

WESTERN PACIFIC REGIONAL FISHERY MANAGEMENT COUNCIL

MULTIVARIATE ANALYSIS OF THE FEDERAL FISHERY MANAGEMENT UNIT SPECIES FOR SPECIES IN NEED OF CONSERVATION AND MANAGEMENT IN THE AMERICAN SAMOA AND MARIANAS FISHERY ECOSYSTEM PLANS

Marlowe Sabater Western Pacific Fishery Management Council 1164 Bishop St. Suite 1400, Honolulu, Hawaii 96813

October 2, 2017

VERSION: 3/20/2018 4:45:11 PM

PAGE LEFT INTENTIONALLY BLANK

Table of Contents

1	INTRODUCTION	18
2	METHODS	20
	2.1 Available Data for Analysis	20
	2.1.1 Species-level catch	20
	2.1.2 Species-specific maximum deput	21
	2.1.5 Troportion of habitat in territorial and rederal waters	21
	2.1.5 Species level revenue	22
	2.2 Analytical Framework	22
	2.3 Multivariate Data Analysis	24
	2.4 Permutational Multivariate Analysis of Variance (PERMANOVA)	26
	2.5 Addressing the SSC and PIFSC analytical recommendations	26
3	RESULTS	28
	3.1 Addressing analytical improvements	28
	3.1.1 Exploration of cut-off methods3.1.2 Sequence of filters	28 29
4	GUAM ECOSYSTEM COMPONENT ANALYSIS	32
	4.1 Removal of MUS species with no available data	33
	4.2 Multivariate analysis on a 25% cut-off point	35
	4.2.1 Delete lower quartile to remove species that are not or rarely caught by the fishery	35
	4.2.2 Delete lower quartile to remove species mostly in territorial waters	37
	4.2.3 Delete lower quartile to remove species that are not targeted by the fishery	39
	4.2.4 Delete lower quartile to remove species that have low contribution to the	
	regional economy	39
	4.2.5 Delete lower quartile to remove species that have low biomass contribution	41
	4.3 Species decline rate after the filters were applied at 25% cut-off	43
	4.4 Multivariate analysis on a 50% cut-off point	45
	4.4.1 Delete 1-25% and 25-50% quartiles to remove species that is not or rarely	
	caught by the fishery	45

4.4.2 Delete 1-25% and 25-50% quartiles to remove species mostly in territorial waters 47	
4.4.3 Delete 1-25% and 25-50% quartiles to remove species that are not targeted	
by the fishery	.49
4.4.4 Delete 1-25% and 25-50% quartiles to remove species that have low	
contribution to the regional economy	.51
4.4.5 Delete 1-25% and 25-50% quartiles to remove species that have low biomass contribution	53
4.5 Species removal rate after the filters were applied at 50% cut-off	.55
4.6 Multivariate analysis on a 75% cut-off point	.56
4.6.1 Delete 1-25%, 25-50%, and 50-75% quartiles to remove species that is not or rarely caught by the fishery	.56
4.6.2 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that are mostly in territorial waters	50
1 6 3 Delete 1-25% 25-50% 50-75% quartiles to remove species that are not	.30
targeted by the fisheries	58
4.6.4 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that have low	
contribution to the regional economy	.61
4.6.5 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that have low	
biomass	.61
4.7 Species decline rate after the filters were applied at 75% cut-off	.63
5 AMERICAN SAMOA ECOSYSTEM COMPONENT ANALYSIS	.64
5.1 Removal of MUS species with no available data	.65
5.2 Multivariate analysis on a 25% cut-off point	.67
5.2.1 Delete lower quartile to remove species that are not or rarely caught by the	
11shery	.07
5.2.2 Delete lower quartile to remove species that are not targeted by the fishery	.09
5.2.4 Delete lower quartile to remove species that have low contribution to the	.71
regional economy	.13
5.3 Species decline rate after the filters were applied at 25% cut-off	.75 .77
5.4 Multivariate analysis on a 50% cut-off point	.78
5.4.1 Delete 1-25% and 25-50% quartiles to remove species that is not or rarely	-0
caught by the fishery	.78
5.4.2 Delete 1-25% and 25-50% quartiles to remove species mostly in territorial	
waters δI 5.4.2 Delate 1.25% and 25.5% guartiles to remove species that are not target $\frac{1}{2}$	
5.4.5 Delete 1-25% and 25-50% quartiles to remove species that are not targeted by the fishery	82
Uy uic 11511Cl y	.05

	5.4.4 Delete 1-25% and 25-50% quartiles to remove species that have low	
	contribution to the regional economy	85
	5.4.5 Delete 1-25% and 25-50% quartiles to remove species that have low biomass	
	contribution	87
	5.5 Species removal rate after the filters were applied at 50% cut-off	89
	5.6 Multivariate analysis on a 75% cut-off point	90
	5.6.1 Delete 1.250/ 25.500/ and 50.750/ quartiles to remove encodes that is not on	
	5.0.1 Delete 1-25%, 25-50%, and 50-75% quartiles to remove species that is not or	00
	5.6.2 Delete 1.25% 25.50% 50.75% quartiles to remove species that are mostly	90
	in territorial waters	92
	5.6.3 Delete 1-25% 25-50% 50-75% quartiles to remove species that are not)2
	targeted by the fisheries	92
	5.6.4 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that have low	
	contribution to the regional economy	95
	5.6.5 Delete 1-25%, 25-50%, 50-75% guartiles to remove species that have low	
	biomass	95
	5.7 Species decline rate after the filters were applied at 75% cut-off	97
6	COMMONWEALTH OF NORTHERN MARIANA ISLANDS ECOSYSTEM	
CC	OMPONENT ANALYSIS	98
	6.1 Demovel of MUS analise with no evoluble data	00
	6.1 Removal of MOS species with no available data	99
	6.1.1 Delete lower quartile to remove species that are not or rarely caught by the	
	fishery	101
	6.1.2 Delete lower quartile to remove species mostly in territorial waters	104
	6.1.3 Delete lower quartile to remove species that are not targeted by the fishery	106
	6.1.4 Delete lower quartile to remove species that have low contribution to the	
	regional economy	108
	6.1.5 Delete lower quartile to remove species that have low biomass contribution	108
	6.2 Species decline rate after the filters were applied at 25% cut-off	110
(6.3 Multivariate analysis on a 50% cut-off point	112
	6.3.1 Delete 1-25% and 25-50% quartiles to remove species that is not or rarely	110
	caught by the fishery	112
	0.5.2 Delete 1-25% and 25-50% quartiles to remove species mostly in territorial	111
	6.2.2 Delete 1.25% and 25.50% quartiles to remove species that are not targeted	114
	by the fishery	116
	6.3.4 Delete 1-25% and 25-50% quartiles to remove species that have low	110
	contribution to the regional economy	118
	6.3.5 Delete 1-25% and 25-50% quartiles to remove species that have low biomass	110
	contribution	118
	6.4 Species decline rate after the filters were applied at 50% cut-off	

6.5 Multivariate analysis on a 75% cut-off point	119
6.5.1 Delete 1-25%, 25-50%, and 50-75% quartiles to remove species that is not or	110
6.5.2 Delete 1-25% 25-50% 50-75% quartiles to remove species that are mostly	119
in territorial waters	121
6.5.3 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that are not	
targeted by the fisheries	123
6.5.4 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that have low	100
contribution to the regional economy	123
biomass	123
6.6 Species decline rate after the filters were applied at 75% cut-off	123
7 APPENDICES	129
7.1 MANAGEMENT UNIT SPECIES IN THE MARIANAS FISHERY	
ECOSYSTEM PLAN: GUAM	130
7.2 MANAGEMENT UNIT SPECIES IN THE MARIANAS FISHERY	
ECOSYSTEM PLAN: COMMONWEALTH OF NORTHERN MARIANA ISLANDS	197
7.3 MANAGEMENT UNIT SPECIES IN THE AMERICAN SAMOA FISHERY	
ECOSYSTEM PLAN	202
7.4 TIME SERIES CHARTS OF TOTAL CATCH PER MANAGEMENT UNIT	
SPECIES IN GUAM	214
7.5 TIME SERIES CHARTS OF TOTAL CATCH PER MANAGEMENT UNIT	
SPECIES IN COMMONWEAL TH OF NORTHERN MARIANA ISLANDS	283
	205
7.6 TIME SERIES CHARTS OF TOTAL CATCH PER MANAGEMENT UNIT	
SPECIES IN AMERICAN SAMOA	294

TABLE OF FIGURES

Figure 1. Decision tree for designation species as ecosystem components or species in need of CMMs25
Figure 2. Histogram of catch, occurrence, maximum depth, and revenue data for American Samoa, Guam, and CNMI
Figure 3. Rate of species removal by filtering stages at 1-25% using the percentile and the cumulative percentage cut-off approaches
Figure 4. Principal Coordinates Ordination plots of the two filtering sequences. Plot A to E follows the occurrence, depth, catch, revenue, and biomass sequence. Plot F to J follows the catch, revenue, occurrence, biomass, and depth sequence
Figure 5. MDS plot (a) and Shepard diagram (b) of all MUS including species with no available data. The 3-D stress value = 0.01
Figure 6. Two-dimensional plot with a stress value 0.12 of MUS with available data for frequency of occurrence (A). The same 2-D plot with factors using quartiles of maximum depth (B); quartiles of total catch (C); quartiles of revenue (D); and quartiles of biomass (E)
Figure 7. Shepard diagram showing the similarity values using Bray-Curtis index and the distance representation in the 2-D plot for MUS with available data
Figure 8. Two and three-dimensional plot with stress values of 0.20 and 0.10, respectively, of remaining MUS after the lower quartile of frequency of occurrence was removed (A and B). The same 2-D plots with factors using quartiles of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 9. Two and three-dimensional plot with stress values of 0.21 and 0.08, respectively, of remaining MUS after the lower quartile of maximum depth was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.
Figure 10. Two and three-dimensional plot with stress values of 0.10 and 0.08, respectively, of remaining MUS after the lower quartile of revenue was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.
Figure 11. Two and three-dimensional plot with stress-values of 0.09 and 0.06, respectively, of remaining MUS after the lower quartile of biomass was removed (A and B). The same 2-D plots with factors using

MUS after the lower quartile of biomass was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and revenue (F). Shepard

diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 12. Number of species remaining for federal fisheries management after filters were applied at 25% cut-off
Figure 13. Two and three-dimensional plot with stress values of 0.20 and 0.10, respectively, of remaining MUS after the lower quartile to median of frequency of occurrence were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 14. Two and three-dimensional plot with stress values of 0.20 and 0.07, respectively, of remaining MUS after the lower quartile to median of maximum depth were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 15. Two and three-dimensional plot with stress values of 0.20 and 0.07, respectively, of remaining MUS after the lower quartile to median of total catch were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 16. Two and three-dimensional plot with stress values of 0.09 and 0.06, respectively, of remaining MUS after the lower quartile to median of revenue were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.
Figure 17. Two and three-dimensional plot with stress values of 0.06 and 0.03, respectively, of remaining MUS after the lower quartile to median of biomass were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); total catch (E); and revenue (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 18. Number of species remaining for federal fisheries management after filters were applied at 50% cut-off
Figure 19. Two and three-dimensional plot with stress values of 0.17 and 0.08, respectively, of remaining MUS after the lower quartile to the third quartile of occurrence were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS

Figure 22. Two and three-dimensional plot with stress values of 0.00 and 0.00, respectively, of remaining MUS after the lower quartile to the third quartile of revenue were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

Figure 23. Number of species remaining after each filter is applied comparing the 3 cut-off thresholds. .63

Figure 24. MDS plot (a) and Shepard diagram (b) of all MUS including species with no available data	
The 3-D stress value = 0.00	65

Figure 27. Two and three-dimensional plot with stress values of 0.16 and 0.09, respectively, of remaining MUS after the lower quartile of frequency of occurrence was removed (A and B). The same 2-D plots with factors using quartiles of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

Figure 29. Two and three-dimensional plot with stress values of 0.17 and 0.07, respectively, of remaining MUS after the lower quartile of total catch was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F).

Figure 30. Two and three-dimensional plot with stress values of 0.09 and 0.06, respectively, of remaining MUS after the lower quartile of revenue was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

Figure 31. Two and three-dimensional plot with stress values of 0.05 and 0.04, respectively, of remaining MUS after the lower quartile of biomass was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and revenue (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

Figure 34. Two and three-dimensional plot with stress values of 0.16 and 0.06, respectively, of remaining MUS after the lower quartile to median of maximum depth were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

Figure 35. Two and three-dimensional plot with stress values of 0.15 and 0.06, respectively, of remaining MUS after the lower quartile to median of total catch were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

Figure 37. Two and three-dimensional plot with stress values of 0.04 and 0.02, respectively, of remaining MUS after the lower quartile to median of biomass were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); total

catch (E); and revenue (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 38. Number of species remaining for federal fisheries management after filters were applied at 50% cut-off
Figure 39. Two and three-dimensional plot with stress values of 0.14 and 0.07, respectively, of remaining MUS after the lower quartile to the third quartile of frequency of occurrence were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS91
Figure 40. Two and three-dimensional plot with stress values of 0.01 and 0.01, respectively, of remaining MUS after the lower quartile to the third quartile of maximum depth were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 41. Two and three-dimensional plot with stress values of 0.01 and 0.01, respectively, of remaining MUS after the lower quartile to the third quartile of total catch were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); maximum depth (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 42. Two and three-dimensional plot with stress values of 0.01 and 0.01, respectively, of remaining MUS after the lower quartile to the third quartile of revenue were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.
Figure 43. Number of species remaining after each filter is applied comparing the 3 cut-off thresholds97
Figure 44. MDS plot (a) and Shepard diagram (b) of all MUS including species with no available data. The 3D stress value = 0.01
Figure 45. Two-dimensional plot with a stress-value 0.09 of MUS with available data for frequency of occurrence (A). The same 2-D plot with factors using quartiles of maximum depth (B); quartiles of total catch (C); quartiles of revenue (D); and quartiles of biomass (E)
Figure 46. Shepard diagram showing the similarity values using Bray-Curtis index and the distance representation in the 2-D plot for MUS with available data
Figure 47. Two and three-dimensional plot with stress-values of 0.11 and 0.07, respectively, of remaining MUS after the lower quartile of frequency of occurrence was removed (A and B). The same 2-D plots

with factors using quartiles of maximum depth (C); total catch (D); revenue (E); and biomass (F).

Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 48. Two and three-dimensional plot with stress-values of 0.09 and 0.07, respectively, of remaining MUS after the lower quartile of maximum depth was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 49. Two and three-dimensional plot with stress-values of 0.10 and 0.06, respectively, of remaining MUS after the lower quartile of total catch was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.
Figure 50. Two and three-dimensional plot with stress-values of 0.03 and 0.02, respectively, of remaining MUS after the lower quartile of biomass was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.
Figure 51. Number of species remaining for federal fisheries management after filters were applied at 25% cut-off
Figure 52. Two and three-dimensional plot with stress-values of 0.12 and 0.07, respectively, of remaining MUS after the lower quartile to median of frequency of occurrence were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 53. Two and three-dimensional plot with stress-values of 0.09 and 0.05, respectively, of remaining MUS after the lower quartile to median of maximum depth were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS
Figure 54. Two and three-dimensional plot with stress-values of 0.11 and 0.05, respectively, of remaining MUS after the lower quartile to median of total catch were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.
Figure 55. Number of species remaining for federal fisheries management after filters were applied at 50% cut-off

Figure 57. Two and three-dimensional plot with stress-values of 0.01 and 0.00, respectively, of remaining MUS after the lower quartile to the third quartile of maximum depth were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

Figure 58. Number of species remaining after each filter is applied comparing the 3 cut-off thresholds.124

TABLE OF TABLES

Table 1. National Standard 1 criteria for species in need of conservation and management measures and its respective data proxy
Table 2. List of SSC and PIFSC recommendations and actions taken to address the recommendations 26
Table 3. PERMANOVA results for the removal of species with low frequency of occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 4. PERMANOVA results for the removal of species in shallow waters. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares. 37
Table 5. PERMANOVA results for the removal of species with low revenue. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.
Table 6. PERMANOVA results for the removal of species with low biomass. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares. 41
Table 7. Candidate species for federal fisheries management after applying the filters for ecosystemcomponents. This list was generated from a 25% cut-off
Table 8. PERMANOVA results for the removal of species with low occurrence to median level. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 9. PERMANOVA results for the removal of species with low quartile to median level formaximum depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass.The analysis utilized the sequential type 1 sum of squares
Table 10. PERMANOVA results for the removal of species with low quartile to median level for revenue. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 11. PERMANOVA results for the removal of species with low quartile to median level for biomass. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 12. Candidate species for federal fisheries management after applying the filters for ecosystemcomponents. This list was generated from a 50% cut-off

Table 13. PERMANOVA results for the removal of species with low to third quartile level for frequencyof occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. Theanalysis utilized the sequential type 1 sum of squares.56
Table 14. PERMANOVA results for the removal of species with low to third quartile level for maximum depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 15. PERMANOVA results for the removal of species with low to third quartile level for total catch. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 16. Candidate species for federal fisheries management after applying the filters for ecosystemcomponents. This list was generated from a 75% cut-off
Table 17. PERMANOVA results for the removal of species with low frequency of occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 18. PERMANOVA results for the removal of species in shallow waters. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.
Table 19. PERMANOVA results for the removal of species with low total catch. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 20. PERMANOVA results for the removal of species with low revenue. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares. 73
Table 21. PERMANOVA results for the removal of species with low biomass. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares. 75
Table 22. Candidate species for federal fisheries management after applying the filters for ecosystemcomponents. This list was generated from a 25% cut-off
Table 23. PERMANOVA results for the removal of species with low occurrence to median level. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 24. PERMANOVA results for the removal of species with low quartile to median level for maximum depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares

Table 25. PERMANOVA results for the removal of species with low quartile to median level for totalcatch. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysisutilized the sequential type 1 sum of squares
Table 26. PERMANOVA results for the removal of species with low quartile to median level for revenue.The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysisutilized the sequential type 1 sum of squares
Table 27. PERMANOVA results for the removal of species with low quartile to median level forbiomass. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. Theanalysis utilized the sequential type 1 sum of squares
Table 28. Candidate species for federal fisheries management after applying the filters for ecosystemcomponents. This list was generated from a 50% cut-off.89
Table 29. PERMANOVA results for the removal of species with low to third quartile level for frequency of occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 30. PERMANOVA results for the removal of species with low to third quartile level for maximum depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 31. PERMANOVA results for the removal of species with low to third quartile level for total catch. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 32. Candidate species for federal fisheries management after applying the filters for ecosystemcomponents. This list was generated from a 75% cut-off
Table 33. PERMANOVA results for the removal of species with no data. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares. 99
Table 34. PERMANOVA results for the removal of species with low frequency of occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 35. PERMANOVA results for the removal of species in shallow waters. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 36. PERMANOVA results for the removal of species with low total catch. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares

Table 37. PERMANOVA results for the removal of species with low biomass. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 38. Candidate species for federal fisheries management after applying the filters for ecosystemcomponents. This list was generated from a 25% cut-off
Table 39. PERMANOVA results for the removal of species with low occurrence to median level. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 40. PERMANOVA results for the removal of species with low quartile to median level formaximum depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass.The analysis utilized the sequential type 1 sum of squares
Table 41. PERMANOVA results for the removal of species with low quartile to median level for total catch. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 42. Candidate species for federal fisheries management after applying the filters for ecosystemcomponents. This list was generated from a 50% cut-off
Table 43. PERMANOVA results for the removal of species with low to third quartile level for frequency of occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 44. PERMANOVA results for the removal of species with low to third quartile level for maximum depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares
Table 45. Candidate species/families for federal fisheries management after applying the filters for ecosystem components. This list was generated from a 75% cut-off

1 INTRODUCTION

The Magnuson Steven Act (MSA) requires the Regional Fishery Management Councils to develop fishery management plans (FMPs) for the stocks under its jurisdiction. The Western Pacific Fishery Management Council (the Council) developed five FMPs: 1) bottomfish; 2) crustacean; 3) precious corals; 4) coral reef ecosystem; and 5) pelagics. The non-pelagic FMPs are comprised of thousands of species, majority of which are from the coral reef FMP. This was due to the "currently harvested coral reef taxa" and the "potentially harvested coral reef taxa" categories. The Council in 2006 started the transition from a stock-based FMP to place-based Fishery Ecosystem Plans (FEPs) with strategies for ecosystem-based fishery management. The FEPs were approved in 2009. The re-authorization of the MSA in 2007 required all species in the FMPs to have annual catch limits (ACLs). This challenged the Council to specify ACLs for thousands of species in the FEPs, most of which are data limited.

At its 154th meeting on June 2012, the Council directed staff to conduct an analysis on all available data to determine species/stocks that are eligible for ecosystem component (EC) designation. The Council further directed staff to draft an options paper evaluating sets of alternatives to designate stocks as EC or retain these stocks under Annual Catch Limit management. The actions associated with this recommendation got delayed because of the MSA requirement to specify ACLs by the 2012 deadline.

After 4 years of ACL-based management, the Council again considered its previous recommendation. The Council directed staff to further explore and provide the Council with details in improving the ACL specification process through an omnibus amendment of the Fishery Ecosystem Plan to include re-classifying the management unit species into EC.

The Fishery Ecosystem Plan Team in April 2016 recommended the Council, in collaboration with the Pacific Island Fisheries Science Center (PIFSC), apply the following criteria, in addition to the criteria in the National Standard 1 (NS1) guidelines, to designate EC species. The criteria are as follows:

- Parsing the catch between state/territorial catch versus federal catch;
- Proportion of the catch;
- Frequency of species detected in the time series;
- Habitat association of each MUS species and habitat distribution;
- Existence of an active fishery

The FEP Team further recommended using a combination of these criteria and the analysis is conducted in a multi-dimensional statistical framework. The analysis should consider weighting the criteria and use a range of threshold levels to evaluate the species to be designated as ecosystem components.

The preliminary results were presented to the SSC and the Council at its 125th and 169th meeting, respectively. The SSC and the Pacific Island Fisheries Science Center provided several recommendations to improve the analysis and help provide guidance on the final selection of

species that will be designated as EC. Some of the recommendations addressed in this iteration of the analysis are as follows:

- 1. Staff explore the species catch trend over time and catch:biomass ratio to identify species that are no longer targeted by the fishery but the population is still available to the fishery, or whether species have declined over time due to exploitation and should be investigated in more detail;
- 2. Staff explore the use of the BioSampling data (e.g. market sampling, species composition) and relevant life history information as input variables and/or information for post-hoc analysis of the species that had been selected for federal management to consider if any should be removed in consideration of productivity and life history traits;
- 3. Staff explore different cut-off levels based on the actual distribution of the input variables;
- 4. Staff test the fidelity of the groupings using other statistical tests such as PERMANOVA
- 5. Tabulate the on the dimensions (depth, frequency, weight, etc.) for the species to determine why the species dropped out;
- 6. Explore effect of changing the sequence and thresholds;
- 7. Staff convene an expert working group to examine the species that are filtered out to ensure that the final listing requiring Federal management includes species of social, cultural, economic, biological, and ecological importance.

The revised National Standard 1 guidelines (81 FR 71858, October 16, 2016) requires the Council to evaluate stocks whether it requires conservation and management using the 10 factors in §600.305(c)(1). In addition, §600.305(c)(2) states that in evaluating these factors, Council should consider the specific circumstances of a fishery, based on the scientific information available, to determine whether there are biological, economic, social, and/or operational concerns that can and should be addressed by Federal management. The Council developed an analytical framework that covers five of the ten factors to evaluate all the management unit species (MUS) in its archipelagic FEPs. The remainder of the factors will be considered in an expert group scoring process.

The EC analysis will support an amendment to remove species currently designated as "in need of conservation and management" and be designated as EC. Once designated as EC, these species will no longer require specification of maximum sustainable yield (MSY), optimum yield (OY), overfishing limits (OFL) and associated acceptable biological catch (ABC) and ACLs and essential fish habitat (EFH). This will simplify the fishery management process by focusing on species in need of direct active management. EC species will remain in the FEPs and continue to be monitored to determine if there is a need to bring the species back into "species in need of conservation and management".

The Western Pacific region manages thousands of species, majority of which are coral reef ecosystem associated taxa, through four archipelagic FEPs (Appendix 11.1-11.3). In order to properly evaluate available data for each species, a multivariate analytical framework is needed to plot species based on similarities of available information and the magnitude of difference of each variables. An exploratory data analysis is a way to investigate data from multiple sources.

Some of the tools explored is non-metric multi-dimensional scaling which places samples (in this case, each species) on a map in two to three dimensions in such a way that the rank order of the distances between species agrees with the rank order of the matching dissimilarities taken from the species-to-species comparison matrix (Clarke et al. 2014). The plot would represent the relative similarities of each species based on the variables being investigated.

The objectives of this analysis are:

- 1. Consolidate available information for all management unit species in the FEP;
- 2. Develop a decision tree based on the NS1 guidelines and available data to screen species for ecosystem components;
- 3. Apply the filters to screen species for ecosystem components;
- 4. Develop threshold levels for screening species for ecosystem components;
- 5. Conduct the analysis in a multi-variate analytical framework;
- 6. Finalize the list of MUS in the American Samoa and Marianas FEPs that are in need of conservation and management under the NS1 guideline;

2 METHODS

2.1 Available Data for Analysis

The following data was used for this analysis:

- 1. Frequency of species in the catch time series determines how frequent the species is caught;
- 2. Species level catch to the total catch determines how much the species is targeted; calculated in mean catch and total catch; expressed in total weight and total count
- 3. Species level biomass data determines species abundance;
- 4. Species maximum depth data proxy for the extent the species is distributed;
- 5. Proportion of depth distribution in territorial and federal waters determines whether the extent of potential distribution of species in federal and territorial waters;
- 6. Revenue determines the economic value of the species caught in the fishery

2.1.1 Species-level catch

In order to designate species under ecosystem components, a comprehensive list of species was generated by the Pacific Island Regional Office in 2012 during the first year of ACL implementation.

Species level data was requested from the Pacific Island Fisheries Science Center. The catch data was requested through the Western Pacific Fishery Information Network (WPacFIN). Species level catch information was generated for all species in the WPacFIN database. Catch data is from the boat-8,1 and shore-based creel surveys from American Samoa, Guam, and Commonwealth of Northern Mariana Islands. For details of the data collection, see Oram et al. (2010a, 2010b, 2010c, 2010d, 2010e, 2010f).

The species level data was expanded to estimate the total species level catch. The boatbased creel survey data expansion algorithm multiplies average CPUE (lbs/trip by gear), times the average number of trips per day at each port (trips/day by gear), times the number of days in a year (days), to estimate annual landings (in lbs) over all ports and gears. This serial multiplication and summation ("expansion") is done separately for weekdays and for weekend/holidays, since the number of boats going out fishing ("participation rates") changes when people are off work.

The shore-based creel survey data expansion algorithm multiplies average CPUE by gear (lbs/hour), times the average number of gear-hours per day for each gear type (summed over several average shifts), times the number of days in a year (summed separately for weekdays and weekends/holidays), to get a total estimated catch (in lbs) for all areas and gears annually. Estimated pounds by species can then be derived from the proportion (% weight) of each species by gear type, which comes from interview data.

For details of the fishery dependent data calculation, see Tao and Tomita 2016 (PICDR-293-IR)

The species level catch time series table was used for the species occurrence information. Each catch entry was converted to presence or absence. If there is catch data for a given year that was scored as a 1 and if none it scored a 0.

2.1.2 Species-specific maximum depth

Maximum depth was assigned to each MUS. PIFSC-Coral Reef Ecosystem Program (CREP) provided the maximum depth (m) to the species detected through visual surveys from various research: 1) Baited Remote Underwater Video; 2) Mesophotic Reef Surveys in 2014; 3) Rebreather dives by R. Pyle in 2014; and 4) Bottomfish Camera drops in the Main Hawaiian Islands. If a species has multiple maximum depth records from the 4 data sources, the deepest observed depth was used for the analysis. These data sources are limited to fin fish. The MUS list also includes invertebrates and fish species that are not detected in the surveys. The Council contracted a third-party for a web search of available values for maximum depth values from the PIFSC surveys and the web search, observed maximum depth values from surveys were used.

2.1.3 Proportion of habitat in territorial and federal waters

The existing fishery data collection system in the territories is not spatially explicit. This presents challenges in terms of catch attribution whether caught in territorial (0-3nm) or federal waters (3-200nm). We used the depth profile and the extent of habitat with which the species are associated between territorial and federal waters. The PIFSC-CREP Ecospatial Information Team provided the estimates of hard and soft bottom habitat (expressed in m²) per depth range (0-30m and 10m increment thereafter to 100m and 50m increment beyond 100m) per island (including the offshore banks). We assumed that the habitat extent is proportional to the population distribution of the species. The extent of the species distribution was cross referenced with the maximum depth information.

2.1.4 Species level biomass and abundance

The PIFSC-CREP Fish Ecology and Monitoring Team provided the species level standing stock biomass data. The data used was from the Stationary Point Count (SPC) surveys conducted in the territories and State of Hawaii. Briefly, the SPC involved 2 divers identifying fish species, estimated length, and counts each within a 7.5m radius cylinder. The two survey cylinders are adjacent to each other hence the 2 divers are approximately 15m apart. The cylinder extends from the benthos to the surface (Smith et al. 2011; Williams et al. 2011). Divers first list all observed reef fish species in the first five minutes of the survey. From the list generated, the divers sequentially count and estimates the length (to the nearest centimeter) of the fish observed within the cylinder. Fish species later encountered that were not part of the initial list are still recorded but are classified in a different observation category.

Survey sites were selected randomly within strata by depth-bins (shallow -0 to 6m; middepth -6 to 18m; and deep -18 to 30m). This is one possible source of variation in detectability and occupancy. Other sources may include diver-related variations, habitat type, and rugosity. Details of the survey protocol are available in Ayotte et al. (2015).

Standing stock biomass was calculated using the average biomass density (in gm⁻²) of each species per depth strata per habitat type. The biomass density is multiplied with the extent of the hardbottom habitat to get the expanded standing stock biomass (in metric tons). For details of the biomass expansion see Williams (2010).

2.1.5 Species level revenue

Revenue information was derived from the commercial receipt book database. Average price-per-pound per species (if available) was multiplied to the species level catch information. If there is no species level price-per-pound information available, the higher-level information was used (con-generics or family level information). The analysis can be done on the commercial component only based on the ratio estimated by Walker et al. (2012). Since this was just a ratio estimator based on the interview data, the results in the MVA will be similar to simply using the total species level catch.

2.2 Analytical Framework

The analytical framework follows a decision tree with varying threshold. The analysis used some of the criteria described in the National Standard 1 guidelines in developing the decision tree. Each criterion was assigned a data proxy. However, an overarching criterion was prior to applying the NS1 criteria to screen the species with information for the analysis. The final MUS list (Appendix 1) was known to be an artifact of the fishery database. For example, the coral reef taxa are classified as "currently harvested coral reef taxa" those harvested in the reef fisheries and "potentially harvested coral reef taxa" which are the rest of the species in the reef ecosystem. Most of the taxa have no information and just an artifact of the development of the species database. These species need to be removed before applying the filter criteria.

Table 1 describes the criteria and the data proxy assigned to each criterion. We used a decision tree matrix to filter species that do not need conservation and management measures

(CMMs). The decision tree is shown in Figure 1. The first level is the data availability filter. If there is no data available then it automatically falls as an ecosystem component that will be subject to further monitoring and research. The rationale is that there is no data to analyze for the stock status and therefore cannot be subject to any reasonable CMMs. A series of filter is then applied to the remaining species and a threshold (in quartiles) needs to be selected for each step. The remaining species will comprise the stock for federal fisheries management after all five filters are applied.

Table 1. National Standard 1 criteria for species in need of conservation and management measures and i	ts
respective data proxy.	

National Standard 1 criteria		Data Proxy
1.	Stock is an important component of the	Proportion of stock (habitat and depth as a
	marine environment	proxy) in territorial versus federal water
2.	Stock is caught by the fishery	Frequency of the species caught by the fishery
		over time
3.	Stock is a target of a fishery	Species level catch to the total catch
4.	Stock is important to commercial,	Standing stock biomass
	recreational, or subsistence	
5.	Stock is important to the Nation or to the	Revenue
	regional economy	

The analysis is focused on determining species of management importance in the federal waters. In order to achieve this, we have to make some assumptions on the data set used and how it would relate to the NS1 criteria. The following interpretation and assumptions were made for the NS1 criteria and its respective data proxy:

- 1. In order for a stock to be an important component of the "federal" marine environment, the species has to be significantly present in federal waters. We used the benthic habitat area by depth and the maximum depth information for each species. The benthic habitats in the territories have no extensive shallow continental shelf but rather have a steep slope going down to great depths. Most of the shallow habitats are within 3 miles. There were several banks that occur in federal waters which are included in the area calculation. It is automatic therefore that species that have shallow depth distribution are categorized in territorial waters whereas species with wider depth distribution will be found both in territorial and federal waters.
- 2. In order to gauge whether the stock is caught by the fishery, we assume that it will constantly appear in the fishery database. Species caught more frequently will be recorded often and will appear consistently in the catch time series. Since there is no objective way of creating a threshold, the frequency of occurrence is divided into quartiles. Species can appear on a 30-year time series 1-25%, 25-50%, 50-75%, 75-100% of the time.
- 3. For a stock to be a target of a fishery, the species should make up majority of the total catch. The average species annual expanded catch was divided with the total catch of all species to determine relative contribution to the total catch then was ranked from highest

to lowest. Species that are assumed to be the target species will have the highest contribution to the total catch. The ranked list will determine their position on the quartiles similar to the frequency of occurrence.

- 4. For a stock to be important to commercial, recreational, or subsistence fisheries, species should have a reasonable level of biomass in order to be targeted. Biomass is used as a proxy for abundance. In order for the stock to be of fishery importance, the biomass level should be sustained. This can also be viewed as an output where conservation and management of the species should lead to a sustainable biomass level.
- 5. For a stock to be important to the Nation or to the regional economy, the species should have high economic value through the volume and the revenue generated from the sale of the species.

2.3 Multivariate Data Analysis

A master table of available information was generated for all the MUS species per jurisdiction. Each species was treated as a sample and the following data were treated as variables: 1) total catch; 2) mean catch; 3) total occurrence; 4) total count (individual pieces); 5) maximum depth; 6) biomass; 7) habitat proportion in federal waters; and 8) revenue.

The master table was imported to PRIMER 7, a multivariate analysis software designed to calculate similarities in samples from the variables (Clarke and Warwick 2001; Clarke et al. 2014). The quartile rank of occurrence, catch, max depth, and the depth bins were used as factors for each variable entry per species. A log(X+1) transformation was used to standardize the data since the values have several orders of magnitude difference. We used the Bray Curtis similarity to create the similarity matrix. Bray Curtis similarity index were deemed to be appropriate for ecological analysis particularly in handling abundance and biomass data (Clarke et al. 2006).

VERSION: 3/20/2018 4:45:11 PM

Figure 1. Decision tree for designation species as ecosystem components or species in need of CMMs

Non-metric multi-dimensional scaling (nMDS) was used to plot distances for similar species in a 2-dimensional and 3-dimensional space. Species that have similar characteristics for the 7 variables would cluster together. The *stress* value for the plots is indicative on how each point is representative of the inherent similarity /or dissimilarity with other points. The lower the stress value the better the representation in a 2-dimensional or 3-dimensional space. Stress value <0.1 corresponds to a good ordination with no real prospect of misleading interpretation (Clarke and Warwick 2001). A Shepard diagram is plotted to show the regression between the Bray-Curtis similarity and the calculated distance from the MDS (in 2-dimension and 3-dimension). The MDS analysis was set to run 25 restarts to find the lowest stress value which is a form of optimization of the final MDS plots. Pearson correlation was used to show the vectors in the MDS plot. The vector lines of the variable show the directionality of the similar sample points.

The plots show the patterns in the species relationship relative to the variables. The points that clustered together are of interest which is the species group that will be filtered through this process. The multivariate analysis is done at every filtering stage of the decision tree. At each filtering stage, a cut-off level is applied using the following intervals: 1-25%, 25-50%, 50-75% and 75-100%. Each species is assigned to their respective quarter after calculating the percentiles (0.25, 0.50, and 0.75) and the cumulative percentages for each variable used. Species is assigned with ND if there is no data for a particular variable. A final list of species is generated after all filters are applied which are candidates for species under federal fisheries management.

2.4 Permutational Multivariate Analysis of Variance (PERMANOVA)

In order to test the fidelity of the clustering, we implemented the PERMANOVA+ routine in PRIMER 7.0. (Anderson et al. 2008). PERMANOVA is basically a permutational MANOVA procedure that operates on the selected resemblance matrix (in this case Euclidian distance), and avoids unrealistic normality assumptions (Anderson 2001; McArdle and Anderson 2001) required in a parametric MANOVA. This is done by using permutation to generate null hypothesis distributions for its pseudo-F statistics. The pseudo-F statistics is constructed by the exact same way as the standard F statistics for corresponding univariate ANOVA designs. PERMANOVA tested the hypothesis of no difference in the available fishery dependent and fishery independent data. A design file was developed from the sequence in the decision tree. The test was done on a five-factor design: 1) occurrence; 2) maximum depth; 3) total catch; 4) revenue; and 5) biomass. Under each factor are the 4 quartiles.

PERMANOVA involves partitioning of the data in a 5 by 4 design but the sample sizes would vary depending on the number and types of data available for each species. A Type 1 sum of squares (sequential) was used in the analysis because we want to explore the natural order of the filtering stages. This would also ensure that all components are considered and no information is left out. Only the main effects will be included in the report since most of the interaction terms were not significant.

2.5 Addressing the SSC and PIFSC analytical recommendations

This report includes additional sections that addressed the recommendations by the SSC and PIFSC. The following are the recommendations and the analysis conducted to address the recommendations:

SSC/PIFSC recommendations	Analytical procedure
Staff explore the species catch trend over time	Individual species level catch trends were
and catch: biomass ratio to identify species that	plotted for reference during the Ecosystem
are no longer targeted by the fishery but the	Component working group evaluation. Catch
population is still available to the fishery, or	to biomass information is limited. See
whether species have declined over time due to	APPENDIX 11.4-11.6
exploitation and should be investigated in more	
detail	
Staff explore the use of the BioSampling data	This was considered in the Ecosystem
(e.g. market sampling, species composition)	Component Working Group evaluation.
and relevant life history information as input	Revenue information was included as one of
variables and/or information for post-hoc	the filters.
analysis of the species that had been selected	
for federal management to consider if any	
should be removed in consideration of	
productivity and life history traits;	

Table 2. List of SSC and PIFSC recommendations and	actions taken to address the recommendations
--	--

Staff explore different cut-off levels based on	Plotted the histogram for:
the actual distribution of the input variables;	 #species x occurrence bins (no data, 1-year increments)
	• #species x catch bins (no catch, start with
	100 lbs increments)
	• #species x depth bins (follow the existing
	binning)
	• #species x economic value bins
	• #species x habitat proportion bins
	Aside from quartile, cumulative percentages
	were explored to determine if it is an
	appropriate cut-off metric.
Staff test the fidelity of the groupings using	Included PERMANOVA analysis at each
other statistical tests such as PERMANOVA	filtering stage
Tabulate the species that dropped out per	A table was added to the appendix that
filtering stage	summarizes the species that was removed at
	each filtering stage.
Explore effect of changing the sequence and	Conducted a sequence analysis and compared
thresholds;	the species composition and ordination plot
Staff convene an expert working group to	An Ecosystem Component Working Group
examine the species that are filtered out to	was formed chaired by Dr. Craig Severance to
ensure that the final listing requiring Federal	evaluate the final list of species and conducted
management includes species of social,	a scoring process to account for the remaining
cultural, economic, biological, and ecological	5 factors described in the NS1 guidelines.
importance	

3 RESULTS

3.1 Addressing analytical improvements

Out of the seven recommendations provided by the SSC and PIFSC, three are operational issues that would affect the MVA. The cut-off level, grouping fidelity, and filter sequencing are addressed individually in this section. The remaining recommendations are either addressed by the EC working group (refer to the ECWG report). The recommendation on looking at the individual species catch trends is addressed via APPENDIX 11.4-11.6. Individual plots have been included as reference.

3.1.1 Exploration of cut-off methods

An essential step in the filtering process is determining the appropriate cut-off levels. The cut-off level should be derived from the distribution of the occurrence, catch, depth, revenue, and biomass data. The histogram shown in Figure 2 describes the number of species under each range of values for these five variables for American Samoa, Guam, and CNMI. In general, for catch, maximum depth and revenue, the distribution is skewed to the left where most number of species have low catch occurs at shallow depth, and has low economic value. Occurrence on the other hand, has data that spreads across the number of years with the highest number of species with a single year occurrence.

Figure 2. Histogram of catch, occurrence, maximum depth, and revenue data for American Samoa, Guam, and CNMI.

The percentiles (0.25, 0.50, and 0.75) and cumulative percentages (top 25%, upper mid 25%, lower mid 25%, and low 25%) were calculated for each variable. We compared the results of the rate of species removals using these cut-off methods. The cumulative percentages follow the same distributions as the variables where the lower 25% had the most number of species and the number taper rapidly in increasing quarters. Figure 3 shows the rate of species removal between the two cut-off methods. Using the first quarter (1-25%) of the percentile and the cumulative percentage method, the rate of species removal for the latter is higher where only one species is left after the five-stage filtering process for Guam. The cumulative percentage method eliminates all the species after the second filter in American Samoa and the fourth filter in CNMI. This will result in no species remaining under federal conservation and management. Using the percentile approach is useful for the occurrence data where the distribution is spread across the x-axis.

3.1.2 Sequence of filters

Two filtering sequences were tested to determine if there are differences in the outcome. The first scenario follows the decision tree sequence: occurrence, depth, catch, revenue, and biomass. The second scenario randomized the sequence to: catch, revenue, occurrence, biomass, and depth. Using the Guam data sets, we ran the MVA using the Bray-Curtis similarity index and plotted the final results using the Principal Coordinates Analysis (Gower 1966). The two-axes include an estimate of the percent variation explained by that ordination axis.

The results showed there are differences in the composition of species being removed at each filtering stages. However, there are no differences in the final outcomes when the sequence is changed. Figure 4 shows the results of the principal coordinates analysis where the left-hand graphs are results of sequence 1 filtering series and the right-hand graphs are the results of the sequence 2 series. Notice that the distribution patterns and density of the points vary between the 2 groups. The final pattern and species composition on Figure 4e and 4j showed similar species composition and patterns and the percentage variations are exactly the same where 72.5% of the total variation is explained by the variables along the x-axis (fishery dependent data sets) and 14.8% by variables along the y-axis (fishery independent data sets and revenue). Revenue information drives the third axis that is not evident in the 2-dimensional plot.

Figure 4. Principal Coordinates Ordination plots of the two filtering sequences. Plot A to E follows the occurrence, depth, catch, revenue, and biomass sequence. Plot F to J follows the catch, revenue, occurrence, biomass, and depth sequence.

VERSION: 3/20/2018 4:45:11 PM

4 GUAM ECOSYSTEM COMPONENT ANALYSIS

4.1 Removal of MUS species with no available data

The MUS list for Guam contains 2,329 species that are mostly coral reef associated with a large number that are invertebrates. This was an artifact of the development of the species list table of the fishery database where staff developed a complete list of species occurring in Guam anticipating these species to appear in future catch interviews (David Hamm pers. comm. December 23, 2016). The majority of these species did not have catch information. In creating the master data table, most of the species did not have any biomass and maximum depth information. In running the multivariate analysis, these species with no data appeared as a fog of data point surrounding a tight cluster of species that have actual values (Figure 5a). This is also shown in the Shepard diagram where the vertical line with 0 similarity values and a wide distance values in the 2-D MDS indicates a large number of species clouding up the 2-dimensional spaces (Figure 5b). These species were removed following the decision tree (Figure 1).

Figure 5. MDS plot (a) and Shepard diagram (b) of all MUS including species with no available data. The 3-D stress value = 0.01.

Once the species with no available data were removed, the 2-dimensional pattern of species that comprise the central core in Figure 5a can be seen more clearly. The 2-dimensional plot showed two distinct "V"-like pattern and three linear clusters on the periphery. The 2-dimensional stress value is 0.12 and the 3-dimensional stress value is 0.07 (figure not shown) indicating that this is a reliable spatial representation of the similarity of species based on the analyzed information (Figure 6a). The occurrence data are found at the two main V-clusters while species with no occurrence data are found at the outer linear cluster (Figure 6a). The species with maximum depth data are found at one of the arms of the two main V-clusters and two of the linear clusters at the periphery. The species with no maximum depth information are found in the other arms of the two main V-clusters (Figure 6b). Species with no catch data are found in one of the main V-cluster and one of the linear clusters (Figure 6d). Species with no biomass data are interspersed with the main V-clusters and all of the linear clusters (Figure 6e)

The vector lines showed the left direction is driven by the availability and the intensity of the fishery dependent data. The right direction is driven by the availability and intensity of the depth profile and biomass while the vertical direction is driven by revenue. The Shepard diagram showed an improvement in the correlation between the index of similarity values and the

distance assignment of the species (Figure 7). There are still species that had little information as shown by the vertical line.

Figure 6. Two-dimensional plot with a stress value 0.12 of MUS with available data for frequency of occurrence (A). The same 2-D plot with factors using quartiles of maximum depth (B); quartiles of total catch (C); quartiles of revenue (D); and quartiles of biomass (E).

Figure 7. Shepard diagram showing the similarity values using Bray-Curtis index and the distance representation in the 2-D plot for MUS with available data.

4.2 Multivariate analysis on a 25% cut-off point

4.2.1 Delete lower quartile to remove species that are not or rarely caught by the fishery

This phase of the analysis applies the data proxy for the NS1 filters sequentially and utilizes a 25% cut-off point where the bottom 25% is removed and conversely retains the top 75%. This would remove species that are not or rarely caught by the fisheries.

Species with 0-25% frequency of being caught by the fishery were removed (Figures 8a and 8b). The 2-D and 3-D plots have stress values of 0.20 and 0.10, respectively. The nMDS plot shows 2 general clustering (Figures 8a and 8b). The vector line again separates the effect of the fishery dependent data from depth and biomass. The third dimension is driven by the revenue data. Within each cluster, one can see the general right to left directionality in the quartiles of occurrence from lower to higher occurrence. The same directionality can be seen in the 2 general clusters for the mean catch (lower proportion of catch on the right side of the cluster and increasing towards the left) (Figure 8d). The same points at the bottom cluster are characterized by species with no available depth information (Figure 8c). Half of the top and bottom cluster is characterized by species with no revenue data (Figure 8f). The Shepard diagrams for the 2-D and 3-D plots showed the disappearance of the vertical line and the points are tighter on the 3-D Shepard diagram due to the lower stress values (Figures 8g and 8h).

The PERMANOVA results showed the main effects to be significant (Table 3). The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here. Note that the degrees of freedom for occurrence and catch was reduced to two, due to the removal of the lower quartile.

Figure 8. Two and three-dimensional plot with stress values of 0.20 and 0.10, respectively, of remaining MUS after the lower quartile of frequency of occurrence was removed (A and B). The same 2-D plots with factors using quartiles of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.
Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	2	27052	13526	164.06	0.001
QRT_MAXZ	4	24949	6237.4	75.657	0.001
QRT_TOT_LBS	2	11833	5916.4	71.764	0.001
QRT_TOT_REV	4	10489	2622.2	31.806	0.001
QRT_Biomass	4	27159	6789.8	82.357	0.001

Table 3. PERMANOVA results for the removal of species with low frequency of occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

4.2.2 Delete lower quartile to remove species mostly in territorial waters

The second NS1 filter was applied at this stage to remove species that are mostly in shallower depth therefore occurring mostly in territorial waters. The 2-D and 3-D plots stress values are 0.21 and 0.08, respectively. The density of the ordination plots had decreased with the removal of shallow water species and species with no depth information. There are three sets of clusters at 75% similarity running lower left to upper right direction (Figure 9a). The second clustering follows the biomass parameter. Looking at the 3-D plot, there are 4 actual clusters in which the directionality is following the revenue, biomass, depth and fishery dependent variables (Figure 9b). The frequency of occurrence (Figure 9c) and total catch plots (Figure 9d) showed low to high directionality from low left to high right for both clusters. The revenue plot (Figure 9e) showed the species with no available data comprising the points on the lower half of the 2 main clusters. The biomass plot (Figure 9f) shows the species with no available biomass data that comprise the points on the upper cluster.

