,a = Ma + Ftva (27)

Nt,a =



soBt−1

1 + βBt−1

a = 1

Nt−1,a−1 exp(−zt−1,a−1) 1 < a < A

Nt−1,a−1 +Nt−1,a exp(−zt−1,a) a = A

(28)

Ct =
∑
a

Nt,awavaFt(1− exp(−zt,a))
zt,a

(29)

Lastly, the age-structured model assumes that both natural mortality and fishing mortality

occur simultaneously. The catch equation (29) is based on the fraction of total age-specific

mortality that is associated with fishing mortality (Ft).

Conditioning the model on catch

To condition the age-structured model on the observed catch (which is assumed to be in units

of weight), an iterative approach is used to determine the instantaneous fishing mortality

rate Ft, because (29) does not have a closed form solution for Ft.

An initial value for Ft is based on an approximation to the to the analytical solution
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using:

Ft =
Ct∑

aNt,a exp(−0.5Ma)wava
(30)

Note that (30) is also known as Popes’ approximation in the fisheries literature and is a fairly

accurate approximation upto values of Ft = 0.3. To obtain the exact solution, Newtons’ root

finding method (31) is used to iteratively solve for Ft given the observed catch Ĉt:

F
(i+1)
t = F

(i)
t −

(Ct − Ĉt)
∂Ct
∂Ft

(31)

∂Ct
∂Ft

=
∑
a

[
vawaot,aNt,a

zt,a
− Ftv

2
awaot,aNt,a

(zt,a)2
+
Ftv

2
awaNt,a exp(−zt,a)

zt,a

]
(32)

where ot,a = (1− exp(−zt,a))

The derivative of the catch equation with respect to the instantaneous fishing mortality rate

is given by (32). This algorithm converges in roughly 3-7 iterations depending on the initial

value of Ft relative to the converged value.

Observation Models

The catch-MSY package currently accommodates 4 different types of data in which to make

any sort of statistical inference about the likelihood of the observed data given the model

parameters. These data are: (1) relative abundance data, (2) absolute abundance data, (3)

change in mean length data, (4) mean weight of the catch.
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Relative abundance data

In the case of fitting the model to trends in abundance, it is assumed that observation

errors in abundance trends are lognormal. The predicted abundance index is assumed to be

proportional to population biomass:

Ît = qBte
εt (33)

ln(q) = ln(Ît)− ln(Bt)−
1

n

∑
t∈Ît

ln(Ît)− ln(Bt) (34)

εt = ln(Ît)− ln(q)− ln(Bt) (35)

`I = n[0.5 ln(2π) + ln(σεt)] +
∑
t∈It

ε2t
2σ2

εt

(36)

The slope of the relationship between survey estimates of abundance and biomass is given

by the parameter q, and the conditional maximum likelihood estimate of q is given by (34).

The vector of residuals is defined by (35). Note that the number of survey observations must

greater than or equal to at least 2 observations, and the model assumes the same q for each

observation. The negative loglikelihood for trend data is given by (36).

Absolute abundance data

The previous biomass augmented catch-MSY approach (Sabater and Kleiber, 2014) specified

a range of acceptable biomass estimates and would only accept parameter combinations that

resulted in biomass trajectories that would fall within a biomass interval in the year in

which the survey was conducted. In this application, a more formal statistical approach

is adopted that allows for non-linear parameter estimation and using gradient methods to

obtain maximum likelihood estimates of model parameters, a variance covariance matrix,

and to conduct Importance Sampling for constructing joint posterior distributions.
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In the case of fitting the model to an estimate of absolute abundance in a given year,

or multiple years if such data are available, it is also assumed that measurement errors

are lognormal. The likelihood is exactly the same as (36); however, the residuals do not

include the latent variable q as it is assumed that the observation is an estimate of absolute

abundance.

εt = ln(B̂t)− ln(Bt) (37)

`B̂ = n[0.5 ln(2π) + ln(σεt)] +
∑
t∈B̂t

ε2
t

2σ2
εt

(38)

where εt is the log residual difference between the observed abundance index (B̂t) and the

predicted abundance index (Bt).

