

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE

Pacific Islands Regional Office 1601 Kapiolani Blvd., Suite 1110 Honolulu, Hawaii 96814-4700 (808) 944-2200 • Fax (808) 973-2941

Environmental Assessment

Annual Catch Limit Specifications and Accountability Measures for Pacific Islands Coral Reef Ecosystem Fisheries in 2012 and 2013

Including a Regulatory Impact Review

December 13, 2011

Responsible Agency: Pacific Islands Regional Office (PIRO)

National Marine Fisheries Service (NMFS)

National Oceanic and Atmospheric Administration (NOAA)

Responsible Official: Michael D. Tosatto

Regional Administrator

NMFS PIRO

1601 Kapiolani Blvd., Suite 1110

Honolulu, HI 96814 (808) 944-2200

Responsible Council: Western Pacific Fishery Management Council

1164 Bishop St., Suite 1400

Honolulu, HI 96813

Contact: Kitty M. Simonds

Executive Director (808)522-8220

Abstract

NMFS proposes to specify an annual catch limit (ACL) and accountability measures (AM) for each coral reef ecosystem stock and stock complex of management unit species (MUS) in American Samoa, Guam, the Northern Mariana Islands, and Hawaii. The ACLs and AMs would be applicable in fishing years 2012 and 2013 which begin January 1 and end December 31, annually. The purpose of the action is to comply with provisions of the fishery ecosystem plans (FEP) for American Samoa, the Mariana Archipelago, and Hawaii which require NMFS to specify an ACL for each stock and stock complex in western Pacific coral reef ecosystem fisheries and implement AMs that prevent ACLs from being exceeded, and correct or mitigate overages of ACLs if they occur.

Given the number of individual coral reef ecosystem stocks and stock complexes in each island area, individual species were aggregated into higher taxonomic groups, generally at the family level. A range of ACL specifications was developed for each taxonomic group based on an

analysis of catch data, estimated biomass data, and in consideration of the ratio of estimated catch-to-estimated biomass for each taxonomic group. In general, the ACL specification for each taxonomic group is proposed to be set equal to the level of catch associated with the 75th percentile of the entire catch history for the taxonomic group in each island area. However, species of special management interest, as determined by the Western Pacific Fishery Management Council (Council), were removed from the taxonomic groupings. Separate ACL specifications are proposed for those stocks and set to five percent of each stock's estimated biomass. Additionally, for two individual stocks for which estimates of maximum sustainable yield (MSY) are available, the proposed ACL specification would be set equal to MSY. The proposed ACL specifications were recommended by the Council and were developed in accordance with the approved ACL mechanism described in each FEP, and in consideration of the best available scientific, commercial, and other information.

Currently, near-real time processing of catch information cannot be achieved in any western Pacific coral reef fishery. Therefore, in-season AMs to prevent an ACL from being exceeded (e.g., fishery closures in federal waters) are not possible at this time. For this reason, the AM being proposed for all coral reef ecosystem fisheries is a post-season accounting of the catch each fishing year and evaluation of whether an ACL has been exceeded. Consistent with regulations implementing western Pacific FEPs, if landings of a stock or stock complex exceed the specified ACL in a fishing year, the Council would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage, which may include a recommendation that NMFS implement a downward adjustment to the ACL for that stock complex in the subsequent fishing year, or other measures, as appropriate.

This environmental assessment (EA) evaluates the potential environmental impacts of the proposed ACL specifications in fishing years 2012 and 2013. The EA includes a description of the information and methods used by the Council to develop the proposed ACLs. The analysis in this EA indicates that the proposed ACL specifications and AMs are not expected to change the conduct of any western Pacific coral reef fishery, so there would be no large or adverse environmental effects on target, non-target, or bycatch species, or on protected species that may interact with coral reef ecosystem fisheries. The proposed ACLs and AMs are not expected to conflict with ongoing fishery management activities and programs conducted by other federal agencies, local resource management agencies or communities, or result in any impacts to coastal or marine areas, including designated essential fish habitat, habitat areas of particular concern, critical habitat, marine protected areas, or unique areas. The specification of ACLs and implementation of AMs are part of a suit of management measures in coral reef fisheries of the western Pacific intended to promote the sustainable harvest of coral reef fishery resources while preventing overfishing from occurring which would have positive long-term impacts on fishery participants and fishing communities.

NMFS is seeking public comment on the proposed rule to specify ACLs and implement AMs for the coral reef ecosystem fisheries of the western Pacific. Instructions on how to comment on the proposed rule can be found by searching on RIN 0648-XA674 at www.regulations.gov, or by contacting the responsible official or Council at the above address.

Content

1.	Background Information	9
	1.1 Purpose and Need	11
	1.2 Proposed Action	11
	1.3 Decision to be Made	12
	1.4 Public Involvement	13
2.	Description of the Alternatives Considered	14
	2.1 Development of the Alternatives	14
	2.2 ACL Alternatives for Coral Reef Ecosystem MUS in 2012 and 2013	31
	2.2.1 Alternative 1: No Action (Status Quo)	32
	2.2.2 Alternative 2: Specify ACLs based on Arithmetic Mean of the Catch	32
	2.2.3 Alternative 3: Specify ACLs based on the 75 th Percentile of the Catch (Preferred)	33
	2.2.4 Alternative 4: Specify ACLs based on the 95 th Percentile of the Catch	33
	2.3 Alternatives Not Considered in Detail	37
	2.3.1 Specification of ACLs for PRIA CREMUS	
	2.3.2 Specification of In-season AMs	37
3.	Potentially Affected Environment and Potential Impacts of the Proposed ACL Specificatio 39	ns
	3.1 Affected Coral Reef Fisheries and Potential Impacts	41
	3.1.1 American Samoa Coral Reef Fisheries and Potential Impacts	41
	3.1.2 Guam Coral Reef Fisheries and Potential Impacts	44
	3.1.3 CNMI Coral Reef Fisheries and Potential Impacts	48
	3.1.4 Hawaii Coral Reef Fisheries and Potential Impacts	50
	3.2. Affected Fishing Communities and Potential Impacts	53
	3.2.1American Samoa Fishing Community	53
	3.2.2 Guam Fishing Community	54
	3.2.3. CNMI Fishing Community	54
	3.2.4 Hawaii Fishing Community	55
	3.3. Potentially Affected Resources and Potential Impacts	55
	3.3.1 American Samoa Resources and Potential Impacts	55
	3.3.1.1 Potentially Affected Target, Non-target Stocks, and Bycatch in American Sam Coral Reef Fisheries	
	3.3.1.2 Potentially Affected Protected Resources in American Samoa	57
	3.3.2 Guam Potentially Affected Resources and Potential Impacts	60

3.3.2.1 Potentially Affected Target, Non-target Stocks, and Bycatch in Guam Coral I Fisheries	
3.3.2.2 Potentially Affected Protected Resources in Guam	
3.3.3 CNMI Potentially Affected Resources and Potential Impacts	65
3.3.3.1 Potentially Affected Target, Non-target Stocks, and Bycatch in the CNMI Co Reef Fisheries	
3.3.3.2 Potentially Affected Protected Resources in the CNMI	67
3.3.4 Hawaii Potentially Affected Resources and Potential Impacts	70
3.3.4.1 Potentially Affected Target, Non-target Stocks, and Bycatch in Hawaii Coral Fisheries	
3.3.4.2 Potentially Affected Protected Resources in Hawaii	72
3.4 Potential Impacts to Essential Fish Habitat and Habitat Areas of Particular Concern	74
3.5 Potential Impacts on Fishery Administration and Enforcement	77
3.5.1 Federal Agencies and the Council	77
3.5.2 Local Agencies	78
3.6 Environmental Justice	79
3.7 Climate Change	79
3.8 Additional Considerations	80
3.8.1 Overall Impacts	80
3.8.2 Cumulative Effects of the Proposed Action.	80
4. Consistency with Other Applicable Laws	85
4.1 National Environmental Policy Act	85
4.1.1 Preparers and Reviewers	85
4.1.2 Coordination with others	85
4.1.3 Public Coordination	85
4.2 Endangered Species Act	86
4.3 Marine Mammal Protection Act	87
4.4 Coastal Zone Management Act	87
4.5 Paperwork Reduction Act	87
4.6 Regulatory Flexibility Act	88
4.7 Administrative Procedures Act	89
4.8 Executive Order 12898: Environmental Justice	90
4.9 Executive Order 12866	90
4.10 Information Quality Act	91
5.0 References	92

Appendix A	List of CREMUS Comprising Each Taxonomic Group by FEP Area	97
Appendix B	Analysis of Catch-to-Biomass of Western Pacific CREMUS by FEP Area	164
Appendix C	U.S. Pacific Reef Fish Biomass Estimates Based on Visual Survey Data	194
Appendix D	Regulatory Impact Review	212
	Tables	
Table 1. Tier :	5 ABC Control Rule (Data poor, Ad hoc Approach to Setting ABCs)	10
	nated total catch of CREMUS groupings in American Samoa, including perce cumulative percent of landings (1990-2008)	_
	nated total catch of CREMUS groupings in Guam, including percentage landing percent of landings (1985-2008)	
	nated total catch of CREMUS groupings in CNMI, including percentage landing percent of landings (2000-2008)	
	reported catch of CREMUS groupings in Hawaii, including percentage landing percent of landings (1985-2008)	
Table 6. Final	CREMUS grouping for ACL specifications in American Samoa	19
Table 7. Final	CREMUS grouping for ACL specifications in Guam	20
Table 8. Final	CREMUS grouping for ACL specifications in CNMI	20
Table 9. Final	CREMUS grouping for ACL specifications in Hawaii	21
Table 10. Met	rics of recent catch (in lb) for American Samoa CREMUS groupings	23
Table 11. Met	rics of recent catch (in lb) for Guam CREMUS groupings	24
Table 12. Met	rics of recent catch (in lb) for CNMI CREMUS groupings	24
Table 13. Met	rics of recent catch (in lb) for Hawaii CREMUS groupings	25
	mated stock biomass (in lb) of reef sharks, humphead wrasse and bumphead ll island areas	27
	C and Council Proposed ABC and ACL recommendations and average catch (erican Samoa CREMUS	
	C and Council Proposed ABC and ACL recommendations and average catch (riana CREMUS (Guam)	
	C and Council Proposed ABC and ACL recommendations and average catch (riana CREMUS (CNMI)	
	C and Council Proposed ABC and ACL recommendations and average catch (vaii CREMUS	
Table 19. ACI	L alternatives (in lb) for American Samoa CREMUS in 2012 and 2013	33
Table 20. ACI	L alternatives (in lb) for Guam CREMUS in 2012 and 2013	34

Table 21. ACL alternatives (in lb) for CNMI CREMUS in 2012 and 2013
Table 22. ACL alternatives (in lb) for Hawaii CREMUS in 2012 and 2013
Table 23. Non ESA-listed marine mammals occurring around American Samoa
Table 24. Seabirds occurring in American Samoa
Table 25. Non-ESA listed marine mammals occurring around the Mariana Archipelago 63
Table 26. Non-ESA listed marine mammals occurring around the Mariana Archipelago 68
Table 27. Non-ESA listed marine mammals occurring around Hawaii
Table 28. EFH and HAPC for Western Pacific FEP MUS
T:
Figures
Figure 1. Relationship between OFL, ABC, ACL, and ACT
Figure 2. Estimated commercial landings of reef fish in American Samoa from 1982 to 2010 42
Figure 3. Number of vessels participating in the American Samoa coral reef fishery from 1986 to 2010
Figure 4. Estimated total landings of reef fish (commercial and non-commercial) in Guam from 1982 to 2009
Figure 5. Number of vessels participating in the Guam coral reef fishery from 1982 to 2009 46
Figure 6. Estimated commercial landings of reef fishes in the CNMI from 1981 to 2009 49
Figure 7. Number of vessels participating in the CNMI coral reef fishery from 2000 to 2010 49
Figure 8. Reported Commercial landings of reef fishes in the Hawaii from 1948 to 2010 51

Acronyms and Abbreviations

ABC – Acceptable Biological Catch

ACL – Annual Catch Limit

ACT – Annual Catch Target

AM – Accountability Measure

CNMI or NMI (Commonwealth of the Northern Mariana Islands)

CREMUS – Coral Reef Ecosystem Management Unit Species

Council - Western Pacific Fishery Management Council

CPUE – Catch Per Unit of Effort

CRED – Coral Reef Ecosystem Division

DAWR – Guam Division of Aquatic and Wildlife Resources

DMWR – American Samoa Department of Marine and Wildlife Resources

DFW – Northern Mariana Islands Division of Fish and Wildlife

EA – Environmental Assessment

EC – Ecosystem Component

EEZ – Exclusive Economic Zone

FEP – Fishery Ecosystem Plan

FMP - Fishery Management Plan

FR – Federal Register

HDAR – Hawaii Division of Aquatic Resources

MHI – Main Hawaiian Islands

Magnuson-Stevens Act – Magnuson-Stevens Fishery Conservation and Management Act

MFMT – Maximum Fishing Mortality Threshold

MSST - Minimum Stock Size Threshold

MSY - Maximum Sustainable Yield

MUS - Management Unit Species

NMFS – National Marine Fisheries Service

NOAA – National Oceanic and Atmospheric Administration

OFL – Overfishing Limit

OY - Optimum Yield

PIFSC - NMFS Pacific Islands Fisheries Science Center

PIRO - Pacific Islands Regional Office

RAMP – Rapid Assessment Monitoring Program

SCREFP - Special Coral Reef Ecosystem Fishing Permit

SD – Standard Deviation

SDC - Status Determination Criteria

SSC – Scientific and Statistical Committee

WPacFIN - Western Pacific Fisheries Information Network

1. Background Information

Fisheries for coral reef ecosystem management unit species (CREMUS) in federal waters of the exclusive economic zone (EEZ; generally 3-200 nmi) around the U.S. Pacific Islands are governed by one of four fishery ecosystem plans (FEP) developed by the Western Pacific Fishery Management Council (Council) and implemented by the National Marine Fisheries Service (NMFS) under the authority of the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act). Three of the FEPs are archipelagic-based and include the American Samoa Archipelago FEP, the Hawaii Archipelago FEP, and the Mariana Archipelago FEP, which covers federal waters around Guam and the Commonwealth of the Northern Mariana Islands (CNMI). The fourth FEP covers federal waters of the U.S. Pacific remote island areas (PRIA) which include Palmyra Atoll, Kingman Reef, Jarvis Island, Baker Island, Howland Island, Johnston Atoll, and Wake Island. For each FEP, federal regulations at 50 CFR §665 defines CREMUS to include all coral reef associated species, families or subfamilies which spend the majority of their non-pelagic (post settlement) life stages within waters less than or equal to 50 fathoms (300 feet) in total depth. CREMUS do not include species defined in other sections of 50 CFR §665 as bottomfish, crustacean, precious coral or pelagic management unit species (MUS).

Federal requirements for coral reef ecosystem fisheries of the western Pacific include a prohibition on the use of destructive and non-selective gear methods, vessel identification and gear marking requirements. A special coral reef ecosystem fishing permit (SCERFP) and logbook reporting is also required for harvesting certain CREMUS defined in federal regulations as Potentially Harvested Coral Reef Taxa, and for fishing with new gear methods, or fishing in designated low-use MPAs. Federal requirements also direct NMFS to specify an annual catch limit (ACL) and accountability measures (AM) for each coral reef ecosystem stock and stock complex¹, as recommended by the Council, and considering the best available scientific, commercial, and other information about the fishery for that stock or stock complex.

Overview of the ACL Specification Process

In accordance with the Magnuson-Stevens Act and the FEPs, there are three required elements in the development of an ACL specification. The first requires the Council's Scientific and Statistical Committee (SSC) to calculate an acceptable biological catch (ABC) that is set at or below the stock or stock complex's overfishing limit (OFL). The OFL is an estimate of the catch level above which overfishing is occurring. ABC is the level of catch that accounts for the scientific uncertainty in the estimate of OFL and other scientific uncertainty. To determine the appropriate ABC, the ACL mechanism described in the FEPs includes a five-tiered system of acceptable biological catch control rules that account for varying levels of scientific data available for a given fishery.

When calculating an ABC for a stock or stock complex, the SSC must first evaluate the information available for the stock and assign the stock or stock complex into one of the five

-

¹ The Magnuson-Stevens Act defines the term "stock of fish" to mean a species, subspecies, geographic grouping, or other category of fish capable of management as a unit. Federal regulations at 50 CFR §660.310(c) defines "stock complex" to mean a group of stocks that are sufficiently similar in geographic distribution, life history, and vulnerabilities to the fishery such that the impact of management actions on the stocks is similar.

tiers. The SSC must then apply the control rule assigned to that tier to determine ABC. For data poor stocks like CREMUS where only catch data are available and OFL is unknown, ABC is calculated by the SSC based on the Tier 5 ABC control rule (Tier 5: Data poor, Ad hoc Approach to Setting ABCs) which directs the SSC to multiply the average catch from a time period when there is no quantitative or qualitative evidence of declining abundance ("Recent Catch") by a factor based on a qualitative estimate of relative stock size or biomass (B) in the year of management. When it is not possible to analytically determine B relative to the biomass necessary to produce the maximum sustainable yield (MSY) from the fishery, or B_{MSY} , the process allows for an approach based on informed judgment, including expert opinion and consensus-building methods. Table 1 provides a summary of the Council's default ABC control rule for data poor stocks.

Table 1. Tier 5 ABC Control Rule (Data poor, Ad hoc Approach to Setting ABCs)

	11 8 /
If estimate of B is above B _{MSY}	ABC = 1.00 x Recent Catch
If estimate of B is above minimum stock size threshold (MSST), but below B_{MSY}	ABC = 0.67 x Recent Catch
If estimate of B is below MSST (i.e., overfished)	$ABC = 0.33 \times Recent Catch$

The ACL process also allows the SSC to utilize any other information deemed useful to establish ABC and may recommend an ABC that differs from the results of the default ABC control rule calculation based on factors such as data uncertainty, recruitment variability, declining trends in population variables, and other factors determined relevant by the SSC. However, the SSC must explain its rationale.

The second element requires the Council to determine an ACL that may not exceed the SSC recommended ABC. The process includes methods by which the ACL may be reduced from the ABC based on social, economic, and ecological considerations, or management uncertainty (SEEM). An ACL set below the ABC further reduces the probability that actual catch will exceed the OFL and result in overfishing.

The third and final element in the ACL process is the inclusion of AMs. There are two categories of AMs, in-season AMs and AMs that make adjustments to an ACL if it is exceeded. In-season AMs prevent an ACL from being exceeded and may include, but are not limited to, closing the fishery, closing specific areas, changing bag limits, or other methods to reduce catch. An annual catch target (ACT) may also be used in the system of AMs so that an ACL is not exceeded. An ACT is the management target of the fishery and accounts for management uncertainty in controlling the actual catch at or below the ACL.

If the Council determines that an ACL has been exceeded, the Council may recommend as an AM, that NMFS reduce the ACL in the subsequent fishing year by the amount of the overage. In determining whether an overage adjustment is necessary, the Council would consider the magnitude of the overage and its impact on the affected stock's status. Additionally, if an ACL is exceeded more than once in a four-year period, the Council is required to re-evaluate the ACL process, and adjust the system, as necessary, to improve its performance and effectiveness. Figure 1 illustrates the relationship between the terms used in this section.

For more details on the specific elements of the ACL specification mechanism and process, see Amendment 1 to the PRIA FEP, Amendment 2 to the American Samoa Archipelago FEP, Amendment 2 to the Mariana FEP, Amendment 3 to the Hawaii Archipelago FEP, and the final implementing regulations at 50 CFR §665.4 (76 FR 37285, June 27, 2011).

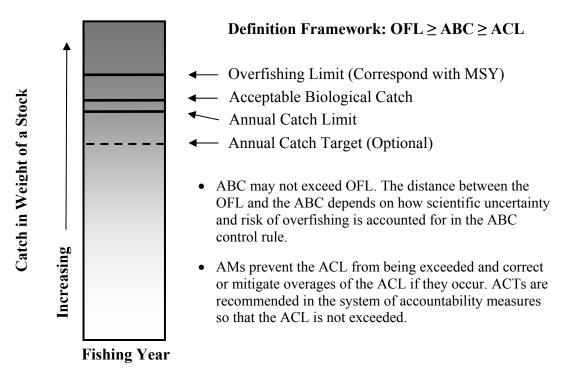


Figure 1. Relationship between OFL, ABC, ACL, and ACT

1.1 Purpose and Need

ACLs are needed in order to comply with the Magnuson-Stevens Act and provisions of the FEPs for American Samoa, the Mariana Archipelago, and Hawaii which require NMFS to specify an ACL for each stock and stock complex in western Pacific coral reef ecosystem fisheries. The fishery management objective of this action is to specify an ACL for all western Pacific coral reef ecosystem stocks and stock complexes that will prevent overfishing from occurring, and ensure long-term sustainability of the resource while allowing fishery participants to continue to benefit from its utilization. AMs also are needed to correct or mitigate overages of the ACL should they occur.

1.2 Proposed Action

NMFS proposes to specify an ACL for each coral reef ecosystem stock and stock complex managed under the FEPs for American Samoa, the Marianas (which includes Guam and the CNMI) and Hawaii. The proposed ACL specifications are based on the recommendations of the Council which were developed in accordance with the approved ACL mechanism described in the FEPs and implementing federal regulations at 50 CFR §665.4, and considering the best available scientific, commercial, and other information.

The ACL for each stock and stock complex would be specified for the 2012 and 2013 fishing years which begin on January 1 and end on December 31, annually. Each year, in each island area, catches would be counted towards the ACL for each coral reef ecosystem stock and stock complex starting on January 1 and continuing through December 31 based on catch data collected by local resource management agencies through their respective fishery monitoring programs², and by NMFS through federal logbook reporting.

Pursuant to 50 CFR 665.4, when an ACL for any stock or stock complex is projected to be reached, based on best available information, NMFS will restrict fishing for that stock or stock complex in federal waters around the applicable U.S. EEZ to prevent the ACL from being exceeded. The restriction may include, but is not limited to closure of the fishery, closure of specific areas or restriction in effort (76 FR 37286, June 27, 2011). However, in-season restrictions are not possible for any coral reef ecosystem fishery at this time because catch statistics are generally not available until at least six months after the data has been collected (see Section 2.3.2 for more details on data collection). For this reason, NMFS also proposes to implement the Council's recommended AM which requires the Council to conduct a post-season accounting of the annual catch for each stock and stock complex relative to its ACL immediately after the end of the fishing year. If landings of any stock or stock complex exceed the specified ACL in a fishing year, the Council would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage. NMFS would implement the Council's recommended action, which could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year, or other measures, as appropriate. Additionally, as a performance measure specified in each FEP, if any ACL is exceeded more than once in a four-year period, the Council is required to re-evaluate the ACL process, and adjust the system, as necessary, to improve its performance and effectiveness.

1.3 Decision to be Made

After considering public comments on the proposed action and alternatives considered, NMFS will specify ACLs and AMs for coral reef ecosystem stocks and stock complexes in American Samoa, CNMI, Guam and Hawaii for fishing years 2012 and 2013. The Regional Administrator of the NMFS Pacific Islands Regional Office (PIRO) will also use the information in this environmental assessment to make a determination about whether the selected ACL specifications and AMs would be a major federal action with the potential to have a significant environmental impact that would require the preparation of an environmental impact statement.

² Catch data for coral reef fisheries in each island area are collected at the lowest taxonomic level possible by state and territorial fisheries agencies in American Samoa, the CNMI, Guam, and Hawaii. The data are then expanded using algorithms developed by NMFS Pacific Islands Fisheries Science Center (PIFSC), Western Pacific Fisheries Information Network (WPacFIN) to generate estimates of total catches from both commercial and non-commercial sectors, except in Hawaii where total catch is based only on catch reported by the commercial fishing sector, as required under State law.

1.4 Public Involvement

At its 151st and 152nd meetings, the Council considered and discussed issues relevant to ACL and AM specifications for western Pacific coral reef ecosystem stocks and stock complexes in American Samoa, Guam, the CNMI, and Hawaii including ABC recommendations of the 107th and 108th SSC, and the range of ACLs considered in this document. The 107th and 108th SSC meetings were held June 13-15, 2011 and October 17-19, 2011, respectively, while the 151st and 152nd Council meetings were held June 15-18, 2011 and October 19-22, 2011, respectively. All meetings were open to the public and advertised through notices in the Federal Register (76 FR 30107, May 24, 2011 and; 76 FR 60004; September 28, 2011) and on the Council's website.

NMFS is seeking public comment on the proposed rule to specify ACLs and implement AMs for the coral reef ecosystem fisheries of the western Pacific. Instructions on how to comment on the proposed rule can be found by searching on RIN 0648-XA674 at www.regulations.gov, or by contacting the responsible official or Council at addresses on the cover page.

2. Description of the Alternatives Considered

The alternatives considered in this document are a range of ACL specifications for coral reef stocks and stock complexes in American Samoa, Guam, CNMI and Hawaii. Although OFL and ABC are part of the ACL process, they are not part of the proposed federal action because OFL is unknown and has not been determined for any coral reef ecosystem stock or stock complex. Additionally, ABCs were previously calculated by the Council's SSC at its 107th and 108th meetings, in accordance with the approved ACL mechanism described in the FEPs and implementing federal regulations at 50 CFR §665.4, and after consideration of the best available scientific, commercial, and other information. However, a detailed discussion of OFL and calculation of ABC is included for informational purposes.

2.1 Development of the Alternatives

The SSC and Council developed the ABC and ACL recommendations in accordance with the Magnuson-Stevens Act and federal regulations at 50 CFR §665.4 that implement the ACL specification mechanism of the FEPs described in Section 1. This section summarizes the data, methods, and procedures considered in SSC and Council deliberations, including the Council's ACL specification document reviewed by the SSC and Council (WPFMC 2011). A full report of the 107th and 108th SSC and the 151st and 152nd Council deliberations can be found on the Council website at: www.wpcouncil.org.

Determining the level of species aggregations

CREMUS in each FEP area are defined to include all coral reef associated species, families or subfamilies which spend the majority of their non-pelagic (post settlement) life stages within waters less than or equal to 50 fathoms in total depth (75 FR 2198, January 14, 2010). However, CREMUS do not include species defined in 50 CFR §665 as a bottomfish MUS, crustacean MUS (i.e., lobsters, kona crab and deepwater shrimps), precious coral MUS (i.e., black, pink and bamboo corals) or pelagic MUS (e.g., tunas and billfish). In the U.S. Pacific Islands, fisheries for CREMUS occur almost exclusively within state and territorial waters. However, the inclusion of all coral reef associated species in the FEPs was intended to be a proactive measure so that data could be collected if coral reef fisheries were to expand into the U.S. EEZ, and so that ecosystem considerations could be integrated into the management regime of the FEPs. Therefore, CREMUS include stocks are currently harvested by fishers as well as hundreds of stocks that are not generally harvested or retained in either state or federal waters.

Recognizing that an annual specification of hundreds of individual ABCs and ACLs would be administratively impossible to implement, monitor and enforce, the Council at its 151st meeting concurred with the 107th SSC's recommendation to aggregate individual CREMUS of each island area into higher taxonomic groups, and specify an ACL for each taxonomic group that comprises the top 90% of the total coral reef fish catch over the available catch time series. To accomplish this, individual CREMUS in each island area were combined into their respective taxonomic group, generally at the family level. The taxonomic groupings also include general categories like, "miscellaneous reef fish," "miscellaneous bottomfish," and "miscellaneous shallow bottomfish" which are categories established in the data collection system for species that are not identified to the species or family level. Species that were identified, but not associated with any of the major harvested taxonomic families and individually comprised a

small percentage of the catch were included in the categories "other CRE-finfish" or "other invertebrates"

The catch percentage contribution of each taxonomic group was then calculated relative to the total estimated CREMUS landings throughout the available time series, and the results were sorted in order of decreasing value. Cumulative percentages were calculated by adding the respective cumulative percent contribution with the succeeding value until a 90% cut-off was reached. The taxonomic groups comprising the remaining 10% were then grouped into a single multi-species complex for the purposes of the ACL specification. However, for the purposes of establishing ACLs, bumphead parrotfish (*Bolbometopon muricatum*), humphead or Napoleon wrasse (*Cheilinus undulatus*) and reef sharks were removed from the taxonomic level aggregation so that separate ACLs could be specified for these species. These species are generally regarded as a rare occurrence in catch records and underwater visual surveys and may be vulnerable to overfishing, and are, therefore, of special management interest to the Council.

In addition, two coral reef associated Hawaii bottomfish MUS – kahala (*Seriola dumerili*), and taape (*Lutjanus kasmira*) – were included in the Hawaii CREMUS groupings Carangidae (jacks) and Lutjanidae (snapper), respectively, because these species are not considered in the NMFS stock assessments used to establish ACLs for Hawaii bottomfish MUS. Therefore, these species are included in the ACL specifications for Carangidae and Lutjanidae as described in this document.

Tables 2-5 summarize the results of the taxonomic grouping analysis for American Samoa, Guam, the Northern Mariana Islands, and Hawaii, including the percentage of catch relative to the total CREMUS catch from the available time series, and the cumulative catch percentage of all taxonomic groups. Tables 1-4 in Appendix A provide a list of the individual species that comprise each CREMUS grouping by island area as identified through the fishery monitoring programs administered by local resource management agencies, with assistance from NMFS PIFSC Western Pacific Fisheries Information Network (WPacFIN).

Table 2. Estimated total catch of CREMUS groupings in American Samoa, including percentage landings, and cumulative percent of landings (1990-2008)

American Samoa CREMUS Grouping	Total (lb)	% landing	Cumulative %
Acanthuridae – surgeonfish	308,950	15.43	15.43
Lutjanidae – snappers	301,148	15.04	30.46
Selar crumenophthalmus – atule or bigeye scad	239,024	11.94	42.40
Mollusks – turbo snail; octopus; giant clams	197,222	9.85	52.25
Carangidae – jacks	156,244	7.80	60.05
Lethrinidae – emperors	145,665	7.27	67.32
Scaridae – parrotfish ¹	119,908	5.99	73.31
Serranidae – groupers	117,029	5.84	79.15
Other Invertebrates	93,831	4.69	83.84
Other CRE-Finfish	76,463	3.82	87.66
Holocentridae – soldierfish/squirrelfish	52,418	2.62	90.27
Mugilidae – mullets	42,864	2.14	92.42
Misc. bottomfish	38,668	1.93	94.35

American Samoa CREMUS Grouping	Total (lb)	% landing	Cumulative %
Misc. reef fish	38,084	1.90	96.25
Crustaceans – crabs	37,369	1.87	98.11
Labridae – wrasses ²	15,179	0.76	98.87
Kyphosidae – chubs/rudderfish	10,312	0.51	99.39
Mullidae – goatfish	9,349	0.47	99.85
Siganidae – rabbitfish	2,281	0.11	99.97
Reef sharks	354	0.02	99.98
Algae	272	0.01	100.00
Cheilinus undulatus – humphead (Napoleon) wrasse	32	0.00	100.00
Misc. shallow bottomfish	0	0.00	100.00
Bolbometopon muricatum – bumphead parrotfish	0	0.00	100.00

For this analysis, the family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

Table 3. Estimated total catch of CREMUS groupings in Guam, including percentage landings, and cumulative percent of landings (1985-2008)

Guam CREMUS Grouping	Total (lb)	% landing	Cumulative %
Acanthuridae – surgeonfish	1,422,263	15.45	15.45
Carangidae – jacks	930,127	10.11	25.56
Selar crumenophthalmus – atulai or bigeye scad	867,442	9.42	34.98
Other CRE-Finfish	763,148	8.29	43.28
Lethrinidae – emperors	757,290	8.23	51.50
Scaridae – parrotfish ¹	531,492	5.77	57.28
Mullidae – goatfish	501,977	5.45	62.73
Mollusks – turbo snail; octopus; giant clams	499,493	5.43	68.16
Siganidae – rabbitfish	487,905	5.30	73.46
Misc. reef fish	351,660	3.82	77.28
Lutjanidae – snappers	341,795	3.71	81.00
Serranidae – groupers	336,949	3.66	84.66
Mugilidae – mullets	254,362	2.76	87.42
Kyphosidae – chubs/rudderfish	237,629	2.58	90.00
Misc. shallow bottomfish	170,537	1.85	91.86
Crustaceans – crabs	147,209	1.60	93.45
Holocentridae – soldierfish/squirrelfish	146,054	1.59	95.04
Reef sharks	143,925	1.56	96.61
Algae	118,662	1.29	97.89
Labridae – wrasses ²	92,529	1.01	98.90
Cheilinus undulatus – humphead (Napoleon) wrasse	47,880	0.52	99.42
Other Invertebrates	44,962	0.49	99.91
Misc. Bottomfish	5,454	0.06	99.97
<i>Bolbometopon muricatum</i> – bumphead parrotfish	2,917	0.03	100.00

For this analysis, the family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

² For this analysis, the family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

² For this analysis, family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

Table 4. Estimated total catch of CREMUS groupings in CNMI, including percentage landings, and cumulative percent of landings (2000-2008)

CNMI CREMUS Grouping	Total (lb)	% landing	Cumulative %
Lethrinidae – emperors	210,717	31.67	31.67
Carangidae – jacks	134,710	20.24	51.91
Acanthuridae – surgeonfish	49,649	7.46	59.37
Selar crumenophthalmus – atulai or bigeye scad	45,215	6.79	66.16
Serranidae – groupers	37,978	5.71	71.87
Lutjanidae – snappers	30,304	4.55	76.43
Mullidae – goatfish	29,903	4.49	80.92
Scaridae – parrotfish ¹	29,156	4.38	85.30
Other CRE Finfish	27,216	4.09	89.39
Mollusks – turbo snail; octopus; giant clams	16,158	2.43	91.82
Mugilidae – mullets	13,605	2.04	93.86
Siganidae – rabbitfish	12,969	1.95	95.81
Holocentridae – soldierfish/squirrelfish	11,761	1.77	97.58
Labridae – wrasses ²	8,121	1.22	98.80
Kyphosidae – chubs/rudderfish	4,198	0.63	99.43
Misc. reef fish	3,663	0.55	99.98
Cheilinus undulatus – humphead (Napoleon) wrasse	66	0.01	99.99
Misc. bottomfish	57	0.01	100.00
Misc. shallow bottomfish	-	0.00	100.00
Bolbometopon muricatum – bumphead parrotfish	-	0.00	100.00
Reef sharks	-	0.00	100.00
Crustaceans - crabs	-	0.00	100.00
Other Invertebrates	-	0.00	100.00
Algae	-	0.00	100.00

¹ For this analysis, the family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

Table 5. Total reported catch of CREMUS groupings in Hawaii, including percentage landings, and cumulative percent of landings (1985-2008)

Hawaii CREMUS Grouping	Total (lb)	% landing	Cumulative %
Selar crumenophthalmus – atule or bigeye scad	33,559,719	37.10	37
Decapterus macarellus – opelu or mackerel scad	16,302,192	18.02	55
Carangidae – jacks ¹	11,674,677	12.91	68
Other CRE-Finfish	6,006,068	6.64	75
Mullidae – goatfish	5,632,576	6.23	81
Acanthuridae – surgeonfish	4,082,743	4.51	85
Holocentridae – squirrelfish	2,224,674	2.46	88
Mugilidae – mullets	2,095,284	2.32	90
Lutjanidae – snappers ²	2,094,208	2.31	92
Mollusks – turbo snails; octopus; giant clams	1,428,864	1.58	94
Scaridae – parrotfish	1,221,909	1.35	95
Algae	1,131,153	1.25	97

² For this analysis, the family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

Hawaii CREMUS Grouping	Total (lb)	% landing	Cumulative %
Crustaceans – crabs	1,031,345	1.14	98
Other Invertebrates	781,483	0.86	99
Kyphosidae – chubs/rudderfish	625,238	0.69	99
Labridae – wrasses	450,679	0.50	100
Lethrinidae – emperors	103,295	0.11	100
Serranidae – groupers	19,998	0.02	100
Siganidae – rabbitfish	0	0.00	100
Misc. reef fish	0	0.00	100
Misc. shallow bottomfish	0	0.00	100
Misc. bottomfish	0	0.00	100
<i>Bolbometopon muricatum</i> – bumphead parrotfish	0	0.00	100
Cheilinus undulatus – humphead (Napoleon) wrasse	0	0.00	100
Reef sharks	0	0.00	100

Note: *Bolbometopon muricatum* (bumphead parrotfish) and *Cheilinus undulatus* (humphead or Napoleon wrasse) are not known to occur in Hawaii.

In establishing the final taxonomic groupings for which ACLs would be established, one caveat was made for the general categories: "other CRE-finfish," "other invertebrates," "miscellaneous reef fish," "miscellaneous bottomfish," and "miscellaneous shallow bottomfish." If any of these "miscellaneous" taxonomic groups were ranked in the top 90% of the catch (as shown in Tables 2-5 above), they were replaced by one or more family level groups from the bottom 10% that were of similar value in terms of percent catch. The rationale behind moving general categories down was because these categories are not based on any taxonomic or biological reasons and true composition of these categories are will continue to be unknown; therefore they cannot be considered true stock complexes for the purposes of ACL specifications.

In the CNMI, the general category "Other CRE-finfish" fell in the top 90% and comprised 4.09 % of the total catch. This category was replaced by three family groups from the bottom 10%, – Mollusks (turbo snails; octopus; giant clams), Mugilidae (mullets) and Siganidae (rabbitfish) – which comprised 2.43% and 2.04%, and 1.95% of the total landings, respectively. In Guam, the general categories "Other CRE-finfish" and "Misc. reef fish" fell in the top 90% and comprised 8.29% and 3.82% of the total catch, respectively. These categories were replaced with all remaining family level groupings (except bumphead parrotfish, humphead wrasse and reef sharks) as the family level groupings cumulatively comprised less than 12% of the total catch. Therefore, in Guam, all taxonomic family groups comprise 85% of the total CREMUS landings while the general categories and the species of special management interest (i.e., bumphead parrotfish, humphead or Napoleon wrasse and reef sharks) make up the remaining 15% of the total catch.

In general, grouping individual CREMUS to their respective taxonomic families is considered by the SSC to be the most optimal level of aggregation to meet the mandate to specify ACLs in fishing year 2012 and is consistent with National Standard 1 guidelines (50 CFR §660.310(c)) as

¹ Carangidae includes the BMUS, kahala (*Seriola dumerili*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

² Lutjanidae includes BMUS, taape (*Lutjanus kasmira*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

the family groupings consider similarity in life history strategy, morphological, biological and ecological characteristics. While fishermen can and do target individual species within a family group, assessing the vulnerability of individual stocks within a stock complex to fishing activities is difficult because species-level data are not standardized (expanded) for creel survey effort; hence they are inherently more variable than family-level data. Additionally, while it is possible to identify species to the lowest taxonomic level, surveyors differ in their fish identification ability, and presumably, less experienced observers have more difficulty detecting the subtle morphological differences that separate some species. Hence, fish that cannot be identified to the species level are often assigned to a broader taxonomic grouping (Hamm and Tao, 2010), such as a genus or family or even a general category such as "miscellaneous reef fish." In general, the groups that comprise the top 90% of the total catch (or in the case of Guam, the top 85%) frequently interact with the fishery and are most likely to be harvested at a higher rate than the remaining groups which can be considered as incidental or a minor portion of the catch. Therefore, the impacts of management actions on individual stocks would be similar.

While the taxonomic groups comprising the remaining 10% of the catch (or in the case of Guam, the remaining 15%) would be grouped into a single multi-species complex for the purposes of ACL specification, the catch of individual families, and individual species within a family, would continue to be monitored (if identified to the lowest taxonomic level in the original data collection method). If necessary, families and/or species within a family can be removed from any CREMUS grouping in the future for consideration of a separate ACL specification if warranted. Tables 6-9 lists the final taxonomic groupings of CREMUS in American Samoa, Guam, the CNMI and Hawaii for which ACLs will be specified.

Table 6. Final CREMUS grouping for ACL specifications in American Samoa

	American Samoa CREMUS Grouping
	Acanthuridae – surgeonfish
	Lutjanidae – snappers
	Selar crumenophthalmus – atule or bigeye scad
	Mollusks – turbo snail; octopus; giant clams
	Carangidae – jacks
Top 90%	Lethrinidae – emperors
	Scaridae – parrotfish ¹
	Serranidae – groupers
	Holocentridae – squirrelfish
	Mugilidae – mullets
	Crustaceans - crabs
	Other invertebrates
	Other CRE-finfish
	Misc. bottomfish
	Misc. reef fish
Bottom 10%	Labridae – wrasses ²
	Kyphosidae – chubs/rudderfish
	Mullidae – goatfish
	Siganidae – rabbitfish
	Algae

	American Samoa CREMUS Grouping
Bottom 10% (cont).	Misc. shallow bottomfish
Species of Special Management Interest	Cheilinus undulatus – humphead (Napoleon) wrasse
	Bolbometopon muricatum – bumphead parrotfish
	Reef sharks

For ACL specifications, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

Table 7. Final CREMUS grouping for ACL specifications in Guam

	Guam CREMUS Grouping					
	Acanthuridae – surgeonfish					
	Carangidae – jacks					
	Selar crumenophthalmus – atule or bigeye scad					
	Lethrinidae – emperors					
	Scaridae – parrotfish ¹					
	Mullidae – goatfish					
	Mollusks – turbo snail; octopus; giant clams					
Ton 950/	Siganidae – rabbitfish					
Top 85%	Lutjanidae – snappers					
	Serranidae – groupers					
	Mugilidae – mullets					
	Kyphosidae – chubs/rudderfish					
	Crustaceans - crabs					
	Holocentridae – squirrelfish					
	Algae					
	Labridae – wrasses ²					
	Other CRE-finfish					
	Misc. reef fish					
Bottom 15%	Misc. shallow bottomfish					
	Other invertebrates					
	Misc. bottomfish					
Species of Special	Cheilinus undulatus – humphead (Napoleon) wrasse					
Species of Special Management Interest	Bolbometopon muricatum – bumphead parrotfish					
wianagement interest	Reef sharks					

Table 8. Final CREMUS grouping for ACL specifications in CNMI

	CNMI CREMUS Grouping
	Lethrinidae – emperors
	Carangidae – jacks
Top 90%	Acanthuridae – surgeonfish
	Selar crumenophthalmus – atule or bigeye scad
	Serranidae – groupers
	Lutjanidae – snappers

² For ACL specifications, family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

For ACL specifications, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

For ACL specifications, family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

	CNMI CREMUS Grouping
	Mullidae – goatfish
	Scaridae – parrotfish ¹
Top 90% (cont.)	Mollusks – turbo snail; octopus; giant clams
	Mugilidae – mullets
	Siganidae – rabbitfish
	Other CRE-finfish
	Holocentridae – squirrelfish
	Labridae – wrasses ²
	Kyphosidae – chubs/rudderfish
Bottom 10%	Misc. reef fish
Douoili 1070	Misc. bottomfish
	Misc. shallow bottomfish
	Crustaceans - crabs
	Other invertebrates
	Algae
Species of Special	Cheilinus undulatus – humphead (Napoleon) wrasse
Species of Special Management Interest	Bolbometopon muricatum – bumphead parrotfish
	Reef sharks

Table 9. Final CREMUS grouping for ACL specifications in Hawaii

	Hawaii CREMUS Grouping
	Selar crumenophthalmus – akule or bigeye scad
	Decapterus macarellus – opelu or mackerel scad
	Carangidae – jacks ¹
	Mullidae – goatfish
	Acanthuridae – surgeonfish
Top 90%	Holocentridae – squirrelfish
	Mugilidae – mullets
	Lutjanidae – snappers ²
	Mollusks – turbo snails; octopus; giant clams
	Scaridae – parrotfish
	Crustaceans – crabs
	Other invertebrates
	Other CRE-finfish
	Algae
Bottom 10%	Kyphosidae – chubs/rudderfish
	Labridae – wrasses
	Lethrinidae – emperors
	Serranidae – groupers
Species of Special	Reef sharks
Management Interest	

¹ For ACL specifications, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)
² For ACL specifications, family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

Note: Bolbometopon muricatum (bumphead parrotfish) and Cheilinus undulatus (humphead or Napoleon wrasse) do not occur in Hawaii.

NMFS/Council Estimation of OFL

While each FEP describes procedures for establishing limits and reference point values based on standardized values of catch per unit effort (CPUE) and effort (E) which serve as proxies for relative biomass (B_{MSY}) and fishing mortality (F_{MSY}), respectively, neither the Council nor NMFS have determined reference point values for any CREMUS. Previous efforts by the Council through Hawhee (2007) demonstrated that there are still significant issues with standardizing CPUE and E for CREMUS, many of which are caught by multiple gear methods. Often times the data were too variable to discern any trends and the conclusions that could be made were questionable. Therefore, OFL has not been estimated for any individual CREMUS in any island area. Estimates of MSY are available for two CREMUS; akule and opelu in Hawaii (Weng and Sibert 2000); however, these estimates were not used as proxy OFL values because they were not conducted through a formal NMFS stock assessment and did not undergo a peerreview process set by the Council and NMFS. Thus, uncertainty in the estimates is unquantified. For this reason, all CREMUS meet the Tier 5 criteria for level of data as described in the Council's ACL process and are considered data poor stocks.

SSC's Calculation of ABC

For data poor stocks like CREMUS where only catch data are available and OFL is currently unknown, the FEPs require ABC to be calculated based on a default ABC control rule (Tier 5: Data poor, Ad hoc Approach to Setting ABCs) which directs the SSC to multiply the average catch from a time period when there is no quantitative or qualitative evidence of declining abundance ("Recent Catch") by a factor based on a qualitative estimate of relative stock size (B) in the year of management where:

- If estimate of B is above B_{MSY} , then ABC can be set at 1.00 x Recent Catch.
- If estimate of B is above minimum stock size threshold (MSST), but below B_{MSY}, ABC should be set at 0.67 x Recent Catch.
- If estimate of B is below MSST (i.e., overfished), ABC should be set at 0.33 x Recent Catch

Determination of "Recent Catch" to Apply in the ABC Control Rule for Data Poor Stocks
In determining the definition of "Recent Catch" to apply in the ABC control rule for each
CREMUS groupings in American Samoa, CNMI, Guam and Hawaii, the SSC considered a range
of different metrics over the entire time series of catch data available including: (1) the
arithmetic mean; (2) one standard deviation (SD) above the mean; (3) two SDs above the mean;
(4) the geometric mean (one tailed mean); (5) the 75th percentile; and (6) the 95th percentile. The
arithmetic mean takes into consideration extreme values thereby inherently incorporating a larger
fluctuation in the data set while geometric means tend to minimize the effect of extreme values
and the effects are limited to the true fluctuation of the data. The standard deviation added to the
arithmetic mean incorporates the variability and uncertainties above the mean. The 75th

¹ Carangidae includes the BMUS, kahala (*Seriola dumerili*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

² Lutjanidae includes the BMUS, taape (*Lutjanus kasmira*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

percentile on the other hand is the value of an array (in this case the level of catch in terms of pounds) below which 75% of the observations may be found, and similarly the 95th percentile is the value below which 95% of the observations may be found.

Upon reviewing the different metrics over the entire time series, the SSC determined at its 107th meeting that the catch trends over the available time series were extremely variable and not conducive to allowing the SSC to select a stable portion of the time series. SSC members also expressed concern that the recreational fishery was not captured in the catch history for Hawaii and that fishing methods and participation likely have changed over the history of the fisheries. Furthermore, while most of the fishery data collection programs are long-term, some programs were temporarily suspended and restarted when local resources were available, resulting in temporal and spatial inconsistencies which may contribute to the variability in the time series data. Therefore, the SSC did not express support for an approach based on measures of central tendency (i.e., a statistical distribution that is usually measured by the arithmetic mean, mode or median) because of the high probability (50%) of exceeding this catch in any given year. Instead, the SSC recommended using the 75th percentile of the entire catch history for each taxonomic grouping as the definition of "Recent Catch" because the 75th percentile is a non-parametric approach compared to arithmetic and geometric mean. That is, the percentile approach is a distribution free method and does not rely on assumptions that the data are drawn from a given probability distribution. The SSC further noted that utilizing means would be inappropriate since catches (in this case the only available data) tend to assume central tendencies and normality which are mostly violated in cases where there is large variability.

At its 108th meeting, the SSC revisited the issue, but maintained its recommendation to use the 75th percentile because non-parametric measures are a better way to summarize data with considerable inter-annual variability (Chambers et al., 1983; Cleveland et al., 1993). While the median (50th percentile) would also be a robust measure of the long-term trend in such data, using the median of the catch time series would not be practical because the catch set equal to the 50th percentile would be reached 50% of the time. This is far too sensitive for catch data with significant inter-annual variations and impractical for management. The 75th percentile (the upper bound of the inter-quartile range) would result in fewer false triggering events resulting from inter-annual random fluctuations in the catch data series. The values associated with each of the metrics considered by the SSC for each major taxonomic group are listed in Table 10-13 below and measured in pounds (lb).

Table 10. Metrics of recent catch (in lb) for American Samoa CREMUS groupings

CREMUS Grouping		Arit	hmetic mean + Sl	Geome	Geometric mean & percentile			
	Mean	StDev	1SD>mean	2SD>mean	Geomean	75th_%ile	95th_%ile	
Surgeonfish	16,261	12,229	28,490	40,719	12,838	19,516	37,175	
Snapper	15,850	7,025	22,875	29,900	14,324	18,839	27,391	
Atule	14,060	29,337	43,397	72,733	2,330	8,396	63,722	
Mollusk	11,601	9,431	21,032	30,462	6,058	16,694	27,001	
Jacks	8,223	6,996	15,220	22,216	6,304	9,490	17,077	
Emperor	7,667	4,509	12,175	16,684	6,185	7,350	15,112	
Parrotfish ¹	6,311	6,654	12,965	19,619	3,959	8,145	18,278	
Grouper	6,159	1,801	7,961	9,762	5,904	5,600	8,756	

CREMUS		Arit	hmetic mean + Sl	Geometric mean & percentile			
Grouping	Mean	StDev	1SD>mean	2SD>mean	Geomean	75th_%ile	95th_%ile
Squirrelfish	2,759	2,477	5,236	7,713	2,087	2,585	7,304
Mullet	2,679	4,336	7,015	11,351	1,054	2,857	7,727
Crustacean	1,967	1,463	3,430	4,893	1,550	2,136	4,788
Bottom 10% ²	14,991	7,806	22,797	30,603	12,798	18,910	27,287

Table 11. Metrics of recent catch (in lb) for Guam CREMUS groupings

CREMUS		Arit	hmetic mean + SI	Geometric mean & percentile			
Grouping	Mean	StDev	1SD>mean	2SD>mean	Geomean	75th_%ile	95th_%ile
Surgeonfish	59,261	23,308	82,569	105,877	55,015	70,702	101,923
Jacks	38,755	15,313	54,069	69,382	36,360	45,377	60,072
Atule	36,143	38,937	75,081	114,018	18,473	56,514	115,064
Emperor	31,554	12,601	44,155	56,756	29,026	38,720	52,643
Parrotfish ¹	22,146	10,501	32,646	43,147	19,574	28,649	36,477
Goatfish	20,916	9,981	30,897	40,878	18,423	25,367	40,462
Mollusk	20,812	18,126	38,938	57,065	16,788	21,941	43,294
Rabbitfish	20,329	8,321	28,650	36,972	18,560	26,120	29,910
Snappers	14,241	4,854	19,095	23,949	13,413	17,726	19,807
Groupers	14,040	5,754	19,794	25,548	12,894	17,958	21,653
Mullets	10,598	7,533	18,132	25,665	7,840	15,032	23,781
Rudderfish	9,901	5,582	15,483	21,064	8,457	13,247	19,011
Crustacean	6,134	3,747	9,880	13,627	5,203	5,523	12,760
Squirrelfish	6,086	3,771	9,856	13,627	5,135	8,300	12,390
Algae	5,159	8,387	13,546	21,933	1,555	5,329	21,610
Wrasse ²	3,855	2,613	6,469	9,082	3,001	5,195	8,184
Bottom 15%	55,657	30,700	86,357	117,057	47,797	83,214	109,806

¹ For this analysis, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

Table 12. Metrics of recent catch (in lb) for CNMI CREMUS grounings

CREMUS		Arit	hmetic mean + Sl	Geometric mean & percentile			
Grouping	Mean	StDev	1SD>mean	2SD>mean	Geomean	75th_%ile	95th_%ile
Emperor	23,413	11,827	35,240	47,066	19,730	27,466	39,186
Jacks	14,968	8,456	23,424	31,879	12,674	21,512	26,607
Surgeonfish	5,517	2,706	8,223	10,929	4,924	6,884	9,469
Atule	5,024	4,922	9,946	14,868	2,471	7,459	12,419
Grouper	4,220	1,644	5,864	7,507	3,828	5,519	6,179
Snapper	3,367	1,697	5,064	6,760	3,050	3,905	5,968
Goatfish	3,323	2,917	6,239	9,156	2,083	3,670	7,972
Parrotfish ¹	2,672	1,581	4,253	5,833	2,239	3,784	4,832
Mollusk	2,693	3,194	5,887	9,080	853	4,446	7,188
Mullet	2,268	1,427	3,694	5,121	1,536	3,308	3,915
Rabbitfish	1,441	1,427	2,868	4,295	660	2,537	3,633

¹ For this analysis, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)
² For this analysis, family, bottom 10% does not include *Cheilinus undulatus* (humphead or Napoleon wrasse) or reef sharks

² For this analysis, family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

CREMUS		Arit	hmetic mean + SI	Geometric mean & percentile			
Grouping	Mean	StDev	1SD>mean	2SD>mean	Geomean	75th_%ile	95th_%ile
Bottom 10% ²	6,120	4,215	10,336	14,551	4,701	9,820	11,778

¹ For this analysis, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

Table 13. Metrics of recent catch (in lb) for Hawaii CREMUS groupings

CREMUS		Arithn	netic mean + SD	Geomet	Geometric mean & percentile			
Grouping	Mean	StDev	1SD>mean	2SD>mean	Geomean	75th_%ile	95th_%ile	
Akule	571,751	279,394	851,145	1,130,539	494,588	734,271	1,021,010	
Opelu	270,103	78,268	348,371	426,639	259,558	314,858	401,522	
Jacks ¹	157,826	53,671	211,479	265,168	148,840	193,423	233,837	
Goatfish	93,876	38,284	132,160	170,444	86,260	125,813	160,747	
Surgeonfish	68,046	22,305	90,351	112,656	64,627	80,545	102,614	
Snappers ²	34,903	32,326	67,229	99,555	7,927	65,102	79,783	
Squirrelfish	37,078	19,346	56,424	75,769	32,385	44,122	63,317	
Mullets	34,921	64,312	99,233	163,544	18,954	41,112	82,153	
Mollusk	23,814	9,190	33,005	42,195	21,984	28,765	39,481	
Parrotfish	20,365	13,537	33,903	47,440	15,451	33,326	40,127	
Crustaceans	17,189	12,675	29,865	42,540	13,866	20,686	44,090	
Remaining 10%	134,891	85,845	220,736	306,581	121,297	142,282	215,003	

Note: Bolbometopon muricatum (bumphead parrotfish) and Cheilinus undulatus (humphead or Napoleon wrasse) do not occur in Hawaii.

Estimation of Relative Stock Size

To qualitatively estimate stock status (B) relative to B_{MSY} for each CREMUS group, the SSC relied on an analysis of estimated catch-to-biomass presented in Luck and Dalzell (2010) which synthesized the available catch data time series for each taxonomic group with its corresponding biomass estimates as reported by NMFS Pacific Islands Fisheries Science Center (PIFSC), Coral Reef Ecosystem Division (CRED) through their Reef Assessment and Monitoring Program between 2007 and 2010 (Williams, 2010).³ Within each island area, catch-to-biomass comparisons were conducted at three scales: (1) major populated islands; (2) lesser populated or unpopulated islands: and (3) both locations combined (i.e., whole archipelago). The analysis found that the percentage of biomass exploited was minor for most reef fish families, ranging from 22.5% (mullets around Guam) to less than 1% (most other reef fish families in all island areas). The report noted, however, that carangids (jacks), kyphosids (rudderfish) and lethrinids (emperors) tend to have the highest exploitation rates (>50% around Guam and populated islands of the CNMI) but acknowledged that this may be caused by an under-representation in visual surveys and included several references to support this position. When catch-to-biomass

² For this analysis, bottom 10% does not include *Cheilinus undulatus* (humphead or Napoleon wrasse) or reef sharks

¹ Carangidae includes the BMUS, kahala (*Seriola dumerili*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

² Lutjanidae includes the BMUS, taape (*Lutjanus kasmira*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

³ For safety reasons, NMFS CRED visual surveys are restricted to depths shallower than 30m which may result in underestimates in biomass particularly for species with significant deep water distributions such as carangids. Additionally, the impacts of survey divers on fish behavior are difficult to quantify and may also result in underestimates of biomass. Problematic species include emperors, jacks and soldier fishes (Jennings and Polunin 1995, Kulbicki 1988, and Watson and Harvey, 2007).

comparisons were viewed throughout the geographic range of a species for each island area (whole archipelago), estimated exploitation rates did not exceed 10% for any taxonomic group, including carangids, kyphosids and lethrinids. While Luck and Dalzell (2010) and Williams (2010) acknowledged issues with their respective data, these reports are likely to be among the best data available for assessing reef population status in the majority of US Pacific coral reef areas. See Appendix B for the detailed report by Luck and Dalzell (2010) and Appendix C for the report by Williams (2010).

The SSC also considered a temporal analysis of size frequency for dozens of representative CREMUS taxa in American Samoa, Guam and CNMI which were obtained from catch data as well as from fishery independent underwater visual census surveys (WPFMC 2011). A regression analysis was done on each size frequency time series to test for significant trends. To make this trend analysis more meaningful, results of the trends from the catch were compared to results from the underwater census surveys to determine fishing impacts on fish size for each species. Any significant increase in size in the catch and increase in the underwater census surveys was assumed to represent sustainable fishing with no impact on the population. On the other extreme end, a significant decrease in size from catch and decrease from those observed underwater was assumed to indicate substantial impact on the population due to fishing. In American Samoa, most of the species showed significant increases in fish sizes for species caught in the fishery. There were no significant trends (although regression lines were mostly constant to slightly decreasing) for those same species observed in the underwater census surveys. In Guam and CNMI, of those species analyzed, only four species showed a significant increase while 30 showed no significant trend (mostly constant over time). Fourteen showed significant decrease in size over time. No significant trends were seen on the same species from the underwater census surveys.

Based on these analyses which are described in WPFMC (2011) and presented at the 107th SSC and discussed again at the 108th meeting, the SSC noted that stock biomass for the coral reef ecosystem taxonomic groups throughout their range (i.e., whole archipelago) is likely to be above B_{MSY}. Therefore, SSC recommended multiplying the level of catch associated with the 75th percentile for each taxonomic group by 1.0 as provided for under the default Tier 5 ABC control rule with the caveat that the ABC for species of special management interest (i.e., bumphead parrotfish, humphead wrasse and reef sharks) be calculated independently. Although crustaceans and mollusks were not included in the analysis conducted by Luck and Dalzell (2010), the ratio of catch-to-biomass throughout the range of these stock complexes is expected to be similar to those of other coral reef taxonomic groups, and B is likely to be above B_{MSY} for these taxa as well. Therefore, multiplying the level of catch associated with the 75th percentile for these taxa by 1.0, as provided for under the Tier 5 ABC control rule, is also appropriate.

<u>Calculation of ABC for Species with MSY and Species of Special Management Interest</u>

For species for which estimates of MSY are available (i.e. Hawaii akule and opelu), and species of special management interest to the Council (i.e., bumphead parrotfish, humphead wrasse and reef sharks), the SSC recommended alternative methods be used to calculate ABC as the level of information available for these taxa do not allow for a straight forward application of the Tier 5 control rule applied to the taxonomic family groupings.