The removal of shallow water species and the species with no depth information resulted in a tighter correlation plot compared to the previous filtering stage (Figures 9g and 9h). A tighter correlation between the distance assigned to the points and the similarity occur in the 3dimensional plot.

The PERMANOVA results showed the main effects to be significant (Table 4). The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here. The maximum depth degrees-of-freedom is now down to two, due to the removal of the lower quartile.

Table 4. PERMANOVA results for the removal of species in shallow waters. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	2	18406	9203.1	355.4	0.001
QRT_MAXZ	2	5856.6	2928.3	113.08	0.001
QRT_TOT_LBS	2	7628.8	3814.4	147.3	0.001
QRT_REV	4	24483	6120.8	236.37	0.001
QRT_Biomass	4	19253	4813.3	185.87	0.001

Figure 9. Two and three-dimensional plot with stress values of 0.21 and 0.08, respectively, of remaining MUS after the lower quartile of maximum depth was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

4.2.3 Delete lower quartile to remove species that are not targeted by the fishery

The third NS1 filter was applied at this stage to remove species that are not targeted by the fishery. This stage still uses the 0-25% cut-off similar to the first and second filter. The removal of lower quartile in first filter also removed species with low catch that are not targeted by the fishery. The results of the similarity matrix and the ordination plots will remain the same as the second level filtering. No PERMANOVA was conducted under this filter.

4.2.4 Delete lower quartile to remove species that have low contribution to the regional economy

The fourth NS1 filter was applied at this stage to remove species that have low contribution to the regional economy. The 2-D and 3-D stress values are 0.10 and 0.08, respectively. The removal of the lower quartile and species with no revenue information resulted in the removal of the points at the lower left section of the 2 main clusters in Figure 9e. The resulting plots have less density and reduced the number of groupings down to two as shown in the 2-dimensional plot (Figure 10a) compared to three in Figure 9a. The same pattern is seen on the 3-dimensional plot where the groupings were reduced into two rather than four groups. The fishery dependent variables follow the lower left to upper right directionality indicating the low to high gradient. The fishery independent gradients are perpendicular to the fishery dependent variables. The upper clusters are characterized by all species with no available biomass data.

The Shepard diagrams for the 2-D (Figure 10g) and 3-D (Figure 10h) plots show the tighter correlation between the assigned distance and the similarity. The density of the points is much closer and is highest at higher similarity. The two diagrams are almost similar because the stress values are close together.

The PERMANOVA results showed the main effects to be significant (Table 5). The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here.

Table 5. PERMANOVA results for the removal of species with low revenue. The grouping variables are
occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of
squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	2	5531.4	2765.7	132.55	0.001
QRT_MAXZ	2	2861.2	1430.6	68.566	0.001
QRT_TOT_LBS	2	2014.1	1007.1	48.266	0.001
QRT_REV	2	1454.4	727.22	34.854	0.001
QRT_Biomass	4	4967.2	1241.8	59.517	0.001

Figure 10. Two and three-dimensional plot with stress values of 0.10 and 0.08, respectively, of remaining MUS after the lower quartile of revenue was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

4.2.5 Delete lower quartile to remove species that have low biomass contribution

The last NS1 filter is applied at this stage to remove species that have low biomass contribution. The application of the last filter removed the points that comprise the top cluster from the previous filtering. The stress values for the 2-D and the 3-D plots are 0.09 and 0.06, respectively (Figures 11a and 11b). The application of the last filter resulted in 44 remaining species that are left for consideration for federal conservation and management. The directionality of the vector lines maintains the separation on the effects of the fishery dependent and fishery independent information. The Shepard diagram also showed tighter correlation compared to the previous four filters applied to the data (Figures 11g and 11h).

Caution needs to be made in applying this filter to the species remaining from the fourth filter. Note that the biomass information is from surveys conducted by CREP at depths of 0-30 meters. Absence of information does not mean that there is no available information but these species are found at greater depths beyond the survey depth. Application of this filter will artificially remove the deep bottomfish species which are currently being managed and stock assessments are available. The end result from applying this filter will retain species that are covered by the underwater census surveys. The SSC can choose to apply this filter or not.

Nonetheless, the PERMANOVA results showed the main effects to be significant (Table 6). The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here.

Table 6. PERMANOVA results for the removal of species with low biomass. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_LBS	2	1619.8	809.89	46.043	0.001
QRT_TOT_OCC	2	218.72	109.36	6.2172	0.007
QRT_REV	2	390.76	195.38	11.108	0.002
QRT_MAXZ	2	182.99	91.496	5.2017	0.015
QRT_Biomass	2	298.88	149.44	8.4959	0.003

Figure 11. Two and three-dimensional plot with stress-values of 0.09 and 0.06, respectively, of remaining MUS after the lower quartile of biomass was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and revenue (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

4.3 Species decline rate after the filters were applied at 25% cut-off

Figure 12 shows the number of species remaining after the different filters was applied following the decision tree. The total MUS in Guam started at 2,329 species of which 742 had no fishery dependent, biomass, revenue, and max depth information. Of the remaining 1,587 species, 1,122 were not caught or are rarely caught by the fishery. After the 2 filters were applied, only 465 species were left. Two hundred sixty-nine species were removed for those species that occurred in territorial waters and only 196 species were left after filter 3. There were no further reductions in the number of species when the catch filter was applied because all of the lower quartile species was already filtered out by the occurrence filter. Once the fourth filter was applied, 99 species were removed for having low revenue and no revenue data resulting in 97 species left for federal conservation and management. The application of the biomass filter removed 53 species leaving only 44 species under federal conservation and management. The list of candidate species to remain in federal fisheries management is found in Table 7.

Figure 12. Number of species remaining for federal fisheries management after filters were applied at 25% cut-off.

Table 7. Candidate species for federal fisheries management after applying the filters for ecosy	stem
components. This list was generated from a 25% cut-off.	

Scientific Name	Common Name	Family	FEP GROUP
Caranx ignobilis	Giant Trevally, Jack	Carangidae	BF Multi-species complex
Aprion virescens	Grey Snapper, Jobfish	Lutjanidae	BF Multi-species complex
Epinephelus fasciatus	Blacktip Grouper	Serranidae	BF Multi-species complex
Variola louti	Lunartail (lyretail)	Serranidae	BF Multi-species complex
	Grouper		
Acanthurus nigricans	Whitecheek Surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus nigricauda	Blackstreak Surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus nigrofuscus	Brown Surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus olivaceus	Orangeband Surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus pyroferus	Mimic Surgeonfish	Acanthuridae	CRE-Fishes
Naso lituratus	Orangespine Unicornfish	Acanthuridae	CRE-Fishes
Naso unicornis	Bluespine Unicornfish	Acanthuridae	CRE-Fishes
Neoniphon sammara	Bloodspot Squirrelfish	Holocentridae	CRE-Fishes
Sargocentron	Tailspot Squirrelfish	Holocentridae	CRE-Fishes
caudimaculatum			
Sargocentron diadema	Crown Squirrelfish	Holocentridae	CRE-Fishes
Sargocentron spiniferum	Long-Jawed Squirrelfish	Holocentridae	CRE-Fishes
Cheilinus fasciatus	Red-Breasted Wrasse	Labridae	CRE-Fishes
Cheilinus trilobatus	Tripletail Wrasse	Labridae	CRE-Fishes
Cheilinus undulatus	Napoleon Wrasse	Labridae	CRE-Fishes
Epibulus insidiator	Sling-Jawed Wrasse	Labridae	CRE-Fishes
Halichoeres hortulanus	Checkerboard Wrasse	Labridae	CRE-Fishes
Hemigymnus melapterus	1/2 &1/2 Wrasse	Labridae	CRE-Fishes
Novaculichthys taeniourus	Dragon Wrasse	Labridae	CRE-Fishes
Oxycheilinus unifasciatus	Ringtail Wrasse	Labridae	CRE-Fishes
Lethrinus harak	Thumbprint Emperor	Lethrinidae	CRE-Fishes
Lutjanus fulvus	Flametail Snapper	Lutjanidae	CRE-Fishes
Lutjanus gibbus	Humpback Snapper	Lutjanidae	CRE-Fishes
Lutjanus monostigma	Onespot Snapper	Lutjanidae	CRE-Fishes
Macolor macularis	Black and White Snapper	Lutjanidae	CRE-Fishes
Macolor niger	Black Snapper	Lutjanidae	CRE-Fishes
Calotomus carolinus	Bucktooth Parrotfish	Scaridae	CRE-Fishes
Chlorurus frontalis	Tan-faced Parrotfish	Scaridae	CRE-Fishes
Chlorurus microrhinos	Steephead Parrotfish	Scaridae	CRE-Fishes
Chlorurus sordidus	Bullethead Parrotfish	Scaridae	CRE-Fishes
Hipposcarus longiceps	Parrotfish	Scaridae	CRE-Fishes
Scarus festivus	Parrotfish	Scaridae	CRE-Fishes
Scarus forsteni	Tricolor Parrotfish	Scaridae	CRE-Fishes
Scarus frenatus	Vermiculate Parrotfish	Scaridae	CRE-Fishes

Scarus psittacus	Pale Nose Parrotfish	Scaridae	CRE-Fishes
Scarus rubroviolaceus	Parrotfish	Scaridae	CRE-Fishes
Scarus schlegeli	Chevron Parrotfish	Scaridae	CRE-Fishes
Cephalopholis urodeta	Flag-tailed Grouper	Serranidae	CRE-Fishes
Epinephelus merra	Honeycomb Grouper	Serranidae	CRE-Fishes
Epinephelus tauvina	Greasy Grouper	Serranidae	CRE-Fishes
Plectropomus laevis	Saddleback Grouper	Serranidae	CRE-Fishes

4.4 Multivariate analysis on a 50% cut-off point

The results of the multivariate analysis on a 50% cut-off follows the 25% cut-off closely except more species are eliminated due to the higher threshold level. The vector relationship will likely to remain similar.

4.4.1 Delete 1-25% and 25-50% quartiles to remove species that is not or rarely caught by the fishery

The 2-D and 3-D stress values were 0.20 and 0.10, respectively. There were four general clustering of the remaining species after species with less median of frequency of occurrence were removed based on an 80 percent similarity (Figures 13a and 13b). Each cluster showed directionality from lower occurrence to higher occurrence. The majority of the species remaining have occurrence of 75-100% (Figure 13a). The pattern for occurrence is similar to the total catch pattern (Figure 13d). Despite the removal up to the median level of occurrence, the remaining species still have a broad range of depth distribution from shallow to deepwater (Figure 13c). The species with no revenue information comprise the upper 2 clusters (Figure 13e) while species with no biomass information are those that comprise the two left clusters (Figure 13f).

In comparing the Shepard diagram between the 25% (Figures 8g and 8h) and the 50% cut-off (Figures 13g and 13h), the points cluster more tightly along the correlation line in the 50% occurrence cut-off compared to the 25% cut-off. However, this may not be significant since the stress value remain the same at 0.20 and 0.10 for the 2-D and 3-D plots, respectively (Figures 13a and 13b).

The PERMANOVA analysis showed significant differences in the main effects between the quartile levels and the fidelity of the groupings (Table 8). There were no significant differences in the variable interactions.

Figure 13. Two and three-dimensional plot with stress values of 0.20 and 0.10, respectively, of remaining MUS after the lower quartile to median of frequency of occurrence were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	9204.6	9204.6	329	0.001
QRT_MAXZ	4	10429	2607.3	93.193	0.001
QRT_TOT_LBS	2	6256.2	3128.1	111.81	0.001
QRT_REV	4	19449	4862.1	173.79	0.001
QRT_Biomass	4	16104	4026.1	143.91	0.001

Table 8. PERMANOVA results for the removal of species with low occurrence to median level. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

4.4.2 Delete 1-25% and 25-50% quartiles to remove species mostly in territorial waters

The 2-D and 3-D stress values are at 0.20 and 0.07, respectively. The cluster of point became less dense when the species that occur at shallower depths were removed at the median cut-off (Figures 14a and 14b). The general clustering was reduced to three at 80% similarity (Figure 14a). The 3-dimensional plot shows biomass, revenue and maximum depth drives the distribution perpendicular to the fishery dependent variables. Occupancy and total catch are still dominated by species that has 75-100% occurrence (Figure 14c). Species that have no revenue information comprise the lower left cluster and half of the right-hand cluster (Figure 14e). Species that have no biomass information comprise the lower left and upper right cluster (Figure 14f). In terms of the depth distribution, the 50% cut-off removed species that occurs from 1-50 meters.

The Shepard diagram showed a tighter cluster of points to the correlation line which can explain the 0.03 reduction in the 3-D stress value compared to the lower quartile cut-off (Figure 14h).

The PERMANOVA analysis showed significant differences in the main effects between the quartile levels and the fidelity of the groupings (Table 9). There were no significant differences in the variable interactions.

Table 9. PERMANOVA results for the removal of species with low quartile to median level for maximum depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	4243.5	4243.5	168.99	0.001
QRT_MAXZ	1	1628.4	1628.4	64.85	0.001
QRT_TOT_LBS	2	4212.9	2106.5	83.886	0.001
QRT_REV	4	10693	2673.2	106.46	0.001
QRT_Biomass	4	9309.4	2327.3	92.683	0.001

Figure 14. Two and three-dimensional plot with stress values of 0.20 and 0.07, respectively, of remaining MUS after the lower quartile to median of maximum depth were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

4.4.3 Delete 1-25% and 25-50% quartiles to remove species that are not targeted by the fishery

The cluster patterns and stress values are the same as with removal of species mostly in territorial waters in the previous section (Figures 15a-h). Only two species were removed after the third filter was applied. These two species were *Taenianotus triacanthus* and *Mulloidichthys sp*. It is expected that the PERMANOVA results will be similar to the previous filtering stage so this analysis was not done.

Figure 15. Two and three-dimensional plot with stress values of 0.20 and 0.07, respectively, of remaining MUS after the lower quartile to median of total catch were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

4.4.4 Delete 1-25% and 25-50% quartiles to remove species that have low contribution to the regional economy

The 2-D and 3-D stress values are 0.09 and 0.06, respectively. Species names were included in the 2-D plot because the density of points allows viewing of the species that comprise the cluster (Figure 16a). After removing the species that contribute less to the regional economy, the clustering resulted into two groups: one large clustering and one small cluster with three species (*Carangoides ferdau*, *Epinephelus tauvina*, and *Cephalopholis spiloparaea*) at 80% similarity.

Thirty-four species have economic value that is above the median. Nine species are groupers, four jack species, four snappers that are deep water species, one emperor, four barracuda species, one wrasse (*Cheilinus undulatus*), four parrotfish species, seven species of surgeon and unicorn fishes, and one species of octopus. The bigeye scad (*Selar crumenopthalmus*) is by far the species with the highest economic value for Guam due to the sheer volume of fish landed. Majority of the species are coral reef ecosystem management unit species. Five of the species are bottomfish management unit species.

The directionality of the frequency of occurrence and total catch follows the fishery dependent vector lines Figures 16c and 16e). The separation of the top group of points and the bottom points are driven by the availability of biomass data (Figure 16f). Deeper water species dominate the top group of points while the bottom group is comprised of species that occur at moderate depths (Figure 16d).

The Shepard diagram showed tighter correlation along the line compared to the previous filters (Figures 16g and 16h). The PERMANOVA analysis showed significant differences in the main effects between the quartile levels and the fidelity of the groupings (Table 10). There were no significant differences in the variable interactions.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	547.37	547.37	26.248	0.002
QRT_MAXZ	1	688.39	688.39	33.011	0.002
QRT_TOT_LBS	1	593.62	593.62	28.466	0.002
QRT_REV	1	178.12	178.12	8.5414	0.029
ORT Biomass	4	1495	373.74	17.922	0.002

Table 10. PERMANOVA results for the removal of species with low quartile to median level for revenue. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Figure 16. Two and three-dimensional plot with stress values of 0.09 and 0.06, respectively, of remaining MUS after the lower quartile to median of revenue were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

4.4.5 Delete 1-25% and 25-50% quartiles to remove species that have low biomass contribution

The 2-D and 3-D stress values are 0.06 and 0.03, respectively. Species names were included in the 2-D plot because the density of points allows viewing of the species that comprise the cluster (Figure 17a). After removing the species that comprise lower than the median biomass, the 2-D plot showed a single cluster at the 85% similarity level. This filter removed 20 species. Two of the remaining species, *Naso unicornis* and *Lethrinus harak*, comprise the third quartile and the remaining species comprise the 4th quartile. Two species are BMUS species, *Caranx ignobilis* and *Epinephelus fasciatus*. The Napoleon wrasse, *Cheilinus undulatus*, remains to be a species candidate for retention. This species is mostly caught by recreational spear fishing as a trophy fish.

The 2-D plots of frequency of occurrence (Figure 17c), total catch (Figure 17e), and revenue (Figure 17f) are dominated by species that comprise the 4th quartile while maximum depth (Figure 17d) is mostly at the third quartile. The Shepard diagram showed most of the points are close to the correlation line indicating that the distance assignment is indicative of the similarity values hence the stress values are low (Figures 17g and 17h).

The PERMANOVA results indicate that the differences within each of the variables tested are lower. This is partly because most of the groupings are eliminated by the filtering process. The P value for max depth and revenue are not significant (Table 11).

Table 11. PERMANOVA results for the removal of species with low quartile to median level for biomass. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	90.515	90.515	4.5505	0.038
QRT_MAXZ	1	14.96	14.96	0.75209	0.495
QRT_TOT_LBS	1	136.39	136.39	6.8566	0.012
QRT_REV	1	15.022	15.022	0.75521	0.508
QRT_Biomass	1	99.591	99.591	5.0067	0.038

Figure 17. Two and three-dimensional plot with stress values of 0.06 and 0.03, respectively, of remaining MUS after the lower quartile to median of biomass were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); total catch (E); and revenue (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS

4.5 Species removal rate after the filters were applied at 50% cut-off

As expected, the rate of decline per filtering stage is faster with higher cut-off threshold. The frequency of occurrence filter removed 742 species retaining 465 species that are caught more than 50% of the time (Figure 18). Filter 3 removed 234 species, retaining 178 species potentially found in federal waters. Filter 4 removed 79 species that contributes less than 50% of the mean catch. This leaves 13 species that are potentially in need of federal management. The list of species is found in Table 12.

Figure 18. Number of species remaining for federal fisheries management after filters were applied at 50% cut-off.

 Table 12. Candidate species for federal fisheries management after applying the filters for ecosystem components. This list was generated from a 50% cut-off.

Scientific Name	Common Name	Family	FEP Groups
Acanthurus nigricans	Whitecheek Surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus nigrofuscus	Brown Surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus olivaceus	Orangeband Surgeonfish	Acanthuridae	CRE-Fishes
Caranx ignobilis	Giant Trevally, Jack	Carangidae	BF Multi-species complex
Cephalopholis urodeta	Flag-Tailed Grouper	Serranidae	CRE-Fishes
Cheilinus undulates	Napoleon Wrasse	Labridae	CRE-Fishes
Epinephelus fasciatus	Blacktip Grouper	Serranidae	BF Multi-species complex
Lethrinus harak	Thumbprint Emperor	Lethrinidae	CRE-Fishes

QRT Biomass

4

Naso unicornis	Bluespine Unicornfish	Acanthuridae	CRE-Fishes
Plectropomus laevis	Saddleback Grouper	Serranidae	CRE-Fishes
Scarus forsteni	Tricolor Parrotfish	Scaridae	CRE-Fishes
Scarus rubroviolaceus	Parrotfish	Scaridae	CRE-Fishes
Scarus schlegeli	Chevron Parrotfish	Scaridae	CRE-Fishes

4.6 Multivariate analysis on a 75% cut-off point

In the interest of brevity of the report, we would be presenting the series of nMDS plots at each cut-off levels. The patterns are similar to the previous cut-off levels. We will be highlighting the very specific items in this cut-off threshold that is worth mentioning particularly the levels of groupings as well as the results of PERMANOVA.

4.6.1 Delete 1-25%, 25-50%, and 50-75% quartiles to remove species that is not or rarely caught by the fishery

The 2-D and 3-D stress values are 0.17 and 0.08, respectively. Since majority of the species had been removed, the similarity value of the remaining species is high leaving only three groups at 80% similarity compared to the eight groups at the median cut-off level (Figure 19a). The main characteristic at this level of cut-off and filtering stage is the full range of values still persists for maximum depth, revenue and biomass. Species with no revenue data comprise the left cluster and half of the upper right cluster (Figure 19e). On the other hand, species with no biomass data comprise the two lower clusters (Figure 19f). The Shepard diagrams showed points around the correlation line are much tighter at this level of cut-off compared to the previous two levels (Figures 19g and 19h). The PERMANOVA results showed significant differences within variables. Frequency of occurrence was not tested due to zero degrees of freedom since only one level remained (Table 13).

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	0	0		No test	
QRT_MAXZ	4	4653	1163.3	46.962	0.001
QRT_TOT_LBS	2	3058.8	1529.4	61.744	0.001
QRT_REV	4	9604.1	2401	96.932	0.001

8709.2

Table 13. PERMANOVA results for the removal of species with low to third quartile level for frequency of occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

2177.3

87.901

0.001

Figure 19. Two and three-dimensional plot with stress values of 0.17 and 0.08, respectively, of remaining MUS after the lower quartile to the third quartile of occurrence were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS

4.6.2 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that are mostly in territorial waters

The 2-D and 3-D stress values are 0.14 and 0.06, respectively (Figures 20a and 20b). Removal of the remaining shallow depth species had significantly reduced the species in one cluster. The vector lines still show biomass, depth and revenue being potential drivers in the distribution. Species with no revenue information comprise half of the two clusters (Figure 20e). Species with no biomass data comprise one whole cluster at the low left plot (Figure 20f). The PERMANOVA results showed significant differences within variables for total catch, revenue and biomass (Table 14). No test was conducted for occurrence and maximum depth.

Table 14. PERMANOVA results for the removal of species with low to third quartile level for maxim	um
depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The an	alysis
utilized the sequential type 1 sum of squares.	

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	0	0		No test	
QRT_MAXZ	0	0		No test	
QRT_TOT_LBS	1	986.82	986.82	45.309	0.001
QRT_REV	4	3389.6	847.41	38.908	0.001
QRT_Biomass	4	2989.6	747.41	34.317	0.001

4.6.3 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that are not targeted by the fisheries

The 2-D and 3-D stress values are 0.12 and 0.06, respectively (Figures 21a and 21b). At this cut-off level and filter stage, only one cluster remained at 80% similarity. The same pattern holds where species with no revenue and biomass data persist on the periphery of the plots (Figures 21e and 21f). The direction of the vector lines for revenue, biomass and depth remained the same. Only revenue and biomass have PERMANOVA results that are significant whereas occurrence, depth, and catch were not tested (Table 15).

Table 15. PERMANOVA results for the removal of species with low to third quartile level for total catch. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	0	0		No test	
QRT_MAXZ	0	0		No test	
QRT_TOT_LBS	0	0		No test	
QRT_REV	4	2846.2	711.55	32.67	0.001
QRT_Biomass	4	2250.7	562.69	25.835	0.001

Figure 20. Two and three-dimensional plot with stress values of 0.14 and 0.06, respectively, of remaining MUS after the lower quartile to the third quartile of maximum depth were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

Figure 21. Two and three-dimensional plot with stress values of 0.12 and 0.06, respectively, of remaining MUS after the lower quartile to the third quartile of total catch were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); maximum depth (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

4.6.4 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that have low contribution to the regional economy

Application of the fourth filter resulted in retention of 7 species, two of which are BMUS and five are CREMUS. *Selar crumenophthalmus* and *Naso unicornis* are the top CREMUS species and are separated from the rest of the species clusters. The deep-water species of *Elagatis bipinnulata*, *Sphyraena barracuda* and *Etelis coruscans* occur in one cluster (Figure 22d). All the points lie within the correlation line for the 2-D and 3-D Shepard diagrams (Figures 22g and 22h).

No PERMANOVA test was conducted on four of the main variables. Biomass remained significant (pseudo F = 4.45, df = 3, P_{perm} =0.023).

4.6.5 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that have low biomass

Applying the last filter removed six species including *Acanthurus xanthopterus*, *Naso unicornis*, *Selar crumenophthalmus*, *Elagatis bipinnulata*, *Sphyraena barracuda* and *Etelis coruscans*. One species remained which is the giant trevally, *Caranx ignobilis*. The nMDS plots were no longer shown because it will only plot one point.

Figure 22. Two and three-dimensional plot with stress values of 0.00 and 0.00, respectively, of remaining MUS after the lower quartile to the third quartile of revenue were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

4.7 Species decline rate after the filters were applied at 75% cut-off

As expected the decline rate at 75% cut-off threshold will be higher. Figure 23 showed the relative rate of decline between the three cut-off thresholds. With a 75% cut-off, this leaves one species that is potentially in need of federal management. The list of species is found in Table 16.

Figure 23. Number of species remaining after each filter is applied comparing the 3 cut-off thresholds.

Table 16. Candidate species for federal fisheries management after applying the filters for ecosystem components. This list was generated from a 75% cut-off.

Scientific Name	Common Name	FAMILY	FEP GROUP
Caranx ignobilis	Giant Trevally	Carangidae	BF Multi-species complex

VERSION: 3/20/2018 4:45:11 PM

5 AMERICAN SAMOA ECOSYSTEM COMPONENT ANALYSIS

5.1 Removal of MUS species with no available data

The MUS list for American Samoa contains 329 species that are mostly coral reef associated including some invertebrates. The majority of these species had catch information. In creating the master data table, most of the species did not have any biomass and revenue information. The multivariate analysis resulted to species with data appearing as a single point surrounded by a scatter of species that have no data (Figure 24a). This is also shown in the Shepard diagram where the horizontal line with 20-100% similarity values and a vertical line with some points showing those with no data (Figure 24b). Species with no data were removed following the decision tree (Figure 1).

Figure 24. MDS plot (a) and Shepard diagram (b) of all MUS including species with no available data. The 3-D stress value = 0.00.

Running nMDS on remaining species after removing species with no available data resulted in a scattering of the points on 2D space with a relatively low stress value of 0.13 (Figure 24a). Ten clusters were identified using a 60% similarity threshold with large overlaps on the 2-D space for the four biggest clusters. The occurrence data follows a vertical directionality of increasing occurrence values from bottom to top (Figure 25a). Species that only had maximum depth data clustered distinctly at the lower right of the 2-dimensional plot (Figure 25b). There 2-D pattern for catch data is strongly aligned along a diagonal axis of increasing catches from the lower-right corner to the upper-left of the plot (Figure 25c). Since almost half of the species did not have revenue data, the plot shows species with no revenue data are found in all the clusters (Figure 25d). Species with no biomass data are concentrated on the clusters found on the right side and on the periphery (Figure 25e).

Orthogonal vector lines on Figure 25 are represented by catch-related information (lowerright to upper-left direction) and biomass and habitat related variables (lower-left to upper-right direction). The Shepard diagram showed an improvement in the correlation between the index of similarity values and the distance assignment of the species (Figure 26). There are still species that had little information as shown by the vertical line.

Figure 25. Two-dimensional plot with a stress value 0.13 of MUS with available data for frequency of occurrence (A). The same 2-D plot with factors using quartiles of maximum depth (B); quartiles of total catch (C); quartiles of revenue (D); and quartiles of biomass (E).

Figure 26. Shepard diagram showing the similarity values using Bray-Curtis index and the distance representation in the 2-D plot for MUS with available data.

5.2 Multivariate analysis on a 25% cut-off point

5.2.1 Delete lower quartile to remove species that are not or rarely caught by the fishery

This phase of the analysis applies the data proxy for the NS1 filters sequentially and utilizes a 25% cut-off point where the bottom 25% is removed and conversely retains the top 75%. This would remove species that are not or are rarely caught by the fisheries.

Species with 0-25% frequency of being caught by the fishery were removed (Figure 27a and 27b). The 2-D and 3-D plots have stress values of 0.16 and 0.09, respectively. The nMDS plot shows two big and two small clusters (e.g., Figure 27a). Orthogonal vector lines again are related to fishery dependent attributes (e.g., total catch) versus habitat and biomass variables. The third dimension is driven by the revenues. Fishery dependent variables follow a general right to left gradient (e.g., Figure 27a and 27d) while biomass follow a top to bottom gradient of increasing values (Figure 27e). Some points at the top cluster are characterized by species with no available depth information (Figure 27c). Half of the top and bottom cluster is characterized by species with no revenue data (Figure 27e) and all the top clusters are species with no biomass information (Figure 27f). The Shepard diagrams for the 2-D and 3-D plots showed the disappearance of the vertical line and the points are tighter on the 3-D Shepard diagram due to the lower stress values (0.09 for the 3-D versus 0.16 for the 2-D).

The PERMANOVA results showed the main effects to be significant (Table 17). The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here. Note that the degrees of freedom for occurrence was reduced to two, due to the removal of the lower quartile.

Figure 27. Two and three-dimensional plot with stress values of 0.16 and 0.09, respectively, of remaining MUS after the lower quartile of frequency of occurrence was removed (A and B). The same 2-D plots with factors using quartiles of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	2	54302	27151	388.34	0.001
QRT_MAXZ	4	34864	8716.1	124.67	0.001
QRT_TOT_LBS	4	26363	6590.7	94.267	0.001
QRT_REV2	4	28924	7231.1	103.43	0.001
QRT_BIO	4	30725	7681.3	109.87	0.001

Table 17. PERMANOVA results for the removal of species with low frequency of occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

5.2.2 Delete lower quartile to remove species mostly in territorial waters

The second NS1 filter was applied at this stage to remove species that are mostly in shallower depth therefore occurring mostly in territorial waters. The 2-D and 3-D plots stress values are 0.14 and 0.07, respectively. The density of the ordination plots had decreased with the removal of shallow water species and species with no depth information. There are four clusters at 70% similarity with three of the clusters overlapping each other (Figure 28a). The second clustering follows the biomass parameter. The frequency of occurrence (Figure 28c) and total catch plots (Figure 28d) showed low to high directionality from low left to high right for both clusters. The revenue plot (Figure 28e) showed the species with no available data comprising the points on the small cluster and parts of the two big clusters. The biomass plot (Figure 28f) shows the species with no available biomass data that comprise the points on the upper portion of two big clusters and on the small cluster at the periphery.

The removal of shallow water species and the species with no depth information resulted in a tighter correlation plot compared to the previous filtering stage (Figures 28g and 28h). A tighter correlation between the distance assigned to the points and the similarity occur in the 3dimensional plot.

The PERMANOVA results showed the main effects to be significant (Table 18). The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here. The maximum depth degrees-of-freedom is now down to two, due to the removal of the lower quartile.

Table 18. PERMANOVA results for the removal of species in shallow waters. The grouping variables are
occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of
squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_LBS	4	40251	10063	390.67	0.001
QRT_TOT_OCC	2	2512.3	1256.1	48.767	0.001
QRT_MAXZ	2	6253.2	3126.6	121.38	0.001
QRT_REV2	4	16065	4016.2	155.92	0.001
QRT_BIO	4	17468	4367	169.54	0.001

Figure 28. Two and three-dimensional plot with stress values of 0.14 and 0.07, respectively, of remaining MUS after the lower quartile of maximum depth was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

5.2.3 Delete lower quartile to remove species that are not targeted by the fishery

The third NS1 filter was applied at this stage to remove species that are not targeted by the fishery. This stage still uses the 0-25% cut-off similar to the first and second filter. The removal of lower quartile in first filter also removed species with low catch that are not targeted by the fishery. The 2-D and 3-D stress values are 0.17 and 0.07, respectively (Figures 29a and 29b). There were three overlapping clusters at 70% similarity in all the plots. The total catch followed a horizontal directionality from low catch on the right to higher catch towards the left (Figure 29a). The maximum depth data had a wide range of values for each cluster (Figure 29d). At this filter, both revenue and biomass had full range of values from low to high with one cluster comprising of points with no data for both revenue and biomass (Figures 29e and 29f). The 3-D Shepard diagram showed tighter points near the correlation line (Figure 29h).

The PERMANOVA results showed the main effects to be significant (Table 19). The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here. The total catch degrees-of-freedom is now down to two, after removing the lower quartile.

Table 19. PERMANOVA results for the removal of species with low total catch. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_LBS	2	19146	9573.2	438.86	0.001
QRT_TOT_OCC	2	2512.3	1256.1	57.585	0.001
QRT_MAXZ	2	4544.8	2272.4	104.17	0.001
QRT_REV2	4	13678	3419.5	156.76	0.001
QRT_BIO	4	10721	2680.3	122.87	0.001

Figure 29. Two and three-dimensional plot with stress values of 0.17 and 0.07, respectively, of remaining MUS after the lower quartile of total catch was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.
5.2.4 Delete lower quartile to remove species that have low contribution to the regional economy

The fourth NS1 filter was applied at this stage to remove species that have low contribution to the regional economy. The 2-D and 3-D stress values are 0.09 and 0.06, respectively. The removal of the lower quartile and species with no revenue information resulted in the removal of one cluster at the upper right Figure 29e. The resulting plots have less density and but the same number of groupings as showed in the 2-dimensional plot (Figure 30a). The 3-dimensional plot shows a clear directionality from left to right, indicating the low to high gradient, driven by fishery dependent variables (Figure 30b). The fishery independent gradients are perpendicular to the fishery dependent variables. The upper points in the two clusters are characterized by all species with no available biomass data (Figure 30f).

The Shepard diagrams for the 2-D (Figure 10g) and 3-D (Figure 10h) plots show the tighter correlation between the assigned distance and the similarity. The density of the points is much closer and is highest at higher similarity. The two diagrams are almost similar due to the stress values which are close together.

The PERMANOVA results showed the main effects to be significant (Table 20). The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here.

Table 20. PERMANOVA results for the removal of species with low revenue. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_LBS	2	10297	5148.5	472.85	0.001
QRT_TOT_OCC	2	890.48	445.24	40.892	0.002
QRT_MAXZ	2	1254.2	627.09	57.593	0.001
QRT_REV2	2	1082.2	541.08	49.694	0.002
QRT_BIO	4	5642.4	1410.6	129.55	0.001

Figure 30. Two and three-dimensional plot with stress values of 0.09 and 0.06, respectively, of remaining MUS after the lower quartile of revenue was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

5.2.5 Delete lower quartile to remove species that have low biomass contribution

The last NS1 filter is applied at this stage to remove species that have low biomass contribution. The application of the last filter removed the points that comprise the top cluster from the previous filtering. The stress values for the 2-D and the 3-D plots are 0.05 and 0.04, respectively (Figures 31a and 31b). The application of the last filter resulted in 44 remaining species that are left for consideration for federal conservation and management. The directionality of the vector lines maintains the separation on the effects of the fishery dependent and fishery independent information. The Shepard diagram also showed tighter correlation compared to the previous four filters applied to the data (Figures 31g and 31h).

Caution needs to be made in applying this filter to the species remaining from the fourth filter. Note that the biomass information is from surveys conducted by CREP at depths of 0-30 meters. Absence of information does not mean that there is no available information but these species are found at greater depths beyond the survey depth. Application of this filter will artificially remove the deep bottomfish species which are currently being managed and stock assessments are available. The end result from applying this filter will retain species that are covered by the underwater census surveys. The SSC can choose to apply this filter or not.

The PERMANOVA results showed total catch, maximum depth and biomass to be significant (Table 21). The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here.

Table 21. PERMANOVA results for the removal of species with low biomass. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_LBS	2	2534.6	1267.3	100.97	0.0021
QRT_TOT_OCC	2	157.36	78.68	6.2685	0.1022
QRT_MAXZ	2	244.88	122.44	9.7549	0.017
QRT_REV2	2	51.19	25.595	2.0392	0.2323
QRT_BIO	2	448.37	224.19	17.861	0.0061

Figure 31. Two and three-dimensional plot with stress values of 0.05 and 0.04, respectively, of remaining MUS after the lower quartile of biomass was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and revenue (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

5.3 Species decline rate after the filters were applied at 25% cut-off

Figure 32 shows the number of species remaining after the different filters was applied following the decision tree. The list of candidate species to remain in federal fisheries management is found in Table 22.

Figure 32. Number of species remaining for federal fisheries management after filters were applied at 25% cut-off.

 Table 22. Candidate species for federal fisheries management after applying the filters for ecosystem components. This list was generated from a 25% cut-off.

Scientific Name	Common Name	Family	FEP GROUP
Aprion virescens	Grey Snapper, Jobfish	Lutjanidae	BF Multi-species complex
Lutjanus kasmira	Blueline Snapper	Lutjanidae	BF Multi-species complex
Epinephelus fasciatus	Blacktip Grouper	Serranidae	BF Multi-species complex
Variola louti	Lunartail Grouper (Yellow-edge Lyretail)	Serranidae	BF Multi-species complex
Acanthurus nigricans	Whitecheek Surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus nigrofuscus	Brown Surgeonfish	Acanthuridae	CRE-Fishes

Acanthurus xanthopterus	Yellowfin Surgeonfish	Acanthuridae	CRE-Fishes
Naso lituratus	Orangespine	Acanthuridae	CRE-Fishes
	Unicornfish		
Naso unicornis	Bluespine Unicornfish	bine Unicornfish Acanthuridae	
Zebrasoma velifer	Pacific Sailfin Tang	Acanthuridae	CRE-Fishes
Caranx melampygus	Bluefin Trevally	Carangidae	CRE-Fishes
Myripristis amaena	Brick Soldierfish	Holocentridae	CRE-Fishes
Myripristis berndti	Bigscale Soldierfish	Holocentridae	CRE-Fishes
Sargocentron spiniferum	Saber Squirrelfish	Holocentridae	CRE-Fishes
Gnathodentex aureolineatus	Goldenline Bream	Lethrinidae	CRE-Fishes
Gnathodentex aureolineatus	Yellowspot Emperor	Lethrinidae	CRE-Fishes
Monotaxis grandoculis	Bigeye Emperor	Lethrinidae	CRE-Fishes
Aphareus furca	Brown Jobfish	Lutjanidae	CRE-Fishes
Lutjanus bohar	Red Snapper	Lutjanidae	CRE-Fishes
Lutjanus bohar	Twinspot/Red Snapper	Lutjanidae	CRE-Fishes
Lutjanus fulvus	Yellow-margined	Lutjanidae	CRE-Fishes
	Snapper		
Lutjanus gibbus	Humpback Snapper	Lutjanidae	CRE-Fishes
Lutjanus monostigma	Onespot Snapper	Lutjanidae	CRE-Fishes
Macolor niger	Black Snapper	Lutjanidae	CRE-Fishes
Calotomus carolinus	Stareye Parrotfish	Scaridae	CRE-Fishes
Cephalopholis argus	Peacock Grouper	Serranidae	CRE-Fishes
Epinephelus polyphekadion	Smalltooth Grouper	Serranidae	CRE-Fishes
Epinephelus tauvina	Greasy Grouper	Serranidae	CRE-Fishes
Serranidae Family	Inshore Groupers	Serranidae	CRE-Fishes
Variola albimarginata	White-edged Lyretail	Serranidae	CRE-Fishes

5.4 Multivariate analysis on a 50% cut-off point

The results of the multivariate analysis on a 50% cut-off follows the 25% cut-off closely except more species are eliminated due to the higher threshold level. The vector relationship will likely remain similar.

5.4.1 Delete 1-25% and 25-50% quartiles to remove species that is not or rarely caught by the fishery

The 2-D and 3-D stress values were 0.17 and 0.08, respectively. There were four general clustering of the remaining species after species with less median of frequency of occurrence were removed based on an 80 percent similarity (Figures 33a and 33b). Each cluster showed directionality from lower occurrence to higher occurrence. The majority of species remaining have occurrence of 75-100% (Figure 33a). The pattern for occurrence is similar to the total catch pattern (Figure 33d). Despite the removal up to the median level of occurrence, the remaining species still have a broad range of depth distribution from shallow to deepwater (Figure 33c). The species with no revenue information comprise the upper 2 clusters (Figure 33e) while species with no biomass information are those that comprise the two left clusters (Figure 33f).

In comparing the Shepard diagram between the 25% (Figures 27g and 27h) and the 50% cut-off (Figures 33g and 33h), the points cluster more tightly along the correlation line in the 25% occurrence cut-off compared to the 50% cut-off.

The PERMANOVA analysis showed significant differences in the main effects between the quartile levels and the fidelity of the groupings (Table 23). There were no significant differences in the variable interactions.

Table 23. PERMANOVA results for the removal of species with low occurrence to median level. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	12322	12322	532.12	0.001
QRT_MAXZ	4	17375	4343.8	187.59	0.001
QRT_TOT_LBS	2	10067	5033.3	217.36	0.001
QRT_REV2	3	15948	5315.9	229.57	0.001
QRT_BIO	4	11822	2955.5	127.63	0.001

Figure 33. Two and three-dimensional plot with stress values of 0.17 and 0.08, respectively, of remaining MUS after the lower quartile to median of frequency of occurrence were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

5.4.2 Delete 1-25% and 25-50% quartiles to remove species mostly in territorial waters

The 2-D and 3-D stress values are at 0.16 and 0.06, respectively. The cluster of point became less dense when the species that occur at shallower depths were removed at the median cut-off (Figures 34a and 34b). The general clustering was reduced to three at 80% similarity (Figure 34a). The 3-dimensional plot shows biomass, revenue and maximum depth drives the distribution perpendicular to the fishery dependent variables. Occupancy and total catch are still dominated by species that has 75-100% occurrence (Figure 34c). Species that have no revenue information comprise the lower left cluster and half of the right-hand cluster (Figure 34e). Species that have no biomass information comprise the lower left and upper right cluster (Figure 34f). In terms of the depth distribution, the 50% cut-off removed species that occurs from 1-50 meters.

The Shepard diagram showed a tighter cluster of points to the correlation line which can explain the 0.03 reduction in the 3-D stress value compared to the lower quartile cut-off (Figures 34g and 34h).

The PERMANOVA analysis showed significant differences in the main effects between the quartile levels and the fidelity of the groupings (Table 24). There were no significant differences in the variable interactions.

Table 24. PERMANOVA results for the removal of species with low quartile to median level for maximum
depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis
utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	3208.1	3208.1	193.59	0.001
QRT_MAXZ	1	2038.1	2038.1	122.98	0.001
QRT_TOT_LBS	2	2580.4	1290.2	77.853	0.001
QRT_REV2	3	7016.1	2338.7	141.12	0.001
QRT_BIO	4	3558	889.51	53.676	0.001

Figure 34. Two and three-dimensional plot with stress values of 0.16 and 0.06, respectively, of remaining MUS after the lower quartile to median of maximum depth were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

5.4.3 Delete 1-25% and 25-50% quartiles to remove species that are not targeted by the fishery

The 2-D and 3-D stress values are at 0.15 and 0.06, respectively. The cluster of point became less dense when the species that are not or rarely targeted by the fishery were removed at the median cut-off (Figures 35a and 35b). There were two clustering at 70% similarity (Figure 35a). At 80% similarity, six clusters formed, however two of these clusters had a single point while another two clusters had less than 5 points each (Figure not shown). The 3-dimensional plot shows biomass, revenue and maximum depth drives the distribution perpendicular to the fishery dependent variables. Occupancy and total catch are still dominated by species that has 50-100% occurrence (Figure 35c). Species that have no revenue information comprise the left cluster (Figure 35e) while the species that have no biomass information comprise the upper left and upper right cluster (Figure 35f).

The 3-D Shepard diagram showed a tighter cluster of points to the correlation line (Figure 35h).

The PERMANOVA analysis showed significant differences in the main effects between the quartile levels and the fidelity of the groupings (Table 25). The degrees of freedom for frequency, maximum depth and total catch is down to one. There were no significant differences in the variable interactions.

Table 25. PERMANOVA results for the removal of species with low quartile to median level for total catch. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	2008.9	2008.9	121.22	0.001
QRT_MAXZ	1	1813	1813	109.4	0.001
QRT_TOT_LBS	1	1498.2	1498.2	90.403	0.001
QRT_REV2	3	6367.9	2122.6	128.09	0.001
QRT_BIO	4	2677.1	669.27	40.386	0.001

Figure 35. Two and three-dimensional plot with stress values of 0.15 and 0.06, respectively, of remaining MUS after the lower quartile to median of total catch were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

5.4.4 Delete 1-25% and 25-50% quartiles to remove species that have low contribution to the regional economy

The 2-D and 3-D stress values are 0.07 and 0.05, respectively (Figures 36a and 36b). Only two clusters remain after this filter was applied. The remaining species are represented by 36 species that have economic value above the median. Sixteen species are snappers, six jack species, five groupers, that are deep water species, one emperor, two soldierfish species, four species of surgeon and unicornfishes, and two species of lobster. The bigeye scad (*Selar crumenopthalmus*) is by far the species with the highest economic value for American Samoa, similar to Guam, due to the sheer volume of fish landed. Majority of the species are coral reef ecosystem management unit species while 11 of the species are bottomfish management unit species.

The directionality of the frequency of occurrence and total catch follows the fishery dependent vector lines (Figures 36c and 36e). The separation of the top group of points and the bottom points are driven by the availability of biomass data (Figure 36f). Deeper water species dominate the bottom group of points while the top group is comprised of species that occur at moderate depths (Figure 36d). The Shepard diagram showed tighter correlation along the line compared to the previous filters.

The PERMANOVA analysis showed significant differences in the main effects between the quartile levels and the fidelity of the groupings (Table 26). There were no significant differences in the variable interactions.

Table 26. PERMANOVA results for the removal of species with low quartile to median level for revenue. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	1284.9	1284.9	129.65	0.001
QRT_MAXZ	1	686.76	686.76	69.295	0.001
QRT_TOT_LBS	1	793.32	793.32	80.047	0.001
QRT_REV2	1	397.55	397.55	40.113	0.003
QRT_BIO	4	1441.5	360.38	36.362	0.001

Figure 36. Two and three-dimensional plot with stress values of 0.07 and 0.05, respectively, of remaining MUS after the lower quartile to median of revenue were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

5.4.5 Delete 1-25% and 25-50% quartiles to remove species that have low biomass contribution

The 2-D and 3-D stress values are 0.04 and 0.02, respectively. Species names were included in the 2-D plot because the density of points allows viewing of the species that comprise the cluster (Figure 37a). After removing the species that comprise lower than the median biomass, the 2-D plot showed a single cluster at 85% similarity level. This filter removed 22 species resulting to 14 remaining species.

The 2-D plots of frequency of occurrence (Figure 37c) are dominated by species that comprise the 4th quartile, while maximum depth (Figure 37d) is mostly at the third quartile. The trends of total catch (Figure 37e) and revenue (Figure 37f) were very similar. The Shepard diagram showed most of the points are close to the correlation line indicating that the distance assignment is indicative of the similarity values hence the stress values are low (Figures 37g and 37h).

The PERMANOVA results indicate that the differences within each of the variables tested are lower. This is partly because most of the groupings are eliminated by the filtering process. The P value for max depth is not significant and revenue was not tested (Table 27).

Table 27. PERMANOVA results for the removal of species with low quartile to median level for biomass. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	393.41	393.41	31.343	0.006
QRT_MAXZ	1	66.052	66.052	5.2624	0.043
QRT_TOT_LBS	1	120.91	120.91	9.6333	0.022
QRT_REV2	0	0		No test	
QRT_BIO	1	77.594	77.594	6.182	0.02

Figure 37. Two and three-dimensional plot with stress values of 0.04 and 0.02, respectively, of remaining MUS after the lower quartile to median of biomass were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); total catch (E); and revenue (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

5.5 Species removal rate after the filters were applied at 50% cut-off

As expected, the rate of decline per filtering stage is faster with higher cut-off threshold. This leaves 13 species that are potentially in need of federal management. The list of species is found in Table 28.

Figure 38. Number of species remaining for federal fisheries management after filters were applied at 50% cut-off.

Table 28. Candidate species for federal fisheries management after applying the filters for ecosystem components. This list was generated from a 50% cut-off.