Changes in mean length

For cases in which there are observations on the changes in mean length from samples

collected at two distinct time periods, the catch-MSY model must convert numbers-at-age,

to numbers-at-length. This is accomplished using the inverse of a age-length key (if empirical

length-age data are available), or using a growth model to predict mean length-at-age and the

standard deviation in length-at-age. To derive an age-length key from the growth model, the

catch-MSY package assumes that length-at-age has a normal distribution. The probability

that a fish of a given age a is in the length-interval l is given by:

P (l|a) =

∫ l+∆l

l−∆l

1√
2πσa

exp

(
−(l − la)2

2σ2
a

)
dl (39)

where ∆l is half the interval width, la is the mean length-at-age and σa is the standard

deviation in length-at-age. Ideally, length-age data would be available to estimate the mean

length-at-age and the standard deviation in length-at-age using one of many alternative
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growth models. Absent these data, a reasonable approximation for the standard deviation

in length-at-age is to assume a CV≈ 0.1, where σa = CV · la and use the von Bertalanffy

growth model to approximate the mean length-at-age.

The predicted mean length of the catch, or mean length of an underwater visual census,

involves 2 distinct probabilities: (1) the probability of sampling an individual of a given

length l, and (2) the probability of an individual of length l existing in the population.

The former refers to what is widely known in the fisheries literature as selectivity, and

the latter refers to the relative abundance of different length/age classes in the population.

It’s generally safe to assume that very small individuals are less conspicuous than large

individuals and one could use a logistic function to represent the probability of sampling. It

may also be appropriate to consider other alternative functions (i.e., dome-shaped functions)

that would represent the idea of larger fishing being more difficult to detect if the sampling

frame is restricted relative to the distribution of size/age classes. For example, if the size-

composition information is obtained from a depth restricted underwater visual census (e.g.

Richards et al., 2011), but the species is also known to have ontogenic movement to deeper

waters (common in the Serranidae family). In this case a dome-shaped function might be

more appropriate, but an asymptotic function would result in a more conservative estimate

of MSY-based reference points.

Given the length-age key in (39) the predicted length-vector is given by the following
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joint probability distribution:

~lt = (~p · ~v) · P (l|a) (40)

where

pt,a =
Nt,a∑
aNt,a

(41)

L̄t =
∑
l

[
(ll)t∑

l(~p · ~v) · P (l|a)

]
(42)

ηt = L̂t − L̄t (43)

`L̂ = n[0.5 ln(2π) + ln(ση)] +
∑
t∈L̂t

η2
t

2σ2
η

(44)

where pa is the proportion of individuals of age a in the age-structured population dynamics

mode, va is the probability of sampling an individual of age a (i.e., selectivity in eq. 5), and

P (l|a) is the age-length key. The residual difference between the observed mean length L̂

and the predicted mean length L̄ is given by (43), and the negative log-likelihood by (44).

Changes in mean weight

The predicted average weight of the catch in year t is given by (45), which is the sum of

products between thee proportions-at-age, the weight-at-age (wa), and the selectivity-at-age

(va).

w̄t =
∑
a

pt,awava (45)

νt = ŵt − w̄t (46)

`ŵ = n[0.5 ln(2π) + ln(σν)] +
∑
t∈ŵt

ν2
t

2σ2
ν

(47)
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The residual difference between the observed (ŵt) and predicted mean weight (w̄t) is given

by (46), and the negative loglikelihood by (47).

Objective Function

The objective function is made up of two components: (1) statistical components that de-

scribe the goodness of fit to observed data, and (2) non-statistical components that describe

the prior beliefs about underlying model parameters or predicted state variables that are

derived from the same model parameters. The statistical components are listed in Table 1.

In the catch-MSY method developed by (Martell and Froese, 2012), there were no statistical

components in the methods, and the model outputs were strictly based on prior beliefs about

resilience, depletion in the terminal year, and the catch history which is used to condition the

model. The new integrated catch-MSY model maintains this “data free” model fitting based

only on prior beliefs. But there is also the option to incorporate biomass and composition

data.