For Hawaii akule and opelu, which have estimates of MSY by Weng and Sibert (2000), the SSC recommended that ABCs be set equal to the MSY for each stock which are 651,292 lb and 393,563 lb, respectively. During the period 2004-2008, the average annual catch of akule was 221,431 lb or 34% of MSY while the average annual catch of opelu over the same period was 184,533 lb or 47% of MSY. Additionally, it is well documented that both akule and opelu are small coastal pelagic species with fast growth rates, short life spans and high natural mortality rates (Dalzell et al., 1996). As such, they are highly resilient to fishing pressure. The SSC believes it is appropriate to set ABC = MSY because these species are relatively short lived (akule 1+ year and opelu 5 years) with high turn-over and because catches of akule have only occasionally exceeded MSY and catches of opelu are well below MSY. Therefore, B is likely to be above B_{MSY} .

For species of special management interest (bumphead parrotfish, humphead or Napoleon wrasse, and reef sharks), the SSC at its 108th meeting noted that these species occur infrequently in NOAA CRED RAMP surveys and have low overall catch. Therefore, data paucity precludes the utility of the Tier 5 control rule. For reef sharks and humphead wrasse, the SSC recommended setting ABC for each taxa at five percent of the biomass estimated by NOAA PIFSC CRED tow-board diver surveys. However, for bumphead parrotfish, only density data is available and limited to Pagan Island, CNMI (1.61 individuals/per km²), and the American Samoa islands of Tau (1.08 individual/per km²) and Tutuila (0.41 individuals/per km²) (NMFS unpublished data). Density estimates for each archipelago were converted to hectares (ha) and expanded based on total area of hard bottom habitat between 0 and 30 m (Mariana Archipelago: 24,289 ha; American Samoa: 7,790 ha) as estimated by Williams (2010). Expanded densities were then converted to biomass in kg using the average length (94 cm) and the CRED allometric conversion factors (a value: 0.0183; b value: 3.0421). Biomass was then converted back to pounds and ABC was set to 5% of this estimated biomass. Table 14 lists the estimated stock biomass for reef sharks, humphead or Napoleon wrasse and bumphead parrotfish in American Samoa, Guam, the Northern Mariana Islands and Hawaii.

Table 14. Estimated stock biomass (in lb) of reef sharks, humphead wrasse and bumphead parrotfish in all island areas

Island Area	Reef	f sharks	Humph	ead wrasse ¹	Bumphead parrotfish ¹		
	Biomass ²	5% Biomass	Biomass ²	5% Biomass	Biomass	5% Biomass	
American Samoa	26,181	1,309	34,860	1,743	4,699	235	
CNMI	111,997	5,600	40,184	2,009	15,931	797	
Guam	138,830	6,942	39,200	1,960	13,931		
Hawaii	2,231,321	111,566	0	0	0	0	

¹ Bolbometopon muricatum (bumphead parrotfish) and Cheilinus undulatus (humphead or Napoleon wrasse) do not naturally occur in Hawaii

Council ACL and AM Recommendations

At its 151st meeting the Council concurred with the approach and ABC recommendations of its SSC and recommended that the ACL for each coral reef family grouping be set equal to the ABC. The Council noted that although CREMUS are Tier 5 and most lack estimates of MSY and

² Estimated biomass data provided by NMFS, PIFSC, CRED (unpublished data)

OFL, stock biomass (B) throughout the geographic range of a species for each island area (whole archipelago), is likely to be above B_{MSY} (B > B_{MSY}) based on the ratio of catch-to-biomass estimates described in Luck and Dalzell (2010). The Council also noted that for all CREMUS groups, current catch is at or below the SSC recommended ABC values and while MSY for all species except Hawaii akule and opelu are unknown, setting ACL equal to ABC is consistent with NMFS approach for setting ABC for Only Reliable Catch Stocks (ORCS) and would prevent excessive increases in catch.

At its 152nd meeting, the Council maintained its recommendation to set ACL equal to ABC for all CREMUS groups. Regarding species of special management interest (bumphead parrotfish, humphead or Napoleon wrasse and reef sharks), the Council accepted the SSC approach to calculating ABC and recommended setting ACL = ABC. Regarding the ACL of 797 lb for bumphead parrotfish (*Bolbometopon muricatum*) in Guam and CNMI, this ACL would be shared between the two island areas as the ACL was based on the total expanded biomass estimated throughout the Mariana Archipelago which includes both the CNMI and Guam. The Council also expressed concern that the catches from monitoring programs in American Samoa, Guam and CNMI may be under-represented resulting in unrealistically low ABCs and ACLs (See the overview of coral reef fisheries in Section 3.1).

While information on specific patterns of population structure and larval exchange of CREMUS within and across the island archipelagos are limited, several studies on some coral reef species show that there is no significant population structure across the Central Pacific (Craig et al.. 2007, Craig et al., 2010, Eble et al., 2011, Gathier et al., 2010, Timmers et al., 2011, and Shultz et al., 2007). These studies suggest that for some species, unpopulated and protected areas such as the NWHI, the northern islands of the CNMI, Rose Atoll and the Pacific Remote Island Areas could serve as areas that replenish coral reef stocks around populated islands. However, other studies suggest that connectivity may occur at much finer scales (Toonen, 2011, Christie, et al., 2010). As such, relying on an archipelagic catch-to-biomass analysis is appropriate as it considers a CREMUS as a stock throughout its range, and does not rely on discrete population segments. The Council recognized that there is room for refining all ABC/ACL specifications; however, it also determined that the approaches described above are reasonable to meet the statutory mandate to establish ACLs for fishing year 2012, given the limited data available. Table 15-18 list the ABCs recommended by the SSC and the ACLs recommended by the Council for CREMUS in American Samoa, Guam, the Northern Mariana Islands and Hawaii. Also included is the average arithmetic mean of the catch over the last five years (2004-2008).

Table 15. SSC and Council Proposed ABC and ACL recommendations and average catch

(2004-2008) for American Samoa CREMUS

	American Samoa CREMUS	Total	SSC	Council	Mean
	Grouping	Estimated	Proposed	Proposed	Catch (lb)
		Biomass (lb)	ABC (lb)	ACL (lb)	2004-2008
	Acanthuridae – surgeonfish	1,779,286	19,516	19,516	9,468
	Lutjanidae – snappers	338,371	18,839	18,839	13,185
	Selar crumenophthalmus –	N/A	8,396	8,396	3,079
	atule or bigeye scad				
	Mollusks – turbo snail;	N/A	16,694	16,694	7,886
	octopus; giant clams				
Top 90%	Carangidae – jacks	129,955	9,490	9,490	6,273
-	Lethrinidae – emperors	142,349	7,350	7,350	6,872
	Scaridae – parrotfish ¹	964,989	8,145	8,145	3,007
	Serranidae – groupers	251,814	5,600	5,600	5,289
	Holocentridae – squirrelfish	45,721	2,585	2,585	1,552
	Mugilidae – mullets	N/A	2,857	2,857	2,608
	Crustaceans - crabs	N/A	2,248	2,248	1,360
Bottom 10%	Remaining 10% combined ²	>2 million	18,910	18,910	16,556
Species of	Bolbometopon muricatum –	4,699	235	235	0
Special	bumphead parrotfish				
Management	Cheilinus undulatus –	34,860	1,743	1,743	32
Interest	Humphead (Napoleon) wrasse	-			
	Reef Sharks	26,181	1,309	1,309	118

Table 16. SSC and Council Proposed ABC and ACL recommendations and average catch

(2004-2008) for Mariana CREMUS (Guam)

	Mariana CREMUS Grouping	Total	SSC	Council	Mean
	(Guam)	Estimated	Proposed	Proposed	Catch
		Biomass (lb)	ABC (lb)	ACL (lb)	(lb)
					2004-2008
	Acanthuridae – surgeonfish	3,535,142	70,702	70,702	41,420
	Carangidae – jacks	472,124	45,377	45,377	42,822
	Selar crumenophthalmus –	N/A	56,514	56,514	7,312
	atulai or bigeye scad				
	Lethrinidae – emperors	290,557	38,720	38,720	17,056
	Scaridae – parrotfish ¹	1,568,760	28,649	28,649	12,870
To: 050/	Mullidae – goatfish	239,115	25,367	25,367	9,880
Top 85%	Mollusks – turbo snail;	N/A	21,941	21,941	13,083
	octopus; giant clams				
	Siganidae – rabbitfish	N/A	26,120	26,120	10,132
	Lutjanidae – snappers	1,816,674	17,726	17,726	10,679
	Serranidae – groupers	922,895	17,958	17,958	10,020
	Mugilidae – mullets	N/A	15,032	15,032	2,850
	Kyphosidae – chubs/rudderfish	176,229	13,247	13,247	7,258
	Crustaceans - crabs	N/A	5,523	5,523	2,353

For ACL specifications, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

For ACL specifications, family bottom 10% does not include *Cheilinus undulatus* (humphead or Napoleon wrasse) or reef sharks

	Mariana CREMUS Grouping (Guam)	Total Estimated Biomass (lb)	SSC Proposed ABC (lb)	Council Proposed ACL (lb)	Mean Catch (lb)
	Holocentridae – squirrelfish	343,170	8,300	8,300	2004-2008 2,699
	Algae	N/A	5,329	5,329	639
	Labridae – wrasses ²	886,855	5,195	5,195	1,757
Bottom 15%	Other CREMUS (Remaining 15% combined)	>3.4 million	83,214	83,214	22,920
Species of	Bolbometopon muricatum –	15,931	797	797	0
Special	bumphead parrotfish	(Marianas)	(Marianas)	(Marianas)	
Management Interest	Cheilinus undulatus – Humphead (Napoleon) wrasse	39,200	1,960	1,960	795
	Reef sharks	138,830	6,942	6,942	1,113

Table 17. SSC and Council Proposed ABC and ACL recommendations and average catch (2004-2008) for Mariana CREMUS (CNMI)

	Mariana CREMUS Grouping	Total	SSC	Council	Mean
	(CNMI)	Estimated	Proposed	Proposed	Catch
		Biomass (lb)	ABC (lb)	ACL (lb)	(lb)
					2004-2008
	Lethrinidae – emperors	290,557	27,466	27,466	26,970
	Carangidae – jacks	472,124	21,512	21,512	18,530
	Acanthuridae – surgeonfish	3,535,142	6,884	6,884	6,676
	Selar crumenophthalmus –	N/A	7,459	7,459	5,391
	atulai or bigeye scad				,
	Serranidae – groupers	922,895	5,519	5,519	4,511
Top 90%	Lutjanidae – snappers	1,816,674	3,905	3,905	3,712
-	Mullidae – goatfish	922,895	3,670	3,670	3,662
	Scaridae – parrotfish ¹	1,568,870	3,784	3,784	3,675
	Mollusks – turbo snail;	N/A	4,446	4,446	
	octopus; giant clams				3,191
	Mugilidae – mullets	N/A	3,308	3,308	2,877
	Siganidae – rabbitfish	N/A	2,537	2,537	2,180
Bottom 10%	Remaining 10% (combined) ²	>3.4 million	9,820	9,820	8,659
C	Bolbometopon muricatum –	15,931	797	797	N/A
Species of	bumphead parrotfish	(Marianas)	(Marianas)	(Marianas)	
Special	Cheilinus undulatus –	40,184	2,009	2,009	66
Management Interest	Humphead (Napoleon) wrasse				
mieresi	Reef Sharks	111,997	5,600	5,600	0

For ACL specifications, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

For ACL specifications, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

For ACL specifications, family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

² For ACL specifications, bottom 10% does not include *Cheilinus undulatus* (humphead or Napoleon wrasse) or reef sharks

Table 18. SSC and Council Proposed ABC and ACL recommendations and average catch

(2004-2008) for Hawaii CREMUS

	Hawaii CREMUS Grouping	Total Estimated Biomass (lb)	SSC Proposed ABC (lb)	Council Proposed ACL (lb)	Mean Catch (lb)
	Selar crumenophthalmus – akule or bigeye scad ¹	N/A	651,292	651,292	2004-2008 221,431
	Decapterus macarellus – opelu or mackerel scad ¹	N/A	393,563	393,563	184,533
	Carangidae – jacks ²	130,521,134	193,423	193,423	139,398
	Mullidae – goatfish	12,017,286	125,813	125,813	48,671
Tan 000/	Acanthuridae – surgeonfish	104,285,468	80,545	80,545	86,109
Top 90%	Lutjanidae – snappers ³	33,557,777	65,102	65,102	9,057
	Holocentridae – squirrelfish	7,049,398	44,122	44,122	31,808
	Mugilidae – mullets	N/A	41,112	41,112	8,964
	Mollusks – turbo snails; octopus; giant clams	N/A	28,765	28,765	21,361
	Scaridae – parrotfish	76,936,076	33,326	33,326	34,326
	Crustaceans – crabs	N/A	20,686	20,686	18,713
Bottom 10%	Remaining 10% (combined)	>58 million	142,282	142,282	73,081
Species of Special Management Interest	Reef Sharks	2,231,321	111,566	111,566	0

¹ ABC and ACL is based on estimate of MSY by Weng and Sibert (2000)

Regarding AMs, the Council at its 152nd meeting recommended a post-season evaluation of the catch relative to the recommended ACL for each coral reef ecosystem stock and stock complex. If landings of a stock or stock complex exceed the specified ACL in a fishing year, the Council would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage, which may include a recommendation that NMFS implement a downward adjustment to the ACL for that stock complex in the subsequent fishing year, or other measures, as appropriate.

2.2 ACL Alternatives for Coral Reef Ecosystem MUS in 2012 and 2013

Features common to all alternatives

The alternatives considered in this document cover a range of ACL specifications for each coral reef ecosystem stock and stock complex in American Samoa, Guam, the CNMI and Hawaii based on the taxonomic groupings described in Section 2.1, as recommended by the Council. In accordance with the Magnuson-Stevens Act and the ACL mechanism described in all western Pacific FEPs, an ACL specification may not exceed the ABC recommendation made by the Council's SSC. Due to the number of ACL specifications that must be made, the alternatives considered for each taxonomic group in each island area are described in text in Sections 2.2.1-

² Carangidae includes the BMUS, kahala (*Seriola dumerili*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

³ Lutjanidae includes the BMUS, taape (*Lutjanus kasmira*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

2.2.4 while the specific ACL values associated with each alternative are listed in Table 19-22, and are measured in terms of pounds (lb).

Pursuant to 50 CFR 665.4, when an ACL for any stock or stock complex is projected to be reached, based on best available information, NMFS will restrict fishing for that stock or stock complex in federal waters around the applicable U.S. EEZ to prevent the ACL from being exceeded. The restriction may include, but is not limited to closure of the fishery, closure of specific areas or restriction in effort (76 FR 37286, June 27, 2011). However, in-season restrictions are not possible for any fishery at this time because, catch statistics are generally not available until at least six months after the data has been collected (See Section 2.3 for more details on data collection). For this reason, under all alternatives considered, as an AM, the Council would determine as soon as possible after the fishing year whether an ACL for any stock or stock complex had been exceeded. If landings of a stock or stock complex exceed the specified ACL in a fishing year, the Council would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage. NMFS would implement the Council's recommended action, which could include a downward adjustment to the ACL for that stock complex in the subsequent fishing year, or other measures, as appropriate. Additionally, as a performance measure specified in each FEP, if an ACL is exceeded more than once in a four-year period, the Council is required to re-evaluate the ACL process, and adjust the system, as necessary, to improve its performance and effectiveness. Each alternative also assumes continuation of all existing federal and local resource management laws and regulations.

2.2.1 Alternative 1: No Action (Status Quo)

Under this alternative, NMFS would not specify an ACL for any CREMUS in any island area and AMs, which prevent an ACL from being exceeded and correct and mitigate overages of an ACL if they occur, would not be necessary. However, this alternative would not be in compliance with the Magnuson-Stevens Act or the provisions of the FEPs which require ACLs be specified for all stocks and stock complexes. Alternative 1 serves as the baseline for the environmental impact assessment.

2.2.2 Alternative 2: Specify ACLs based on Arithmetic Mean of the Catch

Under this alternative, the ACL for each CREMUS taxonomic group would be set at the value associated with the arithmetic mean of the total catch based the available time series. For all CREMUS taxonomic groups (except American Samoa atule — *Selar crumenophthalmus*), the ACL would be lower than the ABC recommended by the SSC because the ABC was set to the level of catch at which 75% of the catch observations were found to be lower. The arithmetic mean is based on average catch and a mean is almost always lower than the 75th percentile, except in cases of extreme catch variability as occurs in the American Samoa fishery for atule or *Selar crumenophthalmus*.

Under this alternative, the ACL for species of special management interest (bumphead parrotfish, humphead or Napoleon wrasse, and reef sharks) would be set equal to the total estimated biomass.

2.2.3 Alternative 3: Specify ACLs based on the 75th Percentile of the Catch (Preferred)

Under this alternative, the ACL for each CREMUS taxonomic group (except for Hawaii akule and opelu) would be set at the 75th percentile of the total catch based on the available time series. The ACL would be equal to the ABC recommended by the SSC. For Hawaii akule and opelu, the ACL would be set equal to the MSY values estimated by Weng and Sibert (2000) which are 651,292 lb and 393,563 lb, respectively. The ACL for these species would be equal to the respective ABC recommended by the SSC.

Additionally, under this alternative, the ACL for species of special management interest (bumphead parrotfish, humphead or Napoleon wrasse, and reef sharks) would be set at 5 percent of the total estimated biomass. Under this alternative, the ACL for bumphead parrotfish (*Bolbometopon muricatum*) would be shared by both CNMI and Guam.

2.2.4 Alternative 4: Specify ACLs based on the 95th Percentile of the Catch

Under this alternative, the ACL for each CREMUS taxonomic group would be set at the 95th percentile of the catch based on the available time series. For all CREMUS taxonomic groups, the ACL values would exceed the SSC recommended ABCs under this alternative. Although an ACL set at the 95th percentile of the catch history does not conform to the FEP requirements for ACLs because the ACLs would exceed the SSC recommended ABC, this alternative is included because it allows NMFS to evaluate the potential impact of any ACL being exceeded. Additionally, under this alternative, the ACL for species of special management interest (bumphead parrotfish, humphead [Napoleon] wrasse and reef sharks) would be set at 10 percent of the total estimated biomass. Under this alternative, the ACL for bumphead parrotfish (*Bolbometopon muricatum*) would be shared by both CNMI and Guam.

Table 19. ACL alternatives (in lb) for American Samoa CREMUS in 2012 and 2013

American Samoa CREMUS Grouping	Alt. 1	Alt. 2	Alt. 3 (Preferred)	Alt. 4	Recent Ave. Catch
	Status Quo	Arithmetic	75^{th}	95 th	2004-2008
		Mean	Percentile	Percentile	
Acanthuridae –	No ACL	16,261	19,516	37,175	9,468
surgeonfish					
Lutjanidae – snappers	No ACL	15,850	18,839	27,391	13,185
Selar	No ACL	14,060	8,396	63,722	3,079
crumenophthalmus –					
atule or bigeye scad					
Mollusks – turbo snail;	No ACL	11,601	16,694	27,001	7,886
octopus; giant clams					
Carangidae – jacks	No ACL	8,223	9,490	17,077	6,273
Lethrinidae – emperors	No ACL	7,667	7,350	15,112	6,872
Scaridae – parrotfish ¹	No ACL	6,311	8,145	18,278	3,007
Serranidae – groupers	No ACL	6,159	5,600	8,756	5,289
Holocentridae –	No ACL	2,759	2,585	7,304	1,552
squirrelfish					
Mugilidae – mullets	No ACL	2,679	2,857	7,727	2,608
Crustaceans - crabs	No ACL	1,868	2,136	4,788	1,360

American Samoa CREMUS Grouping	Alt. 1	Alt. 2	Alt. 3 (Preferred)	Alt. 4	Recent Ave. Catch
	Status Quo	Arithmetic	75 th	95 th	2004-2008
Remaining 10% combined ²	No ACL	Mean 14,991	Percentile 18,910	Percentile 27,287	16,556
American Samoa Species of Special Management Interest	Alt. 1	Alt. 2	Alt. 3 (Preferred)	Alt. 4	Recent Ave. Catch
G	Status Quo	Estimated Biomass	5% of Estimated Biomass	10% of Estimated Biomass	2004-2008
Bolbometopon muricatum – bumphead parrotfish	No ACL	4,699	235	469	0
Cheilinus undulatus – Humphead (Napoleon) wrasse	No ACL	34,860	1,743	3,486	32
Reef Sharks	No ACL	26,181	1,309	2,618	118

¹ For ACL specifications, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

Table 20. ACL alternatives (in lb) for Guam CREMUS in 2012 and 2013

Guam CREMUS	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Recent
Grouping			(Preferred)		Ave.
					Catch
	Status Quo	Arithmetic	75 th	95 th	2004-2008
		Mean	Percentile	Percentile	
Acanthuridae – surgeonfish	No ACL	59,261	70,702	101,923	41,420
Carangidae – jacks	No ACL	38,755	45,377	60,072	42,822
Selar	No ACL	36,143	56,514	115,064	7,312
<i>crumenophthalmus</i> – atule or bigeye scad					
Lethrinidae – emperors	No ACL	31,554	38,720	52,643	17,056
Scaridae – parrotfish1	No ACL	22,146	28,649	36,477	12,870
Mullidae – goatfish	No ACL	20,916	25,367	40,462	9,880
Mollusks – turbo snail;	No ACL	20,812	21,941	43,294	13,083
octopus; giant clams					
Siganidae – rabbitfish	No ACL	20,329	26,120	29,910	10,132
Lutjanidae – snappers	No ACL	14,241	17,726	19,807	10,679
Serranidae – groupers	No ACL	14,040	17,958	21,653	10,020
Mugilidae – mullets	No ACL	10,598	15,032	23,781	2,850
Kyphosidae –	No ACL	9,901	13,247	19,011	7,258
chubs/rudderfish					
Crustaceans - crabs	No ACL	4,294	5,523	8,932	2,353
Holocentridae –	No ACL	6,086	8,300	12,390	2,699

² For ACL specifications, bottom 10% does not include *Cheilinus undulatus* (humphead or Napoleon wrasse) or reef sharks

Guam CREMUS	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Recent
Grouping			(Preferred)		Ave.
					Catch
	Status Quo	Arithmetic	75 th	95 th	2004-2008
		Mean	Percentile	Percentile	
squirrelfish					
Algae	No ACL	5,159	5,329	21,610	639
Labridae – wrasses2	No ACL	3,855	5,195	8,184	1,757
Other CREMUS	No ACL	55,657	83,214	109,806	22,920
(Remaining 15%					
combined)					
,					
Guam Species of	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Recent
Special Management			(Preferred)		Ave.
Interest			, ,		Catch
	Status Quo	Estimated	5% of	10% of	2004-2008
	_	Biomass	Estimated	Estimated	
			Biomass	Biomass	
Bolbometopon	No ACL	15,931	797	1,593	0
<i>muricatum</i> – bumphead		(Marianas)	(Marianas)	(Marianas)	
parrotfish			, , , , ,		
Cheilinus undulatus –	No ACL	39,200	1,960	3,920	795
Humphead (Napoleon)					
wrasse					
Reef Sharks	No ACL	138,830	6,942	13,883	1,113

Table 21. ACL alternatives (in lb) for CNMI CREMUS in 2012 and 2013

CNMI CREMUS	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Recent
Grouping			(Preferred)		Ave.
					Catch
	Status Quo	Arithmetic	75^{th}	95 th	2004-2008
		Mean	Percentile	Percentile	
Lethrinidae – emperors	No ACL	23,413	27,466	39,186	26,970
Carangidae – jacks	No ACL	14,968	21,512	26,607	18,530
Acanthuridae –	No ACL	5,517	6,884	9,469	6,676
surgeonfish					,
Selar	No ACL	5,024	7,459	12,419	5,391
crumenophthalmus –					
atulai or bigeye scad					
Serranidae – groupers	No ACL	4,220	5,519	6,179	4,511
Lutjanidae – snappers	No ACL	3,367	3,905	5,968	3,712
Mullidae – goatfish	No ACL	3,323	3,670	7,972	3,662
Scaridae – parrotfish ¹	No ACL	2,672	3,784	4,832	3,675
Mollusks – turbo snail;	No ACL	2,693	4,446	7,188	
octopus; giant clams					3,191
Mugilidae – mullets	No ACL	2,268	3,308	3,915	2,877

For ACL specifications, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

For ACL specifications, family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

CNMI CREMUS Grouping	Alt. 1	Alt. 2	Alt. 3 (Preferred)	Alt. 4	Recent Ave.
					Catch
	Status Quo	Arithmetic	75 th	95 th	2004-2008
		Mean	Percentile	Percentile	
Siganidae – rabbitfish	No ACL	1,441	2,537	3,633	2,180
Remaining 10% (combined) ²	No ACL	6,120	9,820	11,778	8,659
CNMI Species of	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Recent
Special Management			(Preferred)		Ave.
Interest					Catch
	Status Quo	Estimated	5% of	10% of	2004-2008
		Biomass	Estimated	Estimated	
			Biomass	Biomass	
Bolbometopon	No ACL	15,931	797	1,593	N/A
<i>muricatum</i> – bumphead		(Marianas)	(Marianas)	(Marianas)	
parrotfish					
Cheilinus undulatus –	No ACL	40,184	2,009	4,018	66
Humphead (Napoleon) wrasse					
Reef Sharks	No ACL	111,997	5,600	11,199	0

Table 22. ACL alternatives (in lb) for Hawaii CREMUS in 2012 and 2013

Hawaii CREMUS	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Recent
Grouping			(Preferred)		Ave.
					Catch
	Status Quo	Arithmetic	75^{th}	95 th	2004-2008
		Mean	Percentile	Percentile	
Selar crumenophthalmus	No ACL	571,751	651,292*	1,021,010	221,431
akule or bigeye scad*	NO ACL				
Decapterus macarellus	No ACL	270,103	393,563*	401,522	184,533
opelu or mackerel scad*	NO ACL				
Carangidae – jacks ¹	No ACL	157,826	193,423	233,837	139,398
Mullidae – goatfish	No ACL	93,876	125,813	160,747	48,671
Acanthuridae –	No ACL	68,046	80,545	102,614	86,109
surgeonfish					
Lutjanidae – snappers ²	No ACL	34,903	65,102	79,783	8,964
Holocentridae –	No ACL	37,078	44,122	63,317	9,057
squirrelfish					
Mugilidae – mullets	No ACL	34,921	41,112	82,153	31,808
Mollusks – turbo snails;	No ACL	23,814	28,765	39,481	21,361
octopus; giant clams		-		-	
Scaridae – parrotfish	No ACL	20,365	33,326	40,127	34,326
Crustaceans – crabs	No ACL	17,189	20,686	44,090	18,713
Remaining 10%	No ACL	134,891	142,282	215,003	73,081
(combined)			•		

For ACL specifications, family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

For ACL specifications, bottom 10% does not include *Cheilinus undulatus* (humphead or Napoleon wrasse) or reef sharks

Hawaii CREMUS	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Recent
Grouping			(Preferred)		Ave.
					Catch
	Status Quo	Arithmetic	75^{th}	95^{th}	2004-2008
		Mean	Percentile	Percentile	
Hawaii Species of	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Recent
Special Management			(Preferred)		Ave.
Interest					Catch
	Status Quo	Estimated	5% of	10% of	2004-2008
		Biomass	Estimated	Estimated	
			Biomass	Biomass	
Reef Sharks	No ACL	2,231,321	111,566	223,132	0

^{*} Indicates ACL values based on estimate of MSY by Weng and Sibert (2000)

2.3 Alternatives Not Considered in Detail

2.3.1 Specification of ACLs for PRIA CREMUS

Although required by the PRIA FEP, ACLs will not be specified for any CREMUS in the PRIA because commercial fishing is prohibited out to 50 nautical miles by Presidential Proclamation 8336 which established the Pacific Remote Island Marine National Monument (74 FR 1565, January 12, 2009), and there is no coral reef ecosystem habitat beyond the monument boundaries. ACLs for non-commercial coral reef ecosystem fisheries within the boundaries of the PRIA monument may be developed in the future through a separate action in accordance with Proclamation 8336, if the Secretary of Commerce determines non-commercial fishing can be allowed, and managed as a sustainable activity. Therefore, until such determination is made, there is a functional equivalent of an ACL of zero for CREMUS in the PRIA.

2.3.2 Specification of In-season AMs

To prevent ACL from being exceeded, federal regulations implementing western Pacific FEPs in 50 CFR 665.4 state that when any ACL is projected to be reach, the Regional Administrator shall inform permit holders that fishing for that stock will be restricted on a specified date. Restrictions may include but are not limited to, closing the fishery, closing specific areas, changing bag limits, or otherwise restricting effort or catch. However, near-real time processing of catch information cannot be achieved in any western Pacific coral reef fishery. Therefore, inseason AMs to prevent an ACL from being exceeded (e.g., fishery closures in federal waters) are not possible at this time.

In each island area, NMFS relies primarily on the fishery data collection programs administered by the respective local resource management agencies. However, these agencies presently do not have the personnel or resources to process catch data in near-real time, and so fisheries statistics are generally not available until at least six months after the data have been collected. While the

¹ Carangidae includes the BMUS, kahala (*Seriola dumerili*) since this species is not included in NMFS bottomfish stock assessments and is a reef associated species.

² Lutjanidae includes the BMUS, taape (*Lutjanus kasmira*) since this species is not included in NMFS bottomfish stock assessments and is a reef associated species.

State of Hawaii has the capability to monitor and track the catch of seven bottomfish species towards specified catch limits, additional resources would be required to extend these capabilities to the hundreds of coral reef ecosystem stocks. Significant resources would also be required to support the establishment of near-real time in-season monitoring capabilities in American Samoa, Guam and the Northern Mariana Islands. Therefore, until resources are made available by NMFS or other sources, the only AMs that are available to fishery managers at this time are actions associated with post-season reviews of the fishery to determine whether an ACL has been exceeded, evaluation of the possible reasons for this, and a downward adjustment to the ACL, if warranted.

While a federal special coral reef ecosystem fishing permit (SCREFP) and logbook reporting are required to fish in federal waters for certain CREMUS defined in federal regulations as Potentially Harvested Coral Reef Taxa, NMFS has only issued one such permit since the requirements were established in 2004. That permit, issued in July 2011, authorizes the culture and harvest of hatchery-produced fingerling of the jack, *Seriola rivoliana* (Carangidae) in a mesh cage towed by a vessel in the U.S. EEZ around Hawaii. As noted in Section 1.3, catches of *Seriola rivoliana* that would occur under this SCREFP would not be counted towards the ACL for Hawaii Carangids (jacks) because they are not wild-caught and were produced from fish culture facilities

NMFS does not anticipate issuing any new SCREFP permits in 2012 or 2013 in any island area and therefore, does not expect to be able to use catch reported through federal logbooks as the basis for implementing in-season closures.

3. Potentially Affected Environment and Potential Impacts of the Proposed ACL Specifications

This section describes the affected fishery and potentially affected fishery resources, other biological and physical resources and potential impacts of the proposed ACL specifications and AMs on these resources. Climate change and environmental justice issues are considered, along with potential impacts to fishing communities, special marine areas, safety, and fishery administration and enforcement.

Resources harvested in coral reef fisheries of the western Pacific are highly diverse, with up to 700 species appearing in catch records in the Mariana Archipelago (Guam and the CNMI) and approximately 300 species in American Samoa and 100 in Hawaii. In each island area, commercial and non-commercial fishermen fish from shore, and from vessels and employ numerous gears to harvest CREMUS, including multiple variations of hook and line methods, nets, traps, spearfishing and hand gathering. The majority of coral reef ecosystem habitat is found shoreward of the U.S. EEZ, which is generally 3-200 nm from shore. In the CNMI, the U.S. EEZ extends from the shore to 200 nm; however, the federal coral reef ecosystem management area applies only to offshore waters from 3-200 nm from shore, consistent with the other island areas. Because coral reef fishing is conducted almost exclusively in nearshore waters from 0-3 nm, these fisheries are managed primarily by local resource management agencies.

Overview of fishery data collection systems in American Samoa, Guam and CNMI

In American Samoa, the CNMI and Guam, coral reef fisheries information is collected by local resource management agencies, with assistance from NMFS PIFSC Western Pacific Fisheries Information Network (WPacFIN) through three fisheries monitoring programs. They include: (1) the boat-based creel survey program; (2) the shore-based creel survey program; and (3) the commercial purchase system or trip ticket invoice program.

Boat-based creel survey program

The boat-based creel survey program collects catch, effort, and participation data on offshore fishing activities conducted by commercial, recreational, subsistence and charter fishing vessels. Surveys are conducted at boat ports or ramps, and data collection consists of two main components - participation counts (trips) and fisher interviews. Survey days are randomly selected and the number of survey days range from 3-8 per month. Surveys are stratified by week-days, weekend-days and day- and night-time. Data expansion algorithms are applied by NMFS WPacFIN to estimate 100% "coverage" and are based on port, type of day, and fishing method (Impact Assessment, 2008).

Shore-based creel survey program

The shore-based creel survey program was established to randomly sample inshore fishing trip information and consists of two components - participation counts and fishers interviews. Participation counts are based on a 'bus route' method, with predefined stopping points and time constraints. Survey days are randomly selected, and range from 2-4 times per week. Data expansion algorithms are applied by NMFS WPacFIN to estimate 100% "coverage" and are based on island region, type of day and fishing method (Impact Assessment, 2008). The shore-

based creel surveys cover fishing by persons engaged in commercial, recreational, and subsistence fishing activities.

Commercial purchase system

The commercial purchase system or "trip ticket invoice" monitors fish sold locally and collects information submitted by vendors (fish dealers, hotels and restaurants) who purchase fish directly from fishers. Each invoice usually compiles daily trip landings. Only American Samoa has mandatory requirements for vendors to submit invoice reports; the all other islands have voluntary programs (Impact Assessment, 2008).

Overview of fishery data collection systems in Hawaii

In Hawaii, coral reef fisheries information is collected only from the commercial fishing sector through a mandatory license and monthly reporting system administered by the State of Hawaii. Under state law, anyone who takes marine life for commercial purposes is required to obtain a commercial marine license (CML) and submit a catch report (popularly known as a "C3" form) on a monthly basis. Required information collected includes day fished, area fished, fishing method used, hours fished per method, and species caught (number/pounds caught and released). Recreational catch information for some coral reef fisheries is opportunistically collected through the Hawaii Marine Recreational Fishing Survey (HMRFS) and annual catch amounts are reported through NMFS Marine Fisheries Statistics Survey (MRFSS) at http://www.st.nmfs.noaa.gov/st1/index.html. However, a 2006 review of MRFSS by the National Resource Council (NRC) noted that the catch estimation method was not correctly matched with the catch sampling survey design, leading to potential bias in the estimates. Based on this finding, the Council in 2006 recommended that that MRFSS catch estimates not be used as a basis for management or allocation decisions. In 2008, NMFS established the National Saltwater Angler Registry Program as part of the Marine Recreational Information Program to improve recreational fisheries information (73 FR 79705, December 30, 2008).

Except for HMRFS data, NMFS WPacFIN obtains all coral reef fisheries information in the western Pacific through cooperative agreements with the state and territorial fisheries agencies in American Samoa, CNMI, Guam, and Hawaii and provides access to this data on its website http://www.pifsc.noaa.gov/wpacfin. Generally, complete data for any calendar year is not available until at least 6 months after the year has ended.

Overview of federal permit and reporting requirements

While a federal special coral reef ecosystem fishing permit (SCREFP) and logbook reporting are required to fish in federal waters for certain CREMUS defined in federal regulations as Potentially Harvested Coral Reef Taxa, NMFS has only issued one such permit since the requirements were established in 2004. NMFS does not anticipate issuance of any new SCREFP permits in 2012 or 2013 in any island area, and therefore does not expect to be able to use catch reported through federal logbooks as the basis for implementing in-season closures.

Overview of the proposed ACL management system

If the proposed ACL specifications are implemented, catches of all CREMUS would be counted towards the appropriate CREMUS group's ACL specification regardless of whether catch occurred in federal or local waters. However, as noted in <u>Section 2.3</u>, local resource management

agencies presently do not have the personnel or resources to process catch data in near-real time, and so fisheries statistics are generally not available until at least six months after the data have been collected. Therefore, in season AMs (e.g., fishery closures) are not possible. However, as an AM, post-season accounting of catch towards every ACL specification would occur, and if an ACL is exceeded and affects the sustainability of that stock or stock complex, NMFS would take action to correct the operational issue that caused the ACL overage, as recommended by the Council, which could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year.

3.1 Affected Coral Reef Fisheries and Potential Impacts

3.1.1 American Samoa Coral Reef Fisheries and Potential Impacts

The Samoa Archipelago is located in the South Pacific Ocean and consists of seven major volcanic islands, several small islets, and two coral atolls. The largest islands in this chain are Upolu (approximately 436 square miles) and Savaii (approximately 660 square miles) which belong to the Independent State of Samoa with a population of approximately 178,000 people. The Territory of American Samoa includes Tutuila (approximately 55 square miles), the Manua Island group of Ofu, Olosega and Tau (with a total land area of less than 20 square miles), and two coral atolls (Rose Atoll and Swains Island). More than 90 percent of American Samoa's population (approximately 68,000 people) lives on Tutuila. The U.S. EEZ around American Samoa is approximately 156,246 square miles and extends from 3-200 nm from shore.

Overview of American Samoa Coral Reef Fisheries

In American Samoa, coral reef fishes and invertebrates are harvested in subsistence and small-scale commercial fisheries by various gear types including hook and line, spear gun, and gillnets. The CREMUS catch composition in American Samoa is dominated by six families/groups: Acanthuridae or surgeonfishes (averaging 16,181 lb per year), Lutjanidae or snappers (15,838 lb per year), *Selar crumenophthalmus* or atule or bigeye scad (15,533 lb per year), mollusks including top shells, octopus, clams (11,672 lb per year), Carangidae or jacks (8,200 lb per year), and Scaridae or parrotfishes (7,764 per year) (Sabater and Tulafono 2011). For more information on target, non-target stocks and bycatch in American Samoa's coral reef fisheries, see Section 3.3.1.1.

Although coral reef fisheries surveys in American Samoa cover fishing by persons engaged in commercial, recreational, and subsistence fishing activities, only estimates of total commercial landings of "Reef fishes" are made available on the WPacFIN website. In 2010, these landings totaled 26,453 lb (http://www.pifsc.noaa.gov/wpacfin/as/Data/ECL_Charts/ae3amain.htm. Website accessed on September 12, 2011). However, this figure is likely to be underestimated because WPacFIN reef fish landings do not include catch of all species defined as CREMUS under the American Samoa FEP such as bigeye scad, round scad, mollusks and shallow water snappers, emperors and groupers which together comprise a significant component of the total CREMUS catch. Instead, for public dissemination, WPacFIN may report these taxa under the categories "Other fishes" or "bottomfishes."

Periodic increases and declines in coral reef landings have been observed in the fishery, with a relatively large decline in the early 1990s (Figure 2). The cause of declines in catches is thought

to be attributed to a combination of several factors including fishing pressure, natural and anthropogenic habitat degradation (pollution, eutrophication and sedimentation from runoff), sociological changes associated with a shift from subsistence to a market (cash for goods and services) economy and a series of devastating hurricanes.

Average annual commercial reef fish catch in American Samoa was 29,313 pounds from 1982 to 2010. The lowest estimated commercial catches were during 1984, the early 1990s, and 2004 with peak estimated commercial catch occurring in 1997 corresponding with the SCUBA spear fishery (Figure 2). Commercial reef fish catches from 2001 to the present are estimated to have remained below 30,000 pounds annually. Low catch years associated with hurricanes may be the result of fleet damage or fishermen being occupied with other work. The American Samoa Department of Marine and Wildlife Resources (DMWR) reported that the decline in commercial reef fish catches after 1997 may have resulted from increased enforcement of commercial license requirements between 1997 and 2000 (Tulafono 2007). In 2001, DMWR banned the use of SCUBA gear while fishing to help reduce fishing pressure on the reefs.

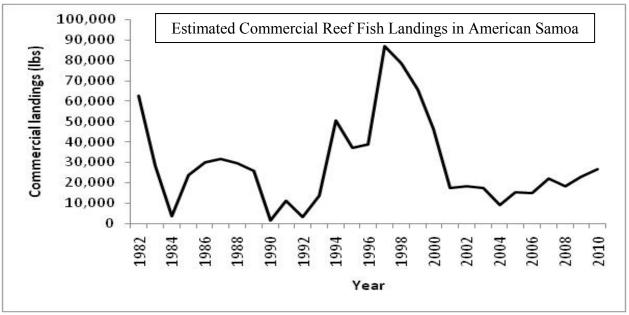


Figure 2. Estimated commercial landings of reef fish in American Samoa from 1982 to 2010 Source: http://www.pifsc.noaa.gov/wpacfin/as/Data/ECL Charts/ae3amain.htm

The boat-based coral reef fisheries have the potential to harvest coral reef taxa in federal waters, particularly in association with bottomfish fishing. The spear fishery primarily harvests fish from within territorial waters. Coral reef fishery participation has fluctuated over the years due to socio-economic changes, hurricane effects, and changes in fishery management laws such as the ban on SCUBA spearfishing in 2001. The number of boats ranged from a low of 15 in 1992 following a hurricane (Val) that hit the islands in December 1991 to a high of 37 boats in 1986 during the peak of the bottomfish fishery (Figure 3).

Fishery participation has declined over the years (Sabater and Carroll 2009; Sabater and Tulafono 2011). There are currently 22 boats participating in the coral reef fishery and these shift between spearfishing and bottomfishing with occasional trolling activities. The average number

of fishermen per boat on a typical bottomfishing trip is three while that of a spearfishing trip ranges from 1 to 7. Overall, regardless of the method used, there are approximately 88 fishermen participating in the boat based coral reef fishery.

The commercial price per pound for CREMUS in American Samoa ranged from \$2.22 to \$3.71. The annual commercial value of the coral reef fishery in 2010 was \$70,894, based on the 2010 catch of 26,453 lb and the average price of reef fish of \$2.68 per pound. Assuming participation and fishing effort was equal throughout the fleet in 2010, each vessel would have caught approximately 1,202 lb of CREMUS valued at \$3,222.

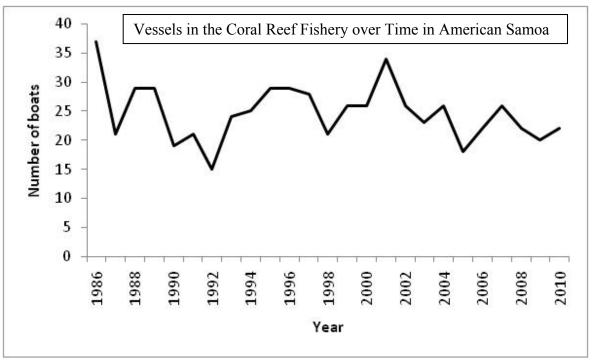


Figure 3. Number of vessels participating in the American Samoa coral reef fishery from 1986 to 2010

Potential Impacts of the Proposed ACL specifications and AM on American Samoa Coral Reef Fisheries

Under the no-action alternative, which is the baseline alternative, American Samoa coral reef fisheries would not be managed using annual catch limits, accountability measures would not be needed, and fishing would continue to be monitored by American Samoa Department of Marine and Wildlife Resources (DMWR), NMFS and the Council with fisheries statistics becoming available approximately six months or longer after the data have been initially collected. The status of CREMUS, including species of special management interest to the Council would continue to be subject to ongoing discussion and review.

Under all of the action alternatives including the proposed action (Alternative 3), fishing for American Samoa CREMUS would be subject to annual catch limits shown in Table 15 and Table 19. As Table 15 and 19 shows, the 2012 and 2013 ACL specifications for each alternative are generally higher than recent harvests so landings are not expected to exceed the respective ACLs, and the ACLs are not expected to result in a race to the fish over each of the next two

years. However, Alternative 3 is preferred over Alternative 2 as the latter is based on a mean and the SSC did not express support for an approach based on measures of central tendency (i.e., a statistical distribution that is usually measured by the arithmetic mean, mode or median) because of the high probability (50%) of exceeding this catch in any given year. Alternative 3 is also preferred over Alternative 4 because Alternative 4 would exceed ABC which is inconsistent with the Magnuson-Stevens Act. For species of special management interest to the Council, Alternative 3 is preferred because it is the most conservative.

As there is no in-season closure ability to prevent ACLs from being exceeded, the proposed ACLs are not expected to result in a change to the conduct of the fishery including gear types, areas fished, effort, or participation.

No changes in fisheries monitoring would occur as a result of implementing the ACL specifications and current monitoring of CREMUS catches through shore-based and boat-based creel surveys would continue to be done by American Samoa DMWR. The AM for American Samoa coral reef fisheries would require a post-season review of the catch data to determine whether an ACL for any coral reef stock or stock complex was exceeded. Therefore, while data fisheries monitoring systems would not change as a result of ACL specifications, the annual tracking of catch relative to an ACL is expected to result in improved timeliness of catch processing and availability of fisheries statistics as the Council would need to determine as soon as possible after the fishing year whether an ACL had been exceeded.

If an ACL were exceeded, NMFS, as recommended by the Council would take action to correct the operational issue that caused the ACL overage. This could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year. NMFS cannot speculate on which MUS would be affected or the magnitude of the overage adjustment that might be taken; therefore, the fishery and environmental impacts of future actions such as changes to ACLs or AMs would be evaluated separately, once details are available.

3.1.2 Guam Coral Reef Fisheries and Potential Impacts

The Mariana Archipelago (approximately 396 square miles of land area) is composed of 15 volcanic islands that are part of a submerged mountain chain stretching nearly 1,500 miles from Guam to Japan, and is comprised of two political jurisdictions: the Territory of Guam and the CNMI, both of which are U.S. possessions. The island of Guam has a land area of approximately 212 square miles. The EEZ around Guam is approximately 81,470 square miles and extends from 3-200 nm from shore.

Overview of Guam Coral Reef Fisheries

Shore-based fishing accounts for most of the fish and invertebrate harvest from coral reefs around Guam. Myers (1997) noted that seven families (Acanthuridae, Mullidae, Siganidae, Carangidae, Mugilidae, Lethrinidae, and Scaridae) had species that were consistently among the top ten species in any given year from fiscal year 1991 to fiscal year 1995 and accounted for 45 percent of the annual fish harvest. Approximately 40 taxa of invertebrates are harvested by the nearshore fishery, including 12 crustacean taxa, 24 mollusk taxa, and four echinoderm taxa (Hensley and Sherwood 1993; Myers 1997). For more information on target, non-target stocks and bycatch in Guam's coral reef fisheries, see Section 3.3.2.1.

Virtually no information exists on the condition of the reefs on Guam's offshore banks. On the basis of anecdotal information, most of the offshore banks are in good condition because of their isolation. According to Myers (1997), less than 20 percent of the total coral reef resource harvested in Guam is taken from the EEZ, primarily because the offshore coral reef banks within the EEZ waters are less accessible than nearshore reef fishing areas. Finfish make up most of the catch in the EEZ and are caught in association with bottomfish fishing. Most offshore banks are deep, remote and subject to strong currents. Generally, these banks are only accessible during calm weather in the summer months (May to August/September). Galvez Bank is the closest and most accessible and, consequently, fished most often. In contrast, the other banks (White Tuna, Santa Rose, and Rota) are remote and can only be fished during exceptionally good weather conditions (Green 1997). Local fishermen report that up to ten commercial boats, with two to three people per boat, and some recreational boats, use the banks when the weather is good (Green 1997).

Although coral reef fisheries surveys in Guam cover fishing by persons engaged in commercial, recreational, and subsistence fishing activities, only estimates of total commercial landings of "Reef fishes" are made available on the WPacFIN website. In 2009, these landings totaled 124,401 lb (http://www.pifsc.noaa.gov/wpacfin/guam/dawr/Data/Landings_Charts/ge3b.htm. Website accessed on September 12, 2011). However, like in American Samoa, this figure is likely to be underestimated because WPacFIN reef fish landings do not include catch of all species defined as CREMUS under the Mariana Archipelago FEP such as bigeye scad, round scad, mollusks and shallow water snappers, emperors and groupers which together comprise a significant component of the total CREMUS catch. Instead, for public dissemination WPacFIN may report these taxa under the categories "Other fishes" or "bottomfishes."

The coral reef fishery long term commercial landing trends in Guam showed an increase from 1982 to 1996 and a decline after a short term increase in early 2000. Landings declined thereafter and remained between 80,000 and 100,000 lbs in recent years (Figure 4).

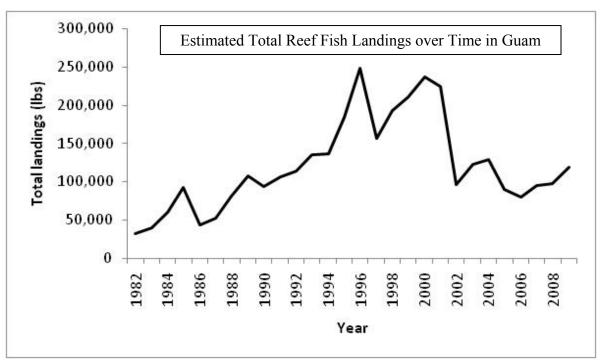


Figure 4. Estimated total landings of reef fish (commercial and non-commercial) in Guam from 1982 to 2009

Source: http://www.pifsc.noaa.gov/wpacfin/guam/dawr/Data/Landings Charts/ge3b.htm

The number of boats participating in the coral reef fishery ranged from 58 in 1983 to 210 in 1995 (Figure 5). The number of boats participating in 2009 was approximately 116. There were 3 to 4 fishermen per boat, thus, the estimated coral reef boat based fishing population is approximately 348 individuals.

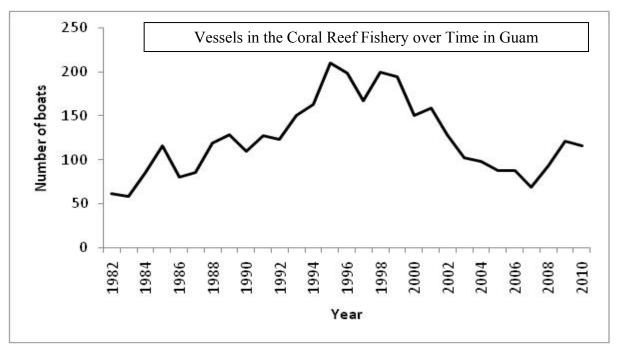


Figure 5. Number of vessels participating in the Guam coral reef fishery from 1982 to 2009

The average price per pound of coral reef fish in 2009 was \$2.82 per pound. With a total landing of 124,401 lb, the coral reef fishery in Guam is valued at approximately \$350,811. Assuming participation and fishing effort was equal throughout the fleet in 2009, each vessel would have caught approximately 1,072 lb of CREMUS valued at \$3,023.

Potential Impacts of the Proposed ACL specifications and AM on Guam Coral Reef Fisheries Under the no-action alternative, which is the baseline alternative, Guam coral reef fisheries would not be managed using annual catch limits, accountability measures would not be needed, and fishing would continue to be monitored by Guam Division of Aquatic Resources (DAWR), NMFS and the Council with fisheries statistics becoming available approximately six months or longer after the data have been initially collected. The status of CREMUS, including species of special management interest to the Council would continue to be subject to ongoing discussion and review.

Under all of the action alternatives including the proposed action (Alternative 3), fishing for Guam coral reef ecosystem MUS would be subject to annual catch limits shown in Table 16 and Table 20. As Table 16 and 20 shows, the 2012 and 2013 ACL specifications for each alternative are generally higher than recent harvests so the landings are not expected to exceed the respective ACLs, and the ACLs are not expected to result in a race to the fish over the next two years. However, Alternative 3 is preferred over Alternative 2 as the latter is based on a mean and the SSC did not express support for an approach based on measures of central tendency (i.e., a statistical distribution that is usually measured by the arithmetic mean, mode or median) because of the high probability (50%) of exceeding this catch in any given year. Alternative 3 is also preferred over Alternative 4 because the latter would exceed ABC which is inconsistent with the Magnuson-Stevens Act. For species of special management interest to the Council, Alternative 3 is preferred because it is the most conservative.

As there is no in-season closure ability to prevent ACLs from being exceeded, the proposed ACLs are not expected to result in a change to the conduct of the fishery including gear types, areas fished, effort, or participation.

No changes in fisheries monitoring would occur as a result of the ACL specification and current monitoring of CREMUS catches through shore-based and boat-based creel surveys would continue to be done by the Guam DAWR. The AM for Guam coral reef fisheries would require a post-season review of the catch data to determine whether an ACL for any coral reef stock or stock complex was exceeded. Therefore, while data fisheries monitoring systems would not change as a result of ACL specifications, the annual tracking of catch relative to an ACL is expected to result in improved timeliness of catch processing and availability of fisheries statistics as the Council would need to determine as soon as possible after the fishing year whether an ACL had been exceeded.

If an ACL were exceeded, NMFS, as recommended by the Council would take action to correct the operational issue that caused the ACL overage. This could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year. NMFS cannot speculate on which MUS would be affected or the magnitude of the overage adjustment that might be taken; therefore, the fishery and environmental impacts of future actions such as changes to ACLs or AMs would be evaluated separately, once details are available.

3.1.3 CNMI Coral Reef Fisheries and Potential Impacts

The CNMI has a land area of approximately 184 square miles. The EEZ around the CNMI is approximately 292,717 square miles however, the federal coral reef ecosystem management area applies only to offshore waters from 3-200 nm from shore, consistent with the other island areas.

Overview of CNMI Coral Reef Fisheries

Coral reef fisheries in the CNMI are mostly limited to nearshore areas of the three southernmost islands of Saipan, Rota, and Tinian. Limited fishing for CREMUS occurs north of Saipan. Finfish and invertebrates are the primary targets, but small quantities of seaweed are also taken. For more information on target, non-target stocks and bycatch in CNMI's coral reef fisheries, see Section 3.3.3.1.

Although coral reef fisheries surveys in the CNMI cover fishing by persons engaged in commercial, recreational, and subsistence fishing activities, only estimates of total commercial landings of "Reef fishes" are made available on the WPacFIN website. In 2009, these landings totaled 72,211 pounds

(http://www.pifsc.noaa.gov/wpacfin/cnmi/Data/Landings_Charts/ce3b.htm. Website accessed on September 12, 2011). However, this figure is likely to be underestimated because WPacFIN reef fish landings do not include catch of all species defined as CREMUS under the Mariana Archipelago FEP such as bigeye scad, round scad, mollusks and shallow water snappers, emperors and groupers which together comprise a significant component of the total CREMUS catch. Instead, for public dissemination, WPacFIN may report these taxa under the categories "Other fishes" or "bottomfishes." The peak of the landings of coral reef fishes occurred in 1989 followed by a drop (Figure 6).

The number of participants in the coral reef fishery of the CNMI has fluctuated over the past decade. CNMI DFW (unpublished data) estimates that the highest number of boats engaged in bottomfishing and spearfishing that also caught shallow water coral reef taxa was 27 boats in 2007 (Figure 7). The most recent data indicate that 16 vessels participated in the coral reef fishery in 2009. The average number of fisherman was estimated to be about 45 fishermen over the past decade with a range of 2 to 5 fishermen per boat depending on the method used.

The average price per pound of reef fish in 2009 was approximately \$2.59. With a total estimated landing of 72,211 lb, the coral reef fishery in the CNMI is valued at approximately \$187,026. Assuming participation and fishing effort was equal throughout the fleet in 2009, each vessel would have landed approximately 18,053 lb of CREMUS valued at \$11,689.

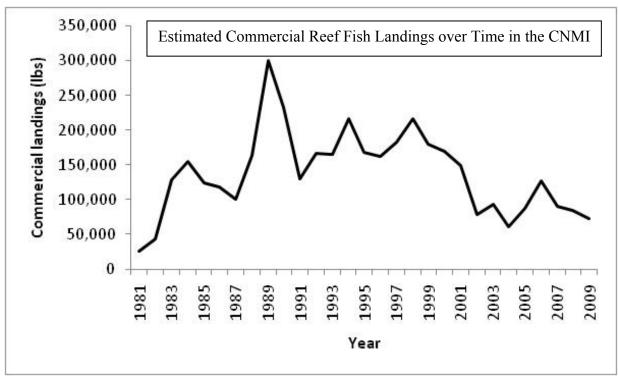


Figure 6. Estimated commercial landings of reef fishes in the CNMI from 1981 to 2009 Source: http://www.pifsc.noaa.gov/wpacfin/cnmi/Data/Landings Charts/ce3b.htm

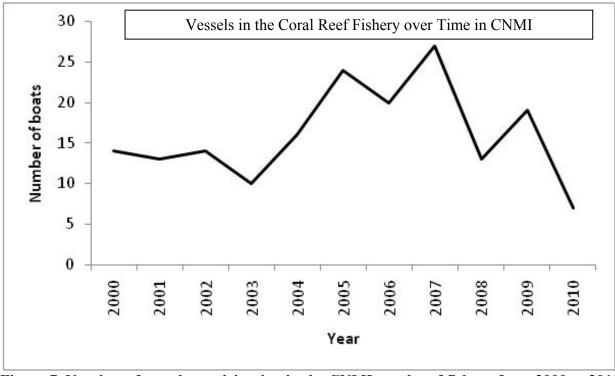


Figure 7. Number of vessels participating in the CNMI coral reef fishery from 2000 to 2010

Potential Impacts of the Proposed ACL specifications and AM on CNMI Coral Reef Fisheries Under the no-action alternative, which is the baseline alternative, CNMI coral reef fisheries would not be managed using annual catch limits, accountability measures would not be needed, and fishing would continue to be monitored by CNMI Division of Fish and Wildlife, NMFS and the Council with fisheries statistics becoming available approximately six months or longer after the data have been initially collected. The status of CREMUS, including species of special management interest to the Council would continue to be subject to ongoing discussion and review.

Under all of the action alternatives including the proposed action (Alternative 3), fishing for CNMI coral reef ecosystem MUS would be subject to annual catch limits shown in Table 17 and Table 21. As Table 17 and 21 shows, the 2012 and 2013 ACL specifications for alternatives 3 and 4 are generally higher than recent harvests so landings are not expected to exceed the ACL, and the ACLs are not expected to result in a race to the fish over each of the next two years. However, Alternative 3 is preferred over Alternative 2 as the latter is based on a mean and the SSC did not express support for an approach based on measures of central tendency (i.e., a statistical distribution that is usually measured by the arithmetic mean, mode or median) because of the high probability (50%) of exceeding this catch in any given year. Alternative 3 is also preferred over Alternative 4 because Alternative 4 would exceed ABC which is inconsistent with the Magnuson-Stevens Act. For species of special management interest to the Council, Alternative 3 is preferred because it is the most conservative.

As there is no in-season closure ability to prevent ACLs from being exceeded, the proposed ACLs are not expected to result in a change to the conduct of the fishery including gear types, areas fished, effort, or participation.

No changes in fisheries monitoring would occur as a result of the ACL specifications and current monitoring of CREMUS catches through shore-based and boat-based creel surveys would continue to be done by CNMI DFW. The accountability measure (AM) for CNMI coral reef fisheries would require a post-season review of the catch data to determine whether an ACL for any coral reef stock or stock complex was exceeded. Therefore, while data fisheries monitoring systems would not change as a result of ACL specifications, the annual tracking of catch relative to an ACL is expected to result in improved timeliness of catch processing and availability of fisheries statistics as the Council would need to determine as soon as possible after the fishing year whether an ACL had been exceeded.

If an ACL were exceeded, NMFS, as recommended by the Council would take action to correct the operational issue that caused the ACL overage. This could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year. NMFS cannot speculate on which MUS would be affected or the magnitude of the overage adjustment that might be taken; therefore, the fishery and environmental impacts of future actions such as changes to ACLs or AMs would be evaluated separately, once details are available.

3.1.4 Hawaii Coral Reef Fisheries and Potential Impacts

The Hawaiian Islands are made up of 137 islands, islets, and coral atolls that extend for nearly 1,500 miles from Kure Atoll in the northwest to the Island of Hawaii in the southeast. The

Hawaiian Islands are often grouped into the Northwestern Hawaiian Islands (Nihoa to Kure) and the Main Hawaiian Islands (Hawaii to Niihau). The total land area of the 19 primary islands and atolls is approximately 6,423 square miles. The majority (70 percent) of the 1.3-million people residing in Hawaii live on the island of Oahu. The seven other main Hawaiian Islands are Hawaii, Maui, Molokai, Lanai, Kahoolawe (uninhabited), Kauai, and Niihau.