Scientific Name	Common Name	Family	FEP Groups
Acanthurus nigricans	Whitecheek Surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus nigrofuscus	Brown Surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus olivaceus	Orangeband Surgeonfish	Acanthuridae	CRE-Fishes
Caranx ignobilis	Giant Trevally, Jack	Carangidae	BF Multi-species complex
Cephalopholis urodeta	Flag-tailed Grouper	Serranidae	CRE-Fishes
Cheilinus undulatus	Napoleon Wrasse	Labridae	CRE-Fishes
Epinephelus fasciatus	Blacktip Grouper	Serranidae	BF Multi-species complex
Lethrinus harak	Thumbprint Emperor	Lethrinidae	CRE-Fishes
Naso unicornis	Bluespine Unicornfish	Acanthuridae	CRE-Fishes
Plectropomus laevis	Saddleback Grouper	Serranidae	CRE-Fishes
Scarus forsteni	Tricolor Parrotfish	Scaridae	CRE-Fishes

Scarus rubroviolaceus	Parrotfish	Scaridae	CRE-Fishes
Scarus schlegeli	Chevron Parrotfish	Scaridae	CRE-Fishes

5.6 Multivariate analysis on a 75% cut-off point

In the interest of conciseness of the report, we would be presenting the series of nMDS plots at each cut-off levels. The patterns are generally similar to the previous cut-off levels. We will be highlighting the very specific items in this cut-off threshold that is worth mentioning particularly the levels of groupings as well as the results of PERMANOVA.

5.6.1 Delete 1-25%, 25-50%, and 50-75% quartiles to remove species that is not or rarely caught by the fishery

The 2-D and 3-D stress values are 0.14 and 0.07, respectively. Although majority of the species had been removed, the similarity value of the residual species is the same as shown by the four clusters at 80% similarity, same number of clusters in the lower and median occurrence cut-offs (Figure 39a). The main characteristic at this level of cut-off and filtering stage is the full range of values persists for maximum depth and biomass (Figures 39c and 39f). Species with no revenue data comprise the three small clusters (Figure 39e). On the other hand, species with no biomass data comprise the two upper clusters and the top half of the big cluster (Figure 39f). The points around the correlation line are much tighter at this level of cut-off compared to the previous two levels (Figure 39g and 39f).

The PERMANOVA results showed significant differences within variables. Frequency of occurrence was not tested due to zero degrees of freedom since only one level remained (Table 29).

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	0	0		No test	
QRT_MAXZ	4	6680.3	1670.1	94.805	0.001
QRT_TOT_LBS	2	4676.8	2338.4	132.74	0.001
QRT_REV2	3	7498.7	2499.6	141.89	0.001
QRT BIO	4	3085.9	771.47	43.794	0.001

Table 29. PERMANOVA results for the removal of species with low to third quartile level for frequency of occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Figure 39. Two and three-dimensional plot with stress values of 0.14 and 0.07, respectively, of remaining MUS after the lower quartile to the third quartile of frequency of occurrence were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

5.6.2 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that are mostly in territorial waters

The 2-D and 3-D stress values are 0.01 and 0.01, respectively. Removal of the remaining shallow depth species had reduced the species into two clusters (Figure 40a). The vector lines still show biomass, depth and revenue being the main drivers in the distribution. Species with no revenue information comprise the small outer cluster (Figure 40e), while species with no biomass data comprise almost all points in both clusters (Figure 40f). The PERMANOVA results showed significant differences within variables for total catch, revenue and biomass (Table 30). No test was conducted for occurrence and maximum depth.

Table 30. PERMANOVA results for the removal of species with low to third quartile level for maximum
depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis
utilized the sequential type 1 sum of squares

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	0	0		No test	
QRT_MAXZ	0	0		No test	
QRT_TOT_LBS	1	988.65	988.65	98.253	0.001
QRT_REV2	2	1103.1	551.54	54.813	0.001
QRT_BIO	2	261.82	130.91	13.01	0.008

5.6.3 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that are not targeted by the fisheries

The 2-D and 3-D stress values are 0.01 and 0.01, respectively (Figure 41a and 41b). At this cut-off level and filter stage, two clusters remained at 80% similarity but one cluster seem like an outlier with only 1 point and located outside and is driven by maximum depth. For revenue, the single species cluster is the only one with no data and the rest had data (Figure 41e). On the other hand, only 2 points have biomass data and the rest had no data (Figure 41f). The direction of the vector lines has changed with revenue and biomass now influencing the points along the same gradient. These two variables have PERMANOVA results that are significant whereas occurrence, depth, and catch were not tested (Table 31).

The Shepard diagram shows most points lie on the correlation line (Figures 41g and 41h).

Table 31. PERMANOVA results for the removal of species with low to third quartile level for total catch. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	0	0		No test	
QRT_MAXZ	0	0		No test	
QRT_TOT_LBS	0	0		No test	
QRT_REV2	2	822.95	411.47	47.719	0.001
QRT_BIO	2	261.82	130.91	15.182	0.006

Figure 40. Two and three-dimensional plot with stress values of 0.01 and 0.01, respectively, of remaining MUS after the lower quartile to the third quartile of maximum depth were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

Figure 41. Two and three-dimensional plot with stress values of 0.01 and 0.01, respectively, of remaining MUS after the lower quartile to the third quartile of total catch were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); maximum depth (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

5.6.4 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that have low contribution to the regional economy

The 2-D and 3-D stress values are 0.01 and 0.01, respectively (Figure 42a and 42b). At this cut-off level and filter stage, only one cluster remained at 80% similarity. Since only a few species are left, the points were labeled with species name because the density of points allows viewing of the species that comprise the cluster. At this cut-off, only nine species remain. The biggest contributor to the economy of American Samoa was the spiny lobster, *Panulirus penicillatus*, due to its relatively high price per pound. The remaining eight species comprised of six species of snappers and two species of jacks. Values of points within maximum depth, total catch and revenue were all within the 75-100% quartile while points in the biomass plot had mostly no data (Figures 42c, 42d, 42e, and 42f). All the points in the Shepard 2-D and 3-D diagrams are within the correlation line (Figures 42g and 42h).

No PERMANOVA test was conducted on four of the main variables. Biomass remained significant (pseudo F = 13.52, df = 2, P_{perm} =0.026).

5.6.5 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that have low biomass

Applying the last filter removed eight species including *Aphareus rutilans, Aprion virescens, Etelis carbunculus, Etelis coruscans, Pristipomoides zonatus (snappers); Caranx lugubris, Elagatis bipinnulata (jacks);* and *Panulirus penicillatus (spiny lobster)*. Only one species remained which is the blueline snapper, *Lutjanus kasmira*. The nMDS plots were no longer shown because it will only plot one point.

Figure 42. Two and three-dimensional plot with stress values of 0.01 and 0.01, respectively, of remaining MUS after the lower quartile to the third quartile of revenue were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

5.7 Species decline rate after the filters were applied at 75% cut-off

As expected the decline rate at 75% cut-off threshold will be higher. Figure 43 showed the relative rate of decline between the three cut-off thresholds. With a 75% cut-off, this leaves one species that is potentially in need of federal management. The list of species is found in Table 32.

Figure 43. Number of species remaining after each filter is applied comparing the 3 cut-off thresholds.

Table 32. Candidate species for federal fisheries management after applying the filters for ecosystem components. This list was generated from a 75% cut-off.

Scientific Name	ientific Name Common Name		FEP GROUP
Lutjanus kasmira	Blueline Snapper	Lutjanidae	BF Multi-species complex

VERSION: 3/20/2018 4:45:11 PM

6 COMMONWEALTH OF NORTHERN MARIANA ISLANDS ECOSYSTEM COMPONENT ANALYSIS

6.1 Removal of MUS species with no available data

The MUS list for Commonwealth of Northern Mariana Islands contains 145 species that are mostly coral reef associated and with some invertebrates. More than half of these species had catch, total occurrence and maximum depth information. In creating the master data table, most of the species did not have any revenue information but more than half had biomass data. The result of the multivariate analysis showed those species with no data as a scatter of few data points while the species that have actual values are clustered together as one point (Figure 44a). This is also shown in the Shepard diagram where the vertical line with 0 similarity values had a few points (Figure 44b) and those with similarities are formed a solid horizontal line. These species were removed following the decision tree (Figure 1).

Figure 44. MDS plot (a) and Shepard diagram (b) of all MUS including species with no available data. The 3D stress value = 0.00.

Table 33. PERMANOVA results for the removal of species with no data. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	4	1.2139E+05	30348	435.86	0.001
QRT_MAXZ	4	24764	6191.1	88.915	0.001
QRT_TOT_LBS	4	23825	5956.1	85.541	0.001
QRT_REV2	3	64.74	21.58	0.30992	0.749
QRT_BIO	4	10186	2546.6	36.574	0.001

The nMDS plots after the removal species with no data are shown in Figure 45. Orthogonal vectors are maximum depth versus various fishery-dependent variables (e.g., total catch, total count, mean catch, etc.; e.g., Figure 45a). For total occurrence (Figure 45a), total catch in lbs. (Figure 45c), and revenue (Figure 45d), there is a gradient of increasing values from the lower-right to the upper-left of the plot. In contrast, maximum depth (Figure 45b) shows a perpendicular gradient of increasing values from the lower-left to the upper-right. Species with missing data for certain variables appear on the right side of the plot.

Figure 45. Two-dimensional plot with a stress-value 0.09 of MUS with available data for frequency of occurrence (A). The same 2-D plot with factors using quartiles of maximum depth (B); quartiles of total catch (C); quartiles of revenue (D); and quartiles of biomass (E).

Figure 46. Shepard diagram showing the similarity values using Bray-Curtis index and the distance representation in the 2-D plot for MUS with available data.

6.1.1 Delete lower quartile to remove species that are not or rarely caught by the fishery

This phase of the analysis applies the data proxy for the NS1 filters sequentially and utilizes a 25% cut-off point where the bottom 25% is removed and conversely retains the top 75%. This would remove species that are not or rarely caught by the fisheries.

Species with 0-25% frequency of being caught by the fishery were removed (Figure 47a and 47b). The 2-D and 3D plots have stress values of 0.11 and 0.07, respectively. The nMDS plot shows 3 general clustering (Figure 47a and 47b). The vector line separates the effect of the fishery dependent data from habitat proportion and biomass. The third dimension is driven by the maximum depth data. Within each cluster, one can see the general right to left directionality in the quartiles of occurrence from lower to higher occurrence. The same directionality can be seen in the 2 general clusters for the total catch and revenue (lower proportion of catch on the left side of the cluster and increasing towards the right) (Figures 47d and 47e). A few points at the top clusters are species with no available depth information (Figure 47c). All the points at the top clusters are species with no biomass information (Figure 47f). The Shepard diagrams for the 2D and 3D plots showed the disappearance of the vertical line and the points are tighter on the 3D Shepard diagram due to the lower stress values.

The PERMANOVA results showed the main effects to be significant (Table 34). The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were

not significant and are not reported here. Note that the degrees of freedom for occurrence is reduced to two, due to the removal of the lower quartile.

Table 34. PERMANOVA results for the removal of species with low frequency of occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	Df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	2	7814.1	3907.1	264.45	0.001
QRT_MAXZ	4	4677.5	1169.4	79.148	0.001
QRT_TOT_LBS	3	3843.4	1281.1	86.712	0.001
QRT_REV2	3	313.7	104.57	7.0775	0.002
QRT_BIO	4	6141.4	1535.4	103.92	0.001

Figure 47. Two and three-dimensional plot with stress-values of 0.11 and 0.07, respectively, of remaining MUS after the lower quartile of frequency of occurrence was removed (A and B). The same 2-D plots with factors using quartiles of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

6.1.2 Delete lower quartile to remove species mostly in territorial waters

The second NS1 filter was applied at this stage to remove species that are mostly in shallower depth therefore occurring mostly in territorial waters. The 2-D and 3-D plots stress values are 0.09 and 0.07, respectively. The density of the ordination plots had decreased with the removal of shallow water species and species with no depth information. There are three sets of clusters at 80% similarity running lower left to upper right direction (Figure 48a). Two clustering follows the biomass parameter. Based on the 3-D plot, the directionality of the 3 clusters is following the biomass and maximum depth variables (Figure 48b). The frequency of occurrence (Figure 48c), total catch plots (Figure 48d) and revenue data (Figure 48e) showed low to high directionality from higher values on the left to low values on the right for both clusters. The biomass plot (Figure 48f) shows the species with no available biomass data that comprise the points on the upper cluster.

The removal of shallow water species and the species with no depth information resulted in a tighter correlation plot compared to the previous filtering stage (Figure 48g and 48h). A tighter correlation between the distance assigned to the points and the similarity occur in the 3dimensional plot.

The PERMANOVA results showed the main effects to be significant (Table 35) except for revenue. The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here. The maximum depth and revenue degrees-of-freedom is now down to two, due to the removal of the lower quartile.

Table 35. PERMANOVA results for the removal of species in shallow waters. The grouping variables are
occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of
squares.

Source	Df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	2	5433.7	2716.9	178.23	0.001
QRT_MAXZ	2	2508.9	1254.5	82.295	0.001
QRT_TOT_LBS	3	2786.9	928.97	60.942	0.001
QRT_REV2	2	77.258	38.629	2.5341	0.095
QRT_BIO	4	3864.2	966.04	63.374	0.001

Figure 48. Two and three-dimensional plot with stress-values of 0.09 and 0.07, respectively, of remaining MUS after the lower quartile of maximum depth was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

6.1.3 Delete lower quartile to remove species that are not targeted by the fishery

The third NS1 filter was applied at this stage to remove species that are not targeted by the fishery. This stage still uses the 0-25% cut-off similar to the first and second filter. The 2-D and 3-D plots stress values are 0.10 and 0.06, respectively. The density of the ordination plots had further decreased with the removal of species that are not targeted by the fishery and the lower quartile of species with low catch. There are two sets of clusters at 80% similarity running lower right to upper left direction (Figure 49a). The two clustering follows the biomass and maximum depth parameters. The directionality of points follows the fishery dependent variables (Figure 49). Based on the 3-D plot, the directionality of the 2 clusters is following the biomass and fishery dependent variables (Figure 49b). The frequency of occurrence (Figure 49c), total catch plots (Figure 49d) and revenue data (Figure 49e) showed low to high directionality from higher values on the lower left to low values on the upper right for both clusters. The biomass plot (Figure 49f) shows the species with no available biomass data that comprise the points on the left cluster.

The removal of species not targeted by the fishery and species with low catch resulted in a tighter correlation plot compared to the previous filtering stage (Figure 49g and 49h). A tighter correlation between the distance assigned to the points and the similarity occur in the 3-dimensional plot.

The PERMANOVA results showed the main effects to be significant (Table 36) except for revenue. The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here. The degrees-of-freedom of all variable except biomass is now down to two, due to the removal of the lower quartile.

Table 36. PERMANOVA results for the removal of species with low total catch. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)	
QRT_TOT_OCC	2	2303.9	1151.9	81.643	0.001	
QRT_MAXZ	2	1505	752.48	53.331	0.001	
QRT_TOT_LBS	2	1845.7	922.86	65.407	0.001	
QRT_REV2	2	74.257	37.129	2.6315	0.074	
QRT_BIO	4	2456.6	614.15	43.527	0.001	

Figure 49. Two and three-dimensional plot with stress-values of 0.10 and 0.06, respectively, of remaining MUS after the lower quartile of total catch was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

6.1.4 Delete lower quartile to remove species that have low contribution to the regional economy

The fourth NS1 filter was applied at this stage to remove species that have low contribution to the regional economy, however, no species was further removed from the previous filter stage (i.e., removal of species which are not or rarely targeted by the fishery). The cluster patterns and stress values are the same since there were no species removed. The plots are expected to be exactly the same so they are not presented. It is expected that the PERMANOVA results will be like the previous filtering stage.

6.1.5 Delete lower quartile to remove species that have low biomass contribution

The last NS1 filter is applied at this stage to remove species that have low biomass contribution. The application of the last filter removed the points that comprise the top left cluster from the previous filtering. The stress values for the 2-D and the 3-D plots are 0.03 and 0.02, respectively (Figures 50a and 50b). The application of the last filter resulted in 14 remaining species that are left for consideration for federal conservation and management. The Shepard diagram also showed tighter correlation compared to the previous four filters applied to the data (Figures 50g and 50h).

Caution needs to be made in applying this filter to the species remaining from the fourth filter. Note that the biomass information is from surveys conducted by CREP at depths of 0-30 meters. Absence of information does not mean that there is no available information but these species maybe found at greater depths beyond the survey depth. Application of this filter will artificially remove the deep bottomfish species which are currently being managed and stock assessments are available. The end result from applying this filter will retain species that are covered by the underwater census surveys. The SSC can choose to apply this filter or not.

The PERMANOVA results showed the main effects to be significant (Table 37) except maximum depth. The fidelity of the groupings is reflected in the directionality by vectors. The interaction terms were not significant and are not reported here.

Table 37. PERMANOVA results for the removal of species with low biomass. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	2	571.19	285.59	98.246	0.001
QRT_MAXZ	1	41.919	41.919	14.42	0.2231
QRT_TOT_LBS	2	316.66	158.33	54.467	0.0015
QRT_REV2	1	22.44	22.44	7.7195	0.0015
QRT_BIO	2	95.507	47.754	16.428	0.0017

Figure 50. Two and three-dimensional plot with stress-values of 0.03 and 0.02, respectively, of remaining MUS after the lower quartile of biomass was removed (A and B). The same 2-D plots with factors using quartiles of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

6.2 Species decline rate after the filters were applied at 25% cut-off

Figure 51 shows the number of species remaining after the different filters was applied following the decision tree. The total MUS in CNMI started at 145 species of which 5 had no fishery dependent, biomass, revenue, and max depth information. Of the remaining 140 species, 48 were not caught or are rarely caught by the fishery. After the 2 filters were applied, only 68 species were left. Ten species were removed from those species that occurred in territorial waters and 58 species were left after catch filter. There were no further reductions in the number of species when the revenue filter was applied because all the lower quartile species was already filtered out by the occurrence filter. Once the fifth filter was applied, 44 species were removed for having low biomass and no biomass data resulting in 14 species left for federal conservation and management. The list of candidate species to remain in federal fisheries management is found in Table 7.

Figure 51. Number of species remaining for federal fisheries management after filters were applied at 25% cut-off.

Table 38. Candidate species for federal fisheries management after applying the filters for ecosystem components. This list was generated from a 25% cut-off.

Scientific Name	Common Name	Family	FEP GROUP
Lethrinus			BF Multi-species
rubrioperculatus	Redgill Emperor	Lethrinidae	complex
Lutjanus kasmira	Blueline Snapper	Lutjanidae	BF Multi-species

VERSION: 3/20/2018 4:45:11 PM

			complex
	Lunartail Grouper		BF Multi-species
Variola louti	(Lyretail Grouper)	Serranidae	complex
Acanthurus xanthopterus	Yellowfin Surgeonfish	Acanthuridae	CRE-Fishes
Naso lituratus	Orangespine Unicornfish	Acanthuridae	CRE-Fishes
Caranx melampygus	Bluefin Trevally	Carangidae	CRE-Fishes
Caranx sexfasciatus	Bigeye Trevally	Carangidae	CRE-Fishes
Decapterus macarellus	Mackerel Scad	Carangidae	CRE-Fishes
Lethrinus harak	Blackspot Emperor	Lethrinidae	CRE-Fishes
Lethrinus sp.	Emperor (mafute/misc.)	Lethrinidae	CRE-Fishes
Monotaxis grandoculis	Bigeye Emperor	Lethrinidae	CRE-Fishes
Aphareus furca	Smalltooth Jobfish	Lutjanidae	CRE-Fishes
Lutjanus bohar	Red Snapper	Lutjanidae	CRE-Fishes
Cephalopholis urodeta	Flagtail Grouper	Serranidae	CRE-Fishes

6.3 Multivariate analysis on a 50% cut-off point

The results of the multivariate analysis on a 50% cut-off follows the 25% cut-off closely except more species are eliminated due to the higher threshold level. The vector relationship will likely to remain similar.

6.3.1 Delete 1-25% and 25-50% quartiles to remove species that is not or rarely caught by the fishery

The 2-D and 3-D stress values were 0.12 and 0.07, respectively. There were three general clustering of the remaining species after species with less median of frequency of occurrence were removed based on an 80 percent similarity (Figures 52a and 52b). There was some overlap in the three clusters. Each cluster showed directionality from lower occurrence to higher occurrence. Many of the species remaining have occurrence of 75-100% (Figure 52a). The pattern for total catch is similar to the revenue pattern (Figure 52d and 52e). Despite the removal up to the median level of occurrence, the remaining species still have a broad range of depth distribution from shallow to deepwater (Figure 52c). The species with no biomass information comprise the 2 clusters on the right (Figure 52f).

In comparing the Shepard diagram between the 25% (Figure 8g and 8h) and the 50% cutoff (Figure 52g and 52h), the points cluster more tightly along the correlation line in the 50% occurrence cut-off compared to the 25% cut-off but trend is the same. However, this may not be significant since the stress value remain almost the same at 0.12 and 0.07 for the 2-D and 3-D plots, respectively.

The PERMANOVA analysis showed significant differences in the main effects between the quartile levels and the fidelity of the groupings (Table 39) except for revenue. There were no significant differences in the variable interactions.

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	1009.7	1009.7	72.596	0.001
QRT_MAXZ	4	1908.5	477.11	34.303	0.001
QRT_TOT_LBS	3	2359.2	786.4	56.539	0.001
QRT_REV2	2	58.158	29.079	2.0907	0.165
QRT_BIO	4	2967.1	741.78	53.332	0.001

Table 39. PERMANOVA results for the removal of species with low occurrence to median level. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares

Figure 52. Two and three-dimensional plot with stress-values of 0.12 and 0.07, respectively, of remaining MUS after the lower quartile to median of frequency of occurrence were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

6.3.2 Delete 1-25% and 25-50% quartiles to remove species mostly in territorial waters

The 2-D and 3-D stress values are at 0.09 and 0.05, respectively. The cluster of point became less dense when the species that occur at shallower depths were removed at the median cut-off (Figure 53a and 53b). The general clustering was reduced to two at 80% similarity (Figure 53a). The 3-dimensional plot shows biomass and maximum depth drives the distribution perpendicular to the fishery dependent variables. Almost all the remaining species have revenue information for both clusters (Figure 53e). Species that have no biomass information comprise cluster on the right which comprises most of the data (Figure 53f). In terms of the depth distribution, the 50% cut-off removed species that occurs from 1-50 meters.

The Shepard diagram showed a tighter cluster of points to the correlation line than the 2-D Shepard diagram, which can be explained by the 0.02 reduction in the 3-D stress value compared to the lower quartile cut-off (Figures 53g and 53h).

The PERMANOVA analysis showed significant differences in the main effects between the quartile levels and the fidelity of the groupings (Table 40). There were no significant differences in the variable interactions.

Table 40. PERMANOVA results for the removal of species with low quartile to median level for maximum depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	1182.1	1182.1	80.993	0.001
QRT_MAXZ	1	528.82	528.82	36.232	0.001
QRT_TOT_LBS	3	830.64	276.88	18.97	0.001
QRT_REV2	2	83.163	41.581	2.8489	0.093
QRT_BIO	4	601.33	150.33	10.3	0.001

VERSION: 3/20/2018 4:45:11 PM

Figure 53. Two and three-dimensional plot with stress-values of 0.09 and 0.05, respectively, of remaining MUS after the lower quartile to median of maximum depth were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

6.3.3 Delete 1-25% and 25-50% quartiles to remove species that are not targeted by the fishery

The 2-D and 3-D stress values are at 0.11 and 0.05, respectively. The cluster of point became less dense when the species that were not targeted by the fishery were removed at the median cut-off. Only one cluster remains at 80% similarity (Figure 54a). The 3-dimensional plot shows maximum depth drives the distribution perpendicular to the fishery dependent variables (Figure 54b). The pattern for total catch is similar to the revenue pattern (Figure 54e). Species that have no biomass information comprise majority of the points with only 4 points that have data (Figure 54f). Except for biomass, all plots had data points that are within the 50-75 and 75-100 quartiles.

The 2-D Shepard diagram showed a scatter of points away from the correlation line starting at 80-90% similarity (Figure 54g) while the 3-D had a tighter cluster of points to the correlation line (Figure 54h).

The PERMANOVA analysis showed significant differences in the main effects between the quartile levels and the fidelity of the groupings (Table 41) except for revenue data. There were no significant differences in the variable interactions.

Table 41. PERMANOVA results for the removal of species with low quartile to median level for total catch.
The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized
the sequential type 1 sum of squares

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	1	292.78	292.78	19.886	0.001
QRT_MAXZ	1	301.96	301.96	20.509	0.001
QRT_TOT_LBS	1	167.94	167.94	11.406	0.002
QRT_REV2	1	58.812	58.812	3.9944	0.048
QRT_BIO	3	403.94	134.65	9.145	0.004

Figure 54. Two and three-dimensional plot with stress-values of 0.11 and 0.05, respectively, of remaining MUS after the lower quartile to median of total catch were removed (A and B). The same 2-D plots with the removal of the lower quartile to median level of frequency of occurrence (C); maximum depth (D); total catch (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

6.3.4 Delete 1-25% and 25-50% quartiles to remove species that have low contribution to the regional economy

The removal of species with low to median contribution to the regional economy resulted to the same number and kind of species (27 species) as with the previous filter (i.e., removal of species which are not or rarely targeted by the fishery). The cluster patterns and stress values are the same since there were no species removed after the third filter was applied. The plots were exactly the same so they are not presented. It is expected that the PERMANOVA results will be like the previous filtering stage.

6.3.5 Delete 1-25% and 25-50% quartiles to remove species that have low biomass contribution

Applying the last filter removed 25 species and retained only two species, namely, bluefin trevally, *Caranx melampygus* and the blueline snapper, *Lutjanus kasmira*. The nMDS plots were no longer shown because it will only plot two points.

6.4 Species decline rate after the filters were applied at 50% cut-off

As expected the decline rate at 50% cut-off threshold will be higher. Figure 55 showed the relative rate of decline between the three cut-off thresholds. With a 50% cut-off, this leaves two species that are potentially in need of federal management. The list of species is found in Table 43.

Figure 55. Number of species remaining for federal fisheries management after filters were applied at 50% cut-off.

Scientific Name	Common Name	Family	FEP Groups
Caranx melampygus	Bluefin Trevally	Carangidae	CRE-Fishes
Lutjanus kasmira	blueline snapper	Lutjanidae	BF Multi-species complex

Table 42. Candidate species for federal fisheries management after applying the filters for ecosystem components. This list was generated from a 50% cut-off.

6.5 Multivariate analysis on a 75% cut-off point

In the interest of brevity of the report, we would be presenting the series of nMDS plots at each cut-off levels. The patterns are similar to the previous cut-off levels. We will be highlighting the very specific items in this cut-off threshold that is worth mentioning particularly the levels of groupings as well as the results of PERMANOVA.

6.5.1 Delete 1-25%, 25-50%, and 50-75% quartiles to remove species that is not or rarely caught by the fishery

The 2-D and 3-D stress values are 0.13 and 0.07, respectively. Since majority of the species had been removed, the similarity value of the remaining species is high leaving only one cluster at 80% similarity compared to the three groups at the median cut-off level (Figure 56a). The main characteristic at this level of cut-off and filtering stage is the full range of values persists for maximum depth (Figure 56c) and biomass (Figure 56f). The total catch pattern is similar to the revenue pattern (Figure 56d). Revenue data comprised of mostly the top 50% of species with high contribution to the regional economy (Figure 56e). Species with no biomass data comprise the points on the left side of cluster (Figure 56f). The points around the correlation line are much tighter at this level of cut-off compared to the previous two levels (Figures 56g and 56f).

The PERMANOVA results showed significant differences within variables. Frequency of occurrence was not tested due to zero degrees of freedom since only one level remained (Table 43).

Table 43. PERMANOVA results for the removal of species with low to third quartile level for frequency of occurrence. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	0	0		No test	
QRT_MAXZ	4	1773.5	443.38	37.245	0.001
QRT_TOT_LBS	2	666.9	333.45	28.01	0.003
QRT_REV2	2	116.76	58.38	4.904	0.041
QRT_BIO	4	636.55	159.14	13.368	0.001

Figure 56. Two and three-dimensional plot with stress-values of 0.13 and 0.07, respectively, of remaining MUS after the lower quartile to the third quartile of occurrence were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of maximum depth (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS

6.5.2 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that are mostly in territorial waters

The 2-D and 3-D stress values are 0.01 and 0.00, respectively. Removal of the remaining shallow depth species had significantly reduced the species into one cluster with only 7 species or families remaining. The plot is presented with the name of species/family since the low density of points allow the labels to be seen clearly (Figure 57a).

The vector lines on the 3-D plot still show biomass, depth and revenue being potential drivers in the distribution (Figure 57b). Again, the pattern of total catch and revenue pattern are similar (Figures 57d and 57e). Most of the species had no biomass data except for one point (Figure 57f). The 2-D and 3-D Shepard diagrams show all points lying on the correlation line (Figure 57g and 57h).

The PERMANOVA results showed significant differences within variables for total catch only. Revenue and biomass variables had insignificant differences (Table 44). No test was conducted for occurrence and maximum depth.

Table 44. PERMANOVA results for the removal of species with low to third quartile level for maximum depth. The grouping variables are occurrence, maximum depth, catch, revenue, and biomass. The analysis utilized the sequential type 1 sum of squares

Source	df	SS	MS	Pseudo-F	P(perm)
QRT_TOT_OCC	0	0		No test	
QRT_MAXZ	0	0		No test	
QRT_TOT_LBS	1	41.812	41.812	7.7209	0.001
QRT_REV2	1	13.945	13.945	2.5751	0.115
QRT_BIO	1	33.523	33.523	6.1902	0.075

Figure 57. Two and three-dimensional plot with stress-values of 0.01 and 0.00, respectively, of remaining MUS after the lower quartile to the third quartile of maximum depth were removed (A and B). The same 2-D plots with the removal of the lower quartile to the third quartile of occurrence (C); total catch (D); revenue (E); and biomass (F). Shepard diagrams of the correlation between the distance assignments and the similarity for the 2-D (G) and 3-D (H) nMDS.

6.5.3 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that are not targeted by the fisheries

Application of the third filter resulted to the retention of only 3 species or families, namely Families Mullidae, Mugilidae and Labridae. Since only three points were left, no further analyses were done. The nMDS plots were no longer shown because it will only plot three points.

6.5.4 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that have low contribution to the regional economy

Since only three points were left, no further analyses were done because the points are not enough to run nMDS.

6.5.5 Delete 1-25%, 25-50%, 50-75% quartiles to remove species that have low biomass

Since only three points were left, no further analyses were done because the points are not enough to run nMDS.

6.6 Species decline rate after the filters were applied at 75% cut-off

As expected the decline rate at 50% cut-off threshold will be higher. Figure 58 showed the relative rate of decline between the three cut-off thresholds. With a 75% cut-off, this leaves two species that are potentially in need of federal management. The list of species is found in Table 45.

Figure 58. Number of species remaining after each filter is applied comparing the 3 cut-off thresholds.

 Table 45. Candidate species/families for federal fisheries management after applying the filters for ecosystem components. This list was generated from a 75% cut-off.

Scientific Name	Common Name	Family	FEP Groups
Family Labridae	Wrasse	Labridae	CRE-Fishes
Family Mugilidae	Mullet	Mugilidae	CRE-Fishes
Family Mullidae	Goatfish (misc.)	Mullidae	CRE-Fishes

7 DISCUSSION

The 2016 National Standard 1 guideline allows designation of species as ecosystem components that would alleviate the requirements for conservation and management measures. This allows the Council to keep the species in the FEPs for monitoring purposes. The guideline provided ten criteria for Councils to consider in evaluating whether the species need conservation and management measures:

- 1. The stock is an important component of the marine environment;
- 2. The stock is caught by the fishery;
- 3. Whether an FMP can improve or maintain the condition of the stock;
- 4. The stock is a target of a fishery;
- 5. The stock is important to commercial, recreational, or subsistence users;
- 6. The fishery is important to the Nation or to the regional economy;
- 7. The need to resolve competing interests and conflicts among user groups and whether an FMP can further that resolution;
- 8. The economic condition of a fishery and whether an FMP can produce more efficient utilization;
- 9. The needs of a developing fishery and whether an FMP can foster orderly growth;
- 10. The extent to which the fishery is already adequately managed by states, by state/Federal programs, or by Federal regulations pursuant to other FMPs or international commissions, or by industry self-regulation, consistent with the requirements of the Magnuson-Stevens Act and other applicable law.

The analysis utilized only five of the ten criteria (Table 1) because of the limited available information for the MUS. The data proxies for the 5 criteria are suitable for the multivariate statistical framework used in the analysis. The multi-dimensional scaling was used because it is conceptually simple. It makes few model assumptions about the form of the data or inter-relationships of the samples, and the link between the final plots and the original data is relatively transparent and easy to explain (Clarke and Warwick 2001). This is particularly useful for this exploratory data analysis since the analysis used a diverse source of data and varying level of quantity and quality of data.

The multivariate analysis presents an objective means of evaluating available information to screen the different MUS for its compliance with the NS1 factors. This analysis is considered as the "thorough analysis" described in §600.305(c)(4) of the NS1 guidelines when removing species from the FEPs. However, this provision also applies for designating ecosystem components.

The 3-dimensional stress value ranges from a minimum of 0.02 to a high of 0.14. Stress values less than 0.05 indicate an excellent representation with no prospect of mis-interpretation. Stress values between 0.1 and 0.05 correspond to a good ordination with no real prospect of a misleading interpretation. The overall ordination results are deemed reliable and the clustering of the different species represent real differences in the data properties.

More than 50% of the Guam MUS had no available data. These species compress the species with available information in the ordination plot. The same pattern exists for American Samoa and CNMI but the number of species with no data is few compared to Guam. Once removed, the MDS plots showed distinct patterns driven by the availability of catch, occurrence, biomass, and max depth distribution. The directionality of the points is driven by the magnitude of individual species information on these five variables. This is a good indicator that the removal of species at each filtering stage was conducted in an objective manner.

The cut-off threshold level dictates the number of species that will be removed. The lower the cut-off threshold results in lower number of species removed thereby retaining more species to be retained for federal management. The higher threshold removes more species retaining less for federal management. The slope of the number of species removed differs by threshold level. Using Guam as an example, the 25% cut-off threshold, there were 44 potential species that remained for federal management consideration. This comprised of four out of the 14 original bottomfish management unit species complex. All the precious coral and crustacean MUS are filtered to be ecosystem component. The remaining species are coral reef species from seven taxonomic families. This included one vulnerable species, the humphead wrasse (*Cheilinus undulatus*).

The species composition in American Samoa yields 30 species again with four of the 14 BMUS complex and the rest of the 26 are coral reef fishes from seven taxonomic families. The results for CNMI are more conservative with only 14 species remaining. Three species remain from the BMUS complex and 11 from CREMUS belonging to five taxonomic families of reef fishes.

The Ecosystem Component Expert Working Group utilized the information generated by this analysis as a starting point in reviewing the species in need of federal conservation and management. The ECEWG utilized varying levels of cut-offs per filtering stage.

At higher cut-off levels, the number of species remaining is fewer. For example in Guam, at 50% cut-off, only 12 species remained from 5 coral reef fin fish families. Two species belong to the bottomfish management unit species complex (one shallow complex and one deep water complex). At 75% only two species remained and both are coastal pelagics. For CNMI, however, higher cut-off levels resulted in the retention of the higher level grouping which was removed from the analysis. These higher level groupings (family level) are reflective of the data collection being implemented in CNMI. Most of the survey data are lumped to family level groupings and that level contains most of the catch interview information.

The analysis followed a sequential removal of species based on the decision tree. The sequential removal follows a logical framework that the species has to demonstrate being caught by the fishery (frequency of occurrence as a proxy) and the species should be caught in the federal waters (max depth as a proxy). The species should also be targeted by the fishery (proportion of the species catch to the total catch as a proxy) and must be economically important. The biomass filter represents its importance to the users. However, it was shown that the final species composition is the same regardless of the sequence of the filters.

The sequential filtering method is also considered in the implementation of the PERMANOVA routine. This analysis tested the efficacy of the groupings (and the effects of the cut-off levels). The sequential type 1 sum-of-squares was used to incorporate the ordering of the filters in the permutation. The results of the PERMANOVA tests were consistently significant across all filtering stages and at a certain level of cut-offs. The higher cut-off removes most of the groupings thus some tests were not performed.

The final species composition after all filters were applied within each cut-off level represents the species that may need federal conservation and management. This will be the preliminary list that will be considered by the ECEWG for its final evaluation.

8 CONCLUSION

The multidimensional statistical framework objectively segregated species based on available data. The analysis filtered species to the ecosystem component category following the sequential decision tree. This analysis serves as a thorough analysis of the NS1 guidelines for evaluating species in need of conservation and management by provising a quantitative framework to evaluate the management units species in the American Samoa and Marianas FEPs.

9 ACKNOWLEDGEMENT

The Council acknowledges the following Pacific Island Fisheries Science Center staff Ivor Williams, Marc Nadon, Tomoko Acoba, Jake Asher, Stefanie Dukes, Ashley Tomita and Paul Tao for providing the species level fish biomass, max depth, catch, counts, and habitat area information. The author would like to thank Ivor Williams, Marc Nadon, and Christofer Boggs for their helpful comments to improve the analysis.

10 REFERENCES

Anderson, M.J. 2001a. Permutation tests for univariate or multi-variate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58: 626-639

Anderson, M.J., Gorley, R.N., Clarke, K.R. 2008. PERMAN-OVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E: Plymouth

Ayotte, P., McCoy, K., Heenan, A., Williams, I., Zamzow, J., 2015. Coral Reef Ecosystem Program standard operating procedures: collection for Rapid Ecological Assessment fish surveys. Pacific Islands Fisheries Science Center Administrative Report H-15-07, 33 p. doi:10.7289/V5SN06ZT.

Clarke, K.R., Warwick, R.M. 2001. Change in Marine communities: an approach to statistical analysis and interpretation. 2nd Edition. PRIMER-E: Plymouth

Clarke, K.R, Warwick, R.M. 2001. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 216: 265–278

Clarke, K.R., Somerfield, P.J., Chapman, M.G. 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330: 55-80

McArdle, B.H., Anderson, M.J. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290-297

Oram, R., N. TuiSamoa, J. Tomanogi, M. Sabater, M. Quach, D. Hamm, C. Graham. 2010a. American Samoa Shore-Based Creel Survey Documentation. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center, Administrative Report x-xx-xx.

Oram, R., N. TuiSamoa, J. Tomanogi, M. Sabater, M. Quach, D. Hamm, C. Graham. 2010b. American Samoa Boat-Based Creel Survey Documentation. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center, Administrative Report x-xx-xx.

Oram, R., T. Flores, B. Tibbatts, J. Gutierrez, J. P. Gesner, S. Wusstig. Quach, D. Hamm, P. Tao. 2010c. Guam Shore-Based Creel Survey Documentation. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center, Administrative Report x-xx-xx.

Oram, R., T. Flores, B. Tibbatts, J. Gutierrez, J. P. Gesner, S. Wusstig. Quach, D. Hamm, P. Tao. 2010d. Guam Boat-Based Creel Survey Documentation. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center, Administrative Report x-xx-xx.

Oram, R., N. R. Roberto, M. Trianni, M. Quach, D. Hamm, P. Tao. 2010e. Saipan Shore-Based Creel Survey Documentation. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center, Administrative Report x-xx-xx.

Oram, R., N. R. Roberto, M. Trianni, M. Quach, D. Hamm, P. Tao. 2010f. Saipan Boat-Based Creel Survey Documentation. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center, Administrative Report x-xx-xx.

Smith, S.G., Ault, J.S., Bohnsack, J.A., Harper, D.E., Luo, J., McClellan, D.B. 2011. Multispecies survey design for assessing reef-fish stocks, spatially explicit management performance, and ecosystem condition. Fisheries Research 109:25–41.

Williams, I., 2010. US Pacific Reef Fish Biomass Estimates Based on Visual Survey Data. NMFS Pacific Islands Fisheries Science Center. Internal Report IR-10-24. Issued August 10.

Williams, I.D., Richards, B.L., Sandin, S.A., Baum, J.K., Schroeder, R.E., Nadon, M.O., Zgliczynski, B., Craig, P., McIlwain, J.L., Brainard, R.E. 2011. Differences in reef fish assemblages between populated and remote reefs spanning multiple archipelagos across the central and western Pacific. Journal of Marine Biology 2011:1–14.