Statistical criterion

For the statistical component of the objective function, the sum of the negative log-likelihoods

is used to inform the search gradient, or importance weight:

`(Î , B̂, L̂, ŵ|Θ) = `Î + `B̂ + `L̂ + `ŵ (48)

For the non-statistical component of the objective function, the catch-MSY method makes

use of a number of criterion to accept or reject a particular combination of Θ = (m, ḟ , Ċ).

These criterion are detailed in the next section.
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Table 1: List of statistical objective function components in the catch-MSY package.
Type of Data Symbol Error distribution Required Implemented

Catch data Ĉ NONE YES X
Relative abundance Î lognormal NO X
Absolute abundance B̂ lognormal NO X
Change in mean length L̂ normal NO

Mean weight in catch Ŵ normal NO

Non-statistical criterion

A key feature that makes the catch-MSY approach attractive for data poor assessments is

that it is extremely simple (Rosenberg et al., 2014). Martell and Froese (2012) warn that

the method, in the absence of axillary data on relative abundance is only informative about

about the lower bounds of stock productivity. That is, any parameter combination that leads

to population extinction prior to the terminus of the time series is very unlikely. What the

authors also demonstrate, is that additional constraints (or bounds) on the current status

of the stock (depletion level relative to the unfished state) are very informative about the

overall scale of MSY provided that the catch time series does induce depletion. Hilborn and

Walters (1992) demonstrate that despite the strong negative correlations in scale (k) and

productivity parameter (r) that arises in stocks with a ‘one-way trip’ dataset, the assessment

model is very informative about MSY because the confounding is reduced in the MSY=
rk

4
.

The catch-MSY method exploits this particular tautology to provide reasonable bounds for

MSY.

There are five non-statistical components that are considered in the integrated catch-

MSY model: (1) the parameter bounds, (2) extinction prior to the terminal year, (3) infinite

biomass (4) upper bound on fishing mortality rates, and (5) the range of spawning depletion.

The exit codes for each model run are summarized in Table 2.

Setting the upper and lower bounds for the three leading model parameters (M , FMSY,

and MSY) will influence the overall distribution for MSY. For example if there are no con-
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straints on the upper bound of the depletion model, then the right-hand tail of the resulting

MSY distribution will correspond to the upper bound specified for MSY. In other words,

there is no information in the catch data alone that will inform the overall scale of the stock.

However, the catch data do provide information on the lower bound of the MSY distribution,

otherwise the population would go extinct in the model.

Another non-statistical criterion is parameter combinations that lead to population ex-

tinction in prior to the terminal year. Under the assumption of deterministic production

(i.e., no process errors in the form of recruitment deviations), parameter combinations that

result in the stock being fished to extinction would have to be rejected because there are

continued removals in the fishery.

Similarly to extinction is infinite biomass. It is also possible that randomly draws from a

range of possible parameter combinations can result in an infinite population biomass due to

numerical precision of the computers, or taking the logarithm of 0. In this case the parameter

combination is not accepted.

The forth constraint is an acceptable range of depletion levels (default values are 0.0 –

1.0), where 0.0 would indicate that the fishery just removed that last individual from the

population, and 1.0 implies a pristine or virgin stock. In cases where there is no abundance

information, or changes in size-composition over time, it is often desirable to restrict the

upper bound of this range in order to provide an upper bound for MSY (n.b., the previous

comment about parameter bounds). If there are data on trends in abundance, or absolute

abundance, than it may not be necessary to restrict the depletion range as the catch data

and abundance data together are likely to help inform estimates of depletion Walters et al.

(2006).

The fifth constraint pertains to estimates of fishing mortality rates. It is possible that

the observed catch is greater than the exploitable biomass (i.e., the numerator in eq. 30 is

> the denominator). This is entirely possible as the fishing mortality rate is represented as
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Table 2: Default limits for accepting a random parameter combination and model exit codes
for each sample.

Constraint Default Limit User specified Exit Code
Pass - - 0
Biomass extinction 0 - 1
Infinite biomass ∞ - 2
Depletion lower bound 0.0 X 3
Depletion upper bound 1.0 X 4
Maximum fishing rate 5.0 - 5

an instantaneous rate and the annual discrete rate is approximately defined by the following

relationship: Ut = 1 − exp(−Ft). For example, and instantaneous fishing mortality rate of

Ft = 1.2 is approximately equal to an annual exploitation rate of 0.70. In particular cases

where the biomass trajectory of the stock is low, then the corresponding estimates of F are

very large. The user must specify an upper range for the maximum F that is acceptable,

and the criterion is to accept parameter combinations that result in F ′s that fall below

the maximum. The default upper limit for max F is 5.0, which corresponds to an annual

exploitation rate of 0.99.