Overview of Hawaii Coral Reef Fisheries

In Hawaii, the coral reef ecosystem management area includes the U.S. EEZ around the main Hawaiian Islands, which generally extends from 3-200 nmi offshore; however, the majority of CREMUS catch are harvested from nearshore waters under the jurisdiction of the State of Hawaii from the shoreline and from vessels by both commercial and non-commercial fishermen. Under state law, anyone who takes marine life for commercial purposes is required to obtain a commercial marine license (CML) and submit a catch report (popularly known as a "C3" form) on a monthly basis. MHI catches of the ten most commonly reported coral reef species include akule, opelu, jacks, goatfish, surgeonfish, squirrelfish, mullets, snappers, octopus, and parrotfish. For more information on target, non-target stocks and bycatch in Hawaii's coral reef fisheries, see Section 3.3.4.1. Commercial fishing in the NWHI was closed with the designation of the Papahanaumokuakea Marine National Monument. Some pelagic fishing for sustenance is allowed under permit within the monument, but there is no fishing allowed for CREMUS in the NWHI at this time.

The commercial landing of CREMUS in Hawaii has fluctuated over the past six decades (Figure 8). The highest commercial landings occurred in 1999 with close to 3.5 million lb. In 2010, estimated commercial landings of CREMUS were just over 1.3 million lb with akule and opelu accounting for nearly one-third of the commercial catch (254,996 lb and 204,643 lb, respectively).

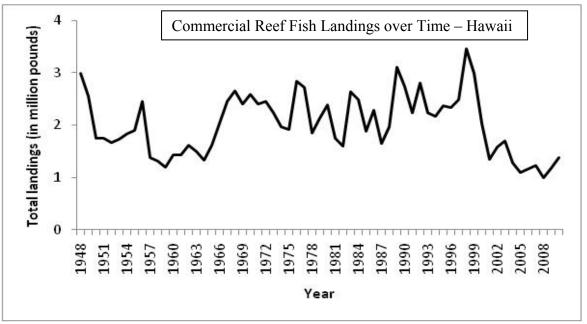


Figure 8. Reported Commercial landings of reef fishes in the Hawaii from 1948 to 2010 Source: WPacFIN unpublished data

In 2010, the average price per pound for coral reef fish in Hawaii was \$3.01. With a total estimated commercial landing of 1.3 million lb, the coral reef fishery in Hawaii is valued at approximately \$3.9 million.

The total number of individuals that participate in Hawaii's coral reef fisheries is currently unknown and could include hundreds of thousands of individuals that fish from both the shoreline and from vessels commercially and non-commercially. Hamm et al., (2010) provides the most recent estimate of the number of licensed commercial fishermen in Hawaii and reports there were 4,263 licensees in 2008. However, not all licensed fishers harvest CREMUS; therefore, the exact number of individual that may participate in Hawaii's coral reef fisheries is unknown.

By far, the largest coral reef fishery in Hawaii in terms of catch landed is the akule fishery which harvests the coastal pelagic species primarily by surround net and in smaller amounts from shoreline casting. The second largest fishery is the opelu fishery which harvests this coastal pelagic species primarily by hoop netting at night and by hook and line during the day. Although exact numbers are not available, it is estimated that up to 35 vessels may participate in Hawaii's akule and opelu fisheries.

Potential Impacts of the Proposed ACL specifications and AM on Hawaii Coral Reef Fisheries Under the no-action alternative, which is the baseline alternative, Hawaii's coral reef fisheries would not be managed using annual catch limits, accountability measures would not be needed, and fishing would continue to be monitored by Hawaii Division of Aquatic Resources (HDAR), NMFS and the Council with fisheries statistics becoming available approximately six months or longer after the data have been initially collected. The status of CREMUS, including species of special management interest to the Council would continue to be subject to ongoing discussion and review.

Under each alternative including the proposed action (Alternative 3), fishing for Hawaii coral reef ecosystem MUS would be subject to annual catch limits shown in Table 18 and Table 22. As Table 18 shows, the 2012 and 2013 ACL specifications are generally higher than recent harvests so landings are not expected to exceed the respective ACLs, and the ACLs are not expected to result in a race to the fish over each of the next two years. However, Alternative 3 is preferred over Alternative 2 as the latter is based on a mean and the SSC did not express support for an approach based on measures of central tendency (i.e., a statistical distribution that is usually measured by the arithmetic mean, mode or median) because of the high probability (50%) of exceeding this catch in any given year. Alternative 3 is also preferred over Alternative 4 because Alternative 4 would exceed ABC which is inconsistent with the Magnuson-Stevens Act. For species of special management interest to the Council, Alternative 3 is preferred because it is the most conservative.

As there is no in-season closure ability to prevent ACLs from being exceeded, the proposed ACLs are not expected to result in a change to the conduct of the fishery including gear types, areas fished, effort, or participation.

No changes in fisheries monitoring would occur as a result of the ACL specification and current monitoring of CREMUS catches through shore-based and boat-based creel surveys would

continue to be done by HDAR. The AM for Hawaii coral reef fisheries would require a post-season review of the catch data to determine whether an ACL for any coral reef stock or stock complex was exceeded. Therefore, while data fisheries monitoring systems would not change as a result of ACL specifications, the annual tracking of catch relative to an ACL is expected to result in improved timeliness of catch processing and availability of fisheries statistics as the Council would need to determine as soon as possible after the fishing year whether an ACL had been exceeded.

If an ACL were exceeded, NMFS, as recommended by the Council would take action to correct the operational issue that caused the ACL overage. This could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year. NMFS cannot speculate on which MUS would be affected or the magnitude of the overage adjustment that might be taken; therefore, the fishery and environmental impacts of future actions such as changes to ACLs or AMs would be evaluated separately, once details are available.

3.2. Affected Fishing Communities and Potential Impacts

The Magnuson-Stevens Act defines a fishing community as "...a community that is substantially dependent upon or substantially engaged in the harvest or processing of fishery resources to meet social and economic needs, and includes fishing vessel owners, operators, and crew, and fish processors that are based in such communities" (16 U.S.C. § 1802(16)). NMFS further specifies in the National Standard guidelines that a fishing community is "...a social or economic group whose members reside in a specific location and share a common dependency on commercial, recreational, or subsistence fishing or on directly related fisheries dependent services and industries (for example, boatyards, ice suppliers, tackle shops)". National Standard 8 of the Magnuson-Stevens Act requires that conservation and management measures shall, consistent with the conservation requirements of this Act (including the prevention of overfishing and the rebuilding of overfished stocks), take into account the importance of fishery resources to fishing communities in order to (a) provide for the sustained participation of such communities and (b) to the extent practicable, minimize adverse economic impacts on such communities.

3.2.1American Samoa Fishing Community

Overview

In 1999, the Council identified American Samoa as a fishing community. The Secretary of Commerce approved this definition on April 19, 2009 (64 FR 19067).

Potential Impacts of the Proposed ACL specifications and AM on the American Samoa Fishing Community

Under the no-action alternative, which is the baseline alternative, American Samoa coral reef fisheries would not be managed using annual catch limits, accountability measures would not be needed, and fishing would continue to be monitored by American Samoa DMWR, NMFS and the Council. The affected fishing community would continue to be a part of the Council decision-making process.

Under all alternatives considered, including the proposed action, fishing for coral reef ecosystem MUS would be subject to annual catch limits. The ACL specifications are generally higher than

recent harvests so ACLs are not expected to be exceeded in any of the reef fish fisheries, and no change to any fishery is anticipated. The proposed ACLs are intended to provide for community use of fishing resources, while helping to ensure that coral reef fishing is sustainable over the long term. Ongoing monitoring and future ACL adjustments are expected to benefit people who rely on fishing by providing additional review of fishing and catch levels, which, in turn, would enhance sustainability of the coral reef fisheries of American Samoa.

3.2.2 Guam Fishing Community

Overview

In 1999, the Council identified Guam as a fishing community. The Secretary of Commerce approved this definition on April 19, 2009 (64 FR 19067).

Potential Impacts of the Proposed ACL specifications and AM on the Guam Fishing Community

Under the no-action alternative, which is the baseline alternative, Guam coral reef fisheries would not be managed using annual catch limits, accountability measures would not be needed, and fishing would continue to be monitored by Guam DAWR, NMFS and the Council. The affected fishing community would continue to be a part of the Council decision-making process.

Under all alternatives considered, including the proposed action, fishing for coral reef ecosystem MUS would be subject to annual catch limits. The ACL specifications are generally higher than recent harvests so ACLs are not expected to be exceeded in any of the reef fish fisheries, and no change to any fishery is anticipated. The proposed ACLs are intended to provide for community use of fishing resources, while helping to ensure that coral reef fishing is sustainable over the long term. Ongoing monitoring and future ACL adjustments are expected to benefit people who rely on fishing by providing additional review of fishing and catch levels, which, in turn, would enhance sustainability of the coral reef fisheries of Guam.

3.2.3. CNMI Fishing Community

Overview

In 1999, the Council identified CNMI as a fishing community. The Secretary of Commerce approved this definition on April 19, 2009 (64 FR 19067).

Potential Impacts of the Proposed ACL specifications and AM on the CNMI Fishing Community

Under the no-action alternative, which is the baseline alternative, CNMI coral reef fisheries would not be managed using annual catch limits, accountability measures would not be needed, and fishing would continue to be monitored by CNMI DFW, NMFS and the Council. The affected fishing community would continue to be a part of the Council decision-making process.

Under all alternatives considered, including the proposed action, fishing for coral reef ecosystem MUS would be subject to annual catch limits. The ACL specifications are generally higher than recent harvests so ACLs are not expected to be exceeded in any of the reef fish fisheries, and no change to any fishery is anticipated. The proposed ACLs are intended to provide for community use of fishing resources, while helping to ensure that coral reef fishing is sustainable over the long term. Ongoing monitoring and future ACL adjustments are expected to benefit people who

rely on fishing by providing additional review of fishing and catch levels, which, in turn, would enhance sustainability of the coral reef fisheries of the CNMI.

3.2.4 Hawaii Fishing Community

Overview

In 2002, the Council identified each of the islands of Kauai, Niihau, Oahu, Maui, Molokai, Lanai and Hawaii as a fishing community for the purposes of assessing the effects of fishery conservation and management measures on fishing communities, providing for the sustained participation of such communities, minimizing adverse economic impacts on such communities, and for other purposes under the Magnuson-Stevens Act. The Secretary of Commerce subsequently approved these definitions on August 5, 2003 (68 FR 46112).

Potential Impacts of the Proposed ACL specifications and AM on Fishing Communities of Hawaii

Under the no-action alternative, which is the baseline alternative, Hawaii coral reef fisheries would not be managed using annual catch limits, accountability measures would not be needed, and fishing would continue to be monitored by Hawaii DAR, NMFS and the Council. The affected fishing community would continue to be a part of the Council decision-making process.

Under all alternatives considered, including the proposed action, fishing for coral reef ecosystem MUS would be subject to annual catch limits. The ACL specifications are generally higher than recent harvests so ACLs are not expected to be exceeded in any of the reef fish fisheries, and no change to any fishery is anticipated. The proposed ACLs are intended to provide for community use of fishing resources, while helping to ensure that coral reef fishing is sustainable over the long term. Ongoing monitoring and future ACL adjustments are expected to benefit people who rely on fishing by providing additional review of fishing and catch levels, which, in turn, would enhance sustainability of the coral reef fisheries of Hawaii.

3.3. Potentially Affected Resources and Potential Impacts

3.3.1 American Samoa Resources and Potential Impacts

3.3.1.1 Potentially Affected Target, Non-target Stocks, and Bycatch in American Samoa Coral Reef Fisheries

As with other Pacific Islands, it is difficult to determine "target" and "non-target" stocks because resources harvested in American Samoa's coral reef fisheries are highly diverse, with approximately 300 species appearing in catch records (Appendix A). Based on recent average catch reported in (Table 15), 90% of the CREMUS catch in American Samoa is comprised of primarily eight family groups which include Acanthuridae (surgeonfish), Lutjanidae (snappers), Carangidae (jacks), Lethrinidae (emperors), Scaridae (parrotfish), Holocentridae (soldier/squirrelfish), Mugilidae (mullets), the coastal pelagic jack, *Selar crumenophthalmus* (atule). Several species of mollusks (snails, octopus and clams) and crustaceans (crabs) comprise the top 90% of the catch. Additionally, several other coral reef ecosystem taxa are also commonly harvested and retained and comprise the remaining 10% of the catch. However, some species defined in federal regulations as American Samoa CREMUS (50 CFR 665.121) are not harvested at all.

While the boat-based and shore-based creel survey programs administered by DMWR provide for the collection of bycatch information, no such information is currently available, indicating that most of the fish that are caught are retained. However, like other Pacific Islands, discards, if they occur, are usually due to cultural reasons (i.e., taboo) or practical reasons such as toxicity (e.g., ciguatera and poison).

As previously noted, coral reef fishing is conducted predominantly in nearshore waters from 0-3 nm because the majority of coral reef ecosystem habitat is found shoreward of the U.S. EEZ, which is generally 3-200 nm from shore. Consequently, it might be argued that there is no bycatch problem for coral reef fisheries under federal control. Nevertheless, there are federal management regulations currently in place which minimize the potential for bycatch through the prohibition on the use of destructive and non-selective gear methods. Specifically, federal regulations allow only certain gear types to be used while fishing for CREMUS. These include: (1) hand harvest; (2) spear; (3) slurp gun; (4) hand net/dip net; (5) hoop net for crab; (6) throw net; (7) barrier net; (8) surround/purse net that is attended at all times; (9) hook and line; (10) crab and fish traps with vessel ID number affixed; and (11) remotely operated vehicles/submersibles.

While the American Samoa FEP describes procedures for establishing limits and reference point values based on standardized values of catch per unit effort (CPUE) and effort (E) which serve as proxies for relative biomass (B_{MSY}) and fishing mortality (F_{MSY}), respectively, neither the Council or NMFS have data sufficient for determining reference point values for any American Samoa CREMUS. Therefore, stock status of American Samoa CREMUS is unknown. However, based on an analysis of archipelagic-wide estimates of catch-to-biomass presented in Luck and Dalzell (2010) and shown in Appendix B, estimated exploitation rates did not exceed 10% for any CREMUS taxonomic group, suggesting biomass is likely to be above B_{MSY}, although Luck and Dalzell (2010) report much higher exploitation rates when catch-to-biomass comparisons are limited to Tutuila.

Potential Impacts of the Proposed ACL specifications and AM on Target, Non-target and Bycatch in American Samoa Coral Reef Fisheries

The Council and its SSC have grouped individual stocks of American Samoa CREMUS into higher taxonomic groups (stock complexes) generally at the family level and propose to specify ACLs for each CREMUS stock and stock complex as listed in Table 15. Alternatives to the proposed ACL are shown in Table 19. The ACL specification for each stock and stock complex is proposed to be set at a level substantially lower than the estimated biomass, where that information is available. Specifically, no ACL would be higher than 8% of the stock or stock complex's estimated biomass. The proposed ACLs under other alternatives are also higher than recent catches, so it is expected that fishing activity will remain the same, and the ACLs would not be exceeded.

Under all of the alternatives, including the proposed action, no new monitoring would be implemented; however, as an AM, a post-season review of the catch data would be conducted as soon as possible after the fishing year to determine whether an ACL for any stock or stock complex was exceeded. If an ACL were exceeded, NMFS, as recommended by the Council would take action to correct the operational issue that caused the ACL overage. This could

include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year.

The impacts of an ACL specification for American Samoa CREMUS are expected to be beneficial because it would establish a limit on the amount of fish that are harvested annually where none previously existed. While the lack of in-season catch monitoring ability precludes inseason measures (such as fishery closure) to prevent the ACL from being exceeded, the ACL is set substantially lower than estimated biomass and is intended to prevent overfishing from occurring. Additionally, the post-season review of catch relative to the proposed ACL for each stock and stock complex is part of a management regime designed to prevent coral reef fisheries from becoming overfished. The additional level of post season review of the catch would also provide an enhanced level of management review of the fisheries and would provide an opportunity for the Council to refine ACL and AM specifications, as needed.

The proposed ACLs are generally higher than recent catch levels, so fisheries are not expected to be affected, and, therefore, there is no change to harvest levels expected to occur as a result of implementing the ACL specifications. This, together with the fact that there are no in-season closures, leads to the conclusion that the ACL specifications and AM measures would not have a large or adverse effect on target, non-target or bycatch species caught in American Samoa's coral reef fisheries.

3.3.1.2 Potentially Affected Protected Resources in American Samoa

The coral reef fisheries of the western Pacific region have been evaluated for impacts on protected resources and are managed in compliance with the requirements of the Magnuson-Stevens Act, the Marine Mammal Protection Act (MMPA), the Endangered Species Act (ESA), the Migratory Bird Treaty Act, and other relevant laws and policies. Additional detailed descriptions of potentially affected protected resources and their life histories can be found in section 3.3.4 of the FEP for American Samoa (WPFMC 2009a). There is no critical habitat designated for ESA-listed marine species around American Samoa.

Applicable ESA Coordination for American Samoa Coral Reef Fisheries

In an informal consultation letter dated March 7, 2002, NMFS determined that the Coral Reef Ecosystem FMP management approach and fisheries that operate in accordance with regulations implementing the FMP are not likely to adversely affect ESA-listed species known to occur in waters around American Samoa or their designated critical habitat. In 2009, the Council developed and NMFS approved five new archipelagic-based fishery ecosystem plans (FEP), including the American Samoa Archipelago FEP. The FEP incorporated and reorganized elements of the Councils' species-based FMPs, including the Coral Reef Ecosystem FMP into a spatially-oriented management plan (75 FR 2198, January 14, 2010). All applicable regulations were retained through the development and implementation of the FEP for American Samoa, and no substantial changes to the coral reef fisheries around American Samoa that require further consultation have occurred since the FEP was implemented.

Marine Mammals

The MMPA prohibits, with certain exceptions, taking of marine mammals in the U.S., and by persons aboard U.S. flagged vessels (i.e., persons and vessels subject to U.S. jurisdiction). On

November 29, 2011, NMFS published the final List of Fisheries (LOF) for 2012 which classifies commercial fisheries of the United States into one of three categories based upon the level of serious injury and mortality of marine mammals that occurs incidental to each fishery with Category 1 being the highest and Category 3 being the lowest (76 FR 73912). However, due to the nature of this fishery as primarily a near-shore fishery with relatively small levels of commercial harvest, NMFS has not classified this fishery in its LOF; however, NMFS classifies the similar coral reef fisheries in Hawaii including the Hawaii inshore gillnet, opelu/akule net, inshore purse seine, throw net, cast net, hukilau net, crab net, crab trap, fish trap, inshore handline, handpick and spearfishing fisheries as Category III fishery under Section 118 of the MMPA, as the fishery is one with a low likelihood or no known incidental takings of marine mammals. Therefore, NMFS concludes that coral reef fisheries in the American Samoa would be comparable to the Category III classification in Hawaii and would be one with a low likelihood of incidentally taking marine mammals.

Cetaceans listed as threatened or endangered under the ESA and that have been observed in the waters around American Samoa include the humpback whale (*Megaptera novaeangliae*), sperm whale (*Physeter macrocephalus*), and sei whale (*Balaenoptera borealis*) (WPFMC 2009a). To date, no humpback, sperm, blue, fin or sei whale interactions have been observed or reported in the American Samoa coral reef fishery. Table 23 shows non-ESA listed marine mammals occurring around American Samoa.

Table 23. Non ESA-listed marine mammals occurring around American Samoa

Common Name	Scientific Name	Common Name	Scientific Name
Blainville's beaked	Mesoplodon	Minke whale	Balaenoptera
whale	densirostris	Willike Wilale	acutorostrata
Bottlenose dolphin	Tursiops truncatus	Pygmy killer whale	Feresa attenuata
Bryde's whale	Balaenoptera edeni	Pygmy sperm whale	Kogia breviceps
Common dolphin	Delphinus delphis	Risso's dolphin	Grampus griseus
Cuvier's beaked whale	Ziphius cavirostris	Rough-toothed dolphin	Steno bredanensis
Dwarf sperm whale	Kogia sima	Short-finned pilot whale	Globicephala macrorhynchus
False killer whale	Pseudorca crassidens	Spinner dolphin	Stenella longirostris
Fraser's dolphin	Lagenodelphis hosei	Spotted dolphin	Stenella attenuata
Killer whale	Orcinus orca	Striped dolphin	Stenella coeruleoalba
Melon-headed whale	Peponocephala electra		

Sources: NMFS PIRO and PIFSC unpublished

Note: Marine mammal survey data are limited for this region. This table represents likely occurrences in the action area.

Sea Turtles

There are five Pacific sea turtles designated under the Endangered Species Act (ESA) as either threatened or endangered. Green and hawksbill sea turtles are most likely to frequent nearshore habitat when foraging around American Samoa. The breeding populations of Mexico's olive ridley sea turtles (*Lepidochelys olivacea*) are currently listed as endangered, while all other ridley

populations are listed as threatened. Leatherback sea turtles (*Dermochelys coriacea*) and hawksbill turtles (*Eretmochelys imbricata*) are also classified as endangered. Additionally, the loggerhead sea turtle (*Caretta caretta*) population in the South Pacific Ocean was recently identified as a distinct population segment and listed as endangered. Green sea turtles (*Chelonia mydas*) are listed as threatened (the green sea turtle is listed as threatened throughout its Pacific range, except for the endangered population nesting on the Pacific coast of Mexico). These five species of sea turtles are highly migratory, or have a highly migratory phase in their life history (NMFS 2001). For more detailed information on the life history of sea turtles, see section 3.3.1 of the Council's EIS on Amendment 18 to the Fishery Management Plan for Pelagic Fisheries of the Western Pacific Region (WPFMC 2009b). There have been no reported or observed interactions with sea turtles in the American Samoa commercial coral reef fishery.

Seabirds

Newell's shearwater (*Puffinus auricularis newelli*) is listed as threatened under the Endangered Species Act. The Newell's shearwater, generally known with other shearwaters and petrels as ta'i'o in Samoan, breeds only in colonies on the main Hawaiian Islands. Newell's shearwater has been sighted once in American Samoa and is considered a rare visitor to the archipelago. Additionally, there have been no reports of interactions between the American Samoa coral reef ecosystem fisheries and seabirds; therefore, NMFS concludes that the fisheries, as currently conducted under the proposed action, would not affect ESA listed seabirds.

Other seabirds not listed under the ESA found in American Samoa are listed in Table 24.

Table 24. Seabirds occurring in American Samoa

Residents (i.e., bree		
Samoan name	Common name	Scientific name
ta'i'o	Wedge-tailed shearwater	Puffinus pacificus
ta'i'o	Audubon's shearwater	Puffinus lherminieri
ta'i'o	Christmas shearwater	Puffinus nativitatis
ta'i'o	Tahiti petrel	Pterodroma rostrata
ta'i'o	Herald petrel	Pterodroma heraldica
ta'i'o	Collared petrel	Pterodroma brevipes
fua'o	Red-footed booby	Sula sula
fua'o	Brown booby	Sula leucogaster
fua'o	Masked booby	Sula dactylatra
tava'esina	White-tailed tropicbird	Phaethon lepturus
tava'e'ula	Red-tailed tropicbird	Phaethon rubricauda
atafa	Great frigatebird	Fregata minor
atafa	Lesser frigatebird	Fregata ariel
gogouli	Sooty tern	Sterna fuscata
gogo	Brown noddy	Anous stolidus
gogo	Black noddy	Anous minutus
laia	Blue-gray noddy	Procelsterna cerulea
manu sina	Common fairy-tern (white tern)	Gygis alba

Source: WPFMC 2003 (updated in WPFMC 2009a).

Potential Impacts of the Proposed ACL Specifications and AM on Protected Resources in American Samoa

The proposed ACL specification and AM would not affect protected marine resources of American Samoa because the ACLs and AM would not result in substantial changes to the way the coral reef fisheries are conducted. There have been no known or observed interactions between these fisheries and protected species in American Samoa. Managing coral reef fisheries using ACLs and AMs would be an addition to the current fishery management regime that is intended to provide for long-term sustainable catches of fishery stocks. Because these fisheries are currently sustainably managed and subject to conservation measures in accordance with various resource conservation and management laws, the ACLs and AM would not result in a change to distribution, abundance, reproduction, or survival of ESA-listed species or increase interactions with protected resources.

If at any time the fishery, environment, or status of a listed species or marine mammal species were to change substantially, or if a fishery were found to be occurring in or near new critical habitat, NMFS would undertake additional consultation, as required, to comply with requirements of the ESA and the MMPA.

3.3.2 Guam Potentially Affected Resources and Potential Impacts

3.3.2.1 Potentially Affected Target, Non-target Stocks, and Bycatch in Guam Coral Reef Fisheries

As with other Pacific Islands, it is difficult to determine "target" and "non-target" stocks because resources harvested in the Mariana Archipelago, including Guam's coral reef fisheries, are highly diverse, with approximately 700 species appearing in catch records (Appendix A). Based on recent average catch reported in Table 16, 90% of the CREMUS catch in Guam is comprised of 11 family groups which include Acanthuridae (surgeonfish), Carangidae (jacks), Lethrinidae (emperors), Scaridae (parrotfish), Mullidae (goatfishes), Siganidae (rabbitfish), Lutjanidae (snappers), Serranidae (groupers), Mugilidae (mullets), Kyphosidae (rudderfish), Holocentridae (soldier/squirrelfish), as well as the coastal pelagic jack, *Selar crumenophthalmus* (atulai), several species of mollusks (snails, octopus and clams) crustaceans (crabs) and algae. Additionally, several other coral reef ecosystem taxa are also commonly harvested and retained and make up the remaining 15% of the catch. However, some species defined in federal regulations as Mariana CREMUS (50 CFR 665.421) are not harvested at all.

While the boat-based and shore-based creel survey programs administered by DAWR provide for the collect of bycatch information, no such information is currently available, indicating that most of the fish that are caught are retained. However, like other Pacific Islands, discards, if they occur, are usually due to cultural reasons (i.e., taboo) or practical reasons such as toxicity (e.g., ciguatera and poison).

As previously noted, coral reef fishing is conducted predominantly in nearshore waters from 0-3 nm because the majority of coral reef ecosystem habitat is found shoreward of the U.S. EEZ, which is generally 3-200 nm from shore. Consequently, it might be argued that there is no bycatch problem for coral reef fisheries under federal control. Nevertheless, there are federal management regulations currently in place to minimize the potential for bycatch through the

prohibition on the use of destructive and non-selective gear methods. Specifically, federal regulations allow only certain gear types to be used while fishing for CREMUS. These include: (1) hand harvest; (2) spear; (3) slurp gun; (4) hand net/dip net; (5) hoop net for crab; (6) throw net; (7) barrier net; (8) surround/purse net that is attended at all times; (9) hook and line; (10) crab and fish traps with vessel ID number affixed; and (11) remotely operated vehicles/submersibles.

While the Mariana Archipelago FEP describes procedures for establishing limits and reference point values based on standardized values of catch per unit effort (CPUE) and effort (E) which serve as proxies for relative biomass (B_{MSY}) and fishing mortality (F_{MSY}), respectively, neither the Council nor NMFS have data that are sufficient for determining reference points values for any Mariana CREMUS in Guam. Therefore, stock status of CREMUS in Guam is unknown. However, based on an analysis of archipelagic-wide estimates of catch-to-biomass presented in Luck and Dalzell (2010) and shown in Appendix B, estimated exploitation rates did not exceed 8% for any CREMUS taxonomic group, suggesting biomass is likely to be above B_{MSY} , although Luck and Dalzell (2010) report much higher exploitation rates when catch-to-biomass comparisons are limited to islands with high populated densities (i.e., Guam and the southern islands of CNMI).

Potential Impacts of the Proposed ACL specifications and AM on Target, Non-target and Bycatch in Guam Coral Reef Fisheries

The Council and its SSC have grouped individual stocks of CREMUS in Guam into higher taxonomic groups (stock complexes) generally at the family level and propose to specify ACLs for each CREMUS stock and stock complex that are listed in Table 16. Alternatives to the proposed ACL are shown in Table 20. The ACL specification for each stock and stock complex is proposed to be set at a level substantially lower than the estimated biomass, where that information is available and specifically, no ACL would be higher than 13% of the stock or stock complex's estimated biomass. The proposed ACLs under the other alternatives are also higher than recent catches, and it is expected that fishing activity would remain the same so the ACLs are not likely to be exceeded. The Guam CRE MUS ACL for Carangidae (jacks) under Alternative 2 is lower than recent catches, but even if the ACL were to be exceeded under Alternative 2, the proposed ACL is set at less than 10% of the biomass estimates for jacks.

Under all of the alternatives, including the proposed action, no new monitoring would be implemented. However, as an AM, a post-season review of the catch data would be conducted as soon as possible after the fishing year to determine whether an ACL for any stock or stock complex was exceeded. If an ACL were exceeded, NMFS, as recommended by the Council would take action to correct the operational issue that caused the ACL overage. This could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year.

The impacts of an ACL specification for Guam CREMUS are expected to be beneficial because it would establish a limit on the amount of fish that are harvested annually where none previously existed. While the lack of in-season catch monitoring ability precludes in-season measures (such as fishery closure) to prevent the ACL from being exceeded, the ACL is set substantially lower than estimated biomass and is intended to prevent overfishing from occurring. Additionally, the post-season review of catch relative to the proposed ACL for each

stock and stock complex is part of a management regime designed to prevent coral reef fisheries from becoming overfished. The additional level of post season review of the catch would also provide an enhanced level of management review of the fisheries and would provide an opportunity for the Council to refine ACL and AM specifications, as needed.

The proposed ACLs are generally higher than recent catch levels, so fisheries are not expected to be affected. Therefore, there is no change to harvest levels expected to occur as a result of implementing the ACL specifications. This, together with the fact that there would be no inseason closures, leads to the conclusion that the ACL specifications and AM measures would not have a large or adverse effect on target, non-target or bycatch species caught in Guam's coral reef fisheries.

3.3.2.2 Potentially Affected Protected Resources in Guam

The coral reef fisheries of the western Pacific region have been evaluated for impacts on protected resources and are managed in compliance with the requirements of the Magnuson-Stevens Act, the Marine Mammal Protection Act (MMPA), the Endangered Species Act (ESA), the Migratory Bird Treaty Act, and other relevant laws and policies. Additional detailed descriptions of potentially affected protected resources and their life histories can be found in section 3.3.4 of the FEP for the Mariana Archipelago (WPFMC 2009c). There is no critical habitat designated for ESA-listed species in the Mariana Archipelago.

Applicable ESA Coordination for Guam

In an informal consultation letter dated June 3, 2008, NMFS determined that the continued authorization of coral reef fisheries of the Mariana Archipelago as managed under the Coral Reef Ecosystems FMP is not likely to adversely affect ESA-listed marine species or their designated critical habitat. In 2009, the Council developed and NMFS approved five new archipelagic-based fishery ecosystem plans (FEP), including the Mariana Archipelago FEP. The FEP incorporated and reorganized elements of the Councils' species-based FMPs, including the Coral Reef Ecosystem FMP, into a spatially-oriented management plan (75 FR 2198, January 14, 2010). All applicable regulations were retained through the development and implementation of the FEP for the Mariana Archipelago, and no substantial changes to the coral reef fisheries around Guam that require further consultation have occurred since the FEP was implemented.

Marine Mammals

The MMPA prohibits, with certain exceptions, taking of marine mammals in the U.S., and by persons aboard U.S. flagged vessels (i.e., persons and vessels subject to U.S. jurisdiction). On November 29, 2011, NMFS published the final List of Fisheries (LOF) for 2012 which classifies commercial fisheries of the United States into one of three categories based upon the level of serious injury and mortality of marine mammals that occurs incidental to each fishery with Category 1 being the highest and Category 3 being the lowest (76 FR 73912). However, due to the nature of this fishery as primarily a near-shore fishery with relatively small levels of commercial harvest, NMFS has not classified this fishery in its LOF; however, NMFS classifies the similar coral reef fisheries in Hawaii including the Hawaii inshore gillnet, opelu/akule net, inshore purse seine, throw net, cast net, hukilau net, crab net, crab trap, fish trap, inshore handline, handpick and spearfishing fisheries as Category III fishery under Section 118 of the MMPA, as the fishery is one with a low likelihood or no known incidental takings of marine

mammals. Therefore, NMFS concludes that coral reef fisheries in Guam would be comparable to the Category III classification in Hawaii and would be one with a low likelihood of incidentally taking marine mammals.

Cetaceans listed as endangered under the ESA that have been observed in waters of the Mariana Islands include the humpback whale (*Megaptera novaeangliae*), sperm whale (*Physeter macrocephalus*), and sei whale (*Balaenoptera borealis*) (WPFMC 2009c). Other ESA listed marine mammals that may occur in the EEZ around the Mariana Islands Archipelago include the blue whale (*Balaenoptera musculus*) and the fin whale (*Balaenoptera physalus*). Table 25 lists known non-ESA listed marine mammals that have been observed in the Mariana Archipelago and are protected by the MMPA.

Table 25. Non-ESA listed marine mammals occurring around the Mariana Archipelago

Common Name	Scientific Name
Blainville's beaked whale	Mesoplodon densirostris
Bottlenose dolphin	Tursiops truncatus
Bryde's whale	Balaenoptera edeni
Common dolphin	Delphinus delphis
Cuvier's beaked whale	Ziphius cavirostris
Dwarf sperm whale	Kogia sima
False killer whale	Pseudorca crassidens
Fraser's dolphin	Lagenodelphis hosei
Killer whale	Orcinus orca
Longman's beaked whale	Indopacetus pacificus
Melon-headed whale	Peponocephala electra
Minke whale	Balaenoptera acutorostrata
Pantropical Spotted Dolphin	Stenella attenuate
Pygmy killer whale	Feresa attenuata
Pygmy sperm whale	Kogia breviceps
Risso's dolphin	Grampus griseus
Rough-toothed dolphin	Steno bredanensis
Short-finned pilot whale	Globicephala macrorhynchus
Spinner dolphin	Stenella longirostris
Spotted dolphin	Stenella attenuata
Striped dolphin	Stenella coeruleoalba

Source: Eldredge 2003

Sea Turtles

All Pacific sea turtles are designated under the Endangered Species Act (ESA) as either threatened or endangered (except for the flatback turtle). The breeding populations of Mexico's olive ridley sea turtles (*Lepidochelys olivacea*) are currently listed as endangered, while all other ridley populations are listed as threatened. Leatherback sea turtles (*Dermochelys coriacea*) and hawksbill turtles (*Eretmochelys imbricata*) are also classified as endangered. Additionally, the loggerhead sea turtle (*Caretta caretta*) population in the North Pacific Ocean was recently

identified as a distinct population segment and listed as endangered. Green sea turtles (*Chelonia mydas*) are listed as threatened (the green sea turtle is listed as threatened throughout its Pacific range, except for the endangered population nesting on the Pacific coast of Mexico). These five species of sea turtles are highly migratory, or have a highly migratory phase in their life history (NMFS 2001).

Based on nearshore surveys conducted jointly between the CNMI–DFW and NMFS around the Southern Mariana Islands (Rota and Tinian 2001; Saipan 1999), an estimated 1,000 to 2,000 green sea turtles forage in these areas (Kolinski et al., 2001). Nesting beaches and seagrass beds on Tinian and Rota are in good condition but beaches and seagrass beds on Saipan have been impacted by hotels, golf courses and general tourist activities. Nesting surveys for green sea turtles have been done on Guam since 1973 with the most consistent data collected between 1990 and 2001 (Cummings 2002). Survey results show nesting in Guam to be generally increasing with 1997 having the most numerous nesting females at 60 (Cummings 2002). From October 1, 2006 through July 31, 2008, 55 green turtle nests were counted at various beaches during opportunistic surveys throughout Guam (DAWR 2009). Aerial surveys done in 1990–2000 also found an increase in green sea turtle sightings around Guam with over 200 turtles counted in 2000 (Cummings 2002). There have been occasional sightings of leatherback turtles around Guam (Eldredge 2003); however, the extent to which leatherback turtles are present around the Mariana Archipelago is unknown. There are no known reports of loggerhead or olive ridley turtles in waters around the Mariana Archipelago (WPFMC 2009c).

Seabirds

The following seabirds are considered residents of the Mariana Archipelago: wedge-tailed shearwater (*Puffinus pacificus*), white-tailed tropicbird (*Phaethon lepturus*), red-tailed tropicbird (*Phaethon rubricauda*), masked booby (*Sula dactylatra*), brown booby (*Sula leucogaster*), red-footed booby (*Sula sula*), white tern (*Gygis alba*), sooty tern (*Sterna fuscata*), brown noddy (*Anous stolidus*), black noddy (*Anous minutus*), and the great frigatebird (*Fregata minor*). There are no known interactions between seabirds and any of the Mariana Archipelago coral reef fisheries (WPFMC 2009c); therefore, NMFS concludes that the fisheries, as currently conducted under the proposed action, would not affect ESA listed seabirds.

The following seabirds have been sighted and are considered visitors (some more common than others) to the Mariana Archipelago; short-tailed shearwater (*Puffinus tenuirostris*; common visitor), Newell's shearwater (*Puffinus auricularis*; rare visitor), Audubon's shearwater (*Puffinus iherminieri*), Leach's storm-petrel (*Oceanodroma leucorhoa*), and the Matsudaira's storm-petral (*Oceanodroma matsudairae*). Of these, only the Newell's shearwater is listed as threatened under the ESA. There have been no sightings of the endangered short-tailed albatross (*Phoebastria albatrus*) in the CNMI although the CNMI is within the range of the only breeding colony at Torishima, Japan (WPFMC 2009c).

Potential Impacts of the Proposed ACL Specifications and AM on Protected Resources in Guam

The proposed ACL specifications and AM would not affect protected resources throughout the Mariana Archipelago because the ACLs and AM would not result in substantial changes to the way the coral reef fisheries are conducted. There have been no known or observed interactions between these fisheries and protected species in Guam. Managing coral reef fisheries using

ACLs and AMs would be an addition to the current fishery management regime that is intended to provide for long-term sustainable catches of fishery stocks. Because these fisheries are currently sustainably managed and subject to conservation measures in accordance with various resource conservation and management laws, the ACLs and AM would not result in a change to distribution, abundance, reproduction, or survival of ESA-listed species or increase interactions with protected resources.

If at any time the fishery, environment, or status of a listed species or marine mammal species were to change substantially, or if a fishery were found to be occurring in or near new critical habitat, NMFS would undertake additional consultation as required to comply with requirements of the ESA and the MMPA.

3.3.3 CNMI Potentially Affected Resources and Potential Impacts

3.3.3.1 Potentially Affected Target, Non-target Stocks, and Bycatch in the CNMI Coral Reef Fisheries

As with other Pacific Islands, it is difficult to determine "target" and "non-target" stocks because resources harvested in the Mariana Archipelago, including CNMI's coral reef fisheries are highly diverse, with over a hundred species appearing in catch records (Appendix A). Based recent on average catch reported in Table 17, 90% of the CREMUS catch in CNMI is comprised of 9 family groups which include Lethrinidae (emperors), Carangidae (jacks), Acanthuridae (surgeonfish), Serranidae (groupers), Lutjanidae (snappers), Mullidae (goatfishes), Scaridae (parrotfish), Mugilidae (mullets), Siganidae (rabbitfish), the coastal pelagic jack, *Selar crumenophthalmus* (atulai), and several species of mollusks (snails, octopus and clams). Additionally, several other coral reef ecosystem taxa are also commonly harvested and retained and make up the remaining 10% of the catch. However, some species defined in federal regulations as Mariana CREMUS (50 CFR 665.421) are not harvested at all.

While the boat-based and shore-based creel survey programs administered by CNMI DFW provide for the collection of bycatch information, no such information is currently available indicating that most of the fish that are caught are retained. However, like other Pacific Islands, discards, if they occur, are usually due to cultural reasons (i.e., taboo) or practical reasons such as toxicity (e.g., ciguatera and poison).

In the CNMI, the U.S. EEZ extends from the shore to 200 nm; however, the federal coral reef ecosystem management area applies only to offshore waters from 3-200 nm from shore, consistent with the other island areas. As previously noted, coral reef fishing is conducted predominantly in nearshore waters from 0-3 nm because the majority of coral reef ecosystem habitat is found within this boundary. Consequently, it might be argued that there is no bycatch problem for coral reef fisheries under federal control. Nevertheless, there are federal management regulations currently in place to minimize the potential for bycatch through the prohibition on the use of destructive and non-selective gear methods. Specifically, federal regulations allow only certain gear types to be used while fishing for CREMUS. These include: (1) hand harvest; (2) spear; (3) slurp gun; (4) hand net/dip net; (5) hoop net for crab; (6) throw net; (7) barrier net; (8) surround/purse net that is attended at all times; (9) hook and line; (10)

crab and fish traps with vessel ID number affixed; and (11) remotely operated vehicles/submersibles.

While the Mariana Archipelago FEP describes procedures for establishing limits and reference point values based on standardized values of catch per unit effort (CPUE) and effort (E) which serve as proxies for relative biomass (B_{MSY}) and fishing mortality (F_{MSY}), respectively, neither the Council nor NMFS have sufficient data to determine reference point values for any Mariana CREMUS in CNMI. Therefore, stock status of CREMUS in CNMI is unknown. However, based on an analysis of archipelagic-wide estimates of catch-to-biomass presented in Luck and Dalzell (2010) and shown in Appendix B, estimated exploitation rates did not exceed 10% for any CREMUS taxonomic group, suggesting biomass is likely to be above B_{MSY}, although Luck and Dalzell (2010) report much higher exploitation rates when catch-to-biomass comparisons are limited to islands with high populated densities (i.e., Guam and southern islands of CNMI).

Potential Impacts of the Proposed ACL specifications and AM on Target, Non-target Stocks, and Bycatch in the CNMI Coral Reef Fisheries

The Council and its SSC have grouped individual stocks of CREMUS in CNMI into higher taxonomic groups (stock complexes) generally at the family level and propose to specify ACLs for each CREMUS stock and stock complex that are listed in Table 17. Alternatives to the proposed ACL are shown in Table 21. The ACL specification for each stock and stock complex is proposed to be set at a level substantially lower that the estimated biomass, where that information is available and specifically, no ACL would be higher than 10% of the stock or stock complex's estimated biomass. The proposed ACLs under other alternatives are also higher than recent catches and since fishing activity is expected to remain the same, the ACLs are not likely to be exceeded.

Under all of the alternatives, including the proposed action, no new monitoring would be implemented; however, as an AM a post-season review of the catch data would be conducted as soon as possible after the fishing year to determine whether an ACL for any stock or stock complex was exceeded. If an ACL were exceeded, NMFS, as recommended by the Council would take action to correct the operational issue that caused the ACL overage. This could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year.

The impacts of an ACL specification for CNMI CREMUS are expected to be beneficial because it would establish a limit on the amount of fish that are harvested annually where none previously existed. While the lack of in-season catch monitoring ability precludes in-season measures (such as fishery closure) to prevent the ACL from being exceeded, the ACL is set substantially lower than estimated biomass and is intended to prevent overfishing from occurring. Additionally, the post-season review of catch relative to the proposed ACL for each stock and stock complex is part of a management regime designed to prevent coral reef fisheries from becoming overfished. The additional level of post season review of the catch would also provide an enhanced level of management review of the fisheries and would provide an opportunity for the Council to refine ACL and AM specifications, as needed.

The proposed ACLs are generally higher than recent catch levels, so fisheries are not expected to be affected, and therefore, there is no change to harvest levels expected to occur as a result of

implementing the ACL specifications. This, together with the fact that there are no in-season closures, leads to the conclusion that the ACL specifications and AM measures would not have a large or adverse effect on target, non-target or bycatch species caught in CNMI's coral reef fisheries.

3.3.3.2 Potentially Affected Protected Resources in the CNMI

The coral reef fisheries of the western Pacific region have been evaluated for impacts on protected resources and are managed in compliance with the requirements of the Magnuson-Stevens Act, the Marine Mammal Protection Act (MMPA), the Endangered Species Act (ESA), the Migratory Bird Treaty Act, and other laws and policies. Additional detailed descriptions of potentially affected protected resources and their life histories can be found in section 3.3.4 of the FEP for the Mariana Archipelago (WPFMC 2009c). There is no critical habitat designated for ESA-listed species in the Mariana Archipelago.

Applicable ESA Coordination for the CNMI

In an informal consultation letter dated June 3, 2008, NMFS determined that the continued authorization of coral reef fisheries of the Mariana Archipelago as managed under the Coral Reef Ecosystems FMP is not likely to adversely affect ESA-listed marine species or their designated critical habitat. In 2009, the Council developed and NMFS approved five new archipelagic-based fishery ecosystem plans (FEP), including the Mariana Archipelago FEP. The FEP incorporated and reorganized elements of the Councils' species-based FMPs, including the Coral Reef Ecosystem FMP into a spatially-oriented management plan (75 FR 2198, January 14, 2010). All applicable regulations were retained through the development and implementation of the FEP for the Mariana Archipelago, and no substantial changes to the coral reef fisheries around the CNMI that require further consultation have occurred since the FEP was implemented.

Marine Mammals

The MMPA prohibits, with certain exceptions, taking of marine mammals in the U.S., and by persons aboard U.S. flagged vessels (i.e., persons and vessels subject to U.S. jurisdiction). On November 29, 2011, NMFS published the final List of Fisheries (LOF) for 2012 which classifies commercial fisheries of the United States into one of three categories based upon the level of serious injury and mortality of marine mammals that occurs incidental to each fishery with Category 1 being the highest and Category 3 being the lowest (76 FR 73912). However, due to the nature of this fishery as primarily a near-shore fishery with relatively small levels of commercial harvest, NMFS has not classified this fishery in its LOF; however, NMFS classifies the similar coral reef fisheries in Hawaii including the Hawaii inshore gillnet, opelu/akule net, inshore purse seine, throw net, cast net, hukilau net, crab net, crab trap, fish trap, inshore handline, handpick and spearfishing fisheries as Category III fishery under Section 118 of the MMPA, as the fishery is one with a low likelihood or no known incidental takings of marine mammals. Therefore, NMFS concludes that coral reef fisheries in the CNMI would be comparable to the Category III classification in Hawaii and would be one with a low likelihood of incidentally taking marine mammals.

Cetaceans listed as endangered under the ESA that have been observed in waters of the Mariana Islands include the humpback whale (*Megaptera novaeangliae*), sperm whale (*Physeter macrocephalus*), and sei whale (*Balaenoptera borealis*) (WPFMC 2009c). Other ESA listed

marine mammals that may occur in the EEZ around the Mariana Islands Archipelago include the blue whale (*Balaenoptera musculus*) and the fin whale (*Balaenoptera physalus*). Table 26 lists known non-ESA listed marine mammals that have been observed in the Mariana Archipelago and are protected by the MMPA.

Table 26. Non-ESA listed marine mammals occurring around the Mariana Archipelago

Common Name	Scientific Name
Blainville's beaked whale	Mesoplodon densirostris
Bottlenose dolphin	Tursiops truncatus
Bryde's whale	Balaenoptera edeni
Common dolphin	Delphinus delphis
Cuvier's beaked whale	Ziphius cavirostris
Dwarf sperm whale	Kogia sima
False killer whale	Pseudorca crassidens
Fraser's dolphin	Lagenodelphis hosei
Killer whale	Orcinus orca
Longman's beaked whale	Indopacetus pacificus
Melon-headed whale	Peponocephala electra
Minke whale	Balaenoptera acutorostrata
Northern Elephant Seal	Mirounga angustirostris
Pantropical Spotted Dolphin	Stenella attenuate
Pygmy killer whale	Feresa attenuata
Pygmy sperm whale	Kogia breviceps
Risso's dolphin	Grampus griseus
Rough-toothed dolphin	Steno bredanensis
Short-finned pilot whale	Globicephala macrorhynchus
Spinner dolphin	Stenella longirostris
Spotted dolphin	Stenella attenuata
Striped dolphin	Stenella coeruleoalba

Source: Eldredge 2003

Sea Turtles

All Pacific sea turtles are designated under the Endangered Species Act (ESA) as either threatened or endangered (except for the flatback turtle). The breeding populations of Mexico's olive ridley sea turtles (*Lepidochelys olivacea*) are currently listed as endangered, while all other ridley populations are listed as threatened. Leatherback sea turtles (*Dermochelys coriacea*) and hawksbill turtles (*Eretmochelys imbricata*) are also classified as endangered. Additionally, the loggerhead sea turtle (*Caretta caretta*) population in the North Pacific Ocean was recently identified as a distinct population segment and listed as endangered. Green sea turtles (*Chelonia mydas*) are listed as threatened (the green sea turtle is listed as threatened throughout its Pacific range, except for the endangered population nesting on the Pacific coast of Mexico). These five species of sea turtles are highly migratory, or have a highly migratory phase in their life history (NMFS 2001).

Based on nearshore surveys conducted jointly between the CNMI–DFW and NMFS around the Southern Mariana Islands (Rota and Tinian 2001; Saipan 1999), an estimated 1,000 to 2,000 green sea turtles forage in these areas (Kolinski et al., 2001). Nesting beaches and seagrass beds on Tinian and Rota are in good condition but beaches and seagrass beds on Saipan have been impacted by hotels, golf courses and general tourist activities. Intensive monitoring in occurred on Saipan at seven beaches from March 4 to August 31, 2009 resulting in 16 green turtle nests documented. Rapid assessments at Rota beaches Okgok and Tatgua on July 12, 2009 yielded 13 nests. On Tinian, from July 22-31, 2009, 36 nests at five beaches were documented (Maison et. al 2010). There have been occasional sightings of leatherback turtles around Guam (Eldredge 2003); however, the extent to which leatherback turtles are present around the Mariana Archipelago is unknown. There are no known reports of loggerhead or olive ridley turtles in waters around the Mariana Archipelago (WPFMC 2009c).

Seabirds

The following seabirds are considered residents of the Mariana Archipelago: wedge-tailed shearwater (*Puffinus pacificus*), white-tailed tropicbird (*Phaethon lepturus*), red-tailed tropicbird (*Phaethon rubricauda*), masked booby (*Sula dactylatra*), brown booby (*Sula leucogaster*), red-footed booby (*Sula sula*), white tern (*Gygis alba*), sooty tern (*Sterna fuscata*), brown noddy (*Anous stolidus*), black noddy (*Anous minutus*), and the great frigatebird (*Fregata minor*). There are no known interactions between seabirds and any of the Mariana Archipelago coral reef fisheries (WPFMC 2009c); therefore, NMFS concludes that the fisheries, as currently conducted under the proposed action, would not affect ESA listed seabirds.

The following seabirds have been sighted and are considered visitors (some more common than others) to the Mariana Archipelago; short-tailed shearwater (*Puffinus tenuirostris*; common visitor), Newell's shearwater (*Puffinus auricularis*; rare visitor), Audubon's shearwater (*Puffinus iherminieri*), Leach's storm-petrel (*Oceanodroma leucorhoa*), and the Matsudaira's storm-petral (*Oceanodroma matsudairae*). Of these, only the Newell's shearwater is listed as endangered. There have been no sightings of the endangered short-tailed albatross (*Phoebastria albatrus*) in the CNMI although the CNMI is within the range of the only breeding colony at Torishima, Japan (WPFMC 2009c).

Potential Impacts of the Proposed ACL Specifications and AM on Protected Resources in the CNMI

The proposed ACL specifications and AM would not affect protected resources throughout the Mariana Archipelago because the ACLs and AM would not result in substantial changes to the way the coral reef fisheries are conducted. There have been no known or observed interactions between these fisheries and protected species in the CNMI. Managing coral reef fisheries using ACLs and AMs would be an addition to the current fishery management regime that is intended to provide for long-term sustainable catches of fishery stocks. Because these fisheries are currently sustainably managed and subject to conservation measures in accordance with various resource conservation and management laws, the ACLs and AM would not result in a change to distribution, abundance, reproduction, or survival of ESA-listed species or increase interactions with protected resources.

If at any time the fishery, environment, or status of a listed species or marine mammal species were to change substantially, or if a fishery were found to be occurring in or near new critical

habitat, NMFS would undertake additional consultation as required to comply with requirements of the ESA and the MMPA.

3.3.4 Hawaii Potentially Affected Resources and Potential Impacts

3.3.4.1 Potentially Affected Target, Non-target Stocks, and Bycatch in Hawaii Coral Reef Fisheries

As with other Pacific Islands, it is difficult to determine "target" and "non-target" stocks because resources harvested in Hawaii's coral reef fisheries are highly diverse, with approximately 300 species appearing in catch records (Appendix A). Based on recent average catch reported in Table 18, 90% of the CREMUS catch in Hawaii is comprised of 7 family groups which include Carangidae (jacks), Mullidae (goatfishes), Acanthuridae (surgeonfish), the Lutjanidae (specifically, taape), Holocentridae (soldierfish/squirrelfish) Mugilidae (mullets), and Scaridae (parrotfish). However, two species of coastal pelagic jacks (*Selar crumenophthalmus* or akule and *Decapterus macarellus* or opelu), account for over half of the total recent catch. Several other coral reef ecosystem taxa are also commonly harvested and retained and make up the remaining 10% of the catch. However, some species defined in federal regulations as Mariana CREMUS (50 CFR 665.221) are not harvested at all.

The commercial marine license and catch reporting program administered by HDAR provide for the collection of bycatch information; however, no such information is currently available. Nevertheless, some discards are likely because some reef fish in state waters are subject to minimum size requirements and weight restrictions for sale. These include species of mullet, milkfish, moi (or threadfin), oio (or bonefish), parrotfish, jacks, goatfish, surgeonfish akule (or bigeye scad), and opelu (or round mackerel). However, like other Pacific Islands, discards, if they occur, are also due to cultural reasons (i.e., taboo) or practical reasons such as toxicity (e.g., ciguatera and poison).

Section 4.5 of the Hawaii FEP (WPFMC 2009) includes a complete description of gears employed in Hawaii's coral reef fisheries and a summary of bycatch characteristics of these gears. In general, coral reef fishing generates very little bycatch because almost all reef fish are retained.

As previously noted, coral reef fishing is conducted predominantly in nearshore waters from 0-3 nm because the majority of coral reef ecosystem habitat is found shoreward of the U.S. EEZ, which is generally 3-200 nm from shore. Consequently, it might be argued that there is no bycatch problem for coral reef fisheries under federal control. Nevertheless, there are federal management regulations currently in place to minimize the potential for bycatch through the prohibition on the use of destructive and non-selective gear methods. Specifically, federal regulations allow only certain gear types to be used while fishing for CREMUS. These include: (1) hand harvest; (2) spear; (3) slurp gun; (4) hand net/dip net; (5) hoop net for crab; (6) throw net; (7) barrier net; (8) surround/purse net that is attended at all times; (9) hook and line; (10) crab and fish traps with vessel ID number affixed; and (11) remotely operated vehicles/submersibles.

While the Hawaii FEP describes procedures for establishing limits and reference point values based on standardized values of catch per unit effort (CPUE) and effort (E) which serve as

proxies for relative biomass (B_{MSY}) and fishing mortality (F_{MSY}), respectively, neither the Council or NMFS have data that would allow the determination of reference point values for any Hawaii CREMUS. Therefore, stock status of Hawaii CREMUS is unknown. However, based on an analysis of archipelagic-wide estimates of catch-to-biomass presented in Luck and Dalzell (2010) and shown in Appendix B, estimated exploitation rates for Hawaii CREMUS did not exceed 4% for any taxonomic group, suggesting biomass is likely to be above B_{MSY} , although Luck and Dalzell (2010) report much higher exploitation rates when catch-to-biomass comparisons are limited to islands with high populated densities (i.e., main Hawaiian Islands).

Potential Impacts of the Proposed ACL specifications and AM on Target, Non-target Stocks, and Bycatch in Hawaii's Coral Reef Fisheries

The Council and its SSC have grouped individual stocks of Hawaii CREMUS into higher taxonomic groups (stock complexes) generally at the family level and propose to specify ACLs for each CREMUS stock and stock complex that are listed in Table 18. Alternatives to the proposed ACL are shown in Table 22. The ACL specification for each stock and stock complex is proposed to be set at a level substantially lower that the estimated biomass, where that information is available and specifically, no ACL would be higher than 1% of the stock or stock complex's estimated biomass. However, under Alternatives 2 and 3, there is the potential for the ACL to be exceeded for Acanthurids (surgeonfishes) and Scarids (parrotfishes) as recent catch is higher than the ACLs associated with these alternatives. If this occurs, the impacts to these CREMUS groups are not expected to result in a large adverse effect because the ACLs under both alternatives are set less than a fraction of 1% of the estimated biomasses listed in Table 18.

Under all alternatives considered, including the proposed action, no new monitoring would be implemented; however, as an AM a post-season review of the catch data would be conducted as soon as possible after the fishing year to determine whether an ACL for any stock or stock complex was exceeded. If an ACL were exceeded, NMFS, as recommended by the Council would take action to correct the operational issue that caused the ACL overage. This could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year.

The impacts of an ACL specification for Hawaii CREMUS are expected to be beneficial because it would establish a limit on the amount of fish that are harvested annually where none previously existed. While the lack of in-season catch monitoring ability precludes in-season measures (such as fishery closure) to prevent the ACL from being exceeded, the ACL is set substantially lower than estimated biomass and is intended to prevent overfishing from occurring. Additionally, the post-season review of catch relative to the proposed ACL for each stock and stock complex is part of a management regime designed to prevent coral reef fisheries from becoming overfished. The additional level of post season review of the catch would also provide an enhanced level of management review of the fisheries and would provide an opportunity for the Council to refine ACL and AM specifications, as needed.

The proposed Hawaii ACLs are generally higher than recent catch levels, and the fisheries are not expected to change, therefore, there is no change to harvest levels expected to occur as a result of implementing the ACL specifications. This, together with the fact that there are no inseason closures, and there would be enhanced review of fishing on CRE MUS, leads to the

conclusion that the ACL specifications and AM measures would not have a large or adverse effect on target, non-target or bycatch species caught in Hawaii's coral reef fisheries.

3.3.4.2 Potentially Affected Protected Resources in Hawaii

The coral reef fisheries of the western Pacific region have been evaluated for impacts on protected resources and are managed in compliance with the requirements of the Magnuson-Stevens Act, the Marine Mammal Protection Act (MMPA), the Endangered Species Act (ESA), the Migratory Bird Treaty Act, and other laws and policies. Additional detailed descriptions of potentially affected protected resources and their life histories can be found in section 3.3.4 of the FEP for the Hawaii Archipelago (WPFMC 2009d).

Applicable ESA Coordination for Hawaii Coral Reef Fisheries

In an informal consultation letter dated March 7, 2002, NMFS determined that the Coral Reef Ecosystem FMP management approach and fisheries that operate in accordance with regulations implementing the FMP was not likely to adversely affect ESA-listed species known to occur in waters around Hawaii or their designated critical habitat. In 2009, the Council developed and NMFS approved five new archipelagic-based fishery ecosystem plans (FEP), including the Hawaii Archipelago FEP. The FEP incorporated and reorganized elements of the Councils' species-based FMPs, including the Coral Reef Ecosystem FMP into a spatially-oriented management plan (75 FR 2198, January 14, 2010). All applicable regulations were retained through the development and implementation of the FEP for Hawaii and no substantial changes to the coral reef fisheries around Hawaii have occurred since the FEP was implemented that require further consultation at this time.

Marine Mammals

The MMPA prohibits, with certain exceptions, taking of marine mammals in the U.S., and by persons aboard U.S. flagged vessels (i.e., persons and vessels subject to U.S. jurisdiction). On November 29, 2011, NMFS published the final List of Fisheries (LOF) for 2012 which classifies commercial fisheries of the United States into one of three categories based upon the level of serious injury and mortality of marine mammals that occurs incidental to each fishery with Category 1 being the highest and Category 3 being the lowest (76 FR 73912). All Hawaii coral reef fisheries including the Hawaii inshore gillnet, opelu/akule net, inshore purse seine, throw net, cast net, hukilau net, crab net, crab trap, fish trap, inshore handline, handpick and spearfishing fisheries are classified as Category III fisheries under Section 118 of the MMPA and have a low likelihood or no known incidental takings of marine mammals.

Table 27 lists known non-ESA listed marine mammals that have been observed in the Hawaiian Archipelago and are protected by the MMPA. See section 4.3 for more information on the MMPA determination.