VERSION: 3/20/2018 4:45:11 PM

11 APPENDICES

11.1 MANAGEMENT UNIT SPECIES IN THE MARIANAS FISHERY ECOSYSTEM PLAN: GUAM

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Myxinidae	Hagfish	Myxinidae	CRE-Fishes
Eptatretus carlhubbsi	Hagfish	Myxinidae	CRE-Fishes
Orectolobidae	Nurse,Zebra,Carpet Sharks	Orectolobidae	CRE-Fishes
Nebrius ferrugineus	Nurse Shark	Ginglymostomatidae	CRE-Fishes
Stegostoma fasciatum	Leopard Shark	Stegostomatidae	CRE-Fishes
Isurus oxyrinchus	Mackerel Shark	Lamnidae	CRE-Fishes
Carcharodon carcharias	Great White Shark	Lamnidae	CRE-Fishes
Carcharhinus	Carcharhinidae	Carcharhinidae	CRE-Fishes
albimarginatus			
Carcharhinus	Carcharhinidae	Carcharhinidae	CRE-Fishes
amblyrhynchos			
Carcharhinus	Carcharhinidae	Carcharhinidae	CRE-Fishes
galapagensis		~	
Carcharhinus	Carcharhinidae	Carcharhinidae	CRE-Fishes
melanopterus	TT' 01 1		
Galeocerdo cuvier	Tiger Shark	Carcharhinidae	CRE-Fishes
Triaenodon obesus	Reef Whitetip Shark	Carcharhinidae	CRE-Fishes
Carcharhinus limbatus	Blackfin Shark	Carcharhinidae	CRE-Fishes
Negaprion acutidens	Lemon Shark	Carcharhinidae	CRE-Fishes
Sphyrnidae	Hammerhead shark	Sphyrnidae	CRE-Fishes
Sphyrna lewini	Hammerhead shark	Sphyrnidae	CRE-Fishes
Sphyrna mokarran	Hammerhead shark	Sphyrnidae	CRE-Fishes
Etmopterus pusillus	Spiny Dogfish shark	Etmopteridae	CRE-Fishes
Echinorhinidae	Bramble Shark	Echinorhinidae	CRE-Fishes
Echinorhinus brucus	Bramble Shark	Echinorhinidae	CRE-Fishes
Echinorhinus cookei	Bramble Shark	Echinorhinidae	CRE-Fishes
Rhinobatidae	Guitarfish	Rhinobatidae	CRE-Fishes
Rhynchobatus djiddensis	Guitarfish	Rhinobatidae	CRE-Fishes
Dasyatidae	Stingray	Dasyatidae	CRE-Fishes
Neotrygon kuhlii	Blue-Spotted Sting Ray	Dasyatidae	CRE-Fishes
Terapon jarbua	Crescent-Banded Grupter	Terapontidae	CRE-Fishes
Himantura uarnak	Leopard Rav	Dasvatidae	CRE-Fishes
Urogymnus asperrimus	Porcupine Ray	Dasvatidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
II	X71. T. : 1 X71. :	Name	CDE Elster
Himantura granulata	wh Tail whipray	Dasyatidae	CRE-Fishes
Himantura fai	Whipray	Dasyatidae	CRE-Fishes
Pastinachus sephen	Shortsnouted Ray	Dasyatidae	CRE-Fishes
Plesiobatis daviesi	Roundray	Plesiobatidae	CRE-Fishes
Myliobatidae	Eagle Ray	Myliobatidae	CRE-Fishes
Aetobatus narinari	Spotted Eagle Ray	Myliobatidae	CRE-Fishes
Aetomylaeus maculatus	Eagle Ray	Myliobatidae	CRE-Fishes
Minyichthys myersi	Myer'S Pipefish	Syngnathidae	CRE-Fishes
Manta birostris	Manta Ray	Myliobatidae	CRE-Fishes
Clupeidae	Herring,Sprat,Sardines	Clupeidae	CRE-Fishes
Spratelloides delicatulus	Blue Sprat	Clupeidae	CRE-Fishes
Dussumieria sp	Sprats	Dussumieriidae	CRE-Fishes
Dussumieria elopsoides	Sprat	Dussumieriidae	CRE-Fishes
?	Mantis Shrimp	Odontodactylidae	CRE-Fishes
Spratelloides gracilis	Silver Sprat	Clupeidae	CRE-Fishes
Amblygaster clupeoides	Blue Pilchard	Clupeidae	CRE-Fishes
Amblygaster sirm	Spotted Pilchard	Clupeidae	CRE-Fishes
Herklotsichthys	Gold Spot Herring	Clupeidae	CRE-Fishes
quadrimaculatus			
Engraulidae	Anchovies	Engraulidae	CRE-Fishes
Encrasicholina punctifer	Oceanic Anchovy	Engraulidae	CRE-Fishes
Thryssa baelama	Little Priest	Engraulidae	CRE-Fishes
Stolephorus pacificus	West Pacific Anchovy	Engraulidae	CRE-Fishes
Stolephorus indicus	Indian Anchovy	Engraulidae	CRE-Fishes
Encrasicholina	Blue Anchovy	Engraulidae	CRE-Fishes
heteroloba			
Encrasicholina devisi	Gold Anchovy	Engraulidae	CRE-Fishes
Stolephorus insularis	Gold Esurine Anchovy	Engraulidae	CRE-Fishes
Stolephorus apiensis	Samoan Anchovy	Engraulidae	CRE-Fishes
Stolephorus	Caroline Islands	Engraulidae	CRE-Fishes
multibranchus	Anchovy		
Stolephorus sp.	Anchovy	Engraulidae	CRE-Fishes
Megalopidae	Tarpons	Megalopidae	CRE-Fishes
Megalops cyprinoides	Indo-Pacific Tarpon	Megalopidae	CRE-Fishes
Albulidae	Bonefish	Albulidae	CRE-Fishes
Albula glossodonta	Indo-Pacific Bonefish	Albulidae	CRE-Fishes
Albula argentea	Bonefish	Albulidae	CRE-Fishes
Anguillidae	Freshwater Eel	Anguillidae	CRE-Fishes
Anguilla bicolor	Freshwater Eel	Anguillidae	CRE-Fishes
Anguilla marmorata	Freshwater Eel	Anguillidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Moringuidae	Worm Eel	Moringuidae	CRE-Fishes
Moringua microchir	Spaghetti Eel	Moringuidae	CRE-Fishes
Moringua javanica	Java Spaghetti Eel	Moringuidae	CRE-Fishes
Moringua ferruginea	Rusty Spaghetti Eel	Moringuidae	CRE-Fishes
Chlopsidae	False Moray Eel	Chlopsidae	CRE-Fishes
Kaupichthys	Common False Moray	Chlopsidae	CRE-Fishes
hyoproroides		~	
Kaupichthys atronasus	BI-Nostril False Moray	Chlopsidae	CRE-Fishes
Kaupichthys	Shortfin False Moray	Chlopsidae	CRE-Fishes
brachychirus			
Muraenidae	Morays	Muraenidae	CRE-Fishes
Anarchias allardicei	Allardice'S Moray	Muraenidae	CRE-Fishes
Anarchias seychellensis	Seychelles Moray	Muraenidae	CRE-Fishes
Echidna leucotaenia	Whiteface Moray	Muraenidae	CRE-Fishes
Echidna nebulosa	Snowflake Moray	Muraenidae	CRE-Fishes
Echidna polyzona	Girdled Moray Eel	Muraenidae	CRE-Fishes
Echidna unicolor	Unicolor Moray	Muraenidae	CRE-Fishes
Enchelycore bayeri	Bayer'S Moray	Muraenidae	CRE-Fishes
Enchelycore bikiniensis	Bikini Atoll Moray	Muraenidae	CRE-Fishes
Enchelycore	White-Margined Moray	Muraenidae	CRE-Fishes
schismatorhynchus			
Enchelynassa canina	Viper Moray	Muraenidae	CRE-Fishes
Gymnomuraena zebra	Zebra Moray	Muraenidae	CRE-Fishes
Gymnothorax	Brown Spotted Moray	Muraenidae	CRE-Fishes
fuscomaculatus			
Gymnothorax	Marshall Isles Moray	Muraenidae	CRE-Fishes
marshallensis			
Gymnothorax melatremus	Dirty Yellow Moray	Muraenidae	CRE-Fishes
Gymnothorax pictus	Peppered Moray	Muraenidae	CRE-Fishes
Gymnothorax pindae	Pinda Moray	Muraenidae	CRE-Fishes
Gymnothorax thyrsoideus	White-Eyed Moray	Muraenidae	CRE-Fishes
Gymnothorax melatremus	Moray Eel	Muraenidae	CRE-Fishes
Gymnothorax berndti	Moray Eel	Muraenidae	CRE-Fishes
Gymnothorax buroensis	Buro Moray	Muraenidae	CRE-Fishes
Gymnothorax fimbriatus	Fimbriated Moray	Muraenidae	CRE-Fishes
Gymnothorax	Yellow-Margined	Muraenidae	CRE-Fishes
flavimarginatus	Moray		
Gymnothorax	Graceful-Tailed Moray	Muraenidae	CRE-Fishes
gracilicauda			
Gymnothorax elegans	Moray Eel	Muraenidae	CRE-Fishes
Gymnothorax hepaticus	Moray Eel	Muraenidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
Cymnothorar iavanious	Cient Morey	Name	CPE Fishes
Gymnothorax javanicus	Dialit Moray	Muraenidae	CRE-Fishes
Gymnoinorax	Dioten-Neckeu Moray	Muraenidae	CKE-FISHES
Gymnothoray malaagris	Whitemouth Moray	Muraanidaa	CRF_Fishes
Cymnothorax	1 Spot Morey	Muraonidaa	CRE-Tislics CRE Fishes
monostigma	1-Spot Moray	wiui aemuae	CKE-FISHES
Gymnothorax neglectus	Moray Fel	Muraenidae	CRE-Fishes
Gymnothorax	Richardson'S Moray	Muraenidae	CRE-Fishes
richardsonii	Richardson S Mordy	Wurachiuac	
<i>Gymnothorax rueppelliae</i>	Yellow-Headed Moray	Muraenidae	CRE-Fishes
<i>Gymnothorax undulatus</i>	Undulated Moray	Muraenidae	CRE-Fishes
<i>Gymnothorax zonipectis</i>	Zonipectis Moray	Muraenidae	CRE-Fishes
Gymnothorax	Enigmatic Moray	Muraenidae	CRE-Fishes
enigmaticus			
Rhinomuraena quaesita	Ribbon Eel	Muraenidae	CRE-Fishes
Pseudechidna brummeri	White Ribbon Eel	Muraenidae	CRE-Fishes
Strophidon sathete	Giant Esturine Moray	Muraenidae	CRE-Fishes
Uropterygius concolor	Unicolor Snake Moray	Muraenidae	CRE-Fishes
Uropterygius	Marbled Snake Moray	Muraenidae	CRE-Fishes
marmoratus			
Uropterygius micropterus	Tidepool Snake Moray	Muraenidae	CRE-Fishes
Uropterygius	Lg-Headed Snake	Muraenidae	CRE-Fishes
macrocephalus	Moray		
Uropterygius	Moray Eel	Muraenidae	CRE-Fishes
supraforatus			
Uropterygius	Moray Eel	Muraenidae	CRE-Fishes
xanthopterus	X - 11	Ν	CDE Eister
Gymnothorax nudivomer	Yellowmouth Moray	Muraenidae	CRE-Fisnes
Anarchias cantonensis	Canton Island Moray	Muraenidae	CRE-Fishes
Channomuraena vittata	Long-Jawed Moray	Muraenidae	CRE-Fishes
Gymnothorax	Monochrome Moray	Muraenidae	CRE-Fishes
monochrous			
Gymnothorax	Moray Eel	Muraenidae	CRE-Fisnes
Urontervajus	Brown Spotted Spake	Muraanidaa	CPE Fishes
fuscoguttatus	Fel	wiui aemuae	CILL-1 Islies
Uroptervgius fasciolatus	Gosline'S Snake Moray	Muraenidae	CRE-Fishes
Uropterygius kamar	Moon Moray	Muraenidae	CRE-Fishes
Urontervoius noticnitus	Lo-Spotted Snake	Muraenidae	CRE-Fishes
στοριστуξίας ροιγεριίας	Morav	munat	
Scuticaria tigrina	Tiger Snake Morav	Muraenidae	CRE-Fishes
Enchelycore kamara	Dark-Spotted Moray	Muraenidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Gymnothorax	Fiji Moray Eel	Muraenidae	CRE-Fishes
polyuranodon			
Synaphobranchidae	Cutthroat Eel	Synaphobranchidae	CRE-Fishes
Synaphobranchus sp	Cutthroat Eel	Synaphobranchidae	CRE-Fishes
Congridae	White,Conger,Garden Eel	Congridae	CRE-Fishes
Conger cinereus	White Eel	Congridae	CRE-Fishes
Conger oligoporus	Conger Eel	Congridae	CRE-Fishes
Gorgasia sp	Conger Eel	Congridae	CRE-Fishes
Heteroconger hassi	Conger Eel	Congridae	CRE-Fishes
Blachea xenobranchialis	Conger Eel	Congridae	CRE-Fishes
Ariosoma scheelei	Scheele'S Conger	Congridae	CRE-Fishes
Ariosoma fasciatum	Barred Sand Conger	Congridae	CRE-Fishes
Conger sp.	Conger Eel	Congridae	CRE-Fishes
Gorgasia preclara	Orange-Barred Garden Eel	Congridae	CRE-Fishes
Muraenesocidae	Pike Eels	Muraenesocidae	CRE-Fishes
Muraenesox cinereus	Pike Conger	Muraenesocidae	CRE-Fishes
Ophichthidae	Snake Eel	Ophichthidae	CRE-Fishes
Brachysomophis	Snake Eel	Ophichthidae	CRE-Fishes
crocodilinus		-	
Ophichthus	Snake Eel	Ophichthidae	CRE-Fishes
polyophthalmus			
Callechelys marmorata	Snake Eel	Ophichthidae	CRE-Fishes
Callechelys catostoma	Snake Eel	Ophichthidae	CRE-Fishes
Leiuranus semicinctus	Saddled Snake Eel	Ophichthidae	CRE-Fishes
Scolecenchelys	Snake Eel	Ophichthidae	CRE-Fishes
laticaudata			
Scolecenchelys	Snake Eel	Ophichthidae	CRE-Fishes
<i>macroptera</i>	Dended Creder Fel	0.1.141.1	CDE Elster
Myrichthys colubrinus	Sanded Snake Eel	Ophichthidae	CRE-Fisnes
Myrichthys maculosus	Spoued Snake Eel	Ophichthidae	CRE-Fisnes
Ophichthus cephalozona	Eel	Ophichthidae	CRE-Fisnes
Scolecenchelys gymnota	Snake Eel	Ophichthidae	CRE-Fishes
Muraenichthys schultzei	Snake Eel	Ophichthidae	CRE-Fishes
Muraenichthys sibogae	Snake Eel	Ophichthidae	CRE-Fishes
Echelus uropterus	Snake Eel	Ophichthidae	CRE-Fishes
Schismorhynchus labialis	Snake Eel	Ophichthidae	CRE-Fishes
Schultzidia johnstonensis	Snake Eel	Ophichthidae	CRE-Fishes
Schultzidia retropinnis	Snake Eel	Ophichthidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Apterichtus klazingai	Snake Eel	Ophichthidae	CRE-Fishes
Cirricaecula johnsoni	Fringelip Snake Eel	Ophichthidae	CRE-Fishes
Leiuranus versicolor	Snake Eel	Ophichthidae	CRE-Fishes
Evips percinctus	Snake Eel	Ophichthidae	CRE-Fishes
Ichthyapus vulturis	Snake Eel	Ophichthidae	CRE-Fishes
Myrichthys colubrinus	Snake Eel	Ophichthidae	CRE-Fishes
Phaenomonas cooperae	Snake Eel	Ophichthidae	CRE-Fishes
Phyllophichthus	Snake Eel	Ophichthidae	CRE-Fishes
xenodontus			
Lamnostoma orientalis	Oriental Snake Eel	Ophichthidae	CRE-Fishes
Gonostomatidae	Bristlemouths	Gonostomatidae	CRE-Fishes
Diplophos sp	Bristlemouth	Gonostomatidae	CRE-Fishes
Gonostoma atlanticum	Bristlemouth	Gonostomatidae	CRE-Fishes
Sigmops ebelingi	Bristlemouth	Gonostomatidae	CRE-Fishes
Sternoptychidae	Hatchetfishes	Sternoptychidae	CRE-Fishes
Giganturidae	Telescopefish	Giganturidae	CRE-Fishes
Gigantura indica	Telescopefish	Giganturidae	CRE-Fishes
Chanidae	Milkfish	Chanidae	CRE-Fishes
Chanos chanos	Milkfish	Chanidae	CRE-Fishes
Clariidae	Air-Breath Catfish	Clariidae	CRE-Fishes
Clarias macrocephalus	Air-Breath Catfish	Clariidae	CRE-Fishes
Clarias batrachus	Air-Breath Catfish	Clariidae	CRE-Fishes
Plotosidae	Eel Catfishes	Plotosidae	CRE-Fishes
Plotosus lineatus	Striped Eel Catfish	Plotosidae	CRE-Fishes
Synodus binotatus	2-Spot Lizardfish	Synodontidae	CRE-Fishes
Saurida gracilis	Graceful Lizardfish	Synodontidae	CRE-Fishes
Saurida nebulosa	Nebulous Lizardfish	Synodontidae	CRE-Fishes
Synodus dermatogenys	Clearfin Lizardfish	Synodontidae	CRE-Fishes
Synodus jaculum	Blackblotch Lizardfish	Synodontidae	CRE-Fishes
Synodus variegatus	Variegatus Lizardfish	Synodontidae	CRE-Fishes
Taenianotus triacanthus	Leaf Fish	Scorpaenidae	CRE-Fishes
Synodontidae	Reef Lizardfish	Synodontidae	CRE-Fishes
Myctophidae	Lanternfishes	Myctophidae	CRE-Fishes
Diaphus schmidti	Lanternfish	Myctophidae	CRE-Fishes
Myctophum	Laternfish	Myctophidae	CRE-Fishes
brachygnathum			
Paralepididae	Barracudinas	Paralepididae	CRE-Fishes
Lestidium nudum	Barracudina	Paralepididae	CRE-Fishes
Alepisauridae	Lancetfishes	Alepisauridae	CRE-Fishes
Alepisaurus ferox	Lancetfish	Alepisauridae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Polymixiidae	Beardfish	Polymixiidae	CRE-Fishes
Polymixia japonica	Beardfish	Polymixiidae	CRE-Fishes
Moridae	Codlings	Moridae	CRE-Fishes
Physiculus sp	Codling	Moridae	CRE-Fishes
Bregmacerotidae	Codlets	Bregmacerotidae	CRE-Fishes
Bregmaceros nectabanus	Codlet	Bregmacerotidae	CRE-Fishes
Ophidiidae	Cusk Eel	Ophidiidae	CRE-Fishes
Brotula multibarbata	Reef Cusk Eel	Ophidiidae	CRE-Fishes
Brotula townsendi	Townsend'S Cusk Eel	Ophidiidae	CRE-Fishes
Bythitidae	Livebearing Brotulas	Bythitidae	CRE-Fishes
Brosmophyciops pautzkei	Free-Tailed Brotula	Bythitidae	CRE-Fishes
Dinematichthys	Bythitid	Bythitidae	CRE-Fishes
iluocoeteoides			
Microbrotula sp	Brotula	Bythitidae	CRE-Fishes
Carapidae	Pearlfish	Carapidae	CRE-Fishes
Encheliophis homei	Pearlfish	Carapidae	CRE-Fishes
Carapus mourlani	Pearlfish	Carapidae	CRE-Fishes
Encheliophis	Pearlfish	Carapidae	CRE-Fishes
boraborensis			
Encheliophis	Pearlfish	Carapidae	CRE-Fishes
vermicularis	D 10'1		
Encheliophis gracilis	Pearlfish	Carapidae	CRE-Fishes
Onuxodon fowleri	Bivalve Pearlfish	Carapidae	CRE-Fishes
Antennariidae	Anglerfish	Antennariidae	CRE-Fishes
Antennatus analis	Pigmy Frogfish	Antennariidae	CRE-Fishes
Antennarius biocellatus	Frogfish	Antennariidae	CRE-Fishes
Antennatus coccineus	Freckled Frogfish	Antennariidae	CRE-Fishes
Antennatus coccineus	Giant Frogfish	Antennariidae	CRE-Fishes
Antennatus dorehensis	Bandtail Frogfish	Antennariidae	CRE-Fishes
Antennarius maculatus	Sargassumfish	Antennariidae	CRE-Fishes
Antennatus nummifer	Spotfin Frogfish	Antennariidae	CRE-Fishes
Antennarius pictus	Painted Frogfish	Antennariidae	CRE-Fishes
Antennarius randalli	Randall'S Frogfish	Antennariidae	CRE-Fishes
Antennatus rosaceus	Spiney-Tufted Frogfish	Antennariidae	CRE-Fishes
Antennatus tuberosus	Bandfin Frogfish	Antennariidae	CRE-Fishes
Histrio histrio	Sargassum Fish	Antennariidae	CRE-Fishes
Exocoetidae	Flying Fish	Exocoetidae	CRE-Fishes
Cheilopogon spilopterus	Flying Fish	Exocoetidae	CRE-Fishes
Cheilopogon spilopterus	Flying Fish	Exocoetidae	CRE-Fishes
Cheilopogon unicolor	Flying Fish	Exocoetidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Cypselurus angusticeps	Flying Fish	Exocoetidae	CRE-Fishes
Cypselurus poecilopterus	Flying Fish	Exocoetidae	CRE-Fishes
Hirundichthys speculiger	Flying Fish	Exocoetidae	CRE-Fishes
Parexocoetus	Flying Fish	Exocoetidae	CRE-Fishes
brachypterus			
Parexocoetus mento	Flying Fish	Exocoetidae	CRE-Fishes
?	Flying Fish	Exocoetidae	CRE-Fishes
Prognichthys sealei	Flying Fish	Exocoetidae	CRE-Fishes
Exocoetus volitans	Flying Fish	Exocoetidae	CRE-Fishes
Belonidae	Needlefish	Belonidae	CRE-Fishes
Ablennes hians	Barred Needlefish	Belonidae	CRE-Fishes
Platybelone argalus	Keeled Needlefish	Belonidae	CRE-Fishes
platyura			
Strongylura incisa	Reef Needlefish	Belonidae	CRE-Fishes
Tylosurus crocodilus	Houndfish	Belonidae	CRE-Fishes
Strongylura leiura	Littoral Needlefish	Belonidae	CRE-Fishes
Tylosurus acus melanotus	Keeled Houndfish	Belonidae	CRE-Fishes
Hemiramphidae	Halfbeak	Hemiramphidae	CRE-Fishes
Hemiramphus	Halfbeak	Hemiramphidae	CRE-Fishes
archipelagicus			
Hyporhamphus acutus	Halfbeak	Hemiramphidae	CRE-Fishes
Hyporhamphus affinis	Halfbeak	Hemiramphidae	CRE-Fishes
Hyporhamphus	Halfbeak	Hemiramphidae	CRE-Fishes
dussumieri			
Zenarchopterus dispar	Esturine Halfbeak	Hemiramphidae	CRE-Fishes
Euleptorhamphus viridis	Ribbon Halfbeak	Hemiramphidae	CRE-Fishes
Hemiramphus far	Halfbeak	Hemiramphidae	CRE-Fishes
Oxyporhamphus	Smallwing Flying Fish	Hemiramphidae	CRE-Fishes
micropterus			
Hemiramphus lutkei	Halfbeak	Hemiramphidae	CRE-Fishes
Atherinidae	Silverside	Atherinidae	CRE-Fishes
Atherion elymus	Bearded Silverside	Atherinidae	CRE-Fishes
Hypoatherina ovalaua	Silverside	Atherinidae	CRE-Fishes
Atherinomorus lacunosus	Silverside	Atherinidae	CRE-Fishes
Atherinomorus lacunosus	Hardyhead Silverside	Atherinidae	CRE-Fishes
Atherinomorus	Tropical Silverside	Atherinidae	CRE-Fishes
duodecimalis			
Atherinomorus	Striped Silverside	Atherinidae	CRE-Fishes
endrachtensis			
Hypoatherina barnesi	Silverside	Atherinidae	CRE-Fishes
Hypoatherina temminckii	Silverside	Atherinidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Stenatherina panatela	Panatella Silverside	Atherinidae	CRE-Fishes
Isonidae	Keeled Silversides	Isonidae	CRE-Fishes
Iso hawaiiensis	Keeled Silverside	Isonidae	CRE-Fishes
Berycidae	Lantern-Eye Fish	Berycidae	CRE-Fishes
Beryx decadactylus	Flashlightfish	Berycidae	CRE-Fishes
Photoblepharon	Flashlightfish	Anomalopidae	CRE-Fishes
palpebratum			
Anomalopidae	Flashlightfish	Anomalopidae	CRE-Fishes
Anomalops katoptron	Flashlightfish	Anomalopidae	CRE-Fishes
Holocentridae	Squirrel,Soldierfishes	Holocentridae	CRE-Fishes
Sargocentron	Tailspot Squirrelfish	Holocentridae	CRE-Fishes
caudimaculatum			
Sargocentron diadema	Crown Squirrelfish	Holocentridae	CRE-Fishes
Sargocentron	Speckled Squirrelfish	Holocentridae	CRE-Fishes
punctatissimum			
Sargocentron microstoma	Finelined Squirrelfish	Holocentridae	CRE-Fishes
Sargocentron praslin	Dark-Striped Squirrelfish	Holocentridae	CRE-Fishes
Sargocentron spiniferum	Long-Jawed Squirrelfish	Holocentridae	CRE-Fishes
Sargocentron tiere	Blue-Lined Squirrelfish	Holocentridae	CRE-Fishes
Sargocentron tiereoides	Pink Squirrelfish	Holocentridae	CRE-Fishes
Neoniphon argenteus	Clearfin Squirrelfish	Holocentridae	CRE-Fishes
Neoniphon opercularis	Blackfin Squirrlefish	Holocentridae	CRE-Fishes
Neoniphon sammara	Bloodspot Squirrelfish	Holocentridae	CRE-Fishes
Neoniphon aurolineatus	Yellowstriped Squirrelfish	Holocentridae	CRE-Fishes
Myripristis adusta	Bronze Soldierfish	Holocentridae	CRE-Fishes
Myripristis amaena	Brick Soilderfish	Holocentridae	CRE-Fishes
Myripristis berndti	Bigscale Soldierfish	Holocentridae	CRE-Fishes
Myripristis kuntee	Pearly Soldierfish	Holocentridae	CRE-Fishes
Myripristis murdjan	Red Soldierfish	Holocentridae	CRE-Fishes
Myripristis violacea	Violet Soldierfish	Holocentridae	CRE-Fishes
Myripristis vittata	White-Tipped	Holocentridae	CRE-Fishes
	Soldierfish		
Plectrypops lima	Cardinal Squirrelfish	Holocentridae	CRE-Fishes
Myripristis pralinia	Scarlet Soldierfish	Holocentridae	CRE-Fishes
Ostichthys kaianus	Deepwater Soldierfish	Holocentridae	CRE-Fishes
Myripristis chryseres	Yellowfin Soldierfish	Holocentridae	CRE-Fishes
Myripristis woodsi	White-Spot Soldierfish	Holocentridae	CRE-Fishes
Sargocentron ittodai	Samurai Squirrelfish	Holocentridae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family Name	FEP GROUP
Sargocentron	Blackspot Squirrelfish	Holocentridae	CRE-Fishes
melanospilos			
Sargocentron violaceum	Violet Squirrelfish	Holocentridae	CRE-Fishes
Sargocentron	Spotfin Squirrelfish	Holocentridae	CRE-Fishes
dorsomaculatum			
Myripristis amaena	Doubletooth	Holocentridae	CRE-Fishes
	Soldierfish		
Sargocentron cornutum	3-Spot Squirrelfish	Holocentridae	CRE-Fishes
Sargocentron lepros	Squirrelfish	Holocentridae	CRE-Fishes
Holocentrus adscensionis	Furcate Squirrelfish	Holocentridae	CRE-Fishes
Ostichthys brachygnathus	Deepwater Soldierfish	Holocentridae	CRE-Fishes
Subfamily Holocentrinae	Squirrelfishes	Holocentridae	CRE-Fishes
Subfamily Myripristinae	Soldierfishes	Holocentridae	CRE-Fishes
Caproidae	Boarfishes	Caproidae	CRE-Fishes
Antigonia malayana	Boarfish	Caproidae	CRE-Fishes
Aulostomidae	Trumpetfish	Aulostomidae	CRE-Fishes
Aulostomus chinensis	Trumpetfish	Aulostomidae	CRE-Fishes
Fistulariidae	Cornetfish	Fistulariidae	CRE-Fishes
Fistularia commersonii	Cornetfish	Fistulariidae	CRE-Fishes
Centriscidae	Shrimpfishes	Centriscidae	CRE-Fishes
Aeoliscus strigatus	Shrimpfish	Centriscidae	CRE-Fishes
Solenostomidae	Ghost Pipefish	Solenostomidae	CRE-Fishes
Solenostomus	Ghost Pipefish	Solenostomidae	CRE-Fishes
cyanopterus			
Solenostomus paradoxus	Ornate Ghost Pipefish	Solenostomidae	CRE-Fishes
Syngnathoides	Alligator Pipefish	Syngnathidae	CRE-Fishes
biaculeatus			
Choeroichthys sculptus	Pipefish	Syngnathidae	CRE-Fishes
Choeroichthys	Pipefish	Syngnathidae	CRE-Fishes
brachysoma			
Corythoichthys	Network Pipefish	Syngnathidae	CRE-Fishes
flavofasciatus	Deef Directich	Sum am of hid o o	CDE Eichea
Corytholenthys	Reel Pipelish	Syngnathidae	CRE-Fisnes
Corvthoichthys	Bl-Breasted Pinefish	Synanathidaa	CRE-Fishes
niorinectus	Di-Dicasted i iperisii	Synghatmuae	CIXL-1 ISINGS
Cosmocampus	D'Arros Pipefish	Syngnathidae	CRE-Fishes
darrosanus		~ J	
Doryrhamphus excisus	Bluestripe Pipefish	Syngnathidae	CRE-Fishes
excisus		• • • • • • • •	
Dunckerocampus	Banded Pipefish	Syngnathidae	CRE-Fishes
dactyliophorus		_	

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
Hinnocampus histrix	Dinafish	Name Syngnothidoo	CPE Fishes
Microanathus pyamaeus	Pygmy Short-Nosed	Syngnathidae	CRE-Fishes
Micrognainus pygnaeus	Pinefish	Synghatinuae	CIXE-115IIC5
Halicampus brocki	Brock'S Pipefish	Syngnathidae	CRE-Fishes
Halicampus mataafae	Samoan Pipefish	Syngnathidae	CRE-Fishes
Minvichthys myersi	Ventricose Milda	Syngnathidae	CRE-Fishes
Phoxocampus diacanthus	Pipefish	Syngnathidae	CRE-Fishes
Svnodontidae	Lizardfish	Synodontidae	CRE-Fishes
Trachvrhamphus	Double-Ended Pipefish	Syngnathidae	CRE-Fishes
bicoarctatus	I I I I I I I I I I I I I I I I I I I		
Micrognathus andersonii	Anderson'S Shrt-Nosed	Syngnathidae	CRE-Fishes
_	Pipefish		
Bhanotia nuda	Pipefish	Syngnathidae	CRE-Fishes
Bulbonaricus brauni	Pipefish	Syngnathidae	CRE-Fishes
Corythoichthys	Pipefish	Syngnathidae	CRE-Fishes
haematopterus			
Corythoichthys ocellatus	Ocellated Pipefish	Syngnathidae	CRE-Fishes
Corythoichthys	Many-Spotted Pipefish	Syngnathidae	CRE-Fishes
polynotatus			
Corythoichthys schultzi	Guilded Pipefish	Syngnathidae	CRE-Fishes
Cosmocampus banneri	Roughridge Pipefish	Syngnathidae	CRE-Fishes
Cosmocampus	Maxweber'S Pipefish	Syngnathidae	CRE-Fishes
Maxweberi Domuhamphua jangaj	Ionga' Dinofigh	S-manathidaa	CDE Eichea
Doryrnampnus janssi	Janss Pipelisn	Syngnathidae	CRE-Fishes
Doryrnampnus	Negros Piperisn	Syngnathidae	CRE-Fisnes
Halicampus dunckeri	Duncker'S Pipefish	Syngnathidae	CRE-Fishes
Halicampus nitidus	Glittering Pipefish	Syngnathidae	CRE-Fishes
Hinnichthys cyanospilos	Pinefish	Syngnathidae	CRE-Fishes
Hippichity's cycliospitos	Pipefish	Syngnathidae	CRE-Fishes
Hippicianys spicifer Hippocampus kuda	Pipefish	Syngnathidae	CRE-Fishes
Microphis brachvurus	Pipefish	Syngnathidae	CRE-Fishes
Microphis bravidorsalis	Pipefish	Syngnathidae	CRE-Fishes
Microphis bievidorsaiis Microphis leigspis	Pipefish	Syngnathidaa	CRE-Fishes
Microphis retuspis Microphis manadansis	Pipefish	Syngnathidaa	CRE-Fishes
Microphis natzii	Pinefish	Syngnathidaa	CRE-Fishes
Scornaonidae	Scorpionfish	Scorponidoo	CRE-Fishes
Dendrochirus biocellatus	Scorpionfish	Jutionidoo	CRE-Fishes
Dendrochirus	Scorpionfish	Scorpooridoo	CRE-Fishes
brachynterus		scor paemuae	UNE-1451105
Pontinus macrocephalus	Lg-Headed	Scorpaenidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
	Scorpionfish		
Pterois antennata	Spotfin Lionfish	Scorpaenidae	CRE-Fishes
Pterois radiata	Clearfin Lionfish	Scorpaenidae	CRE-Fishes
Pterois volitans	Turkeyfish	Scorpaenidae	CRE-Fishes
Sebastapistes	Yellowspotted	Scorpaenidae	CRE-Fishes
cyanostigma	Scorpionfish		
Sebastapistes galactacma	Galactacma	Scorpaenidae	CRE-Fishes
	Scorpionfish	G 11	
Sebastapistes mauritiana	Mauritius Scorpionfish	Scorpaenidae	CRE-Fishes
Scorpaenodes minor	Minor Scorpionfish	Scorpaenidae	CRE-Fishes
Scorpaenodes guamensis	Guam Scorpionfish	Scorpaenidae	CRE-Fishes
Scorpaenodes kelloggi	Kellogg'S Scorpionfish	Scorpaenidae	CRE-Fishes
Scorpaenodes parvipinnis	Coral Scorpionfish	Scorpaenidae	CRE-Fishes
Scorpaenopsis oxycephala	Tassled Scorpionfish	Scorpaenidae	CRE-Fishes
Scorpaenopsis diabolus	Devil Scorpionfish	Scorpaenidae	CRE-Fishes
Synanceia verrucosa	Stonefish	Synanceiidae	CRE-Fishes
Taenioides limicola	Goby	Gobiidae	CRE-Fishes
Scorpaenodes varipinnis	Blotchfin Scorpionfish	Scorpaenidae	CRE-Fishes
Sebastapistes fowleri	Pygmy Scorpionfish	Scorpaenidae	CRE-Fishes
Scorpaenopsis macrochir	Flasher Scorpionfish	Scorpaenidae	CRE-Fishes
Sebastapistes strongia	Barchin Scorpionfish	Scorpaenidae	CRE-Fishes
Parascorpaena	Mozambique	Scorpaenidae	CRE-Fishes
mossambica	Scorpionfish		
Dendrochirus zebra	Zebra Lionfish	Scorpaenidae	CRE-Fishes
Rhinopias frondosa	Weedy Scorpionfish	Scorpaenidae	CRE-Fishes
Scorpaenodes hirsutus	Hairy Scorpionfish	Scorpaenidae	CRE-Fishes
Inimicus didactylus	Spiny Devilfish	Synanceiidae	CRE-Fishes
Pontinus sp	Scorpionfish	Scorpaenidae	CRE-Fishes
Scorpaenopsis sp	Scorpionfish	Scorpaenidae	CRE-Fishes
Parascorpaena	Mcadam'S Scorpionfish	Scorpaenidae	CRE-Fishes
mcadamsi			
Scorpaenopsis papuensis	Papuan Scorpionfish	Scorpaenidae	CRE-Fishes
Tetrarogidae	Waspfishes	Tetrarogidae	CRE-Fishes
Tetraroge barbata	Mangrove Waspfish	Tetrarogidae	CRE-Fishes
Pontinus tentacularis	Scopionfish	Scorpaenidae	CRE-Fishes
Aploactinidae	Velvetfishes	Aploactinidae	CRE-Fishes
Cocotropus larvatus	Velvetfish	Aploactinidae	CRE-Fishes
Triglidae	Gurnards	Triglidae	CRE-Fishes
Pterygotrigla sp	Gurnard	Triglidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Pterygotrigla	Ocellated Gurnard	Triglidae	CRE-Fishes
multiocellata		~	
Caracanthidae	Coral Crouchers	Caracanthidae	CRE-Fishes
Caracanthus maculatus	Velvetfish	Caracanthidae	CRE-Fishes
Caracanthus unipinna	Velvetfish	Caracanthidae	CRE-Fishes
Platycephalidae	Flathead	Platycephalidae	CRE-Fishes
Sunagocia otaitensis	Fringlip Flathead	Platycephalidae	CRE-Fishes
Sunagocia arenicola	Broadhead Flathead	Platycephalidae	CRE-Fishes
Thysanophrys chiltonae	Longsnout Flathead	Platycephalidae	CRE-Fishes
Cymbacephalus beauforti	Flathead	Platycephalidae	CRE-Fishes
Rogadius welanderi	Flathead	Platycephalidae	CRE-Fishes
Dactylopteridae	Flying Gurnard	Dactylopteridae	CRE-Fishes
Dactyloptena orientalis	Flying Gurnard	Dactylopteridae	CRE-Fishes
Dactyloptena peterseni	Flying Gurnard	Dactylopteridae	CRE-Fishes
Pegasidae	Dragonfish	Pegasidae	CRE-Fishes
Eurypegasus draconis	Dragon Fish	Pegasidae	CRE-Fishes
Ambassidae	Glass Perch	Ambassidae	CRE-Fishes
Ambassis buruensis	Glassie	Ambassidae	CRE-Fishes
Ambassis interrupta	Glassie	Ambassidae	CRE-Fishes
Serranidae	Sea Basses, Groupers	Serranidae	CRE-Fishes
Aethaloperca rogaa	Red-Flushed Grouper	Serranidae	CRE-Fishes
Epinephelus retouti	Truncated Grouper	Serranidae	CRE-Fishes
Cephalopholis sp.	Grouper	Serranidae	CRE-Fishes
Cephalopholis	Pygmy Grouper	Serranidae	CRE-Fishes
spiloparaea			
Cephalopholis argus	Peacock Grouper	Serranidae	CRE-Fishes
Cephalopholis aurantia	Orange Grouper	Serranidae	CRE-Fishes
Cephalopholis	Ybanded Grouper	Serranidae	CRE-Fishes
igarashiensis			
Cephalopholis leopardus	Leopard Grouper	Serranidae	CRE-Fishes
Cephalopholis boenak	Brownbarred Grouper	Serranidae	CRE-Fishes
Cephalopholis sonnerati	Tomato Grouper	Serranidae	CRE-Fishes
Cephalopholis	6-Banded Grouper	Serranidae	CRE-Fishes
sexmaculata			
Cephalopholis urodeta	Flag-Tailed Grouper	Serranidae	CRE-Fishes
Cromileptes altivelis	Grouper	Serranidae	CRE-Fishes
Epinephelus morrhua	Grouper	Serranidae	CRE-Fishes
Epinephelus howlandi	Grouper	Serranidae	CRE-Fishes
Epinephelus fasciatus	blacktip grouper	Serranidae	BF Multi-species
			complex

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
Eninanhalus	Plotoby Groupor	Name	CPE Eichog
fuscoguttatus	bioteny bioteper	Serranuae	CIXL-PISHES
Fninenhelus hexagonatus	Hexagon Grouper	Serranidae	CRE-Fishes
Epinephetus hexagonatus	Giant Grouper	Serranidae	CRE-Fishes
Epinephetus tanceotatus	Highfin Grouper	Sorranidao	CRE Fishes
Epinephelus maculaus	Tidencel Grouper	Serranidae	CRE-Fishes
Epinephetus socialis	Hanayaamh Craynar	Serranidae	CRE-FISHES
Epinepheius merra	Honeycomb Grouper	Serrandae	CRE-FISHES
Epinephelus	Marbled Grouper	Serranidae	CRE-Fisnes
Eninanhalus tauvina	Graggy Groupor	Samanidaa	CPE Eichog
Epinepheius lauvina	Usels swin Crowner	Serranidae	CRE-FISHES
Cepnalopholis polleni	Harlequin Grouper	Serranidae	CRE-Fisnes
Hyporthodus	/-Banded Grouper	Serranidae	CRE-Fisnes
Septemfasciatus	Saddlahaalt Crowner	Comonidoo	CDE Eichea
Plectropomus taevis	Saudieback Grouper	Serrandae	CRE-FISHES
Plectropomus areolatus	Squaretail Grouper	Serranidae	CRE-Fishes
Saloptia powelli	Powell'S Grouper	Serranidae	CRE-Fishes
Variola louti	lunartail (lyretail)	Serranidae	BF Multi-species
F • 1 1 • 1 • •	grouper	a	complex
Epinephelus miliaris	Grouper	Serranidae	CRE-Fishes
Gracila albomarginata	Wh-Margined Grouper	Serranidae	CRE-Fishes
Variola albimarginata	Whmargin Lyretail	Serranidae	CRE-Fishes
	Grouper	~	
Cephalopholis miniata	Coral Grouper	Serranidae	CRE-Fishes
Epinephelus cyanopodus	Grouper	Serranidae	CRE-Fishes
Epinephelus	Orange Grouper	Serranidae	CRE-Fishes
coeruleopunctatus		~	
Epinephelus	Brown-Spotted	Serranidae	CRE-Fishes
chlorostigma	Grouper		
Epinephelus	BI-Spot Honeycomb	Serranidae	CRE-Fishes
melanostigma	Grouper Malahan Crowner	C	CDE Eistes
Epinepheius maiabaricus	Watabar Grouper	Serrandae	CRE-FISHES
Epinephelus ongus	wavy-Lined Grouper	Serranidae	CRE-Fisnes
Epinephelus spilotoceps	4-Saddle Grouper	Serranidae	CRE-Fishes
Epinephelus retouti	Grouper	Serranidae	CRE-Fishes
Plectropomus leopardus	Leopard Coral Trout	Serranidae	CRE-Fishes
Plectropomus	Blue-Lined Coral Trout	Serranidae	CRE-Fishes
oligacanthus			
Anyperodon	Grouper	Serranidae	CRE-Fishes
leucogrammicus			
Epinephelus corallicola	Grouper	Serranidae	CRE-Fishes
Epinephelus macrospilos	Grouper	Serranidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
	0	Name	
Cephalopholis	Grouper	Serranidae	CRE-Fisnes
Epinaphalus acicidas	Oranga Spot Groupar	Sorranidaa	CPE Eichog
Epinepheius coloides	Ded Per Foiry Pagalat	Serranidae	CRE-Fishes
Pseudaninias cooperi	Reu-Dai Faily Dassiet	Serranidae	CRE-FISHES
Pseudantnias pascalus	Purple Queen	Serranidae	CRE-Fishes
Pseudanthias	Sq-Spot Fairy Basslet	Serranidae	CRE-Fisnes
Pseudanthias sp	Fairy Baselet	Sorranidaa	CPE Fishes
Odontanthias horhonius	Fairy Basslet	Serranidaa	CRE-Fishes
Odontanthias borbonius	Fally Basslet	Serranidae	CRE-Fishes
		Serranidae	CRE-FISHES
Plectrantnias kamii	Basslet	Serranidae	CRE-Fishes
Plectrantnias nanus	Pygmy Basslet	Serranidae	CRE-Fishes
Selenanthias myersi	Basslet	Serranidae	CRE-Fishes
Pseudanthias	Bartlet'S Fairy Basslet	Serranidae	CRE-Fishes
bartlettorum	D's slaw Estima Dessalst	<u></u>	CDE Eister
Pseudanthias bicolor	Bicolor Fairy Basslet	Serranidae	CRE-Fishes
Pseudanthias dispar	Peach Fairy Basslet	Serranidae	CRE-Fishes
Pseudanthias lori	Lori'S Anthias	Serranidae	CRE-Fishes
Pseudanthias randalli	Randall'S Fairy Basslet	Serranidae	CRE-Fishes
Pseudanthias tuka	Y Striped Fairy Basslet	Serranidae	CRE-Fishes
Pseudanthias smithvanizi	Smithvaniz' Fairy	Serranidae	CRE-Fishes
	Basslet		
Pseudanthias ventralis	L-Finned Fairy Basslet	Serranidae	CRE-Fishes
Pseudanthias huchtii	Fairy Basslet	Serranidae	CRE-Fishes
Pseudanthias	Fairy Basslet	Serranidae	CRE-Fishes
squamipinnis			
Luzonichthys waitei	Magenta Slender	Serranidae	CRE-Fishes
Ing anighthing whitlawi	Bassiel Whitley'S Slondor	Samanidaa	CDE Eichea
Luzonichinys whileyi	Rasslet	Serramuae	CKE-FISHES
Plectranthias longimanus	Long-Finned Basslet	Serranidae	CRE-Fishes
Plectranthias winniensis	Basslet	Serranidae	CRE-Fishes
Plectranthias	Fourmanoir'S Basslet	Serranidae	CRE-Fishes
fourmanoiri	I ourmanon o Dassier	Serranuae	
Serranocirrhitus latus	Hawkfish Anthias	Serranidae	CRE-Fishes
Rabaulichthys sp	Fairy Basslet	Serranidae	CRE-Fishes
Plectranthias	Basslet	Serranidae	CRE-Fishes
rubrifasciatus	2455101	Sol I ulliuut	
Liopropoma lunulatum	Swissguard Basslet	Serranidae	CRE-Fishes
Liopropoma mitratum	Swissguard Basslet	Serranidae	CRE-Fishes
Liopropoma	Swissguard Basslet	Serranidae	CRE-Fishes
Correct Scientific Name	Common Name	Correct Family	FEP GROUP
---------------------------	--------------------------	---------------------------	------------
multilineatum			
Liopropoma pallidum	Pallid Basslet	Serranidae	CRE-Fishes
Liopropoma susumi	Pinstripe Basslet	Serranidae	CRE-Fishes
Liopropoma tonstrinum	Redstripe Basslet	Serranidae	CRE-Fishes
Liopropoma maculatum	Swissguard Basslet	Serranidae	CRE-Fishes
Subfamily Grammistinae	Soapfish	Serranidae	CRE-Fishes
Belonoperca chabanaudi	Soapfish	Serranidae	CRE-Fishes
Grammistes sexlineatus	Yellowstripe Soapfish	Serranidae	CRE-Fishes
Grammistops ocellatus	Ocellate Soapfish	Serranidae	CRE-Fishes
Pogonoperca punctata	Spotted Soapfish	Serranidae	CRE-Fishes
Callanthiidae	Goldies	Callanthiidae	CRE-Fishes
Grammatorcynus sp.	Goldies	Callanthiidae	CRE-Fishes
Grammatorcynus sp.	Goldies	Callanthiidae	CRE-Fishes
Pseudochromidae	Dottybacks	Pseudochromidae	CRE-Fishes
Pseudochromis	Surge Dottyback	Pseudochromidae	CRE-Fishes
cyanotaenia			
Pseudochromis fuscus	Dusky Dottyback	Pseudochromidae	CRE-Fishes
Pseudochromis	Marshall Is Dottyback	Pseudochromidae	CRE-Fishes
marshallensis			
Manonichthys polynemus	Long-Finned Dottyback	Pseudochromidae	CRE-Fishes
Pictichromis porphyrea	Magenta Dottyback	Pseudochromidae	CRE-Fishes
Pseudoplesiops revellei	Revelle'S Basslet	Pseudochromidae	CRE-Fishes
Pseudoplesiops rosae	Rose Island Basslet	Pseudochromidae	CRE-Fishes
Pseudoplesiops typus	Hidden Basslet	Pseudochromidae	CRE-Fishes
Pseudoplesiops sp	Basslet	Pseudochromidae	CRE-Fishes
Lubbockichthys	Robust Dottyback	Pseudochromidae	CRE-Fishes
multisquamatus			
Belonepterygion	Spiney Basslets	Subfamily	CRE-Fishes
fasciolatum		Acanthoclininae	
Acanthoplesiops hiatti	Hiatt'S Basslet	Plesiopidae	CRE-Fishes
Subfamily Grammistinae	Soapfishes	Serranidae	CRE-Fishes
Aporops bilinearis	2-Lined Soapfish	Serranidae	CRE-Fishes
Pseudogramma	Soapfish	Serranidae	CRE-Fishes
polyacantha	C fi -1		CDE Eister
Pseudogramma sp	Soaprisn	Serranidae Dissionidae	CRE-FISNES
	Longfins	Plesiopidae	CRE-Fishes
Calloplesiops altivelis	LongIin	riesiopidae	CRE-Fishes
Plesiops coeruleolineatus	Ked-Tipped Longfin	Plesiopidae	CRE-Fishes
Plesiops corallicola	Bluegill Longfin	Plesiopidae	CRE-Fishes
Pseudochromis	Dottyback	Pseudochromidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family Name	FEP GROUP
tapeinosoma			
Plesiops oxycephalus	Sharp-Nosed Longfin	Plesiopidae	CRE-Fishes
Tetraodontidae	Smooth Puffers	Tetraodontidae	CRE-Fishes
Terapontidae	Thornfishes	Terapontidae	CRE-Fishes
Kuhliidae	Flagtails	Kuhliidae	CRE-Fishes
Kuhlia mugil	Barred Flagtail	Kuhliidae	CRE-Fishes
Kuhlia rupestris	River Flagtail	Kuhliidae	CRE-Fishes
Kuhlia marginata	Dark-Margined Flagtail	Kuhliidae	CRE-Fishes
Priacanthidae	Bigeyes	Priacanthidae	CRE-Fishes
Heteropriacanthus cruentatus	Glasseye	Priacanthidae	CRE-Fishes
Priacanthus hamrur	Goggle-Eye	Priacanthidae	CRE-Fishes
Pristigenys meyeri	Bigeye	Priacanthidae	CRE-Fishes
Cookeolus japonicus	Bulleye	Priacanthidae	CRE-Fishes
Priacanthus alalaua	Bigeye	Priacanthidae	CRE-Fishes
Heteropriacanthus	Deepwater Glasseye	Priacanthidae	CRE-Fishes
cruentatus			
Apogonidae	Cardinalfishes	Apogonidae	CRE-Fishes
Ostorhinchus angustatus	Broad-Striped Cardinalfish	Apogonidae	CRE-Fishes
Nectamia bandanensis	Bigeye Cardinalfish	Apogonidae	CRE-Fishes
Apogon coccineus	Cryptic Cardinalfish	Apogonidae	CRE-Fishes
Pristiapogon exostigma	Eyeshadow Cardinalfish	Apogonidae	CRE-Fishes
Pristiapogon fraenatus	Bridled Cardinalfish	Apogonidae	CRE-Fishes
Nectamia fusca	Guam Cardinalfish	Apogonidae	CRE-Fishes
Pristiapogon kallopterus	Iridescent Cardinalfish	Apogonidae	CRE-Fishes
Fibramia lateralis	Inshore Cardinalfish	Apogonidae	CRE-Fishes
Zoramia leptacantha	Bluestreak Cardinalfish	Apogonidae	CRE-Fishes
Pristiapogon	Bandfin Cardinalfish	Apogonidae	CRE-Fishes
taeniopterus			
Ostorhinchus	Black-Striped	Apogonidae	CRE-Fishes
nigrofasciatus Ostorhinohus	Cardinalfish	Anaganidaa	CDE Eichea
novemfasciatus	/-Lined Cardinanish	Apogomuae	CRE-FISHES
Ostorhinchus	Bandfin Cardinalfish	Apogonidae	CRE-Fishes
taeniophorus		P.080	
Nectamia savayensis	Gray Cardinalfish	Apogonidae	CRE-Fishes
Pristicon trimaculatus	3-Spot Cardinalfish	Apogonidae	CRE-Fishes
Apogon sp.	Cardinalfish	Apogonidae	CRE-Fishes
Apogonichthys ocellatus	Ocellated Cardinalfish	Apogonidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family Name	FEP GROUP
Taeniamia biguttata	Twinspot Cardinalfish	Apogonidae	CRE-Fishes
Taeniamia fucata	Orange-Lined	Apogonidae	CRE-Fishes
	Cardinalfish		
Cheilodipterus	Truncate Cardinalfish	Apogonidae	CRE-Fishes
singapurensis			
Cheilodipterus macrodon	Lg-Toothed Cardinalfish	Apogonidae	CRE-Fishes
Cheilodipterus	5-Lined Cardinalfish	Apogonidae	CRE-Fishes
quinquelineatus			
Fowleria punctulata	Spotcheek Cardinalfish	Apogonidae	CRE-Fishes
Fowleria marmorata	Marbled Cardinalfish	Apogonidae	CRE-Fishes
Fowleria variegata	Variegated Cardinalfish	Apogonidae	CRE-Fishes
Pseudamiops	Cardinalfish	Apogonidae	CRE-Fishes
gracilicauda			
Siphamia tubifer	Cardinalfish	Apogonidae	CRE-Fishes
Siphamia fistulosa	Cardinalfish	Apogonidae	CRE-Fishes
Sphaeramia orbicularis	Cardinalfish	Apogonidae	CRE-Fishes
Sphaeramia nematoptera	Cardinalfish	Apogonidae	CRE-Fishes
Fibramia amboinensis	Cardinalfish	Apogonidae	CRE-Fishes
Ostorhinchus compressus	Ohcre-Striped Cardinalfish	Apogonidae	CRE-Fishes
Ostorhinchus dispar	Redspot Cardinalfish	Apogonidae	CRE-Fishes
Apogon doryssa	Longspine Cardinalfish	Apogonidae	CRE-Fishes
Zapogon evermanni	Evermann'S Cardinalfish	Apogonidae	CRE-Fishes
Zoramia gilberti	Gilbert'S Cardinalfish	Apogonidae	CRE-Fishes
Zoramia fragilis	Cardinalfish	Apogonidae	CRE-Fishes
Zoramia perlita	Pearly Cardinalfish	Apogonidae	CRE-Fishes
Fibramia thermalis	Sangi Cardinalfish	Apogonidae	CRE-Fishes
Apogonichthys perdix	Perdix Cardinalfish	Apogonidae	CRE-Fishes
Taeniamia zosterophora	Blackbelted Cardinalfish	Apogonidae	CRE-Fishes
Cheilodinterus isostiomus	Cardinalfish	Anogonidae	CRE-Fishes
Gymnanogon urospilotus	Cardinalfish	Anogonidae	CRE-Fishes
Pseudamia	Cardinalfish	Anogonidae	CRE-Fishes
amblyuroptera	Cardinanish	Apogomuae	
Pseudamia gelatinosa	Cardinalfish	Apogonidae	CRE-Fishes
Pseudamia havashii	Cardinalfish	Apogonidae	CRE-Fishes
Verulux cypselurus	Cardinalfish	Apogonidae	CRE-Fishes
Rhabdamia gracilis	Cardinalfish	Apogonidae	CRE-Fishes
Foa brachygramma	Bay Cardinalfish	Apogonidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Foa sp.	Cardinalfish	Apogonidae	CRE-Fishes
Jaydia ellioti	Elliot'S Cardinalfish	Apogonidae	CRE-Fishes
Ostorhinchus sealei	Seale'S Cardinalfish	Apogonidae	CRE-Fishes
Apogonichthyoides melas	Black Cardinalfish	Apogonidae	CRE-Fishes
Cheilodipterus artus	Lined Cardinalfish	Apogonidae	CRE-Fishes
Siphamia fuscolineata	Cardinalfish	Apogonidae	CRE-Fishes
Gymnapogon philippinus	Philippine Cardinalfish	Apogonidae	CRE-Fishes
Pseudamia zonata	Cardinalfish	Apogonidae	CRE-Fishes
?	Cardinalfish	Apogonidae	CRE-Fishes
Apogonichthyoides	Cardinalfish	Apogonidae	CRE-Fishes
nigripinnis			
Ostorhinchus notatus	Cardinalfish	Apogonidae	CRE-Fishes
Pristicon rhodopterus	Cardinalfish	Apogonidae	CRE-Fishes
Cheilodipterus	Intermediate	Apogonidae	CRE-Fishes
intermedius	Cardinalfish		
Fowleria vaiulae	Cardinalfish	Apogonidae	CRE-Fishes
Ostorhinchus hartzfeldii	Hartzfeld's cardinalfish	Apogonidae	CRE-Fishes
Sillaginidae	Sillagos	Sillaginidae	CRE-Fishes
Sillago sihama	Cardinalfish	Sillaginidae	CRE-Fishes
Malacanthidae	Tilefishes	Malacanthidae	CRE-Fishes
Hoplolatilus cuniculus	Tilefish	Malacanthidae	CRE-Fishes
Hoplolatilus fronticinctus	Tilefish	Malacanthidae	CRE-Fishes
Hoplolatilus starcki	Tilefish	Malacanthidae	CRE-Fishes
Malacanthus brevirostris	Quakerfish	Malacanthidae	CRE-Fishes
Malacanthus latovittatus	Striped Blanquillo	Malacanthidae	CRE-Fishes
Echeneidae	Diskfishes	Echeneidae	CRE-Fishes
Phtheirichthys lineatus	Slender Suckerfish	Echeneidae	CRE-Fishes
Remora remora	Remora	Echeneidae	CRE-Fishes
Remora osteochir	Remora	Echeneidae	CRE-Fishes
Echeneis naucrates	Remora	Echeneidae	CRE-Fishes
Carangidae	Jack (misc)	Carangidae	CRE-Fishes
Alectis ciliaris	Pennantfish/threadfin	Carangidae	CRE-Fishes
Alectis indica	Malabar Trevally	Carangidae	CRE-Fishes
Carangoides	Goldspot trevally	Carangidae	CRE-Fishes
orthogrammus		_	
Caranx ignobilis	giant trevally, jack	Carangidae	BF Multi-species
			complex
Caranx lugubris	black trevally, jack	Carangidae	BF Multi-species
	D1 (* / 11		complex
Caranx melampygus	Bluetin trevally	Carangidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Caranx sexfasciatus	Bigeye trevally	Carangidae	CRE-Fishes
Decapterus macarellus	Mackerel scad	Carangidae	CRE-Fishes
Elagatis bipinnulata	Rainbow runner	Carangidae	CRE-Fishes
Gnathanodon speciosus	Golden trevally	Carangidae	CRE-Fishes
Scomberoides lysan	Leatherback	Carangidae	CRE-Fishes
Selar crumenophthalmus	Atulai	Carangidae	CRE-Fishes
Seriola dumerili	amberjack	Carangidae	BF Multi-species
			complex
Seriola rivoliana	Almaco jack	Carangidae	CRE-Fishes
Trachinotus baillonii	Small spotted pompano	Carangidae	CRE-Fishes
Trachinotus blochii	Silver or Snubnose	Carangidae	CRE-Fishes
	pompano		
Uraspis helvola	Kingfish	Carangidae	CRE-Fishes
Carangoides	Blue kingfish trevally	Carangidae	CRE-Fishes
coeruleopinnatus		~	
Tribe Carangini		Carangidae	CRE-Fishes
Decapterus maruadsi	Round scad	Carangidae	CRE-Fishes
Carangoides ferdau	Bar jack	Carangidae	CRE-Fishes
Decapterus macrosoma	Mackerel scad	Carangidae	CRE-Fishes
Carangoides	Barcheek trevally	Carangidae	CRE-Fishes
plagiotaenia			
Carangoides	Jacks (misc)	Carangidae	CRE-Fishes
talamparoides			
Atule mate	Atulai		CRE-Fishes
Selar boops	Atulai	Carangidae	CRE-Fishes
Caranx papuensis	Brassy trevally	Carangidae	CRE-Fishes
Caranx sp.	Trevally	Carangidae	CRE-Fishes
Decapterus russelli	Round scad	Carangidae	CRE-Fishes
Carangoides dinema	Shadow kingfish	Carangidae	CRE-Fishes
Ulua mentalis	Mandibular kingfish	Carangidae	CRE-Fishes
Carangoides	Yellow dotted trevally	Carangidae	CRE-Fishes
fulvoguttatus			
Uraspis uraspis	Whitemouth trevally	Carangidae	CRE-Fishes
Naucrates ductor	Pilotfish	Carangidae	CRE-Fishes
Uraspis secunda	Deep trevally	Carangidae	CRE-Fishes
Carangoides	Trevally	Carangidae	CRE-Fishes
coeruleopinnatus			
Carangoides	Headnotch trevally	Carangidae	CRE-Fishes
hedlandensis			
Megalaspis cordyla	Torpedo scad	Carangidae	CRE-Fishes
2	Elagatis, Scomberoides	Carangidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
	D 011	Name	
Leiognathidae	Ponyfishes	Leiognathidae	CRE-Fishes
Leiognathus equulus	Common Slipmouth	Leiognathidae	CRE-Fishes
Gazza achlamys	Lg-Toothed Ponyfish	Leiognathidae	CRE-Fishes
Equulites stercorarius	Oblong Slipmouth	Leiognathidae	CRE-Fishes
Equulites elongatus	Slipmouth	Leiognathidae	CRE-Fishes
Leiognathus longispinis	Slipmouth	Leiognathidae	CRE-Fishes
Photopectoralis bindus	Slipmouth	Leiognathidae	CRE-Fishes
Secutor ruconius	Pugnose Soapy	Leiognathidae	CRE-Fishes
Gazza minuta	Toothed Ponyfish	Leiognathidae	CRE-Fishes
Emmelichthyidae	Bonnet Mouths	Emmelichthyidae	CRE-Fishes
Emmelichthys karnellai	Bonnetmouth	Emmelichthyidae	CRE-Fishes
Erythrocles scintillans	Bonnetmouth	Emmelichthyidae	CRE-Fishes
Lutjanidae	Snappers	Lutjanidae	CRE-Fishes
Aphareus furca	Silvermouth/Jobfish	Lutjanidae	CRE-Fishes
Aphareus rutilans	red snapper,	Lutjanidae	BF Multi-species
	silvermouth (lehi)		complex
Aprion virescens	grey snapper, jobfish	Lutjanidae	BF Multi-species
			complex
Etelis carbunculus	red snapper (ehu)	Lutjanidae	BF Multi-species
	1 ()	T (1 1	complex
Etelis coruscans	red snapper (onaga)	Lutjanidae	BF Multi-species
Lutianua	Divor Snonnon	Lutionidae	CDE Eiches
argentimaculatus	Kiver Shapper	Lutjamuae	CKE-FISHES
Lutianus bohar	Red Snapper	L utianidae	CRE-Fishes
Lutjanus fulvus	Flametail Snapper	Lutianidae	CRE-Fishes
Lutianus aibhus	Humpback Snapper	Lutjanidae	CRE-Fishes
Lutjanus giobus	hlueline snapper	Lutjanidao	BE Multi-species
	ordenne snapper	Lutjamuat	complex
Lutianus rivulatus	Scribbled Snapper	Lutianidae	CRE-Fishes
Lutianus monostigma	Onespot Snapper	Lutianidae	CRE-Fishes
Macolor niger	Black Snapper	Lutjanidae	CRE-Fishes
Paracaesio sordida	Fusilier	Lutjanidae	CRE-Fishes
Paracaesio xanthura	Yellowtail Fusilier	Lutjanidae	CRE-Fishes
Pristipomoides auricilla	yellowtail snapper	Lutjanidae	BF Multi-species
			complex
Pristipomoides	pink snapper (paka)	Lutjanidae	BF Multi-species
filamentosus	_		complex
Pristipomoides	yelloweye snapper	Lutjanidae	BF Multi-species
flavipinnis			complex
Pristipomoides sieboldii	pink snapper (kalekale)	Lutjanidae	BF Multi-species