Non-linear search

One of the research recommendations by the CIE review on the methods developed by

Sabater and Kleiber (2014) was to develop a more formal statistical approach to the catch-

MSY method. In consideration of this recommendation, the new integrated catch-MSY

package also incorporates a non-linear search routine to obtain the MLE estimates for the

vector Θ. The Hessian matrix is also used to construct approximate estimates of the standard

errors for each of the model parameters and the variance covariance matrix. This is extremely

useful for constructing the joint posterior distribution using Importance Sampling (see next

section).
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Importance Sampling

For cases in which there is a statistical component to the objective function, the catch-MSY

package also has the option to sample the joint posterior density using Importance Sampling.

This was another recommendation by the CIE review.

Parameter samples are drawn from a multivariate normal distribution where the user

must specify the mean and variance-covariance matrix. These values could be obtained from

the non-linear search routine, and the variance-covariance matrix could be inflated to ensure

sufficient sampling occurs at the margin of the distribution. It’s also possible for the user

to directly specify the parameter correlation matrix and standard deviations of the prior

distributions for each of the parameters. This can then be used to construct the appropriate

variance-covariance matrix for use in Importance Sampling. For the importance function,

a multivariate normal distribution is used along with the statistical components in (48) to

determine the probability of obtaining the data for a given parameter vector.

Discussion

The catch-MSY approach (Martell and Froese, 2012) in its simplest form is an alternative

to a Tier 5 approach to specifying annual catch limits (ACLs). The Tier 5 approach uses

the average catch (over some arbitrary time period) to set the ABC and OFLs. There is

certainly merit in using this method, or other similar algorithmic approaches (e.g., Kimura

and Tagart, 1982; Dick and MacCall, 2011; MacCall, 2009) to set catch levels when only

catch information exists. But these methods are not meant to provide estimates of stock

productivity or stock status in the absence of abundance or composition data.

A great deal of algebra and calculus is involved in the derivation of B0 and steepness

parameters given the management related variables (MSY and FMSY) and some assumptions

about fisheries selectivity. The objective of adopting this management oriented approach
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is two fold: (1) to create a simpler framework where the catch data alone can be used to

specify reasonable priors for the age-structured model, and (2) to allow for the potential of

using life-history invariants (e.g., Beddington and Kirkwood, 2005) to directly specify priors

for FMSYand natural mortality.

Under the first objective, using a prior range, or prior density, for M , FMSY, and MSY,

implies a prior density for the derived quantities B0 and steepness. The catch data are largely

informative about the global population scaling and to some degree estimates of MSY scale

with B0 (Hilborn and Walters, 1992). The challenge with the conventional parametrization,

when the only available data is a catch time series, is to come up with reasonable bounds

for B0. This was noted in the CIE review for specifying the analogous scaling parameter

(carrying capacity, K). This alternative parameterization allows the catch data themselves

to be used to specify a reasonable range for MSY directly. In fact, this could be encoded

where, for example, the 5th and 95th percentiles of the catch distribution be used to specify

the range of values for MSY.

The second objective is to allow for the use of life-history invariants to specifying life-

history variables. There is a large literature built upon meta-analytic work that bears the

relationship between 3 common life-history invariants (or sometimes called Beverton and Holt

life history invariants Jensen, 1996). These three relations are: C1 = MAm, C2 = M/K, and

C3 = Lm/L∞. Where C1, C2 and C3 are constants, M is the instantaneous natural mortality

rate, Am is the age-at-maturity, K is the von Bertalanffy growth coefficient, Lm is the length

at maturity and L∞ is the asymptotic length. Jensen (1996) estimated the value of the

three constants via fecundity maximization that optimizes the trade-off between survival

and fecundity. The values obtained using this method fall within the range of numerous

empirical studies. Given these constants, and well know life-history invariants (Charnov,