Cetaceans listed as endangered under the ESA and observed in the Hawaiian Archipelago are the humpback whale (*Megaptera novaeangliae*), sperm whale (*Physeter macrocephalus*), blue whale (*Balaenoptera musculus*), fin whale (*B. physalus*), and sei whale (*B. borealis*). The Hawaiian monk seal is the only endemic pinniped in Hawaii and is listed as endangered under the ESA.

On November 17, 2010, NMFS published a proposed rule to list the Hawaiian insular false killer whale as an endangered species under the ESA (75 FR 70169). NMFS is also proposing to designate areas in the main Hawaiian Islands as monk seal critical habitat. Specific areas proposed include terrestrial and marine habitats from 5 m inland from the shoreline extending seaward to the 500 m depth contour around Kaula Island, Niihau, Kauai, Oahu, Maui Nui (including Kahoolawe, Lanai, Maui and Molokai) and Hawaii Island (76 FR 32026, June 2, 1011). If either proposal is finalized, NMFS would re-initiate consultation under Section 7 of the ESA to determine the impact of fishing activities on critical habitat and begin planning and coordination with the Council and the public regarding any necessary management measures.

Table 27. Non-ESA listed marine mammals occurring around Hawaii

Common Name	Scientific Name
Blainville's beaked whale	Mesoplodon densirostris
Bottlenose dolphin	Tursiops truncatus
Bryde's whale	Balaenoptera edeni
Common dolphin	Delphinus delphis
Cuvier's beaked whale	Ziphius cavirostris
Dall's porpoise	Phocoenoides dalli
Dwarf sperm whale	Kogia sima
False killer whale	Pseudorca crassidens
Fraser's dolphin	Lagenodelphis hosei
Killer whale	Orcinus orca
Longman's beaked whale	Indopacetus pacificus
Melon-headed whale	Peponocephala electra
Minke whale	Balaenoptera acutorostrata
Pantropical spotted dolphin	Stenella attenuate
Pygmy killer whale	Feresa attenuata
Pygmy sperm whale	Kogia breviceps
Risso's dolphin	Grampus griseus
Rough-toothed dolphin	Steno bredanensis
Short-finned pilot whale	Globicephala macrorhynchus
Spinner dolphin	Stenella longirostris
Spotted dolphin	Stenella attenuata
Striped dolphin	Stenella coeruleoalba

Sea Turtles

The breeding populations of Mexico's olive ridley sea turtles (*Lepidochelys olivacea*) are currently listed as endangered, while all other ridley populations are listed as threatened. Leatherback sea turtles (*Dermochelys coriacea*) and hawksbill turtles (*Eretmochelys imbricata*) are also classified as endangered. Additionally, the loggerhead sea turtle (*Caretta caretta*) population in the North Pacific Ocean was recently identified as a distinct population segment and listed as endangered. Green sea turtles (*Chelonia mydas*) are listed as threatened (the green sea turtle is listed as threatened throughout its Pacific range, except for the endangered population nesting on the Pacific coast of Mexico). These five species of sea turtles are highly

migratory, or have a highly migratory phase in their life history. There is a resident population of green sea turtles in Hawaii and it is the most commonly sighted species of sea turtle in waters around Hawaii.

Seabirds

Seabirds listed as threatened or endangered under the ESA are managed by the USFWS. The short-tailed albatross, which is listed as endangered under the ESA, is a migratory seabird that is known to be occasionally present in the NWHI. No interactions between seabirds and the coral reef fishery have been observed or reported. Other listed seabirds found in the region are the endangered Hawaiian petrel (*Pterodroma phaeopygia*) and the threatened Newell's shearwater (*Puffinus auricularis newelli*). Non-listed seabirds known to be present are the blackfooted albatross (*Phoebastria nigripes*); Laysan albatross (*P. immutabilis*); wedge-tailed (*Puffinus pacificus*), sooty (*P. griseus*) and fleshfooted (*P. carneipes*) shearwaters, as well as the masked booby (*Sula dactylatra*), brown booby (*Sula leucogaster*), and red-footed booby (*Sula sula*). Most of these seabirds forage far from the islands and are unlikely to interact with the coral reef fishery. There are no known interactions between seabirds and any of the Hawaii coral reef fisheries (WPFMC 2009d); therefore, NMFS concludes that the fisheries, as currently conducted under the proposed action, would not affect ESA listed seabirds.

Potential Impacts of the Proposed ACL Specifications and AM on Protected Resources in Hawaii

The proposed ACL specification and AM would not affect protected resources throughout the Hawaii Archipelago because none of the alternatives is expected to result in substantial changes to the way the coral reef fisheries are conducted. Managing coral reef fisheries using ACLs and AMs would be an addition to the current fishery management regime that is intended to provide for long-term sustainable catches of fishery stocks. Because these fisheries are currently sustainably managed and subject to conservation measures in accordance with various resource conservation and management laws, none of the alternatives is expected to change the distribution, abundance, reproduction, or survival of listed species or increase interactions with protected resources.

If at any time the fishery, environment, or status of a listed species or marine mammal species were to change substantially, or if a fishery were found to be occurring in or near new critical habitat, NMFS would undertake additional consultation as required to comply with requirements of the ESA and the MMPA.

3.4 Potential Impacts to Essential Fish Habitat and Habitat Areas of Particular Concern

Essential fish habitat (EFH) is defined as those waters and substrate as necessary for fish spawning, breeding, feeding, and growth to maturity. This includes the marine areas and their chemical and biological properties that are utilized by the organism. Substrate includes sediment, hard bottom, and other structural relief underlying the water column along with their associated biological communities. In 1999, the Council developed and NMFS approved EFH definitions for management unit species (MUS) of the Bottomfish and Seamount Groundfish FMP (Amendment 6), Crustacean FMP (Amendment 10), Pelagic FMP (Amendment 8), and Precious Corals FMP (Amendment 4) (74 FR 19067, April 19, 1999). NMFS approved additional EFH

definitions for coral reef ecosystem species in 2004 as part of the implementation of the Coral Reef Ecosystem FMP (69 FR8336, February 24, 2004). EFH definitions were also approved for deepwater shrimp through an amendment to the Crustaceans FMP in 2008 (73 FR 70603, November 21, 2008).

Ten years later, in 2009, the Council developed and NMFS approved five new archipelagic-based fishery ecosystem plans (FEP). The FEPs incorporated and reorganized elements of the Councils' species-based FMPs into a spatially-oriented management plan (75 FR 2198, January 14, 2010). EFH definitions and related provisions for all FMP fishery resources were subsequently carried forward into the respective FEPs. In addition to and as a subset of EFH, the Council described habitat areas of particular concern (HAPC) based on the following criteria: ecological function of the habitat is important, habitat is sensitive to anthropogenic degradation, development activities are or will stress the habitat, and/or the habitat type is rare. In considering the potential impacts of a proposed fishery management action on EFH, all designated EFH and HAPC must be considered.

The designated areas of EFH and HAPC for all FEP MUS by life stage are summarized in Table 28. The Council is currently reviewing habitat information relevant to Hawaii bottomfish and seamount groundfish and may refine these EFH/HAPC designations if warranted (76 FR 13604, March 14, 2011).

Table 28. EFH and HAPC for Western Pacific FEP MUS

MUS	Species Complex	EFH	НАРС
Bottomfish MUS	American Samoa, Guam and CNMI bottomfish species: lehi (Aphareus rutilans) uku (Aprion virescens), giant trevally (Caranx ignoblis), black trevally (Caranx lugubris), blacktip grouper (Epinephalus fasciatus), Lunartail grouper (Variola louti), ehu (Etelis carbunculus), onaga (Etelis coruscans), ambon emperor (Lethrinus amboinensis), redgill emperor (Lethrinus rubrioperculatus), taape (Lutjanus kasmira), yellowtail kalekale (Pristipomoides auricilla), opakapaka (P. filamentosus), yelloweye snapper (P. flavipinnis), kalekale (P. sieboldii), gindai (P. zonatus), and amberjack (Seriola dumerili).	Eggs and larvae: the water column extending from the shoreline to the outer limit of the EEZ down to a depth of 400 m (200 fm). Juvenile/adults: the water column and all bottom habitat extending from the shoreline to a depth of 400 m (200 fm)	All slopes and escarpments between 40–280 m (20 and 140 fm)

MUS	Species Complex	EFH	НАРС
	Hawaii bottomfish species: uku (Aprion virescens), thicklip trevally (Pseudocaranx dentex), giant trevally (Caranx ignoblis), black trevally (Caranx lugubris), amberjack (Seriola dumerili), taape (Lutjanus kasmira), ehu (Etelis carbunculus), onaga (Etelis coruscans), opakapaka (Pristipomoides filamentosus), yellowtail kalekale (P. auricilla), kalekale (P. sieboldii), gindai (P. zonatus), hapuupuu (Epinephelus quernus), lehi (Aphareus rutilans)	Eggs and larvae: the water column extending from the shoreline to the outer limit of the EEZ down to a depth of 400 m (200 fathoms) Juvenile/adults: the water column and all bottom habitat extending from the shoreline to a depth of 400 meters (200 fm)	All slopes and escarpments between 40–280 m (20 and 140 fm) Three known areas of juvenile opakapaka habitat: two off Oahu and one off Molokai
Seamount Groundfish MUS	Hawaii Seamount groundfish species (50–200 fm): armorhead (Pseudopentaceros wheeleri), raftfish/butterfish (Hyperoglyphe japonica), alfonsin (Beryx splendens)	Eggs and larvae: the (epipelagic zone) water column down to a depth of 200 m (100 fm) of all EEZ waters bounded by latitude 29°–35° Juvenile/adults: all EEZ waters and bottom habitat bounded by latitude 29°–35° N and longitude 171° E–179° W between 200 and 600 m (100 and 300 fm)	No HAPC designated for seamount groundfish
Crustaceans MUS	Spiny and slipper lobster complex (all FEP areas): spiny lobster (Panulirus marginatus), spiny lobster (P. penicillatus, P. spp.), ridgeback slipper lobster (Scyllarides haanii), Chinese slipper lobster (Parribacus antarcticus) Kona crab: Kona crab (Ranina ranina)	Eggs and larvae: the water column from the shoreline to the outer limit of the EEZ down to a depth of 150 m (75 fm) Juvenile/adults: all of the bottom habitat from the shoreline to a depth of 100 m (50 fm)	All banks in the NWHI with summits less than or equal to 30 m (15 fathoms) from the surface
	Deepwater shrimp (all FEP areas): (Heterocarpus spp.)	Eggs and larvae: the water column and associated outer reef slopes between 550 and 700 m Juvenile/adults: the outer reef slopes at depths between 300-700 m	No HAPC designated for deepwater shrimp.

MUS	Species Complex	EFH	НАРС
Precious Corals MUS	Shallow-water precious corals (10-50 fm) all FEP areas: black coral (Antipathes dichotoma), black coral (Antipathis grandis), black coral (Antipathes ulex) Deep-water precious corals (150-750 fm) all FEP areas: Pink coral (Corallium secundum), red coral (C. regale), pink coral (C. laauense), midway deepsea coral (C. sp nov.), gold coral (Gerardia spp.), gold coral (Callogorgia gilberti), gold coral (Narella spp.), gold coral (Calyptrophora spp.), bamboo coral (Lepidisis olapa), bamboo coral (Acanella spp.)	EFH for Precious Corals is confined to six known precious coral beds located off Keahole Point, Makapuu, Kaena Point, Wespac bed, Brooks Bank, and 180 Fathom Bank EFH has also been designated for three beds known for black corals in the Main Hawaiian Islands between Milolii and South Point on the Big Island, the Auau Channel, and the southern border of Kauai	Includes the Makapuu bed, Wespac bed, Brooks Banks bed For Black Corals, the Auau Channel has been identified as a HAPC
Coral Reef Ecosystem MUS	Coral Reef Ecosystem MUS (all FEP areas)	EFH for the Coral Reef Ecosystem MUS includes the water column and all benthic substrate to a depth of 50 fm from the shoreline to the outer limit of the EEZ	Includes all no-take MPAs identified in the CREFMP, all Pacific remote islands, as well as numerous existing MPAs, research sites, and coral reef habitats throughout the western Pacific

The proposed ACL specification and AM would not have a direct effect on EFH or HAPC in any of the subject island areas because coral reef fisheries are not known to have large adverse effects on EFH or HAPC for any MUS and none of the alternatives considered ares expected to result in substantial changes to the way the coral reef fisheries in American Samoa, Guam, CNMI and Hawaii are conducted.

3.5 Potential Impacts on Fishery Administration and Enforcement

3.5.1 Federal Agencies and the Council

Fisheries in federal waters are currently managed by the Council in accordance with the approved fishery ecosystem plans (FEP), and NMFS PIRO is responsible for implementing and enforcing fishery regulations that implement the FEPs. NMFS PIFSC conducts research and reviews fishery data provided through logbooks and fishery monitoring systems administered by state and territorial resource management agencies. The Council, PIRO and PIFSC collaborate with local agencies in the administration of fisheries of the western Pacific through other activities including coordinating meetings, conducting research, developing information,

processing fishery management actions, training fishery participants, and conducting educational and outreach activities for the benefit of fishery communities.

NOAA's Office of Law Enforcement (OLE) is responsible for enforcement of the nation's marine resource laws, including those regulating fisheries and protected resources. OLE, Pacific Islands Division oversees enforcement of federal regulations in American Samoa, Guam, the CNMI and Hawaii and enters into Joint Enforcement Agreements (JEA) with each participating state and territory.

The U.S. Coast Guard's (USCG) Fourteenth District (Honolulu) jurisdiction is the U.S. EEZ as well as the high seas in the Western and Central Pacific. At over 10 million square miles, its area of responsibility is the largest of any USCG District. The USCG patrols the region with airplanes, helicopters, and surface vessels, as well as monitors vessels through VMS. The USCG also maintains patrol assets on Guam.

Potential impacts to federal agencies

The proposed ACL and AM specifications would not require a change to monitoring or collecting fishery data. However, monitoring of catch data towards an ACL would be conducted by PIFSC in collaboration with local resource management agencies, and is expected to result in improved timeliness in processing species specific catch reporting on an annual basis. No changes to the role of law enforcement agents or the U.S. Coast Guard would be required in association with implementing these specifications. The ACL and AM specifications would not result in any change to the fishery that would pose an additional risk to human safety at sea.

3.5.2 Local Agencies

Currently, local marine resource management agencies in each of the four areas are responsible for the conservation and management of coral reef habitats and fishery resources. These agencies monitor catches through licenses and fishery data collection programs, conduct surveys of fishermen and scientific surveys of fish stocks, establish and manage marine protected areas, provide outreach and educational services, serve on technical committees, and enforce local and federal resource laws through JEAs, among other responsibilities.

Potential impacts to local agencies

The specification of ACLs and AMs for coral reef ecosystem fisheries of American Samoa, Guam, the CNMI, and Hawaii is not expected to result in changes to fishery monitoring by the local resource management agencies. However, monitoring of catch data for ACL purposes would continue to be conducted by PIFSC in collaboration with local resource management agencies and is expected to result in improved timeliness in processing species specific catch reporting on an annual basis.

No change to enforcement activities would be required in association with implementing these specifications because there is no fishery closure recommended for any of the areas. Additionally, the ACL and AM specifications would not result in any change to the fishery that would pose an additional risk to human safety associated with coral reef fishing in local waters.

Substantial additional administrative resources would be required in the future to support the establishment of in-season monitoring capabilities in American Samoa, Guam and the Northern Mariana Islands. Until additional resources are made available, only AMs that review whether an ACL is exceeded, and other post-season review, are possible at this time.

3.6 Environmental Justice

NMFS considered the effect of the proposed ACL specifications and AMs on Environmental Justice communities that include members of minority and low-income groups. The ACLs would apply to everyone that catches coral reef fishes, and no new monitoring is required for the ACL specification or the AM to be implemented. The environmental review in this EA establishes that the proposed specifications of ACLs and provisions for post-season harvest reviews as the AMs in the western Pacific Coral Reef Ecosystem fisheries are not expected to result in a change to the way the fisheries are conducted. The ACLs and AMs are intended to provide for sustainability of CREMUS which is, in turn, expected to benefit these resources and the human communities that rely on their harvest. The proposed specifications are not likely to result in a large adverse impact to the environment that could have disproportionately large or adverse effects on members of Environmental Justice communities in American Samoa, Guam, the CNMI, or Hawaii.

3.7 Climate Change

Changes in the environment from global climate change have the potential to affect coral reef ecosystem MUS fisheries. Effects of climate change may include: sea level rise; increased intensity or frequency of coastal storms and storm surges; changes in rainfall (more or less) that can affect salinity nearshore or increase storm runoff and pollutant discharges into the marine environment; increased temperatures resulting in coral bleaching, and hypothermic responses in some marine species (IPCC 2007). Increased carbon dioxide uptake can increase ocean acidity, which can disrupt calcium uptake processes in corals, crustaceans, mollusk, reef-building algae, and plankton, among other organisms (Houghton et al. 2001;The Royal Society 2005; Caldeira and Wickett 2005; Doney 2006; Kleypas et al. 2006). Climate change can also lead to changes in ocean circulation patterns which can affect the availability of prey, migration, survival, and dispersal (Buddenmeier et al. 2004). Damage to coastal areas due to storm surge or sea level rises as well as changes to catch rates, migratory patterns, or visible changes to habitats are among the most likely changes that would be noted first. Climate change has the potential to adversely affect some organisms, while others could benefit from changes in the environment.

The impacts from climate change may be difficult to discern from other impacts; however monitoring of physical conditions and biological resources by a number of agencies would continue to occur and would allow fishery managers to continually make adjustments in fishery management regimes in response to changes in the environment.

The efficacy of the proposed ACL and AM specifications in providing for sustainable levels of fishing for CREMUS is not expected to be adversely affected by climate change. Recent catch and biological status of the species informed the development of the ACLs and AMs. Monitoring would continue, and if harvests were reduced, ACLs could be adjusted in the future.

The proposed specifications are not expected to result in a change to the manner in which the fishery is conducted, so no change in greenhouse gas emissions is expected.

3.8 Additional Considerations

3.8.1 Overall Impacts

When compared against recent fishing harvests, ACLs would be higher but are considered an acceptable level of catch that will prevent overfishing and provide for long-term sustainability of the target stocks. The specifications were developed using the best available scientific information, in a manner that accords with the fishery regulations, and after considering catches, participation trends, and estimates of the status of the fishery resources. The AMs are also not likely to cause large adverse impacts to resources that would benefit from post-season data review. For these reasons, the proposed ACLs and AMs are not expected to result in large, irreversible, or irretrievable impacts to the environment.

3.8.2 Cumulative Effects of the Proposed Action

Recent CREMUS-related fishery management actions

In July 2011, NMFS issued a special coral reef ecosystem fishing permit (SCREFP) to a private company which authorized the culture and harvest of *Seriola rivoliana*, (a CREMUS belonging to the family Carangidae or jack) in a mesh cage towed by a vessel in the U.S. EEZ around Hawaii. A SCREFP was required because the company sought to harvest a species that required a federal fishing permit and proposed to use a new gear method in fishing operations. The SCREFP is not related to the proposed specifications or AMs that are described in this document, nor would the recently issued permit influence any decisions that are to be made by NMFS regarding the proposed ACL specifications or AMs for CREMUS. The catches of *Seriola rivoliana* that would occur under the SCREFP are not part of the ACL for the CREMUS group Carangidae that are proposed in the current action because the fish that would be harvested under the SCREFP are not wild-caught and were obtained from fish culture facilities. The proposed ACL specification and AM would not change the conduct of coral reef fisheries in Hawaii, so there would not be a direct or indirect interaction with the towed fish project, nor would the two activities interact to result in an increased environmental effect. For these reasons, this project will not be considered further in this EA.

Recent ACL and AM specifications for other western Pacific fisheries

For all four island areas, the Council is developing ACL and AM recommendations for bottomfish MUS, precious corals MUS, and crustaceans MUS. NMFS recently specified ACLs for the Hawaii bottomfish fishery, which can be obtained at the Council or NMFS' websites. None of the ACLs or AMs would conflict with or reduce the efficacy of existing coral reef ecosystem resource management by local resource management agencies, NMFS, or the Council. The proposed ACL specifications for CREMUS would also not conflict with future ACL and AM specifications in any of the three archipelagic areas because the ACLs apply to specific fishery resources and the ACLs and AMs are not anticipated to result in a large change to coral reef fisheries in any of the areas.

Foreseeable fishery management actions

Fisheries for CREMUS occur almost exclusively within state and territorial waters. Therefore, in the foreseeable future, the Council may re-evaluate the need for conservation and management of CREMUS in federal waters and may recommend NMFS remove certain species from the FEPs and/or re-classify species as "ecosystem component" (EC) species. To be considered for possible classification as an EC species, the species should be: 1) a non-target species; 2) a stock that is not determined to be subject to overfishing, approaching overfished, or overfished; 3) not likely to become subject to overfishing or overfished; and 4) generally not retained for sale or personal use. Various methods for categorizing species and EC components have been preliminarily discussed at Council meetings. These include, but are not limited to, species that are caught exclusively or predominately in state/territorial waters, species that occur infrequently in the available time series, species that are non-native to an FEP area, and species associated with ciguatoxin poisoning and are generally discarded.

In accordance with National Standard 1 guidelines found in 50 CFR §600.310(d), EC species are not considered to be "in the fishery" and thus, do not require specification of an ACL. EC species may, but are not required to, remain in the FEP for data collection purposes, for ecosystem considerations related to the specification of optimum yield for associated CREMUS, as considerations in the development of conservation and management measures for associated CREMUS fisheries, and/or to address other ecosystem issues. However, until such time a particular CREMUS is classified as an EC species, it will remain in the fishery and be subject to the ACL requirements.

Other Foreseeable NOAA Actions

Monk Seals

NMFS currently has two proposals concerning the Hawaiian monk seal population that occur in federal waters of the exclusive economic zone (EEZ; generally 3-200 nmi) around the Hawaiian Islands. The first is a proposal to revise designated critical habitat for endangered Hawaiian monk seals to include areas in the MHI (76 FR 32026, June 2011). The second considers monk seal management, research and enhancement activities including the translocation of up to 60 monk seal pups from the NWHI to the MHI (76 FR 51945, August 19, 2011).

A specification of an annual catch limit is not expected to affect a decision of whether or where to establish critical habitat for monk seals in the main Hawaiian Islands because an ACL without an in-season measure would mostly likely result only in monitoring of harvest limits in relation to the ACL, and potential future revisions to the ACL. At this point in time there is insufficient information in the critical habitat proposal to allow NMFS to evaluate the potential impact of a designation of critical habitat on the MHI coral reef ecosystem fisheries as a whole. However, a designation of critical habitat for monk seals in the MHI is not expected to affect the efficacy of using ACLs and AMs to promote long-term sustainability of coral reef ecosystem fisheries. The proposed ACL specifications and AMs would also not affect the quality of habitat being considered for designation as monk seal critical habitat because no change to the conduct of the fishery is likely to occur with the specification of ACLs and AMs.

While recent quantitative fatty acid signature analysis results indicate that monk seals consume a wide range of species including coral reef ecosystem species (Carretta et al., 2010); under current levels of fishing pressure in the MHI, the monk seal population is growing, pupping is increasing, and the pups appear to be foraging successfully. Considering that monk seal foraging success appears to be higher in the MHI than in the NWHI despite higher fishing pressure in the MHI, competition for forage with the MHI coral reef ecosystem fishery does not appear to be adversely impacting monk seals in the MHI.

The conduct of fishing is not expected to change, and so there is no likely immediate environmental outcome. If critical habitat were to be established in the MHI, NMFS would initiate consultation in accordance with Section 7 of the ESA to ensure that all Hawaii fisheries are not likely to result in the destruction or adverse modification of critical habitat.

The proposed translocation of Hawaiian monk seals from the NWHI to the MHI is also not expected to affect the manner in which coral reef fishes are harvested. There could be an increase in the potential for interactions with monk seals because there may be more monk seals in waters of the MHI where coral reef fisheries operate. The proposed translocation of monk seals would, therefore, represent a change in the conditions in which the fishery is taking place, so if the translocation of seals was approved, NMFS would re-evaluate the effects of the MHI coral reef ecosystem fishery on the Hawaiian monk seal population. The proposed ACL specifications would not have a large and adverse effect on monk seals because the catch limit is intended to ensure that harvests are sustainable over the long term. If conditions change in the environment that would affect target stocks, then NMFS and the Council would need to consider those conditions in developing future ACL specifications.

Hawaiian Insular False Killer Whale

NMFS is also studying the potential of listing the Hawaiian insular false killer whale as an endangered species based on its possible status as an endangered distinct population segment (75 FR 70169, November 17, 2010). Coral reef ecosystem fisheries in Hawaii are not known to interact with insular false killer whales; however, NMFS has identified several species of Hawaii CREMUS that could be prey of the species (Oleson et al., 2010). The proposal to specify ACLs would not result in a change to the way coral reef fisheries are conducted and, therefore, is not expected to affect the agency's decision of whether or not to list the insular false killer whale as endangered. ACL specifications would not change the likelihood of interactions, or affect the survival, distribution or behavior of the species in any way. Due to the potential overlap between the whales and the coral reef fishery, however, if this species is listed, NMFS would initiate consultation in accordance with Section 7 of the ESA to ensure that all Hawaii fisheries are not likely to jeopardize the continued existence of the species or result in the destruction or adverse modification of critical habitat.

Bumphead Parrotfish and Corals

NMFS has initiated a status review of the bumphead parrotfish or *Bolbometopon muricatum* (75 FR 16713, April 4, 2010) and 82 species of coral (75 FR 6616, February 10, 2010) to determine if listing of these species under the Endangered Species Act (ESA) is warranted. The proposal to specify ACLs is not expected to affect the agency's decision to list, change the likelihood of interactions, or affect the survival, distribution or behavior of the species in any way. However,

because bumphead parrotfish is a CREMUS and fishing for CREMUS occurs in the coral reef ecosystem near corals, if these species are listed, NMFS would initiate consultation in accordance with Section 7 of the ESA to ensure that coral reef fisheries of the western Pacific region are not likely to jeopardize the continued existence of the bumphead parrotfish or any species of coral or result in the destruction or adverse modification of critical habitat.

National Marine Sanctuaries

NOAA's Office of National Marine Sanctuaries (ONMS) has initiated a review of the Hawaiian Humpback Whale National Marine Sanctuary in the main Hawaiian Islands which may include revisions to its management plan and regulations to fulfill the purposes and policies of the National Marine Sanctuaries Act (75 FR 40579, July 14, 2010). As there is no in-season management measures proposed, the way coral reef fisheries are conducted is not expected to change and, therefore, the proposed ACL specification and AMs would not have an environmental effect that could affect future decisions about possible changes to the sanctuary management plan nor would the proposed action affect sanctuary resources.

Additionally, NOAA's ONMS is proposing to add five additional discrete geographical areas to the Fagatele Bay National Marine Sanctuary and change the name of the sanctuary to the American Samoa National Marine Sanctuary (FR 76 65566, October 21, 2011). The proposed ACL specification and AM would not affect the decision about changes to the sanctuary nor would the proposed action affect sanctuary resources.

Foreseeable actions by others

Many other non-fishing related activities occur in the same areas where coral reef resources may be found or where the fisheries may take place. One activity that has the potential to affect the Guam coral reef fishery is the Guam military buildup. This activity, involves three major components which include: (1) development of facilities and infrastructure to support approximately 8,000 Marines and their 9,000 dependents being relocated from Okinawa, Japan to the island of Guam and additional operations and training activities; (2) construction of a new deep-draft wharf generally within Apra Harbor, Guam to support transient nuclear aircraft carriers; and (3) development of facilities and infrastructure to support and establishment of air missile defense system on Guam. Other activities would include improvements to off-base roads and bridges to support increased traffic as well as utilities (water and power) to support increased demands by the military (Joint Guam Program Office, 2010).

Dredging activities have the potential to result in direct localized impact to coral reef resources within Apra Harbor through loss of habitat, and indirect impacts through increased turbidity and sedimentation during and immediately after dredging occurs. Other support activities, including highway and utilities improvements may also the potential to impact marine resources through run-off and sedimentation if conducted on and around nearshore areas. Measures to minimize and mitigate impacts of these activities on the human environment are being addressed through ongoing consultations between the military, the Governments of Guam and the CNMI and other federal agencies.

Increased numbers of military and support personnel also have the potential to result in an increase in use of nearshore waters, including more vessel activity, as well as add to the number

of people participating in coral reef fisheries. All harvests of CREMUS around each island area would be counted toward the attainment of the annual catch limits. The potential increase in fishery participants around Guam is not expected to directly interact with the proposed ACL specifications in a way that would affect either the fishery or environment because the ACLs are based on a function of catch rates to biomass of coral reef ecosystem stocks. Ongoing monitoring of catch would likely show increases in catch if additional people were participating in the fishery. The resource management objective (preventing overfishing using ACLs and AMs) would not be affected by a change in the number of fishery participants, however, because the limits are based on the historic catches considered against biomass estimates. If, in the future, additional catches were detected in fishery surveys, the cause of the increase in catches could be considered in light of increased participation and fishery managers would be able to consider those factors in future ACL specifications. Furthermore, the buildup is likely to be gradual, and since the ACL specification and AM recommendations are reviewed annually, the Council and NMFS could modify the fishery management program in response to changes in the fishery.

4. Consistency with Other Applicable Laws

4.1 National Environmental Policy Act

NOAA Administrative Order (NAO) 216-6, Environmental Review Procedures, in accordance with NEPA, requires the consideration of effects of proposed agency actions and alternatives on the human environment and allows for involvement of interested and affected members of the public before a decision is made. This EA has been written and organized to satisfy the requirements of NEPA. The NMFS Regional Administrator will use the analysis in this EA to determine whether the proposed action would have a significant environmental impact, which would require the preparation of an EIS.

4.1.1 Preparers and Reviewers

Council staff

Marlowe Sabater, Fishery Analyst

NMFS staff

Ethan Brown, Resource Management Specialist, PIRO, SFD
Phyllis Ha, NEPA Specialist, PIRO, SFD NEPA
Christopher Hawkins, Social Science Researcher and Policy Analyst, PIRO, JIMAR
Jarad Makaiau, Fishery Policy Analyst, PIRO, SFD
Michelle McGregor, Regional Economist, PIRO, SFD
Andrew Torres, Protected Species Workshop Coordinator, PIRO, SFD
Lewis Van Fossen, Resource Management Specialist, PIRO, SFD

4.1.2 Coordination with others

The proposed action described in this EA was developed in coordination with various federal and local government agencies that are represented on the Western Pacific Fishery Management Council. Specifically, agencies that participated in the deliberations and development of the proposed management measures include:

- American Samoa Department of Marine and Wildlife Resources
- Guam Department of Agriculture, Division of Aquatic and Wildlife Resources
- Hawaii Department of Land and Natural Resources, Division of Aquatic Resources
- Northern Marina Island Department of Land and Natural Resources, Division of Fish and Wildlife
- U.S. Coast Guard
- U.S. Fish and Wildlife Service
- U.S. Department of State

4.1.3 Public Coordination

The development of the proposed ACL and AM specifications for American Samoa, Guam, the CNMI, and Hawaii has taken place in public meetings of the SSC and the Council. In addition, the Council advertised the need to focus on federal annual catch limits in media releases, newsletter articles, and on the Council's website, http://www.wpcouncil.org.

NMFS is soliciting public comment on the proposed ACL and AM specifications described in this EA. This EA, the proposed specifications, and instructions on how to comment on the proposed specifications can be found by searching RIN 0648-XA674 at www.regulations.gov, or by contacting the responsible official or Council listed in this document.

4.2 Endangered Species Act

The Endangered Species Act (ESA) provides for the protection and conservation of threatened and endangered species. Section 7(a)(2) of the ESA requires federal agencies to ensure that any action authorized, funded, or carried out by such agencies is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of the critical habitat of such species. NMFS completed Section 7 consultations for coral reef fisheries in American Samoa and Hawaii on March 2, 2002 and Mariana coral reef fisheries (Guam and CNMI) on June 3, 2008 and determined that coral reef fisheries that operate in accordance with federal fishery regulations are not likely to adversely affect listed species or critical habitat. Because the proposed action is not expected to modify vessel operations or other aspects of any fishery, NMFS concludes that coral reef ecosystem fisheries in American Samoa, Guam, CNMI, and Hawaii as currently conducted under the proposed action, would not have an effect on ESA listed species or any designated critical habitats that was not considered in prior consultations, and that no further consultation is required at this time.

On September 22, 2011, NMFS and the U.S. Fish and Wildlife Service (USFWS) determined that the loggerhead sea turtle (*Caretta caretta*) population is composed of nine distinct population segments (DPS) that constitute "species" that may be listed as threatened or endangered under the ESA (76 FR 58868). Specifically, NMFS and USFWS determined that the loggerhead sea turtles in the North Pacific Ocean which encompasses waters around Hawaii, CNMI and Guam are a DPS that is endangered and at risk of extinction. Similarly, NMFS and USFWS determined that the loggerhead sea turtles in the South Pacific Ocean which encompasses waters around American Samoa are a DPS that is endangered and at risk of extinction. However, there have been no reported or observed incidental take of a loggerhead sea turtle in the history of any coral reef ecosystem fishery in any island area. Additionally, there have been no confirmed sightings of these species around American Samoa, Guam or the CNMI, while in Hawaii their occurrence within shallow waters where coral reef habitats are found is extremely rare. Therefore, the likelihood that the these fisheries would interact with either the North Pacific or South Pacific loggerhead DPS is extremely rare, and there is no additional information available that would change the conclusions of previous Section 7 consultations for coral reef fisheries in American Samoa, Hawai, Guam or the CNMI. Because none of the alternatives considered would modify operations of any fishery in any way, NMFS concludes that the proposed action would not modify fishery operations in a manner that causes an effect on any ESA-listed species or critical habitat including seabirds, sea turtles, and marine mammals that was not considered in prior consultations, and that no further consultation is required at this time.

On November 17, 2010, NMFS published a proposed rule to list the Hawaiian insular false killer whale as an endangered species under the ESA (75 FR 70169). NMFS is also proposing to designate areas in the MHI as monk seal critical habitat. Specific areas proposed include

terrestrial and marine habitats from 5 m inland from the shoreline extending seaward to the 500 m depth contour around Kaula Island, Niihau, Kauai, Oahu, Maui Nui (including Kahoolawe, Lanai, Maui and Molokai) and Hawaii Island (76 FR 32026, June 2, 1011). Additionally, the agency is also evaluating whether to list the bumphead parrotfish and a number of coral species under the ESA although nothing specific has been proposed as of this date. If new species are listed, or if critical habitat is designated in areas that may be affected by federal fisheries, NMFS will re-initiate consultation under Section 7 of the ESA to determine the impact of fishing activities on listed species and their critical habitat as required by law.

4.3 Marine Mammal Protection Act

The Marine Mammal Protection Act (MMPA) prohibits, with certain exceptions, the take of marine mammals in the U.S. and by U.S. citizens on the high seas, and the importation of marine mammals and marine mammal products into the United States. The MMPA gives the Secretary of Commerce authority and duties for all cetaceans (whales, dolphins, and porpoises) and pinnipeds (seals and sea lions, except walruses). Under section 118 of the MMPA, NMFS must publish, at least annually, a List of Fisheries that classifies U.S. commercial fisheries into one of three categories. Specifically, the MMPA mandates that each fishery be classified according to whether it has a frequent, occasional, or remote likelihood of, or no known, incidental mortality or serious injury to marine mammals.

The coral reef fisheries in each island area are listed as Category III fisheries under Section 118 of the MMPA (76 FR 73912, November 29, 2011). A Category III fishery is one with a low likelihood or no known incidental takings of marine mammals. Because the proposed action would not modify vessel operations or other aspects of any fishery, NMFS concludes that these fisheries, as currently conducted under the proposed action, would not negatively affect marine mammals in any manner not previously considered or authorized the commercial fishing take exemption under section 118 of the MMPA.

4.4 Coastal Zone Management Act

The Coastal Zone Management Act (CZMA) requires a determination that a recommended management measure has no effect on the land, water uses, or natural resources of the coastal zone or is consistent to the maximum extent practicable with an affected state's enforceable coastal zone management program. On November 16, 2011, NMFS sent a letter to the appropriate state government agencies in American Samoa, Guam, Hawaii and the CNMI informing them of its determination that the proposed action is consistent, to the maximum extent practicable, with their respective coastal zone management programs.

4.5 Paperwork Reduction Act

The purpose of the Paperwork Reduction Act is to minimize the paperwork burden on the public resulting from the collection of information by or for the Federal government. It is intended to ensure the information collected under the proposed action is needed and is collected in an

efficient manner (44 U.S.C. 3501(1)). The proposed action would not establish any new permitting or reporting requirements and therefore it is not subject to the provisions of the Paperwork Reduction Act.

4.6 Regulatory Flexibility Act

The Regulatory Flexibility Act (RFA) (5 U.S.C. 601 *et seq.*) requires government agencies to assess and present the impact of their regulatory actions on small entities including small businesses, small organizations, and small governmental jurisdictions. The assessment is done by preparing an Initial Regulatory Flexibility Analysis when impacts are expected. The purpose and need for action is described in Section 1.2. Section 2.0 describes the management alternatives considered to meet the purpose and need for action. Section 3.0 provides a description of the fisheries that may be affected by this action and analyzes environmental impacts of the alternatives considered.

The proposed action would specify an annual catch limit (ACL) for each coral reef ecosystem stock and stock complex in American Samoa, Guam, the Northern Mariana Islands, and Hawaii for fishing years 2012 and 2013. If the ACL for any stock or stock complex is exceeded, NMFS would take action to correct the operational issue that caused the ACL overage, as recommended by the Council which could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year.

American Samoa

In 2010, approximately 22 vessels engaged in commercial fishing for CREMUS. The 2010 average gross revenue per vessel was \$3,222 based on an average price of \$2.68 per pound, and harvest of 26,453 lb. In general, the relative importance of CREMUS to commercial participants as a percentage of overall fishing or household income is unknown, as the total suite of fishing and other income-generating activities by individual operations across the year has not been examined

Guam

In 2009, approximately 116 vessels engaged in fishing for CREMUS. The 2009 average gross revenue per vessel was \$3,023 based on an average price of \$2.82 per pound, and harvest of 124,401 lb. In general, the relative importance of CREMUS to commercial participants as a percentage of overall fishing or household income is unknown, as the total suite of fishing and other income-generating activities by individual operations across the year has not been examined.

CNMI

In 2009, approximately 16 vessels engaged in fishing for CREMUS. The 2009 average gross revenue per vessel was \$11,689 based on an average price of \$2.59 per pound, and harvest of 72,211 lb. In general, the relative importance of CREMUS to commercial participants as a percentage of overall fishing or household income is unknown, as the total suite of fishing and other income-generating activities by individual operations across the year has not been examined.

Hawaii

In 2010, estimated commercial landing of CREMUS was just over 1.3 million lb with akule and opelu accounting for nearly one-third of the commercial catch (254,996 lb and 204,643 lb, respectively). Therefore, for the purpose of this analysis, Hawaii akule and opelu fisheries have been analyzed separately from other Hawaii CREMUS as they are discrete fisheries and together, account for nearly half of the total CREMUS landings annually.

Although exact figures are not available, NMFS estimates that up to 35 vessels may engage in fishing for akule and opelu throughout the state. Based on 2010 data from NMFS WPacFIN (http://www.pifsc.noaa.gov/wpacfin/reportlanding.php accessed on September 15, 2011), 254,996 lb of akule were sold at \$2.83 per lb while 204,643 lb of opelu were sold at \$2.58 per lb. resulting in a combined ex-vessel value of \$1,249,635. Assuming all 35 vessels fished for akule and opelu equally, 2010 average gross revenue per vessel is estimated at \$35,703. Excluding akule and opelu, total estimated commercial landings of all other Hawaii CREMUS was approximately 840,360 lb. Assuming all 4,263 Hawaii commercial marine license holders fished for CREMUS equally, the 2010 average gross per vessel revenue is estimated to be \$197 based on an average price of \$3.01 per pound. In general, the relative importance of CREMUS to commercial participants as a percentage of overall fishing or household income is unknown, as the total suite of fishing and other income-generating activities by individual operations across the year has not been examined.

Based on available information, NMFS has determined that all vessels participating in CREMUS fisheries in American Samoa, Guam, CNMI and Hawaii are small entities under the Small Business Administration definition of small entity, i.e., they are engaged in the business of fish harvesting, are independently owned or operated, are not dominant in their field of operation and have annual gross receipts not in excess of \$4 million. Therefore, there are no disproportionate economic impacts between large and small entities. Furthermore, there are no disproportionate economic impacts among the universe of vessels based on gear, home port, or vessel length. For these reasons, an initial regulatory flexibility analysis is not required and none has been prepared.

4.7 Administrative Procedures Act

All federal rulemaking is governed under the provisions of the Administrative Procedures Act (APA) (5 U.S.C. Subchapter II) which establishes a "notice and comment" procedure to enable public participation in the rulemaking process. Under the APA, NMFS is required to publish notification of proposed rules in the Federal Register and to solicit, consider and respond to public comment on those rules before they are finalized. The APA also establishes a 30-day waiting period from the time a final rule is published until it becomes effective, with rare exceptions.

The specification of ACLs for CREMUS in American Samoa, Guam, the CNMI and Hawaii complies with the provisions of the APA through the Council's extensive use of public meetings, requests for comments, and consideration of comments in developing ACL recommendations. Additionally, NMFS will publish a proposed rule announcing the proposed ACL specifications described in this document which will include requests for public comments. After considering

public comments, NMFS will publish a final rule which will become effective 30 days after publication.

4.8 Executive Order 12898: Environmental Justice

On February 11, 1994, President William Clinton issued Executive Order 12898 (E.O. 12898), "Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations." E.O. 12898 provides that "each Federal agency shall make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations." E.O. 12898 also provides for agencies to collect, maintain, and analyze information on patterns of subsistence consumption of fish, vegetation, or wildlife. An agency's actions may also affect subsistence patterns of consumption and indicate the potential for disproportionately high and adverse human health or environmental effects on low-income populations, and minority populations. A memorandum by President Clinton, which accompanied E.O. 12898, made it clear that environmental justice should be considered when conducting NEPA analyses by stating the following: "Each Federal agency should analyze the environmental effects, including human health, economic, and social effects of Federal actions, including effects on minority populations, low-income populations, and Indian tribes, when such analysis is required by NEPA."

Each alternative would result in a catch limit for all CREMUS. Participants in coral reef ecosystem fisheries in all of the areas would be advised of the catch limits, but that would be the extent of the impact of the ACL specifications on fishery participants. Under the proposed action, the AM for coral reef fisheries would be a post-season accounting of catch towards each ACL specification. If an ACL for any stock or stock complex is exceeded and affects the sustainability of that stock or stock complex, NMFS would take action to correct the operational issue that caused the ACL overage, as recommended by the Council which could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year.

The ACLs and AMs are expected to result in enhanced monitoring of coral reef fishery catches. The ACLs and AMs are also intended to ensure that fishing for CREMUS remains sustainable. There would be no high or adverse environmental impacts from the proposed ACL specifications or from the AM measures so no disproportionately high and adverse effects to members of minority populations or low-income populations would occur. As there would be no change to the fishery, the proposed action would not affect sustenance fishing by members of minority and low-income groups.

4.9 Executive Order 12866

A "significant regulatory action" means any regulatory action that is likely to result in a rule that may –

1) Have an annual effect on the economy of \$100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the

- environment, public health or safety, or State, local, or tribal government or communities;
- 2) Create a serious inconsistency or otherwise interfere with an action taken or planned by another agency;
- 3) Materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof; or
- 4) Raise novel legal or policy issues arising out of legal mandates, the President's priorities, or the principles set forth in the Executive Order.

The specification of ACLs for coral reef fisheries of the western Pacific has been determined to be not significant under E.O. 12866 because it will not: have an annual effect on the economy of \$100M, create a serious inconsistency or otherwise interfere with an action taken or planned by another agency, materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof, or raise novel legal or policy issues arising out of legal mandates, the President's priorities, or the principles set forth in the Executive Order. A Regulatory Impact Review has been prepared which provides an overview of the problem, policy objectives, and anticipated impacts of the proposed action, and ensures that management alternatives are systematically and comprehensively evaluated such that the public welfare can be enhanced in the most efficient and cost effective way (Appendix D).

Based on analysis provided in the RIR, the proposed action is not expected to have an adverse effect of \$100 million or more, create a serious inconsistency or otherwise interfere with an action taken by another agency, materially alter the budgetary impact of programs or rights or obligations of recipients, or raise novel legal or policy issues. Therefore, it is not considered to be a significant regulatory action. However, there is expected to be an increased interest on the part of fishermen regarding catch limits, especially where specified ACLs are low because of the limits to the data used in developing ACLs.

4.10 Information Quality Act

The Information Quality Act requires federal agencies to ensure and maximize the quality, objectivity, utility, and integrity of information disseminated by federal agencies. To the extent feasible, the information in this document is current. Much of the information was made available to the public during the deliberative phases of developing the proposed specifications during meetings of the Council over the past several years. The information was also improved based on the guidance and comments from the Council's advisory groups.

Council and NMFS staffs prepared the document based on information provided by NMFS Pacific Islands Fisheries Science Center (PIFSC) and NMFS Pacific Islands Regional Office (PIRO) and after providing opportunities for members of the public to comment at Council meetings and the EA will be made available to the public during the comment period for the proposed specification. The process of public review of this document provides an opportunity for comments on the information contained in this document, as well as for the provision of additional information regarding the proposed specifications and potential environmental effects.

5.0 References

- Caldeira, K. and M.E. Wickett. 2005: Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. *Journal of Geophysical Research*, 110(C09S04).
- Chambers J, W. Cleveland, B. Kleiner, and P. Tukey. 1983. Graphical Methods for Data Analysis. Duxbury Press, Boston.
- Cleveland, W.S. 1993. Visualizing Data. Hobart Press, Summit, New Jersey.
- Craig, M. T., J.A. Eble, B.W. Bowen, and D.R. Robertson. 2007. "High genetic connectivity across the Indian and Pacific Oceans in the reef fish *Myripristis berndti* (Holocentridae)," *Marine Ecology Progress Series*, vol. 334, pp. 245–254, 2007.
- Craig, M.T., J.A. Eble, B.W. Bowen, and D.R. Robertson. 2007. High genetic connectivity across the Indian and Pacific Oceans in the reef fish *Myripristis berndti* (Holocentridae), *Marine Ecology Progress Series*, 334:245–254, 2007.
- Craig, M.T., J.A. Eble, and B.W. Bowen. 2010. Origins, ages, and population histories: comparative phylogeography of endemic Hawaiian butterflyfishes (genus Chaetodon). Journal of Biogeography, 37: 2125-2136, 2010.
- Christie, M.R., B.N. Tissot, M.A. Albins, J.B. Beets, and Y. Jia. 2010. Larval Connectivity in an Effective Network of Marine Protected Areas. PoS ONE. 5(12): e15715. doi:10.1371/journal.pone.0015715.
- Cummings, V. 2002. Guam sea turtle recovery report three. Division of Aquatic and Wildlife Resources Draft Report, Guam Department of Agriculture, Mangilao, Guam.
- Dalzell, P., T. Adams, and N. Polunin, N. 1996. Coastal fisheries in the Pacific Islands. Oceanography and Marine Biology Annual Review, 33:395-531.
- Division of Aquatic and Wildlife Resources (DAWR). 2009. Final Annual Progress Report for the Guam Sea Turtle Recovery Project. Award Period 8/1/2006 7/31/2008. NOAA Fisheries Grant number NA06NMF4540214. 25 pp.
- Doherty, P.J., S. Planes, and P. Mather. 1995. Gene flow and larval duration in seven species of fish from the Great Barrier Reef. Ecology, 76(8): 2373-2391.
- Doney, S.C., 2006: The dangers of ocean acidification. *Scientific American*, 294(3), 58-65.
- Eble, J.A., L.A. Rocha, M.T. Craig, and B.W. Bowen. 2011. Not all larvae stay close to home: insights into marine population connectivity with a focus on the brown surgeonfish, Journal of Marine Biology, Vol. 2011 article ID 518516.

- Eldredge, L.G. 2003. The marine reptiles and mammals of Guam. Micronesica, 35-36:653-60.
- Gathier, M.R., B.W. Bowen, J. Toonen, S. Planes, V. Messmer, J. Earle, and D.R. Robertson. 2010. Genetic consequences of introducing allopatric lineages of Bluestriped Snapper (*Lutjanus kasmira*) to Hawaii, Molecular Ecology, 19(6):1107–1121.
- Green, A. 1997. An assessment of the status of the coral reef resources, and their patterns of use in the U.S. Pacific Islands. Final report prepared for the Western Pacific Regional Fishery Management Council, Honolulu, Hawaii.
- Hamm, D. and P. Tao. 2010. Annual species landings and occurrence data for U.S. Pacific island areas. NOAA Pacific Islands Fisheries Center Internal Report IR-10-016.
- Hamm, D.C., M.M.C. Quach, K.R. Brousseau, and C.J. Graham. 2010. Fishery statistics of the western Pacific, Volume 25. Pacific Islands Fish. Sci. Cent., Natl. Mar. Fish. Serv., NOAA, Honolulu, HI. Pacific Islands Fish. Sci. Cent. Admin. Rep. H-10-03, Section D: State of Hawaii 2008 Fishery Statistics.
- Hawhee, J. 2007. Western Pacific Coral Reef Ecosystem Report. Prepared for the Western Pacific Fishery Management Council. January 8, 2007.
- Hensley, R.A. and T.S. Sherwood. 1993. An overview of Guam's inshore fisheries. Marine Fisheries Review. 55(2):129-138.
- Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, and D. Xiaosu (Eds.) 2001. *IPCC Third Assessment Report: Climate Change 2001: The Scientific Basis*. Cambridge University Press, Cambridge, UK, 944 pp. [http://www.grida.no/climate/ipcc_tar/wg1/index.htm] [Also see: Summary for Policymakers and Technical Summary, 98 pp.]
- Impact Assessment. 2008. Ecosystem-based fisheries management in the western Pacific. Proceedings from a comprehensive series of workshops convened by the Western Pacific Fishery Management Council. Honolulu, Hawaii. May 2008.
- IPCC, 2007: Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (Eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Jennings, S. and N.V.C. Polunin. 1995. Biased underwater visual census biomass estimates for target-species in tropical fisheries. Journal of Fish Biology. 47: 733-736.

- Joint Program Office Guam. 2010. Final Environmental Impact Statement. Guam and CNMI Military Relocation: Relocating Marines from Okinawa, Visiting Aircraft Carrier Berthing, and Army Air and Missile Defense Task Force. July 2010. U.S. Department of the Navy.
- Kleypas, J.A., R.A. Feely, V.J. Fabry, C. Langdon, C.L. Sabine, and L.L. Robbins, 2006: *Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: a Guide for Future Research.* Workshop Report, National Science Foundation, National Oceanic and Atmospheric Administration, and the U.S. Geological Survey.
- Kolinski, S.P., D.M. Parker, L.I. Ilo, and J.K. Ruak. 2001. An assessment of the sea turtles and their marine and terrestrial habitats at Saipan, Commonwealth of the Northern Mariana Islands. Micronesica, 34(1): 55–72.
- Kulbicki, M. 1988. Correlation between catch data from bottom longlines and fish censures in the SW lagoon of New Caledonia. Proceeding of the 6th International Coral Reef Symposium, Australia, 1988, Vol. 2.
- Luck, D. and P. Dalzell. 2010. Western Pacific region reef fish trends. Western Pacific Fishery Management Council. Honolulu, Hawaii. October 4, 2010.
- Maison, K.A., Kinan Kelly, I. and K.P. Frutchey. 2010. Green Turtle Nesting Sites and Sea Turtle Legislation throughout Oceania. U.S. Dep. Commerce, NOAA Technical Memorandum. NMFS-F/SPO-110, 52 pp.
- Myers, R.F. 1997. Assessment of coral reef resources of Guam with emphasis on waters of federal jurisdiction. Report prepared for the Western Pacific Regional Fishery Management Council.
- NMFS (National Marine Fisheries Service). 2001. Final Environmental Impact Statement for the Fishery Management Plan for Pelagic Fisheries of the Western Pacific Region.
- The Royal Society, 2005: *Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide*. The Royal Society, London, -60.
- Sabater, M.G. and B.P. Carroll. 2009. Trends in reef fish population and associated fishery after three millennia of resource utilization and a century of socio-economic changes in American Samoa. Reviews in Fisheries Science, 17(3):318-335.
- Sabater, M.G. and R. Tulafono. 2011. American Samoa archipelagic fishery ecosystem report. Western Pacific Regional Fishery Management Council. ISBN: 1-934061-49-2.
- Schultz, J.K., R.L. Pyle, E. DeMartini, and B.W. Bowen. 2007. Genetic connectivity among color morphs and Pacific archipelagos for the flame angelfish, *Centropyge loriculus*, Marine Biology, 151(1):167–175.

- Timmers, M.A., K.R. Andrews, C.E. Bird, M.J. de Maintenton, R.E. Brainard, and R.J. Toonen. 2011. Widespread dispersal of the crown-of-thorns sea star, *Acanthaster planci*, across the Hawaiian Archipelago and Johnston Atoll. Journal of Marine Biology, vol. 2011, Article ID 934269. 10pp.
- Toonen, R.J., K.R. Andrews, I.B. Baums, C.E. Bird, G.T. Concepcion, T.S. Daly-Engel, J.A. Eble, A. Faucci, M.R. Gaither, M. Iacchei, J.B. Puritz, J.K. Schultz, D.J. Skillings, M.A. Timmers and B. Bowen. Defining boundaries for ecosystem-based management: A multispecies case study of marine connectivity across the Hawaiian Archipelago. Journal of Marine Biology. Vol. 2011, Article ID 460173, 13 pp.
- Tulafono, R. 2007. Statement made during the Regional Ecosystem Advisory Group meeting by the Director of the American Samoan Department of Marine and Wildlife Resources, April 2007, Utulei Convention Center, American Samoa. Western Pacific Regional Fishery Management Council, Honolulu Hawaii
- Watson, D.L. and E.S. Harvey. 2007. Behaviour of temperate and sub-tropical reef fishes towards a stationary SCUBA diver. Marine and Freshwater Behaviour and Physiology 40(2): 85-103
- Weng, K.C.M. and J.R. Sibert. 2000. Analysis of the fisheries for two pelagic Carangids in Hawai'i. Pelagic Fisheries Research Program SOEST 00-04, JIMAR Contribution 00-332.
- Williams, I. 2010. U.S. Pacific reef fish biomass estimates based on visual survey data. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center (PIFSC). PIFSC Internal Report: IR-10-024. 18p.
- WPFMC (Western Pacific Fishery Management Council). 2011. Specification of an Acceptable Biological Catch and Annual Catch Limit for the Coral Reef Fishes of American Samoa, Guam, Northern Mariana Islands and Hawaii for the 2012 Fishing Year. October 31, 2011.
- WPFMC (Western Pacific Fishery Management Council). 2009a. Fishery Ecosystem Plan for the American Samoa Archipelago. Honolulu, Hawaii. September 24, 2009.
- WPFMC (Western Pacific Fishery Management Council). 2009b. Amendment 18 to the Fishery Management Plan for Pelagic Fisheries of the Western Pacific Region, including a final supplemental environmental impact statement, regulatory impact review and initial regulatory flexibility act analysis. Honolulu, Hawaii. March 9, 2009.
- WPFMC (Western Pacific Fishery Management Council). 2009c. Fishery Ecosystem Plan for the Marianas Archipelago. Honolulu, Hawaii. September 24, 2009.
- WPFMC (Western Pacific Fishery Management Council). 2009d. Fishery Ecosystem Plan for the Hawaii Archipelago. Honolulu, Hawaii. September 24, 2009.

WPFMC (Western Pacific Fishery Management Council). 2003. Amendment 11 to the Fishery Management Plan for Pelagic Fisheries of the Western Pacific Region. Measure to limit pelagic longline fishing effort in the exclusive economic zone around American Samoa. Honolulu, HI. December 1, 2003.