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Ivallie	complex
Pristinomoides zonatus	snapper (gindai)	Lutianidae	BF Multi-species
1 risupomotaes zonatas	snapper (gindur)	Dutjamuat	complex
Randallichthys	Deepwater Snapper	Lutjanidae	CRE-Fishes
filamentosus		0	
Lutjanus biguttatus	Two-Spot Snapper	Lutjanidae	CRE-Fishes
Lutjanus decussatus	Checkered Snapper	Lutjanidae	CRE-Fishes
Lutjanus ehrenbergii	Blackspot Snapper	Lutjanidae	CRE-Fishes
Lutjanus malabaricus	Malabar Snapper	Lutjanidae	CRE-Fishes
Lutjanus semicinctus	1/2-Barred Snapper	Lutjanidae	CRE-Fishes
Lutjanus vitta	One-Lined Snapper	Lutjanidae	CRE-Fishes
Symphorichthys spilurus	Sailfin Snapper	Lutjanidae	CRE-Fishes
Macolor macularis	Bl And Wh Snapper	Lutjanidae	CRE-Fishes
Lutjanus sebae	Snapper	Lutjanidae	CRE-Fishes
Lutjanus boutton	Snapper	Lutjanidae	CRE-Fishes
Lutjanus fulviflamma	Snapper	Lutjanidae	CRE-Fishes
Caesionidae	Fusilier	Caesionidae	CRE-Fishes
Caesio caerulaurea	Scissor-Tailed Fusilier	Caesionidae	CRE-Fishes
Caesio teres	Yellowback Caesio	Caesionidae	CRE-Fishes
Pterocaesio marri	Twinstripe Fusilier	Caesionidae	CRE-Fishes
Pterocaesio tile	Bluestreak Fusilier	Caesionidae	CRE-Fishes
Caesio cuning	Fusilier	Caesionidae	CRE-Fishes
Caesio lunaris	Lunar Fusilier	Caesionidae	CRE-Fishes
Pterocaesio lativittata	Yellowstreak Fusilier	Caesionidae	CRE-Fishes
Pterocaesio trilineata	3-Striped Fusilier	Caesionidae	CRE-Fishes
Pterocaesio pisang	Ruddy Fusilier	Caesionidae	CRE-Fishes
Gymnocaesio	Fusilier	Caesionidae	CRE-Fishes
gymnoptera			
Pterocaesio tessellata	Mosaic Fusilier	Caesionidae	CRE-Fishes
Symphysanodontidae	Sympysanodon	Symphysanodontidae	CRE-Fishes
Symphysanodon typus	Symphysanid	Symphysanodontidae	CRE-Fishes
Nemipteridae	Threadfin Breams	Nemipteridae	CRE-Fishes
Scolopsis lineata	Bl And Wh Spinecheek	Nemipteridae	CRE-Fishes
Scolopsis bilineata	2 Line Spinecheek	Nemipteridae	CRE-Fishes
Scolopsis margaritifera	Margarite'S Spinecheek	Nemipteridae	CRE-Fishes
Scolopsis affinis	Spinecheek	Nemipteridae	CRE-Fishes
Scolopsis trilineata	3 Line Spinecheek	Nemipteridae	CRE-Fishes
Scolopsis ciliata	Ciliate Spinecheek	Nemipteridae	CRE-Fishes
Scolopsis taenioptera	Spinecheek	Nemipteridae	CRE-Fishes
Scolopsis xenochroa	Spinecheek	Nemipteridae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Nemipterus hexodon	Butterfly Bream	Nemipteridae	CRE-Fishes
Nemipterus peronii	Notched Butterfly	Nemipteridae	CRE-Fishes
	Bream		
Nemipterus peronii	Butterfly Bream	Nemipteridae	CRE-Fishes
Nemipterus furcosus	Forktail Bream	Nemipteridae	CRE-Fishes
Lobotidae	Tripletails	Lobotidae	CRE-Fishes
Lobotes surinamensis	Triplefin	Lobotidae	CRE-Fishes
Gerreidae	Mojarras	Gerreidae	CRE-Fishes
Gerres longirostris	Common Mojarra	Gerreidae	CRE-Fishes
Gerres erythrourus	Deep-Bodied Mojarra	Gerreidae	CRE-Fishes
Gerres oblongus	Oblong Mojarra	Gerreidae	CRE-Fishes
Gerres filamentosus	Filamentous Mojarra	Gerreidae	CRE-Fishes
Gerres oyena	Oyena Mojarra	Gerreidae	CRE-Fishes
Gerres filamentosus	Mojarra	Gerreidae	CRE-Fishes
Haemulidae	Sweetlips	Haemulidae	CRE-Fishes
Diagramma pictum	Slatey Sweetlips	Haemulidae	CRE-Fishes
Plectorhinchus vittatus	Oriental Sweetlips	Haemulidae	CRE-Fishes
Plectorhinchus gibbosus	Gibbus Sweetlips	Haemulidae	CRE-Fishes
Plectorhinchus picus	Spotted Sweetlips	Haemulidae	CRE-Fishes
Plectorhinchus obscurus	Giant Sweetlips	Haemulidae	CRE-Fishes
Plectorhinchus	Celebes Sweetlips	Haemulidae	CRE-Fishes
chrysotaenia			
Plectorhinchus	Harlequin Sweetlips	Haemulidae	CRE-Fishes
chaetodonoides			
Plectorhinchus lessonii	Lined Sweetlips	Haemulidae	CRE-Fishes
Plectorhinchus lineatus	Goldman'S Sweetlips	Haemulidae	CRE-Fishes
Plectorhinchus	2-Lined Sweetlips	Haemulidae	CRE-Fishes
albovittatus			
Pomadasys kaakan	Common Javelinefish	Haemulidae	CRE-Fishes
Plectorhinchus	Sweetlip	Haemulidae	CRE-Fishes
flavomaculatus	0 1		
Plectorninchus sp	Sweetlip	Haemulidae	CRE-Fishes
Lethrinidae	Emperors	Lethrinidae	CRE-Fishes
Gnathodentex	Yellow-Spot Emperor	Lethrinidae	CRE-Fishes
aureolineatus	Cuary Ducam	Lathrinidae	CDE Eichea
Gymnocranius griseus	These beginst Free and a		CRE-FISHES
Lethrinus harak	Vellesstell 5		CRE-FISNES
Lethrinus atkinsoni	r ellowtail Emperor	Lethrinidae	CKE-Fishes
Lethrinus olivaceus	Longtace Emperor	Lethrinidae	CRE-Fishes
Lethrinus ornatus	Ornate Emperor	Lethrinidae	CRE-Fishes
Lethrinus obsoletus	Orange-Striped	Lethrinidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
	Emporer	Name	
I athricus		I otherinido o	DE Multi anaziaa
Leinrinus	reagin emperor	Lethrinidae	or Multi-species
Lethrinus semicinctus	Black-Blotch Emperor	Lethrinidae	CRE-Fishes
Lethrinus semtements	Vellowlin Emperor	Lethrinidae	CRE-Fishes
Monotaris arandoculis	Bigeve Emperor	Lethrinidae	CRE-Fishes
Gymnocranius eugnus	Japanese Bream	Lethrinidae	CRE-Fishes
I athrinus arythracanthus	Orange-Spotted	Lethrinidae	CRE_Fishes
Lethrmus er ymrucaninus	Emperor		CRE-Fishes
Wattsia mossambica	Large-Eye Bream	Lethrinidae	CRE-Fishes
Gymnocranius sp.	Stout Emperor	Lethrinidae	CRE-Fishes
Lethrinus microdon	Smtoothed Emperor	Lethrinidae	CRE-Fishes
Lethrinus amboinensis	ambon emperor	Lethrinidae	BF Multi-species
			complex
Lethrinus genivittatus	Longspine Emperor	Lethrinidae	CRE-Fishes
Lethrinus lentjan	Pinkear Emperor	Lethrinidae	CRE-Fishes
Gymnocranius microdon	Blue-Spotted Bream	Lethrinidae	CRE-Fishes
Lethrinus erythropterus	Longfin Emperor	Lethrinidae	CRE-Fishes
Gymnocranius	Blue-Lined Bream	Lethrinidae	CRE-Fishes
grandoculis			
Lethrinus variegatus	Slender Emperor	Lethrinidae	CRE-Fishes
Nemipteridae	Breams	Nemipteridae	CRE-Fishes
Pentapodus caninus	Smalltooth Whiptail	Nemipteridae	CRE-Fishes
Pentapodus trivittatus	3-Striped Whiptail	Nemipteridae	CRE-Fishes
Mullidae	Goatfishes	Mullidae	CRE-Fishes
Mulloidichthys	Yellowstriped Goatfish	Mullidae	CRE-Fishes
flavolineatus			
Mulloidichthys pfluegeri	Orange Goatfish	Mullidae	CRE-Fishes
Mulloidichthys	Yellowfin Goatfish	Mullidae	CRE-Fishes
vanicolensis	Deals And Det Coatfiel	N	CDE Elster
Parupeneus barberinus	Dash And Dot Goatrish	Mullidae	CRE-Fisnes
Parupeneus trifasciatus	Doublebar goattish	Mullidae	CRE-Fisnes
Parupeneus cyclostomus	Yellow Goatrish	Mullidae	CRE-Fisnes
Parupeneus heptacanthus	Redspot Goatfish	Mullidae	CRE-Fishes
Parupeneus pleurostigma	Sidespot Goatfish	Mullidae	CRE-Fishes
Parupeneus ciliatus	White-Lined Goatfish	Mullidae	CRE-Fishes
Parupeneus	Multibarred Goatfish	Mullidae	CRE-Fishes
multifasciatus	Dand Tailed Castfiel	Multidae	CDE Eichea
Openeus taentopterus	Danu-Taned Goatrish		CDE Eicher
Openeus vittatus	reliowbanded GoatTish		CRE-FISNES
Parupeneus indicus	Indian Goatfish	Mullidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Upeneus tragula	Blackstriped Goatfish	Mullidae	CRE-Fishes
Parupeneus	Bicolor goatfish	Mullidae	CRE-Fishes
barberinoides	Castfiel	N/112 J	CDE Eistes
Parupeneus sp	Goatrish	Mullidae	CRE-Fisnes
Upeneus taeniopterus	Goatfish	Mullidae	CRE-Fishes
Mulloidichthys sp	Juvenile Goatfish	Mullidae	CRE-Fishes
Monodactylidae	Monos	Monodactylidae	CRE-Fishes
Monodactylus argenteus	Mono	Monodactylidae	CRE-Fishes
Pempheridae	Sweepers	Pempheridae	CRE-Fishes
Pempheris oualensis	Bronze Sweeper	Pempheridae	CRE-Fishes
Parapriacanthus	Sandperch	Pempheridae	CRE-Fishes
ransonneti			
Toxotidae	Archerfishes	Toxotidae	CRE-Fishes
Toxotidae	Banded Archerfish	Toxotidae	CRE-Fishes
Kyphosidae	Rudderfish	Kyphosidae	CRE-Fishes
Kyphosus cinerascens	Highfin Rudderfish	Kyphosidae	CRE-Fishes
Kyphosus vaigiensis	Lowfin Rudderfish	Kyphosidae	CRE-Fishes
Kyphosus bigibbus	Insular Rudderfish	Kyphosidae	CRE-Fishes
Ephippidae	Batfish	Ephippidae	CRE-Fishes
Platax orbicularis	Batfish	Ephippidae	CRE-Fishes
Platax pinnatus	Pinnate Spadefish	Ephippidae	CRE-Fishes
Platax teira	Longfin Spadefish	Ephippidae	CRE-Fishes
Scatophagidae	Scats	Scatophagidae	CRE-Fishes
Scatophagus argus	Scat	Scatophagidae	CRE-Fishes
Chaetodontidae	Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon auriga	Threadfin Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon bennetti	Bennetts Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon citrinellus	Speckled Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon ephippium	Saddleback	Chaetodontidae	CRE-Fishes
	Butterflyfish		
Chaetodon	Ylw-Crn Butterflyfish	Chaetodontidae	CRE-Fishes
flavocoronatus			
Chaetodon kleinii	Kleins Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon lineolatus	Lined Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon lunula	Racoon Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon melannotus	Black-Back	Chaetodontidae	CRE-Fishes
	Butterflyfish		
Chaetodon mertensii	Mertens Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon modestus	Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon ornatissimus	Ornate Butterflyfish	Chaetodontidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Chaetodon	Spotbnded	Chaetodontidae	CRE-Fishes
punctatofasciatus	Butterflyfish		
Chaetodon	4-Spotted Butterflyfish	Chaetodontidae	CRE-Fishes
quadrimaculatus	Deterited Detterfield		CDE Eister
Chaetodon reticulatus	Retcuited Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon lunulatus	Redfinned Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon ulietensis	Pac Dblsddl Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon unimaculatus	Teardrop Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon vagabundus	Vagabond Butterflyfish	Chaetodontidae	CRE-Fishes
Forcipiger flavissimus	Longnosed Butterflyfish	Chaetodontidae	CRE-Fishes
Forcipiger longirostris	Big Longnose Butterflyfish	Chaetodontidae	CRE-Fishes
Hemitaurichthys polylepis	Pyrimid Butterflyfish	Chaetodontidae	CRE-Fishes
Hemitaurichthys thompsoni	Butterflyfish	Chaetodontidae	CRE-Fishes
Heniochus acuminatus	Longfinned Bannerfish	Chaetodontidae	CRE-Fishes
Heniochus chrysostomus	Pennant Bannerfish	Chaetodontidae	CRE-Fishes
Heniochus monoceros	Masked Bannerfish	Chaetodontidae	CRE-Fishes
Heniochus singularius	Singular Butterflyfish	Chaetodontidae	CRE-Fishes
Heniochus varius	Humphead Bannerfish	Chaetodontidae	CRE-Fishes
Chaetodon trifascialis	Chevron Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon haronessa	E Triangular	Chaetodontidae	CRE-Fishes
Chaeloaon baronessa	Butterflyfish	Chaetouontiuae	CIL-115hcs
Chaetodon burgessi	Burgess' Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon meyeri	Meyer'S Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon ocellicaudus	Spot-Tail Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon octofasciatus	8-Banded Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon oxycephalus	Spot-Nape Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon rafflesii	Latticed Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon semeion	Dotted Butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon speculum	Oval-Spot Butterflyfish	Chaetodontidae	CRE-Fishes
Coradion chrysozonus	Orangebanded Coralfish	Chaetodontidae	CRE-Fishes
Chaetodon tinkeri	Tinker'S Butterflyfish	Chaetodontidae	CRE-Fishes
Heniochus diphreutes	Bannerfish	Chaetodontidae	CRE-Fishes
Pomacanthidae	Angelfishes	Pomacanthidae	CRE-Fishes
Apolemichthys	Flagfin Anglefish	Pomacanthidae	CRE-Fishes
trimaculatus			

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Centropyge bicolor	Bicolor Angelfish	Pomacanthidae	CRE-Fishes
Centropyge bispinosa	Dusky Angelfish	Pomacanthidae	CRE-Fishes
Centropyge colini	Colin'S Angelfish	Pomacanthidae	CRE-Fishes
Centropyge flavissima	Lemonpeel Anglefish	Pomacanthidae	CRE-Fishes
Centropyge heraldi	Herald'S Anglefish	Pomacanthidae	CRE-Fishes
Centropyge loriculus	Flame Anglefish	Pomacanthidae	CRE-Fishes
Paracentropyge	Multibarred Angelfish	Pomacanthidae	CRE-Fishes
multifasciata			
Centropyge nigriocella	Black-Spot Anglefish	Pomacanthidae	CRE-Fishes
Centropyge shepardi	Shepard'S Anglefish	Pomacanthidae	CRE-Fishes
Centropyge vrolikii	Pearlscale Anglefish	Pomacanthidae	CRE-Fishes
Genicanthus bellus	Ornate Angelfish	Pomacanthidae	CRE-Fishes
Genicanthus watanabei	Watanabe'S Angelfish	Pomacanthidae	CRE-Fishes
Pomacanthus imperator	Emperor Anglefish	Pomacanthidae	CRE-Fishes
Pygoplites diacanthus	Regal Anglefish	Pomacanthidae	CRE-Fishes
Centropyge fisheri	White-Tail Angelfish	Pomacanthidae	CRE-Fishes
Centropyge multicolor	Multicolor Angelfish	Pomacanthidae	CRE-Fishes
Centropyge tibicen	Keyhole Angelfish	Pomacanthidae	CRE-Fishes
Chaetodontoplus	Vermiculated	Pomacanthidae	CRE-Fishes
mesoleucus	Angelfish		
Genicanthus	Black-Spot Angelfish	Pomacanthidae	CRE-Fishes
melanospilos			
Pomacanthus navarchus	Blue-Girdled Angelfish	Pomacanthidae	CRE-Fishes
Pomacanthus sexstriatus	6-Banded Angelfish	Pomacanthidae	CRE-Fishes
Pomacanthus	Blue-Faced Angelfish	Pomacanthidae	CRE-Fishes
xanthometopon			
Pomacanthus	Semicircle Angelfish	Pomacanthidae	CRE-Fishes
semicirculatus	A 10' 1	D	
Apolemichthys	Angelfish	Pomacantnidae	CRE-Fisnes
An elemiehthys griffisi	Angolfich	Domoconthidoo	CDE Eichea
Apolemichinys grijjisi	Midnight Angelfich	Pomacanthidae	CRE-FISHES
Centropyge nox	Caldar Angellish	Poinacantinuae	CRE-FISHES
Centropyge aurantia	Golden Angelfish	Pomacanthidae	CRE-Fisnes
Pentacerotidae	Armourneads	Pentacerotidae	CRE-Fishes
Pentaceros wheeleri	Amourhead	Pentacerotidae	CRE-Fishes
Cichlidae	Cichlids	Cichlidae	CRE-Fishes
Oreochromis	Tilapia	Cichlidae	CRE-Fishes
mossambicus	T11		CDE Elst
Coptoaon zillii			CKE-FIShes
Cichla ocellaris	Peacock Bass	Cichlidae	CRE-Fishes
Oplegnathidae	Knifejaws	Oplegnathidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
0.1	Constitution I Marifesterra	Name	CDE Eister
Oplegnatnus punctatus	Spotted Knifejaw	Oplegnatnidae	CRE-Fisnes
Pomacentridae	Damselfisnes	Pomacentridae	CRE-Fishes
Abudefduf septemfasciatus	Banded Sergeant	Pomacentridae	CRE-Fishes
Abudefduf sexfasciatus	Scis-Tail Sgt Major	Pomacentridae	CRE-Fishes
Abudefduf sordidus	Black Spot Sergeant	Pomacentridae	CRE-Fishes
Abudefduf vaigiensis	Sergeant-Major	Pomacentridae	CRE-Fishes
Amblyglyphidodon aureus	Damselfish	Pomacentridae	CRE-Fishes
Amblyglyphidodon curacao	Staghorn Damsel	Pomacentridae	CRE-Fishes
Amphiprion chrysopterus	Org-Fin Anemonefish	Pomacentridae	CRE-Fishes
Amphiprion clarkii	Clark'S Anemonefish	Pomacentridae	CRE-Fishes
Amphiprion melanopus	Dusky Anemonefish	Pomacentridae	CRE-Fishes
Amphiprion perideraion	Pink Anemonfish	Pomacentridae	CRE-Fishes
Chromis acares	Midget Chromis	Pomacentridae	CRE-Fishes
Chromis agilis	Bronze Reef Chromis	Pomacentridae	CRE-Fishes
Chromis amboinensis	Ambon Chromis	Pomacentridae	CRE-Fishes
Chromis analis	Yellow Chromis	Pomacentridae	CRE-Fishes
Chromis atripectoralis	Black-Axil Chromis	Pomacentridae	CRE-Fishes
Chromis viridis	Blue-Green Chromis	Pomacentridae	CRE-Fishes
Chromis elerae	Twin-Spot Chromis	Pomacentridae	CRE-Fishes
Chromis lepidolepis	Scaly Chromis	Pomacentridae	CRE-Fishes
Chromis margaritifer	Bicolor Chromis	Pomacentridae	CRE-Fishes
Chromis vanderbilti	Vanderbilt'S Chromis	Pomacentridae	CRE-Fishes
Chromis xanthura	Black Chromis	Pomacentridae	CRE-Fishes
Chromis alpha	Yel-Speckled Chromis	Pomacentridae	CRE-Fishes
Chrysiptera biocellata	2-Spot Demoiselle	Pomacentridae	CRE-Fishes
<i>Chrysiptera</i>	Blue-Line Demoiselle	Pomacentridae	CRE-Fishes
Chrysiptera glauca	Grav Demoiselle	Pomacentridae	CRE-Fishes
Chrysiptera brownriggii	Surge Demoiselle	Pomacentridae	CRE-Fishes
Chrysiptera tracevi	Tracev'S Demoiselle	Pomacentridae	CRE-Fishes
Dascyllus aruanus	Humbug Dascyllus	Pomacentridae	CRE-Fishes
Dascyllus reticulatus	Reticulated Dascyllus	Pomacentridae	CRE-Fishes
Dascyllus trimaculatus	3-Spot Dascyllus	Pomacentridae	CRE-Fishes
Dischistodus	White Damsel	Pomacentridae	CRE-Fishes
perspicillatus			
Plectroglyphidodon dickii	Dick'S Damsel	Pomacentridae	CRE-Fishes
Plectroglyphidodon	Bright-Eye Damsel	Pomacentridae	CRE-Fishes
imparipennis			

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
Dlaatnaalumhidadan	Johnston Isla Damsal	Name Democontridee	CDE Eichea
iohnstonianus	Johnston Isle Damser	Pomacentridae	CRE-FISHES
Plectroglynhidodon	Iewel Damsel	Pomacentridae	CRF-Fishes
lacrymatus	Jewer Damser	1 omacenti idae	CICL-1 ISINGS
Plectroglyphidodon	White-Band Damsel	Pomacentridae	CRE-Fishes
leucozonus			
Plectroglyphidodon	Phoenix Isle Damsel	Pomacentridae	CRE-Fishes
phoenixensis			
Pomacentrus	Ambon Damsel	Pomacentridae	CRE-Fishes
amboinensis			
Pomacentrus pavo	Sapphire Damsel	Pomacentridae	CRE-Fishes
Pomacentrus vaiuli	Princess Damsel	Pomacentridae	CRE-Fishes
Pomachromis guamensis	Guam Damsel	Pomacentridae	CRE-Fishes
Stegastes albifasciatus	White-Bar Gregory	Pomacentridae	CRE-Fishes
Stegastes fasciolatus	Pacific Gregory	Pomacentridae	CRE-Fishes
Stegastes lividus	Farmerfish	Pomacentridae	CRE-Fishes
Stegastes nigricans	Dusky Farmerfish	Pomacentridae	CRE-Fishes
Neopomacentrus	Violet Demoiselle	Pomacentridae	CRE-Fishes
violascens			
Lepidozygus tapeinosoma	Fusilier Damsel	Pomacentridae	CRE-Fishes
Chromis ternatensis	Ternate Chromis	Pomacentridae	CRE-Fishes
Abudefduf lorenzi	Blackspot Sergeant	Pomacentridae	CRE-Fishes
Abudefduf notatus	Yellowtail Sergeant	Pomacentridae	CRE-Fishes
Amblyglyphidodon	White-Belly Damsel	Pomacentridae	CRE-Fishes
leucogaster			
Amblyglyphidodon	Ternate Damsel	Pomacentridae	CRE-Fishes
ternatensis			
Chromis atripes	Dark-Fin Chromis	Pomacentridae	CRE-Fishes
Chromis lineata	Lined Chromis	Pomacentridae	CRE-Fishes
Chromis retrofasciata	Black-Bar Chromis	Pomacentridae	CRE-Fishes
Chromis weberi	Weber'S Chromis	Pomacentridae	CRE-Fishes
Chromis xanthochira	Yel-Axil Chromis	Pomacentridae	CRE-Fishes
Chromis caudalis	Blue-Axil Chromis	Pomacentridae	CRE-Fishes
Chromis delta	Deep Reef Chromis	Pomacentridae	CRE-Fishes
Chrysiptera cyanea	Blue Devil	Pomacentridae	CRE-Fishes
Chrysiptera rex	King Demoiselle	Pomacentridae	CRE-Fishes
Chrysiptera talboti	Talbot'S Demoiselle	Pomacentridae	CRE-Fishes
Dascyllus melanurus	Black-Tail Dascyllus	Pomacentridae	CRE-Fishes
Dischistodus	White-Spot Damsel	Pomacentridae	CRE-Fishes
chrysopoecilus	-		
Dischistodus melanotus	Black-Vent Damsel	Pomacentridae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
TT · 1 1 · 1 1	D 101	Name	
Hemiglyphidodon	Damselfish	Pomacentridae	CRE-Fisnes
Nacometopon	Corol Domoicalla	Domocontridoo	CDE Eichea
neopomacentrus	Coral Demoisene	romacentriuae	CKE-FISHES
Naopomacantrus	Freshwater Demoiselle	Pomacontridao	CRE_Fishes
taeniurus	Treshwater Demoisene	1 omacenti iuac	
Neoglyphidodon melas	Royal Damsel	Pomacentridae	CRE-Fishes
Neoglyphidodon nigroris	Yellowfin Damsel	Pomacentridae	CRE-Fishes
Pomacentrus	Speckled Damsel	Pomacentridae	CRE-Fishes
bankanensis			
Pomacentrus burroughi	Burrough'S Damsel	Pomacentridae	CRE-Fishes
Pomacentrus coelestis	Neon Damsel	Pomacentridae	CRE-Fishes
Pomacentrus	Outer Reef Damsel	Pomacentridae	CRE-Fishes
emarginatus			
Pomacentrus	Blue-Spot Damsel	Pomacentridae	CRE-Fishes
grammorhynchus			
Pomacentrus brachialis	Charcoal Damsel	Pomacentridae	CRE-Fishes
Pomacentrus philippinus	Philappine Damsel	Pomacentridae	CRE-Fishes
Pomacentrus reidi	Reid'S Damsel	Pomacentridae	CRE-Fishes
Pomacentrus chrysurus	White-Tail Damsel	Pomacentridae	CRE-Fishes
Pomacentrus simsiang	Blueback Damsel	Pomacentridae	CRE-Fishes
Pomacentrus	Nagasaki Damsel	Pomacentridae	CRE-Fishes
nagasakiensis			
Pomacentrus adelus	Damselfish	Pomacentridae	CRE-Fishes
Pomachromis exilis	Slender Reef-Damsel	Pomacentridae	CRE-Fishes
Cheiloprion labiatus	Minstrel Fish	Pomacentridae	CRE-Fishes
Chrysiptera oxycephala	Blue-Spot Demoiselle	Pomacentridae	CRE-Fishes
Chrysiptera unimaculata	1-Spot Demoiselle	Pomacentridae	CRE-Fishes
Pomacentrus moluccensis	Lemon Damsel	Pomacentridae	CRE-Fishes
Pomacentrus nigromanus	Black-Axil Damsel	Pomacentridae	CRE-Fishes
Pomacentrus auriventris	Goldbelly Damsel	Pomacentridae	CRE-Fishes
Amphiprion frenatus	Tomato Anemonefish	Pomacentridae	CRE-Fishes
Amphiprion ocellaris	False Clown	Pomacentridae	CRE-Fishes
	Anemonefish		
Amphiprion tricinctus	3-Banded Anemonefish	Pomacentridae	CRE-Fishes
Cirrhitidae	Hawkfish	Cirrhitidae	CRE-Fishes
Amblycirrhitus bimacula	2-Spot Hawkfish	Cirrhitidae	CRE-Fishes
Cirrhitichthys falco	Falco'S Hawkfish	Cirrhitidae	CRE-Fishes
Cirrhitichthys	Pixy Hawkfish	Cirrhitidae	CRE-Fishes
oxycephalus			
Cirrhitus pinnulatus	Stocky Hawkfish	Cirrhitidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Neocirrhites armatus	Flame Hawkfish	Cirrhitidae	CRE-Fishes
Oxycirrhites typus	Longnose Hawkfish	Cirrhitidae	CRE-Fishes
Paracirrhites arcatus	Arc-Eyed Hawkfish	Cirrhitidae	CRE-Fishes
Paracirrhites forsteri	Freckeled Hawkfish	Cirrhitidae	CRE-Fishes
Paracirrhites hemistictus	Whitespot Hawkfish	Cirrhitidae	CRE-Fishes
Isocirrhitus sexfasciatus	6-Band Hawkfish	Cirrhitidae	CRE-Fishes
Cirrhitichthys aprinus	Threadfin Hawkfish	Cirrhitidae	CRE-Fishes
Cyprinocirrhites	Swallowtail Hawkfish	Cirrhitidae	CRE-Fishes
polyactis			
Mugilidae	Mullets	Mugilidae	CRE-Fishes
Moolgarda engeli	Engel'S Mullet	Mugilidae	CRE-Fishes
Crenimugil crenilabis	Fringelip Mullet	Mugilidae	CRE-Fishes
Ellochelon vaigiensis	Yellowtail Mullet	Mugilidae	CRE-Fishes
Mugil cephalus	Gray Mullet	Mugilidae	CRE-Fishes
Neomyxus leuciscus	Acute-Jawed Mullet	Mugilidae	CRE-Fishes
Moolgarda seheli	Bluespot Mullet	Mugilidae	CRE-Fishes
Chelon macrolepis	Ceram Mullet	Mugilidae	CRE-Fishes
Chelon melinopterus	Giantscale Mullet	Mugilidae	CRE-Fishes
Oedalechilus labiosus	Foldlip Mullet	Mugilidae	CRE-Fishes
Crenimugil heterocheilos	Mullet	Mugilidae	CRE-Fishes
Sphyraenidae	Barracudas	Sphyraenidae	CRE-Fishes
Sphyraena barracuda	Great Barracuda	Sphyraenidae	CRE-Fishes
Sphyraena obtusata	Pygmy Barracuda	Sphyraenidae	CRE-Fishes
Sphyraena forsteri	Blackspot Barracuda	Sphyraenidae	CRE-Fishes
Sphyraena acutipinnis	Sharpfin Barracuda	Sphyraenidae	CRE-Fishes
Sphyraena qenie	Blackfin Barracuda	Sphyraenidae	CRE-Fishes
Sphyraena putnamae	Slender Barracuda	Sphyraenidae	CRE-Fishes
Sphyraena	Arrow Barracuda	Sphyraenidae	CRE-Fishes
novaehollandiae			
Sphyraena flavicauda	Yellowtail Barracuda	Sphyraenidae	CRE-Fishes
Polynemidae	Threadfins	Polynemidae	CRE-Fishes
Polydactylus sexfilis	6 Feeler Threadfin	Polynemidae	CRE-Fishes
Labridae	Wrasse	Labridae	CRE-Fishes
Anampses	Chiseltooth Wrasse	Labridae	CRE-Fishes
caeruleopunctatus			
Anampses meleagrides	Yellowtail Wrasse	Labridae	CRE-Fishes
Anampses twistii	Yellowbreasted Wrasse	Labridae	CRE-Fishes
Bodianus anthioides	Lyretail Hogfish	Labridae	CRE-Fishes
Bodianus axillaris	Axilspot Hogfish	Labridae	CRE-Fishes
Oxycheilinus arenatus	Arenatus Wrasse	Labridae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Oxycheilinus celebicus	Celebes Wrasse	Labridae	CRE-Fishes
Cheilinus chlorourus	Floral Wrasse	Labridae	CRE-Fishes
Cheilinus fasciatus	Red-Breasted Wrasse	Labridae	CRE-Fishes
Cheilinus oxycephalus	Snooty Wrasse	Labridae	CRE-Fishes
Oxycheilinus unifasciatus	Ringtail Wrasse	Labridae	CRE-Fishes
Cheilinus trilobatus	Tripletail Wrasse	Labridae	CRE-Fishes
Cheilinus undulatus	Napoleon wrasse	Labridae	CRE-Fishes
Oxycheilinus orientalis	Oriental Wrasse	Labridae	CRE-Fishes
Cheilio inermis	Cigar Wrasse	Labridae	CRE-Fishes
Choerodon anchorago	Yel-Cheeked Tuskfish	Labridae	CRE-Fishes
Cirrhilabrus katherinae	Wrasse	Labridae	CRE-Fishes
Coris aygula	Clown Coris	Labridae	CRE-Fishes
Coris gaimard	Yellowtailed Coris	Labridae	CRE-Fishes
Cymolutes praetextatus	Knife Razorfish	Labridae	CRE-Fishes
Epibulus insidiator	Sling-Jawed Wrasse	Labridae	CRE-Fishes
Gomphosus varius	Bird Wrasse	Labridae	CRE-Fishes
Halichoeres biocellatus	2-Spotted Wrasse	Labridae	CRE-Fishes
Halichoeres zeylonicus	Wrasse	Labridae	CRE-Fishes
Halichoeres hortulanus	Checkerboard Wrasse	Labridae	CRE-Fishes
Halichoeres	Weedy Surge Wrasse	Labridae	CRE-Fishes
margaritaceus			
Halichoeres marginatus	Dusky Wrasse	Labridae	CRE-Fishes
Halichoeres	Black-Ear Wrasse	Labridae	CRE-Fishes
melasmapomus			
Halichoeres trimaculatus	3-Spot Wrasse	Labridae	CRE-Fishes
Hemigymnus fasciatus	Striped Clown Wrasse	Labridae	CRE-Fishes
Hemigymnus melapterus	1/2 &1/2 Wrasse	Labridae	CRE-Fishes
Hologymnosus doliatus	Ring Wrasse	Labridae	CRE-Fishes
Labrichthys unilineatus	Tubelip Wrasse	Labridae	CRE-Fishes
Labroides bicolor	Bicolor Cleaner Wrasse	Labridae	CRE-Fishes
Labroides pectoralis	Black-Spot Cleaner	Labridae	CRE-Fishes
	Wrasse		
Labropsis micronesica	Micronesian Wrasse	Labridae	CRE-Fishes
Labropsis xanthonota	Wedge-Tailed Wrasse	Labridae	CRE-Fishes
Macropharyngodon	Leopard Wrasse	Labridae	CRE-Fishes
meleagris		· · · · ·	
Novaculoides	Seagrass Razorfish	Labridae	CKE-Fishes
Macrolepiaotus Novaculiehthys	Dragon Wrago	Labridaa	CDE Eichag
taeniourus	Diagon wrasse		UKE-FISHES
Rodianus tanvokidus	Hogfish	Lahridae	CRF-Fishes
Douidinus idnyokidus	Inglish	Laviluat	