1993), nearly all of the information to approximate age-at-maturity, or length-at-maturity,

natural mortality, can be readily obtained using an estimate of the von Bertalanffy growth
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coefficient and estimates of the asymptotic length (see Walters and Martell, 2002, for full

details). At first it may seem a bit daunting coming up with all the necessary information

to set up an age-structured model for a data poor species, but using relationships such as

the life-history invariants, is really not all that difficult nor that different than a subjective

choice on resilience (as in Martell and Froese, 2012). If fact, it is more grounded in the

meta-analytic work that has been done in this field and is much simpler than the methods

developed by McAllister et al. (2001).

One of the primary deficiencies of the catch-MSY method that Sabater and Kleiber (2014)

attempted to address is to augment the method to address estimates of stock productivity

and stock status such that many of these stocks could be elevated from a catch only (Tier 5)

method for setting ACLs to a model-based approach (or Tier 3). This was accomplished by

incorporating a biomass estimate into the non-statistical criterion for accepting r − k pairs.

In addition to specifying an acceptable range of depletion values, the selected parameter

combinations would also have to fit through the approximate 95% confidence interval of

absolute biomass. In theory, this should vastly improve the estimate of MSY, and where

it could potentially be misleading is if the estimate of biomass is biased. For example, if

the biomass-interval estimate is biased by 50%, then model estimates of biomass would be

biased by approximately the same amount, and it would be logical to conclude that MSY is

also biased low. One way to address this unmeasurable bias is to attempt to integrate other

additional sources of information into the same framework.

Another way to tackle the overall scaling problem in these data poor models is to incor-

porate additional information about the total mortality rate Z. Absent process errors in the

form of recruitment variation, changes in the mean size of fish sampled in the population

over time can be informative about the relative changes in Z provided there are unbiased

estimates of growth parameters and selectivity schedules. Constant recruitment is one of

the many underlying assumptions in the simple catch-curve methods that are used to infer
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changes in Z (Hilborn and Walters, 1992; Walters and Martell, 2004). One of the minor

differences in using a full age-structure population model with a stock-recruitment relation-

ship is that the estimates of Z are consistent with the stock-depletion and the resulting

recruitment (i.e., recruitment is a deterministic function of spawning biomass, and is not

not constant over the entire range of depletion levels). Another advantage of incorporating

even an single year of mean size data is that the model can be fitted to this observation

based on the predicted mean size. This provides additional information that can help inform

selectivity (or at a minimum age-at-first capture).

The catch-MSY packaged developed herein is not limited to just biomass and composition

information as describe in the methods section. It is possible to expand the package options

to include the wide-variety of data that are now available in many of the more sophisticated

stock assessment programs. For example, the catch-MSY package already predicts a size-

frequency distribution to estimate the means size of the catch. There is no reason not to

directly fit the model to size-composition directly as it may provide better information to

resolve selectivity.

Lastly, one of the major assumptions herein, and in most stock assessment models, is

the notion of a stationary production relationship over the time period in question. For

example, a vast majority of the assessments assume many of the life-history parameters

are time-invariant. Obviously changes in size-at-age associated with factors other than fish-

ing would have profound impacts on the estimates of total mortality rate. In fact, these

dynamic variables that are assumed to be static are now creeping into the more sophisti-

cated, data & information rich assessments (e.g., Methot and Wetzel, 2013). Changes in the

stock-recruitment relationship have been the subject of much research in ecosystem models

(Christensen and Walters, 2004)

The original catch-MSY method was never intended to be used as a stock assessment

framework for estimating stock status. It was developed under the basic idea that catch
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information could inform the parameter domain which defined the lower bounds of MSY. It

was the addition of prior information about the current stock status (depletion level) that

was necessary to put any sort of upper bound on MSY. The work done herein, and for the

catch-MSY package, has maintained the same simple elegance of the original work where only

2-3 unknown parameters are required for a much more sophisticated population dynamics

model that is capable of integrated a wider array of information on size-composition, biomass,

trends in biomass, etc. and can also address growth overfishing and the potential to manage

the effect through size-limits or other incentives.
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