Appendix A List of CREMUS Comprising Each Taxonomic Group by FEP Area

Table 1. American Samoa CREMUS

American Samoa CREMUS	Common Name	Scientific Name
Surgeonfish	Achilles tang	Acanthurus achilles
Surgeonfish	Barred unicornfish	Naso thynnoides
Surgeonfish	Bignose unicornfish	Naso vlamingii
Surgeonfish	Black tongue unicornfish	Naso hexacanthius
Surgeonfish	Blackstreak surgeonfish	Acanthurus nigricauda
Surgeonfish	Blue-banded surgeonfish	Acanthurus lineatus
Surgeonfish	Bluelined surgeonfish	Acanthurus nigroris
Surgeonfish	Bluespine unicornfish	Naso unicornis
Surgeonfish	Brown surgeonfish	Acanthurus nigrofuscus
Surgeonfish	Convict tang	Acanthurus triostegus
Surgeonfish	Elongate surgeonfish	Acanthurus mata
Surgeonfish	Eye-striped surgeonfish	Acanthurus dussumeiri
Surgeonfish	Gray unicornfish	Naso caesius
Surgeonfish	Humpback unicornfish	Naso brachycentron
Surgeonfish	Humpnose unicornish	Naso tuberosus
Surgeonfish	Mimic surgeonfish	Acanthurus pyorferus
Surgeonfish	Naso tang	Naso spp.
Surgeonfish	Orangespine unicornfish	Naso lituratus
Surgeonfish	Orange-spot surgeonfish	Acanthurus olivaceus
Surgeonfish	Pacific sailfin tang	Zebrasoma veliferum
Surgeonfish	Ringtail surgeonfish	Acanthurus blochii
Surgeonfish	Spotted unicornfish	Naso brevirostris
Surgeonfish	Striped bristletooth	Ctenochaetus striatus
Surgeonfish	Surgeonfishes/tangs	Acanthurus sp.
Surgeonfish	Twospot bristletooth	Ctenochaetus binotatus
Surgeonfish	Unicornfishes (misc)	Naso spp.
Surgeonfish	Whitebar surgeonfish	Acanthurus leucopareius
Surgeonfish	Whitecheek surgeonfish	Acanthurus nigricans
Surgeonfish	Whitemargin unicornfish	Naso annulatus
Surgeonfish	Whitespotted surgeonfish	Acanthurus guttatus
Surgeonfish	Yellow-eyed bristletooth	Ctenochaetus strigosus
Surgeonfish	Yellowfin surgeonfish	Acanthurus xanthopterus
Snappers	Inshore snappers	Lutjanidae
Snappers	Brown jobfish	Aphareus furca
Snappers	Scarlet snapper	Etelis radiosus
Snappers	Red snapper	Lutjanus bohar

American Samoa CREMUS	Common Name	Scientific Name
Snappers	Twinspot/red snapper	Lutjanus bohar
Snappers	Yellow margined snapper	Lutjanus fulvus
Snappers	Humpback snapper	Lutjanus gibbus
Snappers	Onespot snapper	Lutjanus monostigma
Snappers	Rufous snapper	Lutjanus rufolineatus
Snappers	Blood snapper	Lutjanus sanguineus
Snappers	Timor snapper	Lutjanus timorensis
Snappers	Black snapper	Macolor niger
Snappers	Kusakar's snapper	Paracaesio kusakarii
Snappers	Stone's snapper	Paracaesio stonei
Snappers	Multidens snapper	Pristipomoides multidens
Atulai	Bigeye scad	Selar crumenophthalmus
Mollusks	Mangrove clam	Anodontia edentula
Mollusks	Pen shell clam	Atrina rigida
Mollusks	Pipi clam	Donax deltoides
Mollusks	Squid	Teuthida
Mollusks	Clams (misc)	Bivalvia
Mollusks	Cone snail	Conus sp.
Mollusks	Octopus (cyanea)	Octopus cyanea
Mollusks	Octopus (ornatus)	Octopus ornatus
Mollusks	Octopus	Octopus sp.
Mollusks	Giant clam	Tridacna sp.
Mollusks	Turban snail	Trochus sp.
Mollusks	Green snails	Turbo sp.
Jacks	Blue kingfish trevally	Carangoides caeruleopinnatus
Jacks	Goldspot trevally	Carangoides orthogrammus
Jacks	Trevally (misc)	Carangoides sp.
Jacks	Jacks (misc)	Caranx sp.
Jacks	Black jack	Caranx lugubris
Jacks	Bluefin trevally	Caranx melampygus
Jacks	Brassy trevally	Caranx papuensis
Jacks	Bigeye trevally	Caranx sexfasciatus
Jacks	Rainbow runner	Elagatis bipinnulatus
Jacks	Leatherback	Scomberoides lysan
Jacks	Snubnose pompano	Trachinotus blochii
Jacks	Whitemouth trevally	Uraspis secunda
Emperors	Emperors (misc)	Lethrinidae
Emperors	Goldenline bream	Gnathodentex aureolineatus
Emperors	Yellowspot emperor	Gnathodentex aurolineatus
Emperors	Blueline bream	Gymnocranius grandoculis

American Samoa CREMUS	Common Name	Scientific Name
Emperors	Orangespot emperor	Lethrinus erythracanthus
Emperors	Longnose emperor	Lethrinus elongatus
Emperors	Bigeye emperor	Monotaxis grandoculis
Emperors	Sweetlip emperor	Lethrinus miniatus
Parrotfish	Stareye parrotfish	Calotomus carolinus
Parrotfish	Longnose parrotfish	Hipposcarus longiceps
Parrotfish	Yellowband parrotfish	Scarus schlegeli
Parrotfish	Parrotfishes (misc)	Scarus sp.
Groupers	Eightbar grouper	Epinephelus octofasciatus
Groupers	Giant grouper	Epinephelus lanceolatus
Groupers	Golden hind	Cephalopholis aurantia
Groupers	Greasy grouper	Epinephelus tauvina
Groupers	Groupers (misc)	Epinephelus sp.
Groupers	Hexagon grouper	Epinephelus hexagonatus
Groupers	Honeycomb grouper	Epinephelus merra
Groupers	Inshore groupers	Serrandidae
Groupers	Longspine grouper	Epinephelus longispinnis
Groupers	Netfin grouper	Epinephelus miliaris
Groupers	One-bloch grouper	Epinephelus melanostigma
Groupers	Peacock grouper	Cephalopholis argus
Groupers	Pygmy grouper	Cephalopholis spiloparaea
Groupers	Saddleback grouper	Plectropomus laevis
Groupers	Six-banded grouper	Cephalopholis sexmaculatus
Groupers	Slender grouper	Anyperodon leucogrammicus
Groupers	Smalltooth grouper	Epinephelus microdon
Groupers	Spotted grouper	Epinephelus maculatus
Groupers	Squaretail grouper	Plectropomus areolatus
Groupers	Striped grouper	Epinephelus morrhua
Groupers	Tomato grouper	Cephalopholis sennerati
Groupers	Ybanded grouper	Cephalopholis igarashiensis
Groupers	Yellowspot grouper	Epinephelus timorensis
Groupers	Leopard coral trout	Plectropomus leopardus
Groupers	Powell's grouper	Saloptia powelli
Groupers	White-edged lyretail	Variola albimarginata
Squirrelfish	Bigscale soldierfish	Myripristis berndti
Squirrelfish	Blackfin squirrelfish	Neoniphon opercularis
Squirrelfish	Blackspot squirrelfish	Sargocentron melanospilos
Squirrelfish	Blotcheye soldierfish	Myripristis murdjan
Squirrelfish	Bluelined squirrelfish	Sargocentron tiere
Squirrelfish	Brick soldierfish	Myripristis amaena

American Samoa CREMUS	Common Name	Scientific Name
Squirrelfish	Bronze soldierfish	Myripristis adusta
Squirrelfish	Crown squirrelfish	Sargocentron diadema
Squirrelfish	Double tooth soldierfish	Myripristis hexagona
Squirrelfish	Filelined squirrelfish	Sargocentron microstoma
Squirrelfish	Hawaiian squirrelfish	Sargocentron xantherythrum
Squirrelfish	Pearly soldierfish	Myripristis kuntee
Squirrelfish	Peppered squirrelfish	Sargocentron punctatissimum
Squirrelfish	Pink squirrelfish	Sargocentron tieroides
Squirrelfish	Saber squirrelfish	Sargocentron spiniferum
Squirrelfish	Sammara squirrelfish	Neoniphon sammara
Squirrelfish	Scarlet soldierfish	Myripristis pralinius
Squirrelfish	Squirrelfish	Sargocentron sp.
Squirrelfish	Tailspot squirrelfish	Sargocentron caudimaculatum
Squirrelfish	Violet soldierfish	Myripristis violaceus
Squirrelfish	Violet squirrelfish	Sargocentron violaceum
Squirrelfish	Whitetip soldierfish	Myripristis vittata
Squirrelfish	Yellowfin soldierfish	Myripristis chryseres
Squirrelfish	Yellowstriped squirrelfish	Neoniphon aurolineatus
Mullets	Mullets	Mugilidae
Mullets	Fringelip mullet	Crenimugil crenilabis
Mullets	Diamond scale mullet	Ellochelon vaigiensis
Mullets	False mullet	Neomyxus leuciscus
Crustaceans	Crabs	Decapoda
Crustaceans	Grapsid crab	Graspidae
Crustaceans	Pa'a crab	Ocypode ceratopthalma
Crustaceans	Seven-11 crab	Carpilius maculatus
Crustaceans	Small crab	Decapoda
Crustaceans	Mangrove crab	Scylla serrate
Crustaceans	Large red crab	Sesama erythrodactyla
Crustaceans	Hermit crab	Coenobita clypeatus
Invertebrates	Invertebrates (misc)	n/a
Invertebrates	Sea urchins (misc)	Diadema
Invertebrates	Black sea urchin	Diadema
Invertebrates	White sea urchin	Salmacis spp.
Invertebrates	Cubed Ioli	Holothuria atra (cubed)
Invertebrates	Cubed leapord sea cucumber	Bahadschia argus (cubed)
Invertebrates	Surf redfish	Actinopyga maurtiana
Invertebrates	Sea cucumber (misc)	Cucumariidae
Invertebrates	Sea cucumber - gau	Cucumariidae
Invertebrates	Sea cucumber gonads	Cucumariidae

American Samoa CREMUS	Common Name	Scientific Name
Invertebrates	Leapord sea cucumber	Bahadschia argus
Invertebrates	Loli	Holothuria atra
Other CRE-Finfish	Flyingfish	Exocoetidae
Other CRE-Finfish	Cornetfish	Fistularia commersonii
Other CRE-Finfish	Mojarras	Gerreidae
Other CRE-Finfish	Gobies	Gobiidae
Other CRE-Finfish	Sweetlips	Plectorhinchus sp.
Other CRE-Finfish	Halfbeaks	Hemiramphidae
Other CRE-Finfish	Flagtails	Kuhliidae
Other CRE-Finfish	Barred flagtail	Kuhlia mugil
Other CRE-Finfish	Mountain bass	Kuhlia sp.
Other CRE-Finfish	Ponyfish	Leiognathidae
Other CRE-Finfish	Tilefishes	Malacanthus sp.
Other CRE-Finfish	Sunfish	Masturus lanceolatus
Other CRE-Finfish	Filefishes	Monacanthidae
Other CRE-Finfish	Silver batfish	Monodactylus argenteus
Other CRE-Finfish	Moray eels	Gymnothorax sp.
Other CRE-Finfish	Dragon eel	Enchelycore pardalis
Other CRE-Finfish	Yellowmargin moray eel	Gymnothorax flavimarginatus
Other CRE-Finfish	Giant moray eel	Gymnothorax javanicus
Other CRE-Finfish	Spotted moray eels	Gymnothorax sp.
Other CRE-Finfish	Undulated moray eel	Gymnothorax undulatus
Other CRE-Finfish	Rays	Batiodea
Other CRE-Finfish	Eagle ray	Aetobatis narinari
Other CRE-Finfish	Monogram monocle bream	Scolopsis monogramma
Other CRE-Finfish	Nurse shark	Pempheris sp.
Other CRE-Finfish	Sweepers	Pempheridae
Other CRE-Finfish	Prettyfins	Cyprinididae
Other CRE-Finfish	Threadfin	Polynemus sp.
Other CRE-Finfish	Angelfishes	Centropyge flavissimus
Other CRE-Finfish	Emperor angelfish	Pomacanthus imperator
Other CRE-Finfish	Banded sergeant	Abudefduf septemfasciatus
Other CRE-Finfish	Sergeant major	Abudefduf sp.
Other CRE-Finfish	Damselfish	Dascyllus trimaculatus
Other CRE-Finfish	Bigeyes	Priacanthidae
Other CRE-Finfish	Glasseye	Heteropriacanthus cruentatus
Other CRE-Finfish	Paeony bulleye	Priacanthus blochii
Other CRE-Finfish	Moontail bullseye	Priacanthus hamrur
Other CRE-Finfish	Bigeye squirrelfish	Priacanthus sp.
Other CRE-Finfish	Dottybacks	Pseudochromidae

American Samoa CREMUS	Common Name	Scientific Name
Other CRE-Finfish	Scorpionfishes	Scorpaenidae
Other CRE-Finfish	Lionfish	Pterois sp.
Other CRE-Finfish	Stonefish	Synaceia sp.
Other CRE-Finfish	Small barracuda	Sphyraenidae
Other CRE-Finfish	Great barracuda	Sphyraena barracuda
Other CRE-Finfish	Bigeye barracuda	Sphyraena forsteri
Other CRE-Finfish	Heller's barracuda	Sphyraena helleri
Other CRE-Finfish	Blackfin barracuda	Sphyraena qenie
Other CRE-Finfish	Barracudas (misc)	Sphyraena sp.
Other CRE-Finfish	Seahorses	Sygnathidae
Other CRE-Finfish	Lizardfish	Synodontidae
Other CRE-Finfish	Terapon perch	Terapon jarbua
Other CRE-Finfish	Moorish Idol	Zanclus cornutus
Other CRE-Finfish	Freshwater eel	Anguilla marmorata
Other CRE-Finfish	Flashlightfishes	Anomalopidae
Other CRE-Finfish	Frogfishes	Antennariidae
Other CRE-Finfish	Cardinalfish	Apogonidae
Other CRE-Finfish	Silversides	Hypoathernia temminckii
Other CRE-Finfish	Trumpetfish	Aulostomus chinensis
Other CRE-Finfish	Triggerfish	Balistidae
Other CRE-Finfish	Orangestripe triggerfish	Balistapus undulatus
Other CRE-Finfish	Clown triggerfish	Balistoides conspicillum
Other CRE-Finfish	Titan triggerfish	Balistoides viridescens
Other CRE-Finfish	Needlefish	Belonidae
Other CRE-Finfish	Blennies	Blennidae
Other CRE-Finfish	Angler flatfish	Asterorhombus fijiensis
Other CRE-Finfish	Gold banded fusilier	Caesio caerulaurea
Other CRE-Finfish	Coral crouchers	Caracanthus maculatus
Other CRE-Finfish	Butterflyfishes (misc)	Chaetodon sp.
Other CRE-Finfish	Butterflyfish (auriga)	Chaetodon auriga
Other CRE-Finfish	Saddleback butterflyfish	Chaetodon ephippium
Other CRE-Finfish	Racoon butterflyfish	Chaetodon lunula
Other CRE-Finfish	Butterflyfish (melanotic)	Chaetodon melannotus
Other CRE-Finfish	Milkfish	Chanos chanos
Other CRE-Finfish	Tilapia	Tilapia zillii
Other CRE-Finfish	Two spotted hawkfish	Amplycirrhitus bimacula
Other CRE-Finfish	Stocky hawkfish	Cirrhitus pinnalatus
Other CRE-Finfish	Flame hawkfish	Neocirrhites armatus
Other CRE-Finfish	Herrings	Clupeidae
Other CRE-Finfish	White eel	Conger cinereus

American Samoa CREMUS	Common Name	Scientific Name
Other CRE-Finfish	Conger eels	Conger sp.
Other CRE-Finfish	Porcupinefish	Diodon (Porcupine) sp.
Other CRE-Finfish	Remoras	Echeneidae
Other CRE-Finfish	Anchovies	Engraulidae
Other CRE-Finfish	Batfishes	Ephippidae
Misc. Bottomfish	Bottomfish (misc)	n/a
Misc. Reef Fish	Reef fish (misc)	n/a
Wrasse	Arenatus wrasse	Oxycheilinus arenatus
Wrasse	Bandcheck wrasse	Oxycheilinus diagrammus
Wrasse	Barred thicklip	Hemigymnus fasciatus
Wrasse	Bird wrasse	Hemigymnus fasciatus
Wrasse	Blackeye thicklip	Hemigymnus melapterus
Wrasse	Checkerboard wrasse	Halichoeres hortulanus
Wrasse	Cheilinus wrasse (misc)	Cheilinus sp.
Wrasse	Christmas wrasse	Thalassoma trilobata
Wrasse	Cigar wrasse	Cheilio inermus
Wrasse	Red ribbon wrasse	Thalassoma quinquevittaitum
Wrasse	Rockmover wrasse	Novaculichthys taeniorus
Wrasse	Sunset wrasse	Thalassoma lutescens
Wrasse	Surge wrasse	Thalassoma purpureum
Wrasse	Triple tail wrasse	Cheilinus trilobatus
Wrasse	Weedy surge wrasse	Halichoeres margaritaceus
Wrasse	Whitepatch wrasse	Xyrichtys aneitensis
Wrasse	Wrasses (misc.)	Labridae
Wrasse	Floral wrasse	Cheilinus chlorourus
Wrasse	Harlequin tuskfish	Cheilinus fasciatus
Rudderfish	Rudderfish (bigibus)	Kyphosus bigibus
Rudderfish	Rudderfish (cinerascens)	Kyphosus cinerascens
Rudderfish	Western drummer	Kyphosus cornelii
Rudderfish	Rudderfish	Kyphosus sp.
Rudderfish	Lowfin drummer	Kyphosus vaigiensis
Goatfish	Goatfish (misc)	Mullidae
Goatfish	Yellowstripe goatfish	Mulloidichthys flavolineatus
Goatfish	Orange goatfish	Mulloidichthys pfluegeri
Goatfish	Yellow goatfishes	Mulloidichthys sp.
Goatfish	Yellowfin goatfish	Mulloidichthys vanicolensis
Goatfish	Dash-and-dot goatfish	Parupeneus barberinus
Goatfish	Doublebar goatfish	Parupeneus bifasciatus
Goatfish	White-lined goatfish	Parupeneus ciliatus
Goatfish	Yellowsaddle goatfish	Parupeneus cyclostomus

American Samoa CREMUS	Common Name	Scientific Name
Goatfish	Redspot goatfish	Parupeneus heptacanthus
Goatfish	Indian goatfish	Parupeneus indicus
Goatfish	Parupenus insularis	Parupeneus insularis
Goatfish	Multi-barred goatfish	Parupeneus multifasciatus
Goatfish	Side spot goatfish	Parupeneus pleurostigma
Goatfish	Banded goatfish (misc)	Parupeneus sp.
Rabbitfish	Rabbitfish	Siganidae
Rabbitfish	Forktail rabbitfish	Siganus aregenteus
Rabbitfish	Scribbled rabbitfish	Siganus spinus
Algae	Red algae	Red Algae
Algae	Seaweeds	Seaweeds
Misc. Shallow bottomfish	Shallow bottomfish (misc)	n/a
Species of Special	Bumphead parrotfish	Bolbometopon muricatum
Management Interest	II 1 1 AI 1)	Cl. :I:
Species of Special	Humphead (Napoleon) wrasse	Cheilinus undulatus
Management Interest	D f -1, d (;)	Complement in idea
Species of Special	Reef sharks (misc)	Carcharhinidae
Management Interest Species of Special	Silvertip shark	Carcharhinus albimarginatus
Management Interest	Silverup shark	Carcharninus aibimarginaius
Species of Special	Grey Reef shark	Carcharhinus amblyrhynchos
Management Interest	Grey Reer Shark	Carenarinas amotyrnynenos
Species of Special	Galapagos shark	Carcharhinus galapagenis
Management Interest	T. A. A. G. T. T.	g
Species of Special	Black tip reef shark	Carcharhinus melanopterus
Management Interest	-	
Species of Special	White tip reef shark	Carcharhinus triaenodon
Management Interest		
Species of Special	Hammerhead shark	Sphyrnidae
Management Interest		

Table 2. Mariana CREMUS (Guam)

Mariana CREMUS (Guam)	Common Name	Scientific Name
Surgeonfish	Surgeon/Unicornfishes	Acanthuridae
Surgeonfish	Achilles Tang	Acanthurus achilles
Surgeonfish	Bariene Surgeonfish	Acanthurus bariene
Surgeonfish	White-Bar Surgeonfish	Acanthurus blochii
Surgeonfish	Chronixis Surgeonfish	Acanthurus chronixis
Surgeonfish	Eye-Stripe Surgeonfish	Acanthurus dussumieri
Surgeonfish	Whitespotted Surgeonfish	Acanthurus guttatus
Surgeonfish	Palelipped Surgeonfish	Acanthurus leucocheilus
Surgeonfish	Whitebar Surgeonfish	Acanthurus leucopareius

Mariana CREMUS (Guam)	Common Name	Scientific Name
Surgeonfish	Bluebanded Surgeonfish	Acanthurus lineatus
Surgeonfish	White-Freckled Surgeonfish	Acanthurus maculiceps
Surgeonfish	Elongate Surgeonfish	Acanthurus mata
Surgeonfish	Whitecheek Surgeonfish	Acanthurus nigricans
Surgeonfish	Epaulette Surgeonfish	Acanthurus nigricauda
Surgeonfish	Brown Surgeonfish	Acanthurus nigrofuscus
Surgeonfish	Bluelined Surgeonfish	Acanthurus nigroris
Surgeonfish	Surgeonfish	Acanthurus nubilus
Surgeonfish	Orangeband Surgeonfish	Acanthurus olivaceus
Surgeonfish	Chocolate Surgeonfish	Acanthurus pyroferus
Surgeonfish	Thompson'S Surgeonfish	Acanthurus thompsoni
Surgeonfish	Convict Tang	Acanthurus triostegus triostegus
Surgeonfish	Yellowfin Surgeonfish	Acanthurus xanthopterus
Surgeonfish	2-Spot Bristletooth	Ctenochaetus binotatus
Surgeonfish	Black Surgeonfish	Ctenochaetus hawaiiensis
Surgeonfish	Blue-Spotted Bristletooth	Ctenochaetus marginatus
Surgeonfish	Striped Bristletooth	Ctenochaetus striatus
Surgeonfish	Goldring Surgeonfish	Ctenochaetus strigosus
Surgeonfish	Tomini Surgeonfish	Ctenochaetus tominiensis
Surgeonfish	Whmargin Unicornfish	Naso annulatus
Surgeonfish	Humpback Unicornfish	Naso brachycentron
Surgeonfish	Spotted Unicornfish	Naso brevirostris
Surgeonfish	Whtongue Unicornfish	Naso caesius
Surgeonfish	Bltongue Unicornfish	Naso hexacanthus
Surgeonfish	Orangespine Unicornfish	Naso lituratus
Surgeonfish	Lopez' Unicornfish	Naso lopezi
Surgeonfish	Whtongue Unicornfish	Naso thynnoides
Surgeonfish	Humpnose Unicornfish	Naso tuberosus
Surgeonfish	Bluespine Unicornfish	Naso unicornis
Surgeonfish	Bignose Unicornfish	Naso vlamingii
Surgeonfish	Hepatus Tang	Paracanthurus hepatus
Surgeonfish	Yellow Tang	Zebrasoma flavescens
Surgeonfish	Brown Tang	Zebrasoma scopas
Surgeonfish	Sailfin Tang	Zebrasoma veliferum
Jacks	Pennantfish	Alectis ciliaris
Jacks	Malabar Trevally	Alectis indicus
Jacks	Jacks, Trevallys	Carangidae
Jacks	Trevally	Carangoides caeruleopinnatus
Jacks	Shadow Kingfish	Carangoides dinema
Jacks	Bar Jack	Carangoides ferdau
Jacks	Yell-Dotted Trevally	Carangoides fulvoguttatus
Jacks	Headnotch Trevally	Carangoides hedlandensis
Jacks	Yellow Spotted Jack	Carangoides orthogrammus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Jacks	Barcheek Trevally	Carangoides plagiotaenia
Jacks	Trevally	Carangoides talamparoides
Jacks	Longfin Trevally	Carangoides uii
Jacks	Juvenile Caranx	Caranx i'e'
Jacks	Bluefin Trevally	Caranx melampygus
Jacks	Brassy Trevally	Caranx papuensis
Jacks	Bigeye Trevally	Caranx sexfasciatus
Jacks	Mackerel Scad	Decapterus macarellus
Jacks	Mackerel Scad	Decapterus macrosoma
Jacks	Round Scad	Decapterus maruadsi
Jacks	Round Scad	Decapterus russelli
Jacks	Rainbow Runner	Elagatis bipinnulatus
Jacks	Golden Trevally	Gnathanodon speciosus
Jacks		Megalaspis cordyla
Jacks	Pilotfish	Naucrates ductor
Jacks	Elagatis, Scomberoides, Seriola	Naucratini
Jacks	Leatherback	Scomberoides lysan
Jacks	Almaco Jack	Seriola rivoliana
Jacks	Small Spotted Pompano	Trachinotus bailloni
Jacks	Silver Pompano	Trachinotus blochii
Jacks	Mandibular Kingfish	Ulua mandibularis
Jacks	Kingfish	Uraspis helvola
Jacks	Deep Trevally	Uraspis secunda
Jacks	Whitemouth Trevally	Uraspis uraspis
Atulai	Bigeye Scad	Selar crumenopthalmus
Emperors	Yellow-Spot Emperor	Gnathodentex aurolineatus
Emperors	Japanese Bream	Gymnocranius euanus
Emperors	Blue-Lined Bream	Gymnocranius grandoculus
Emperors	Grey Bream	Gymnocranius griseus
Emperors	Blue-Spotted Bream	Gymnocranius microdon
Emperors	Stout Emperor	Gymnocranius sp
Emperors	Emperors	Lethrinidae
Emperors	Yellowtail Emperor	Lethrinus atkinsoni
Emperors	Orange-Spotted Emperor	Lethrinus erythracanthus
Emperors	Longfin Emperor	Lethrinus erythropterus
Emperors	Longspine Emperor	Lethrinus genivittatus
Emperors	Thumbprint Emperor	Lethrinus harak
Emperors	Pinkear Emperor	Lethrinus lentjan
Emperors	Smtoothed Emperor	Lethrinus microdon
Emperors	Orange-Striped Emperor	Lethrinus obsoletus
Emperors	Longface Emperor	Lethrinus olivaceus
Emperors	Ornate Emperor	Lethrinus ornatus
Emperors	Black-Blotch Emperor	Lethrinus semicinctus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Emperors	Slender Emperor	Lethrinus variegatus
Emperors	Yellowlip Emperor	Lethrinus xanthochilus
Emperors	Bigeye Emperor	Monotaxis grandoculus
Emperors	Large-Eye Bream	Wattsia mossambica
Parrotfish	Bucktooth Parrotfish	Calotomus carolinus
Parrotfish	Spineytooth Parrotfish	Calotomus spinidens
Parrotfish	Bicolor Parrotfish	Cetoscarus bicolor
Parrotfish	Parrotfish	Chlorurus bleekeri
Parrotfish	Parrotfish	Chlorurus bowersi
Parrotfish	Tan-Faced Parrotfish	Chlorurus frontalis
Parrotfish	Steephead Parrotfish	Chlorurus microrhinos
Parrotfish	Parrotfish	Chlorurus pyrrhurus
Parrotfish	Bullethead Parrotfish	Chlorurus sordidus
Parrotfish	Parrotfish	Hipposcarus longiceps
Parrotfish	Seagrass Parrotfish	Leptoscarus vaigiensis
Parrotfish	Parrotfishes	Scaridae
Parrotfish	Fil-Finned Parrotfish	Scarus altipinnis
Parrotfish	Parrotfish	Scarus chameleon
Parrotfish	Parrotfish	Scarus dimidiatus
Parrotfish	Parrotfish	Scarus festivus
Parrotfish	Yellowfin Parrotfish	Scarus flavipectoralis
Parrotfish	Tricolor Parrotfish	Scarus forsteni
Parrotfish	Vermiculate Parrotfish	Scarus frenatus
Parrotfish	Blue-Barred Parrotfish	Scarus ghobban
Parrotfish	Parrotfish	Scarus globiceps
Parrotfish	Java Parrotfish	Scarus hypselosoma
Parrotfish	Parrotfish	Scarus sp.
Parrotfish	Black Parrotfish	Scarus niger
Parrotfish	Parrotfish	Scarus oviceps
Parrotfish	Greenthroat Parrotfish	Scarus prasiognathos
Parrotfish	Pale Nose Parrotfish	Scarus psittacus
Parrotfish	Parrotfish	Scarus quoyi
Parrotfish	Parrotfish	Scarus rivulatus
Parrotfish	Parrotfish	Scarus rubroviolaceus
Parrotfish	Chevron Parrotfish	Scarus schlegeli
Parrotfish	Parrotfish	Scarus spinus
Parrotfish	Tricolor Parrotfish	Scarus tricolor
Parrotfish	Parrotfish	Scarus xanthopleura
Goatfish	Goatfishes	Mullidae
Goatfish	Yellowstriped Goatfish	Mulloidichthys flavolineatus
Goatfish	Orange Goatfish	Mulloidichthys pflugeri
Goatfish	Juvenile Goatfish	Mulloidichthys ti'ao
Goatfish	Yellowfin Goatfish	Mulloidichthys vanicolensis

Mariana CREMUS (Guam)	Common Name	Scientific Name
Goatfish		Parupeneus barberinoides
Goatfish	Dash And Dot Goatfish	Parupeneus barberinus
Goatfish		Parupeneus bifasciatus
Goatfish	White-Lined Goatfish	Parupeneus ciliatus
Goatfish	Yellow Goatfish	Parupeneus cyclostomus
Goatfish	Redspot Goatfish	Parupeneus heptacanthus
Goatfish	Indian Goatfish	Parupeneus indicus
Goatfish	Multibarred Goatfish	Parupeneus multifasciatus
Goatfish	Sidespot Goatfish	Parupeneus pleurostigma
Goatfish	Goatfish	Parupeneus sp.
Goatfish	Goatfish	Upeneus arge
Goatfish	Band-Tailed Goatfish	Upeneus taeniopterus
Goatfish	Blackstriped Goatfish	Upeneus tragula
Goatfish	Yellowbanded Goatfish	Upeneus vittatus
Mollusks	Spiney Chiton	Acanthopleura spinosa
Mollusks	Bubble Shells,Sea Hares	Acteonidae
Mollusks	Antique Ark	Anadara antiquata
Mollusks	Indo-Pacific Ark	Arca navicularis
Mollusks	Ventricose Ark	Arca ventricosa
Mollusks	Ark Shells	Arcidae
Mollusks	Common Paper Nautilus	Argonauta argo
Mollusks	Gruner'S Paper Nautilus	Argonauta gruneri
Mollusks	Brown Paper Nautilus	Argonauta hians
Mollusks	Nodose Paper Nautilus	Argonauta nodosa
Mollusks	Noury'S Paper Nautilus	Argonauta nouri
Mollusks	Paper Nautiluses	Argonautidae
Mollusks	Pacific Sand Clam	Asaphis violescens
Mollusks	Gaudy Sand Clam	Aspaphis deflorata
Mollusks	Peron'S Sea Butterfly	Atlanta peroni
Mollusks	<u>, </u>	Atlantidae
Mollusks	Wh Pacific Atys	Atys naucum
Mollusks	Almond Ark	Babatia amygdalumtostum
Mollusks	Goblets,Dwarf Tritons	Buccinidae
Mollusks	Ampule Bubble	Bulla ampulla
Mollusks	Bubble Shells	Bullidae
Mollusks	Lined Bubble	Bullina lineata
Mollusks	Giant Frog Shell	Bursa bubo
Mollusks	Warty Frog Shell	Bursa bufonia
Mollusks	Blood-Stain Frog Shell	Bursa cruentata
Mollusks	Granulate Frog Shell	Bursa granularis
Mollusks	Lamarck'S Frog Shell	Bursa lamarcki
Mollusks	Red-Mth Frog Shell	Bursa lissostoma
Mollusks	Udder Frog Shell	Bursa mammata

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Ruddy Frog Shell	Bursa rebeta
Mollusks	Wine-Mth Frog Shell	Bursa rhodostoma
Mollusks	Frog Shells	Bursidae
Mollusks	Umbilicate Ovula	Calpurnus verrucosus
Mollusks	File Miter	Cancilla filaris
Mollusks	Smoky Goblet	Cantharus fumosus
Mollusks	Waved Goblet	Cantharus undosus
Mollusks	Varitated Cardita	Cardita variegata
Mollusks	Carditid Clams	Carditidae
Mollusks	Vibex Bonnet	Casmaria erinaceus
Mollusks	Heavy Bonnet	Casmaria ponderosa
Mollusks	Helmet Shells	Cassidae
Mollusks	Horned Helmet	Cassius cornuta
Mollusks	3-Toothed Cavoline	Cavolina tridentata
Mollusks	Unicate Cavoline	Cavolina uncinata
Mollusks	Sea Butterfly	Cavolinia cf globulosa
Mollusks	Sea Butterflies	Cavolinidae
Mollusks	Turret, Worm-Shells	Cerithiidae
Mollusks	Column Certh	Cerithium columna
Mollusks	Giant Knobbed Certh	Cerithium nodulosum
Mollusks	Lazarus Jewel Box	Chama lazarus
Mollusks	Jewel Boxes	Chamidae
Mollusks	Triton Trumpet	Charonia tritonis
Mollusks	Ramose Murex	Chicoreus ramosus
Mollusks	Chitons	Chitonidae
Mollusks	Cook'S Scallop	Chlamys cooki
Mollusks	Squamose Scallop	Chlamys squamosa
Mollusks	Bivalves	Class Bivalvia
Mollusks	Pyramid Clio	Clio cuspidata
Mollusks	Irregular Urchins	Clio pyramidata
Mollusks	Morus Certh	Clypeomorus concisus
Mollusks	Punctate Lucina	Codakia punctata
Mollusks	Maculated Dwarf Triton	Columbraria muricata
Mollusks	Shiny Dwarf Triton	Columbraria nitidula
Mollusks	Twisted Dwarf Triton	Columbraria tortuosa
Mollusks	Cone Shells	Conidae
Mollusks	Sand-Dusted Cone	Conus arenatus
Mollusks	Princely Cone	Conus aulicus
Mollusks	Aureus Cone	Conus aureus
Mollusks	Gold-Leaf Cone	Conus auricomus
Mollusks	Banded Marble-Cone	Conus bandanus
Mollusks	Bubble Cone	Conus bullatus
Mollusks	Captain Cone	Conus capitaneus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Cat Cone	Conus catus
Mollusks	Chaldean Cone	Conus chaldeus
Mollusks	Comma Cone	Conus connectens
Mollusks	Crowned Cone	Conus coronatus
Mollusks	Cylindrical Cone	Conus cylandraceus
Mollusks	Distantly-Lined Cone	Conus distans
Mollusks	Hebrew Cone	Conus ebraeus
Mollusks	Ivory Cone	Conus eburneus
Mollusks	Episcopus Cone	Conus episcopus
Mollusks	Pacific Yellow Cone	Conus flavidus
Mollusks	Frigid Cone	Conus frigidus
Mollusks	General Cone	Conus generalis
Mollusks	Geography Cone	Conus geographus
Mollusks	Acorn Cone	Conus glans
Mollusks	Imperial Cone	Conus imperialis
Mollusks	Ambassador Cone	Conus legatus
Mollusks	Leopard Cone	Conus leopardus
Mollusks	Lithography Cone	Conus lithoglyphus
Mollusks	Lettered Cone	Conus litteratus
Mollusks	Livid Cone	Conus lividus
Mollusks	Luteus Cone	Conus luteus
Mollusks	Dignified Cone	Conus magnificus
Mollusks	Soldier Cone	Conus miles
Mollusks	1000-Spot Cone	Conus miliaris
Mollusks	Morelet'S Cone	Conus moreleti
Mollusks	Muricate Cone	Conus muriculatus
Mollusks	Music Cone	Conus musicus
Mollusks	Weasel Cone	Conus mustelinus
Mollusks	Obscure Cone	Conus obscurus
Mollusks	Pertusus Cone	Conus pertusus
Mollusks	Flea-Bite Cone	Conus pulicarius
Mollusks	Rat Cone	Conus rattus
Mollusks	Netted Cone	Conus retifer
Mollusks	Blood-Stained Cone	Conus sanguinolentus
Mollusks	Leaden Cone	Conus scabriusculus
Mollusks	Marriage Cone	Conus sponsalis
Mollusks	Striatellus Cone	Conus striatellus
Mollusks	Striated Cone	Conus striatus
Mollusks	Terebra Cone	Conus terebra
Mollusks	Checkered Cone	Conus tesselatus
Mollusks	Textile Cone	Conus textile
Mollusks	Tulip Cone	Conus tulipa
Mollusks	Varius Cone	Conus varius

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Flag Cone	Conus vexillum
Mollusks	Calf Cone	Conus vitulinus
Mollusks	Eroded Coral Shell	Coralliophila erosa
Mollusks	Violet Coral Shell	Coralliophila neritodidea
Mollusks	Coral Shells	Coralliophilidae
Mollusks	Giant Oyster	Crassostrea gigas
Mollusks	Mangrove Oyster	Crassostrea mordax
Mollusks	Bionic Rock Shell	Cronia biconica
Mollusks	Speciosus Scallop	Cryptopecten speciosum
Mollusks	Cigar Pteropod	Cuvierina columnella
Mollusks	Tritons	Cymatiidae
Mollusks	Clandestine Triton	Cymatium clandestinium
Mollusks	Jeweled Triton	Cymatium gemmatum
Mollusks	Liver Triton	Cymatium hepaticum
Mollusks	Wide-Lipped Triton	Cymatium labiosum
Mollusks	Black-Spotted Triton	Cymatium lotorium
Mollusks	Short-Neck Triton	Cymatium muricinum
Mollusks	Nicobar Hairy Triton	Cymatium nicobaricum
Mollusks	Common Hairy Triton	Cymatium pileare
Mollusks	Aquatile Hairy Triton	Cymatium pilere aquatile
Mollusks	Pear Triton	Cymatium pyrum
Mollusks	Red Triton	Cymatium rubeculum
Mollusks	Dwarf Hairy Triton	Cymatium vespaceum
Mollusks	Gold-Ringer Cowry	Cypraea annulus
Mollusks	Arabian Cowry	Cypraea arabica
Mollusks	Eyed Cowry	Cypraea argus
Mollusks	Golden Cowry	Cypraea aurantium
Mollusks	Beck'S Cowry	Cypraea beckii
Mollusks	Bistro Cowry	Cypraea bistronatata
Mollusks	Snake'S Head Cowry	Cypraea caputserpentis
Mollusks	Carnelian Cowry	Cypraea carneola
Mollusks	Chinese Cowry	Cypraea chinensis
Mollusks	Chick-Pea Cowry	Cypraea cicercula
Mollusks	Clandestine Cowry	Cypraea clandestina
Mollusks	Sieve Cowry	Cypraea cribaria
Mollusks	Sowerby'S Cowry	Cypraea cylindrica
Mollusks	Depressed Cowry	Cypraea depressa
Mollusks	Dillwyn'S Cowry	Cypraea dillywini
Mollusks	Eglantine Cowry	Cypraea eglantina
Mollusks	Eroded Cowry	Cypraea egamma Cypraea erosa
Mollusks	Globular Cowry	Cypraea globulus
Mollusks	Honey Cowry	Cypraea helvola
MINIMINI	Honey Cowly	Cypraea neivoia

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Humphrey'S Cowry	Cypraea humphreysi
Mollusks	Isabelle Cowry	Cypraea isabella
Mollusks	Lined-Lip Cowry	Cypraea labrolineata
Mollusks	Limacina Cowry	Cypraea limicina
Mollusks	Lynx Cowry	Cypraea lynx
Mollusks	Reticulated Cowry	Cypraea maculifera
Mollusks	Map Cowry	Сургаеа тарра
Mollusks	Marie'S Cowry	Cypraea mariae
Mollusks	Humpback Cowry	Cypraea mauritiana
Mollusks	Microdon Cowry	Cypraea microdon
Mollusks	Money Cowry	Cypraea moneta
Mollusks	Nuclear Cowry	Cypraea nucleus
Mollusks	Porus Cowry	Cypraea poraria
Mollusks	Punctata Cowry	Cypraea punctata
Mollusks	Jester Cowry	Cypraea scurra
Mollusks	Grape Cowry	Cypraea staphlea
Mollusks	Stolid Cowry	Cypraea stolida
Mollusks	Mole Cowry	Cypraea talpa
Mollusks	Teres Cowry	Cypraea teres
Mollusks	Tiger Cowry	Cypraea tigris
Mollusks	Ventral Cowry	Cypraea ventriculus
Mollusks	Pacific Deer Cowry	Cypraea vitellus
Mollusks	Undulating Cowry	Cypraea ziczac
Mollusks	Cowrys	Cypraeidae
Mollusks	3-Spined Cavoline	Diacria trispinosa
Mollusks	Anal Triton	Distorso anus
Mollusks	Dorid Nudibranchs	Doridae
Mollusks	Clatherate Drupe	Drupa clathrata
Mollusks	Elegant Pacific Drupe	Drupa elegans
Mollusks	Digitate Pacific Drupe	Drupa grossularia
Mollusks	Purple Pacific Drupe	Drupa morum
Mollusks	Prickley Pacific Drupe	Drupa ricinus
Mollusks	Strawberry Drupe	Drupa rubusidacaeus
Mollusks	Spectacular Scallop	Excellichlamys spectiablis
Mollusks	Spindles	Fasciolariidae
Mollusks	Pac Strawberry Cockle	Fragum fragum
Mollusks	Tumid Venus	Gafrarium tumidum
Mollusks	Rosy Gyre Triton	Gyrineum roseum
Mollusks	Purple Gyre Triton	Gyrinium pusillum
Mollusks	Little Love Harp	Harpa amouretta
Mollusks	True Harp	Harpa harpa
Mollusks	Major Harp	Harpa major
Mollusks	Harp Shells	Harpidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Lance Auger	Hastula lanceata
Mollusks	Pencil Auger	Hastula penicillata
Mollusks	Spanish Dancer	Hexabranchus sanguineus
Mollusks	Giant Clam	Hippopus hippopus
Mollusks	Anatomical Murex	Homalocanthia anatomica
Mollusks	Gr-Lined Paber Bubble	Hydratina physis
Mollusks	Cone-Like Miter	Imbricaria conularis
Mollusks	Olive-Shaped Miter	Imbricaria olivaeformis
Mollusks	Bonelike Miter	Imbricaria punctata
Mollusks	Saddle Tree Oyster	Isognomon ephippium
Mollusks	Tree Oysters	Isognomonidae
Mollusks	Janthina Snail	Janthina janthina
Mollusks	Pelagic Snails	Janthinidae
Mollusks	Chiragra Spider Conch	Lambis chiragra
Mollusks	Ormouth Spider Conch	Lambis crocota
Mollusks	Common Spider Conch	Lambis lambis
Mollusks	Scorpio Conch	Lambis scorpius scorpius
Mollusks	Spider Conch	Lambis sp.
Mollusks	Giant Spider Conch	Lambis truncata
Mollusks	Nobby Spindle	Latirus nodatus
Mollusks	Spindle	Latirus rudis
Mollusks	Fragile Lima	Lima fragilis
Mollusks	Indo-Pac Spiny Lima	Lima vulgaris
Mollusks	Limas	Limidae
Mollusks	Camp Pitar Venus	Lioconcha castrensis
Mollusks	Hieroglyphic Venus	Lioconcha hieroglyphica
Mollusks	Ornate Pitar Venus	Lioconcha ornata
Mollusks	Scabra Periwinkle	Littorina scabra
Mollusks	Undulate Periwinkle	Littorina undulata
Mollusks	Periwinkles	Littorinidae
Mollusks	Lucinas	Lucinidae
Mollusks	Apple Tun	Malea pomum
Mollusks	Pinnacle Murex	Marchia bipinnatus
Mollusks	Fenestrate Murex	Marchia martinetana
Mollusks	Melampus Shells	Melampidae
Mollusks	Yellow Melampus	Melampus luteus
Mollusks	Flamboyant Cuttlefish	Metasepia pfefferi
Mollusks	Mini Lined-Bubble	Micromelo undatus
Mollusks	Ventricose Milda	Milda ventricosa
Mollusks	Miraculous Scallop	Mirapecten mirificus
Mollusks	Imperial Miter	Miter imperalis
Mollusks	Acuminate Miter	Mitra acuminata
Mollusks	Cardinal Miter	Mitra cardinalis

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Chrysalis Miter	Mitra chrysalis
Mollusks	Gold-Mth Miter	Mitra chrysostoma
Mollusks	Coffee Miter	Mitra coffea
Mollusks	Contracted Miter	Mitra contracta
Mollusks	Kettle Miter	Mitra cucumaria
Mollusks	Rusty Miter	Mitra ferruginea
Mollusks	Strawberry Miter	Mitra fraga
Mollusks	Tesselate Miter	Mitra incompta
Mollusks	Episcopal Miter	Mitra mitra
Mollusks	Papal Miter	Mitra papalis
Mollusks	Red-Painted Miter	Mitra rubitincta
Mollusks	Pontifical Miter	Mitra stictica
Mollusks	Miter Shells	Mitridae
Mollusks	Mollusca	MOLLUSCA
Mollusks	Burnt Murex	Murex burneus
Mollusks	Murex Shells	Muricidae
Mollusks	Mussels	Mytilidae
Mollusks	Tragonula Murex	Naquetia trigonulus
Mollusks	Triquetra Murex	Naquetia triquetra
Mollusks	Francolina Jopas	Nassa francolina
Mollusks	Nassa Mud Snails	Nassariidae
Mollusks	Granulated Nassa	Nassarius graniferus
Mollusks	Margarite Nassa	Nassarius margaritiferus
Mollusks	Pimpled Basket	Nassarius papillosus
Mollusks	Moon Shells	Naticidae
Mollusks	Nautilus	Nautilidae
Mollusks	Chambered Nautilus	Nautilus ponpilius
Mollusks	Clathrus Miter	Neocancilla clathrus
Mollusks	Flecked Miter	Neocancilla granitina
Mollusks	Butterfly Miter	Neocancilla papilio
Mollusks	Ox-Palate Nerite	Nerita albicilla
Mollusks	Plicate Nerite	Nerita plicata
Mollusks	Polished Nerite	Nerita polita
Mollusks	Reticulate Nerite	Nerita signata
Mollusks	Nerites	Neritidae
Mollusks	Diotocardia	O Archaeogastropoda
Mollusks	Octopus	Octopodidae
Mollusks	Common Octopus	Octopus cyanea
Mollusks	Red Octopus	Octopus luteus
Mollusks	Ornate Octopus	Octopus ornatus
Mollusks	Octopus	Octopus sp
Mollusks	Pelagic Octopus	Octopus sp 1
Mollusks	Long-Armed Octopus	Octopus sp 2

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Elongate Octopus	Octopus teuthoides
Mollusks	Amethyst Olive	Oliva annulata
Mollusks	Carnelian Olive	Oliva carneola
Mollusks	Red-Mth Olive	Oliva miniacea
Mollusks	Peg Olive	Oliva paxillus
Mollusks	Olive Shells	Olividae
Mollusks	Squids	Order Teuthoidea
Mollusks	True Oysters	Ostreidae
Mollusks	Cat'S Ear Otopleura	Otopleura auriscati
Mollusks	Common Egg Cowry	Ovula ovum
Mollusks	Egg Shells	Ovulidae
Mollusks	Scallops	Pectinidae
Mollusks	Crispate Venus	Periglypta crispata
Mollusks	Youthful Venus	Periglypta puerpera
Mollusks	Reticulate Venus	Periglypta reticulata
Mollusks	Pearl Oyster	Pinctada margaritfera
Mollusks	Bicolor Pen Shell	Pinna bicolor
Mollusks	Pen Shells	Pinnidae
Mollusks	Breast-Shaped Moon	Polinices mamatus
Mollusks	Pear-Shaped Moon	Polinices tumidus
Mollusks	Strawberry Goblet	Pollia fragaria
Mollusks	Beautiful Goblet	Pollia pulchra
Mollusks	Fruit Ovula	Prionovula fruticum
Mollusks	Pearl Oysters	Pteriidae
Mollusks	Crenulate Miter	Pterygia crenulata
Mollusks	Fenestrate Miter	Pterygia fenestrata
Mollusks	Nut Miter	Pterygia nucea
Mollusks	Rough Miter	Pterygia scabricula
Mollusks	Club Murex	Pterynotus elongatus
Mollusks	Fluted Murex	Pterynotus laqueatus
Mollusks	3-Winged Murex	Pterynotus tripterus
Mollusks	Solid Pupa	Pupa solidula
Mollusks	Perssian Purpura	Purpura persica
Mollusks	Sulcate Pyram	Pyramidella sulcata
Mollusks	Pyram Shells	Pyramidellidae
Mollusks	Quoy'S Coral Shell	Quoyula madreporarum
Mollusks	Rapa Snail	Rapa rapa
Mollusks	Rough Vertigus	Rhinoclavis aspera
Mollusks	Obelisk Vertigus	Rhinoclavis sinensis
Mollusks	Chaste Miter	Sabricola casta
Mollusks	Tiger Scallop	Semipallium tigris
Mollusks	Broadclub Cuttlefish	Sepia latimanus
Mollusks	Cuttlefish	Sepia sp.

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Bigfin Reef Squid	Sepioteuthis lessoniana
Mollusks	Box Mussel	Septifer bilocularis
Mollusks	Lacy Murex	Siratus laciniatus
Mollusks	Thorny Oysters	Spondylidae
Mollusks	Ducal Thorny Oyster	Spondyulus squamosus
Mollusks	Baggy Pen Shell	Streptopinna saccata
Mollusks	True Conchs	Strombidae
Mollusks	Samar Conch	Strombus dentatus
Mollusks	Fragile Conch	Strombus fragilis
Mollusks	Gibbose Conch	Strombus gibberulus
Mollusks	Lavender-Mouth Conch	Strombus haemastoma
Mollusks	Silver-Lip Conch	Strombus lentigninosus
Mollusks	Red-Lip Conch	Strombus luhuanus
Mollusks	Micro Conch	Strombus microurceus
Mollusks	Mutable Conch	Strombus mutabilis
Mollusks	Pretty Conch	Strombus plicatus
Mollusks	Laciniate Conch	Strombus sinuatus
Mollusks	Bull Conch	Strombus taurus
Mollusks	Pyramid Top	Tectus pyramis
Mollusks	Box-Like Tellin	Tellina capsoides
Mollusks	Cat'S Tongue Tellin	Tellina linguafelis
Mollusks	Remie'S Tellin	Tellina remies
Mollusks	Rasp Tellin	Tellina scobinata
Mollusks	Tellin Clams	Tellinidae
Mollusks	Terebellum Conch	Terebellum terebellum
Mollusks	Similar Auger	Terebra affinis
Mollusks	Fly-Spotted Auger	Terebra areolata
Mollusks	Eyed Auger	Terebra argus
Mollusks	Babylonian Auger	Terebra babylonia
Mollusks	Certhlike Auger	Terebra cerithiana
Mollusks	Short Auger	Terebra chlorata
Mollusks	Crenulated Auger	Terebra crenulata
Mollusks	Dimidiate Auger	Terebra dimidiata
Mollusks	Tiger Auger	Terebra felina
Mollusks	Funnel Auger	Terebra funiculata
Mollusks	Spotted Auger	Terebra gutatta
Mollusks	Marlinspike Auger	Terebra maculata
Mollusks	Cloud Auger	Terebra nubulosa
Mollusks	Subulate Auger	Terebra subulata
Mollusks	Undulate Auger	Terebra undulata
Mollusks	Auger Shells	Terebridae
Mollusks	Belligerent Rock Shell	Thais armigera
Mollusks	Tuberose Rock Shell	Thais tuberosa

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Partridge Tun	Tonna perdix
Mollusks	Tun Shells	Tonnidae
Mollusks	Angulate Cockle	Trachycardium angulatum
Mollusks	Giant Clam	Tridacna crocea
Mollusks	Lagoon Giant Clam	Tridacna derasa
Mollusks	Giant Clam	Tridacna gigas
Mollusks	Common Giant Clam	Tridacna maxima
Mollusks	Fluted Giant Clam	Tridacna squamosa
Mollusks	Giant Clams	Tridacnidae
Mollusks	Top Shells	Trochidae
Mollusks	Top Shell	Trochus niloticus
Mollusks	Radiate Top	Trochus radiatus
Mollusks	Vases	Turbinellidae
Mollusks	Turban Shell	Turbinidae
Mollusks	Silver-Mouth Turbin	Turbo argyrostoma
Mollusks	Tapestry Turbin	Turbo petholatus
Mollusks	Rough Turbin	Turbo setosus
Mollusks	Ceramic Vase	Vasum ceramicum
Mollusks	Common Pacific Vase	Vasum turbinellus
Mollusks	Venus Shells	Veneridae
Mollusks	Bernhard'S Miter	Vexillum bernhardiana
Mollusks	Cancellaria Miter	Vexillum cancellarioides
Mollusks	Saffron Miter	Vexillum crocatum
Mollusks	Roughened Miter	Vexillum exasperatum
Mollusks	Patriarchal Miter	Vexillum patriarchalis
Mollusks	Half-Banded Miter	Vexillum semifasciatum
Mollusks	Specious Miter	Vexillum speciosum
Mollusks	Bumpy Miter	Vexillum tuberosum
Mollusks	Turbin Miter	Vexillum turbin
Mollusks	Decorated Miter	Vexillum unifasciatum
Mollusks	Spotted Vitularia	Vitularia miliaris
Rabbitfish	Manahak (Forktail Rabbitfish)	Siganus aregenteus
Rabbitfish	Manahak	Siganus sp
Rabbitfish	Rabbitfish	Siganidae Siganidae
Rabbitfish	Fork-Tail Rabbitfish	Siganus argenteus
Rabbitfish	Seagrass Rabbitfish	Siganus canaliculatus
Rabbitfish	Coral Rabbitfish	Siganus canaliculaius Siganus corallinus
Rabbitfish	Pencil-Streaked Rabbitfish	Siganus doliatus
Rabbitfish	Fuscescens Rabbitfish	Siganus fuscescens
Rabbitfish	Golden Rabbitfish	Siganus juscescens Siganus guttatus
Rabbitfish	Lined Rabbitfish	Siganus lineatus
Rabbitfish	White-Spotted Rabbitfish	-
Rabbitfish	Masked Rabbitfish	Siganus oramin Siganus puellus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Rabbitfish	Peppered Rabbitfish	Siganus punctatissimus
Rabbitfish	Gold-Spotted Rabbitfish	Siganus punctatus
Rabbitfish	Randal'S Rabbitfish	Siganus randalli
Rabbitfish	Scribbled Rabbitfish	Siganus spinus
Rabbitfish	Vermiculated Rabbitfish	Siganus vermiculatus
Rabbitfish	Rabbitfish	Siganus vulpinus
Snappers	Snappers	Lutjanidae
Snappers	River Snapper	Lutjanus argentimaculatus
Snappers	Two-Spot Snapper	Lutjanus biguttatus
Snappers	Red Snapper	Lutjanus bohar
Snappers	Snapper	Lutjanus boutton
Snappers	Checkered Snapper	Lutjanus decussatus
Snappers	Blackspot Snapper	Lutjanus ehrenbergi
Snappers	Snapper	Lutjanus fulviflamma
Snappers	Flametail Snapper	Lutjanus fulvus
Snappers	Humpback Snapper	Lutjanus gibbus
Snappers	Malabar Snapper	Lutjanus malabaricus
Snappers	Onespot Snapper	Lutjanus monostigma
Snappers	Scribbled Snapper	Lutjanus rivulatus
Snappers	Snapper	Lutjanus sebae
Snappers	1/2-Barred Snapper	Lutjanus semicinctus
Snappers	One-Lined Snapper	Lutjanus vitta
Snappers	Bl And Wh Snapper	Macolor macularis
Snappers	Black Snapper	Macolor niger
Snappers	Fusilier	Paracaesio sordidus
Snappers	Yellowtail Fusilier	Paracaesio xanthurus
Snappers	Deepwater Snapper	Randallichthys filamentosus
Snappers	Shallow Snappers	SHALLOW SNAPPERS
Snappers	Sailfin Snapper	Symphorichthys spilurus
Groupers	Red-Flushed Grouper	Aethaloperca rogaa
Groupers	Grouper	Anyperodon leucogrammicus
Groupers	Orange Grouper	Cephalopholis analis
Groupers	Peacock Grouper	Cephalopholis argus
Groupers	Brownbarred Grouper	Cephalopholis boenack
Groupers	Ybanded Grouper	Cephalopholis igarashiensis
Groupers	Leopard Grouper	Cephalopholis leopardus
Groupers	Coral Grouper	Cephalopholis miniata
Groupers	Harlequin Grouper	Cephalopholis polleni
Groupers	6-Banded Grouper	Cephalopholis sexmaculata
Groupers	Tomato Grouper	Cephalopholis sonnerati
Groupers	Grouper	Cephalopholis sp
Groupers	Pygmy Grouper	Cephalopholis spiloparaea
~	Flag-Tailed Grouper	Cephalopholis urodeta
Groupers	riag-Tailed Gloupei	Cepnatopnous uroaeta

Mariana CREMUS (Guam)	Common Name	Scientific Name
Groupers	Grouper	Cromileptes altivelis
Groupers	Orange Grouper	Epinephelus caeruleopunctatus
Groupers	Brown-Spotted Grouper	Epinephelus chlorostigma
Groupers	Grouper	Epinephelus corallicola
Groupers	Grouper	Epinephelus cyanopodus
Groupers	Blotchy Grouper	Epinephelus fuscoguttatus
Groupers	Hexagon Grouper	Epinephelus hexagonatus
Groupers	Grouper	Epinephelus howlandi
Groupers	Giant Grouper	Epinephelus lanceolatus
Groupers	Grouper	Epinephelus macrospilos
Groupers	Highfin Grouper	Epinephelus maculatus
Groupers	Malabar Grouper	Epinephelus malabaricus
Groupers	Bl-Spot Honeycomb Grouper	Epinephelus melanostigma
Groupers	Honeycomb Grouper	Epinephelus merra
Groupers	Grouper	Epinephelus miliaris
Groupers	Grouper	Epinephelus morrhua
Groupers	Wavy-Lined Grouper	Epinephelus ongus
Groupers	Marbled Grouper	Epinephelus polyphekadion
Groupers	Grouper	Epinephelus retouti
Groupers	7-Banded Grouper	Epinephelus septemfasciatus
Groupers	Tidepool Grouper	Epinephelus socialis
Groupers	4-Saddle Grouper	Epinephelus spilotoceps
Groupers	Greasy Grouper	Epinephelus tauvina
Groupers	Truncated Grouper	Epinephelus truncatus
Groupers	Wh-Margined Grouper	Gracila albomarginata
Groupers	Squaretail Grouper	Plectropomus areolatus
Groupers	Saddleback Grouper	Plectropomus laevis
Groupers	Leopard Coral Trout	Plectropomus leopardus
Groupers	Blue-Lined Coral Trout	Plectropomus oligacanthus
Groupers	Powell'S Grouper	Saloptia powelli
Groupers	Sea Basses, Groupers	Serranidae
Groupers	Whmargin Lyretail Grouper	Variola albimarginata
Mullet	Fringelip Mullet	Crenimugil crenilabis
Mullet	Yellowtail Mullet	Ellochelon vaigiensis
Mullet	Engel'S Mullet	Moolgarda engeli
Mullet	Bluespot Mullet	Moolgarda seheli
Mullet	Gray Mullet	Mugil cephalus
Mullet	Mullets	Mugilidae
Mullet	Acute-Jawed Mullet	Neomyxus leuciscus
Rudderfish	Rudderfish	Kyphosidae
Rudderfish	Insular Rudderfish	Kyphosus bigibbus
Rudderfish	Highfin Rudderfish	Kyphosus cinerascens
Rudderfish	Lowfin Rudderfish	Kyphosus vaigiensis

Mariana CREMUS (Guam)	Common Name	Scientific Name
Crustaceans	Spider Crab	Achaeus japonicus
Crustaceans	Snapping Shrimp	Alphaeidae
Crustaceans	Snapping Shrimp	Alpheus bellulus
Crustaceans	Snapping Shrimp	Alpheus paracrinitus
Crustaceans	Anchylomerids	Anchylomeridae
Crustaceans	Slipper Lobster	Arctides regalis
Crustaceans	Acorn Barnacle	Balanus sp
Crustaceans	Mantis Shrimp	Bathysquillidae
Crustaceans	Box Crab	Calappa bicornis
Crustaceans	Box Crab	Calappa calappa
Crustaceans	Box Crab	Calappa hepatica
Crustaceans	Box Crabs	Calappidae
Crustaceans	Decorator Crab	Camposcia retusa
Crustaceans	Cancrids	Cancridae
Crustaceans	7-11 Crab	Carpilius convexus
Crustaceans	7-11 Crab	Carpilius maculatus
Crustaceans	Red-Legged Sw Crab	Charybdis erythrodactyla
Crustaceans	Red Sw Crab	Charybdis hawaiiensis
Crustaceans	Box Crab	Cycloes granulosa
Crustaceans	Elbow Crab	Daldorfia horrida
Crustaceans	Marine Hermit Crab	Dardanus gemmatus
Crustaceans	Marine Hermit Crab	Dardanus megistos
Crustaceans	Marine Hermit Crab	Dardanus pendunculatus
Crustaceans	Marine Hermit Crab	Dardanus sp.
Crustaceans	Commensal Shrimp	Dasycaris zanzibarica
Crustaceans	Decapod Crustaceans	Decapoda
Crustaceans	Marine Hermit Crabs	Diogenidae
Crustaceans	Dorippid Crab	Dorippe frascone
Crustaceans	Sponge Crab	Dromia dormia
Crustaceans	Sponge Crabs	Dromiidae
Crustaceans	Mole Crab	Emerita pacifica
Crustaceans	Soft Lobster	Enoplometopus debelius
Crustaceans	Hairy Lobster	Enoplometopus occidentalis
Crustaceans	Redeye Crab	Eriphia sebana
Crustaceans	Red-Reef Crab	Etisus dentatus
Crustaceans	Red-Reef Crab	Etisus splendidus
Crustaceans	Brown-Reef Crab	Etisus utilis
Crustaceans	Mantis Shrimp	Eurysquillidae
Crustaceans	Squat Lobsters	Galatheidae
Crustaceans	Gecarcinids	Gecarcinidae
Crustaceans	Bbee And Harlequin Shrimp	Gnathophyllidae
Crustaceans	Bumblebee Shrimp	Gnathophylloides mineri
Crustaceans	Bumblebee Shrimp	Gnathophyllum americanum