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Pseudocheilinus evanidus	Striated Wrasse	Labridae	CRE-Fishes
Pseudocheilinus	6 Line Wrasse	Labridae	CRE-Fishes
hexataenia	Q Line Warses	T . 1 . • 1	ODE Elster
Pseudocheilinus	8 Line Wrasse	Labridae	CRE-Fisnes
Decioidenia Psaudochoilinus	1 Line Wrasse	Labridaa	CPE Fishes
r seudochellinus tetrataenia	4 Line wiasse	Labridae	CKE-Fishes
Pseudojuloides atavai	Polynesian Wrasse	Labridae	CRE-Fishes
Pseudojuloides cerasinus	Smalltail Wrasse	Labridae	CRE-Fishes
Ptoragogus cryptus	Wrasse	Labridae Labridae	CRE_Fishes
Stathoiulis handanansis	Pod Shoulder Wrasse	Labridae	CRE-Fishes
Stethojulis dunaunensis	Wrasse	Labridae	CRE-Fishes
Stethojulis strigiventer	wrasse		CRE-Fisnes
Inalassoma	2 Tone wrasse	Labridae	CRE-Fisnes
Thalassoma trilobatum	Ymas Wrassa	Labridaa	CPE Fishes
Thalassoma handwiaka	Allids Widsse	Labridae	CRE-Fishes
Thalassoma hutasaans	O Dai wiasse	Labridae	CRE-FISHES
Thatassoma lutescens	Sunset wrasse		CRE-Fisnes
Thalassoma purpureum	Surge Wrasse		CRE-Fishes
Thalassoma	5-Stripe Surge Wrasse	Labridae	CRE-Fishes
	D1 Creat Drugmer Wingage	Tabada .	CDE Eistes
wetmorella nigropinnata	BI-Spot Pygmy wrasse		CRE-Fisnes
Iniistius pavo	Blue Razortish		CRE-Fisnes
Iniistius aneitensis	Yellowblotch Razorfish	Labridae	CRE-Fishes
Labridae	Jansen'S Wrasse	Labridae	CRE-Fishes
Oxycheilinus digramma	Bandcheek Wrasse	Labridae	CRE-Fishes
Oxycheilinus bimaculatus	2-Spot Wrasse	Labridae	CRE-Fishes
Polylepion russelli	Wrasse	Labridae	CRE-Fishes
Labroides dimidiatus	Bluestreak Cleaner	Labridae	CRE-Fishes
	Wrasse		
Pseudodax moluccanus	Chiseltooth Wrasse	Labridae	CRE-Fishes
Anampses melanurus	Wrasse	Labridae	CRE-Fishes
Bodianus diana	Diana'S Hogfish	Labridae	CRE-Fishes
Bodianus loxozonus	Blackfin Hogfish	Labridae	CRE-Fishes
Bodianus mesothorax	Mesothorax Hogfish	Labridae	CRE-Fishes
Cirrhilabrus cyanopleura	Wrasse	Labridae	CRE-Fishes
Cirrhilabrus exquisitus	Exquisite Wrasse	Labridae	CRE-Fishes
Cirrhilabrus luteovittatus	Yellowband Wrasse	Labridae	CRE-Fishes
Coris batuensis	Dapple Coris	Labridae	CRE-Fishes
Epibulus sp	Sling-Jawed Wrasse	Labridae	CRE-Fishes
Halichoeres chloropterus	Drab Wrasse	Labridae	CRE-Fishes
Halichoeres chrysus	Canary Wrasse	Labridae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
TT 1, 1 1	D' (1117	Name	
Halichoeres melanurus	Pinstriped Wrasse		CRE-Fishes
Halichoeres richmondi	Richmond'S Wrasse		CRE-Fishes
Halichoeres scapularis	Zigzag Wrasse	Labridae	CRE-Fishes
Halichoeres sp.	Wrasse	Labridae	CRE-Fishes
Labropsis alleni	Allen'S Wrasse	Labridae	CRE-Fishes
Macropharyngodon	Negros Wrasse	Labridae	CRE-Fishes
Pseudocheilinus sp	Line Wrasse	Labridae	CRE-Fishes
Pseudocoris vamashiroi	Yamashiro'S Wrasse	Labridae	CRE-Fishes
Thalassoma lunare	Crescent Wrasse	Labridae	CRE-Fishes
Rodianus himaculatus	2-Spot Slender Hogfish	Labridae Labridae	CRE_Fishes
Wetmorella albofasciata	Wh_Barred Pygmy	Labridae	CRE-Fishes
	Wrasse	Labinac	CICL-115hc5
Xiphocheilus sp	Wrasse	Labridae	CRE-Fishes
Cymolutes torquatus	Finescale Razorfish	Labridae	CRE-Fishes
Paracheilinus bellae	Wrasse	Labridae	CRE-Fishes
Paracheilinus sp	Wrasse	Labridae	CRE-Fishes
Pseudocheilinops ataenia	Wrasse	Labridae	CRE-Fishes
Pteragogus guttatus	Wrasse	Labridae	CRE-Fishes
Anampses geographicus	Geographic Wrasse	Labridae	CRE-Fishes
Halichoeres prosopeion	Wrasse	Labridae	CRE-Fishes
Stethojulis trilineata	Wrasse	Labridae	CRE-Fishes
Diproctacanthus	Wandering Cleaner	Labridae	CRE-Fishes
xanthurus	Wrasse		
Iniistius celebicus	Celebe'S Razorfish	Labridae	CRE-Fishes
Iniistius geisha	Razorfish	Labridae	CRE-Fishes
Hologymnosus annulatus	Wrasse	Labridae	CRE-Fishes
Halichoeres leucurus	Wrasse	Labridae	CRE-Fishes
Cirrhilabrus balteatus	Wrasse	Labridae	CRE-Fishes
Cirrhilabrus johnsoni	Johnson'S Wrasse	Labridae	CRE-Fishes
Cirrhilabrus	Rhomboid Wrasse	Labridae	CRE-Fishes
rhomboidalis			
Iniistius melanopus	Yellowpatch Razorfish	Labridae	CRE-Fishes
Cirrhilabrus	Red-Margined Wrasse	Labridae	CRE-Fishes
rubrimarginatus			
Halichoeres ornatissimus	Ornate Wrasse	Labridae	CRE-Fishes
Halichoeres	Shwartz Wrasse	Labridae	CRE-Fishes
papilionaceus			
Choerodon fasciatus	Harlequin Tuskfish	Labridae	CRE-Fishes
Coris dorsomacula	Pale-Barred Coris	Labridae	CRE-Fishes
Halichoeres	Seagrass Wrasse	Labridae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
papilionaceus			
Pseudocoris	Rust-Banded Wrasse	Labridae	CRE-Fishes
aurantiofasciata			
Pseudocoris heteroptera	Torpedo Wrasse	Labridae	CRE-Fishes
Halichoeres nigrescens	Wrasse	Labridae	CRE-Fishes
Scaridae	Parrotfishes	Scaridae	CRE-Fishes
Bolbometopon muricatum	Bumphead parrotfish	Scaridae	CRE-Fishes
Calotomus carolinus	Bucktooth Parrotfish	Scaridae	CRE-Fishes
Cetoscarus bicolor	Bicolor Parrotfish	Scaridae	CRE-Fishes
Hipposcarus longiceps	Parrotfish	Scaridae	CRE-Fishes
Leptoscarus vaigiensis	Seagrass Parrotfish	Scaridae	CRE-Fishes
Scarus altipinnis	Fil-Finned Parrotfish	Scaridae	CRE-Fishes
Scarus frenatus	Vermiculate Parrotfish	Scaridae	CRE-Fishes
Chlorurus frontalis	Tan-Faced Parrotfish	Scaridae	CRE-Fishes
Scarus ghobban	Blue-Barred Parrotfish	Scaridae	CRE-Fishes
Chlorurus microrhinos	Steephead Parrotfish	Scaridae	CRE-Fishes
Scarus globiceps	Parrotfish	Scaridae	CRE-Fishes
Scarus oviceps	Parrotfish	Scaridae	CRE-Fishes
Scarus psittacus	Pale Nose Parrotfish	Scaridae	CRE-Fishes
Scarus rubroviolaceus	Parrotfish	Scaridae	CRE-Fishes
Scarus schlegeli	Chevron Parrotfish	Scaridae	CRE-Fishes
Chlorurus sordidus	Bullethead Parrotfish	Scaridae	CRE-Fishes
Scarus forsteni	Tricolor Parrotfish	Scaridae	CRE-Fishes
Scarus sp.	Parrotfish	Scaridae	CRE-Fishes
Scarus festivus	Parrotfish	Scaridae	CRE-Fishes
Calotomus spinidens	Spineytooth Parrotfish	Scaridae	CRE-Fishes
Scarus xanthopleura	Parrotfish	Scaridae	CRE-Fishes
Chlorurus bleekeri	Parrotfish	Scaridae	CRE-Fishes
Scarus dimidiatus	Parrotfish	Scaridae	CRE-Fishes
Scarus hypselopterus	Java Parrotfish	Scaridae	CRE-Fishes
Scarus prasiognathos	Greenthroat Parrotfish	Scaridae	CRE-Fishes
Scarus quoyi	Parrotfish	Scaridae	CRE-Fishes
Scarus rivulatus	Parrotfish	Siganidae	CRE-Fishes
Scarus spinus	Parrotfish	Scaridae	CRE-Fishes
Scarus chameleon	Parrotfish	Scaridae	CRE-Fishes
Chlorurus bowersi	Parrotfish	Scaridae	CRE-Fishes
Scarus niger	Black Parrotfish	Scaridae	CRE-Fishes
Chlorurus sp.	Parrotfish	Scaridae	CRE-Fishes
Scarus flavipectoralis	Yellowfin Parrotfish	Scaridae	CRE-Fishes
Scarus tricolor	Tricolor Parrotfish	Scaridae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Opistognathidae	Jawfishes	Opistognathidae	CRE-Fishes
Opistognathus sp	Variable Jawfish	Opistognathidae	CRE-Fishes
Opistognathus sp	Wass' Jawfish	Opistognathidae	CRE-Fishes
Champsodontidae	Gapers	Champsodontidae	CRE-Fishes
Champsodon vorax	Gaper	Champsodontidae	CRE-Fishes
Percophidae	Duckbills	Percophidae	CRE-Fishes
Chrionema squamiceps	Duckbill	Percophidae	CRE-Fishes
Pinguipedidae	Sand Perch	Pinguipedidae	CRE-Fishes
Parapercis millepunctata	Blk-Dotted Sandperch	Pinguipedidae	CRE-Fishes
Parapercis clathrata	Latticed Sandperch	Pinguipedidae	CRE-Fishes
Parapercis cylindrica	Cylindrical Sandperch	Pinguipedidae	CRE-Fishes
Parapercis xanthozona	Blotchlip Sandperch	Pinguipedidae	CRE-Fishes
Parapercis multiplicata	Red-Barred Sandperch	Pinguipedidae	CRE-Fishes
Parapercis tetracantha	Black-Banded	Pinguipedidae	CRE-Fishes
	Sandperch		
Trichonotidae	Sand Divers	Trichonotidae	CRE-Fishes
Trichonotus sp	Micronesian Sand-	Trichonotidae	CRE-Fishes
0 111	Diver		
Creedudae	Sand Burrowers	Creediidae	CRE-Fishes
Chalixodytes tauensis	Saddled Sandburrower	Creediidae	CRE-Fishes
Limnichthys nitidus	Sand Burrower	Creediidae	CRE-Fishes
Uranoscopidae	Stargazers	Uranoscopidae	CRE-Fishes
Uranoscopus sp	Stargazer	Uranoscopidae	CRE-Fishes
Tripterygiidae	Triplefins	Tripterygiidae	CRE-Fishes
Enneapterygius	Triplefin	Tripterygiidae	CRE-Fishes
hemimelas	Tuiule fin	T	CDE Eister
Enneapterygius minutus	Triplefin	Tripterygiidae	CRE-Fishes
Enneapterygius nanus	Triplefin	Tripterygiidae	CRE-Fishes
Helcogramma capidata	Triplefin	Tripterygiidae	CRE-Fishes
Helcogramma chica	Triplefin	Tripterygiidae	CRE-Fishes
Helcogramma hudsoni	Triplefin	Tripterygiidae	CRE-Fishes
Norfolkia brachylepis	Triplefin	Tripterygiidae	CRE-Fishes
Ceratobregma helenae	Triplefin	Tripterygiidae	CRE-Fishes
Ucla xenogrammus	Longjaw Triplefin	Tripterygiidae	CRE-Fishes
Blenniidae	Blennies	Blenniidae	CRE-Fishes
Alticus arnoldorum	Blenny	Blenniidae	CRE-Fishes
Aspidontus taeniatus	Cleaner Mimic	Blenniidae	CRE-Fishes
Cirripectes fuscoguttatus	Spotted Blenny	Blenniidae	CRE-Fishes
Cirripectes quagga	Squiggly Blenny	Blenniidae	CRE-Fishes
Cirripectes polyzona	Barred Blenny	Blenniidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Cirripectes variolosus	Red-Speckled Blenny	Blenniidae	CRE-Fishes
Ecsenius bicolor	Blenny	Blenniidae	CRE-Fishes
Ecsenius opsifrontalis	Blenny	Blenniidae	CRE-Fishes
Enchelyurus kraussii	Blenny	Blenniidae	CRE-Fishes
Entomacrodus decussatus	Blenny	Blenniidae	CRE-Fishes
Entomacrodus	Blenny	Blenniidae	CRE-Fishes
niuafoouensis			
Entomacrodus sealei	Blenny	Blenniidae	CRE-Fishes
Entomacrodus striatus	Blenny	Blenniidae	CRE-Fishes
Entomacrodus	Blenny	Blenniidae	CRE-Fishes
thalassinus			
Exallias brevis	Blenny	Blenniidae	CRE-Fishes
Blenniella chrysospilos	Blenny	Blenniidae	CRE-Fishes
Blenniella cyanostigma	Blenny	Blenniidae	CRE-Fishes
Istiblennius edentulus	Blenny	Blenniidae	CRE-Fishes
Istiblennius lineatus	Blenny	Blenniidae	CRE-Fishes
Blenniella	Blenny	Blenniidae	CRE-Fishes
periophthalmus			
Blenniella gibbifrons	Blenny	Blenniidae	CRE-Fishes
Meiacanthus atrodorsalis	Poison-Fang Blenny	Blenniidae	CRE-Fishes
Omobranchus	Blenny	Blenniidae	CRE-Fishes
rotundiceps			
Parenchelyurus hepburni	Blenny	Blenniidae	CRE-Fishes
Petroscirtes mitratus	Blenny	Blenniidae	CRE-Fishes
Petroscirtes xestus	Blenny	Blenniidae	CRE-Fishes
Plagiotremus laudandus	Blenny	Blenniidae	CRE-Fishes
Plagiotremus	Red Sabbertooth	Blenniidae	CRE-Fishes
rhinorhynchos	Blenny		
Plagiotremus	Blenny	Blenniidae	CRE-Fishes
tapeinosoma			
Praealticus poptae	Blenny	Blenniidae	CRE-Fishes
Praealticus natalis	Blenny	Blenniidae	CRE-Fishes
Meiacanthus anema	Poison-Fang Blenny	Blenniidae	CRE-Fishes
Rhabdoblennius	Blenny	Blenniidae	CRE-Fishes
rhabdotrachelus			
Rhabdoblennius snowi	Blenny	Blenniidae	CRE-Fishes
Salarias fasciatus	Spotted Rock Blenny	Blenniidae	CRE-Fishes
Stanulus seychellensis	Blenny	Blenniidae	CRE-Fishes
Xiphasia matsubarai	Blenny	Blenniidae	CRE-Fishes
Blenniella paula	Bluedash rockskipper	Blenniidae	CRE-Fishes
Atrosalarias holomelas	Blenny	blenniidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Entomacrodus stellifer	Blenny	Blenniidae	CRE-Fishes
Cirripectes castaneus	Chestnut Blenny	Blenniidae	CRE-Fishes
Cirripectes perustus	Blenny	Blenniidae	CRE-Fishes
Cirripectes stigmaticus	Red-Streaked Blenny	Blenniidae	CRE-Fishes
Ecsenius sellifer	Blenny	Blenniidae	CRE-Fishes
Ecsenius yaeyamaensis	Blenny	Blenniidae	CRE-Fishes
Entomacrodus	Blenny	Blenniidae	CRE-Fishes
caudofasciatus			
Entomacrodus	Blenny	Blenniidae	CRE-Fishes
cymatobiotus			
Glyptoparus delicatulus	Blenny	Blenniidae	CRE-Fishes
Rhabdoblennius nitidus	Barred-chin blenny	Blenniidae	CRE-Fishes
Litobranchus fowleri	Blenny	Blenniidae	CRE-Fishes
Nannosalarias nativitatis	Combtooth Blenny	Blenniidae	CRE-Fishes
Salarias alboguttatus	White-spotted blenny	Blenniidae	CRE-Fishes
Salarias segmentatus	Blenny	Blenniidae	CRE-Fishes
Salarias luctuosus	Blenny	Blenniidae	CRE-Fishes
Omox biporos	Blenny	Blenniidae	CRE-Fishes
Aspidontus dussumieri	Lance Blenny	Blenniidae	CRE-Fishes
Meiacanthus ditrema	1-Stripe Poison-Fang	Blenniidae	CRE-Fishes
	Blenny		
Meiacanthus grammistes	Striped Poison-Fang	Blenniidae	CRE-Fishes
	Blenny		
Petroscirtes breviceps	Blenny	Blenniidae	CRE-Fishes
Petroscirtes thepassii	Blenny	Blenniidae	CRE-Fishes
Petroscirtes variabilis	Blenny	Blenniidae	CRE-Fishes
Omobranchus obliquus	Mangrove Blenny	Blenniidae	CRE-Fishes
Ecsenius bandanus	Banda Clown Blenny	Blenniidae	CRE-Fishes
Istiblennius bellus	Beautiful Rockskipper	Blenniidae	CRE-Fishes
Istiblennius dussumieri	Streaky Rockskipper	Blenniidae	CRE-Fishes
Blenniella interrupta	Interrupted	Blenniidae	CRE-Fishes
	Rockskipper		
Schindleriidae	Schindleriid	Schindleriidae	CRE-Fishes
Schindleria praematura	Schindleriid	Schindleriidae	CRE-Fishes
Eleotridae	Sleepers	Eleotridae	CRE-Fishes
Eleotris fusca	Gudgeon	Eleotridae	CRE-Fishes
Butis amboinensis	Gudgeon	Eleotridae	CRE-Fishes
Calumia godeffroyi	Sleeper	Eleotridae	CRE-Fishes
Giuris margaritacea	Sleeper	Eleotridae	CRE-Fishes
Ophiocara porocephala	Sleeper	Eleotridae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
Orvelectris lineolata	Sleeper	Name Flootridoo	CPE Fishes
	Cohy		CRE-Fishes
	Goby	Gobiidae	CRE-FISHES
Amblyeleotris fasciata	Goby	Gobiidae	CRE-Fishes
Amblyeleotris fontanesii	Goby	Gobiidae	CRE-Fishes
Amblyeleotris guttata	Goby	Gobiidae	CRE-Fishes
Amblyeleotris periophthalma	Prawn Goby	Gobiidae	CRE-Fishes
Amblyeleotris steinitzi	Brown-Barred Goby	Gobiidae	CRE-Fishes
Amblyeleotris randalli	Goby	Gobiidae	CRE-Fishes
Amblyeleotris wheeleri	Bluespotted Goby	Gobiidae	CRE-Fishes
Cryptocentroides insignis	Goby	Gobiidae	CRE-Fishes
Cryptocentrus cinctus	Goby	Gobiidae	CRE-Fishes
Cryptocentrus	Goby	Gobiidae	CRE-Fishes
strigilliceps			
Cryptocentrus	Goby	Gobiidae	CRE-Fishes
caeruleomaculatus			
Cryptocentrus	Goby	Gobiidae	CRE-Fishes
leptocephalus			
Cryptocentrus	Goby	Gobiidae	CRE-Fishes
strigilliceps			
Cryptocentrus sp.	Goby	Gobiidae	CRE-Fishes
Ctenogobiops	Goby	Gobiidae	CRE-Fishes
aurocingulus			
Ctenogobiops feroculus	Goby	Gobiidae	CRE-Fishes
Ctenogobiops	Goby	Gobiidae	CRE-Fishes
pomastictus			
Ctenogobiops tangaroai	Long-Finned Prwn	Gobiidae	CRE-Fishes
	Goby	Cabilda	CDE Eishes
Lonna gracinosa	Goby	Gobiidae	CRE-Fishes
Mahidolia mystacina	Goby	Gobiidae	CRE-Fishes
Vanderhorstia ambanoro	Goby	Gobiidae	CRE-Fishes
Vanderhorstia	Goby	Gobiidae	CRE-Fishes
ornatissima	Calar		CDE Elster
Amblygobius aecussatus	Goby	Gobiidae	CRE-Fisnes
Koumansetta hectori	Goby	Gobiidae	CRE-Fishes
Amblygobius nocturnus	Goby	Gobiidae	CRE-Fishes
Amblygobius phalaena	Goby	Gobiidae	CRE-Fishes
Koumansetta rainfordi	Goby	Gobiidae	CRE-Fishes
Oplopomops diacanthus	Goby	Gobiidae	CRE-Fishes
Oplopomus oplopomus	Goby	Gobiidae	CRE-Fishes
Signigobius biocellatus	Goby	Gobiidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
C'11	Calar	Name	CDE Eister
Sunouettea sp	Goby	Goblidae	CRE-Fisnes
Valenciennea muralis	Glass Goby	Gobiidae	CRE-Fishes
Valenciennea puellaris	Goby	Gobiidae	CRE-Fishes
Valenciennea sexguttata	Goby	Gobiidae	CRE-Fishes
Valenciennea strigata	Goby	Gobiidae	CRE-Fishes
Valenciennea sp	Goby	Gobiidae	CRE-Fishes
Gobius bontii	Goby	Gobiidae	CRE-Fishes
Asterropteryx ensifera	Goby	Gobiidae	CRE-Fishes
Asterropteryx	Bluespotted goby	Gobiidae	CRE-Fishes
semipunctata			
Austrolethops wardi	Goby	Gobiidae	CRE-Fishes
Awaous grammepomus	Goby	Gobiidae	CRE-Fishes
Awaous guamensis	Goby	Gobiidae	CRE-Fishes
Bathygobius cocosensis	Goby	Gobiidae	CRE-Fishes
Bathygobius cotticeps	Goby	Gobiidae	CRE-Fishes
Bathygobius fuscus	Goby	Gobiidae	CRE-Fishes
Bryaninops amplus	Goby	Gobiidae	CRE-Fishes
Bryaninops erythrops	Goby	Gobiidae	CRE-Fishes
Bryaninops natans	Goby	Gobiidae	CRE-Fishes
Bryaninops ridens	Goby	Gobiidae	CRE-Fishes
Bryaninops yongei	Goby	Gobiidae	CRE-Fishes
Cabillus tongarevae	Goby	Gobiidae	CRE-Fishes
Callogobius bauchotae	Goby	Gobiidae	CRE-Fishes
Callogobius centrolepis	Goby	Gobiidae	CRE-Fishes
Callogobius hasseltii	Goby	Gobiidae	CRE-Fishes
Callogobius maculipinnis	Goby	Gobiidae	CRE-Fishes
Callogobius okinawae	Goby	Gobiidae	CRE-Fishes
Callogobius plumatus	Goby	Gobiidae	CRE-Fishes
Callogobius sclateri	Goby	Gobiidae	CRE-Fishes
Callogobius sp.	Goby	Gobiidae	CRE-Fishes
Cristatogobius sp	Goby	Gobiidae	CRE-Fishes
Eviota afelei	Kawakawa	Gobiidae	CRE-Fishes
Eviota albolineata	Herring	Gobiidae	CRE-Fishes
Eviota bifasciata	Goby	Gobiidae	CRE-Fishes
Eviota cometa	Goby	Gobiidae	CRE-Fishes
Eviota distigma	Goby	Gobiidae	CRE-Fishes
Eviota fasciola	Goby	Gobiidae	CRE-Fishes
Eviota herrei	Goby	Gobiidae	CRE-Fishes
Eviota infulata	Goby	Gobiidae	CRE-Fishes
Eviota lachdeberei	Goby	Gobiidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Eviota latifasciata	Goby	Gobiidae	CRE-Fishes
Eviota melasma	Goby	Gobiidae	CRE-Fishes
Eviota nebulosa	Goby	Gobiidae	CRE-Fishes
Eviota pellucida	Goby	Gobiidae	CRE-Fishes
Eviota prasina	Goby	Gobiidae	CRE-Fishes
Eviota prasites	Goby	Gobiidae	CRE-Fishes
Eviota punctulata	Goby	Gobiidae	CRE-Fishes
Eviota queenslandica	Goby	Gobiidae	CRE-Fishes
Eviota sebreei	Goby	Gobiidae	CRE-Fishes
Eviota saipanensis	Goby	Gobiidae	CRE-Fishes
Eviota sigillata	Goby	Gobiidae	CRE-Fishes
Eviota smaragdus	Goby	Gobiidae	CRE-Fishes
Eviota sparsa	Goby	Gobiidae	CRE-Fishes
Eviota storthynx	Goby	Gobiidae	CRE-Fishes
Eviota zonura	Goby	Gobiidae	CRE-Fishes
Eviota sp.	Goby	Gobiidae	CRE-Fishes
Exyrias belissimus	Goby	Gobiidae	CRE-Fishes
Exyrias puntang	Goby	Gobiidae	CRE-Fishes
Fusigobius longispinus	Goby	Gobiidae	CRE-Fishes
Fusigobius neophytus	Goby	Gobiidae	CRE-Fishes
Fusigobius signipinnis	Goby	Gobiidae	CRE-Fishes
Gladiogobius ensifer	Goby	Gobiidae	CRE-Fishes
Psammogobius	Goby	Gobiidae	CRE-Fishes
biocellatus			
Glossogobius celebius	Goby	Gobiidae	CRE-Fishes
Glossogobius giuris	Goby	Gobiidae	CRE-Fishes
Gnatholepis anjerensis	Goby	Gobiidae	CRE-Fishes
Gnatholepis cauerensis	Goby	Gobiidae	CRE-Fishes
Gnatholepis sp	Goby	Gobiidae	CRE-Fishes
Gobiodon albofasciatus	Goby	Gobiidae	CRE-Fishes
Gobiodon citrinus	Goby	Gobiidae	CRE-Fishes
Gnatholepis cauerensis	Eyebar goby	Gobiidae	CRE-Fishes
Gobiodon okinawae	Goby	Gobiidae	CRE-Fishes
Gobiodon	Goby	Gobiidae	CRE-Fishes
quinquestrigatus			
Gobiodon rivulatus	Goby	Gobiidae	CRE-Fishes
Gobiopsis bravoi	Goby	Gobiidae	CRE-Fishes
Hetereleotris sp	Goby	Gobiidae	CRE-Fishes
Istigobius decoratus	Goby	Gobiidae	CRE-Fishes
Istigobius ornatus	Goby	Gobiidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
Istiachius rigilius	Goby	Cobiidae	CRF_Fishes
Istigobius rigilius	Goby	Cobiidae	CRE-Fishes
Kelloggella cardinalis	Goby	Cobiidae	CRE-Fishes
Kelloggella	Goby	Cobiidae	CRE-Fishes
auindecimfasciata	CODy	Gunuae	CIXE-PISICS
Macrodontogobius	Goby	Gobiidae	CRE-Fishes
wilburi			
Mugilogobius tagala	Goby	Gobiidae	CRE-Fishes
?	Goby	Gobiidae	CRE-Fishes
Opua nephodes	Goby	Gobiidae	CRE-Fishes
Oxyurichthys guibei	Goby	Gobiidae	CRE-Fishes
Oxyurichthys microlepis	Goby	Gobiidae	CRE-Fishes
Oxyurichthys ophthalmonema	Goby	Gobiidae	CRE-Fishes
Oxyurichthys papuensis	Goby	Gobiidae	CRE-Fishes
Oxyurichthys tentacularis	Goby	Gobiidae	CRE-Fishes
Pandaka sp	Goby	Gobiidae	CRE-Fishes
Palutrus pruinosa	Goby	Gobiidae	CRE-Fishes
Palutrus reticularis	Goby	Gobiidae	CRE-Fishes
Paragobiodon	Goby	Gobiidae	CRE-Fishes
echinocephalus			
Paragobiodon	Goby	Gobiidae	CRE-Fishes
lacunicolus	<u> </u>	~	
Paragobiodon	Goby	Gobiidae	CRE-Fishes
melanosomus	Cabri	Cabiidaa	CDE Eistes
Paragobioaon modestus	Goby	Gobiidae	CRE-Fisnes
Paragobioaon	Goby	Godiidae	CRE-Fisnes
Pariophthalmus	Goby	Cobiidae	CRF_Fishes
argentilineatus	Goby	Gundae	CILL-1 ISINGS
Periophthalmus kalolo	Goby	Gobiidae	CRE-Fishes
Pleurosicya bilobata	Goby	Gobiidae	CRE-Fishes
Pleurosicya muscarum	Goby	Gobiidae	CRE-Fishes
Priolepis cincta	Goby	Gobiidae	CRE-Fishes
Priolepis farcimen	Goby	Gobiidae	CRE-Fishes
Priolepis inhaca	Goby	Gobiidae	CRE-Fishes
Priolepis semidoliata	Goby	Gobiidae	CRE-Fishes
Pseudogobius javanicus	Goby	Gobiidae	CRE-Fishes
Redigobius bikolanus	Goby	Gobiidae	CRE-Fishes
Redigobius bikolanus	Goby	Gobiidae	CRE-Fishes
Redigobius tambujon	Goby	Gobiidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Smilosicyopus leprurus	Goby	Gobiidae	CRE-Fishes
Sicyopus zosterophorus	Goby	Gobiidae	CRE-Fishes
Sicyopus sp	Goby	Gobiidae	CRE-Fishes
Sicyopterus	Goby	Gobiidae	CRE-Fishes
macrostetholepis			
Sicyopterus micrurus	Goby	Gobiidae	CRE-Fishes
Sicyopterus sp	Goby	Gobiidae	CRE-Fishes
Stenogobius genivittatus	Goby	Gobiidae	CRE-Fishes
Stenogobius sp	Goby	Gobiidae	CRE-Fishes
Stiphodon elegans	Goby	Gobiidae	CRE-Fishes
Stiphodon sp	Goby	Gobiidae	CRE-Fishes
Taeniurops meyeni	Giant Reef Ray	Dasyatidae	CRE-Fishes
Trimma caesiura	Goby	Gobiidae	CRE-Fishes
Trimma naudei	Goby	Gobiidae	CRE-Fishes
Trimma okinawae	Goby	Gobiidae	CRE-Fishes
Trimma taylori	Goby	Gobiidae	CRE-Fishes
Trimma tevegae	Goby	Gobiidae	CRE-Fishes
Trimma sp.	Goby	Gobiidae	CRE-Fishes
Trimma sp.	Goby	Gobiidae	CRE-Fishes
Trimmatom eviotops	Goby	Gobiidae	CRE-Fishes
Tomiyamichthys	Goby	Gobiidae	CRE-Fishes
lanceolatus			
Amblygobius sp	Goby	Gobiidae	CRE-Fishes
Valenciennea parva	Parva Goby	Gobiidae	CRE-Fishes
Pleurosicya carolinensis	Caroline Ghost Goby	Gobiidae	CRE-Fishes
Pleurosicya coerulea	Blue Coral Ghost Goby	Gobiidae	CRE-Fishes
Pleurosicya fringilla	Fringed Ghost Goby	Gobiidae	CRE-Fishes
Pleurosicya micheli	Michael'S Ghost Goby	Gobiidae	CRE-Fishes
Pleurosicya mossambica	Common Ghost Goby	Gobiidae	CRE-Fishes
Pleurosicya plicata	Plicata Ghost Goby	Gobiidae	CRE-Fishes
Amblygobius linki	Link's goby	Gobiidae	CRE-Fishes
Kraemeriidae	Sand Darts	Kraemeriidae	CRE-Fishes
Kraemeria bryani	Sand Dart	Kraemeriidae	CRE-Fishes
Kraemeria cunicularia	Sand Dart	Kraemeriidae	CRE-Fishes
Kraemeria samoensis	Sand Dart	Kraemeriidae	CRE-Fishes
Xenisthmidae	Flathead Wriggler	Xenisthmidae	CRE-Fishes
Allomicrodesmus	Dorothea'S Wriggler	Xenisthmidae	CRE-Fishes
dorotheae			
Xenisthmus polyzonatus	Barred Wriggler	Xenisthmidae	CRE-Fishes
Xenisthmus sp.	Wriggler	Xenisthmidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
1 <i>x</i> 1 1 1	XX7 (* 1	Name	
Microdesmidae	Wormfish	Microdesmidae	CRE-Fishes
Gunnellichthys	Wormfish	Microdesmidae	CRE-Fishes
monostigma Cumpelliehthys	Onostrino Wormfish	Miaradagmidaa	CPE Eichog
pleurotaenia	Onesurpe wommish	whereuesinuae	CKE-Fishes
Nemateleotris helfrichi	Helfrichs' Dartfish	Microdesmidae	CRE-Fishes
Nemateleotris magnifica	Fire Dartfish	Microdesmidae	CRE-Fishes
Ptereleotris evides	Blackfin Dartfish	Microdesmidae	CRE-Fishes
Ptereleotris heteroptera	Spot-Tail Dartfish	Microdesmidae	CRE-Fishes
Ptereleotris microlepis	Pearly Dartfish	Microdesmidae	CRE-Fishes
Ptereleotris zebra	Zebra Dartfish	Microdesmidae	CRE-Fishes
Ptereleotris lineopinnis	Dartfish	Microdesmidae	CRE-Fishes
Nemateleotris decora	Decorated Dartfish	Microdesmidae	CRE-Fishes
Gunnellichthys	Wormfish	Microdesmidae	CRE-Fishes
viridescens			
Paragunnellichthys	Seychelle'S Wormfish	Microdesmidae	CRE-Fishes
seychellensis			
Parioglossus formosus	Beautiful Hover Goby	Microdesmidae	CRE-Fishes
Parioglossus lineatus	Lined Hover Goby	Microdesmidae	CRE-Fishes
Parioglossus nudus	Naked Hover Goby	Microdesmidae	CRE-Fishes
Parioglossus palustris	Palustris Hover Goby	Microdesmidae	CRE-Fishes
Parioglossus rainfordi	Rainford'S Hover Goby	Microdesmidae	CRE-Fishes
Parioglossus raoi	Rao'S Hover Goby	Microdesmidae	CRE-Fishes
Parioglossus taeniatus	Taeniatus Hover Goby	Microdesmidae	CRE-Fishes
Parioglossus verticalis	Vertical Hover Goby	Microdesmidae	CRE-Fishes
Ptereleotris hanae	Filament Dartfish	Microdesmidae	CRE-Fishes
Acanthuridae	Surgeonfishes/tangs	Acanthuridae	CRE-Fishes
Acanthurus achilles	Achilles tang	Acanthuridae	CRE-Fishes
Acanthurus dussumieri	Eye-striped surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus nigricans	Whitecheek	Acanthuridae	CRE-Fishes
	surgeonfish		
Acanthurus guttatus	Whitespotted	Acanthuridae	CRE-Fishes
A	surgeonfish	A	CDE Elster
Acanthurus leucopareius	Patenpped surgeoniisn	Acanthuridae	CRE-Fishes
Acantnurus lineatus	Diue-Danued surgeonfish	Acantnuridae	CKE-FISHES
Acanthurus blochii	Ringtail surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus nioricauda	Blackstreak	Acanthuridae	CRE-Fishes
	surgeonfish		
Acanthurus nigrofuscus	Brown surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus nigroris	Bluelined surgeonfish	Acanthuridae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Acanthurus olivaceus	Orangeband	Acanthuridae	CRE-Fishes
	surgeonfish		
Acanthurus pyroferus	Mimic surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus thompsoni	Thomson's surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus triostegus	Convict tang	Acanthuridae	CRE-Fishes
Acanthurus xanthopterus	Yellowfin surgeonfish	Acanthuridae	CRE-Fishes
Ctenochaetus binotatus	Twospot bristletooth	Acanthuridae	CRE-Fishes
Ctenochaetus hawaiiensis	Black surgeonfish	Acanthuridae	CRE-Fishes
Ctenochaetus striatus	Striped bristletooth	Acanthuridae	CRE-Fishes
Naso annulatus	Whitemargin unicornfish	Acanthuridae	CRE-Fishes
Naso brachycentron	Humpback unicornfish	Acanthuridae	CRE-Fishes
Naso brevirostris	Spotted unicornfish	Acanthuridae	CRE-Fishes
Naso hexacanthus	Black tongue unicornfish	Acanthuridae	CRE-Fishes
Naso lituratus	Orangespine unicornfish	Acanthuridae	CRE-Fishes
Naso tuberosus	Humpnose unicornish	Acanthuridae	CRE-Fishes
Naso unicornis	Bluespine unicornfish	Acanthuridae	CRE-Fishes
Naso vlamingii	Bignose unicornfish	Acanthuridae	CRE-Fishes
Paracanthurus hepatus	Hepatus tang	Acanthuridae	CRE-Fishes
Zebrasoma flavescens	Yellow tang	Acanthuridae	CRE-Fishes
Zebrasoma scopas	Brown tang	Acanthuridae	CRE-Fishes
Zebrasoma velifer	Pacific sailfin tang	Acanthuridae	CRE-Fishes
Ctenochaetus strigosus	Yellow-eyed bristletooth	Acanthuridae	CRE-Fishes
Acanthurus bariene	Bariene's surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus mata	Elongate surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus chronixis	Chronixis surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus maculiceps	White-Freckled surgeonfish	Acanthuridae	CRE-Fishes
Ctenochaetus marginatus	Blue-spotted Bristletooth	Acanthuridae	CRE-Fishes
Ctenochaetus tominiensis	Tomini's surgeonfish	Acanthuridae	CRE-Fishes
Naso lopezi	Naso tang	Acanthuridae	CRE-Fishes
Acanthurus leucocheilus	Whitebar surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus nubilus	Surgeonfish	Acanthuridae	CRE-Fishes
Naso caesius	Gray unicornfish	Acanthuridae	CRE-Fishes
Naso thynnoides	Barred unicornfish	Acanthuridae	CRE-Fishes
Zanclidae	Moorish Idols	Zanclidae	CRE-Fishes
Zanclus cornutus	Moorish Idol	Zanclidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
Sigavidao	Pabbitfish	Name	CPE Fishes
Siganus graenteus	Kauuttisii Eark Tail Pabbitfish	Siganidae	CRE-Fishes
Sigunus di genieus	FOIK-Tall Kaudullish	Siganidae	CRE-Fishes
Siganus aoliatus	Rabbitfish	Siganidae	CRE-Fisnes
Siganus fuscescens	Fuscescens Rabbitfish	Siganidae	CRE-Fishes
Siganus punctatus	Gold-Spotted Rabbitfish	Siganidae	CRE-Fishes
Siganus spinus	Scribbled Rabbitfish	Siganidae	CRE-Fishes
Siganus vermiculatus	Vermiculated Rabbitfish	Siganidae	CRE-Fishes
Siganus canaliculatus	Seagrass Rabbitfish	Siganidae	CRE-Fishes
Siganus corallinus	Coral Rabbitfish	Siganidae	CRE-Fishes
Siganus guttatus	Golden Rabbitfish	Siganidae	CRE-Fishes
Siganus puellus	Masked Rabbitfish	Siganidae	CRE-Fishes
Siganus lineatus	Lined Rabbitfish	Siganidae	CRE-Fishes
Siganus vulpinus	Rabbitfish	Siganidae	CRE-Fishes
Siganus canaliculatus	White-Spotted Rabbitfish	Siganidae	CRE-Fishes
Siganus punctatissimus	Peppered Rabbitfish	Siganidae	CRE-Fishes
Siganus randalli	Randal'S Rabbitfish	Siganidae	CRE-Fishes
Siganus argenteus	Manahak (Forktail Rabbitfish)	Siganidae	CRE-Fishes
Siganus argenteus	Manahak	Siganidae	CRE-Fishes
Grammatorcynus bilineatus	2-Lined Mackerel	Scombridae	CRE-Fishes
Rastrelliger kanagurta	Striped Mackerel	Scombridae	CRE-Fishes
Scomberomorus commerson	Narrow-Barred King Mackerel	Scombridae	CRE-Fishes
Rastrelliger brachysoma	Mackerel	Scombridae	CRE-Fishes
Istiophoridae	Billfishes	Istiophoridae	CRE-Fishes
Nomeidae	Man-Of-War Fish	Nomeidae	CRE-Fishes
Psenes cyanophrys	Freckeled Driftfish	Nomeidae	CRE-Fishes
Gobiesocidae	Clingfish	Gobiesocidae	CRE-Fishes
Lepadichthys caritus	Clingfish	Gobiesocidae	CRE-Fishes
Lepadichthys minor	Clingfish	Gobiesocidae	CRE-Fishes
Liobranchia stria	Clingfish	Gobiesocidae	CRE-Fishes
Callionymidae	Dragonets	Callionymidae	CRE-Fishes
Callionymus enneactis	Mangrove Dragonet	Callionymidae	CRE-Fishes
Callionymus	Simple-Spined	Callionymidae	CRE-Fishes
simplicicornis	Dragonet		
Diplogrammus	Dragonet	Callionymidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
aaramansis		Name	
gorumensis Synchiropus circularis	Cirleled Dragonet	Collionymideo	CPE Fishes
Neosynchiropus circularis	Occllated Dragonet	Callionymidae	CRE-Fishes
Sweekingpus gelendidus	Mondorin Fish	Callionymidae	CRE-Fishes
Synchiropus spienaiaus			CRE-FISILES
Andora tentaculata	Dragonet		CRE-Fishes
Callionymus delicatulus	Delicate Dragonet		CRE-Fishes
Syngnathidae	Pipefish, Seahorse	Syngnathidae	CRE-Fishes
Synchiropus sp.	Dragonet	Callionymidae	CRE-Fishes
Synchiropus laddi	Ladd'S Dragonet	Callionymidae	CRE-Fishes
Bothidae	Flounders	Bothidae	CRE-Fishes
Bothus mancus	Peacock Flounder	Bothidae	CRE-Fishes
Bothus pantherinus	Leopard Flounder	Bothidae	CRE-Fishes
Asterorhombus	Flounder	Bothidae	CRE-Fishes
intermedius			
Engyprosopon sp.	Flounder	Bothidae	CRE-Fishes
Asterorhombus	Intermediate Flounder	Bothidae	CRE-Fishes
intermedius			
Samaridae	Righteye Flounders	Samaridae	CRE-Fishes
Samariscus triocellatus	3 Spot Flounder	Samaridae	CRE-Fishes
Soleidae	Soles	Soleidae	CRE-Fishes
Soleichthys heterorhinos	Banded Sole	Soleidae	CRE-Fishes
Aseraggodes	Black Spotted Sole	Soleidae	CRE-Fishes
melanostictus			
Aseraggodes xenicus	Smith'S Sole	Soleidae	CRE-Fishes
Aseraggodes whitakeri	Whitaker'S Sole	Soleidae	CRE-Fishes
Pardachirus pavoninus	Peacock Sole	Soleidae	CRE-Fishes
Triacanthodidae	Spikefishes	Triacanthodidae	CRE-Fishes
Halimochirurgus alcocki	Spikefish	Triacanthodidae	CRE-Fishes
Balistidae	Triggerfishes	Balistidae	CRE-Fishes
Balistapus undulatus	Undulate Triggerfish	Balistidae	CRE-Fishes
Balistoides conspicillum	Clown Triggerfish	Balistidae	CRE-Fishes
Balistoides viridescens	Titan Triggerfish	Balistidae	CRE-Fishes
Canthidermis maculata	Rough Triggerfish	Balistidae	CRE-Fishes
Melichthys niger	Black Triggerfish	Balistidae	CRE-Fishes
Melichthys vidua	Pinktail Triggerfish	Balistidae	CRE-Fishes
Odonus niger	Redtooth Triggerfish	Balistidae	CRE-Fishes
Pseudobalistes	Ymargin Triggerfish	Balistidae	CRE-Fishes
flavimarginatus			
Pseudobalistes fuscus	Blue Triggerfish	Balistidae	CRE-Fishes
Rhinecanthus aculeatus	Picassofish	Balistidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Rhinecanthus rectangulus	Wedge Picassofish	Balistidae	CRE-Fishes
Sufflamen bursa	Scythe Triggerfish	Balistidae	CRE-Fishes
Sufflamen chrysopterum	Halfmoon Triggerfish	Balistidae	CRE-Fishes
Sufflamen fraenatum	Bridle Triggerfish	Balistidae	CRE-Fishes
Xanthichthys	Guilded Triggerfish	Balistidae	CRE-Fishes
auromarginatus			
Xanthichthys	Bluelined Triggerfish	Balistidae	CRE-Fishes
caeruleolineatus			
Xenobalistes	Triggerfish	Balistidae	CRE-Fishes
tumidipectoris			
Abalistes stellatus	Starry Triggerfish	Balistidae	CRE-Fishes
Rhinecanthus verrucosus	Blackbelly Picassofish	Balistidae	CRE-Fishes
Xanthichthys mento	Crosshatch Triggerfish	Balistidae	CRE-Fishes
Monacanthidae	Filefishes	Monacanthidae	CRE-Fishes
Aluterus scriptus	Filefish	Monacanthidae	CRE-Fishes
Amanses scopas	Filefish	Monacanthidae	CRE-Fishes
Cantherhines dumerilii	Gray Leatherjacket	Monacanthidae	CRE-Fishes
Cantherhines pardalis	Honeycomb Filefish	Monacanthidae	CRE-Fishes
Oxymonacanthus	Longnose Filefish	Monacanthidae	CRE-Fishes
longirostris			
Paraluteres prionurus	Blacksaddle Mimic	Monacanthidae	CRE-Fishes
Pervagor janthinosoma	Blackbar Filefish	Monacanthidae	CRE-Fishes
Aluterus monoceros	Unicorn Filefish	Monacanthidae	CRE-Fishes
Brachaluteres taylori	Taylor'S Inflator Filefish	Monacanthidae	CRE-Fishes
Paramonacanthus	Filefish	Monacanthidae	CRE-Fishes
cryptodon			
Paramonacanthus	Filefish	Monacanthidae	CRE-Fishes
japonicus			
Pervagor aspricaudus	Orangetail Filefish	Monacanthidae	CRE-Fishes
Pervagor	Blackheaded Filefish	Monacanthidae	CRE-Fishes
melanocephalus			
Pervagor nigrolineatus	Blacklined Filefish	Monacanthidae	CRE-Fishes
Cantherhines	Specktacled Filefish	Monacanthidae	CRE-Fishes
fronticinctus			
Acreichthys tomentosus	Seagrass Filefish	Monacanthidae	CRE-Fishes
Pervagor alternans	Yelloweye Filefish	Monacanthidae	CRE-Fishes
Pseudalutarius	Rhino Leatherjacket	Monacanthidae	CRE-Fishes
nasicornis			
Rudarius minutus	Minute Filefish	Monacanthidae	CRE-Fishes
Ostraciidae	Boxfish, Cowfish	Ostraciidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Lactoria cornuta	Longhorn Cowfish	Ostraciidae	CRE-Fishes
Lactoria diaphana	Spiny Cowfish	Ostraciidae	CRE-Fishes
Ostracion cubicus	Cube Trunkfish	Ostraciidae	CRE-Fishes
Ostracion meleagris	Spotted Trunkfish	Ostraciidae	CRE-Fishes
Lactoria fornasini	Thornback Cowfish	Ostraciidae	CRE-Fishes
Ostracion solorensis	Reticulate Boxfish	Ostraciidae	CRE-Fishes
Rhynchostracion nasus	Smallnose Boxfish	Ostraciidae	CRE-Fishes
Ostracion rhinorhynchos	Largenose Boxfish	Ostraciidae	CRE-Fishes
Triodontidae	Tripletooth Puffers	Triodontidae	CRE-Fishes
Triodon macropterus	3 Tooth Puffer	Triodontidae	CRE-Fishes
Triodon macropterus	3 Tooth Puffer	Triodontidae	CRE-Fishes
Arothron hispidus	Brown Puffer	Tetraodontidae	CRE-Fishes
Arothron manilensis	Puffer	Tetraodontidae	CRE-Fishes
Arothron mappa	Puffer	Tetraodontidae	CRE-Fishes
Arothron meleagris	White-Spot Puffer	Tetraodontidae	CRE-Fishes
Arothron nigropunctatus	Black-Spotted Puffer	Tetraodontidae	CRE-Fishes
Arothron stellatus	Star Puffer	Tetraodontidae	CRE-Fishes
Canthigaster	Puffer	Tetraodontidae	CRE-Fishes
amboinensis			
Canthigaster bennetti	Puffer	Tetraodontidae	CRE-Fishes
Canthigaster coronata	Sharp Back Puffer	Tetraodontidae	CRE-Fishes
Canthigaster epilampra	Puffer	Tetraodontidae	CRE-Fishes
Canthigaster	Puffer	Tetraodontidae	CRE-Fishes
janthinoptera			
Canthigaster leoparda	Puffer	Tetraodontidae	CRE-Fishes
Canthigaster solandri	Sharpnose Puffer	Tetraodontidae	CRE-Fishes
Canthigaster valentini	Saddle Shpns Puffer	Tetraodontidae	CRE-Fishes
Canthigaster compressa	Puffer	Tetraodontidae	CRE-Fishes
Amblyrhynchotes	Evileye Puffer	Tetraodontidae	CRE-Fishes
honckenii			
Lagocephalus	Oceanic Blaasop	Tetraodontidae	CRE-Fishes
lagocephalus			
Lagocephalus sceleratus	Silverstripe Blaasop	Tetraodontidae	CRE-Fishes
Canthigaster ocellicincta	Circle-Barred Toby	Tetraodontidae	CRE-Fishes
Canthigaster papua	Papuan Toby	Tetraodontidae	CRE-Fishes
Diodontidae	Porcupinefish	Diodontidae	CRE-Fishes
Diodon hystrix	Porcupinefish	Diodontidae	CRE-Fishes
Diodon liturosus	Porcupinefish	Diodontidae	CRE-Fishes
Diodon eydouxii	Porcupinefish	Diodontidae	CRE-Fishes
Molidae	Ocean Sunfishes	Molidae	CRE-Fishes

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Masturus lanceolatus	Sharptail Sunfish	Molidae	CRE-Fishes
Ranzania laevis	Trunkfish	Molidae	CRE-Fishes
Synchiropus morrisoni	Morrison'S Dragonet	Callionymidae	CRE-Fishes
#N/A	ASSORTED BOTTOMFISH	#N/A	CRE-Fishes
#N/A	SHALLOW BOTTOMFISH	#N/A	CRE-Fishes
?	Shallow Snappers	Lutjanidae	CRE-Fishes
#N/A	ASSORTED REEF FISH	#N/A	CRE-Fishes
Class Mollusca	Mollusca	Multiple families	CRE-Invertebrates
Order Archaeogastropoda	Diotocardia	Multiple families	CRE-Invertebrates
Trochidae	Top Shells	Trochidae	CRE-Invertebrates
Trochus niloticus	Top Shell	Tegulidae	CRE-Invertebrates
Tectus pyramis	Pyramid Top	Trochidae	CRE-Invertebrates
Trochus radiatus	Radiate Top	Trochidae	CRE-Invertebrates
Turbinidae	Turban Shell	Turbinidae	CRE-Invertebrates
Turbo setosus	Rough Turbin	Turbinidae	CRE-Invertebrates
Turbo argyrostomus	Silver-Mouth Turbin	Turbinidae	CRE-Invertebrates
Turbo petholatus	Tapestry Turbin	Turbinidae	CRE-Invertebrates
Neritidae	Nerites	Neritidae	CRE-Invertebrates
Nerita plicata	Plicate Nerite	Neritidae	CRE-Invertebrates
Nerita polita	Polished Nerite	Neritidae	CRE-Invertebrates
Nerita albicilla	Ox-Palate Nerite	Neritidae	CRE-Invertebrates
Nerita signata	Reticulate Nerite	Neritidae	CRE-Invertebrates
Littorinidae	Periwinkles	Littorinidae	CRE-Invertebrates
Littoraria undulata	Undulate Periwinkle	Littorinidae	CRE-Invertebrates
Littorina scabra	Scabra Periwinkle	Littorinidae	CRE-Invertebrates
Cerithiidae	Turret, Worm-Shells	Cerithiidae	CRE-Invertebrates
Cerithium nodulosum	Giant Knobbed Certh	Cerithiidae	CRE-Invertebrates
Clypeomorus bifasciata	Morus Certh	Cerithiidae	CRE-Invertebrates
Rhinoclavis aspera	Rough Vertigus	Cerithiidae	CRE-Invertebrates
Cerithium columna	Column Certh	Cerithiidae	CRE-Invertebrates
Rhinoclavis sinensis	Obelisk Vertigus	Cerithiidae	CRE-Invertebrates
Strombidae	True Conchs	Strombidae	CRE-Invertebrates
Strombus mutabilis	Mutable Conch	Strombidae	CRE-Invertebrates
Strombus luhuanus	Red-Lip Conch	Strombidae	CRE-Invertebrates
Strombus gibberulus	Gibbose Conch	Strombidae	CRE-Invertebrates
Strombus microurceus	Micro Conch	Strombidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Strombus dentatus	Samar Conch	Strombidae	CRE-Invertebrates
Strombus fragilis	Fragile Conch	Strombidae	CRE-Invertebrates
Strombus lentiginosus	Silver-Lip Conch	Strombidae	CRE-Invertebrates
Terebellum terebellum	Terebellum Conch	Strombidae	CRE-Invertebrates
Strombus haemastoma	Lavender-Mouth	Strombidae	CRE-Invertebrates
	Conch		
Strombus sinuatus	Laciniate Conch	Strombidae	CRE-Invertebrates
Sinustrombus taurus	Bull Conch	Strombidae	CRE-Invertebrates
Strombus plicatus	Pretty Conch	Strombidae	CRE-Invertebrates
Lambis sp.	Spider Conch	Strombidae	CRE-Invertebrates
Lambis lambis	Common Spider Conch	Strombidae	CRE-Invertebrates
Harpago chiragra	Chiragra Spider Conch	Strombidae	CRE-Invertebrates
Lambis truncata	Giant Spider Conch	Strombidae	CRE-Invertebrates
Lambis scorpius	Scorpio Conch	Strombidae	CRE-Invertebrates
Lambis crocata	Ormouth Spider Conch	Strombidae	CRE-Invertebrates
Cypraeidae	Cowrys	Cypraeidae	CRE-Invertebrates
Cypraea moneta	Money Cowry	Cypraeidae	CRE-Invertebrates
Cypraea caputserpentis	Snake'S Head Cowry	Cypraeidae	CRE-Invertebrates
Monetaria annulus	Gold-Ringer Cowry	Cypraeidae	CRE-Invertebrates
Lyncina lynx	Lynx Cowry	Cypraeidae	CRE-Invertebrates
Cypraea mappa	Map Cowry	Cypraeidae	CRE-Invertebrates
Cypraea eglantina	Eglantine Cowry	Cypraeidae	CRE-Invertebrates
Cypraea isabella	Isabelle Cowry	Cypraeidae	CRE-Invertebrates
Cypraea erosa	Eroded Cowry	Cypraeidae	CRE-Invertebrates
Cypraea poraria	Porus Cowry	Cypraeidae	CRE-Invertebrates
Cypraea carneola	Carnelian Cowry	Cypraeidae	CRE-Invertebrates
Cypraea helvola	Honey Cowry	Cypraeidae	CRE-Invertebrates
Staphylaea staphylaea	Grape Cowry	Cypraeidae	CRE-Invertebrates
Cypraea cylindrica	Sowerby'S Cowry	Cypraeidae	CRE-Invertebrates
Cypraea punctata	Punctata Cowry	Cypraeidae	CRE-Invertebrates
Cribrarula cribraria	Sieve Cowry	Cypraeidae	CRE-Invertebrates
Mauritia maculifera	Reticulated Cowry	Cypraeidae	CRE-Invertebrates
Mauritia depressa	Depressed Cowry	Cypraeidae	CRE-Invertebrates
Cypraea tigris	Tiger Cowry	Cypraeidae	CRE-Invertebrates
Lyncina vitellus	Pacific Deer Cowry	Cypraeidae	CRE-Invertebrates
Talparia talpa	Mole Cowry	Cypraeidae	CRE-Invertebrates
Cypraea clandestina	Clandestine Cowry	Cypraeidae	CRE-Invertebrates
Staphylaea nucleus	Nuclear Cowry	Cypraeidae	CRE-Invertebrates
Cypraea microdon	Microdon Cowry	Cypraeidae	CRE-Invertebrates
Cypraea stolida	Stolid Cowry	Cypraeidae	CRE-Invertebrates
Correct Scientific Name	Common Name	Correct Family	FEP GROUP
---	-----------------------	----------------	--------------------------
, i i i i i i i i i i i i i i i i i i i		Name	
Cypraea mauritiana	Humpback Cowry	Cypraeidae	CRE-Invertebrates
Cypraea arabica	Arabian Cowry	Cypraeidae	CRE-Invertebrates
Cypraea ventriculus	Ventral Cowry	Cypraeidae	CRE-Invertebrates
Cypraea teres	Teres Cowry	Cypraeidae	CRE-Invertebrates
Cypraea scurra	Jester Cowry	Cypraeidae	CRE-Invertebrates
Cypraea hirundo	Swallow Cowry	Cypraeidae	CRE-Invertebrates
Cypraea labrolineata	Lined-Lip Cowry	Cypraeidae	CRE-Invertebrates
Pustularia cicercula	Chick-Pea Cowry	Cypraeidae	CRE-Invertebrates
Pustularia bistrinotata	Bistro Cowry	Cypraeidae	CRE-Invertebrates
Cypraea argus	Eyed Cowry	Cypraeidae	CRE-Invertebrates
Cypraea ziczac	Undulating Cowry	Cypraeidae	CRE-Invertebrates
Cypraea globulus	Globular Cowry	Cypraeidae	CRE-Invertebrates
Cypraea mariae	Marie'S Cowry	Cypraeidae	CRE-Invertebrates
Cypraea beckii	Beck'S Cowry	Cypraeidae	CRE-Invertebrates
Lyncina aurantium	Golden Cowry	Cypraeidae	CRE-Invertebrates
Cypraea chinensis	Chinese Cowry	Cypraeidae	CRE-Invertebrates
Cypraea limacina	Limacina Cowry	Cypraeidae	CRE-Invertebrates
Palmadusta humphreyii	Humphrey'S Cowry	Cypraeidae	CRE-Invertebrates
Cryptocypraea dillwyni	Dillwyn'S Cowry	Cypraeidae	CRE-Invertebrates
Ovulidae	Egg Shells	Ovulidae	CRE-Invertebrates
Calpurnus verrucosus	Umbilicate Ovula	Ovulidae	CRE-Invertebrates
Prionovolva fruticum	Fruit Ovula	Ovulidae	CRE-Invertebrates
Ovula ovum	Common Egg Cowry	Ovulidae	CRE-Invertebrates
Naticidae	Moon Shells	Naticidae	CRE-Invertebrates
Mammilla mammata	Breast-Shaped Moon	Naticidae	CRE-Invertebrates
Polinices tumidus	Pear-Shaped Moon	Naticidae	CRE-Invertebrates
Tonnidae	Tun Shells	Tonnidae	CRE-Invertebrates
Tonna perdix	Partridge Tun	Tonnidae	CRE-Invertebrates
Malea pomum	Apple Tun	Tonnidae	CRE-Invertebrates
Cassidae	Helmet Shells	Cassidae	CRE-Invertebrates
Cassis cornuta	Horned Helmet	Cassidae	CRE-Invertebrates
Casmaria erinaceus	Vibex Bonnet	Cassidae	CRE-Invertebrates
Casmaria ponderosa	Heavy Bonnet	Cassidae	CRE-Invertebrates
Ranellidae	Tritons	Ranellidae	CRE-Invertebrates
Monoplex aquatilis	Aquatile Hairy Triton	Ranellidae	CRE-Invertebrates
Monoplex nicobaricus	Nicobar Hairy Triton	Ranellidae	CRE-Invertebrates
Monoplex gemmatus	Jeweled Triton	Ranellidae	CRE-Invertebrates
Gutturnium muricinum	Short-Neck Triton	Ranellidae	CRE-Invertebrates
Septa rubecula	Red Triton	Ranellidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Cymatium hepaticum	Liver Triton	Ranellidae	CRE-Invertebrates
Gyrineum roseum	Rosy Gyre Triton	Ranellidae	CRE-Invertebrates
Distorsio anus	Anal Triton	Personidae	CRE-Invertebrates
Monoplex pilearis	Common Hairy Triton	Ranellidae	CRE-Invertebrates
Gyrineum pusillum	Purple Gyre Triton	Ranellidae	CRE-Invertebrates
Charonia tritonis	Triton Trumpet	Ranellidae	CRE-Invertebrates
Cymatium lotorium	Black-Spotted Triton	Ranellidae	CRE-Invertebrates
Ranularia pyrum	Pear Triton	Ranellidae	CRE-Invertebrates
Gelagna succincta	Clandestine Triton	Ranellidae	CRE-Invertebrates
Monoplex vespaceus	Dwarf Hairy Triton	Ranellidae	CRE-Invertebrates
Turritriton labiosus	Wide-Lipped Triton	Ranellidae	CRE-Invertebrates
Bursidae	Frog Shells	Bursidae	CRE-Invertebrates
Bursa bufonia	Warty Frog Shell	Bursidae	CRE-Invertebrates
Bursa cruentata	Blood-Stain Frog Shell	Bursidae	CRE-Invertebrates
Bursa granularis	Granulate Frog Shell	Bursidae	CRE-Invertebrates
Bursa mammata	Udder Frog Shell	Bursidae	CRE-Invertebrates
Bursa rhodostoma	Wine-Mth Frog Shell	Bursidae	CRE-Invertebrates
Bursa bubo	Giant Frog Shell	Bursidae	CRE-Invertebrates
Bursa rubeta	Ruddy Frog Shell	Bursidae	CRE-Invertebrates
Tutufa (Tutufa) bufo	Red-Mth Frog Shell	Bursidae	CRE-Invertebrates
Bursa lamarcki	Lamarck'S Frog Shell	Bursidae	CRE-Invertebrates
Muricidae	Murex Shells	Muricidae	CRE-Invertebrates
Chicoreus brunneus	Burnt Murex	Muricidae	CRE-Invertebrates
Vitularia miliaris	Spotted Vitularia	Muricidae	CRE-Invertebrates
Chicoreus triquetra	Triquetra Murex	Muricidae	CRE-Invertebrates
Naquetia trigonula	Tragonula Murex	Muricidae	CRE-Invertebrates
Chicomurex laciniatus	Lacy Murex	Muricidae	CRE-Invertebrates
Homalocantha anatomica	Anatomical Murex	Muricidae	CRE-Invertebrates
Pterynotus laqueatus	Fluted Murex	Muricidae	CRE-Invertebrates
Pterynotus tripterus	3-Winged Murex	Muricidae	CRE-Invertebrates
Marchia martinetana	Fenestrate Murex	Muricidae	CRE-Invertebrates
Pterynotus elongatus	Club Murex	Muricidae	CRE-Invertebrates
Marchia bipinnata	Pinnacle Murex	Muricidae	CRE-Invertebrates
Chicoreus ramosus	Ramose Murex	Muricidae	CRE-Invertebrates
?	Bionic Rock Shell	Muricidae	CRE-Invertebrates
Menathais tuberosa	Tuberose Rock Shell	Muricidae	CRE-Invertebrates
Mancinella armigera	Belligerent Rock Shell	Muricidae	CRE-Invertebrates
Purpura persica	Perssian Purpura	Muricidae	CRE-Invertebrates
Nassa francolina	Francolina Jopas	Muricidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
Duun a ni sinua	Drieltlay Desifie Drype	Name Muricidae	CDE Inventohnotos
Drupa ricinus	Plickley Pacific Drupe	Muricidae	CRE-Invertebrates
Drupa morum	Purple Pacific Drupe		CRE-Invertebrates
Drupa grossularia	Digitate Pacific Drupe	Muricidae	CRE-Invertebrates
Drupa elegans	Elegant Pacific Drupe	Muricidae	CRE-Invertebrates
Drupa rubusidaeus	Strawberry Drupe	Muricidae	CRE-Invertebrates
Drupa clathrata	Clatherate Drupe	Muricidae	CRE-Invertebrates
Subfamily	Coral Shells	Muricidae	CRE-Invertebrates
Coralliophilinae	Violat Corol Shall	Municidae	CDE Invertabratas
Coralliophila violacea	Freded Corol Shell	Muricidae	CRE-Invertebrates
	Contrat Shell	Muricidae	CRE-Invertebrates
Quoyuta maareporarum	Quoy S Corai Shell	Muricidae	CRE-Invertebrates
Kapa rapa	Rapa Shall	Muricidae	CRE-Invertebrates
Buccinidae	Goblets,Dwarf Tritons	Buccinidae	CRE-Invertebrates
Cantharus undosus	Waved Goblet	Buccinidae	CRE-Invertebrates
Cantharus fumosus	Smoky Goblet	Buccinidae	CRE-Invertebrates
Clivipollia pulchra	Beautiful Goblet	Buccinidae	CRE-Invertebrates
Pollia fragaria	Strawberry Goblet	Buccinidae	CRE-Invertebrates
Colubraria nitidula	Shiny Dwarf Triton	Colubrariidae	CRE-Invertebrates
Colubraria tortuosa	Twisted Dwarf Triton	Colubrariidae	CRE-Invertebrates
Colubraria muricata	Maculated Dwarf Triton	Colubrariidae	CRE-Invertebrates
Fasciolariidae	Spindles	Fasciolariidae	CRE-Invertebrates
Latirus nodatus	Nobby Spindle	Fasciolariidae	CRE-Invertebrates
Leucozonia rudis	Spindle	Fasciolariidae	CRE-Invertebrates
Nassariidae	Nassa Mud Snails	Nassariidae	CRE-Invertebrates
Nassarius papillosus	Pimpled Basket	Nassariidae	CRE-Invertebrates
Nassarius margaritiferus	Margarite Nassa	Nassariidae	CRE-Invertebrates
Nassarius graniferus	Granulated Nassa	Nassariidae	CRE-Invertebrates
Olividae	Olive Shells	Olividae	CRE-Invertebrates
Oliva annulata	Amethyst Olive	Olividae	CRE-Invertebrates
Oliva miniacea	Red-Mth Olive	Olividae	CRE-Invertebrates
Oliva carneola	Carnelian Olive	Olividae	CRE-Invertebrates
Oliva paxillus	Peg Olive	Olividae	CRE-Invertebrates
Turbinellidae	Vases	Turbinellidae	CRE-Invertebrates
Vasum turbinellum	Common Pacific Vase	Turbinellidae	CRE-Invertebrates
Vasum ceramicum	Ceramic Vase	Turbinellidae	CRE-Invertebrates
Mitridae	Miter Shells	Mitridae	CRE-Invertebrates
Mitra stictica	Pontifical Miter	Mitridae	CRE-Invertebrates
Mitra mitra	Episcopal Miter	Mitridae	CRE-Invertebrates
Imbricaria olivaeformis	Olive-Shaped Miter	Mitridae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Imbricaria punctata	Bonelike Miter	Mitridae	CRE-Invertebrates
Imbricaria conularis	Cone-Like Miter	Mitridae	CRE-Invertebrates
Mitra ferruginea	Rusty Miter	Mitridae	CRE-Invertebrates
Vexillum unifasciatum	Decorated Miter	Costellariidae	CRE-Invertebrates
Domiporta filaris	File Miter	Mitridae	CRE-Invertebrates
Vexillum exasperatum	Roughened Miter	Costellariidae	CRE-Invertebrates
Vexillum crocatum	Saffron Miter	Costellariidae	CRE-Invertebrates
Vexillum semifasciatum	Half-Banded Miter	Costellariidae	CRE-Invertebrates
Vexillum cancellarioides	Cancellaria Miter	Costellariidae	CRE-Invertebrates
Mitra papalis	Papal Miter	Mitridae	CRE-Invertebrates
Neocancilla clathrus	Clathrus Miter	Mitridae	CRE-Invertebrates
Vexillum patriarchale	Patriarchal Miter	Costellariidae	CRE-Invertebrates
Mitra tuberosa	Bumpy Miter	Costellariidae	CRE-Invertebrates
Mitra bernhardina	Bernhard'S Miter	Mitridae	CRE-Invertebrates
Mitra incompta	Tesselate Miter	Mitridae	CRE-Invertebrates
Mitra coffea	Coffee Miter	Mitridae	CRE-Invertebrates
Mitra cardinalis	Cardinal Miter	Mitridae	CRE-Invertebrates
Mitra fraga	Strawberry Miter	Mitridae	CRE-Invertebrates
Mitra cucumerina	Kettle Miter	Mitridae	CRE-Invertebrates
Mitra chrysalis	Chrysalis Miter	Mitridae	CRE-Invertebrates
Mitra rubritincta	Red-Painted Miter	Mitridae	CRE-Invertebrates
Mitra chrysostoma	Gold-Mth Miter	Mitridae	CRE-Invertebrates
Domiporta granatina	Flecked Miter	Mitridae	CRE-Invertebrates
Mitra imperialis	Imperial Miter	Mitridae	CRE-Invertebrates
Mitra contracta	Contracted Miter	Mitridae	CRE-Invertebrates
Mitra acuminata	Acuminate Miter	Mitridae	CRE-Invertebrates
Sabricola casta	Chaste Miter	Mitridae	CRE-Invertebrates
Neocancilla papilio	Butterfly Miter	Mitridae	CRE-Invertebrates
Pterygia scabricula	Rough Miter	Mitridae	CRE-Invertebrates
Vexillum speciosum	Specious Miter	Costellariidae	CRE-Invertebrates
Pterygia crenulata	Crenulate Miter	Mitridae	CRE-Invertebrates
Pterygia nucea	Nut Miter	Mitridae	CRE-Invertebrates
Vexillum turben	Turbin Miter	Costellariidae	CRE-Invertebrates
Pterygia fenestrata	Fenestrate Miter	Mitridae	CRE-Invertebrates
Harpidae	Harp Shells	Harpidae	CRE-Invertebrates
Harpa amouretta	Little Love Harp	Harpidae	CRE-Invertebrates
Harpa major	Major Harp	Harpidae	CRE-Invertebrates
Harpa harpa	True Harp	Harpidae	CRE-Invertebrates
Conidae	Cone Shells	Conidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Conus pulicarius	Flea-Bite Cone	Conidae	CRE-Invertebrates
Conus coronatus	Crowned Cone	Conidae	CRE-Invertebrates
Conus ebraeus	Hebrew Cone	Conidae	CRE-Invertebrates
Conus chaldaeus	Chaldean Cone	Conidae	CRE-Invertebrates
Conus sponsalis	Marriage Cone	Conidae	CRE-Invertebrates
Conus distans	Distantly-Lined Cone	Conidae	CRE-Invertebrates
Conus flavidus	Pacific Yellow Cone	Conidae	CRE-Invertebrates
Conus frigidus	Frigid Cone	Conidae	CRE-Invertebrates
Conus lividus	Livid Cone	Conidae	CRE-Invertebrates
Conus miles	Soldier Cone	Conidae	CRE-Invertebrates
Conus rattus	Rat Cone	Conidae	CRE-Invertebrates
Conus catus	Cat Cone	Conidae	CRE-Invertebrates
Conus sanguinolentus	Blood-Stained Cone	Conidae	CRE-Invertebrates
Conus muriculatus	Muricate Cone	Conidae	CRE-Invertebrates
Conus moreleti	Morelet'S Cone	Conidae	CRE-Invertebrates
Conus eburneus	Ivory Cone	Conidae	CRE-Invertebrates
Conus litteratus	Lettered Cone	Conidae	CRE-Invertebrates
Conus leopardus	Leopard Cone	Conidae	CRE-Invertebrates
Conus miliaris	1000-Spot Cone	Conidae	CRE-Invertebrates
Conus musicus	Music Cone	Conidae	CRE-Invertebrates
Conus vexillum	Flag Cone	Conidae	CRE-Invertebrates
Conus capitaneus	Captain Cone	Conidae	CRE-Invertebrates
Conus mustelinus	Weasel Cone	Conidae	CRE-Invertebrates
Conus tessulatus	Checkered Cone	Conidae	CRE-Invertebrates
Conus generalis	General Cone	Conidae	CRE-Invertebrates
Conus imperialis	Imperial Cone	Conidae	CRE-Invertebrates
Conus bandanus	Banded Marble-Cone	Conidae	CRE-Invertebrates
Conus striatus	Striated Cone	Conidae	CRE-Invertebrates
Conus vitulinus	Calf Cone	Conidae	CRE-Invertebrates
Conus striatellus	Striatellus Cone	Conidae	CRE-Invertebrates
Conus litoglyphus	Lithography Cone	Conidae	CRE-Invertebrates
Conus arenatus	Sand-Dusted Cone	Conidae	CRE-Invertebrates
Conus textile	Textile Cone	Conidae	CRE-Invertebrates
Conus obscurus	Obscure Cone	Conidae	CRE-Invertebrates
Conus glans	Acorn Cone	Conidae	CRE-Invertebrates
Conus terebra	Terebra Cone	Conidae	CRE-Invertebrates
Conus coffeae	Leaden Cone	Conidae	CRE-Invertebrates
Conus luteus	Luteus Cone	Conidae	CRE-Invertebrates
Conus pertusus	Pertusus Cone	Conidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Conus varius	Varius Cone	Conidae	CRE-Invertebrates
Conus geographus	Geography Cone	Conidae	CRE-Invertebrates
Conus tulipa	Tulip Cone	Conidae	CRE-Invertebrates
Conus aulicus	Princely Cone	Conidae	CRE-Invertebrates
Conus legatus	Ambassador Cone	Conidae	CRE-Invertebrates
Conus episcopatus	Episcopus Cone	Conidae	CRE-Invertebrates
Conus magnificus	Dignified Cone	Conidae	CRE-Invertebrates
Conus retifer	Netted Cone	Conidae	CRE-Invertebrates
Conus aureus	Aureus Cone	Conidae	CRE-Invertebrates
Conus auricomus	Gold-Leaf Cone	Conidae	CRE-Invertebrates
Conus cylindraceus	Cylindrical Cone	Conidae	CRE-Invertebrates
Conus bullatus	Bubble Cone	Conidae	CRE-Invertebrates
Conus daucus	Comma Cone	Conidae	CRE-Invertebrates
Terebridae	Auger Shells	Terebridae	CRE-Invertebrates
Terebra maculata	Marlinspike Auger	Terebridae	CRE-Invertebrates
Terebra dimidiata	Dimidiate Auger	Terebridae	CRE-Invertebrates
Terebra subulata	Subulate Auger	Terebridae	CRE-Invertebrates
Terebra crenulata	Crenulated Auger	Terebridae	CRE-Invertebrates
Terebra affinis	Similar Auger	Terebridae	CRE-Invertebrates
Terebra nebulosa	Cloud Auger	Terebridae	CRE-Invertebrates
Terebra babylonia	Babylonian Auger	Terebridae	CRE-Invertebrates
Hastula penicillata	Pencil Auger	Terebridae	CRE-Invertebrates
Hastula lanceata	Lance Auger	Terebridae	CRE-Invertebrates
Terebra cerethina	Certhlike Auger	Terebridae	CRE-Invertebrates
Terebra funiculata	Funnel Auger	Terebridae	CRE-Invertebrates
Terebra undulata	Undulate Auger	Terebridae	CRE-Invertebrates
Terebra guttata	Spotted Auger	Terebridae	CRE-Invertebrates
Terebra felina	Tiger Auger	Terebridae	CRE-Invertebrates
Terebra chlorata	Short Auger	Terebridae	CRE-Invertebrates
Terebra argus	Eyed Auger	Terebridae	CRE-Invertebrates
Terebra areolata	Fly-Spotted Auger	Terebridae	CRE-Invertebrates
Atlantidae	heteropods	Atlantidae	CRE-Invertebrates
Atlanta peronii	Peron'S Sea Butterfly	Atlantidae	CRE-Invertebrates
Janthinidae	Pelagic Snails	Janthinidae	CRE-Invertebrates
Janthina janthina	Janthina Snail	Janthinidae	CRE-Invertebrates
Pyramidellidae	Pyram Shells	Pyramidellidae	CRE-Invertebrates
Pyramidella sulcata	Sulcate Pyram	Pyramidellidae	CRE-Invertebrates
Acteonidae	Bubble Shells,Sea	Acteonidae	CRE-Invertebrates
	Hares		
Milda ventricosa	Ventricose Milda	Pyramidellidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Otopleura auriscati	Cat'S Ear Otopleura	Pyramidellidae	CRE-Invertebrates
Pupa solidula	Solid Pupa	Acteonidae	CRE-Invertebrates
Bullidae	Bubble Shells	Bullidae	CRE-Invertebrates
Bulla ampulla	Ampule Bubble	Bullidae	CRE-Invertebrates
Bullina lineata	Lined Bubble	Bullidae	CRE-Invertebrates
Hydatina physis	Gr-Lined Paber Bubble	Aplustridae	CRE-Invertebrates
Atys naucum	Wh Pacific Atys	Haminoeidae	CRE-Invertebrates
Micromelo undatus	Mini Lined-Bubble	Bullidae	CRE-Invertebrates
Ellobiidae	Melampus Shells	Ellobiidae	CRE-Invertebrates
Melampus luteus	Yellow Melampus	Ellobiidae	CRE-Invertebrates
Chitonidae	Chitons	Chitonidae	CRE-Invertebrates
Acanthopleura spinosa	Spiney Chiton	Chitonidae	CRE-Invertebrates
Arcidae	Ark Shells	Arcidae	CRE-Invertebrates
Arca ventricosa	Ventricose Ark	Arcidae	CRE-Invertebrates
Arca navicularis	Indo-Pacific Ark	Arcidae	CRE-Invertebrates
Anadara antiquata	Antique Ark	Arcidae	CRE-Invertebrates
Barbatia	Almond Ark	Arcidae	CRE-Invertebrates
amygdalumtotsum			
Cavoliniidae	Sea Butterflies	Cavoliniidae	CRE-Invertebrates
Cavolinia globulosa	Sea Butterfly	Cavoliniidae	CRE-Invertebrates
Cavolinia tridentata	3-Toothed Cavoline	Cavoliniidae	CRE-Invertebrates
Cavolinia uncinata	Unicate Cavoline	Cavoliniidae	CRE-Invertebrates
Diacria trispinosa	3-Spined Cavoline	Cavoliniidae	CRE-Invertebrates
Cuvierina columnella	Cigar Pteropod	Cuvierinidae	CRE-Invertebrates
Clio pyramidata	Irregular Urchins	Cliidae	CRE-Invertebrates
Clio cuspidata	Pyramid Clio	Cliidae	CRE-Invertebrates
Superfamily Doridoidea	Dorid Nudibranchs	Dorididae	CRE-Invertebrates
Hexabranchus	Spanish Dancer	Hexabranchidae	CRE-Invertebrates
sanguineus			
Class Bivalvia	Bivalves	Multiple families	CRE-Invertebrates
Mytilidae	Mussels	Mytilidae	CRE-Invertebrates
Septifer bilocularis	Box Mussel	Mytilidae	CRE-Invertebrates
Pinnidae	Pen Shells	Pinnidae	CRE-Invertebrates
Pinna bicolor	Bicolor Pen Shell	Pinnidae	CRE-Invertebrates
Pinna saccata	Baggy Pen Shell	Pinnidae	CRE-Invertebrates
Pteriidae	Pearl Oysters	Pteriidae	CRE-Invertebrates
Pinctada margaritifera	Pearl Oyster	Pteriidae	CRE-Invertebrates
Pteriidae	Tree Oysters	Pteriidae	CRE-Invertebrates
Isognomon ephippium	Saddle Tree Oyster	Pteriidae	CRE-Invertebrates
Pectinidae	Scallops	Pectinidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Laevichlamys squamosa	Squamose Scallop	Pectinidae	CRE-Invertebrates
Excellichlamys	Spectacular Scallop	Pectinidae	CRE-Invertebrates
spectabilis	0 10 0 11		
Laevichlamys cuneata	Cook's Scallop	Pectinidae	CRE-Invertebrates
Gloripallium speciosum	Speciosus Scallop	Pectinidae	CRE-Invertebrates
Semipallium tigris	Tiger Scallop	Pectinidae	CRE-Invertebrates
Mirapecten mirificus	Miraculous Scallop	Pectinidae	CRE-Invertebrates
Ostreidae	True Oysters	Ostreidae	CRE-Invertebrates
Crassostrea mordax	Mangrove Oyster	Ostreidae	CRE-Invertebrates
Crassostrea gigas	Giant Oyster	Ostreidae	CRE-Invertebrates
Spondylidae	Thorny Oysters	Spondylidae	CRE-Invertebrates
Spondylus squamosus	Ducal Thorny Oyster	Spondylidae	CRE-Invertebrates
Limidae	Limas	Limidae	CRE-Invertebrates
Limaria fragilis	Fragile Lima	Limidae	CRE-Invertebrates
Lima vulgaris	Indo-Pac Spiny Lima	Limidae	CRE-Invertebrates
Lucinidae	Lucinas	Lucinidae	CRE-Invertebrates
Codakia punctata	Punctate Lucina	Lucinidae	CRE-Invertebrates
Chamidae	Jewel Boxes	Chamidae	CRE-Invertebrates
Chama lazarus	Lazarus Jewel Box	Chamidae	CRE-Invertebrates
Carditidae	Carditid Clams	Carditidae	CRE-Invertebrates
Cardita variegata	Varitated Cardita	Carditidae	CRE-Invertebrates
Fragum fragum	Pac Strawberry Cockle	Carditidae	CRE-Invertebrates
Trachycardium	Angulate Cockle	Carditidae	CRE-Invertebrates
angulatum			
Subfamily: Tridacninae	Giant Clams	Cardiidae	CRE-Invertebrates
Hippopus hippopus	Giant Clam	Cardiidae	CRE-Invertebrates
Tridacna crocea	Giant Clam	Cardiidae	CRE-Invertebrates
Tridacna derasa	Lagoon Giant Clam	Cardiidae	CRE-Invertebrates
Tridacna gigas	Giant Clam	Cardiidae	CRE-Invertebrates
Tridacna maxima	Common Giant Clam	Cardiidae	CRE-Invertebrates
Tridacna squamosa	Fluted Giant Clam	Cardiidae	CRE-Invertebrates
Tellinidae	Tellin Clams	Tellinidae	CRE-Invertebrates
Asaphis deflorata	Gaudy Sand Clam	Psammobiidae	CRE-Invertebrates
Tellina linguafelis	Cat'S Tongue Tellin	Tellinidae	CRE-Invertebrates
Tellina scobinata	Rasp Tellin	Tellinidae	CRE-Invertebrates
Serratina capsoides	Box-Like Tellin	Tellinidae	CRE-Invertebrates
Tellina remies	Remie'S Tellin	Tellinidae	CRE-Invertebrates
Asaphis violascens	Pacific Sand Clam	Psammobiidae	CRE-Invertebrates
Veneridae	Venus Shells	Veneridae	CRE-Invertebrates
Periglypta reticulata	Reticulate Venus	Veneridae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Periglypta crispata	Crispate Venus	Veneridae	CRE-Invertebrates
Periglypta puerpera	Youthful Venus	Veneridae	CRE-Invertebrates
Lioconcha castrensis	Camp Pitar Venus	Veneridae	CRE-Invertebrates
Lioconcha ornata	Ornate Pitar Venus	Veneridae	CRE-Invertebrates
Lioconcha hieroglyphica	Hieroglyphic Venus	Veneridae	CRE-Invertebrates
Gafrarium tumidum	Tumid Venus	Veneridae	CRE-Invertebrates
Nautilidae	Nautilus	Nautilidae	CRE-Invertebrates
Nautilus pompilius	Chambered Nautilus	Nautilidae	CRE-Invertebrates
Metasepia pfefferi	Flamboyant Cuttlefish	Sepiolidae	CRE-Invertebrates
Sepia sp.	Cuttlefish	Sepiidae	CRE-Invertebrates
Sepia latimanus	Broadclub Cuttlefish	Sepiidae	CRE-Invertebrates
Order Teuthida	Squids	Multiple families	CRE-Invertebrates
Sepioteuthis lessoniana	Bigfin Reef Squid	Loliginidae	CRE-Invertebrates
Octopodidae	Octopus	Octopodidae	CRE-Invertebrates
Octopus sp	Octopus	Octopodidae	CRE-Invertebrates
Octopus teuthoides	Elongate Octopus	Octopodidae	CRE-Invertebrates
Octopus sp	Pelagic Octopus	Opisthoteuthidae	CRE-Invertebrates
Octopus sp	Long-Armed Octopus	Octopodidae	CRE-Invertebrates
Octopus luteus	Red Octopus	Octopodidae	CRE-Invertebrates
Octopus cyanea	Common Octopus	Octopodidae	CRE-Invertebrates
Callistoctopus ornatus	Ornate Octopus	Octopodidae	CRE-Invertebrates
Argonautidae	Paper Nautiluses	Argonautidae	CRE-Invertebrates
Argonauta hians	Brown Paper Nautilus	Argonautidae	CRE-Invertebrates
Argonauta argo	Common Paper	Argonautidae	CRE-Invertebrates
	Nautilus		
Argonauta nodosa	Nodose Paper Nautilus	Argonautidae	CRE-Invertebrates
Argonauta nouryi	Noury'S Paper Nautilus	Argonautidae	CRE-Invertebrates
Argonauta nouryi	Gruner'S Paper	Argonautidae	CRE-Invertebrates
	Nautilus		
Lithoglyptidae	Barnacles	Lithoglyptidae	CRE-Invertebrates
Balanus sp.	Acorn Barnacle	Balanidae	CRE-Invertebrates
Tetraclitella divisa	Acorn Barnacle	Tetraclitidae	CRE-Invertebrates
Order: Stomatopoda	Mantis Shrimps	Multiple families	CRE-Invertebrates
Bathysquillidae	Mantis Shrimp	Bathysquillidae	CRE-Invertebrates
Eurysquillidae	Mantis Shrimp	Eurysquillidae	CRE-Invertebrates
Gonodactylidae	Mantis Shrimp	Gonodactylidae	CRE-Invertebrates
Gonodactylellus affinis	Mantis Shrimp	Gonodactylidae	CRE-Invertebrates
Gonodactylus chiragra	Mantis Shrimp	Gonodactylidae	CRE-Invertebrates
Gonodactylaceus mutatus	Mantis Shrimp	Gonodactylidae	CRE-Invertebrates
Gonodactylus platysoma	Mantis Shrimp	Gonodactylidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Gonodactylus smithii	Mantis Shrimp	Gonodactylidae	CRE-Invertebrates
Hemisquillidae	Mantis Shrimp	Hemisquillidae	CRE-Invertebrates
Odontodactylidae	Mantis Shrimp	Odontodactylidae	CRE-Invertebrates
Odontodactylus	Mantis Shrimp	Odontodactylidae	CRE-Invertebrates
brevirostris			
Odontodactylus scyllarus	Mantis Shrimp	Odontodactylidae	CRE-Invertebrates
Protosquillidae	Mantis Shrimp	Protosquillidae	CRE-Invertebrates
Pseudosquillidae	Mantis Shrimp	Pseudosquillidae	CRE-Invertebrates
Pseudosquilla ciliata	Mantis Shrimp	Pseudosquillidae	CRE-Invertebrates
Squillidae	Mantis Shrimp	Squillidae	CRE-Invertebrates
Squillidae	Mantis Shrimp	Squillidae	CRE-Invertebrates
Squillidae	Mantis Shrimp	Squillidae	CRE-Invertebrates
Oratosquilla oratoria	Mantis Shrimp	Squillidae	CRE-Invertebrates
Lysiosquillidae	Mantis Shrimp	Lysiosquillidae	CRE-Invertebrates
Nannosquillidae	Mantis Shrimp	Nannosquillidae	CRE-Invertebrates
Hyperiidae	Hyperid Amphipods	Hyperiidae	CRE-Invertebrates
Phronimidae	Phronimids	Phronimidae	CRE-Invertebrates
Lycaeidae	Lycaeids	Lycaeidae	CRE-Invertebrates
Platyscelidae	Platyscelids	Platyscelidae	CRE-Invertebrates
Anchylomera	Anchylomerids	Phrosinidae	CRE-Invertebrates
Order Decapoda	Decapod Crustaceans	Multiple families	CRE-Invertebrates
Penaeidae	Panaeid Prawns	Penaeidae	CRE-Invertebrates
Metapenaeopsis sp	Penaeid Prawn	Penaeidae	CRE-Invertebrates
Metapenaeopsis sp	Penaeid Prawn	Penaeidae	CRE-Invertebrates
Metapenaeopsis sp	Penaeid Prawn	Penaeidae	CRE-Invertebrates
Heteropenaeus sp	Deepwater Shrimps	Penaeidae	CRE-Invertebrates
Penaeus monodon	Penaeid Prawn	Penaeidae	CRE-Invertebrates
Penaeus latisulcatus	Penaeid Prawn	Penaeidae	CRE-Invertebrates
Palaemonidae	Palaemonid Shrimp	Palaemonidae	CRE-Invertebrates
Leander plumosus	Palaemonid Shrimp	Palaemonidae	CRE-Invertebrates
Urocaridella	Palaemonid Shrimp	Palaemonidae	CRE-Invertebrates
antonbruunii			
Palaemonidae	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Dasycaris zanzibarica	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Laomenes amboinensis	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Periclimenes	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
brevicarpalis			
Laomenes	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
ceratophthalmus			
Ancylomenes holthuisi	Commensal Shrimp	Palaemonidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Periclimenes imperator	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Periclimenes inornatus	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Cuapetes kororensis	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Periclimenes ornatus	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Periclimenes psamathe	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Periclimenes soror	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Cuapetes tenuipes	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Periclimenes venustus	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Pliopontonia furtiva	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Pontonides unciger	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
Stegopontonia	Commensal Shrimp	Palaemonidae	CRE-Invertebrates
commensalis			
Stenopodidae	Cleaner Shrimp	Stenopodidae	CRE-Invertebrates
Stenopus hispidus	Banded Coral Shrimp	Stenopodidae	CRE-Invertebrates
Hippolytidae	Hump-Backed Shrimp	Hippolytidae	CRE-Invertebrates
Parhippolyte misticia	Hump-Backed Shrimp	Barbouriidae	CRE-Invertebrates
Thor amboinensis	Ambonian Shrimp	Hippolytidae	CRE-Invertebrates
Palaemonidae	Bbee And Harlequin	Palaemonidae	CRE-Invertebrates
	Shrimp		
Gnathophylloides mineri	Bumblebee Shrimp	Palaemonidae	CRE-Invertebrates
Gnathophyllum	Bumblebee Shrimp	Palaemonidae	CRE-Invertebrates
americanum			
Hymenocera picta	Harlequin Shrimp	Hymenoceridae	CRE-Invertebrates
Rhynchocinetidae	Hinge-Beaked Prawns	Rhynchocinetidae	CRE-Invertebrates
Cinetorhynchus hiatti	Hingebeak Prawn	Rhynchocinetidae	CRE-Invertebrates
Alpheidae	Snapping Shrimp	Alpheidae	CRE-Invertebrates
Alpheus bellulus	Snapping Shrimp	Alpheidae	CRE-Invertebrates
Alpheus paracrinitus	Snapping Shrimp	Alpheidae	CRE-Invertebrates
Synalpheus carinatus	Snapping Shrimp	Alpheidae	CRE-Invertebrates
Heterocarpus sp	deepwater shrimp	Pandalidae	Crustacean
Pandalus sp	deepwater shrimp	Pandalidae	Crustacean
Pandalidae	deepwater shrimp	Pandalidae	Crustacean
Pandalidae	deepwater shrimp	Pandalidae	Crustacean
Solenoceridae	Solenocerids	Solenoceridae	CRE-Invertebrates
Nephropidae	Soft Lobsters	Nephropidae	CRE-Invertebrates
Enoplometopus debelius	Soft Lobster	Enoplometopidae	CRE-Invertebrates
Enoplometopus	Hairy Lobster	Enoplometopidae	CRE-Invertebrates
occidentalis			
Enoplometopus holthuisi	Soft Lobster	Enoplometopidae	CRE-Invertebrates
Panulirus sp	Painted Crayfish	Palinuridae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Panulirus homarus	Painted Crayfish	Palinuridae	CRE-Invertebrates
Panulirus longipes	Painted Crayfish	Palinuridae	CRE-Invertebrates
Panulirus marginatus	spiny lobster	Palinuridae	Crustacean
Panulirus ornatus	Painted Crayfish	Palinuridae	CRE-Invertebrates
Panulirus penicillatus	spiny lobster	Palinuridae	Crustacean
Panulirus versicolor	Painted Crayfish	Palinuridae	CRE-Invertebrates
Palinurellus wieneckii	Mole Lobster	Palinuridae	CRE-Invertebrates
Panulirus femoristriga	Painted Crayfish	Palinuridae	CRE-Invertebrates
Ibacus sp	Slipper Lobster	Scyllaridae	CRE-Invertebrates
Justitia longimana	Long-Handed Lobster	Palinuridae	CRE-Invertebrates
Arctides regalis	Slipper Lobster	Scyllaridae	CRE-Invertebrates
Scyllaridae	slipper lobster	Scyllaridae	Crustacean
Scyllaridae	slipper lobster	Scyllaridae	Crustacean
Diogenidae	Marine Hermit Crabs	Diogenidae	CRE-Invertebrates
Dardanus sp.	Marine Hermit Crab	Diogenidae	CRE-Invertebrates
Dardanus gemmatus	Marine Hermit Crab	Diogenidae	CRE-Invertebrates
Dardanus pedunculatus	Marine Hermit Crab	Diogenidae	CRE-Invertebrates
Dardanus megistos	Marine Hermit Crab	Diogenidae	CRE-Invertebrates
Lithodidae	Lithodids	Lithodidae	CRE-Invertebrates
Paguridae	Soldier Hermit Crab	Paguridae	CRE-Invertebrates
Paguritta gracilipes	Coral Hermit Crab	Paguridae	CRE-Invertebrates
Paguritta harmsi	Coral Hermit Crab	Paguridae	CRE-Invertebrates
Galatheidae	Squat Lobsters	Galatheidae	CRE-Invertebrates
Porcellanidae	Porcellanid Crabs	Porcellanidae	CRE-Invertebrates
Petrolisthes lamarckii	Porcelain Crab	Porcellanidae	CRE-Invertebrates
?	Mole Crab	Hippidae	CRE-Invertebrates
Infraorder: Brachyura	True Crabs	Multiple families	CRE-Invertebrates
Homolidae	Homolids	Homolidae	CRE-Invertebrates
Ranina ranina	Kona crab	Raninidae	Crustacean
Lyreidus tridentatus	3-Toothed Frog Crab	Raninidae	CRE-Invertebrates
Dorippe frascone	Dorippid Crab	Dorippidae	CRE-Invertebrates
Dromiidae	Sponge Crabs	Dromiidae	CRE-Invertebrates
Dromia dormia	Sponge Crab	Dromiidae	CRE-Invertebrates
Calappidae	Box Crabs	Calappidae	CRE-Invertebrates
Calappa bicornis	Box Crab	Calappidae	CRE-Invertebrates
Calappa calappa	Box Crab	Calappidae	CRE-Invertebrates
Calappa hepatica	Box Crab	Calappidae	CRE-Invertebrates
Cycloes granulosa	Box Crab	Calappidae	CRE-Invertebrates
Mursia spinimanus	Box Crab	Calappidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Majidae	Spider Crabs	Majidae	CRE-Invertebrates
Achaeus japonicus	Spider Crab	Inachidae	CRE-Invertebrates
Camposcia retusa	Decorator Crab	Inachidae	CRE-Invertebrates
Parthenopidae	Elbow Crabs	Parthenopidae	CRE-Invertebrates
Daldorfia horrida	Elbow Crab	Parthenopidae	CRE-Invertebrates
Rhinolambrus	Elbow Crab	Parthenopidae	CRE-Invertebrates
Canoridae	Conorido	Conomidoo	CDE Invertabratas
	Calicitus Syvimming Croho	Dontunidoo	CRE-Invertebrates
<i>Chariblic contheed a stale</i>	Swimming Crabs	Portunidae	CRE-Invertebrates
Charybais erythroaactyla	Red-Legged Sw Crab	Portunidae	CRE-Invertebrates
Charybais (Charybais) hawaiensis	Red Sw Crab	Portunidae	CRE-Invertebrates
	Swimming Crab	Portunidae	CRE-Invertebrates
quinquedentatus	Swilling Club	1 of tunitute	
Portunus sanguinolentus	Swimming Crab	Portunidae	CRE-Invertebrates
Portunus pelagicus	Blue Swimming Crab	Portunidae	CRE-Invertebrates
Podophthalmus vigil	Long-Eyed Swimming Crab	Portunidae	CRE-Invertebrates
Scylla serrata	Mangrove Crab	Portunidae	CRE-Invertebrates
Thalamita crenata	Swimming Crab	Portunidae	CRE-Invertebrates
?	Portunid Crab	Portunidae	CRE-Invertebrates
?	Portunid Crab	Portunidae	CRE-Invertebrates
Xanthidae	Dark-Finger Coral	Xanthidae	CRE-Invertebrates
	Crabs		
Carpilius convexus	7-11 Crab	Carpiliidae	CRE-Invertebrates
Carpilius maculatus	7-11 Crab	Carpiliidae	CRE-Invertebrates
Etisus splendidus	Red-Reef Crab	Xanthidae	CRE-Invertebrates
Zosimus aeneus	Shallow Reef Crab	Xanthidae	CRE-Invertebrates
Eriphia sebana	Redeye Crab	Xanthidae	CRE-Invertebrates
Etisus dentatus	Red-Reef Crab	Xanthidae	CRE-Invertebrates
Etisus utilis	Brown-Reef Crab	Xanthidae	CRE-Invertebrates
#N/A	Xanthid Crab	Xanthidae	CRE-Invertebrates
#N/A	Xanthid Crab	Xanthidae	CRE-Invertebrates
#N/A	Xanthid Crab	Xanthidae	CRE-Invertebrates
Gecarcinidae	Gecarcinids	Gecarcinidae	CRE-Invertebrates
Grapsidae	Shore Crabs	Grapsidae	CRE-Invertebrates
Grapsus albolineatus	Shore Crab	Grapsidae	CRE-Invertebrates
Grapsus tenuicrustatus	Shore Crab	Grapsidae	CRE-Invertebrates
Plagusia depressa	Shore Crab	Plagusiidae	CRE-Invertebrates
Percnon planissimum	Flat Rock Crab	Percnidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Zebrida adamsii	Urchin Crab	Pilumnidae	CRE-Invertebrates
Ocypodidae	Ocypodids	Ocypodidae	CRE-Invertebrates
Macrophthalmus	Telescope-Eye Crab	Macrophthalmidae	CRE-Invertebrates
telescopicus			
Ocypode ceratophthalma	Large Ghost Crab	Ocypodidae	CRE-Invertebrates
Ocypode cordimana	Ghost Crab	Ocypodidae	CRE-Invertebrates
Ocypode saratan	Ghost Crab	Ocypodidae	CRE-Invertebrates
Cryptochiridae	Hapalocarcinids	Cryptochiridae	CRE-Invertebrates
Class Crinoidea	Crinoids	Multiple families	CRE-Invertebrates
Class Asteroidea	Starfish	Multiple families	CRE-Invertebrates
Astropectinidae	Starfish	Astropectinidae	CRE-Invertebrates
Oreasteridae	Starfish	Oreasteridae	CRE-Invertebrates
Ophidiaster confertus	Orange Starfish	Ophidiasteridae	CRE-Invertebrates
Asteropseidae	Starfish	Asteropseidae	CRE-Invertebrates
Asterinidae	Starfish	Asterinidae	CRE-Invertebrates
Acanthaster planci	Crown-Of-Thorns	Acanthasteridae	CRE-Invertebrates
Mithrodia bradleyi	Spiney-Armed Starfish	Mithrodiidae	CRE-Invertebrates
Echinasteridae	Reef Starfish	Echinasteridae	CRE-Invertebrates
Sphaerasteridae	Starfish	Sphaerasteridae	CRE-Invertebrates
Class Ophiuroidea	Basket,Brittle,	Multiple families	CRE-Invertebrates
_	Serpentstars		
Class Echinoidea	Sea Urchins	Multiple families	CRE-Invertebrates
Cidaridae	Cidarians	Cidaridae	CRE-Invertebrates
Echinothuriidae	Sea Urchins	Echinothuriidae	CRE-Invertebrates
Diadematidae	Sea Urchins	Diadematidae	CRE-Invertebrates
Diadema savignyi	Longspine Urchin	Diadematidae	CRE-Invertebrates
Diadema setosum	Longspine Urchin	Diadematidae	CRE-Invertebrates
Echinothrix diadema	Longspine Urchin	Diadematidae	CRE-Invertebrates
Echinothrix calamaris	Longspine Urchin	Diadematidae	CRE-Invertebrates
Temnopleuridae	Sea Urchins	Temnopleuridae	CRE-Invertebrates
Toxopneustidae	Shortspine Urchins	Toxopneustidae	CRE-Invertebrates
Tripneustes gratilla	Shortspine Urchin	Toxopneustidae	CRE-Invertebrates
Toxopneustes pileolus	Flower Urchin	Toxopneustidae	CRE-Invertebrates
Pseudoboletia maculata	Common Urchin	Toxopneustidae	CRE-Invertebrates
Echinometridae	Sea Urchins	Echinometridae	CRE-Invertebrates
Heterocentrotus	Slate Pencil Urchin	Echinometridae	CRE-Invertebrates
mammillatus			
Class Echinoidea	Sea Urchins	Multiple families	CRE-Invertebrates
Clypeasteridae		Clypeasteridae	CRE-Invertebrates
Brissidae	Irregular Urchins	Brissidae	CRE-Invertebrates