Mariana CREMUS (Guam)	Common Name	Scientific Name
Crustaceans	Mantis Shrimp	Gonodactylaceus mutatus
Crustaceans	Mantis Shrimp	Gonodactylellus affinis
Crustaceans	Mantis Shrimp	Gonodactylidae
Crustaceans	Mantis Shrimp	Gonodactylus chiragra
Crustaceans	Mantis Shrimp	Gonodactylus platysoma
Crustaceans	Mantis Shrimp	Gonodactylus smithii
Crustaceans	Shore Crabs	Grapsidae
Crustaceans	Shore Crab	Grapsus albolineatus
Crustaceans	Shore Crab	Grapsus grapsus tenuicrustat
Crustaceans	Hapalocarcinids	Hapalocarcinidae
Crustaceans	Mantis Shrimp	Harposquillidae
Crustaceans	Mantis Shrimp	Hemisquillidae
Crustaceans	Deepwater Shrimps	Heteropenaeus sp
Crustaceans	Hump-Backed Shrimp	Hippolytidae
Crustaceans	Homolids	Homolidae
Crustaceans	Soft Lobster	Hoplometopus holthuisi
Crustaceans	Harlequin Shrimp	Hymenocera picta
Crustaceans	Hyperid Amphipods	Hyperiidae
Crustaceans	Slipper Lobster	Ibacus sp
Crustaceans	True Crabs	Io Brachyura
Crustaceans	Long-Handed Lobster	Justitia longimanus
Crustaceans	Hump-Backed Shrimp	Koror misticius
Crustaceans	Elbow Crab	Lambrus longispinis
Crustaceans	Palaemonid Shrimp	Leander plumosus
Crustaceans	Lithodids	Lithodidae
Crustaceans	Swimming Crab	Lupocyclus grimquedentatus
Crustaceans	Lycaeids	Lycaeidae
Crustaceans	3-Toothed Frog Crab	Lyreidus tridentatus
Crustaceans	Mantis Shrimp	Lysiosquillidae
Crustaceans	Barnacles	Lythoglyptidae
Crustaceans	Telescope-Eye Crab	Macrophthalmus telescopicus
Crustaceans	Spider Crabs	Majidae
Crustaceans	Penaeid Prawn	Metapenaeopsis sp 1
Crustaceans	Penaeid Prawn	Metapenaeopsis sp 2
Crustaceans	Penaeid Prawn	Metapenaeopsis sp 3
Crustaceans	Box Crab	Mursia spinimanus
Crustaceans	Mantis Shrimp	Nannosquillidae
Crustaceans	Soft Lobsters	Nephropidae
Crustaceans	Large Ghost Crab	Ocypode ceratopthalma
Crustaceans	Ghost Crab	Ocypode cordimana
Crustaceans	Ghost Crab	Ocypode saratum
Crustaceans	Ocypodids	Ocypodidae
Crustaceans	Mantis Shrimp	Odontodactylidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Crustaceans	Mantis Shrimp	Odontodactylus brevirostris
Crustaceans	Mantis Shrimp	Odontodactylus scyallarus
Crustaceans	Mantis Shrimp	Oratosquilla oratoria
Crustaceans	Mantis Shrimp	Oratosquillidae
Crustaceans	Soldier Hermit Crab	Paguridae
Crustaceans	Coral Hermit Crab	Paguritta gracilipes
Crustaceans	Coral Hermit Crab	Paguritta harmsi
Crustaceans	Palaemonid Shrimp	Palaemonidae
Crustaceans	Mole Lobster	Palinurellus wieneckii
Crustaceans	Painted Crayfish	Panulirus albiflagellum
Crustaceans	Painted Crayfish	Panulirus versicolor
Crustaceans	Elbow Crabs	Parthenopidae
Crustaceans	Panaeid Prawns	Penaeidae
Crustaceans	Penaeid Prawn	Penaeus latisulcatus
Crustaceans	Penaeid Prawn	Penaeus monodon
Crustaceans	Flat Rock Crab	Percnon planissimum
Crustaceans	Commensal Shrimp	Periclimenes amboinensis
Crustaceans	Commensal Shrimp	Periclimenes brevicarpalis
Crustaceans	Commensal Shrimp	Periclimenes cf ceratophthalmus
Crustaceans	Commensal Shrimp	Periclimenes holthuisi
Crustaceans	Commensal Shrimp	Periclimenes imperator
Crustaceans	Commensal Shrimp	Periclimenes inornatus
Crustaceans	Commensal Shrimp	Periclimenes kororensis
Crustaceans	Commensal Shrimp	Periclimenes ornatus
Crustaceans	Commensal Shrimp	Periclimenes psamathe
Crustaceans	Commensal Shrimp	Periclimenes soror
Crustaceans	Commensal Shrimp	Periclimenes tenuipes
Crustaceans	Commensal Shrimp	Periclimenes venustus
Crustaceans	Porcelain Crab	Petrolisthes lamarkii
Crustaceans	Phronimids	Phronimidae
Crustaceans	Shore Crab	Plagusia depressa tuberculata
Crustaceans	Platyscelids	Platyscelidae
Crustaceans	Commensal Shrimp	Pliopotonia furtiva
Crustaceans	Long-Eyed Swimming Crab	Podophthalmus vigil
Crustaceans	Commensal Shrimp	Pontonides uncigar
Crustaceans	Commensal Shrimp	Pontoniidae
Crustaceans	Porcellanid Crabs	Porcellanidae
Crustaceans	Swimming Crabs	Portunidae
Crustaceans	Blue Swimming Crab	Portunus pelagicus
Crustaceans	Swimming Crab	Portunus sanguinolentus
Crustaceans	Mantis Shrimp	Protosquillidae
Crustaceans	Mantis Shrimp	Pseudosquilla ciliata
Crustaceans	Mantis Shrimp	Pseudosquillidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Crustaceans	Hingebeak Prawn	Rhinchocinetes hiatti
Crustaceans	Hinge-Beaked Prawns	Rhynchocinetidae
Crustaceans	Mangrove Crab	Scylla serrata
Crustaceans	Solenocerids	Solenoceridae
Crustaceans	Mantis Shrimp	Squillidae
Crustaceans	Commensal Shrimp	Stegopontonia commensalis
Crustaceans	Cleaner Shrimp	Stenopodidae
Crustaceans	Banded Coral Shrimp	Stenopus hispidus
Crustaceans	Mantis Shrimps	Stomatopoda
Crustaceans	Snapping Shrimp	Synalpheus carinatus
Crustaceans	Acorn Barnacle	Tetraclitella divisa
Crustaceans	Swimming Crab	Thalamita crenata
Crustaceans	Ambonian Shrimp	Thor amboinensis
Crustaceans	Xanthid Crab	Unid Megalops
Crustaceans	Portunid Crab	Unid sp 1
Crustaceans	Xanthid Crab	Unid sp 1
Crustaceans	Portunid Crab	Unid sp 2
Crustaceans	Xanthid Crab	Unid sp 2
Crustaceans	Palaemonid Shrimp	Urocaridella antonbruunii
Crustaceans	Dark-Finger Coral Crabs	Xanthidae
Crustaceans	Urchin Crab	Zebrida adamsii
Crustaceans	Shallow Reef Crab	Zosymus aeneus
Squirrelfish	Squirrel, Soldierfishes	Holocentridae
Squirrelfish	Squirrelfishes	Holocentrinae
Squirrelfish	Soldierfishes	Myripristinae
Squirrelfish	Bronze Soldierfish	Myripristis adusta
Squirrelfish	Brick Soilderfish	Myripristis amaena
Squirrelfish	Doubletooth Soldierfish	Myripristis amaena
Squirrelfish	Bigscale Soldierfish	Myripristis berndti
Squirrelfish	Yellowfin Soldierfish	Myripristis chryseres
Squirrelfish	Pearly Soldierfish	Myripristis kuntee
Squirrelfish	Red Soldierfish	Myripristis murdjan
Squirrelfish	Scarlet Soldierfish	Myripristis pralinia
Squirrelfish	Violet Soldierfish	Myripristis violacea
Squirrelfish	White-Tipped Soldierfish	Myripristis vittata
Squirrelfish	White-Spot Soldierfish	Myripristis woodsi
Squirrelfish	Clearfin Squirrelfish	Neoniphon argenteus
Squirrelfish	Yellowstriped Squirrelfish	Neoniphon aurolineatus
Squirrelfish	Blackfin Squirrlefish	Neoniphon opercularis
Squirrelfish	Bloodspot Squirrelfish	Neoniphon sammara
Squirrelfish	Deepwater Soldierfish	Ostichthys brachygnathus
Squirrelfish	Deepwater Soldierfish	Ostichthys kaianus
Squirrelfish	Cardinal Squirrelfish	Plectrypops lima

Mariana CREMUS (Guam)	Common Name	Scientific Name
Squirrelfish	Tailspot Squirrelfish	Sargocentron caudimaculatum
Squirrelfish	3-Spot Squirrelfish	Sargocentron cornutum
Squirrelfish	Crown Squirrelfish	Sargocentron diadema
Squirrelfish	Spotfin Squirrelfish	Sargocentron dorsomaculatum
Squirrelfish	Furcate Squirrelfish	Sargocentron furcatum
Squirrelfish	Samurai Squirrelfish	Sargocentron ittodai
Squirrelfish	Squirrelfish	Sargocentron lepros
Squirrelfish	Blackspot Squirrelfish	Sargocentron melanospilos
Squirrelfish	Finelined Squirrelfish	Sargocentron microstoma
Squirrelfish	Dark-Striped Squirrelfish	Sargocentron praslin
Squirrelfish	Speckled Squirrelfish	Sargocentron punctatissimum
Squirrelfish	Long-Jawed Squirrelfish	Sargocentron spiniferum
Squirrelfish	Blue-Lined Squirrelfish	Sargocentron tiere
Squirrelfish	Pink Squirrelfish	Sargocentron tieroides
Squirrelfish	Violet Squirrelfish	Sargocentron violaceum
Wrasse	Chiseltooth Wrasse	Anampses caeruleopunctatus
Wrasse	Geographic Wrasse	Anampses geographicus
Wrasse	Wrasse	Anampses melanurus
Wrasse	Yellowtail Wrasse	Anampses meleagrides
Wrasse	Yellowbreasted Wrasse	Anampses twisti
Wrasse	Lyretail Hogfish	Bodianus anthioides
Wrasse	Axilspot Hogfish	Bodianus axillaris
Wrasse	2-Spot Slender Hogfish	Bodianus bimaculatus
Wrasse	Diana'S Hogfish	Bodianus diana
Wrasse	Blackfin Hogfish	Bodianus loxozonus
Wrasse	Mesothorax Hogfish	Bodianus mesothorax
Wrasse	Hogfish	Bodianus tanyokidus
Wrasse	Floral Wrasse	Cheilinus chlorourus
Wrasse	Red-Breasted Wrasse	Cheilinus fasciatus
Wrasse	Snooty Wrasse	Cheilinus oxycephalus
Wrasse	Tripletail Wrasse	Cheilinus trilobatus
Wrasse	Cigar Wrasse	Cheilio inermis
Wrasse	Yel-Cheeked Tuskfish	Choerodon anchorago
Wrasse	Harlequin Tuskfish	Choerodon fasciatus
Wrasse	Wrasse	Cirrhilabrus balteatus
Wrasse	Wrasse	Cirrhilabrus cyanopleura
Wrasse	Exquisite Wrasse	Cirrhilabrus exquisitus
Wrasse	Johnson'S Wrasse	Cirrhilabrus johnsoni
Wrasse	Wrasse	Cirrhilabrus katherinae
Wrasse	Yellowband Wrasse	Cirrhilabrus luteovittatus
Wrasse	Rhomboid Wrasse	Cirrhilabrus rhomboidalis
Wrasse	Red-Margined Wrasse	Cirrhilabrus rubrimarginatus
Wrasse	Clown Coris	Coris aygula

Mariana CREMUS (Guam)	Common Name	Scientific Name
Wrasse	Dapple Coris	Coris batuensis
Wrasse	Pale-Barred Coris	Coris dorsomacula
Wrasse	Yellowtailed Coris	Coris gaimardi
Wrasse	Knife Razorfish	Cymolutes praetextatus
Wrasse	Finescale Razorfish	Cymolutes torquatus
Wrasse	Wandering Cleaner Wrasse	Diproctacanthus xanthurus
Wrasse	Sling-Jawed Wrasse	Epibulus insidiator
Wrasse	Sling-Jawed Wrasse	Epibulus n sp
Wrasse	Bird Wrasse	Gomphosus varius
Wrasse	2-Spotted Wrasse	Halichoeres biocellatus
Wrasse	Drab Wrasse	Halichoeres chloropterus
Wrasse	Canary Wrasse	Halichoeres chrysus
Wrasse	Wrasse	Halichoeres dussumieri
Wrasse	Checkerboard Wrasse	Halichoeres hortulanus
Wrasse	Weedy Surge Wrasse	Halichoeres margaritaceus
Wrasse	Dusky Wrasse	Halichoeres marginatus
Wrasse	Pinstriped Wrasse	Halichoeres melanurus
Wrasse	Black-Ear Wrasse	Halichoeres melasmapomus
Wrasse	Ornate Wrasse	Halichoeres ornatissimus
Wrasse	Seagrass Wrasse	Halichoeres papilionaceus
Wrasse	Wrasse	Halichoeres prosopeion
Wrasse	Wrasse	Halichoeres purpurascens
Wrasse	Richmond'S Wrasse	Halichoeres richmondi
Wrasse	Zigzag Wrasse	Halichoeres scapularis
Wrasse	Shwartz Wrasse	Halichoeres shwartzi
Wrasse	Wrasse	Halichoeres sp
Wrasse	3-Spot Wrasse	Halichoeres trimaculatus
Wrasse	Wrasse	Halichoeres zeylonicus
Wrasse	Striped Clown Wrasse	Hemigymnus fasciatus
Wrasse	1/2 &1/2 Wrasse	Hemigymnus melapterus
Wrasse	Wrasse	1
Wrasse	Ring Wrasse	Hologymnosus annulatus Hologymnosus doliatus
Wrasse	Tubelip Wrasse	Labrichthys unilineatus
	Bicolor Cleaner Wrasse	Labroides bicolor
Wrasse Wrasse		Labroides dimidiatus
	Bluestreak Cleaner Wrasse Black-Spot Cleaner Wrasse	
Wrasse	*	Labroides pectoralis
Wrasse	Allen'S Wrasse	Labropsis alleni
Wrasse	Micronesian Wrasse	Labropsis micronesica
Wrasse	Wedge-Tailed Wrasse	Labropsis xanthonota
Wrasse	Leopard Wrasse	Macropharyngodon meleagris
Wrasse	Negros Wrasse	Macropharyngodon negrosensis
Wrasse	Seagrass Razorfish	Novaculichthys macrolepidotus
Wrasse	Dragon Wrasse	Novaculichthys taeniourus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Wrasse	Arenatus Wrasse	Oxycheilinus arenatus
Wrasse	2-Spot Wrasse	Oxycheilinus bimaculatus
Wrasse	Celebes Wrasse	Oxycheilinus celebecus
Wrasse	Bandcheek Wrasse	Oxycheilinus digrammus
Wrasse	Oriental Wrasse	Oxycheilinus orientalis
Wrasse	Ringtail Wrasse	Oxycheilinus unifasciatus
Wrasse	Wrasse	Paracheilinus bellae
Wrasse	Wrasse	Paracheilinus sp
Wrasse	Wrasse	Polylepion russelli
Wrasse	Wrasse	Pseudocheilinops ataenia
Wrasse	Striated Wrasse	Pseudocheilinus evanidus
Wrasse	6 Line Wrasse	Pseudocheilinus hexataenia
Wrasse	8 Line Wrasse	Pseudocheilinus octotaenia
Wrasse	Line Wrasse	Pseudocheilinus sp
Wrasse	4 Line Wrasse	Pseudocheilinus tetrataenia
Wrasse	Rust-Banded Wrasse	Pseudocoris aurantiofasciata
Wrasse	Torpedo Wrasse	Pseudocoris heteroptera
Wrasse	Yamashiro'S Wrasse	Pseudocoris yamashiroi
Wrasse	Chiseltooth Wrasse	Pseudodax moluccanus
Wrasse	Polynesian Wrasse	Pseudojuloides atavai
Wrasse	Smalltail Wrasse	Pseudojuloides cerasinus
Wrasse	Wrasse	Pterogogus cryptus
Wrasse	Wrasse	Pterogogus guttatus
Wrasse	Red-Shoulder Wrasse	Stethojulis bandanensis
Wrasse	Wrasse	Stethojulis strigiventor
Wrasse	Wrasse	Stethojulis trilineata
Wrasse	2 Tone Wrasse	Thalassoma amblycephalum
Wrasse	6 Bar Wrasse	Thalassoma hardwickii
Wrasse	Jansen'S Wrasse	Thalassoma janseni
Wrasse	Crescent Wrasse	Thalassoma lunare
Wrasse	Sunset Wrasse	Thalassoma lutescens
Wrasse	Surge Wrasse	Thalassoma purpureum
Wrasse	5-Stripe Surge Wrasse	Thalassoma quinquevittatum
Wrasse	Xmas Wrasse	Thalassoma trilobatum
Wrasse	Wh-Barred Pygmy Wrasse	Wetmorella albofasciata
Wrasse	Bl-Spot Pygmy Wrasse	Wetmorella nigropinnata
Wrasse	Wrasse	Xiphocheilus sp
Wrasse	Yblotch Razorfish	Xyrichtys aneitensis
Wrasse	Celebe'S Razorfish	Xyrichtys celebecus
Wrasse	Razorfish	Xyrichtys geisha
Wrasse	Yellowpatch Razorfish	Xyrichtys melanopus
Wrasse	Blue Razorfish	Xyrichtys pavo
Other	Starry Triggerfish	Abalistes stellatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Barred Needlefish	Ablennes hians
Other	Blackspot Sergeant	Abudefduf lorenzi
Other	Yellowtail Sergeant	Abudefduf notatus
Other	Banded Sergeant	Abudefduf septemfasciatus
Other	Scis-Tail Sgt Major	Abudefduf sexfasciatus
Other	Black Spot Sergeant	Abudefduf sordidus
Other	Sergeant-Major	Abudefduf vaigiensis
Other	Spiney Basslets	Acanthoclinidae
Other	Hiatt'S Basslet	Acathoplesiops hiatti
Other	Goby	Acentrogobius bonti
Other	Seagrass Filefish	Acreichthys tomentosus
Other	Shrimpfish	Aeoliscus strigatus
Other	Spotted Eagle Ray	Aetobatis narinari
Other	Eagle Ray	Aetomyleaus maculatus
Other	Indo-Pacific Bonefish	Albula glossodonta
Other	Bonefish	Albula neoguinaica
Other	Bonefish	Albulidae
Other	Lancetfishes	Alepisauidae
Other	Lancetfish	Alepisaurus ferox
Other	Dorothea'S Wriggler	Allomicrodesmis dorotheae
Other	Blenny	Alticus arnoldorum
Other	Unicorn Filefish	Aluterus monoceros
Other	Filefish	Aluterus scriptus
Other	Filefish	Amanses scopas
Other	Glass Perch	Ambassidae
Other	Glassie	Ambassis buruensis
Other	Glassie	Ambassis interrupta
Other	2-Spot Hawkfish	Amblycirrhitus bimacula
Other	Goby	Amblyeleotris faciata
Other	Goby	Amblyeleotris fontaseni
Other	Goby	Amblyeleotris guttata
Other	Goby	Amblyeleotris randalli
Other	Brown-Barred Goby	Amblyeleotris steinitzi
Other	Bluespotted Goby	Amblyeleotris wheeleri
Other	Blue Pilchard	Amblygaster clupeoides
Other	Spotted Pilchard	Amblygaster sirm
Other	Damselfish	Amblygliphidodon aureus
Other	Staghorn Damsel	Amblygliphidodon curacao
Other	White-Belly Damsel	Amblygliphidodon leucogaster
Other	Ternate Damsel	Amblygliphidodon ternatensis
Other	Goby	Amblygobius decussatus
Other	Goby	Amblygobius hectori
Other	Gooy	Amblygobius linki

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Goby	Amblygobius nocturnus
Other	Goby	Amblygobius phalaena
Other	Goby	Amblygobius rainfordi
Other	Goby	Amblygobius sp
Other	Evileye Puffer	Amblyrhinchotus honckenii
Other	Prawn Goby	Amlbyeleotris periophthalma
Other	Org-Fin Anemonefish	Amphiprion chrysopterus
Other	Clark'S Anemonefish	Amphiprion clarkii
Other	Tomato Anemonefish	Amphiprion frenatus
Other	Dusky Anemonefish	Amphiprion melanopus
Other	False Clown Anemonefish	Amphiprion ocellaris
Other	Pink Anemonfish	Amphiprion peridaeraion
Other	3-Banded Anemonefish	Amphiprion tricinctus
Other	Dragonet	Anaora tentaculata
Other	Allardice'S Moray	Anarchias allardicei
Other	Canton Island Moray	Anarchias cantonensis
Other	Seychelles Moray	Anarchias seychellensis
Other	Freshwater Eel	Anguilla bicolor
Other	Freshwater Eel	Anguilla marmorata
Other	Freshwater Eel	Anguillidae
Other	Flashlightfish	Anomalopidae
Other	Flashlightfish	Anomalops katoptron
Other	Anglerfish	Antenariidae
Other	Pigmy Frogfish	Antennarius analis
Other	Frogfish	Antennarius biocellatus
Other	Freckled Frogfish	Antennarius coccineus
Other	Giant Frogfish	Antennarius commersonii
Other	Bandtail Frogfish	Antennarius dorehensis
Other	Sargassumfish	Antennarius maculatus
Other	Spotfin Frogfish	Antennarius nummifer
Other	Painted Frogfish	Antennarius pictus
Other	Randall'S Frogfish	Antennarius randalli
Other	Spiney-Tufted Frogfish	Antennarius rosaceus
Other	Bandfin Frogfish	Antennatus tuberosus
Other	Boarfish	Antigonia malayana
Other	Velvetfishes	Aploactinidae
Other	Cardinalfish	Apogon amboinensis
Other	Broad-Striped Cardinalfish	Apogon angustatus
Other	Bigeye Cardinalfish	Apogon bandanensis
Other	Cryptic Cardinalfish	Apogon coccineus
Other	Ohcre-Striped Cardinalfish	Apogon compressus
Other	Redspot Cardinalfish	Apogon dispar
Other	Longspine Cardinalfish	Apogon doryssa

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Elliot'S Cardinalfish	Apogon ellioiti
Other	Cardinalfish	Apogon eremeia
Other	Evermann'S Cardinalfish	Apogon evermanni
Other	Eyeshadow Cardinalfish	Apogon exostigma
Other	Bridled Cardinalfish	Apogon fraenatus
Other	Cardinalfish	Apogon fragilis
Other	Gilbert'S Cardinalfish	Apogon gilberti
Other	Guam Cardinalfish	Apogon guamensis
Other		Apogon hartzfeldii
Other	Iridescent Cardinalfish	Apogon kallopterus
Other	Inshore Cardinalfish	Apogon lateralis
Other	Bluestreak Cardinalfish	Apogon leptacanthus
Other	Black Cardinalfish	Apogon melas
Other	Cardinalfish	Apogon nigripinnis
Other	Black-Striped Cardinalfish	Apogon nigrofasciatus
Other	Cardinalfish	Apogon notatus
Other	7-Lined Cardinalfish	Apogon novemfasciatus
Other	Pearly Cardinalfish	Apogon perlitus
Other	Cardinalfish	Apogon rhodopterus
Other	Sangi Cardinalfish	Apogon sangiensis
Other	Gray Cardinalfish	Apogon savayensis
Other	Seale'S Cardinalfish	Apogon sealei
Other	Cardinalfish	Apogon sp
Other	Bandfin Cardinalfish	Apogon taeniophorus
Other	Bandfin Cardinalfish	Apogon taeniopterus
Other	3-Spot Cardinalfish	Apogon trimaculatus
Other	Ocellated Cardinalfish	Apogonichthys ocellatus
Other	Perdix Cardinalfish	Apogonichthys perdix
Other	Cardinalfishes	Apogonidae
Other	Angelfish	Apolemichthys griffisi
Other	Flagfin Anglefish	Apolemichthys trimaculatus
Other	Angelfish	Apolemichthys xanthopunctatus
Other	2-Lined Soapfish	Aporops bilinearis
Other	Snake Eel	Apterichtus klazingai
Other	Twinspot Cardinalfish	Archamia biguttata
Other	Orange-Lined Cardinalfish	Archamia fucata
Other	Blackbelted Cardinalfish	Archamia zosterophora
Other	Scheele'S Conger	Ariosoma scheelei
Other	Flounder	Arnoglossus intermedius
Other	Brown Puffer	Arothron hispidus
Other	Puffer	Arothron manilensis
	=	
Other	Puffer	Arothron mappa

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Black-Spotted Puffer	Arothron nigropunctatus
Other	Star Puffer	Arothron stellatus
Other	Black Spotted Sole	Aseraggodes melanostictus
Other	Smith'S Sole	Aseraggodes smithi
Other	Whitaker'S Sole	Aseraggodes whitakeri
Other	Lance Blenny	Aspidontus dussumieri
Other	Cleaner Mimic	Aspidontus taeniatus
Other		Asteropteryx semipunctatus
Other	Intermediate Flounder	Asterorhombus intermedius
Other	Goby	Asterropteryx ensiferus
Other	Silverside	Atherinidae
Other	Tropical Silverside	Atherinomorus duodecimalis
Other	Striped Silverside	Atherinomorus endrachtensis
Other	Silverside	Atherinomorus lacunosus
Other	Hardyhead Silverside	Atherinomorus lacunosus
Other	Bearded Silverside	Atherion elymus
Other	Blenny	Atrosalarius fuscus holomelas
Other	Trumpetfish	Aulostomidae
Other	Trumpetfish	Aulostomus chinensis
Other	Goby	Austrolethops wardi
Other	Goby	Awaous grammepomus
Other	Goby	Awaous guamensis
Other	Undulate Triggerfish	Balistapus undulatus
Other	Triggerfishes	Balistidae
Other	Clown Triggerfish	Balistoides conspicillum
Other	Titan Triggerfish	Balistoides viridescens
Other	Goby	Bathygobius cocosensis
Other	Goby	Bathygobius cotticeps
Other	Goby	Bathygobius fuscus
Other	Needlefish	Belonidae
Other	Soapfish	Belonoperca chaubanaudi
Other	Lantern-Eye Fish	Berycidae
Other	Flashlightfish	Beryx decadactylus
Other	Pipefish	Bhanotia nuda
Other	Conger Eel	Blachea xenobranchialis
Other	Blenny	Blenniella cyanostigma
Other	Blenny	Blenniella gibbifrons
Other		Blenniella paula
Other	Blenny	Blenniella periophthalmus
Other	Blennies	Blenniidae
Other	Flounders	Bothidae
Other	Peacock Flounder	Bothus mancus
Other	Leopard Flounder	Bothus pantherinus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Taylor'S Inflator Filefish	Brachaluteres taylori
Other	Snake Eel	Brachysomophis sauropsis
Other	Codlet	Bregmaceros nectabanus
Other	Codlets	Bregmacerotidae
Other	Free-Tailed Brotula	Brosmophyciops pautzkei
Other	Reef Cusk Eel	Brotula multibarbata
Other	Townsend'S Cusk Eel	Brotula townsendi
Other	Goby	Bryaninops amplus
Other	Goby	Bryaninops erythrops
Other	Goby	Bryaninops natans
Other	Goby	Bryaninops ridens
Other	Goby	Bryaninops youngei
Other	Pipefish	Bulbonaricus brauni
Other	Gudgeon	Butis amboinensis
Other	Livebearing Brotulas	Bythitidae
Other	Goby	Cabillus tongarevae
Other	Snake Eel	Caecula polyophthalma
Other	Scissor-Tailed Fusilier	Caesio caerulaurea
Other	Fusilier	Caesio cuning
Other	Lunar Fusilier	Caesio lunaris
Other	Yellowback Caesio	Caesio teres
Other	Fusilier	Caesionidae
Other	Goldies	Callanthiidae
Other	Snake Eel	Callechelys marmorata
Other	Snake Eel	Callechelys melanotaenia
Other	Dragonets	Callionymidae
Other	Delicate Dragonet	Callionymus delicatulus
Other	Mangrove Dragonet	Callionymus enneactis
Other	Simple-Spined Dragonet	Callionymus simplicicornis
Other	Goby	Callogobious sp
Other	Goby	Callogobius bauchotae
Other	Goby	Callogobius centrolepis
Other	Goby	Callogobius hasselti
Other	Goby	Callogobius maculipinnis
Other	Goby	Callogobius okinawae
Other	Goby	Callogobius plumatus
Other	Goby	Callogobius sclateri
Other	Longfin	Calloplesiops altivelis
Other	Sleeper	Calumia godeffroyi
Other	Gray Leatherjacket	Cantherhines dumerilii
Other	Specktacled Filefish	Cantherhines fronticinctus
Other	Honeycomb Filefish	Cantherhines pardalis
Other	Rough Triggerfish	Canthidermis maculatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Puffer	Canthigaster amboinensis
Other	Puffer	Canthigaster bennetti
Other	Puffer	Canthigaster compressa
Other	Sharp Back Puffer	Canthigaster coronata
Other	Puffer	Canthigaster epilampra
Other	Puffer	Canthigaster janthinoptera
Other	Puffer	Canthigaster leoparda
Other	Circle-Barred Toby	Canthigaster ocellicincta
Other	Papuan Toby	Canthigaster papua
Other	Sharpnose Puffer	Canthigaster solandri
Other	Saddle Shpns Puffer	Canthigaster valentini
Other	Boarfishes	Caproidae
Other	Coral Crouchers	Caracanthidae
Other	Velvetfish	Caracanthus maculatus
Other	Velvetfish	Caracanthus unipinna
Other	Pearlfish	Carapodidae
Other	Pearlfish	Carapus mourlani
Other	Blackfin Shark	Carcharhinus limbatus
Other	Great White Shark	Carcharodon carcharius
Other	Shrimpfishes	Centriscidae
Other	Golden Angelfish	Centropyge aurantia
Other	Bicolor Angelfish	Centropyge bicolor
Other	Dusky Angelfish	Centropyge bispinosus
Other	Colin'S Angelfish	Centropyge colini
Other	White-Tail Angelfish	Centropyge flavicauda
Other	Lemonpeel Anglefish	Centropyge flavissimus
Other	Herald'S Anglefish	Centropyge heraldi
Other	Flame Anglefish	Centropyge loriculus
Other	Multicolor Angelfish	Centropyge multicolor
Other	Multibarred Angelfish	Centropyge multifasciatus
Other	Black-Spot Anglefish	Centropyge nigriocellus
Other	Midnight Angelfish	Centropyge nox
Other	Shepard'S Anglefish	Centropyge shepardi
Other	Keyhole Angelfish	Centropyge tibicen
Other	Pearlscale Anglefish	Centropyge vrolicki
Other	Grouper	Cephalopholis cyanostigma
Other	Triplefin	Ceratobregma helenae
Other	Threadfin Butterflyfish	Chaetodon auriga
Other	E Triangular Butterflyfish	Chaetodon barronessa
Other	Bennetts Butterflyfish	Chaetodon bennetti
Other	Burgess' Butterflyfish	Chaetodon burgessi
Other	Speckled Butterflyfish	Chaetodon citrinellus
Other	Saddleback Butterflyfish	Chaetodon ephippium

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Ylw-Crn Butterflyfish	Chaetodon flavocoronatus
Other	Kleins Butterflyfish	Chaetodon kleinii
Other	Lined Butterflyfish	Chaetodon lineolatus
Other	Racoon Butterflyfish	Chaetodon lunula
Other	Redfinned Butterflyfish	Chaetodon lunulatus
Other	Black-Back Butterflyfish	Chaetodon melannotus
Other	Mertens Butterflyfish	Chaetodon mertensii
Other	Meyer'S Butterflyfish	Chaetodon meyeri
Other	Butterflyfish	Chaetodon modestus
Other	Spot-Tail Butterflyfish	Chaetodon ocellicaudus
Other	8-Banded Butterflyfish	Chaetodon octofasciatus
Other	Ornate Butterflyfish	Chaetodon ornatissimus
Other	Spot-Nape Butterflyfish	Chaetodon oxycephalus
Other	Spotbnded Butterflyfish	Chaetodon punctatofasciatus
Other	4-Spotted Butterflyfish	Chaetodon quadrimaculatus
Other	Latticed Butterflyfish	Chaetodon rafflesii
Other	Retculted Butterflyfish	Chaetodon reticulatus
Other	Dotted Butterflyfish	Chaetodon semeion
Other	Oval-Spot Butterflyfish	Chaetodon speculum
Other	Tinker'S Butterflyfish	Chaetodon tinkeri
Other	Chevron Butterflyfish	Chaetodon trifascialis
Other	Pac Dblsddl Butterflyfish	Chaetodon ulietensis
Other	Teardrop Butterflyfish	Chaetodon unimaculatus
Other	Vagabond Butterflyfish	Chaetodon vagabundus
Other	Butterflyfish	Chaetodontidae
Other	Vermiculated Angelfish	Chaetodontoplus mesoleucus
Other	Saddled Sandburrower	Chalixodytes tauensis
Other	Gaper	Champsodon vorax
Other	Gapers	Champsodontidae
Other	Milkfish	Chanidae
Other	Long-Jawed Moray	Channomuraena vittata
Other	Milkfish	Chanos chanos
Other	Lined Cardinalfish	Cheilodipterus artus
Other	Intermediate Cardinalfish	Cheilodipterus intermedius
Other	Cardinalfish	Cheilodipterus isostigma
Other	Lg-Toothed Cardinalfish	Cheilodipterus macrodon
Other	5-Lined Cardinalfish	Cheilodipterus quinquelineata
Other	Truncate Cardinalfish	Cheilodipterus singapurensis
Other	Flying Fish	Cheilopogon spilonopterus
Other	Flying Fish	Cheilopogon spilopterus
Other	Flying Fish	Cheilopogon unicolor
Other	Minstrel Fish	Cheiloprion labiatus
Other	Ceram Mullet	Chelon macrolepis

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	False Moray Eel	Chlopsidae
Other	Pipefish	Choeroichthys brachysoma
Other	Pipefish	Choeroichthys sculptus
Other	Duckbill	Chrionema squamiceps
Other	Midget Chromis	Chromis acares
Other	Bronze Reef Chromis	Chromis agilis
Other	Yel-Speckled Chromis	Chromis alpha
Other	Ambon Chromis	Chromis amboinensis
Other	Yellow Chromis	Chromis analis
Other	Black-Axil Chromis	Chromis atripectoralis
Other	Dark-Fin Chromis	Chromis atripes
Other	Blue-Axil Chromis	Chromis caudalis
Other	Deep Reef Chromis	Chromis delta
Other	Twin-Spot Chromis	Chromis elerae
Other	Scaly Chromis	Chromis lepidolepis
Other	Lined Chromis	Chromis lineata
Other	Bicolor Chromis	Chromis margaritifer
Other	Black-Bar Chromis	Chromis retrofasciata
Other	Ternate Chromis	Chromis ternatensis
Other	Vanderbilt'S Chromis	Chromis vanderbilti
Other	Blue-Green Chromis	Chromis viridis
Other	Weber'S Chromis	Chromis weberi
Other	Yel-Axil Chromis	Chromis xanthochir
Other	Black Chromis	Chromis xanthura
Other	2-Spot Demoiselle	Chrysiptera biocellata
Other	Surge Demoiselle	Chrysiptera brownriggii
Other	Blue-Line Demoiselle	Chrysiptera caeruleolineata
Other	Blue Devil	Chrysiptera cyanea
Other	Gray Demoiselle	Chrysiptera glauca
Other	Blue-Spot Demoiselle	Chrysiptera oxycephala
Other	King Demoiselle	Chrysiptera rex
Other	Talbot'S Demoiselle	Chrysiptera talboti
Other	Tracey'S Demoiselle	Chrysiptera traceyi
Other	1-Spot Demoiselle	Chrysiptera unimaculata
Other	Peacock Bass	Cichla ocellaris
Other	Cichlids	Cichlidae
Other	Threadfin Hawkfish	Cirrhitichthys aprinus
Other	Falco'S Hawkfish	Cirrhitichthys falco
Other	Pixy Hawkfish	Cirrhitichthys oxycephalus
Other	Hawkfish	Cirrhitidae Cirrhitidae
Other	Stocky Hawkfish	Cirrhitus pinnulatus
Other	Fringelip Snake Eel	
Other	Chestnut Blenny	Cirricaecula johnsoni Cirripectes castaneus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Spotted Blenny	Cirripectes fuscoguttatus
Other	Blenny	Cirripectes perustus
Other	Barred Blenny	Cirripectes polyzona
Other	Squiggly Blenny	Cirripectes quagga
Other	Red-Streaked Blenny	Cirripectes stigmaticus
Other	Red-Speckled Blenny	Cirripectes variolosus
Other	Air-Breath Catfish	Clarias batrachus
Other	Air-Breath Catfish	Clarias macrocephalus
Other	Air-Breath Catfish	Clariidae
Other	Herring,Sprat,Sardines	Clupeidae
Other	Velvetfish	Cocotropis larvatus
Other	White Eel	Conger cinereus cinereus
Other	Conger Eel	Conger oligoporus
Other	Conger Eel	Conger sp
Other	White,Conger,Garden Eel	Congridae
Other	Deepwater Glasseye	Cookeolus boops
Other	Bulleye	Cookeolus japonicus
Other	Orangebanded Coralfish	Coradion chrysozonus
Other	Goby	Coryphopterus signipinnis
Other	Network Pipefish	Corythoichthys flavofasciatus
Other	Pipefish	Corythoichthys haematopterus
Other	Reef Pipefish	Corythoichthys intestinalis
Other	Bl-Breasted Pipefish	Corythoichthys nigripectus
Other	Ocellated Pipefish	Corythoichthys ocellatus
Other	Many-Spotted Pipefish	Corythoichthys polynotatus
Other	Guilded Pipefish	Corythoichthys schultzi
Other	Roughridge Pipefish	Cosmocampus banneri
Other	D'Arros Pipefish	Cosmocampus darrosanus
Other	Maxweber'S Pipefish	Cosmocampus maxweberi
Other	Sand Burrowers	Creedidae
Other	Mullet	Crenimugil heterochilos
Other	Goby	Cristagobius sp
Other	Goby	Cryptocentroides insignis
Other	Goby	Cryptocentrus
Other	Goby	Cryptocentrus cinctus
Other	Goby	Cryptocentrus koumansi
Other	Goby	Cryptocentrus leptocephalus
Other	Goby	Cryptocentrus sp A
Other	Goby	Cryptocentrus strigilliceps
Other	Goby	Ctenogobiops aurocingulus
Other	Goby	Ctenogobiops feroculus
Other	Goby	Ctenogobiops pomastictus
Other	Long-Finned Prwn Goby	Ctenogobiops tangarorai

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Flathead	Cymbacephalus beauforti
Other	Swallowtail Hawkfish	Cyprinocirrhites polyactis
Other	Flying Fish	Cypselurus angusticeps
Other	Flying Fish	Cypselurus poecilopterus
Other	Flying Fish	Cypselurus speculiger
Other	Flying Gurnard	Dactyloptena orientalis
Other	Flying Gurnard	Dactyloptena petersoni
Other	Flying Gurnard	Dactylopteridae
Other	Humbug Dascyllus	Dascyllus aruanus
Other	Black-Tail Dascyllus	Dascyllus melanurus
Other	Reticulated Dascyllus	Dascyllus reticulatus
Other	3-Spot Dascyllus	Dascyllus trimaculatus
Other	Stingray	Dasyatididae
Other	Blue-Spotted Sting Ray	Dasyatis kuhlii
Other	Scorpionfish	Dendrochirus biocellatus
Other	Scorpionfish	Dendrochirus brachypterus
Other	Zebra Lionfish	Dendrochirus zebra
Other	Slatey Sweetlips	Diagramma pictum
Other	Lanternfish	Diaphus schmidti
Other	Bythitid	Dinematichthys iluocoetenoides
Other	Porcupinefish	Diodon eydouxi
Other	Porcupinefish	Diodon hystrix
Other	Porcupinefish	Diodon liturosus
Other	Porcupinefish	Diodontidae
Other	Dragonet	Diplogrammus goramensis
Other	Bristlemouth	Diplophos sp
Other	White-Spot Damsel	Dischistodus chrysopoecilus
Other	Black-Vent Damsel	Dischistodus melanotus
Other	White Damsel	Dischistodus perspicillatus
Other	Banded Pipefish	Doryramphus dactyliophorus
Other	Bluestripe Pipefish	Doryramphus excisus
Other	Janss' Pipefish	Doryramphus janssi
Other	Negros Pipefish	Doryramphus negrosensis
Other	Sprat	Dussumieria elopsoides
Other	Sprats	Dussumieria sp B
Other	Diskfishes	Echeneidae
Other	Remora	Echeneis naucrates
Other	Whiteface Moray	Echidna leucotaenia
Other	Snowflake Moray	Echidna nebulosa
Other	Girdled Moray Eel	Echidna polyzona
Other	Unicolor Moray	Echidna unicolor
Other	Bramble Shark	Echinorhinidae
Other	Bramble Shark	Echinorhinus brucus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Bramble Shark	Echinorhinus cookei
Other	Banda Clown Blenny	Ecsenius bandanus
Other	Blenny	Ecsenius bicolor
Other	Blenny	Ecsenius opsifrontalis
Other	Blenny	Ecsenius sellifer
Other	Blenny	Ecsenius yaeyamaensis
Other	Snake Eel	Elapsopsis versicolor
Other	Sleepers	Eleotrididae
Other	Gudgeon	Eleotris fusca
Other	Bonnetmouth	Emmelichthys karnellai
Other	Bonnet Mouths	Emmelichtyidae
Other	Pearlfish	Encheliophis boraboraensis
Other	Pearlfish	Encheliophis gracilis
Other	Pearlfish	Encheliophis homei
Other	Pearlfish	Encheliophis vermicularis
Other	Bayer'S Moray	Enchelycore bayeri
Other	Bikini Atoll Moray	Enchelycore bikiniensis
Other	Dark-Spotted Moray	Enchelycore kamara
Other	White-Margined Moray	Enchelycore schismatorhynchus
Other	Viper Moray	Enchelynassa canina
Other	Blenny	Enchelyurus kraussi
Other	Gold Anchovy	Enchrasicholina devisi
Other	Blue Anchovy	Enchrasicholina heterolobus
Other	Oceanic Anchovy	Enchrasicholina punctifer
Other	Anchovies	Engraulidae
Other	Flounder	Engyprosopon sp
Other	Triplefin	Enneapterygius hemimelas
Other	Triplefin	Enneapterygius minutus
Other	Triplefin	Enneapterygius nanus
Other	Blenny	Entomacrodus caudofasciatus
Other	Blenny	Entomacrodus cymatobiotus
Other	Blenny	Entomacrodus decussatus
Other	Blenny	Entomacrodus niuafooensis
Other	Blenny	Entomacrodus sealei
Other	Blenny	Entomacrodus stellifer
Other	Blenny	Entomacrodus striatus
Other	Blenny	Entomacrodus thalassinus
Other	Batfish	Ephippidae
Other	Orange-Spotted Grouper	Epinephelus coioides
Other	Hagfish	Eptaptretus carlhubbsi
Other	Bonnetmouth	Erythrocles scintillans
Other	Spiny Dogfish	Etmopterus pusillus
Other	Ribbon Halfbeak	Euleptorhamphus viridis

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Dragon Fish	Eurypegasus draconis
Other	Mantis Shrimp	Eutremus teres
Other	Kawakawa	Eviota afelei
Other	Herring	Eviota albolineata
Other	Goby	Eviota bifasciata
Other	Goby	Eviota cometa
Other	Goby	Eviota distigma
Other	Goby	Eviota fasciola
Other	Goby	Eviota herrei
Other	Goby	Eviota infulata
Other	Goby	Eviota lachdebrerei
Other	Goby	Eviota latifasciata
Other	Goby	Eviota melasma
Other	Goby	Eviota nebulosa
Other	Goby	Eviota pellucida
Other	Goby	Eviota prasina
Other	Goby	Eviota prasites
Other	Goby	Eviota punctulata
Other	Goby	Eviota queenslandica
Other	Goby	Eviota saipanensis
Other	Goby	Eviota sebreei
Other	Goby	Eviota sigillata
Other	Goby	Eviota smaragdus
Other	Goby	Eviota sp
Other	Goby	Eviota sparsa
Other	Goby	Eviota storthynx
Other	Goby	Eviota zonura
Other	Snake Eel	Evipes percinctus
Other	Blenny	Exalias brevis
Other	Flying Fish	Exocoetidae
Other	Flying Fish	Exocoetus volitans
Other	Goby	Exyrias belissimus
Other	Goby	Exyrias puntang
Other	Cornetfish	Fistularia commersoni
Other	Cornetfish	Fistulariidae
Other	Bay Cardinalfish	Foa brachygramma
Other	Cardinalfish	Foa sp
Other	Longnosed Butterflyfish	Forcipiger flavissimus
Other	Big Longnose Butterflyfish	Forcipiger longirostris
Other	Cardinalfish	Fowleria abocellata
Other	Marbled Cardinalfish	Fowleria marmorata
Other	Spotcheek Cardinalfish	Fowleria punctulata
Other	Variegated Cardinalfish	Fowleria variegatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Goby	Fusigobius longispinus
Other	Goby	Fusigobius neophytus
Other	Tiger Shark	Galeocerdo cuvier
Other	Lg-Toothed Ponyfish	Gazza achlamys
Other	Toothed Ponyfish	Gazza minuta
Other	Ornate Angelfish	Genicanthus bellus
Other	Black-Spot Angelfish	Genicanthus melanospilos
Other	Watanabe'S Angelfish	Genicanthus watanabei
Other	Mojarras	Gerreidae
Other	Deep-Bodied Mojarra	Gerres abbreviatus
Other	Common Mojarra	Gerres acinaces
Other	Filamentous Mojarra	Gerres filamentosus
Other	Oblong Mojarra	Gerres oblongus
Other	Oyena Mojarra	Gerres oyena
Other	Mojarra	Gerres punctatus
Other	Telescopefish	Giganturidae
Other	Goby	Gladigobius ensifera
Other	Goby	Glossogobius biocellatus
Other	Goby	Glossogobius celebius
Other	Goby	Glossogobius guirus
Other	Blenny	Glyptoparus delicatulus
Other	Goby	Gnatholepis anjerensis
Other	·	Gnatholepis caurensis
Other	Goby	Gnatholepis scapulostigma
Other	Goby	Gnatholepis sp A
Other	Clingfish	Gobiesocidae
Other	Goby	Gobiidae
Other	Goby	Gobiodon albofasciatus
Other	Goby	Gobiodon citrinus
Other	Goby	Gobiodon okinawae
Other	Goby	Gobiodon quinquestrigatus
Other	Goby	Gobiodon rivulatus
Other	Goby	Gobiopsis bravoi
Other	Bristlemouth	Gonostoma atlanticum
Other	Bristlemouth	Gonostoma ebelingi
Other	Bristlemouths	Gonostomatidae
Other	Orange-Barred Garden Eel	Gorgasia preclara
Other	Conger Eel	Gorgasia sp
Other	Goldies	Grammatonotus sp 1
Other	Goldies	Grammatonotus sp 2
Other	2-Lined Mackerel	Grammatorcynos bilineatus
Other	Yellowstripe Soapfish	Grammistes sexlineatus
Other	Soapfish	Grammistidae

Common Name	Scientific Name
Ocellate Soapfish	Grammistops ocellatus
Wormfish	Gunnellichthys monostigma
Onestripe Wormfish	Gunnellichthys pleurotaenia
Wormfish	Gunnellichthys viridescens
Philippine Cardinalfish	Gymnapogon philippinus
Cardinalfish	Gymnapogon urospilotus
Fusilier	Gymnocaesio gymnopterus
Zebra Moray	Gymnomuraena zebra
Moray Eel	Gymnothorax berndti
Buro Moray	Gymnothorax buroensis
	Gymnothorax elegans
<u> </u>	Gymnothorax enigmaticus
- -	Gymnothorax fimbriatus
	Gymnothorax flavimarginatus
	Gymnothorax fuscomaculatus
	Gymnothorax gracilicaudus
	Gymnothorax hepaticus
	Gymnothorax javanicus
-	Gymnothorax margaritophorus
	Gymnothorax marshallensis
-	Gymnothorax melatremus
	Gymnothorax meleagris
	Gymnothorax monochrous
*	Gymnothorax monostigmus
	Gymnothorax neglectus
•	Gymnothorax nudivomer
•	Gymnothorax pindae
-	Gymnothorax polyuranodon
	Gymnothorax richardsoni
	Gymnothorax rueppelliae
	Gymnothorax sp cf Melatremus
<u> </u>	Gymnothorax undulatus
-	Gymnothorax zonipectus
<u> </u>	Haemulidae
	Halicampus brocki
	Halicampus dunckeri
	Halicampus mataafae
	Halicampus nitidus
	Halimochirurgus alcocki
	Helcogramma capidata
*	Helcogramma chica
*	Helcogramma hudsoni
Triplefin	Halaaanama hudaasi
	Ocellate Soapfish Wormfish Onestripe Wormfish Wormfish Philippine Cardinalfish Cardinalfish Fusilier Zebra Moray Moray Eel

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Halfbeak	Hemiramphus archipelagicus
Other	Halfbeak	Hemiramphus far
Other	Halfbeak	Hemiramphus lutkei
Other	Halfbeak	Hemirhamphidae
Other	Pyrimid Butterflyfish	Hemitaurichthys polylepis
Other	Butterflyfish	Hemitaurichthys thompsoni
Other	Longfinned Bannerfish	Heniochus acuminatus
Other	Pennant Bannerfish	Heniochus chrysostomus
Other	Bannerfish	Heniochus diphreutes
Other	Masked Bannerfish	Heniochus monoceros
Other	Singular Butterflyfish	Heniochus singularis
Other	Humphead Bannerfish	Heniochus varius
Other	Gold Spot Herring	Herklotsichthys quadrimaculatus
Other	Conger Eel	Heteroconger hassi
Other	Goby	Heteroeleotris sp
Other	Glasseye	Heteropriacanthus cruentatus
Other	Whipray	Himantura fai
Other	Wh Tail Whipray	Himantura granulata
Other	Leopard Ray	Himantura uarnak
Other	Pipefish	Hippichthys cyanospilos
Other	Pipefish	Hippichthys spicifer
Other	Pipefish	Hippocampus histrix
Other	Pipefish	Hippocampus kuda
Other	Sargassum Fish	Histrio histrio
Other	Fairy Basslet	Holanthias borbonius
Other	Fairy Basslet	Holanthias katayamai
Other	Tilefish	Hoplolatilus cuniculus
Other	Tilefish	Hoplolatilus fronticinctus
Other	Tilefish	Hoplolatilus starcki
Other	Silverside	Hypoatherina barnesi
Other	Silverside	Hypoatherina cylindrica
Other	Silverside	Hypoatherina ovalaua
Other	Halfbeak	Hyporhamphus acutus acutus
Other	Halfbeak	Hyporhamphus affinis
Other	Halfbeak	Hyporhamphus dussumieri
Other	Snake Eel	Ichthyapus vulturus
Other	Spiny Devilfish	Inimicus didactylus
Other	Keeled Silverside	Iso hawaiiensis
Other	6-Band Hawkfish	Isocirrhitus sexfasciatus
Other	Keeled Silversides	Isonidae
Other	Beautiful Rockskipper	Istiblennius bellus
Other	**	Istiblennius chrysospilos
	Blenny Strooky Pookskinner	
Other	Streaky Rockskipper	Istiblennius dussumieri

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Blenny	Istiblennius edentulus
Other	Interrupted Rockskipper	Istiblennius interruptus
Other	Blenny	Istiblennius lineatus
Other	Goby	Istigobius decoratus
Other	Goby	Istigobius ornatus
Other	Goby	Istigobius rigilius
Other	Goby	Istigobius spence
Other	Billfishes	Istiophoridae
Other	Mackerel Shark	Isurus oxyrhinchus
Other	Bl-Nostril False Moray	Kaupichthys atronasus
Other	Shortfin False Moray	Kaupichthys brachychirus
Other	Common False Moray	Kaupichthys hyoproroides
Other	Goby	Kellogella quindecimfasciata
Other	Goby	Kelloggella cardinalis
Other	Sand Dart	Kraemeria bryani
Other	Sand Dart	Kraemeria cunicularia
Other	Sand Dart	Kraemeria samoensis
Other	Sand Darts	Kraemeriidae
Other	Dark-Margined Flagtail	Kuhlia marginata
Other	Barred Flagtail	Kuhlia mugil
Other	River Flagtail	Kuhlia rupestris
Other	Flagtails	Kuhliidae
Other	Longhorn Cowfish	Lactoria cornuta
Other	Spiny Cowfish	Lactoria diaphana
Other	Thornback Cowfish	Lactoria fornasini
Other	Oceanic Blaasop	Lagocephalus lagocephalus
Other	Silverstripe Blaasop	Lagocephalus sceleratus
Other	Oriental Snake Eel	Lamnostoma orientalis
Other	Ponyfishes	Leiognathidae
Other	Slipmouth	Leiognathus bindus
Other	Slipmouth	Leiognathus elongatus
Other	Common Slipmouth	Leiognathus equulus
Other	Slipmouth	Leiognathus smithursti
Other	Oblong Slipmouth	Leiognathus stercorarius
Other	Saddled Snake Eel	Leiuranus semicinctus
Other	Clingfish	Lepadichthys caritus
Other	Clingfish	Lepadichthys minor
Other	Fusilier Damsel	Lepidozygus tapienosoma
Other	Barracudina	Lestidium nudun
Other	Sand Burrower	Limnichthys donaldsoni
Other	Clingfish	Liobranchia stria
Other	Swissguard Basslet	Liopropoma lunulatum
Other	Swissguard Basslet	Liopropoma maculatum

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Swissguard Basslet	Liopropoma mitratum
Other	Swissguard Basslet	Liopropoma multilineatum
Other	Pallid Basslet	Liopropoma pallidum
Other	Pinstripe Basslet	Liopropoma susumi
Other	Redstripe Basslet	Liopropoma tonstrinum
Other	Blenny	Litobranchus fowleri
Other	Giantscale Mullet	Liza melinoptera
Other	Triplefin	Lobotes surinamensis
Other	Tripletails	Lobotidae
Other	Goby	Lotilia graciliosa
Other	Magenta Slender Basslet	Luzonichthys waitei
Other	Whitley'S Slender Basslet	Luzonichthys whitleyi
Other	Goby	Macrodontogobius wilburi
Other	Goby	Mahidolia mystacina
Other	Tilefishes	Malacanthidae
Other	Quakerfish	Malacanthus brevirostris
Other	Striped Blanquillo	Malacanthus latovittatus
Other	Manta Ray	Manta birostris
Other	Sharptail Sunfish	Masturus lanceolatus
Other	Tarpons	Megalopidae
Other	Indo-Pacific Tarpon	Megalops cyprinoides
Other	Poison-Fang Blenny	Meiacanthus anema
Other	Poison-Fang Blenny	Meiacanthus atrodorsalis
Other	1-Stripe Poison-Fang Blenny	Meiacanthus ditrema
Other	Striped Poison-Fang Blenny	Meiacanthus grammistes
Other	Black Triggerfish	Melichthys niger
Other	Pinktail Triggerfish	Melichthys vidua
Other	Brotula	Microbrotula sp
Other	Wormfish	Microdesmidae
Other	Anderson'S Shrt-Nosed Pipefish	Micrognathus andersonii
Other	Pygmy Short-Nosed Pipefish	Micrognathus brevirostris
Other	Pipefish	Microphis brachyurus
Other	Pipefish	Microphis brevidorsalis
Other	Pipefish	Microphis leiaspis
Other	Pipefish	Microphis manadensis
Other	Pipefish	Microphis retzii
Other	Ventricose Milda	Minyichthys myersi
Other	Myer'S Pipefish	Mobulidae
Other	Ocean Sunfishes	Molidae
Other	Filefishes	Monacanthidae
Other	Monos	Monodactylidae
Other	Mono	Monodactylus argenteus
Other	Codlings	Moridae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Rusty Spaghetti Eel	Moringua ferruginea
Other	Java Spaghetti Eel	Moringua javanica
Other	Spaghetti Eel	Moringua microchir
Other	Worm Eel	Moringuidae
Other	Goby	Mugilogobius tagala
Other	Goby	Mugilogobius villa
Other	Pike Eels	Muraenesocidae
Other	Pike Conger	Muraenesox cinereus
Other	Snake Eel	Muraenichthys gymnotus
Other	Snake Eel	Muraenichthys laticaudata
Other	Snake Eel	Muraenichthys macropterus
Other	Snake Eel	Muraenichthys schultzi
Other	Snake Eel	Muraenichthys sibogae
Other	Morays	Muraenidae
Other	Lanternfishes	Myctophidae
Other	Laternfish	Myctophum brachygnathos
Other	Eagle Ray	Myliobatidae
Other	Snake Eel	Myrichthys bleekeri
Other	Banded Snake Eel	Myrichthys colubrinus
Other	Spotted Snake Eel	Myrichthys maculosus
Other	Snake Eel	Myrophis uropterus
Other	Hagfish	Myxinidae
Other	Combtooth Blenny	Nannosalarius nativitatus
Other	Nurse Shark	Nebrius ferrugineus
Other	Lemon Shark	Negaprion acutidens
Other	Decorated Dartfish	Nemateleotris decora
Other	Helfrichs' Dartfish	Nemateleotris helfrichi
Other	Fire Dartfish	Nemateleotris magnifica
Other	Threadfin Breams	Nemipteridae
Other	Breams	Nemipteridae
Other	Forktail Bream	Nemipterus furcosus
Other	Butterfly Bream	Nemipterus hexadon
Other	Notched Butterfly Bream	Nemipterus peronii
Other	Butterfly Bream	Nemipterus tolu
Other	Flame Hawkfish	Neocirrhitus armatus
Other	Royal Damsel	Neoglyphidodon melas
Other	Yellowfin Damsel	Neoglyphidodon nigroris
Other	Coral Demoiselle	Neopomacentrus nemurus
Other	Freshwater Demoiselle	Neopomacentrus taeniurus
Other	Violet Demoiselle	Neopomacentrus violascens
Other	Man-Of-War Fish	Nomeidae
Other	Triplefin	Norfolkia brachylepis
Other	Redtooth Triggerfish	Odonus niger

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Foldlip Mullet	Oedalechilus labiosus
Other	Mangrove Blenny	Omobranchus obliquus
Other	Blenny	Omobranchus rotundiceps
Other	Blenny	Omox biporos
Other	Bivalve Pearlfish	Onuxodon fowleri
Other	Snake Eel	Ophichthidae
Other	Dark-Shouldered Snake Eel	Ophichthus cephalozona
Other	Cusk Eel	Ophidiidae
Other	Sleeper	Ophieleotris aporos
Other	Sleeper	Ophiocara porocephala
Other	Jawfishes	Opisthognathidae
Other	Variable Jawfish	Opisthognathus sp A
Other	Wass' Jawfish	Opisthognathus sp B
Other	Knifejaws	Oplegnathidae
Other	Spotted Knifejaw	Oplegnathus punctatus
Other	Goby	Oplopomops diacanthus
Other	Goby	Oplopomus oplopomus
Other	Goby	Opua nephodes
Other	Nurse,Zebra,Carpet Sharks	Orectolobidae
Other	Tilapia	Oreochromis mossambicus
Other	Boxfish, Cowfish	Ostraciidae
Other	Cube Trunkfish	Ostracion cubicus
Other	Spotted Trunkfish	Ostracion meleagris meleagris
Other	Reticulate Boxfish	Ostracion solorensis
Other	Longnose Hawkfish	Oxycirrhitus typus
Other	Sleeper	Oxyleotris lineolatus
Other	Longnose Filefish	Oxymonacanthus longirostris
Other	Smallwing Flying Fish	Oxyporhamphus micropterus
Other	Goby	Oxyurichthys guibei
Other	Goby	Oxyurichthys microlepis
Other	Goby	Oxyurichthys ophthalmonema
Other	Goby	Oxyurichthys papuensis
Other	Goby	Oxyurichthys tentacularis
Other	Goby	Padanka sp
Other	Goby	Palutris pruinosa
Other	Goby	Palutris reticularis
Other	Arc-Eyed Hawkfish	Paracirrhitus arcatus
Other	Freckeled Hawkfish	Paracirrhitus forsteri
Other	Whitespot Hawkfish	Paracirrhitus hemistictus
Other	Goby	Paragobiodon echinocephalus
Other		
Other	Goby	Paragobiodon lacunicolus
	Goby	Paragobiodon melanosoma
Other	Goby	Paragobiodon modestus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Goby	Paragobiodon xanthosoma
Other	Seychelle'S Wormfish	Paragunnellichthy seychellensis
Other	Barracudinas	Paralepididae
Other	Blacksaddle Mimic	Paraluteres prionurus
Other	Filefish	Paramonacanthus cryptodon
Other	Filefish	Paramonacanthus japonicus
Other	Latticed Sandperch	Parapercis clathrata
Other	Cylindrical Sandperch	Parapercis cylindrica
Other	Blk-Dotted Sandperch	Parapercis millipunctata
Other	Red-Barred Sandperch	Parapercis multiplicata
Other	Black-Banded Sandperch	Parapercis tetracantha
Other	Blotchlip Sandperch	Parapercis xanthozona
Other	Sandperch	Parapriacanthus ransonneti
Other	Mcadam'S Scorpionfish	Parascorpaena mcadamsi
Other	Mozambique Scorpionfish	Parascorpaena mossambica
Other	Peacock Sole	Pardachirus pavoninus
Other	Blenny	Parenchelyurus hepburni
Other	Flying Fish	Parexocoetus brachypterus
Other	Flying Fish	Parexocoetus mento
Other	Beautiful Hover Goby	Parioglossus formosus
Other	Lined Hover Goby	Parioglossus lineatus
Other	Naked Hover Goby	Parioglossus nudus
Other	Palustris Hover Goby	Parioglossus palustris
Other	Rainford'S Hover Goby	Parioglossus rainfordi
Other	Rao'S Hover Goby	Parioglossus raoi
Other	Taeniatus Hover Goby	Parioglossus taeniatus
Other	Vertical Hover Goby	Parioglossus verticalis
Other	Shortsnouted Ray	Pasinachus sephen
Other	Dragonfish	Pegasidae
Other	Sweepers	Pempherididae
Other	Bronze Sweeper	Pempheris oualensis
Other	Armourheads	Pentacerotidae
Other	Smalltooth Whiptail	Pentapodus caninus
Other	3-Striped Whiptail	Pentapodus trivittatus
Other	Duckbills	Percophidae
Other	Goby	Periophthalmus argentilineatus
Other	Goby	Periophthalmus kalolo
Other	Yelloweye Filefish	Pervagor alternans
Other	Orangetail Filefish	Pervagor aspricaudatus
Other	Blackbar Filefish	Pervagor janthinosoma
Other	Blackheaded Filefish	Pervagor melanocephalus
Other	Blacklined Filefish	Pervagor nigrolineatus
Other	Blenny	Petroscirtes breviceps