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
, i i i i i i i i i i i i i i i i i i i		Name	
Class Holothuroidea	Sea Cucumbers	Multiple families	CRE-Invertebrates
Stichopodidae	Sea Cucumbers	Stichopodidae	CRE-Invertebrates
Stichopus chloronotus	Greenfish	Stichopodidae	CRE-Invertebrates
Stichopus horrens	Sea Cucumber	Stichopodidae	CRE-Invertebrates
Stichopus noctivagus	Sea Cucumber	Stichopodidae	CRE-Invertebrates
Stichopus variegatus	Curryfish	Stichopodidae	CRE-Invertebrates
Stichopus sp	Sea Cucumber	Stichopodidae	CRE-Invertebrates
Holothuriidae	Sea Cucumber	Holothuriidae	CRE-Invertebrates
Holothuria atra	Lollyfish	Holothuriidae	CRE-Invertebrates
Holothuria edulis	Pinkfish	Holothuriidae	CRE-Invertebrates
Holothuria fuscogilva	White Teatfish	Holothuriidae	CRE-Invertebrates
Holothuria fuscopunctata	Elephant'S Trunkfish	Holothuriidae	CRE-Invertebrates
Holothuria hilla	Sea Cucumber	Holothuriidae	CRE-Invertebrates
Holothuria impatiens	Sea Cucumber	Holothuriidae	CRE-Invertebrates
Holothuria leucospilota	Sea Cucumber	Holothuriidae	CRE-Invertebrates
Holothuria sp	Sea Cucumber	Holothuriidae	CRE-Invertebrates
Actinopyga lecanora	Stonefish	Holothuriidae	CRE-Invertebrates
Actinopyga miliaris	Blackfish	Holothuriidae	CRE-Invertebrates
Actinopyga obesa	Sea Cucumber	Holothuriidae	CRE-Invertebrates
Actinopyga sp.	Sea Cucumber	Holothuriidae	CRE-Invertebrates
Cucumariidae	Sea Cucumbers	Cucumariidae	CRE-Invertebrates
Phyllophoridae	Sea Cucumbers	Phyllophoridae	CRE-Invertebrates
Synaptidae	Sea Cucumbers	Synaptidae	CRE-Invertebrates
Synapta maculata	Sea Cucumber	Synaptidae	CRE-Invertebrates
Synaptidae	Sea Cucumber	Synaptidae	CRE-Invertebrates
Synapta sp	Sea Cucumber	Synaptidae	CRE-Invertebrates
Bohadschia argus	Sea Cucumber	Holothuriidae	CRE-Invertebrates
Pearsonothuria graeffei	Sea Cucumber	Holothuriidae	CRE-Invertebrates
Bohadschia marmorata	Brown Sandfish	Holothuriidae	CRE-Invertebrates
Bohadschia paradoxa	Sea Cucumber	Holothuriidae	CRE-Invertebrates
Bohadschia sp.	Sea Cucumber	Holothuriidae	CRE-Invertebrates
Thelenota ananas	Prickly Redfish	Stichopodidae	CRE-Invertebrates
Thelenota anax	Amberfish	Stichopodidae	CRE-Invertebrates
Thelenota sp.	Sea Cucumber	Stichopodidae	CRE-Invertebrates
Enteromorpha clathrata	Algae	Ulvaceae	CRE-Algae
Caulerpaceae	Algae	Caulerpaceae	CRE-Algae
Caulerpa racemosa	Algae	Caulerpaceae	CRE-Algae
Sargassum polycystum	Algae	Sargassaceae	CRE-Algae
Turbinaria ornata	Algae	Sargassaceae	CRE-Algae

Correct Scientific Name	Common Name	Correct Family	FEP GROUP
		Name	
Division: Anthophyta	Algae	Multiple families	CRE-Algae
Halodule uninervis	Algae	Cymodoceaceae	CRE-Algae
Cephea sp	Jellyfish	Cepheidae	CRE-Invertebrates
Callogorgia gilberti	Gold Coral	Primnoidae	Precious corals
Corallium laauense	Pink coral	Coralliidae	Precious corals
Corallium regale	Pink coral	Coralliidae	Precious corals
Antipathes dichotoma	Black Coral	Antipathidae	Precious corals
Narella sp.	Gold Coral	Primnoidae	Precious corals
Acanella sp.	Bamboo coral	Isididae	Precious corals
Savalia sp.	Gold Coral	Parazoanthidae	Precious corals
Lepidisis olapa	Bamboo coral	Isididae	Precious corals
Callogorgia gilberti	Gold Coral	Primnoidae	Precious corals
Corallium secundum	Pink coral	Coralliidae	Precious corals
Antipathes grandis	Black Coral	Antipathidae	Precious corals
Myriopathes ulex	Black Coral	Antipathidae	Precious corals

11.2 MANAGEMENT UNIT SPECIES IN THE MARIANAS FISHERY ECOSYSTEM PLAN: COMMONWEALTH OF NORTHERN MARIANA ISLANDS

Correct Scientific Name	Common Name	FAMILY	FEP GROUP
Aphareus rutilans	red snapper,	Lutjanidae	BF Multi-species
-	silvermouth (lehi)		complex
Aprion virescens	grey snapper,	Lutjanidae	BF Multi-species
-	jobfish		complex
Caranx ignobilis	giant trevally, jack	Carangidae	BF Multi-species
			complex
Caranx lugubris	black trevally, jack	Carangidae	BF Multi-species
			complex
Epinephelus fasciatus	blacktip grouper	Serranidae	BF Multi-species
			complex
Variola louti	lunartail grouper	Serranidae	BF Multi-species
	(lyretail grouper)		complex
Etelis carbunculus	red snapper (ehu)	Lutjanidae	BF Multi-species
			complex
Etelis coruscans	red snapper (onaga)	Lutjanidae	BF Multi-species
			complex
Lethrinus amboinensis	ambon emperor	Lethrinidae	BF Multi-species
			complex
Lethrinus rubrioperculatus	redgill emperor	Lethrinidae	BF Multi-species
			complex
Lutjanus kasmira	blueline snapper	Lutjanidae	BF Multi-species
			complex
Pristipomoides auricilla	yellowtail snapper	Lutjanidae	BF Multi-species
			complex
Pristipomoides filamentosus	pink snapper (paka)	Lutjanidae	BF Multi-species
			complex
Pristipomoides flavipinnis	yelloweye snapper	Lutjanidae	BF Multi-species
			complex
Pristipomoides sieboldii	pink snapper	Lutjanidae	BF Multi-species
	(kalekale)		complex
Pristipomoides zonatus	flower snapper	Lutjanidae	BF Multi-species
	(gindai)		complex
Seriola dumerili	amberjack	Carangidae	BF Multi-species
			complex
Heterocarpus sp.	deepwater shrimp	Pandalidae	Crustacean
	(saltwater shrimp)		
Panulirus marginatus	spiny lobster	Palinuridae	Crustacean
Panulirus penicillatus	spiny lobster	Palinuridae	Crustacean

Correct Scientific Name	Common Name	FAMILY	FEP GROUP
Family Scyllaridae	slipper lobster	Scyllaridae	Crustacean
Ranina ranina	kona crab	Raninidae	Crustacean
Antipathes dichotoma	Black Coral	Antipathidae	Precious corals
Antipathes grandis	Black Coral	Antipathidae	Precious corals
Myriopathes ulex	Black Coral	Myriopathidae	Precious corals
Corallium secundum	Pink coral	Coralliidae	Precious corals
Corallium regale	Pink coral	Coralliidae	Precious corals
Corallium laauense	Pink coral	Coralliidae	Precious corals
Lepidisis olapa	Bamboo coral	Isididae	Precious corals
Acanella sp.	Bamboo coral	Isididae	Precious corals
Savalia sp.	Gold Coral	Parazoanthidae	Precious corals
Callogorgia gilberti	Gold Coral	Primnoidae	Precious corals
Narella sp.	Gold Coral	Primnoidae	Precious corals
Calyptrophora sp.	Gold Coral	Primnoidae	Precious corals
Monotaxis grandoculis	Bigeye Emperor	Lethrinidae	CRE-Fishes
Lethrinus harak	Blackspot Emperor	Lethrinidae	CRE-Fishes
Lethrinus sp.	Emperor	Lethrinidae	CRE-Fishes
	(mafute/misc.)		
Lutjanus fulvus	Flametail Emperor	Lutjanidae	CRE-Fishes
Lethrinus olivaceus	Longnose Emperor	Lethrinidae	CRE-Fishes
Lethrinus erythracanthus	Orangefin Emperor	Lethrinidae	CRE-Fishes
Lethrinus ornatus	Ornate Emperor	Lethrinidae	CRE-Fishes
Gymnocranius sp.	Stout Emperor	Lethrinidae	CRE-Fishes
Lethrinus xanthochilus	Yellowlips Emperor	Lethrinidae	CRE-Fishes
Gnathodentex aureolineatus	Yellowspot emperor	Lethrinidae	CRE-Fishes
Lethrinus obsoletus	Yellowstripe Emperor	Lethrinidae	CRE-Fishes
Lethrinus atkinsoni	Yellowtail Emperor	Lethrinidae	CRE-Fishes
Caranx sexfasciatus	Bigeye Trevally	Carangidae	CRE-Fishes
Caranx melampygus	Bluefin Trevally	Carangidae	CRE-Fishes
Caranx papuensis	Brassy Trevally	Carangidae	CRE-Fishes
Caranx sp. (juvenile)	EE: Juvenile Jacks	Carangidae	CRE-Fishes
Caranx sp.	Jacks (misc.)	Carangidae	CRE-Fishes
Scomberoides lysan	Leatherback	Carangidae	CRE-Fishes
Decapterus macarellus	Mackerel Scad	Carangidae	CRE-Fishes
Elagatis bipinnulata	Rainbow Runner	Carangidae	CRE-Fishes
Trachinotus baillonii	Small-spotted pompano	Carangidae	CRE-Fishes
Trachinotus blochii	Snubnose pompano	Carangidae	CRE-Fishes

Correct Scientific Name	Common Name	FAMILY	FEP GROUP
Carangoides orthogrammus	Yellow Spotted	Carangidae	CRE-Fishes
	Trevally		
Acanthurus lineatus	Bluebanded	Acanthuridae	CRE-Fishes
Acanthurus nigroris	Surgeonfish Bluelined Surgeon	Aconthuridaa	CPE Fishes
Acumulus higionis	Diuenneu Suigeon	Acanthuridae	CRE-Fishes
Naso unicornis	Unicornfish	Acanthundae	CKE-FISHES
Acanthurus triostegus	Convict Tang	Acanthuridae	CRE-Fishes
Naso lituratus	Orangespine	Acanthuridae	CRE-Fishes
	Unicornfish		
Acanthurus sp.	Surgeonfish (misc.)	Acanthuridae	CRE-Fishes
Naso sp.	Unicornfish (misc.)	Acanthuridae	CRE-Fishes
Acanthurus xanthopterus	Yellowfin	Acanthuridae	CRE-Fishes
	Surgeonfish		
Selar crumenophthalmus	Bigeye Scad	Carangidae	CRE-Fishes
Epinephelus corallicola	Coral Grouper	Serranidae	CRE-Fishes
Cephalopholis urodeta	Flagtail Grouper	Serranidae	CRE-Fishes
Family Serranidae	Grouper (misc.)	Serranidae	CRE-Fishes
Epinephelus maculatus	Highfin Grouper	Serranidae	CRE-Fishes
Epinephelus merra	Honeycomb	Serranidae	CRE-Fishes
	Grouper		
Epinephelus polyphekadion	Marbled Grouper	Serranidae	CRE-Fishes
Cephalopholis argus	Peacock Grouper	Serranidae	CRE-Fishes
Saloptia powelli	Pink Grouper	Serranidae	CRE-Fishes
Plectropomus laevis	Saddleback Grouper	Serranidae	CRE-Fishes
Cephalopholis sonnerati	Tomato Grouper	Serranidae	CRE-Fishes
Variola albimarginata	White Lyretail	Serranidae	CRE-Fishes
Carbalanhalia ia gugahianaia	Grouper Vallow Dandad	Comonidoo	CDE Eichea
Cephalopholis igarashiensis	Grouper	Serranidae	CKE-FISHES
Family Lutianidae	Snapper (misc.	Lutianidae	CRE-Fishes
	shallow)	Latjunidue	
Lutjanus gibbus	Humpback Snapper	Lutjanidae	CRE-Fishes
Lutjanus monostigma	Onespot Snapper	Lutjanidae	CRE-Fishes
Lutjanus bohar	Red Snapper	Lutjanidae	CRE-Fishes
Aphareus furca	Smalltooth Jobfish	Lutjanidae	CRE-Fishes
Parupeneus barberinus	Dash & Dot	Mullidae	CRE-Fishes
-	Goatfish		
Family Mullidae	Goatfish (juvenile-	Mullidae	CRE-Fishes
	misc)		
Family Mullidae	Goatfish (misc.)	Mullidae	CRE-Fishes

Correct Scientific Name	Common Name	FAMILY	FEP GROUP
Parupeneus pleurostigma	Sidespot Goatfish	Mullidae	CRE-Fishes
Parupeneus trifasciatus	Two-barred Goatfish	Mullidae	CRE-Fishes
Mulloidichthys flavolineatus	Yellowstripe Goatfish	Mullidae	CRE-Fishes
Scarus sp.	Parrotfish (misc.)	Scaridae	CRE-Fishes
Leptoscarus vaigiensis	Seagrass Parrotfish	Scaridae	CRE-Fishes
Octopus sp.	Octopus	Octopodidae	CRE-Invertebrates
Order Teuthida	Squid	Order Teuthida	CRE-Invertebrates
Trochus sp.	Trochus	Trochidae	CRE-Invertebrates
Class Bivalvia	Clam/bivalve	Class Bivalvia	CRE-Invertebrates
Family Mugilidae	Mullet	Mugilidae	CRE-Fishes
Siganus sp.	Rabbitfish (hitting)	Siganidae	CRE-Fishes
Siganus punctatus	Rabbitfish (h.feda)	Siganidae	CRE-Fishes
Siganus sp.	Rabbitfish (menahac)	Siganidae	CRE-Fishes
Siganus spinus	Rabbitfish (sesjun)	Siganidae	CRE-Fishes
Bulbometopon muricatum	Bumphead parrotfish	Scaridae	CRE-Fishes
Cheilinus undulatus	Napoleon wrasse	Labridae	CRE-Fishes
Family Carcharhinidae	Reef sharks (misc)	Carcharhinidae	CRE-Fishes
Sphyrna lewini	Hammerhead shark	Sphyrnidae	CRE-Fishes
Family Pomacanthidae	Angelfish	Pomacanthidae	CRE-Fishes
Family Chaetodontidae	Butterflyfish	Chaetodontidae	CRE-Fishes
Heteropriacanthus cruentatus	Bigeye/glasseye	Priacanthidae	CRE-Fishes
Iniistius pavo	Blue Razorfish	Labridae	CRE-Fishes
Iniistius celebicus	Bronzespot Razorfish	Labridae	CRE-Fishes
Family Apogonidae	Cardinal Misc.	Apogonidae	CRE-Fishes
Fistularia commersonii	Cornetfish	Fistulariidae	CRE-Fishes
Family Pomacentridae	Damselfish	Pomacentridae	CRE-Fishes
Family Monacanthidae	Filefish (misc)	Monacanthidae	CRE-Fishes
Bothus sp.	Flounder (misc)	Bothidae	CRE-Fishes
Family Caesionidae	Fusilier (misc.)	Caesionidae	CRE-Fishes
Priacanthus hamrur	Goggle-eye	Priacanthidae	CRE-Fishes
Family Synodontidae	Lizardfish misc.	Synodontidae	CRE-Fishes
Chanos chanos	Milkfish	Chanidae	CRE-Fishes
Gerres sp.	Mojarra	Gerreidae	CRE-Fishes
Gymnothorax eurostus	Moray eel	Muraenidae	CRE-Fishes
Family Belonidae	Needlefish	Belonidae	CRE-Fishes

Correct Scientific Name	Common Name	FAMILY	FEP GROUP
Rhinecanthus aculeatus	Picasso Trigger	Balistidae	CRE-Fishes
Family Tetraodontidae	Pufferfish	Tetraodontidae	CRE-Fishes
	Razorfish (misc)	Labridae	CRE-Fishes
Family Scorpaenidae	Scorpionfishes	Scorpaenidae	CRE-Fishes
Plectorhinchus picus	Sweetlips	Haemulidae	CRE-Fishes
Family Balistidae	Triggerfish (misc.)	Balistidae	CRE-Fishes
Aulostomus chinensis	Trumpetfish	Aulostomidae	CRE-Fishes
Rhinecanthus rectangulus	Wedge Trigger	Balistidae	CRE-Fishes
Family Holocentridae	Squirrelfish	Holocentridae	CRE-Fishes
Family Holocentridae	Soldierfish (misc.)	Holocentridae	CRE-Fishes
Family Labridae	Wrasse	Labridae	CRE-Fishes
Cheilinus trilobatus	Tripletail Wrasse	Labridae	CRE-Fishes
Kyphosus sp.	Rudderfish (guilli)	Kyphosidae	CRE-Fishes
Kyphosus cinerascens	Highfin Rudderfish Silver	Kyphosidae	CRE-Fishes
Kyphosus sp.	Highfin Rudderfish Brown	Kyphosidae	CRE-Fishes
	Bottomfish (misc)		CRE-Fishes
	Reef fish (misc)		CRE-Fishes
	Shallow bottom		CRE-Fishes
	Crabs (misc)	infraorder Brachyura	Crustacean
Birgus latro	Coconut Crab	Diogenidae	Crustacean
	Invertebrates		CRE-Invertebrates
Family Cucumariidae	Sea Cucumber	Cucumariidae	CRE-Invertebrates
	Seaweeds		CRE-Algae
	Lemu		CRE-Algae

11.3 MANAGEMENT UNIT SPECIES IN THE AMERICAN SAMOA FISHERY ECOSYSTEM PLAN

Correct Scientific	Common Name	FAMILY	FEP GROUP
Name			
Aphareus rutilans	red snapper, silvermouth (lehi) (silverjaw jobfish)	Lutjanidae	BF Multi-species complex
Aprion virescens	grey snapper, jobfish	Lutjanidae	BF Multi-species complex
Caranx ignobilis	giant trevally, jack	Carangidae	BF Multi-species complex
Caranx lugubris	black trevally, jack	Carangidae	BF Multi-species complex
Epinephelus fasciatus	blacktip grouper	Serranidae	BF Multi-species complex
Variola louti	lunartail grouper (yellow edge lyretail)	Serranidae	BF Multi-species complex
Etelis carbunculus	red snapper	Lutjanidae	BF Multi-species complex
Etelis coruscans	longtail snapper	Lutjanidae	BF Multi-species complex
Lethrinus amboinensis	ambon emperor	Lethrinidae	BF Multi-species complex
Lethrinus rubrioperculatus	redgill emperor	Lethrinidae	BF Multi-species complex
Lutjanus kasmira	blueline snapper	Lutjanidae	BF Multi-species complex
Pristipomoides auricilla	yellowtail snapper (goldflag jobfish)	Lutjanidae	BF Multi-species complex
Pristipomoides filamentosus	pink snapper (paka)	Lutjanidae	BF Multi-species complex
Pristipomoides flavipinnis	yelloweye snapper	Lutjanidae	BF Multi-species complex
Pristipomoides sieboldii	pink snapper (kalekale)	Lutjanidae	BF Multi-species complex
Pristipomoides zonatus	flower snapper (gindai)	Lutjanidae	BF Multi-species complex
Seriola dumerili	amberjack	Carangidae	BF Multi-species complex
Panulirus marginatus	spiny lobster	Palinuridae	Crustacean
Panulirus penicillatus	spiny lobster	Palinuridae	Crustacean
Scyllaridae	Slipper lobster	Scyllaridae	Crustacean

Correct Scientific	Common Name	FAMILY	FEP GROUP
Name			
Ranina ranina	Kona crab	Raninidae	Crustacean
Antipathes dichotoma	Black Coral	Antipathidae	Precious corals
Antipathes grandis	Black Coral	Antipathidae	Precious corals
Myriopathes ulex	Black Coral	Myriopathidae	Precious corals
Corallium secundum	Pink coral	Coralliidae	Precious corals
Corallium regale	Pink coral	Coralliidae	Precious corals
Corallium laauense	Pink coral	Coralliidae	Precious corals
Lepidisis olapa	Bamboo coral	Isididae	Precious corals
Acanella sp.	Bamboo coral	Isididae	Precious corals
Savalia sp.	Gold Coral	Parazoanthidae	Precious corals
Callogorgia gilberti	Gold Coral	Primnoidae	Precious corals
Narella sp.	Gold Coral	Primnoidae	Precious corals
Calyptrophora sp.	Gold Coral	Primnoidae	Precious corals
Acanthurus achilles	Achilles tang	Acanthuridae	CRE-Fishes
Naso thynnoides	Barred unicornfish	Acanthuridae	CRE-Fishes
Naso vlamingii	Bignose unicornfish	Acanthuridae	CRE-Fishes
Naso hexacanthus	Black tongue unicornfish	Acanthuridae	CRE-Fishes
Acanthurus nigricauda	Blackstreak surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus lineatus	Blue-banded surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus nigroris	Bluelined surgeonfish	Acanthuridae	CRE-Fishes
Naso unicornis	Bluespine unicornfish	Acanthuridae	CRE-Fishes
Acanthurus	Brown surgeonfish	Acanthuridae	CRE-Fishes
nigrofuscus			
Acanthurus triostegus	Convict tang	Acanthuridae	CRE-Fishes
Acanthurus mata	Elongate surgeonfish	Acanthuridae	CRE-Fishes
Acanthurus dussumieri	Eye-striped surgeonfish	Acanthuridae	CRE-Fishes
Naso caesius	Gray unicornfish	Acanthuridae	CRE-Fishes
Naso brachycentron	Humpback unicornfish	Acanthuridae	CRE-Fishes
Naso tuberosus	Humpnose unicornish	Acanthuridae	CRE-Fishes
Acanthurus pyroferus	Mimic surgeonfish	Acanthuridae	CRE-Fishes
Naso sp.	Naso tang	Acanthuridae	CRE-Fishes
Naso lituratus	Orangespine unicornfish	Acanthuridae	CRE-Fishes
Acanthurus olivaceus	Orange-spot surgeonfish	Acanthuridae	CRE-Fishes
Zebrasoma velifer	Pacific sailfin tang	Acanthuridae	CRE-Fishes
Acanthurus blochii	Ringtail surgeonfish	Acanthuridae	CRE-Fishes
Naso brevirostris	Spotted unicornfish	Acanthuridae	CRE-Fishes
Ctenochaetus striatus	Striped bristletooth	Acanthuridae	CRE-Fishes
Acanthurus sp.	Surgeonfishes/tangs	Acanthuridae	CRE-Fishes

Correct Scientific	Common Name	FAMILY	FEP GROUP
Name			
Ctenochaetus binotatus	Twospot bristletooth	Acanthuridae	CRE-Fishes
Naso sp.	Unicornfishes (misc)	Acanthuridae	CRE-Fishes
Acanthurus	Whitebar surgeonfish	Acanthuridae	CRE-Fishes
leucopareius			
Acanthurus nigricans	Whitecheek surgeonfish	Acanthuridae	CRE-Fishes
Naso annulatus	Whitemargin unicornfish	Acanthuridae	CRE-Fishes
Acanthurus guttatus	Whitespotted surgeonfish	Acanthuridae	CRE-Fishes
Ctenochaetus strigosus	Yellow-eyed bristletooth	Acanthuridae	CRE-Fishes
Acanthurus	Yellowfin surgeonfish	Acanthuridae	CRE-Fishes
xanthopterus			
Lutjanidae	Inshore snappers	Lutjanidae	CRE-Fishes
Aphareus furca	Brown jobfish	Lutjanidae	CRE-Fishes
Etelis radiosus	Scarlet snapper	Lutjanidae	CRE-Fishes
Lutjanus bohar	Red snapper	Lutjanidae	CRE-Fishes
Lutjanus bohar	Twinspot/red snapper	Lutjanidae	CRE-Fishes
Lutjanus fulvus	Yellow margined snapper	Lutjanidae	CRE-Fishes
Lutjanus gibbus	Humpback snapper	Lutjanidae	CRE-Fishes
Lutjanus monostigma	Onespot snapper	Lutjanidae	CRE-Fishes
Lutjanus rufolineatus	Rufous snapper	Lutjanidae	CRE-Fishes
Lutjanus sanguineus	Blood snapper	Lutjanidae	CRE-Fishes
Lutjanus timoriensis	Timor snapper	Lutjanidae	CRE-Fishes
Macolor niger	Black snapper	Lutjanidae	CRE-Fishes
Paracaesio kusakarii	Kusakar's snapper	Lutjanidae	CRE-Fishes
Paracaesio stonei	Stone's snapper	Lutjanidae	CRE-Fishes
Pristipomoides multidens	Multidens snapper	Lutjanidae	CRE-Fishes
Selar	Bigeye scad	Carangidae	CRE-Fishes
crumenophthalmus			
Anodontia (Anodontia)	Mangrove clam	Lucinidae	CRE-
edentula			Invertebrates
Atrina rigida	Pen shell clam	Pinnidae	CRE-
			Invertebrates
Plebidonax deltoides	Pipi clam	Donacidae	CRE-
Ordoni Touthido	Sauid	Ordon Touthido	Invertebrates CDE
Oruer: reutiliua	Squid	Order: Teutilida	UNE- Invertebrates
Class Bivalvia	Clams (misc)	Class Bivalvia	CRE-
			Invertebrates
Conus sp.	Cone snail	Conidae	CRE-
1			Invertebrates
Octopus cyanea	Octopus (cyanea)	Octopodidae	CRE-

Correct Scientific	Common Name	FAMILY	FEP GROUP
Name			
			Invertebrates
Callistoctopus ornatus	Octopus (ornatus)	Octopodidae	CRE-
-		-	Invertebrates
Octopus sp.	Octopus	Octopodidae	CRE-
			Invertebrates
Tridacna sp.	Giant clam	Cardiidae	CRE-
			Invertebrates
Trochus sp.	Turban snall	Trochidae	CRE-
Turbasp	Green speils	Turbinidaa	Invertebrates
Turbo sp.	Green snans	Iurdinidae	CKE- Invortabratas
Carangoides	Blue kingfish trevally	Carangidae	CRE-Fishes
coeruleopinnatus		Curungiuuc	
Carangoides	Goldspot trevally	Carangidae	CRE-Fishes
orthogrammus	1 7	8	
Carangoides sp.	Trevally (misc)	Carangidae	CRE-Fishes
Caranx sp.	Jacks (misc)	Carangidae	CRE-Fishes
Caranx melampygus	Bluefin trevally	Carangidae	CRE-Fishes
Caranx papuensis	Brassy trevally	Carangidae	CRE-Fishes
Caranx sexfasciatus	Bigeye trevally	Carangidae	CRE-Fishes
Elagatis bipinnulata	Rainbow runner	Carangidae	CRE-Fishes
Scomberoides lysan	Leatherback	Carangidae	CRE-Fishes
Trachinotus blochii	Snubnose pompano	Carangidae	CRE-Fishes
Uraspis secunda	Whitemouth trevally	Carangidae	CRE-Fishes
Decapterus sp.	Mackerel scad (opelu)	Carangidae	CRE-Fishes
Lethrinidae	Emperors (misc)	Lethrinidae	CRE-Fishes
Gnathodenter	Goldenline bream	Lethrinidae	CRE-Fishes
aureolineatus	Goldennie bream		CRE-Fishes
Gnathodentex	Yellowspot emperor	Lethrinidae	CRE-Fishes
aureolineatus			
Gymnocranius	Blueline bream	Lethrinidae	CRE-Fishes
grandoculis			
Lethrinus	Orangespot emperor	Lethrinidae	CRE-Fishes
erythracanthus			
Lethrinus microdon	Longnose emperor	Lethrinidae	CRE-Fishes
Monotaxis grandoculis	Bigeye emperor	Lethrinidae	CRE-Fishes
Lethrinus miniatus	Sweetlip emperor	Lethrinidae	CRE-Fishes
Calotomus carolinus	Stareye parrotfish	Scaridae	CRE-Fishes
Hipposcarus longiceps	Longnose parrotfish	Scaridae	CRE-Fishes
Scarus schlegeli	Yellowband parrotfish	Scaridae	CRE-Fishes
Scarus sp.	Parrotfishes (misc)	Scaridae	CRE-Fishes

Correct Scientific	Common Name	FAMILY	FEP GROUP
Name			
Serranidae	Inshore groupers	Serranidae	CRE-Fishes
Hyporthodus	Eightbar grouper	Serranidae	CRE-Fishes
octofasciatus			
Epinephelus	Giant grouper	Serranidae	CRE-Fishes
lanceolatus			
Cephalopholis	Golden hind	Serranidae	CRE-Fishes
aurantia	~		
Epinephelus tauvina	Greasy grouper	Serranidae	CRE-Fishes
Epinephelus sp.	Groupers (misc)	Serranidae	CRE-Fishes
Epinephelus	Hexagon grouper	Serranidae	CRE-Fishes
hexagonatus			
Epinephelus merra	Honeycomb grouper	Serranidae	CRE-Fishes
Epinephelus	Longspine grouper	Serranidae	CRE-Fishes
longispinis			
Epinephelus miliaris	Netfin grouper	Serranidae	CRE-Fishes
Epinephelus	One-bloch grouper	Serranidae	CRE-Fishes
melanostigma			
Cephalopholis argus	Peacock grouper	Serranidae	CRE-Fishes
Cephalopholis	Pygmy grouper	Serranidae	CRE-Fishes
spiloparaea			
Plectropomus laevis	Saddleback grouper	Serranidae	CRE-Fishes
Cephalopholis	Six-banded grouper	Serranidae	CRE-Fishes
sexmaculata			
Anyperodon	Slender grouper	Serranidae	CRE-Fishes
leucogrammicus			
Epinephelus	Smalltooth grouper	Serranidae	CRE-Fishes
polyphekadion		a	
Epinephelus maculatus	Spotted grouper	Serranidae	CRE-Fishes
Plectropomus	Squaretail grouper	Serranidae	CRE-Fishes
areolatus			
Epinephelus morrhua	Striped grouper	Serranidae	CRE-Fishes
Cephalopholis	Tomato grouper	Serranidae	CRE-Fishes
sonnerati		~	
Cephalopholis	Ybanded grouper	Serranidae	CRE-Fishes
igarashiensis	×7.11		
Epinephelus timorensis	Y ellowspot grouper	Serranidae	CRE-Fishes
Plectropomus	Leopard coral trout	Serranidae	CRE-Fishes
leopardus			
Saloptia powelli	Powell's grouper	Serranidae	CRE-Fishes
Variola albimarginata	White-edged lyretail	Serranidae	CRE-Fishes
Myripristis berndti	Bigscale soldierfish	Holocentridae	CRE-Fishes
Neoniphon opercularis	Blackfin squirrelfish	Holocentridae	CRE-Fishes

Correct Scientific	Common Name	FAMILY	FEP GROUP
Name			
Sargocentron	Blackspot squirrelfish	Holocentridae	CRE-Fishes
melanospilos			
Myripristis murdjan	Blotcheye soldierfish	Holocentridae	CRE-Fishes
Sargocentron tiere	Bluelined squirrelfish	Holocentridae	CRE-Fishes
Myripristis amaena	Brick soldierfish	Holocentridae	CRE-Fishes
Myripristis adusta	Bronze soldierfish	Holocentridae	CRE-Fishes
Sargocentron diadema	Crown squirrelfish	Holocentridae	CRE-Fishes
Myripristis hexagona	Double tooth soldierfish	Holocentridae	CRE-Fishes
Sargocentron	Filelined squirrelfish	Holocentridae	CRE-Fishes
microstoma			
Sargocentron	Hawaiian squirrelfish	Holocentridae	CRE-Fishes
xantherythrum			
Myripristis kuntee	Pearly soldierfish	Holocentridae	CRE-Fishes
Sargocentron	Peppered squirrelfish	Holocentridae	CRE-Fishes
punctatissimum	Distance and the late		ODE E'da
Sargocentron	Pink squirreifish	Holocentridae	CRE-Fishes
Saraocentron	Saber squirrelfish	Holocontridoo	CPF-Fishes
sniniferum	Saber squitternsn	molocenti iuae	CRE-FISHES
Neoniphon sammara	Sammara squirrelfish	Holocentridae	CRE-Fishes
Mvripristis pralinia	Scarlet soldierfish	Holocentridae	CRE-Fishes
Sargocentron sp.	Squirrelfish	Holocentridae	CRE-Fishes
Sargocentron	Tailspot squirrelfish	Holocentridae	CRE-Fishes
caudimaculatum			
Myripristis violacea	Violet soldierfish	Holocentridae	CRE-Fishes
Sargocentron	Violet squirrelfish	Holocentridae	CRE-Fishes
violaceum	-		
Myripristis vittata	Whitetip soldierfish	Holocentridae	CRE-Fishes
Myripristis chryseres	Yellowfin soldierfish	Holocentridae	CRE-Fishes
Neoniphon	Yellowstriped squirrelfish	Holocentridae	CRE-Fishes
aurolineatus			
Mugil cephalus	Mullets	Mugilidae	CRE-Fishes
Crenimugil crenilabis	Fringelip mullet	Mugilidae	CRE-Fishes
Ellochelon vaigiensis	Diamond scale mullet	Mugilidae	CRE-Fishes
Neomyxus leuciscus	False mullet	Mugilidae	CRE-Fishes
Order: Decapoda	Crabs	Order: Decapoda	CRE-
			Invertebrates
Grapsidae	Grapsid crab	Grapsidae	CRE-
			Invertebrates
<i>Ucypode</i>	Pa'a crab	Ocypodidae	CRE-
ceratophthalmus			Invertebrates

Correct Scientific	Common Name	FAMILY	FEP GROUP
Name			
Carpilius maculatus	Seven-11 crab	Carpiliidae	CRE-
*			Invertebrates
Order: Decapoda	Small crab	Order: Decapoda	CRE-
			Invertebrates
Scylla serrata	Mangrove crab	Portunidae	CRE-
			Invertebrates
Parasesarma	Large red crab	Sesarmidae	CRE-
erythodactylum	_		Invertebrates
Coenobita clypeatus	Hermit crab	Coenobitidae	CRE-
			Invertebrates
Bulbometopon	Bulbometopon muricatum	Scaridae	CRE-Fishes
muricatum			
Cheilinus undulatus	Cheilius undulatus	Labridae	CRE-Fishes
Carcharhinidae	Reef sharks (misc)	Carcharhinidae	CRE-Fishes
Carcharhinus	Silvertip shark	Carcharhinidae	CRE-Fishes
albimarginatus	-		
Carcharhinus	Grey reef shark	Carcharhinidae	CRE-Fishes
amblyrhynchos			
Carcharhinus	Galapagos shark	Carcharhinidae	CRE-Fishes
galapagensis			
Carcharhinus	Blacktip reef shark	Carcharhinidae	CRE-Fishes
melanopterus			
Triaenodon obesus	White tip reef shark	Carcharhinidae	CRE-Fishes
Sphyrnidae	Hammerhead shark	Sphyrnidae	CRE-Fishes
NA	Invertebrates (misc)		CRE-
			Invertebrates
Diadema sp.	Sea urchins (misc)	Diadematidae	CRE-
*			Invertebrates
Echinothrix diadema	Black sea urchin	Diadematidae	CRE-
			Invertebrates
Salmacis sp.	White sea urchin	Temnopleuridae	CRE-
			Invertebrates
Holothuria	Cubed loli	Holothuriidae	CRE-
(Halodeima) atra			Invertebrates
Bohadschia argus	Cubed leapord sea cucumber	Holothuriidae	CRE-
			Invertebrates
Actinopyga mauritiana	Surf redfish	Holothuriidae	CRE-
			Invertebrates
Cucumariidae	Sea cucumber (misc)	Cucumariidae	CRE-
			Invertebrates
Cucumariidae	Sea cucumber - gau	Cucumariidae	CRE-
			Invertebrates
Cucumariidae	Sea cucumber gonads	Cucumariidae	CRE-

Correct Scientific	Common Name	FAMILY	FEP GROUP
Name			
			Invertebrates
Bohadschia argus	Leapord sea cucumber	Holothuriidae	CRE-
	-		Invertebrates
Holothuria	Loli	Holothuriidae	CRE-
(Halodeima) atra			Invertebrates
Exocoetidae	Flyingfish	Exocoetidae	CRE-Fishes
Fistularia commersonii	Cornetfish	Fistulariidae	CRE-Fishes
Gerreidae	Mojarras	Gerreidae	CRE-Fishes
Gobiidae	Gobies	Gobiidae	CRE-Fishes
Plectorhinchus sp.	Sweetlips	Haemulidae	CRE-Fishes
Hemiramphidae	Halfbeaks	Hemiramphidae	CRE-Fishes
Kuhliidae	Flagtails	Kuhliidae	CRE-Fishes
Kuhlia mugil	Barred flagtail	Kuhliidae	CRE-Fishes
Kuhlia sp.	Mountain bass	Kuhliidae	CRE-Fishes
Leiognathidae	Ponyfish	Leiognathidae	CRE-Fishes
Malacanthus sp.	Tilefishes	Malacanthidae	CRE-Fishes
Masturus lanceolatus	Sunfish	Molidae	CRE-Fishes
Monacanthidae	Filefishes	Monacanthidae	CRE-Fishes
Monodactylus	Silver batfish	Monodactylidae	CRE-Fishes
argenteus			
Gymnothorax sp.	Moray eels	Muraenidae	CRE-Fishes
Enchelycore pardalis	Dragon eel	Muraenidae	CRE-Fishes
Gymnothorax	Yellowmargin moray eel	Muraenidae	CRE-Fishes
flavimarginatus			
Gymnothorax	Giant moray eel	Muraenidae	CRE-Fishes
Javanicus Commothonan moninoa	Spotted money colo	Munaanidaa	CDE Eichea
Gymnolnorax moringa	Spotted moray eels	Muraenidae	CRE-Fisnes
Gymnoinorax	Undulated moray eer	Muraenidae	CKE-Fisnes
Ratoidea	Ravs	Batoidea	CRF-Fishes
Aetobatus parinari	Fagle ray	Myliobatidae	CRE-Fishes
Scolonsis	Monogram monocle bream	Nomintoridao	CRE-Fishes
monogramma	Wonogram monocie oreani	Reinipteriuae	CRE-Fishes
Pempheris sp.	Nurse shark	Pempheridae	CRE-Fishes
Pempheridae	Sweepers	Pempheridae	CRE-Fishes
Cvprinidae	Prettyfins	Cyprinidae	CRE-Fishes
Polvnemus sp.	Threadfin	Polynemidae	CRE-Fishes
Centropyge flavissima	Angelfishes	Pomacanthidae	CRE-Fishes
Pomacanthus	Emperor angelfish	Pomacanthidae	CRE-Fishes
imperator	Peror angemon		

Correct Scientific	Common Name	FAMILY	FEP GROUP
Name			
Abudefduf	Banded sergeant	Pomacentridae	CRE-Fishes
septemfasciatus			
Abudefduf sp.	Sergeant major	Pomacentridae	CRE-Fishes
Dascyllus trimaculatus	Damselfish	Pomacentridae	CRE-Fishes
Priacanthidae	Bigeyes	Priacanthidae	CRE-Fishes
Heteropriacanthus	Glasseye	Priacanthidae	CRE-Fishes
cruentatus			
Priacanthus blochii	Paeony bulleye	Priacanthidae	CRE-Fishes
Priacanthus hamrur	Moontail bullseye	Priacanthidae	CRE-Fishes
Priacanthus sp.	Bigeye squirrelfish	Priacanthidae	CRE-Fishes
Pseudochromidae	Dottybacks	Pseudochromidae	CRE-Fishes
Scorpaenidae	Scorpionfishes	Scorpaenidae	CRE-Fishes
Pterois sp.	Lionfish	Scorpaenidae	CRE-Fishes
Synanceia sp.	Stonefish	Synanceiidae	CRE-Fishes
Sphyraenidae	Small barracuda	Sphyraenidae	CRE-Fishes
Sphyraena barracuda	Great barracuda	Sphyraenidae	CRE-Fishes
Sphyraena forsteri	Bigeye barracuda	Sphyraenidae	CRE-Fishes
Sphyraena helleri	Heller's barracuda	Sphyraenidae	CRE-Fishes
Sphyraena qenie	Blackfin barracuda	Sphyraenidae	CRE-Fishes
Sphyraena sp.	Barracudas (misc)	Sphyraenidae	CRE-Fishes
Syngnathidae	Seahorses	Syngnathidae	CRE-Fishes
Synodontidae	Lizardfish	Synodontidae	CRE-Fishes
Terapon jarbua	Terapon perch	Terapontidae	CRE-Fishes
Zanclus cornutus	Moorish Idol	Zanclidae	CRE-Fishes
Anguilla marmorata	Freshwater eel	Anguillidae	CRE-Fishes
Anomalopidae	Flashlightfishes	Anomalopidae	CRE-Fishes
Antennariidae	Frogfishes	Antennariidae	CRE-Fishes
Apogonidae	Cardinalfish	Apogonidae	CRE-Fishes
Hypoatherina	Silversides	Atherinidae	CRE-Fishes
temminckii			
Aulostomus chinensis	Trumpetfish	Aulostomidae	CRE-Fishes
Balistidae	Triggerfish	Balistidae	CRE-Fishes
Balistapus undulatus	Orangestripe triggerfish	Balistidae	CRE-Fishes
Balistoides	Clown triggerfish	Balistidae	CRE-Fishes
conspicillum			
Balistoides viridescens	Titan triggerfish	Balistidae	CRE-Fishes
Belonidae	Needlefish	Belonidae	CRE-Fishes
Blenniidae	Blennies	Blenniidae	CRE-Fishes
Asterorhombus	Angler flatfish	Bothidae	CRE-Fishes

Correct Scientific	Common Name	FAMILY	FEP GROUP
Name			
cocosensis			
Caesio caerulaurea	Gold banded fusilier	Caesionidae	CRE-Fishes
Caracanthus	Coral crouchers	Scorpaenidae	CRE-Fishes
maculatus			
Chaetodon sp.	Butterflyfishes (misc)	Chaetodontidae	CRE-Fishes
Chaetodon auriga	Butterflyfish (auriga)	Chaetodontidae	CRE-Fishes
Chaetodon ephippium	Saddleback butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon lunula	Racoon butterflyfish	Chaetodontidae	CRE-Fishes
Chaetodon melannotus	Butterflyfish (melanotic)	Chaetodontidae	CRE-Fishes
Chanos chanos	Milkfish	Chanidae	CRE-Fishes
Coptodon zillii	Tilapia	Cichlidae	CRE-Fishes
Amblycirrhitus	Two spotted hawkfish	Cirrhitidae	CRE-Fishes
bimacula			
Cirrhitus pinnulatus	Stocky hawkfish	Cirrhitidae	CRE-Fishes
Neocirrhites armatus	Flame hawkfish	Cirrhitidae	CRE-Fishes
Clupeidae	Herrings	Clupeidae	CRE-Fishes
Conger cinereus	White eel	Congridae	CRE-Fishes
Conger sp.	Conger eels	Congridae	CRE-Fishes
Diodon sp.	Porcupinefish	Diodontidae	CRE-Fishes
Echeneidae	Remoras	Echeneidae	CRE-Fishes
Engraulidae	Anchovies	Engraulidae	CRE-Fishes
Ephippidae	Batfishes	Ephippidae	CRE-Fishes
NA	Bottomfish (misc)		CRE-Fishes
NA	Reef fish (misc)		CRE-Fishes
Oxycheilinus arenatus	Arenatus wrasse	Labridae	CRE-Fishes
Oxycheilinus	Bandcheck wrasse	Labridae	CRE-Fishes
digramma			
Hemigymnus fasciatus	Barred thicklip	Labridae	CRE-Fishes
Gomphosus varius	Bird wrasse	Labridae	CRE-Fishes
Hemigymnus	Blackeye thicklip	Labridae	CRE-Fishes
melapterus			
Halichoeres	Checkerboard wrasse	Labridae	CRE-Fishes
hortulanus		T a hard da a	CDE Ester
Cneuinus sp.	Christman wrasse (misc)		CDE Eighter
I nalassoma trilobatum	Christmas wrasse		CRE-FISNES
Cheilio inermis	Cigar wrasse	Labridae	CRE-Fishes
Thalassoma	Red ribbon wrasse	Labridae	CRE-Fishes
Novgouliahthus	Poelemouer wreese	Labridaa	CDE Fighag
taeniourus	NUCKIHUVEI WIASSE	Lauruat	UNE-1 151185

Correct Scientific	Common Name	FAMILY	FEP GROUP
Name			
Thalassoma lutescens	Sunset wrasse	Labridae	CRE-Fishes
Thalassoma	Surge wrasse	Labridae	CRE-Fishes
purpureum			
Cheilinus trilobatus	Triple tail wrasse	Labridae	CRE-Fishes
Halichoeres	Weedy surge wrasse	Labridae	CRE-Fishes
margaritaceus			
Iniistius aneitensis	Whitepatch wrasse	Labridae	CRE-Fishes
Labridae	Wrasses (misc)	Labridae	CRE-Fishes
Cheilinus chlorourus	Floral wrasse	Labridae	CRE-Fishes
Cheilinus fasciatus	Harlequin tuskfish	Labridae	CRE-Fishes
Kyphosus bigibbus	Rudderfish (biggibus)	Kyphosidae	CRE-Fishes
Kyphosus cinerascens	Rudderfish (cinerascens)	Kyphosidae	CRE-Fishes
Kyphosus cornelii	Western drummer	Kyphosidae	CRE-Fishes
Kyphosus sp.	Rudderfish	Kyphosidae	CRE-Fishes
Kyphosus vaigiensis	Lowfin drummer	Kyphosidae	CRE-Fishes
Mullidae	Goatfish (misc)	Mullidae	CRE-Fishes
Mulloidichthys	Yellowstripe goatfish	Mullidae	CRE-Fishes
flavolineatus			
Mulloidichthys	Orange goatfish	Mullidae	CRE-Fishes
pfluegeri			
Mulloidichthys sp.	Yellow goatfishes	Mullidae	CRE-Fishes
Mulloidichthys	Yellowfin goatfish	Mullidae	CRE-Fishes
vanicolensis			
Parupeneus barberinus	Dash-and-dot goatfish	Mullidae	CRE-Fishes
Parupeneus	Doublebar goatfish	Mullidae	CRE-Fishes
trifasciatus	William Line days of Cist	N112-1	CDE Eisbaa
Parupeneus ciliatus	White-lined goatrish	Mullidae	CRE-Fisnes
Parupeneus	Yellowsaddle goatfish	Mullidae	CRE-Fishes
Parupanaus	Redepot goatfish	Mullidaa	CDE Fichos
hentacanthus	Redspot goatnish	Willingac	CRE-TISIICS
Parupeneus indicus	Indian goatfish	Mullidae	CRE-Fishes
Parupeneus insularis	Parupenus insularis	Mullidae	CRE-Fishes
Parupeneus	Multi-barred goatfish	Mullidae	CRE-Fishes
multifasciatus	Sector Source Sources		
Parupeneus	Side spot goatfish	Mullidae	CRE-Fishes
pleurostigma			
Parupeneus sp.	Banded goatfish (misc)	Mullidae	CRE-Fishes
Siganidae	Rabbitfish	Siganidae	CRE-Fishes
Siganus argenteus	Forktail rabbitfish	Siganidae	CRE-Fishes

Correct Scientific Name	Common Name	FAMILY	FEP GROUP
Siganus spinus	Scribbled rabbitfish	Siganidae	CRE-Fishes
NA	Red algae	Division:	CRE-Algae
		Rhodophyta	
NA	Seaweeds		CRE-Algae

11.4 TIME SERIES CHARTS OF TOTAL CATCH PER MANAGEMENT UNIT SPECIES IN GUAM

VERSION: 3/20/2018 4:45:11 PM

215

VERSION: 3/20/2018 4:45:11 PM

11.5 TIME SERIES CHARTS OF TOTAL CATCH PER MANAGEMENT UNIT SPECIES IN COMMONWEALTH OF NORTHERN MARIANA ISLANDS

11.6 TIME SERIES CHARTS OF TOTAL CATCH PER MANAGEMENT UNIT SPECIES IN AMERICAN SAMOA