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Blenny	Petroscirtes mitratus
Other	Blenny	Petroscirtes thepassi
Other	Blenny	Petroscirtes variabilis
Other	Blenny	Petroscirtes xestus
Other	Snake Eel	Phenamonas cooperi
Other	Flashlightfish	Photoblepheron palpebratus
Other	Pipefish	Phoxocampus diacanthus
Other	Snake Eel	Phyllophichthus xenodontus
Other	Codling	Physiculus sp
Other	Sand Perch	Pinguipedidae
Other	Blenny	Plagiotremus laudandus
Other	Red Sabbertooth Blenny	Plagiotremus rhynorhynchus
Other	Blenny	Plagiotremus tapienosoma
Other	Batfish	Platax orbicularis
Other	Pinnate Spadefish	Platax pinnatus
Other	Longfin Spadefish	Platax teira
Other	Keeled Needlefish	Platybelone argalus platyura
Other	Flathead	Platycephalidae
Other	2-Lined Sweetlips	Plectorhinchus albovittatus
Other	Celebes Sweetlips	Plectorhinchus celebecus
Other	Harlequin Sweetlips	Plectorhinchus chaetodonoides
Other	Sweetlip	Plectorhinchus flavomaculatus
Other	Gibbus Sweetlips	Plectorhinchus gibbosus
Other	Lined Sweetlips	Plectorhinchus lessonii
Other	Goldman'S Sweetlips	Plectorhinchus lineatus
Other	Giant Sweetlips	Plectorhinchus obscurus
Other	Spotted Sweetlips	Plectorhinchus picus
Other	Sweetlip	Plectorhinchus sp
Other	Oriental Sweetlips	Plectorhinchus vittatus
Other	Fourmanoir'S Basslet	Plectranthias fourmanoiri
Other	Basslet	Plectranthias kamii
Other	Long-Finned Basslet	Plectranthias longimanus
Other	Pygmy Basslet	Plectranthias nanus
Other	Basslet	Plectranthias rubrifasciatus
Other	Basslet	Plectranthias winniensis
Other	Dick'S Damsel	Plectroglyphidodo dickii
Other	Bright-Eye Damsel	Plectroglyphidodo imparipennis
Other	Johnston Isle Damsel	Plectroglyphidodo johnstonianus
Other	Jewel Damsel	Plectroglyphidodo lacrymatus
Other	White-Band Damsel	Plectroglyphidodo leucozonus
Other	Phoenix Isle Damsel	Plectroglyphidodo phoenixensis
Other	Longfins	Plesiopidae
Other	Red-Tipped Longfin	Plesiops caeruleolineatus
O ******	1174 1177 E01191111	2 TOSTOP S COLOT WILLOW WILLIAMS

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Bluegill Longfin	Plesiops corallicola
Other	Sharp-Nosed Longfin	Plesiops oxycephalus
Other	Goby	Pleurosicya bilobatus
Other	Caroline Ghost Goby	Pleurosicya carolinensis
Other	Blue Coral Ghost Goby	Pleurosicya coerulea
Other	Fringed Ghost Goby	Pleurosicya fringella
Other	Michael'S Ghost Goby	Pleurosicya micheli
Other	Common Ghost Goby	Pleurosicya mossambica
Other	Goby	Pleurosicya muscarum
Other	Plicata Ghost Goby	Pleurosicya plicata
Other	Eel Catfishes	Plotosidae
Other	Striped Eel Catfish	Plotosus lineatus
Other	Barred Sand Conger	Poeciloconger fasciatus
Other	Spotted Soapfish	Pogonoperca punctata
Other	6 Feeler Threadfin	Polydactylus sexfilis
Other	Beardfish	Polymixia japonica
Other	Beardfish	Polymixiidae
Other	Threadfins	Polynemidae
Other	Angelfishes	Pomacanthidae
Other	Emperor Anglefish	Pomacanthus imperator
Other	Blue-Girdled Angelfish	Pomacanthus navarchus
Other	Semicircle Angelfish	Pomacanthus semicirculatus
Other	6-Banded Angelfish	Pomacanthus sexstriatus
Other	Blue-Faced Angelfish	Pomacanthus xanthometopon
Other	Damselfishes	Pomacentridae
Other	Damselfish	Pomacentrus adelus
Other	Ambon Damsel	Pomacentrus amboinensis
Other	Goldbelly Damsel	Pomacentrus auriventris
Other	Speckled Damsel	Pomacentrus bankanensis
Other	Charcoal Damsel	Pomacentrus brachialis
Other	Burrough'S Damsel	Pomacentrus burroughi
Other	White-Tail Damsel	Pomacentrus chrysurus
Other	Neon Damsel	Pomacentrus coelestis
Other	Outer Reef Damsel	Pomacentrus emarginatus
Other	Blue-Spot Damsel	Pomacentrus grammorhynchus
Other	Lemon Damsel	Pomacentrus moluccensis
Other	Nagasaki Damsel	Pomacentrus nagasakiensis
Other	Black-Axil Damsel	Pomacentrus nigromanus
Other	Sapphire Damsel	Pomacentrus pavo
Other	Philappine Damsel	Pomacentrus philippinus
Other	Reid'S Damsel	Pomacentrus reidi
Other	Blueback Damsel	Pomacentrus simsiang
Other	Princess Damsel	Pomacentrus vaiuli

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Slender Reef-Damsel	Pomachromis exilis
Other	Guam Damsel	Pomachromis guamensis
Other	Common Javelinefish	Pomadasyus kaakan
Other	Lg-Headed Scorpionfish	Pontinus macrocephalus
Other	Scorpionfish	Pontinus sp
Other	Scopionfish	Pontinus tentacularis
Other	Blenny	Prealticus amboinensis
Other	Blenny	Prealticus natalis
Other	Bigeyes	Priacanthidae
Other	Bigeye	Priacanthus alalaua
Other	Goggle-Eye	Priacanthus hamrur
Other	Goby	Priolepis cincta
Other	Goby	Priolepis farcimen
Other	Goby	Priolepis inhaca
Other	Goby	Priolepis semidoliatus
Other	Bigeye	Pristigenys meyeri
Other	Flying Fish	Prognichthys albimaculatus
Other	Flying Fish	Prognichthys sealei
Other	Freckeled Driftfish	Psenes cyanophrys
Other	Rhino Leatherjacket	Pseudalutarias nasicornis
Other	Cardinalfish	Pseudamia amblyuroptera
Other	Cardinalfish	Pseudamia gelatinosa
Other	Cardinalfish	Pseudamia hayashii
Other	Cardinalfish	Pseudamia zonata
Other	Cardinalfish	Pseudamiops gracilicauda
Other	Bartlet'S Fairy Basslet	Pseudanthias bartlettorum
Other	Bicolor Fairy Basslet	Pseudanthias bicolor
Other	Red-Bar Fairy Basslet	Pseudanthias cooperi
Other	Peach Fairy Basslet	Pseudanthias dispar
Other	Fairy Basslet	Pseudanthias huchtii
Other	Lori'S Anthias	Pseudanthias lori
Other	Purple Queen	Pseudanthias pascalus
Other	Sq-Spot Fairy Basslet	Pseudanthias pleurotaenia
Other	Randall'S Fairy Basslet	Pseudanthias randalli
Other	-	Pseudanthias smithvanizi
Other	Smithvaniz' Fairy Basslet Fairy Basslet	
Other	<u> </u>	Pseudanthias sp
	Fairy Basslet	Pseudanthias squammipinnis Pseudanthias tuka
Other Other	Y Striped Fairy Basslet	Pseudantnias tuka Pseudanthias ventralis
	L-Finned Fairy Basslet	
Other	White Ribbon Eel	Pseudechidna brummeri
Other	Ymargin Triggerfish	Pseudobalistes flavimarginatus
Other	Blue Triggerfish	Pseudobalistes fuscus
Other	Dottybacks	Pseudochromidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Surge Dottyback	Pseudochromis cyanotaenia
Other	Dusky Dottyback	Pseudochromis fuscus
Other	Marshall Is Dottyback	Pseudochromis marshallensis
Other	Dottyback	Pseudochromis melanotaenia
Other	Long-Finned Dottyback	Pseudochromis polynemus
Other	Magenta Dottyback	Pseudochromis porphyreus
Other	Goby	Pseudogobius javanicus
Other	Soapfish	Pseudogramma polyacantha
Other	Soapfish	Pseudogramma sp
Other	Soapfishes	Pseudogrammidae
Other	Amourhead	Pseudopentaceros pectoralis
Other	Robust Dottyback	Pseudoplesiops multisquamatus
Other	Revelle'S Basslet	Pseudoplesiops revellei
Other	Rose Island Basslet	Pseudoplesiops rosae
Other	Basslet	Pseudoplesiops sp
Other	Hidden Basslet	Pseudoplesiops typus
Other	Blackfin Dartfish	Ptereleotris evides
Other	Filament Dartfish	Ptereleotris hanae
Other	Spot-Tail Dartfish	Ptereleotris heteroptera
Other	Dartfish	Ptereleotris lineopinnis
Other	Pearly Dartfish	Ptereleotris microlepis
Other	Zebra Dartfish	Ptereleotris zebra
Other	Yellowstreak Fusilier	Pterocaesio lativittata
Other	Twinstripe Fusilier	Pterocaesio marri
Other	Ruddy Fusilier	Pterocaesio pisang
Other	Mosaic Fusilier	Pterocaesio tesselatata
Other	Bluestreak Fusilier	Pterocaesio tile
Other	3-Striped Fusilier	Pterocaesio trilineata
Other	Spotfin Lionfish	Pterois antennata
Other	Clearfin Lionfish	Pterois radiata
Other	Turkeyfish	Pterois volitans
Other	Ocellated Gurnard	Pterygiotrigla multiocellata
Other	Gurnard	Pterygiotrigla sp
Other	Slender Suckerfish	Ptheirichthys lineatus
Other	Regal Anglefish	Pygoplites diacanthus
Other	Fairy Basslet	Rabaulichthys sp
Other	Trunkfish	Ranzania laevis
Other	Mackerel	Rastrelliger brachysoma
Other	Striped Mackerel	Rastrelliger kanagurta
Other	Goby	Redigobius bikolanus
Other	Goby	Redigobius horiae
Other	Goby	Redigobius sapangus
Other	Remora	Remora remora

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Cardinalfish	Rhabdamia cypselurus
Other	Cardinalfish	Rhabdamia gracilis
Other	Blenny	Rhabdoblenius rhabdotrachelus
Other		Rhabdoblennius ellipes
Other	Blenny	Rhabdoblennius snowi
Other	Guitarfish	Rhinchobatus djiddensis
Other	Picassofish	Rhinecanthus aculeatus
Other	Wedge Picassofish	Rhinecanthus rectangulus
Other	Blackbelly Picassofish	Rhinecanthus verrucosa
Other	Guitarfish	Rhinobatidae
Other	Ribbon Eel	Rhinomuraena quaesita
Other	Weedy Scorpionfish	Rhinopias frondosa
Other	Remora	Rhombochirus osteochir
Other	Smallnose Boxfish	Rhynchostracion nasus
Other	Largenose Boxfish	Rhynchostracion rhynorhynchus
Other	Telescopefish	Rosaura indica
Other	Minute Filefish	Rudarius minutus
Other		Salarius alboguttatus
Other	Spotted Rock Blenny	Salarius fasciatus
Other	Blenny	Salarius luctuosus
Other	Blenny	Salarius segmentatus
Other	Righteye Flounders	Samaridae
Other	3 Spot Flounder	Samariscus triocellatus
Other	Graceful Lizardfish	Saurida gracilis
Other	Nebulous Lizardfish	Saurida nebulosa
Other	Scats	Scatophagidae
Other	Scat	Scatophagus argus
Other	Schindleriid	Schindleria praematurus
Other	Shindleriid	Schindleriidae
Other	Snake Eel	Schismorhinchus labialis
Other	Snake Eel	Schultzidia johnstonensis
Other	Snake Eel	Schultzidia retropinnis
Other	Spinecheek	Scolopsis affinis
Other	2 Line Spinecheek	Scolopsis bilineatus
Other	Ciliate Spinecheek	Scolopsis ciliatus
Other	Bl And Wh Spinecheek	Scolopsis lineatus
Other	Margarite'S Spinecheek	Scolopsis margaritifer
Other	Spinecheek	Scolopsis taeniopterus
Other	3 Line Spinecheek	Scolopsis trilineatus
Other	Spinecheek Spinecheek	Scolopsis xenochrous
Other	Narrow-Barred King Mackerel	Scomberomorus commerson
Other	Scorpionfish	
Other	Guam Scorpionfish	Scorpaenidae Scorpaenodes guamensis

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Hairy Scorpionfish	Scorpaenodes hirsutus
Other	Kellogg'S Scorpionfish	Scorpaenodes kelloggi
Other	Minor Scorpionfish	Scorpaenodes minor
Other	Coral Scorpionfish	Scorpaenodes parvipinnis
Other	Blotchfin Scorpionfish	Scorpaenodes varipinis
Other	Devil Scorpionfish	Scorpaenopsis diabolus
Other	Pygmy Scorpionfish	Scorpaenopsis fowleri
Other	Flasher Scorpionfish	Scorpaenopsis macrochir
Other	Tassled Scorpionfish	Scorpaenopsis oxycephala
Other	Papuan Scorpionfish	Scorpaenopsis papuensis
Other	Scorpionfish	Scorpaenopsis sp
Other	Tiger Snake Moray	Scuticaria tigrinis
Other	Yellowspotted Scorpionfish	Sebastapistes cyanostigma
Other	Galactacma Scorpionfish	Sebastapistes galactacma
Other	Mauritius Scorpionfish	Sebastapistes mauritiana
Other	Barchin Scorpionfish	Sebastapistes strongia
Other	Pugnose Soapy	Secutor ruconius
Other	Basslet	Selenanthias myersi
Other	Hawkfish Anthias	Serranocirrhitus latus
Other	Goby	Sicyopterus macrostetholepis
Other	Goby	Sicyopterus micrurus
Other	Goby	Sicyopterus sp
Other	Goby	Sicyopus leprurus
Other	Goby	Sicyopus sp
Other	Goby	Sicyopus zosterophorum
Other	Peppered Moray	Sideria picta
Other	White-Eyed Moray	Sideria prosopeion
Other	Goby	Signigobius biocellatus
Other	Goby	Silhouettea sp
Other	Sillagos	Sillaginidae
Other	Cardinalfish	Sillago sihama
Other	Cardinalfish	Siphamia fistulosa
Other	Cardinalfish	Siphamia fuscolineata
Other	Cardinalfish	Siphamia versicolor
Other	Banded Sole	Soleichthys heterohinos
Other	Soles	Soleidae
Other	Ghost Pipefish	Solenostomidae
Other	Ghost Pipefish	Solenostomus cyanopterus
Other	Ornate Ghost Pipefish	Solenostomus paradoxus
Other	Flathead	Sorsogona welanderi
Other	Cardinalfish	Sphaeramia nematoptera
Other	Cardinalfish	Sphaeramia orbicularis
Other	Sharpfin Barracuda	Sphyraena acutipinnis

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Great Barracuda	Sphyraena barracuda
Other	Yellowtail Barracuda	Sphyraena flavicauda
Other	Blackspot Barracuda	Sphyraena forsteri
Other	Arrow Barracuda	Sphyraena novaehollandiae
Other	Pygmy Barracuda	Sphyraena obtusata
Other	Slender Barracuda	Sphyraena putnamiae
Other	Blackfin Barracuda	Sphyraena qenie
Other	Barracudas	Sphyraenidae
Other	Blue Sprat	Spratelloides delicatulus
Other	Silver Sprat	Spratelloides gracilis
Other	Blenny	Stanulus seychellensis
Other	White-Bar Gregory	Stegastes albifasciatus
Other	Pacific Gregory	Stegastes fasciolatus
Other	Farmerfish	Stegastes lividus
Other	Dusky Farmerfish	Stegastes nigricans
Other	Leopard Shark	Stegastoma varium
Other	Panatella Silverside	Stenatherina panatella
Other	Goby	Stenogobius genivittatus
Other	Goby	Stenogobius sp
Other	Hatchetfishes	Sternoptichidae
Other	Goby	Stiphodon elegans
Other	Goby	Stiphodon sp
Other	Samoan Anchovy	Stolephorus apiensis
Other	Indian Anchovy	Stolephorus indicus
Other	Gold Esurine Anchovy	Stolephorus insularis
Other	Caroline Islands Anchovy	Stolephorus multibranchus
Other	West Pacific Anchovy	Stolephorus pacificus
Other	Anchovy	Stolephorus sp
Other	Reef Needlefish	Strongylura incisa
Other	Littoral Needlefish	Strongylura leiura leiura
Other	Giant Esturine Moray	Strophidon sathete
Other	Scythe Triggerfish	Sufflamen bursa
Other	Halfmoon Triggerfish	Sufflamen chrysoptera
Other	Bridle Triggerfish	Sufflamen freanatus
Other	Symphysanid	Symphysanodon typus
Other	Sympysanodon	Symphysanodontidae
Other	Stonefish	Synanceia verrucosa
Other	Cutthroat Eel	Synaphobranchidae
Other	Cutthroat Eel	Synaphobranchus sp
Other	Cirlcled Dragonet	Synchiropus circularis
Other	Ladd'S Dragonet	Synchiropus laddi
Other	Morrison'S Dragonet	Synchiropus morrisoni
Other	Ocellated Dragonet	Synchiropus ocellatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Dragonet	Synchiropus sp
Other	Mandarin Fish	Synchiropus splendidus
Other	Pipefish, Seahorse	Syngnathidae
Other	Alligator Pipefish	Syngnathoides biaculeatus
Other	Lizardfish	Synodontidae
Other	2-Spot Lizardfish	Synodus binotatus
Other	Clearfin Lizardfish	Synodus dermatogenys
Other	Reef Lizardfish	Synodus englemanni
Other	Blackblotch Lizardfish	Synodus jaculum
Other	Variegatus Lizardfish	Synodus variegatus
Other	Leaf Fish	Taenianotus triacanthus
Other	Goby	Taenioides limicola
Other	Giant Reef Ray	Taeniura meyeni
Other	Crescent-Banded Grunter	Terapon jarbua
Other	Thornfishes	Teraponidae
Other	Smooth Puffers	Tetraodontidae
Other	Mangrove Waspfish	Tetraroge barbata
Other	Waspfishes	Tetrarogidae
Other	Little Priest	Thryssa baelama
Other	Broadhead Flathead	Thysanophrys arenicola
Other	Longsnout Flathead	Thysanophrys chiltonae
Other	Fringlip Flathead	Thysanophrys otaitensis
Other	Tilapia	Tilapia zillii
Other	Banded Archerfish	Toxotes jaculator
Other	Archerfishes	Toxotidae
Other	Double-Ended Pipefish	Trachyramphus bicoarctata
Other	Spikefishes	Triacanthodidae
Other	Reef Whitetip Shark	Triaenodon obesus
Other	Sand Divers	Trichonotidae
Other	Micronesian Sand-Diver	Trichonotus sp
Other	Gurnards	Triglidae
Other	Goby	Trimma caesiura
Other	Goby	Trimma naudei
Other	Goby	Trimma okinawae
Other	Goby	Trimma sp A
Other	Goby	Trimma sp B
Other	Goby	Trimma taylori
Other	Goby	Trimma tevegae
Other	Goby	Trimmatom eviotops
Other	3 Tooth Puffer	Triodon bursarius
Other	3 Tooth Puffer	Triodon macropterus
Other	Tripletooth Puffers	Triodontidae
Other	Triplefins	Tripterygiidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Keeled Houndfish	Tylosurus acus melanotus
Other	Houndfish	Tylosurus crocodilis crocodilis
Other	Longjaw Triplefin	Ucla xenogrammus
Other	Stargazers	Uranoscopidae
Other	Stargazer	Uranoscopus sp
Other	Porcupine Ray	Urogymnus africanus
Other	Unicolor Snake Moray	Uropterygius concolor
Other	Fiji Moray Eel	Uropterygius fijiensis
Other	Brown-Spotted Snake Eel	Uropterygius fuscoguttatus
Other	Gosline'S Snake Moray	Uropterygius goslinei
Other	Moon Moray	Uropterygius kamar
Other	Lg-Headed Snake Moray	Uropterygius macrocephalus
Other	Marbled Snake Moray	Uropterygius marmoratus
Other	Tidepool Snake Moray	Uropterygius micropterus
Other	Lg-Spotted Snake Moray	Uropterygius polyspilus
Other	Moray Eel	Uropterygius supraforatus
Other	Moray Eel	Uropterygius xanthopterus
Other	Roundray	Urotrygon daviesi
Other	Glass Goby	Valenciennea muralis
Other	Parva Goby	Valenciennea parva
Other	Goby	Valenciennea puellaris
Other	Goby	Valenciennea sexguttatus
Other	Goby	Valenciennea sp
Other	Goby	Valenciennea strigatus
Other	Goby	Vanderhorstia ambanoro
Other	Goby	Vanderhorstia lanceolata
Other	Goby	Vanderhorstia ornatissima
Other	Guilded Triggerfish	Xanthichthys auromarginatus
Other	Bluelined Triggerfish	Xanthichthys careuleolineatus
Other	Crosshatch Triggerfish	Xanthichthys mento
Other	Wriggler	Xenishthmus sp
Other	Flathead Wriggler	Xenisthmidae
Other	Barred Wriggler	Xenisthmus polyzonatus
Other	Triggerfish	Xenobalistes tumidipectoris
Other	Blenny	Xiphasia matsubarai
Other	Moorish Idols	Zanclidae
Other	Moorish Idol	Zanclus cornutus
Other	Esturine Halfbeak	Zenarchopterus dispar
Misc. Reef fish	Reef Fish	Reef Fish
Misc. Shallow bottomfish	Shallow Bottomfish	Shallow Bottomfish
Other Invertebrates	Crown-Of-Thorns	Acanthaster planci
Other Invertebrates Other Invertebrates	Stonefish	Actinopyga lecanora
Other Invertebrates Other Invertebrates	Blackfish	Actinopyga tecanora Actinopyga miliaris

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other Invertebrates	Sea Cucumber	Actinopyga obesa
Other Invertebrates	Sea Cucumber	Actinopyga sp
Other Invertebrates	Starfish	Asterinidae
Other Invertebrates	Starfish	Asteropidae
Other Invertebrates	Starfish	Astropectinidae
Other Invertebrates	Sea Cucumber	Bohadschia argus
Other Invertebrates	Sea Cucumber	Bohadschia graeffei
Other Invertebrates	Brown Sandfish	Bohadschia marmorata
Other Invertebrates	Sea Cucumber	Bohadschia paradoxa
Other Invertebrates	Sea Cucumber	Bohadschia sp
Other Invertebrates	Irregular Urchins	Brissidae
Other Invertebrates	Jellyfish	Cephea sp
Other Invertebrates	Cidarians	Cidaridae
Other Invertebrates	Crinoids	Class Crinoidea
Other Invertebrates	Sea Urchins	Class Echinoidea
Other Invertebrates	2 4 01 0 110	Clypeasteridae
Other Invertebrates	Sea Cucumbers	Cucumariidae
Other Invertebrates	Longspine Urchin	Diadema savignyi
Other Invertebrates	Longspine Urchin	Diadema setosum
Other Invertebrates	Sea Urchins	Diadematidae
Other Invertebrates Other Invertebrates	Sea Urchins	Echinoidea
Other Invertebrates	Sea Urchins	Echinometridae
Other Invertebrates Other Invertebrates	Reef Starfish	Echinosteridae
Other Invertebrates Other Invertebrates	Longspine Urchin	Echinothrix calamaris
Other Invertebrates Other Invertebrates	Longspine Urchin	Echinothrix diadema
Other Invertebrates Other Invertebrates	Sea Urchins	Echinothuriidae
Other Invertebrates Other Invertebrates	Slate Pencil Urchin	Heterocentrotus mammillatus
Other Invertebrates Other Invertebrates		Holothuria atra
Other Invertebrates Other Invertebrates	Lollyfish Pinkfish	Holothuria edulis
Other Invertebrates	White Teatfish	Holothuria fuscogilva
Other Invertebrates	Elephant'S Trunkfish	Holothuria fuscopunctata
Other Invertebrates	Sea Cucumber	Holothuria hilla
Other Invertebrates	Sea Cucumber	Holothuria impatiens
Other Invertebrates	Sea Cucumber	Holothuria leucospilota
Other Invertebrates	Sea Cucumber	Holothuria sp
Other Invertebrates	Sea Cucumber	Holothuriidae
Other Invertebrates	Sea Cucumbers	Holothuroidea
Other Invertebrates	Spiney-Armed Starfish	Mithrodia bradleyi
Other Invertebrates	Orange Starfish	Ophidiaster confertus
Other Invertebrates	Starfish	Oreasteridae
Other Invertebrates	Sea Cucumbers	Phyllophoridae
Other Invertebrates	Common Urchin	Pseudoboletia maculata
Other Invertebrates	Starfish	Sc Asteroidea

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other Invertebrates	Basket,Brittle, Serpentstars	Sc Ophiuroidea
Other Invertebrates	Starfish	Sphaerasteridae
Other Invertebrates	Sea Cucumbers	Stichopodidae
Other Invertebrates	Greenfish	Stichopus chloronotus
Other Invertebrates	Sea Cucumber	Stichopus horrens
Other Invertebrates	Sea Cucumber	Stichopus noctivatus
Other Invertebrates	Sea Cucumber	Stichopus sp
Other Invertebrates	Curryfish	Stichopus variegatus
Other Invertebrates	Sea Cucumber	Synapta maculata
Other Invertebrates	Sea Cucumber	Synapta media
Other Invertebrates	Sea Cucumber	Synapta sp
Other Invertebrates	Sea Cucumbers	Synaptidae
Other Invertebrates	Sea Urchins	Temnopleuridae
Other Invertebrates	Prickly Redfish	Thelenota ananas
Other Invertebrates	Amberfish	Thelenota anax
Other Invertebrates	Sea Cucumber	Thelenota sp
Other Invertebrates	Flower Urchin	Toxopneustes pileolus
Other Invertebrates	Shortspine Urchins	Toxopneustidae
Other Invertebrates	Shortspine Urchin	Tri pneustes gratilla
Species of Special	Bumphead parrotfish	Bolbometopon muricatum
Management Interest		-
Species of Special	Humphead (Napoleon) wrasse	Cheilinus undulatus
Management Interest		
Species of Special	Reef sharks	Carcharhinidae
Management Interest		
Species of Special	Blackfin shark	Carcharhinus limbatus
Management Interest	XXII:4 4: C 1 1	
Species of Special	White tip reef shark	Triaenodon obesus
Management Interest	Hammerhead shark	Colombida o
Species of Special Management Interest	riannnemead snark	Sphyrnidae
<u> </u>		
Species of Special	Scalloped hammerhead shark	Sphyrna lewini
Management Interest	C 41 1 1 1 1	C 1 1
Species of Special	Great hammerhead shark	Sphyrna mokorran
Management Interest		

Table 3. Mariana CREMUS (CNMI)

Mariana CREMUS (CNMI)	Common Name	Scientific Name
Emperors	Bigeye Emperor	Monotaxis grandoculus
Emperors	Blackspot Emperor	Lethrinus harak
Emperors	Emperor (mafute/misc.)	Lethrinus sp.
Emperors	Flametail Emperor	Lutjanus fulvus
Emperors	Longnose Emperor	Lethrinus olivaceus

Mariana CREMUS (CNMI)	Common Name	Scientific Name
Emperors	Orangefin Emperor	Lethrinus erythracanthus
Emperors	Ornate Emperor	Lethrinus ornatus
Emperors	Stout Emperor	Gymnocranius sp.
Emperors	Yellowlips Emperor	Lethrinus xanthochilis
Emperors	Yellowspot emperor	Gnathodentex aurolineatus
Emperors	Yellowstripe Emperor	Lethrinus obsoletus
Emperors	Yellowtail Emperor	Lethrinus atkinsoni
Jacks	Bigeye Trevally	Caranx sexfasciatus
Jacks	Bluefin Trevally	Caranx melampygus
Jacks	Brassy Trevally	Caranx papuesis
Jacks	EE: Juvenile Jacks	Canranx sp.
Jacks	Jacks (misc.)	Caranx sp.
Jacks	Leatherback	Scomberoides lysan
Jacks	Mackerel Scad	Decapterus macarellus
Jacks	Rainbow Runner	Elagatis bipinnulatus
Jacks	Small-spotted pompano	Trachinotus bailloni
Jacks	Snubnose pompano	Trachinotus blochii
Jacks	Yellow Spotted Trevally	Carangoides orthogrammus
Surgeonfish	Bluebanded Surgeonfish	Acanthurus lineatus
Surgeonfish	Bluelined Surgeon	Acanthurus nigroris
Surgeonfish	Bluespine Unicornfish	Naso unicornis
Surgeonfish	Convict Tang	Acanthurus triostegus
Surgeonfish	Orangespine Unicornfish	Naso lituratus
Surgeonfish	Surgeonfish (misc.)	Acanthurus sp.
Surgeonfish	Unicornfish (misc.)	Naso sp.
Surgeonfish	Yellowfin Surgeonfish	Acanthurus xanthopterus
Atulai	Bigeye Scad	Selar crumenopthalmus
Groupers	Coral Grouper	Epinephelus corallicola
Groupers	Flagtail Grouper	Cephalopholis urodeta
Groupers	Grouper (misc.)	Serannidae
Groupers	Highfin Grouper	Epinephelus maculatus
Groupers	Honeycomb Grouper	Epinephelus merra
Groupers	Lyretail Grouper	Variola louti
Groupers	Marbled Grouper	Epinephelus polyphekadion
Groupers	Peacock Grouper	Cephalopholis argus
Groupers	Pink Grouper	Saloptia powelli
Groupers	Saddleback Grouper	Plectropomus laevis
Groupers	Tomato Grouper	Cephanopholis sonnerati
Groupers	White Lyretail Grouper	Variola albimarginata
Groupers	Yellow Banded Grouper	Cephalopholis igarashiensis
Snappers	Snapper (misc. shallow)	Lutjanidae
Snappers	Humpback Snapper	Lutjanus gibbus
Snappers	Onespot Snapper	Lutjanus monostigmus
Snappers	Red Snapper	Lutjanus bohar

furca rberrinus ne ne urostigma fasciatus avolineatus sp.
ne ne urostigma fasciatus avolineatus sp. aigiensis
ne urostigma fasciatus avolineatus sp. aigiensis
urostigma fasciatus avolineatus sp. aigiensis
fasciatus avolineatus sp. aigiensis
fasciatus avolineatus sp. aigiensis
avolineatus sp. aigiensis
sp. aigiensis
aigiensis
sp.
la
sp.
a
ae
sp.
ntatus
pinus
nidae
tidae
s cruentatus
pavo
lebicus
dae
mersonii
ridae
nidae
sp.
dae
hamrur
idae
anos
sp.
dae
ae
aculeatus
tidae
culini
idae
ıs picus
ae
hinensis
ectangulus
idae
idae

Mariana CREMUS (CNMI)	Common Name	Scientific Name
Wrasse	Wrasse (misc.)	Labridae
Wrasse	Tripletail Wrasse	Cheilinus trilobatus
Rudderfish	Rudderfish (guilli)	Kyphosus sp.
Rudderfish	Highfin Rudderfish Silver	Kyphosus cinerascens
Misc. Reeffish	Reef Fish	n/a
Misc. Bottomfish	Bottom Fish	n/a
Misc. Shallow bottomfish	Shallow Bottomfish	n/a
Crustaceans	Crabs (misc)	n/a
Crustaceans	Coconut Crab	Birgus latro
Other Invertebrates	Invertebrates	n/a
Other Invertebrates	Sea Cucumber	Cucumariidae
Algae	Seaweeds	n/a
Algae	Lemu	n/a
Species of Special Management Interest	Bumphead parrotfish	Bolbometopon muricatum
Species of Special Management Interest	Humphead (Napoleon) wrasse	Cheilinus undulatus
Species of Special Management Interest	Reef sharks (misc)	Carcharhinidae
Species of Special Management Interest	Hammerhead shark	Sphyrnidae

Table 4. Hawaii CREMUS

Hawaii CREMUS	Common Name	Scientific Name
Akule	Bigeye scad	Selar crumenopthalmus
Opelu	Round scad	Decapterus macarellus
Jacks	DOBE	Caranx (Urapsis) helvolus
Jacks	KAGAMI	Alectis ciliaris
Jacks	KAHALA	Seriola rivoliana
Jacks	KAMANU	Elagatis bipinnulata
Jacks	LAE	Scomberoides lysan,
		S. sancti-petri
Jacks	NO-BITE	C. equula
Jacks	OMAKA	Atule mata
Jacks	OMILU	Caranx melampygus
Jacks	PAOPAO	Gnathanodon speciosus
Jacks	PAPA	Carangoides orthogrammus
Jacks	PAPIO, ULUA (MISC.)	Carangidae
Goatfish	KUMU	Parupeneus porphyeus
Goatfish	MALU	Parupeneus pleurostigma
Goatfish	MOANA	Parupeneus spp.
Goatfish	MOANO KALE	Parupeneus cyclostomus
Goatfish	MOELUA; GOAT FISH	Mulloidichthys sp.

Hawaii CREMUS	Common Name	Scientific Name
	(RED)	
Goatfish	MUNU	Parupeneus bifasciatus
Goatfish	WEKE (MISC.)	Mullidae
Goatfish	WEKE A'A	Mulloidichthys flavolineatus
Goatfish	WEKE NONO	Mulloidichthys pflugeri
Goatfish	WEKE PUEO	Upeneus arge
Goatfish	WEKE-ULA	Mulloidichthys vanicolensis
Groupers	ROI	Cephalopholis argus
Surgeonfish	API	Acanthurus guttatus
Surgeonfish	BLACK KOLE	Ctenochaetus hawaiiensis
Surgeonfish	KALA	Naso annulatus,
C		N. brevirostris,
		N. unicornis
Surgeonfish	KALALEI	Naso lituratus
Surgeonfish	KOLE	Ctenochaetus strigosus
Surgeonfish	MAIII	Acanthurus nigrofuscus
Surgeonfish	MAIKO	Acanthurus nigroris
Surgeonfish	MAIKOIKO	Acanthurus leucopareius
Surgeonfish	MANINI	Acanthurus triostegus
Surgeonfish	NAENAE	Acanthurus olivaceus
Surgeonfish	OPELU KALA	Naso hexacanthus
Surgeonfish	PAKUIKUI	Acnthurus achilles
Surgeonfish	PALANI	Acanthurus dussumieri
Surgeonfish	PUALU	Acanthurus blochii,
C		A. xanthopterus
Surgeonfish	YELLOW TANG	Zebrasoma flavescens
Squirrelfish	ALAIHI	Holocentridae
Squirrelfish	ALAIHI MAMA	Adioryx spinifer
Squirrelfish	MENPACHI	Myripristis spp.
Squirrelfish	PAUU	Holocentridae
Mullet	AMAAMA	Mugil cephalus
Mullet	SUMMER MULLET	Mugil sp.
Snappers	GOLDEN KALI	Erythrocles schegelii
Snappers	GURUTSU, GOROTSUKI	Aphareus furca
Snappers	RANDALL'S SNAPPER	Randallichthys filamentosus
Snappers	TAAPE	Lutjanus kasmira
Snappers	TOAU	Lutjanus fulvus
Snappers	WAHANUI	Aphareus furcatus
Mollusks	HE'E (DAY TAKO)	Octopus cyanea
Mollusks	HE'E PU LOA	Octopus ornatus
Mollusks	OLEPE	Albula glossodonta
Parrotfish	PANUHUNUHU	Scarus spp.
Parrotfish	PANUNU	Scarus spp.
Parrotfish	UHU (MISC.)	Catalomus spp.

Hawaii CREMUS	Common Name	Scientific Name
Crustaceans	A'AMA	Graspus tenuicrustatus
Crustaceans	BLUE PINCHER CRAB	Callinectes sapidus
Crustaceans	CRAB (MISC.)	n/a
Crustaceans	HAWAIIAN CRAB	Podophthalmus vigil
Crustaceans	KUAHONU CRAB	Portunus sanguinolentus
Crustaceans	METABETAEUS LOHENA	METABETAEUS LOHENA
Crustaceans	MISC. SHRIMP/PRAWN	n/a
Crustaceans	OPAE ULA	HALOCARIDINA RUBRA
Crustaceans	A'AMA	Graspus tenuicrustatus
Other Invertebrates	HA'UKE'UKE	Colobocentrotus atratus
Other Invertebrates	HAWAE	Tripneustes gratilla
Other Invertebrates	WANA (urchin)	Dia dema sp., Echinothrix sp.
Other Invertebrates	NAMAKO (sea cucumber)	Holothuroidea
Other Invertebrates	SLATE PENCIL URCHINS	Heterocentrotus mammillatus
Other Invertebrates	HA'UKE'UKE	Colobocentrotus atratus
Other CRE Finfish	AHOLEHOLE	Kuhlia sandvicensis
Other CRE Finfish	AWA	Chanos chanos
Other CRE Finfish	AWAAWA	Elops hawaiensis
Other CRE Finfish	AWEOWEO	Heteropriacanthus cruentatus
Other CRE Finfish	GOLD SPOT HERRING	Herklotsichthys
		quadrimaculatus
Other CRE Finfish	HAULIULI	Gempylus serpens
Other CRE Finfish	HOGO	Pontinus macrocephalus
Other CRE Finfish	HUMUHUMU	Balistidae
Other CRE Finfish	IAO	Pranesus insularum
Other CRE Finfish	IHEIHE	Hemiramphidae
Other CRE Finfish	KAKU	Sphyraena barracuda
Other CRE Finfish	KAWALEA	Sphyraena helleri
Other CRE Finfish	KUPIPI	Abudefduf sordidus
Other CRE Finfish	LAUWILIWILI	Chaetodon auriga
Other CRE Finfish	LOULU	Monacanthidae
Other CRE Finfish	MAKAIWA	Etrumeus micropus
Other CRE Finfish	MALOLO	Exocoetidae
Other CRE Finfish	MA'O MA'O	Abudefduf abdominalis
Other CRE Finfish	MOI	Polydactylus sexfilis
Other CRE Finfish	MOLA MOLA	Mola mola
Other CRE Finfish	NEHU	Stolephorus purpureus
Other CRE Finfish	NOHU	Scorpaenopsis spp.
Other CRE Finfish	NUNU	Aulostomus chinensis
Other CRE Finfish	OIO	Gracilaria parvispora
Other CRE Finfish	OOPU HUE	Diodon spp.
Other CRE Finfish	PAKII	Bothus spp.
Other CRE Finfish	PIHA	Spratelloides delicatulus
Other CRE Finfish	POO PAA	Cirrhitus spp.

Hawaii CREMUS	Common Name	Scientific Name
Other CRE Finfish	PUHI (MISC.)	Gymnothorax spp.
Other CRE Finfish	PUHI (WHITE)	Muraenidae
Other CRE Finfish	PUPU	Congridae spp.
Other CRE Finfish	SABA	Scomber japonicus
Other CRE Finfish	TILAPIA	Tilapia sp.
Other CRE Finfish	UPAPALU	Apogon kallopterus
Algae	LIMU (MISC.)	Gracilaria spp.
Algae	LIMU KOHU	Asparagopsis taxiformis
Algae	MANAUEA	Gracilaria coronopifolia
Algae	OGO	Aulostromus chinensis
Algae	WAWAEIOLE	Ulva fasciata
Rudderfish	NENUE	Kyphosus bigibbus,
		K. cinerescens
Wrasse	A'AWA	Bodianus bilunulatus
Wrasse	HILU	Coris flavovittata
Wrasse	HINALEA	Thalassoma spp.
Wrasse	KUPOUPOU	Cheilio inermis
Wrasse	LAENIHI	Xyichthys pavo
Wrasse	MALLATEA	Labridae
Wrasse	OPULE	Decapterus macarellus
Wrasse	POOU	Cheilinus unifasciatus
Wrasse	WRASSE (MISC.)	Labridae
Emperor	MU	Monotaxis grandoculis
Groupers	ROI	Cephalopholis argus
Species of Special	Reef Sharks	Carcharhinidae
Management Interest		
Species of Special	Reef Sharks	Sphyrnidae
Management Interest		

Western Pacific Region Reef Fish Trends

A Compendium of Ecological and Fishery Statistics for Reef Fishes in American Samoa, Hawai'i and the Mariana Archipelago, in Support of Annual Catch Limit (ACL) Implementation

> Prepared for Western Pacific Regional Fishery Management Council 1164 Bishop St., Ste. 1400 Honolulu, Hawai'i, 96813

> > By

Daniel Luck

&

Paul Dalzell

October 4, 2010

Introduction

The Magnuson-Stevens Reauthorization Act (MSRA) of 2006 requires fishery management councils to submit fishery management plans for all fisheries under their authority that require conservation and management. These plans must "establish a mechanism for specifying annual catch limits (ACL)... at a level such that overfishing does not occur in the fishery, including measures to ensure accountability." Ultimately these ACLs are policy decisions on the part of fishery management councils, but they should be "informed by risk analysis and cannot exceed the Acceptable Biological Catch (ABC)", as set by the Scientific and Statistical Committee of each council (Witherell and Dalzell, 2008). For fisheries not currently experiencing overfishing, MSRA requires that ACLs are to be established by 2011.

The Western Pacific Region Fisheries Management Council (WPRFMC) is one of the eight fishery management councils reauthorized by the MSRA. WPRFMC creates policy recommendations for Exclusive Economic Zone (EEZ) waters in Hawai'i and the U.S. territories of the Commonwealth of the Northern Mariana Islands (CNMI), Guam, and American Samoa. All four of these areas support significant coral reef fisheries for which ACLs must be developed by 2011. The purpose of this technical report is to provide data and preliminary analysis of trends in these reef fisheries to facilitate the implementation of ACLs within the Western Pacific Region.

Methods

Study Regions

The region of study includes three archipelagos, namely American Samoa, the Hawaiian Archipelago and the Mariana Islands. The Hawaiian Archipelago is subdivided into the Main Hawaiian Islands (MHI) and the Northwestern Hawaiian Islands (NWHI). Stringent fishing restrictions have been implemented in NWHI (WPRFMC 2009a), with capture for scientific purposes. All fish caught for sustenance must be consumed in the NWHI.

The Mariana Archipelago, a continuous ecological unit, is politically divided into two separate entities: The Territory of Guam; and the Commonwealth of the Northern Mariana Islands (CNMI). Given this political reality, many of the analyses we applied at archipelagic scales were also applied separately to CNMI and Guam.

American Samoa consists of a southern archipelago, Tutuila, Manua Islands and Rose Atoll; and in the north of the US EEZ of Swains Island.

This document aims to analyze reef fish fisheries on both archipelagic and local scales with the term 'local' or 'location' used in reference to any scale smaller than archipelagic. For example, we treat Tutuila Island as a location in the American Samoa Archipelago and Guam Island as a location in the Mariana Archipelago. The term 'area' may refer to an archipelago or location, depending on the context.

Biomass Data

Biomass estimates for reef fish populations were provided by the National Marine Fisheries Service Pacific Islands Fisheries Science Center's (NMFS PIFSC) Coral Reef Ecosystem Division (CRED). As part of their Reef Assessment and Monitoring Program (RAMP), CRED conducts biological surveys on a biennial basis at 55 U.S. Pacific Islands, including the islands analyzed in this document (Williams, 2010). Since June 2007, the surveys have employed a stratified random sampling design within 0-30m hard-bottom habitats. The surveys aim to estimate a reef-fish density by species in three different hard-bottom habitat strata and then extrapolate archipelagic family biomass based on estimates of habitat area.

We requested RAMP biomass estimates for the following eleven coral reef fish families which typically account for the majority of reef fish catches: acanthuridae, carangidae, carcharhinidae, holocentridae, kyphosidae, labridae, lethrinidae, lutjanidae, mullidae, scaridae, and serranidae. The remaining families were combined under the category 'other biomass' such that there were a total of twelve categories (eleven families plus 'other'). (Note: In this document the term 'fish' will be used for all marine organisms that might be targeted in a fishery, i.e. 'fish' may include invertebrates such as crab, lobster, etc.)

In Guam, carangids, carcharhinids and kyphosids were not observed in the most recent RAMP surveys. All three families are known to exist in Guam and may even compose significant portions of the catch record, so we approximated their biomass using the corresponding estimated biomass density for nearest and most ecologically similar region, CNMI. We believe that using these proxies was justified because Guam and CNMI, while politically distinct, are contiguous parts of the same archipelago.

Catch Data

Hawai'i requires commercial fishermen to obtain a Commercial Marine License (CML) and requires all CML holders to submit a monthly logbook of catch data to the Hawai'i Division of Aquatic Resources (HDAR, 2010). The CML catch database extends from 1948 onwards but rigorous quality control procedures for logbook data were not applied until 1966 onwards so we have excluded data prior to that year. The Hawai'i data is reported by statistical grids, with which we were able to separate reef fish catches into those from federal and state waters

The NMFS PIFSC Western Pacific Fisheries Information Network (WPacFIN) boat-based and shore-based creel survey data were analyzed for American Samoa, Guam, and CNMI (Table 1). Creel surveys consist of detailed interviews with fishermen, and they aim to document the number and weight of the catch. The following section is taken from Hamm and Tao (2010), which details the creel survey methodology:

To be considered a 'complete and useable' interview [i.e. creel survey], the entire catch must be accounted for, either by direct measurements and counts or by estimation procedures. Generally speaking and when possible, all fish are identified to the lowest taxonomic level within the capability of the surveyor collecting the interview and the number of

individuals counted or estimated, individuals weighed and/or measured, and total weights collected or calculated based on samples collected.

Since this document aims to support the creation of ACLs for obligate reef-associated species, certain groups of fish included in the catch records were omitted from analysis. These included pelagic species, including all species in the families istiophoridae, scombridae, and xiiphidae; the schooling carangids *Selar crumenopthalmus* and *Decapterus* spp.; deep-water bottomfish, notably the genera *Aprion*, *Etelis*, and *Pristipomoides*. Additionally, we decided to omit taxa that appeared in less than half of the catch record for a given archipelago on the basis that infrequently caught taxa were unlikely to have ACLs but rather would be incorporated into the ecosystem species category. The Hawaiian Archipelago catch record, for example, consisted of 44 years of data but only taxa that were caught in at least 22 years were included.

For the analyses presented here, the term 'taxa' (or 'taxon') refers to a designation used in the catch record for a given area. Sometimes catch records identified fish to the species level, but quite often fish were only identified to the genus or family level, creating the opportunity for overlapping designations. Thus, *Naso lituratus* and 'miscellaneous *Naso* spp.' are considered two separate taxa here, even though *N. lituratus* is subsumed by the *Naso* spp. label. Table 2 summarizes the number of species and families whose catch records were ultimately analyzed.

Catch data for all reef-associated species are organized by family and presented by archipelago in the attached appendices. With the exception of the Hawaiian logbook data, catch data for individual species are derived from raw samples of creel surveys; they may not represent a wholly unbiased sample of the population of reef-fish caught (Hamm and Tao, 2010). However, these data likely represent the best available information on catch, particularly on the species level, and may help illuminate general trends in reef-based fisheries.

Species Variability in Catch

To ascertain the level of variability in year-to-year species catch, coefficients of variation (or CV, equivalent to the standard deviation of catch divided by the mean catch) were calculated for the ten species with the highest aggregate catch in each archipelago. (In the Mariana Archipelago, catches from CNMI and Guam were evaluated separately.)

Exploited Biomass Estimates

NMFS PIFSC provided annual reef-fish catch by family for American Samoa, CNMI, Guam and Hawai'i in order to estimate the percentage of harvested biomass. These are essential expansions of the aforementioned creel survey data (Hamm, D., personal communication). Recent mean annual catch values were expressed as the percentage of biomass harvested per location/archipelago per family. Current RAMP surveys date from 2007 and only the mean catches for the most recent five years on record were used; namely American Samoa 2004-2008, Hawaiian Archipelago 2005-2009, and for the Mariana Archipelago 2005-2008. (The Marina Archipelago mean catch was four years only because shore-based creel surveys in CNMI did not begin until 2005. Data from 2009 were not yet available.)

Regression analyses also were conducted with biomass as an independent variable and catch as its dependent variable to test for a relationship between catch and biomass on both local and archipelagic scales.

Family Variability in Catch

Variability in reef fish catch by family was analyzed in a manner similar to that used for species-level catch, except that we used expanded catch data, which were standardized for survey effort, rather than raw sample data.

Estimated Trophic Level Calculations

For each archipelago (and the Mariana states CNMI and Guam), the mean trophic score of the aforementioned eleven coral reef families was estimated using sample catch data. Catch data was used for this purpose because calculating family scores required the scores of their constituent species and we did not have species-level biomass data at the time of this analysis. Thus, fishes that were clearly identified to the species level in creel or logbook data were assigned trophic scores using values published from the WorldFish online database Fishbase.org (2000). Weighted family trophic scores were then calculated based on the relative abundance of each species in the family catch record for a given area. Where species information was not available for a given family, the trophic values for all species known to occur in that area were averaged.

Once family trophic scores had been derived, a single 'reef fish' trophic score for the population of all reef fishes (i.e. all families) in a given area was estimated by calculating the weighted average of the respective family trophic scores. 'Reef fish' scores were weighted using two separate measure of relative abundance: biomass data; and expanded catch data. (It was possible to use biomass data here because family-level data were available.) Overall, catch data was available for more families than was biomass data; however, only those eleven coral reef families common to both the catch and the biomass data were used to estimate 'reef fish' scores to enable comparisons between the two methodologies.

Catch in Local versus Federal Waters

We also conducted analyses of catch in local (state or territory) versus Federal waters. For American Samoa and CNMI the closest available proxies were shore- and boat-based catch data, respectively (i.e. shore-based catch was used as a proxy for catch in local waters and boat-based catch was used as a proxy for catch in federal waters). Guam also uses the 'boat' and 'shore' designations in its creel surveys, but in that case boat catch is further divided into local boat-based and federal boat-based catch. Hence, local catch in Guam is the sum of local boat-based and shore-based catch, whereas federal catch uses only federal-boat data. Hawai'i logbook data include the location of the catch, so federal and local catch are reported directly for that archipelago.

Results:

In two of three archipelagos (American Samoa and Mariana), the taxa were broadly distributed in terms of yearly catch frequency (Figs. 1 A-C). Only in the Hawaiian Archipelago (Fig. 1 D) were a clear majority of taxa found in every single year of the catch record (57 of 100 taxa), although American Samoa and Guam also had modes equivalent to their full records. In CNMI, there were more taxa that were caught in just five years (half the record) than there were taxa caught every single year. As previously mentioned, taxa found in less than half of the catch record for a given area were excluded from analysis therein.

In terms of catch record diversity, Guam had the most taxa analyzed and many more fish identified to the species level than any other region (Table 2). The Hawaiian Archipelago had the highest family richness. American Samoa and CNMI had similar numbers of families and taxa in their catch records. (Many fish in those areas were vaguely identified, usually only to the family level.)

CV values show significant variability in catch for the ten most abundant species (ranked by total catch weight) in each region (Table 3). In American Samoa and CNMI, CV over the past five years was > 0.5 (indicating that standard deviation was more than half of the mean) for eight of ten species, and in Guam seven of ten species were > 0.5. American Samoa also had four species with CV > 1 in the past five years and seven species with CV > 1 over the total record. The Hawaiian Archipelago had lower species catch variability; only one species there had CV > 0.5 over the past five years (although a majority had CV > 0.5 over the whole record).

Catch variability was less pronounced when examining whole families, although values in American Samoa were still significant (Table 4). In that area, CV was > 0.5 for a majority of families for both the past five years and the whole record, and multiple families had CV > 1. The two other archipelagos typically had CV values < 0.5.

Estimates of the percentage of biomass exploited were minor for most reef fish families at most locations (Table 5). Carangids, kyphosids and lethrinids tended to have the highest exploitation rates; they were the only families to have exploitation > 50% at some locations. Most other families had low to moderate exploitation rates, ranging from 22.5 % (mullids around Guam Island) to less than 1% (numerous other families in multiple locations).

By location, the percentage of exploited biomass for most families was highest in Guam, particularly when total Guam catches were compared with biomass estimates from Guam Island only. Eleven of the twelve fish categories—nine families and the 'other' category for miscellaneous reef fish—had their highest estimated exploitation rates around Guam. However, when Guam catch was compared with whole archipelagic biomass, the percentage exploited was significantly lower. Total carangid catch in Guam, for example, was nearly 160.3% of estimated biomass; however, it was only 7.9% of archipelagic biomass. In CNMI, exploitation rates for lethrinids (22.5%) and carangids (67.4%) were high in the area encompassing Rota to Farallon de Medinilla (FDM).

Exploitation in American Samoa was low for most families but at the island of Tutuila was moderate (> 10%) for carangids and kyphosids.

The Hawaiian Archipelago had uniformly low values, even when the NWHI were excluded. Only two families in MHI, Carangidae and Holocentridae, had harvest rates greater than 1%.

When total reef fish catch (all families) was compared against total biomass, the percentage exploited was typically less than 5% for most locations. Two locations in the Mariana Archipelago—Guam Island; and Guam Island and Banks—exceeded 5%. Guam Island had the highest total exploitation at 8.8%. Reef fish catch from Guam, however, was only 1.3% of archipelagic biomass.

When all twelve reef fish categories were used, regression analyses showed significant relationships between catch and biomass for Guam Island and Banks; and all locations in the American Samoa and Hawaiian Archipelagos (Table 6). The relationship was particularly strong in MHI (P-value < 0.01). When carangid, kyphosid and lethrinid biomasses were removed—on account of the difficulty of visually estimating the biomass of those families—all locations in all three archipelagos showed a significant relationship between these two parameters. The proportions of total catch and total biomass represented by each family are represented graphically in Figs. 3 A-I.

Estimates of family trophic score were fairly consistent between archipelagos (Table 7). Carcharhinids had the highest single family trophic score (4.23 in Hawai'i) and also the highest mean archipelagic score. Scarids had a score of 2.00 in all regions, the lowest individual and mean values for all families.

Overall 'reef fish' trophic scores were typically larger when calculated with expanded catch data than with biomass estimates (Table 8). The one exception was the Hawaiian Archipelago, but the difference between the two values there was small (0.09). American Samoa had the largest difference between the two methodologies (catch-based score was 0.8 greater than biomass-based score).

Expanded catch data appear to indicate a declining reef fish fishery in American Samoa, Guam and the NWHI (Figs. 2A, C, and E); and a mostly flat trend in CNMI, MHI and the Mariana Archipelago (Figs. 2B, D, and F). For the former three areas, recent mean catches are lower than mean catch over the whole record, whereas they mostly comparable for the latter three areas. Information on local versus federal catch for species and families are provided in the attached appendices.

Discussion

Of particular significance to the task of creating ACLs are three general results: (1) highly variable catch in species with the highest overall catches; (2) low variability in catch for the most frequently caught families; and (3) moderate to low exploitation for most coral reef fish families in most areas.

Regarding the variability of species catch, it must first be reiterated that at the time of this analysis we were only able to acquire 'raw' species-level data, i.e. they were not standardized for survey effort; hence, they are inherently more variable than family-level data. Nonetheless, the high CV values in the predominantly caught reef fish species suggest that implementing species-level ACLs for coral reef fishes could prove exceedingly difficult. For instance, in CNMI the species with the highest total catch, *Lethrinus rubrioperuclatus*, had a CV of 0.9—the standard deviation of its catch is nearly equivalent to its mean catch—over the past five years. In American Samoa, *Lutjanus kasmira* had the highest overall catch. The standard deviation of its catch over the past five years actually exceeds the mean catch (CV > 1) over the same period. WPRFMC and NFMS are currently working to expand (standardize) species-level data by next year, which may reveal lower species CV values than presented here.

Lower variability in family catches may reflect the difficulty of identifying fish to the species level in creel surveys. During the surveys, fish that cannot be identified to the species level are assigned to a broader taxonomic grouping (Hamm and Tao, 2010), such as a genus or family. Observers differ in their fish identification ability, and presumably a less experienced observer will have more difficulty detecting the subtle morphological differences that separate some species. Thus, greater precision in family catch estimates should be expected. Since ACL monitoring will presumably rely heavily on fishery dependent data, family-level ACLs should be easier to implement than species-level ACLs.

However, given the low exploitation values for most reef fish families, even setting ACLs at the family level may prove excessive. Our analysis found that only four families in had > 20% of their biomass harvested in any area. One of these families, mullidae, had exploitation > 20% in only one area (Guam Island: 22.54%); the other three families—carangidae, kyphosidae, and lethrinidae—are either known or suspected to be underrepresented in visual surveys.

Jennings and Polunin (1995) concluded that underwater visual surveys grossly underestimated the amount of exploitable lethrinid biomass in Fiji, and Kulbicki (1988) suggested the same for *Lethrinus* spp. based on a poor relationship between observed density and catch per unit effort (CPUE). Watson et al. (2007a) found that *Kyphosus sydneyanus* kept greater distances from stereo-video cameras when SCUBA divers were present, implying that SCUBA visual surveys would produce inaccurate population estimates for that species; similarly, Denny and Babcock (2004) observed *Pseudocaranx dentex* when using baited underwater cameras but did not observe the species in more than 16 SCUBA visual censuses in same areas. Kulbicki (1988), working in New Caledonia, did not record any carangids in more than 45 visual surveys, despite the presence of several tons worth in the catch record. If the RAMP surveys analyzed here underestimated biomass for these families, the corresponding estimates of percentage exploited would appear artificially high.

Underestimates in coral reef visual survey are also likely to occur when a given taxon has significant deep-water distributions, as is the case for carangids (Williams, 2010), because surveys are typically limited to safe diving depths. RAMP surveys are limited to 30 m, but Randall (2007) notes that *Caranx lugubris* is usually seen in more than 30 m of water, and that many other carangids occur well below depths of 100 m. *C. sexfasciatus* occurs in deep channels up to 96 m and *C. lugubris* is known up to 354 m (Honebrink, 2000). For several other species,

there are ontological shifts in depth distribution, with adults preferring deeper waters (Meyers, 1991). Adult *Alectis ciliaris*, for example, usually occur at depths of 60 m or more, well beyond SCUBA survey depths. To further complicate matters, the vertical distribution of a given species may depend on the season, with some species schooling in deep waters during spawning seasons (Watson et al., 2007b). NMFS CRED continues to develop methodologies to account for deep water distributions below current survey depths (Williams, 2010), and the authors of this study advises additional exploitation rate analyses should recalibrated biomass estimates become available.

One final note regarding survey methodology as it relates to our exploitation estimates: It should be reiterated that NOAA CRED did not actually record carangids or kyphosids for the Guam region—apparently they were not seen there. Given that these families were both regularly caught in Guam from 2005-2008, we decided to crudely estimate their biomass there by using the average biomass density of those families over hard-bottom habitats in CNMI. A more refined methodology might produce significantly different biomass estimates, with the commensurate effect on estimates of the percentage exploited. It is somewhat telling that not a single kyphosid was seen in Guam visual surveys, yet the estimated annual kyphosid catch there was > 3,100 kg from 2005-2008.

Despite the aforementioned difficulties associated with estimating biomass for at least three of the twelve reef fish categories used, this analysis showed significant relationships between mean annual catch and estimated biomass for most areas. Furthermore, if carangids, kyphosids, and lethrnids are excluded from regression analyses, strong relationships between catch and estimated biomass emerge in areas where there previously were none. In CNMI, for example, removing these families caused P-values for Rota to FDM to drop from 0.85 to 0.003, and from 0.91 to 0.01 for Rota to the Northern Islands. On an archipelagic scale, P-values for the Marianas fell from 0.13 to 0.003. (P-values < 0.05 indicate statistical significance.) The apparent dependence of catch on biomass is intuitive and corroborates work by Kublicki et al. (1994) where catch (in this case, CPUE) had the highest correlation with biomass of all parameters analyzed in an experimental fishery in Oueva, New Caledonia.

With respect to overall 'reef fish' trophic scores, the fact that catch-based scores were consistently higher than biomass-based scores supports the premise that fishermen are targeting larger fish higher in the food chain. The only exception to this pattern was for the entire Hawaiian Archipelago, but that score may be skewed downward by limited catches in the NWHI, where high-trophic level fishes are present in great numbers. If significant fishing were still occurring in NWHI, the catch-based trophic score for the archipelago as a whole would likely be higher. After the Hawaiian Archipelago, the next highest biomass-based trophic scores were for the Mariana Archipelago and CNMI, respectively. Both of those regions include extensive island networks where fishing pressure is relatively light (WPRFMC, 2009b), resulting in larger biomasses of apex predators and thus higher trophic scores. In summary, estimated 'reef fish' trophic scores are in accord with the known ecological status of the areas in question, suggesting this metric may have some utility in monitoring the impact of ACLs—although clearly more work is needed to refine the methodology.

Fishery resources in the Western Pacific Region have frequently been reported as overexploited, often on the basis that apex predator abundance, size, or biomass are low in underwater surveys (Friedlander and Demartini, 2002; Craig et al., 2005). Taken as whole, this study suggests that coral reef fishery resources in the Western Pacific Region may not be overexploited, but rather, that localized depletion may be occurring in areas where fishing pressure is heavy. Fishing pressure can vary significantly between islands in the same archipelago. In MHI, for example, more than 63% of all reef fish landings from 2005-2009 occurred around the island O'ahu (Fig. 4), easily the most populated and urbanized island in the Hawaiian Archipelago.

There have been previous studies that documented low to moderate exploitation (Craig et al., 2008; see also Table 9) or declines in fishing mortality (Sabater and Caroll, 2009). Table 9 presents several other studies that found low to moderate fishing exploitation in the region, although most of these are not peer reviewed. Interestingly, it is not uncommon to record higher total mortality in un-fished areas than in paired fished areas (Langston et al., 2009; Longnecker et al., 2008c). Such results imply negative fishing mortality and are thus logically invalid; however, it is not illogical that total mortality for certain prey species would be higher in unfished areas because fishing can remove top-predators that have the capacity to significantly structure reef communities (Babcock et al. 1999).

There are, however, several important caveats to the exploitation results presented here. Firstly, several areas in the Western Pacific Region have shown notable declines in their reef fisheries since monitoring began (Figs. 2 A and C). These declines could indicate reduced productivity (CPUE) in those areas; alternatively, they may simply be the result of reduced fishing effort over time, which has been documented in some parts of the region. In American Samoa, Sabater and Caroll (2009) noted generally low participation in reef fisheries, a non-significant decline in boat-based effort and a significant decrease over the past three decades in shore-based fishing effort. Likewise, Saucerman (1995) noted a downward trend in reef fishing effort there in the early 1990s. These changes were attributed to shifting socioeconomic conditions—many American Samoans now have wage work—and natural disturbances, including several severe hurricanes, crown-of-thorns starfish outbreaks, and coral bleaching events. Nonetheless, the perception of most village elders, at least in the outer islands of Ofu and Olosega, is that fishing is good and similar to what it was in previous decades (Craig et al., 2008).

In Guam, effort has become restricted by reduced shoreline accessibility: Although there are 108 km2 of coral reef area found within three miles of the island of Guam (Burdick et al., 2008), a personal communication from WPRFMC Guam Island Coordinator suggests that 50% of that coastal reef area is now inaccessible by land due to military and other restrictions and a further 25% of coral reef area has only very limited shoreline access. (Note that these reef areas may, however, be accessible by boat.) The impact on reef fishing is twofold: firstly, it creates large de-facto marine protected areas (MPAs) which may provide some replenishment for some coral reef species; secondly, it concentrates fishing into smaller areas potentially leading to localized depletion.

In Hawai'i, the number of recreational saltwater fishing days and anglers have declined significantly from 1991-2006 (Table 10); there are also fewer Hawai'i residents fishing. This may indicate less fishing pressure on MHI coral reefs, although more information on CPUE would be needed to confirm this. Meanwhile, fishing in the NWHI has halted following the area's declaration as a marine national monument.

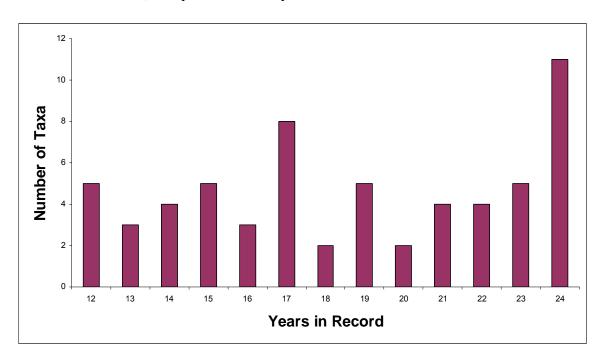
In the Hawaiian Archipelago, another caveat to low exploitation is that this analysis only used commercial data when in fact recreational and subsistence catch is likely equal to or greater than inshore commercial fisheries (Friedlander et al., 2008). (For other archipelagos studied here, recreational and subsistence catch data are captured by creel surveys.) Subsequent to our initial analysis, we were able to obtain recreational catch data (NOAA NMFS Office of Science and Technology, 2010) for Hawai'i for eight of the eleven families that we analyzed. The inclusion of these data only significantly affected exploitation for carangids. In MHI, carangid exploitation increased from 3.07 % to 61.31%. However, in the greater Hawaiian Archipelago, exploitation for carangids was still very low (< 1%), probably on account of the large biomass of apex predators in NWHI (Friedlander and Demartini, 2002).

Additionally, our analysis did not include catch from the Hawaiian aquarium fishery, which is on the order of hundreds of thousands of fish per year in MHI (Friedlander et al., 2008).

One final shortcoming of this study is that patterns in fish size were not analyzed. Fish size can have a major influence on the reproductive potential of a given stock and thus its long-term ecological health (Berkeley et al. 2004; Scott et al. 2006). Thus, it is possible that while the percentage of biomass exploited for most families remains relatively low, mean fish size for some populations may have declined significantly due to fishing pressure. Friedlander and DeMartini (2002) found significant differences in size, age structure and trophic guild between carangids, carcharhinids and other apex predators in the largely un-fished NWHI versus the heavily fished MHI. Had fish lengths been included in the catch data analyzed here, it might have been possible to estimate the size or age structures for some reef fish populations. Such an analysis could greatly augment the explanatory power of this study.

References

- Babcock, R.C., Kelly, S., Shears, N.T., Walker, J.W., and Willis, T.J. 1999. Changes in community structure in temperate marine reserves. Marine Ecology Progress Series. 189:135-134.
- Berkeley, S.A., Hixon, M.A., Larson, R.J., and Love, M.S. 2004. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries. 29 (8): 23-32.
- Burdick, D., Brown, V., Asher, J., Caballes, C., Gawel, M, Goldman, L., Hall, A., Kenyon, J., Leberer, T., Lundblad, E., McIlwain, J., Miller, J., Minton, D., Nadon, M., Pioppi, N., Raymundo, L., Richards, B., Schroeder, R., Schupp, P., Smith, E., and Zgliczynski, B. 2008. Status of the coral reef ecosystems of Guam. Bureau of Statistics and Plans, Guam Coastal Management Program. iv + 76 pp.
- Craig, P., Green, A., and Tuilagi, F. 2008. Subsistence harvest of coral reef resources in the outer islands of American Samoa: Modern, historic, and prehistoric catches. Fisheries research. 89: 230-240.
- Craig, P., DiDonato, G., Fenner, D., and Hawkins, C. 2005. The State of Coral Reef Ecosystems of American Samoa. In: *The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States:* 2005. (J. Waddell, ed., pp. 312-337). Technical Memorandum NOS NCCOSS11. NOAAA/NCCOS Center for Coastal Monitoring and assessments Biogeography Team. Silver spring, MD.
- Craig, P., Choat, J.H., Axe, L.M., and Saucerman, S. 1997. Population biology and harvest of the coral reef surgeonfish *Acanthurus lineatus* in American Samoa. Fishery Bulletin. 95: 680-693.
- Denny, C.M. and Babcock, R.C. 2004. Do partial marine reserves protect reef fish assemblages? Biological Conservation. 116: 119-129.
- Eble, J.A., Langston, R., and Bowen, B.W. 2009. Growth and reproduction of Hawaiian Kala, *Naso unicornis*. Fisheries Local Action Strategy Division of Aquatic Resources Final Report.
- FishBase. (2000). "FishBase." from http://www.fishbase.org/home.htm.
- Friedlander, A., Aeby, G., Brown, E., Clark, A., Coles, S., Dollar, S., Hunter, C., Jokiel, P., Smith, J., Walsh, B., Williams, I., and Wiltse, W. 2008. "The state of coral reef ecosystems of the main Hawaiian Islands." *The state of coral reef ecosystems of the United States and Pacific freely associated states*: 219–257.
- Friedlander, A. and DeMartini, M. 2002. Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian Islands: the effects of fishing down apex predators. Marine Ecology Progress Series. 230: 253-264.


- Hamm, D. and Tao, P. 2010. Annual species landings and occurrence data for U.S. Pacific island areas. NOAA Pacific Islands Fisheries Center Internal Report IR-10-016.
- Hoenig, J.M. 1983. Empirical use of longevity data to estimate mortality rates. Fishery bulletin. 82(1): 1983.
- Honebrink, R. 200. A review of the biology of the family Carangidae, with emphasis on species found in Hawaiian waters. Division of Aquatic Resources (DAR) Technical Report 20-01.
- Hawaii Division of Aquatic Resources (HDAR). 2010. Licenses and permits. Accessed September 13, 2010. http://hawaii.gov/dlnr/dar/licenses permits.html
- Jennings, S. and N.V.C. Polunin. 1995. Biased underwater visual census biomass estimates for target-species in tropical fisheries. Journal of Fish Biology. 47: 733-736.
- Kulbicki, M., Bargibant, G., Menou, J.L., Mou Tham, G., Thollot, P., Wantiez, L., and Williams, J. 1994. Evaluation des resources en poisons du lagon d'Ouvea. Conventions Sceinces de la Mer
- Kulbicki, M. 1988. Correlation between catch data from bottom longlines and fish censures in the SW lagoon of New Caledonia. Proceeding of the 6th International Coral Reef Symposium, Australia, 1988, Vol. 2.
- Langston, R., Longnecker, K., and Claisee, J. 2009. Growth, mortality and reproduction of kole, *Ctenochaetus strigosus*. Fisheries Local Action Strategy Division of Aquatic Resources Final Report.
- Longnecker, K., Langston, R., and Barrett, B. 2008a. A compendium of life history information for some exploited Hawaiian reef fishes. Bishop Museum Technical Report No. 44.
- Longnecker, K., Langston, R., and Eble, J. 2008b. Growth, mortality and reproduction of manini, *Acanthurus triostegus sanvicensis*. Fisheries Local Action Strategy Division of Aquatic Resources Final Report No. 2008-006.
- Longnecker, K., and Langston, R. 2008c. A rapid low-cost technique for describing the population structure of reef fishes. Final Report for Hawai'i Coral Reef Initiative—Research Program No. 2008-002.
- McIlwain, J.L. and Taylor, B.M. 2009. Parrotfish population dynamics from the Marianas Islands, with a description of the demographic and reproductive characteristics of *Chlorurus sordidus*. Draft Final Report to the Western Pacific Regional Fisheries Management Council. University of Guam Marine Lab, Mangilao, Guam.

- Myers, R.F. 1991. *Micronesian reef fishes: a Practical Guide to the Identification of the Coral Reef Fishes of the Tropical Central and Western pacific*. Coral Graphics. Barrigada, Territory of Guam, United States of America.
- National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service (NMFS) Office of Science and Technology. 2010. Recreational Fisheries. Accessed October 4, 2010. http://www.st.nmfs.noaa.gov/st1/recreational/index.html
- Randall, J.E. 2007. *Reef and Shore Fishes of the Hawaiian Islands*. Sea Grant College Program. University of Hawai'i, Honolulu.
- Sabater, M.G. and Carroll, B.P. 2009. Trends in reef fish population and associated fishery after three millennia of resource utilization and a century of socio-economic changes in American Samoa. Reviews in Fisheries Science. 17 (3): 318-335.
- Saucerman, S. 1995. Assessing the management needs of a coral reef fishery in decline. SPC/Inshore Fish. Mgmt./BP 18. 1 June 1995.
- Scott, B.E., Marteinsdottir, G., Begg, G.A., Wright P.J., and Kjesbu, O.S. 2006. Effects of population size/age structure, condition and temporal dynamics of spawning on reproductive output in Atlantic cod (*Gadus morhua*). Ecological Modeling/ 191: 383-415.
- Taylor, B.M. 2008. The effects of protected area management on the population biology and reproduction of *Lethrinus harak* from the inshore waters of Guam. Master's Thesis. University of Guam, December 2008.
- U.S. Department of the Interior, Fish and Wildlife Service, and U.S. Department of Commerce, U.S.Census Bureau. 2006. National Survey of Fishing, Hunting, and Wildlife-Associated Recreation.
- U.S. Department of the Interior, Fish and Wildlife Service, and U.S. Department of Commerce, U.S.Census Bureau. 2001. National Survey of Fishing, Hunting, and Wildlife-Associated Recreation.
- U.S. Department of the Interior, Fish and Wildlife Service, and U.S. Department of Commerce, U.S.Census Bureau. 1996. National Survey of Fishing, Hunting, and Wildlife-Associated Recreation.
- U.S. Department of the Interior, Fish and Wildlife Service, and U.S. Department of Commerce, U.S.Census Bureau. 1991. National Survey of Fishing, Hunting, and Wildlife-Associated Recreation.
- Watson, D.L. and Harvey, E.S. 2007a. Behaviour of temperate and sub-tropical reef fishes towards a stationary SCUBA diver. Marine and Freshwater Behaviour and Physiology 40(2): 85-103.

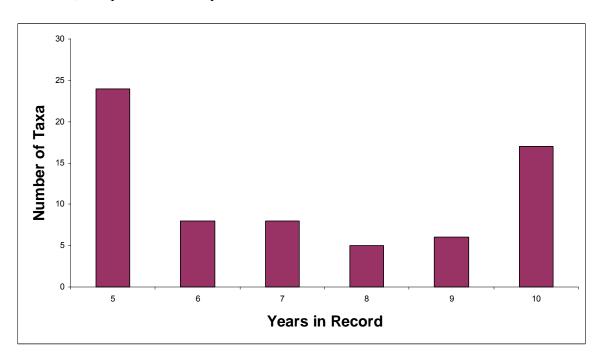
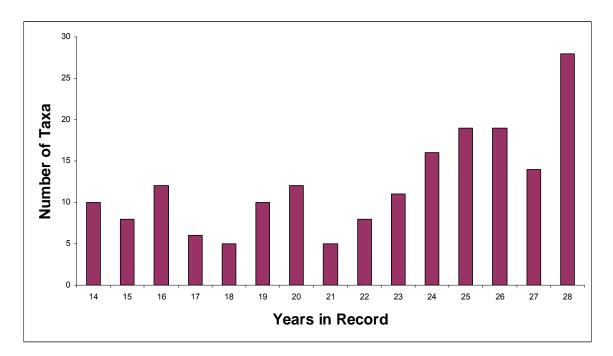

- Watson, D.L., Harvey, E.S., Kendrick, G.A., Nardi, K., and Anderson, M.J. 2007b. Protection from fishing alters the species composition of fish assemblages in a temperate-tropical transition zone.
- Williams, I. 2010. U.S. Pacific Reef Fish Estimates Based on Visual Survey Data. NOAA Pacific Islands Fisheries Science Center Internal Report IR-10-024.
- Witherell, D. and P. Dalzell (editors). 2009. First National Meeting of the Regional Fishery Management Councils' Scientific and Statistical Committees. Report of a Workshop on Developing Best Practices for SSCs. Western Pacific Regional Fishery Management Council, Honolulu, Hawaii, November 12-14, 2008.
- WPRFMC (Western Pacific Regional Fishery Management Council). 2009a. Fishery Ecosystem Plan for the Hawaii Archipelago. Western Pacific Regional Fishery Management Council, Honolulu, HI.
- WPRFMC (Western Pacific Regional Fishery Management Council). 2009b. Fishery Ecosystem Plan for the Mariana Archipelago. Western Pacific Regional Fishery Management Council, Honolulu, HI.

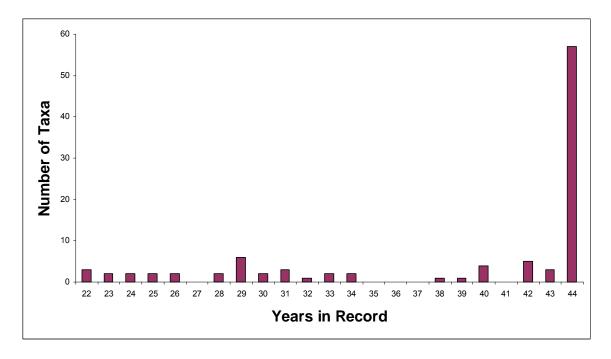
Fig. 1. Frequency of taxa in catch records.

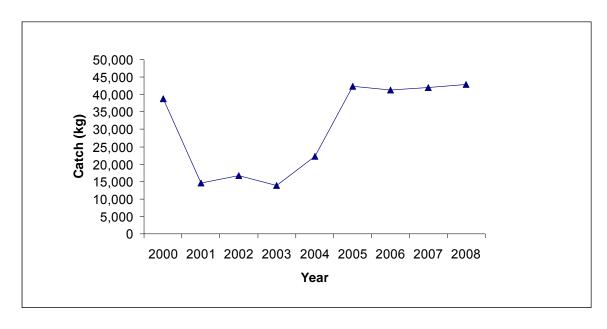

A. American Samoa, Sample Creel Survey Data.

B. CNMI, Sample Creel Survey Data.

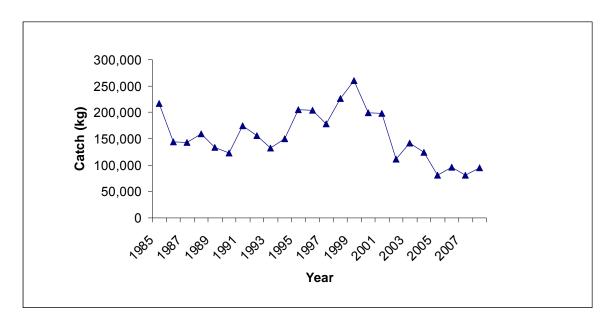
C. Guam, Sample Creel Survey Data.

D. Hawaiian Archipelago, Logbook Data.

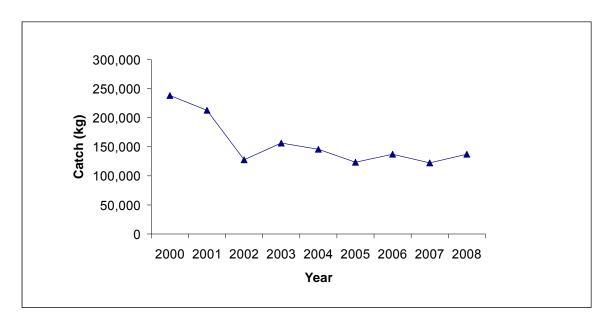



Fig. 2. Total reef fish catch (kg) by archipelago/location.

A. American Samoa. (Source: Expanded creel survey data.)

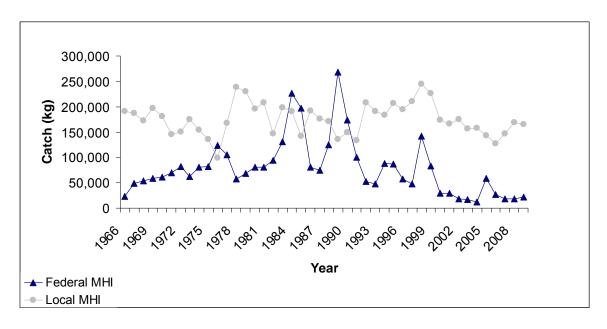

	2004-2008	1990-2008
Mean Catch (kg)	30,823.7	41,260.8
Standard Deviation	10,693.1	11,927.2
Confidence Value	9,372.8	5,363.0
Upper Bound CI	40,196.5	46,623.8
Lower Bound CI	21,451.0	35,897.8

B. CNMI. (Source: Expanded creel survey data.)


	2005-2008	2000-2008
Mean Catch (kg)	42,108.4	30,502.5
Standard Deviation	664.2	13,243.9
Confidence Value	650.9	8,652.5
Upper Bound CI	42,759.3	39,155.0
Lower Bound CI	41,457.5	21,850.0

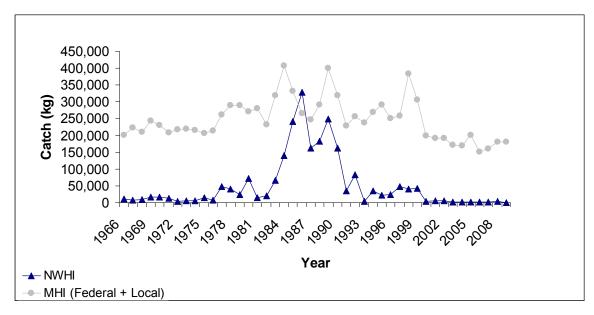
C. Guam. (Source: Expanded creel survey data.)

	2005-2008	1985-2008
Mean Catch (kg)	Mean Catch (kg) 88,017.3 155,5	
Standard Deviation	8,361.8	48,114.9
Confidence Value	8,194.4	19,249.6
Upper Bound CI	96,211.7	174,781.9
Lower Bound CI	79,822.9	136,282.6


D. Combined Mariana Archipelago. (Source: Expanded creel survey data.)

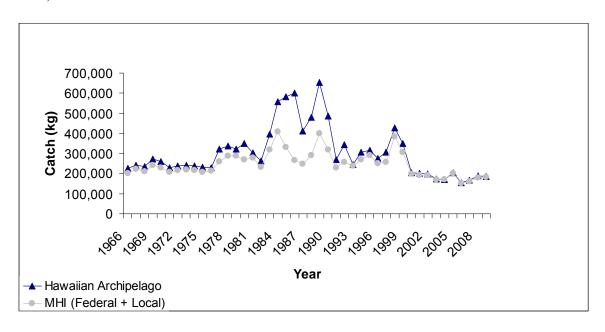
	2005-2008	2000-2008
Mean Catch (kg) 130,125.7		155,726.2
Standard Deviation	8,308.5	41,555.3
Confidence Value	8,142.2	27,149.0
Upper Bound CI	138,267.9	182,875.1
Lower Bound CI	121,983.5	128,577.2

Note: CNMI shore-based surveys date from 2005 only.


E. Main Hawaiian Islands (MHI). (Source: Commercial marine license logbook data.)

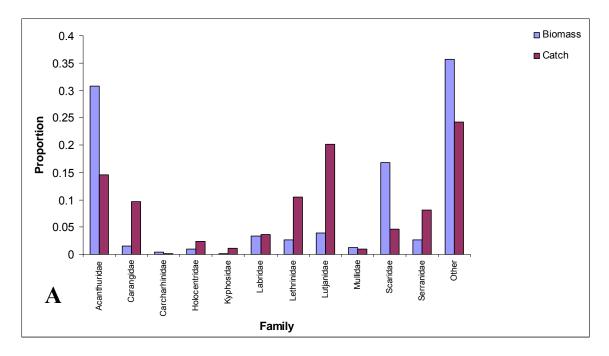
2005-2009	5-2009 Federal MHI	
Mean Catch (kg)	28,808	150,594
Standard Deviation	17,043	17,046
Confidence Value	14,939	14,941
Upper Bound CI	43,746	165,535
Lower Bound CI	13,869	135,653

Total Record (1966-2009)	Federal MHI	Local MHI
Mean Catch (kg)	78,836	175,469
Standard Deviation	55,565	31,317
Confidence Value	16,418	9,253
Upper Bound CI	95,254	184,723
Lower Bound CI	62,418	166,216


F. MHI versus NWHI. (Source: Commercial marine license logbook data.)

2005-2009	NWHI	NWHI MHI (Federal + Local)	
Mean Catch (kg)	1,727	175,218	
Standard Deviation	1,099	19,247	
Confidence Value	963	16,870	
Upper Bound CI	2,690 192,088		
Lower Bound CI	763	158,348	
Total Decord (1066, 2000)	NIWITI	MIII (Fadaral + Lagal)	

Total Record (1966-2009)	NWHI	MHI (Federal + Local)		
Mean Catch (kg)	50,502	247,155		
Standard Deviation	77,028	60,634		
Confidence Value	22,760	17,916		
Upper Bound CI	73,262	265,071		
Lower Bound CI	27,742	229,239		


F. MHI versus Hawaiian Archipelago catches. (Source: Commercial marine license logbook data.)

Last Five Years	Hawaiian Archipelago	MHI (Federal + Local)
Mean Catch (kg)	180,404	175,218
Standard Deviation	18,943	19,247
Confidence Value	16,604	16,870
Upper Bound CI	197,008	192,088
Lower Bound CI	163,800	158,348

Total Record	Hawaiian Archipelago	MHI (Federal + Local)
Mean Catch (kg)	304,539	247,155
Standard Deviation	123,567	60,634
Confidence Value	36,511	17,916
Upper Bound CI	341,050	265,071
Lower Bound CI	268,028	229,239

Figure 3. Proportion of archipelagic/local biomass and catch for reef fish families using biomass from: (A) Tutuila; (B) Tutuila, Tau, Ofu, Olosega; (C) Rota to Farallon de Medinilla; (D) Rota to the Northern Islands; (E) Guam Island; (F) Guam Island and Banks; (G)Mariana Archipelago; (H) Main Hawaiian Islands (MHI); and (I) Hawaiian Archipelago.

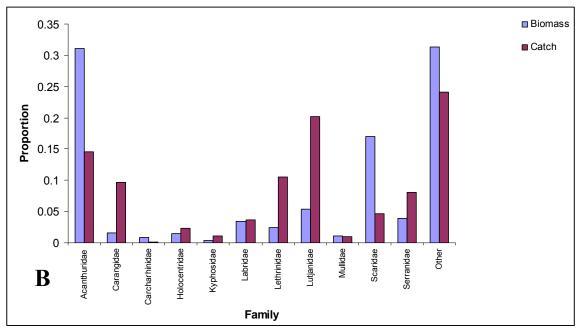
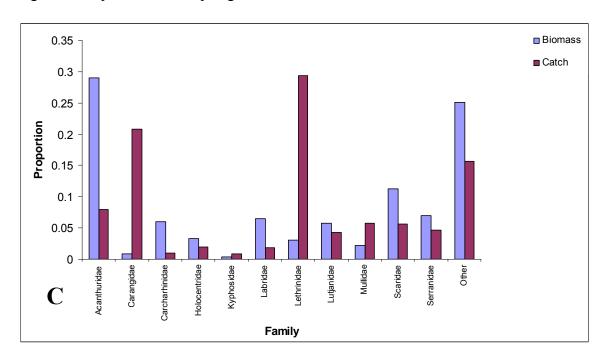



Figure 3. Proportion of archipelagic/local biomass or catch for reef fish families.

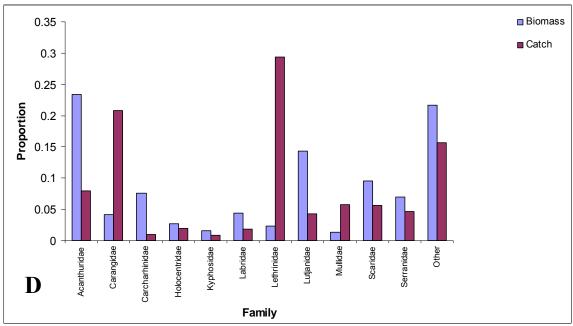
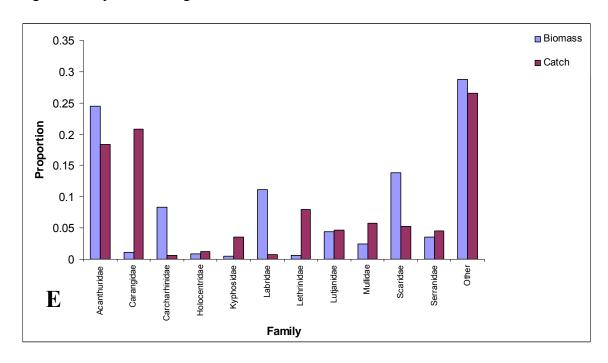



Figure 3. Proportion of regional biomass or catch for reef fish families.

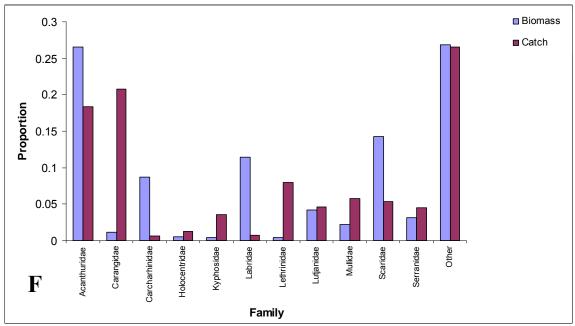
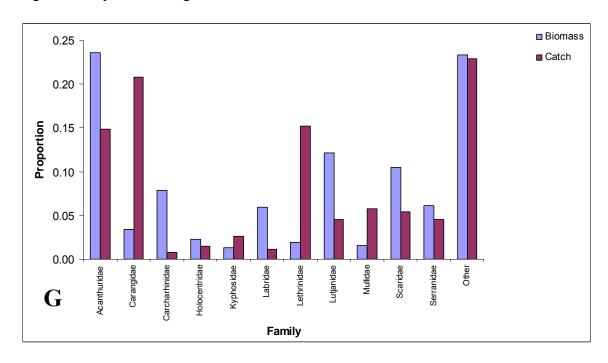
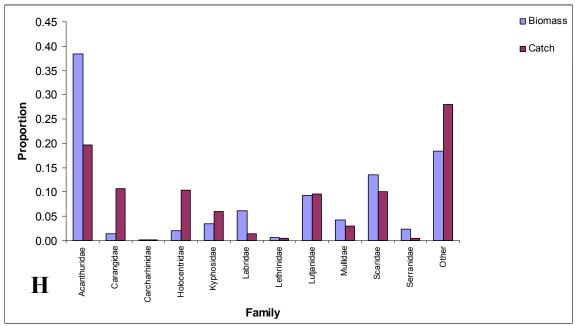




Figure 3. Proportion of regional biomass or catch for reef fish families.

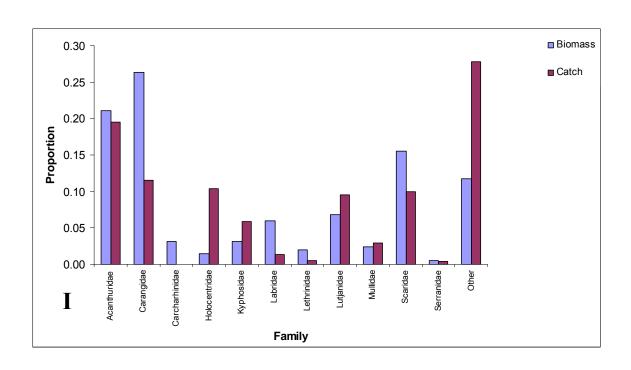
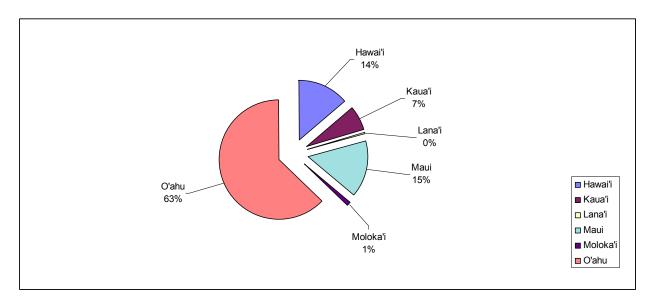



Figure 4. Graphical representation of the percentage of total reef fish caught in MHI (2005-2009) by island landed.

Appendix C U.S. Pacific Reef Fish Biomass Estimates Based on Visual Survey Data

Ivor Williams Pacific Islands Fisheries Science Center

The Pacific Islands Fisheries Science Center's Coral Reef Ecosystem Division (CRED) has been working with staff of the NOAA Fisheries Pacific Islands Regional Office (PIRO) and the Western Pacific Regional Fisheries Management Council to assess the applicability of visual survey data collected during CRED's Pacific RAMP expeditions to the establishment of acceptable catch limits (ACLs) for Pacific coral reef fishes. This report describes how survey data were used to estimate reef fish biomass for U.S. Pacific islands. Estimates of biomass are a key component of fishery-independent methods of ACL determination.

Reef Assessment and Monitoring Program (RAMP) biological surveys, and associated habitat and bathymetric mapping operations, are conducted on a biennial basis at 55 US Pacific Islands and cover the majority of US coral reef areas in the Pacific. Survey methods are consistent across all locations visited, and include both small-scale (belt or stationary point count) and large-scale (towed-diver) fish and benthic surveys. Since mid-2007, survey design for small-s ale surveys has been based on a stratified random sampling design within 0-30 m hard-bottom habitats. That data set (i.e., all RAMP cruises since July 2007) is the one used for all biomass density estimates given in this document.

As requested by staff of PIRO and the Council, this document provides estimates of population sizes (biomass) for coral reef fishes in 0-30 m hardbottom habitats. At each island or atoll, population estimates for each habitat stratum were generated by multiplying biomass density from RAMP surveys conducted in the previous three years (i.e., between July 2007 and June 2010) by the estimated area of the habitat stratum. Fishes were grouped by the Coral Reed Ecosystem Management Units (CREMUS) used in federal coral reef fishery management plans for the US Pacific (Table 1).

Table 1. Notes on potential for application of CRED RAMP data to coral reef species complexes

CREMUS Grouping	Comments
Acanthuridae (Surgeonfish)	Highly diverse group. Commonly represented in CRED RAMP data.
Atulai /Akule (scad)	Visual survey data likely to be very poor - Heavily clumped, highly seasonal,
	surface/midwater/pelagic
Jacks (Carangidae) excl. scad	Significant deep water populations of most jack species.
Squirrelfish/soldierfish	Nocturnally and diurnally cryptic, hence daytime visual surveys likely to underestimate
(Holocentridae)	population size.
Rudderfish/Drummers (Kyphoside)	Heavily clumped distributions.
Wrasse (Labridae) excluding	Highly diverse group, including many small species (max size < 10 cm) that are
napolean wrasse	lightly-targeted.
Emperors(Lethrinidae)	Previous studies indicate that lethrinids can be under-represented in visual surveys (Jennings andPolunin 1995)
Snappers (Lutjanidae)	Several lutjanid species have wide depth ranges (including important target species
	such as <i>L.kasmira, A. virescens</i>). It may therefore be difficult to meaningfully estimate
	population status from visual surveys in 0-30 m depths.
Mullet (Mugilidae)	CRED surveys of hardbottom reef areas do not cover habitats preferred by mullet.
Goatfish (Mullidae)	Commonly encountered, but heavily clumped daytime distributions.
Parrotfish (Scaridae) excluding	Commonly recorded during visual surveys.
Bumphead parrotfish	
Groupers (Serranidae)	Potential for substantial deeper water populations of some species, behavioral issues affecting visual survey data.
Rabbitfish (Siganidae)	Major component of catch at some locations, but are rarely encountered during CRED visual surveys
Misc. Reef-fish	Not clear which species are within this group.
Misc. Shallow Bottomfish	Which species? Aprion virescens? We have some (but limited) data on that species
Misc. Bottomfish	Beyond REA range
Other Finfish	Not clear which species these are, or what scope for management of such a loosely
	defined group. Unlikely that CRED data would be relevant for non-reef species.
Bumphead Parrotfish	Limited data (v rare, somewhat clumped distributions). Towed diver survey data likely
	to be preferable to REA data.
Napoleon Wrasse	Limited data – rare enough. Towed diver survey data likely to be preferable to REA data
Reef Sharks	Potential for significant behavioral issues (mobbing in some locations, avoidance in
	others). Deeper populations also an issue. Towed diver data likely to be far preferable.
Crustaceans, Molluscs, Other	Little relevant CRED data
invertebrates	
Algae	CRED data may not be that useful – as is lacking information from shallow – presumably
	targeted –habitats)


Note: Species complexes highlighted in green are those where CRED visual survey data are likely to have most utility. Complexes in orange are those where CRED data is most likely to be useful as relative measures of density rather than absolute values.

General Approach to Biomass Estimation

As describe above, our initial approach has been to derive estimates of population size by extrapolating from visual survey density estimates to total area of suitable habitat. Details and a worked example are given below, but, in brief, calculations are performed per taxon of interest per island and summed per archipelago. CRED survey design is based on stratified random sampling of hardbottom habitat within three depth ranges (0-6 m; 6-18 m; 18- 30 m) and three habitat types (forereef, backreef, lagoon), giving nine potential strata per location. Population totals per island are the sum of estimated populations per habitat-depth strata.

Fish Survey Sampling Design and Data Quality – Example for Rose Atoll, Samoa

Figure 1 shows the habitat-depth survey strata and locations of the twenty seven sites surveyed at Rose Atoll by CRED during the 2008 RAMP cruise. Surveys were allocated among five survey strata found at Rose Atoll: lagoon (6-18 m); backreef (0-6 m); and 3 forereef strata (0-6 m, 6-18 m; and 18-30 m). Other strata at Rose, "reefcrest" and "channel", were not surveyed by CRED in 2008. Note that biomass density estimates given in this document use data from all RAMP surveys conducted by CRED since 2008, i.e. since CRED surveys moved to use of the stationary point count (SPC) method in a stratified random sampling design; for Samoa, data from 2 cruises – 2008 and 2010 – were used. The example below is restricted to 2008 data for simplicity.

Figure 1. Location of fish survey sites at Rose Atoll in 2008 (n=27). Colors correspond to survey strata: dark blue=lagoon 6-18 m; light blue=backreef 0-6 m; green= 0-6 m forereef; yellow=6-18 m forereef; red=18-30 m forereef. Habitat and bathymetric data used to create Figure 1 were generated by the Pacific Islands Benthic Habitat Mapping Center. Since this figure was generated, habitat and depth layers have been improved by integration of data from new additional sources. Areas in white are "softbottom", "unknown", "reef crest", or "channel"

Areas of each habitat stratum and depth zone are shown in Table 2 below. The Rapid Ecological Assessment (REA) fish surveys conducted at each site, including SPC operations, are made over hardbottom. Therefore, extrapolated population estimates are based on the area of hardbottom in each stratum. At some locations, hard/soft GIS layers are lacking or are incomplete. In those cases, total hardbottom habitat for each stratum is derived using an estimate of the proportion of unknown bottom likely to be hardbottom. For example, at Rose Atoll, the 0-6 m backreef stratum consists of 320.4 ha of hardbottom, 7.9 ha of softbottom, and 46.8 ha of unknown bottom type. Hardbottom is therefore 98% of known bottom type in that stratum, and estimated hardbottom is calculated as 320.4 ha (known hardbottom) plus 45.7 ha (=98% of the unknown bottom type in 0-6 m backreef), giving a total of 366.1 ha (Table 2).

The estimated biomass density is then multiplied by habitat area in each stratum to come up with estimated population size (biomass). CRED has not surveyed crest or channel sites, and therefore biomass densities from the most similar habitats are used for those cases (backreef data are used

for crest habitat, forereef data for channel habitat). Populations for each stratum are summed to generate an island total biomass for hardbottom in the 0-30 m range (the CRED survey domain). See example for surgeonfish below (Table 3).

Table 2. Rose Atoll habitat area per survey stratum. Total hardbottom per stratum is the sum of measured hardbottom and estimated hardbottom (area of 'unknown' bottom type multiplied by the % of the known area that is hardbottom).

Habitat	Depth	Hardbottom	Softbottom	Unknown	Hardbottom as	Tot Hardbottom
		(Ha)	(Ha)	Bottom (Ha)	% of Known	(Ha)
Lagoon	0-6 m	5.4	<0.1	-	99%	5.4
	6-18 m	10.1	66.3	-	13%	10.1
	18-30 m	-	140.9	-	0%	-
Backreef	0-6 m	320.4	7.9	46.8	98 %	366.1
	6-18 m	23.2	-	0.8	100%	24.1
	18-30 m	1.1	-	-	100%	1.1
Forereef	0-6 m	6.1		-	100%	6.1
	6-18 m	81.2		1.5	100%	82.7
	18-30 m	15.1		6.3	100%	21.4
Crest	0-6 m	41.9	-	-	100 %	41.9
Channel	0-6 m	0.9	-	-	100 %	0.9
	6-18 m	3.1	-	-	100 %	3.1
	18-30 m	0.7	-	-	100 %	0.7

Worked Example – Estimated Population of Surgeonfish at Rose Atoll (0-30 m hardbottom only)

CRED visual survey data used for population estimates come from stationary point counts, which record all species observed within visually-estimated 7.5 m radius cylinders centered on the diver. SPC counts consist of two components: (i) a five minute species enumeration period in which the diver records codes for all species present within the visual estimated cylinder; and (ii) a series of instantaneous counts in which the survey diver works systematically through their species list, recording the number and size of all individuals of that species, each species being counted as close to instantaneously as possible, i.e., the count for each species is made as much as possible by means of a single quick visual sweep of the entire SPC cylinder. Lengths of fish are also visually estimated. The number and size of individuals per species are converted to biomass estimates using published length-length and length-weight conversion factors (Sudekum, Parrish et al. 1991; Choat and Axe 1996; FishBase 2000; Kulbicki, Guillemot et al. 2005) that are maintained on CRED's survey database. Biomass per survey is converted to biomass per unit area by dividing by the area of the SPC (= π *7.5² m²). Site surveys are always conducted by pairs of divers, generally conducting two SPCs each per survey, therefore each site's average density estimate represents the mean of at least 2, and generally 4, SPCs. Densities from all sites within a depth and habitat stratum are then averaged to derive a mean stratum density that can be extrapolated to estimate population size. The worked example below shows the calculations used to determine an estimate of surgeonfish biomass at Rose Atoll (Table 3) from component strata densities and strata areas. It is important to note that the total population estimate for Rose Atoll — 24,203 kg — is for 0-30 m hardbottom habitats only.

Table 3. Surgeonfish biomass at Rose Atoll habitat and depth strata. Biomass density derived from CRED RAMP visual survey data. Area per habitat/depth strata derived from CRED GIS information. Note. Biomass densities derived from surveys in 2008-2010.

Habitat	(# survey sites)	Depth	Area (m²)	Mean Biomass density (gm ⁻²)	Estimated Biomass (kg)
Lagoon	(2)	0-6 m	53,841	5,35	288
	(4)	6-18 m	100,615	1.79	180
	` '	18-30 m	-	-	-
Backreef	(9)	0-6 m	3,660,856	2.42	8,853
		6-18 m	240,712	2.42 ¹	582
		18-30 m	10,678	2.421	26
Forereef	(13)	0-6 m	60,808	13.00	791
	(19)	6-18 m	827,200	11.79	9,755
	(14)	18-30 m	214,169	10.05	2,153
Crest		0-6 m	419,000	2.421	1,013
Channel		0-6 m	9,294	13.00 ²	121
		6-18 m	31,286	11.79 ²	369
		18-30 m	7,248	10.05 ²	73
				ROSE TOTAL (kg)	24,203

Notes: (1) Backreef shallow density estimate used for all backreef crest strata; (2) Forereef density estimates used for channel areas.

American Samoa Archipelagic Population Estimates by CREMUS Grouping (0-30 m hardbottom)

Applying the same process to all Coral Reef Ecosystem Management Unit species for all islands in American Samoa yields the 0-30 m hardbottom reef fish population estimates given in Table 4

Table 4. Reef fish population estimates for American Samoa. Fish species are pooled by CREMUS groupings. Estimated population biomass is for 0-30 m hardbottom habitat only. (n) is number of sites surveyed per island. Each site is surveyed by means of 2-4 7.5 m diameter SPCs – therefore the number of survey replicates is approximately 4 times the number of sites.

		Area 0-30 m	ESTIMATED POPULATION BIOMASS (kg)							
Island	(n)	hardbottom (Ha)	Emperor	Goatfish	Grouper	Jack	Parrot ¹	Reef Shark		
Tutuila	(171)	4,888	42,513	20,678	43,491	25,614	271,926	7,111		
Tau	(36)	1,003	8,575	3,191	27,534	5,399	60,795	2,929		
Ofu & Olo	sega (43)	1,055	8,339	2,674	25,310	9,304	86,402	10,354		
Rose	(61)	558	4,087	2,411	10,307	8,597	13,142	14,682		
Swains	(41)	281	1,055	293	7,580	10,033	5,450	4,154		
TOTAL	(352)	7,785	64,569	29,246	114,222	58,947	437,716	39,231		

	Squirrel/								
Island	Rudderfish	Snapper	Soldierfish	$Wrasse^1$	Surgeonfish	Others	Bio		
Tutuila	2,011	62,463	14,870	53,262	497,952	577,177	1,619,068		
Tau	4,705	29,547	11,921	17,378	111,952	90,894	374,821		
Ofu & Olosega	1,945	39,932	10,451	13,375	154,103	103,852	466,038		
Rose	29	12,534	6,262	10,167	24,203	21,669	128,091		
Swains	26	9,008	2,218	3,843	18,870	65,524	128,056		
TOTAL	8,716	153,484	45,721	98,025	807,079	859,116	2,716,074		

Note (1): Here and elsewhere in this document, 'Parrot' mean parrotfishes excluding the Bumphead Parrot, and 'Wrasse' means wrasses excluding the Humphead Wrasse. Catch data for those two species are pooled into their own CREMUS groupings. Estimated biomass of those is included in 'others'.

Uncertainties Associated with Unsurveyed Habitats

As noted elsewhere, CRED surveys are conducted during daytime and are restricted to hardbottom habitats shallower than 30 m. There are therefore limits to what can be concluded from CRED RAMP survey data about populations of taxa that are predominantly found in softbottom habitats (e.g. mullet), or in water deeper than 30 m. However, for the majority of reef fish species, daytime densities appear to be generally rather low in softbottom habitats (Friedlander, Brown et al. 2007), and given that habitats classified as soft-bottom make up only around 1/8 of all 0-30 m habitat in American Samoa (Table 5), the lack of data from softbottom habitats may be relatively insignificant for the majority of CREMUS groupings. Of more concern is the general lack of information on reef fish densities in waters deeper than can be readily surveyed by SCUBA divers. It is clear that some groups of fishes, including jacks and sharks can have substantial portions of their populations in waters much deeper than the 30 m limit surveyed by CRED (Thresher and Colin 1986; Chave and Mundy 1994; Parrish and Boland 2004). CRED is currently collaborating on a project to assess reef fish distributions in waters down to 100 m in parts of the Mariana Archipelago. However, given the extensive area of such habitats (e.g., the area of 30-100 m habitat around Tutuila is nearly 4 times the total area of 0-30 m hardbottom from the entire American Samoa group, Table 5), further work to improve density estimates or calibration factors from shallow water population densities seems critical.

Table 5. Area of hardbottom 0-30m; softbottom 0-30m; and deeper reef (all bottom types 30-100m) per island in American Samoa.

	Area 0-30m	Area 0-30m	Area 30-100 m
Island	Hardbottom (Ha)	Softbottom (Ha)	All bottom types (Ha)
Tutuila	4,888	200	29,821
Tau	1,003	23	674
Ofu & Olosega	1,055	148	2.074
Rose Swains	564 281	216 1	111 48
TOTAL	7,790	589	32,729

Mariana Reef Fish Population Estimates by CREMUS grouping (0-30 m hardbottom)

Following the same approach used above for American Samoa, estimates of population biomass for CREMUS in 0-30m hardbottom waters of reefs and islands in the Mariana Archipelago are shown in Table 6.

Table 6. Reef fish population estimates for Mariana Archipelago. Biomass densities come from surveys in 2009. (n) is the number of sites surveyed per island. Each site is surveyed by means of 2-4 7.5 m diameter SPCs.

	# Fish	Area 0-30 m hardbottom		ESTIN	MATED POPULA	TION BIOMAS	S (kg)	
Island / Reef	Surveys	(Ha)	Emperor	Goatfish	Grouper	Jack	Parrot	Reef Shark
W. Mariana Ridge ¹								
Stingray Shoals	-	19	256	122	1,291	614	1,185	2,623
Parhfinder Reef	-	81	1,119	543	5,403	2,656	5,199	10,402
Arakane Reef	-	48	650	308	3,309	1,564	3,015	6,781
CNMI-Mariana Arc								
FDP	7	138	1,519	484	4,205	3,289	1,607	46,262
Maug	21	314	2,083	1,327	9,664	4,121	14,215	3,678
Supply Reef ¹	-	10	123	52	763	313	566	1,877
Asunscion	13	249	2,194	2,502	15,229	6,652	13,302	47,335
Agrihan	14	851	11,813	3,651	59,741	41,449	60,056	28,581
Pagan	21	1,513	28,709	10,492	61,103	97,733	106,767	68,857
Alamagan	6	346	7,866	6,181	36,179	33,263	27,343	45,964
Guguan	6	200	6,091	1,246	19,634	358	18,630	-
Sarigan	7	198	105	333	7,302	2,558	19,501	2,164
Zealandia ^{1,2}	-	99	1,346	641	6,800	3,233	6,245	13,817
Anatahan³	-	1,182	5,391	4,889	13,374	2,634	26,676	23,529
FDM ⁴	-	152	1,968	959	9,880	4,901	9,169	20,115
Saipan	23	4,847	34,598	20,607	71,872	3,477	95,401	-
Aguijan	6	406	-	1,102	5,814	3,202	10,156	22,571
Tinian	14	1,414	4,719	4,969	20,624	-	28,475	-
Tatsumi ⁵	-	224	1,176	1,063	3,599	-	5,709	-
Rota	14	1,331	10,769	8,529	7,517	2,139	43,635	59,329
Guam								
Guam	25	7,101	4,404	22,405	31,095	-	142,423	-
11-mile Bank ⁶	-	3	4	13	21	-	46	-
Galvez Bank [€]	-	15	24	78	119		269	-
Santa Rosa ⁶	-	3,551	4,868	15,966	24,085		71,993	-
TOTAL (177)	177	24,289	131,796	108,462	418,622	214,154	711,585	403,884

NOTES (1) No SPC visual surveys have been conducted at Stingray, Pathfinder, Arakane, Supply Reefs, or Zealandia. Based on limited data from 2003-2007 cruises, in which reef fishes were surveyed using different methods and largely in mid-depth habitats only, biomass density estimates for those locations are assumed to be similar to average biomass densities in the unpopulated northern Mariana Islands (Sarigan through FDP).

⁽²⁾ No bathymetry or habitat data available for Zealandia. Area of 0-30 m hardbottom assumed to be half of that at Sarigan.

⁽³⁾ No SPC surveys were conducted at Anatahan. Based on 2003-2007 data, biomass densities assumed to be comparable to average of populated Mariana Islands (Guam through Saipan). Anatahan also lacked bathymetry or habitat data. Hardbottom in 0-30 m range was assumed to be the average of Pagan, and Agrihan, those being the two CNMI islands with most similar landmass.

⁽⁴⁾ No SPC surveys at FDM. Based on relative remoteness from human populations, biomass densities set to average of unpopulated northern Mariana Islands.

⁽⁵⁾ No SPC survey data from Tatsumi. Biomass densities assumed to be same as for Tinian.

⁽⁶⁾ No SPC survey data available from Guam banks. Based on 2003-2007 surveys using different methods, Guam banks fish biomass densities assumed to be similar to those in populated southern Mariana Islands (Guam through Saipan). Table cont. next page.

Table 6 continued — Reef fish population estimates for Mariana Archipelago.

		_	Squirrel/				
Island	Rudderfish	Snapper	Soldierfish	Surgeonfish	Wrasse	Others	Total Fish Bio
W. Mariana Ridge							
Stingray Shoals	214	3,846	472	3,859	462	4,278	19,221
Parhfinder Reef	911	15,816	2,035	16,110	2,013	17,692	79,901
Arakane Reef	547	9,888	1,205	9,895	1,177	10,988	49,327
CNMI-Mariana Arc							
FDP	1,321	21,930	2,269	20,005	1,493	24,228	128,612
Maug	10,239	24,385	10,079	33,533	3,884	22,179	139,387
Supply Reef	118	2,435	246	2,305	228	2,651	11,677
Asunscion	11,802	49,903	6,038	56,036	4,126	22,740	237,860
Agrihan	31,201	89,482	22,542	136,172	30,187	105,101	619,976
Pagan	5,480	199,499	8,813	168,806	33,341	180,999	970,600
Alamagan	4,288	173,724	14,727	90,578	9,994	152,877	602,983
Guguan	4,726	28,808	10,729	74,614	8,333	69,497	242,666
Sarigan	1,507	9,530	663	18,676	2,391	14,789	79,520
Zealandia	1,128	20,263	2,489	20,328	2,435	22,537	101,262
Anatahan	985	9,081	4,138	75,915	18,425	58,177	243,214
FDM	2,498	29,621	3,781	30,648	3,503	32,196	149,240
Saipan	-	50,803	37,634	249,323	56,967	242,812	863,493
Aguijan	341	2,261	1,237	25,957	7,033	21,589	101,262
Tinian	-	1,181	4,135	102,796	20,885	57,903	245,688
Tatsumi	-	301	1,054	9,412	3,734	9,320	35,367
Rota	2,632	13,281	8,272	77,359	18,113	64,560	316,133
Guam							
Guam	-	41,949	5,693	263,849	113,732	266,915	892,464
11-mile Bank	-	21	8	87	44	160	405
Galvez Bank	-	123	47	504	257	924	2,344
Santa Rosa	-	25,907	7,355	116,763	59,516	179,902	506,354
TOTAL	79,937	824,038	155,661	1,603,530	402,275	1,585,012	6,638,956

As elsewhere in this summary, these population estimates are for 0-30 m hardbottom habitats only, and are based on the assumption that biomass density derived from SPCs represents real biomass density in the surveyed habitats. Note also that, as in American Samoa, there are substantial areas of unsurveyed habitats potentially important to some groups of reef fishes, i.e., softbottom habitats in 0-30 m and areas in 30-100 m range (Table 7).

While the total number of survey sites in the Mariana archipelago (177) is fairly substantial, the level of replication is of course much lower at the scale of single islands. Total population estimates will certainly be more robust at larger – particularly at whole archipelago – scales, and data per individual island should not be over interpreted.

Table 7. Area of hardbottom 0-30m; softbottom 0-30m; and deeper reef (all bottom types 30-100m) per island/reef area in Mariana Archipelago. Areas derived from CRED GIS maps except where indicated otherwise.

	Area 0-30m	Area 0-30m	Area 30-100 m
Island	Hardbottom (Ha)	Softbottom (Ha)	All bottom types (Ha)
W. Mariana Ridge			
Stingray Shoals ¹	19	6	*
Parhfinder Reef	81	4	52
Arakane Reef	48	5	52
CNMI-Mariana Arc			
FDP	138	-	25,973
Maug	314	4	204
Supply Reef	10	1	20
Asunscion	249	5	262
Agrihan	851	100	871
Pagan	1,513	117	1,564
Alamagan	346	82	479
Guguan	200	-	418
Sarigan	198	2	292
Zealandia ²	99	1	
Anatahan³	1,182	108	1,217
FDM	152	17	25,973
Saipan	4,847	2,444	6,463
Aguijan	406	21	305
Tinian	1,414	206	2,631
Tatsumi	224	2	420
Rota	1,331	271	2,254
Guam			
Guam	7,101	2,384	6,347
11-mile Bank	3	1	78
Galvez Bank	15	15	2,828
Santa Rosa	3,551	888	*
TOTAL	24,289	6,684	> 78,703

NOTES: (1) No bathymetric or habitat data from Zealandia. Areas of hard and soft bottom < 30 m are estimated from extent of towed diver surveys by CRED staff, and associated site descriptions; (2) Zealandia assumed to be half the size of Sarigan; (3) No habitat or bathymetric data for Anatahan, areas per strata are averages of those from Pagan, and Agrihan (islands with closest land mass to Anatahan);. (*) Insufficient bathymetric or other information from Stingray, Zealandia, or Santa Rosa to estimate areas in deeper strata.

Pacific Remote Island Areas Reef Fish Population Estimates by CREMUS Grouping (0-30 m hardbottom)

The Pacific Remote Island Areas (PRIAs) include seven islands and atolls located in the Central Pacific that are under the jurisdiction of the United States: Baker, Howland, and Jarvis Islands, Johnston Atoll, Kingman Reef, Palmyra Atoll, and Wake Island. Following the approach used above, population estimates of CREMUS groups in 0-30 m hardbottom waters of reefs and islands in the PRIAs are shown in Table 8.

Relative to other regions surveyed by CRED, habitat and bathymetric information for the PRIAs is more limited. For example, to date, there are no hard/soft layers for the PRIAs available on the Pacific Islands Benthic Habitat Mapping Center

(http://www.soest.hawaii.edu/pibhmc/index.htm). Similarly, shallow water bathymetric surveys have not been completed at Baker, Howland, and Jarvis, and for those locations, creation of the depth layers used in this analysis necessitated some use of interpolated chart data. In addition, unlike other regions, for which there are extensive NOAA NCCOS habitat maps (http://ccma.nos.noaa.gov/about/biogeography/prod_table.html), coral reefs in the PRIAs have not yet been so comprehensively mapped. Therefore, for the PRIAs, habitat maps used for this analysis were based on data and habitat classes available from the Millennium Reef Mapping Project (http://www.imars.usf.edu/MC/index.html). Finally, estimated % of hard and soft per depth strata at PRIA locations were not based on hard/soft maps as elsewhere, but were instead estimated by CRED staff familiar with the PRIAs.

Table 8. Reef fish population estimates for Pacific Remote Island Areas. Fish biomass densities come from RAMP surveys in 2007-2010.

	# Sample	Area 0-30 m		ESTIMATED POPULATION BIOMASS (kg)					
Island / Atoll	Sites	(Ha)	Emperor	Goatfish	Grouper	Jack	Parrot	Reef Shark	
Baker	25	390	903	746	18,582	23,416	16,911	39,840	
Howland	26	173	715	3,412	14,468	16,690	10,125	30,258	
Jarvis	49	366	2,055	9,064	30,368	36,283	43,481	225,135	
Johnston	51	9,410	-	59,122	-	865,576	453,056	237,390	
Kingman	56	3,721	48,860	16,132	125,151	22,723	488,613	1,462,885	
Palmyra ¹	68	4,213	112,552	19,401	199,405	113,281	363,747	1,380,995	
Wake ²	29	1,282	13,463	7,258	38,044	20,237	92,975	173,133	
TOTAL	304	19,555	178,547	115,135	426,019	1,098,207	1,468,908	3,549,635	
Island	Rudderfish	Snapper	Squirrel/Soldier	Surgeonfish	Wrasse	Other Fish		Total Fish Bio	
Baker	2,457	48,507	25,431	65,040	5,706	85,218		332,756	
Howland	529	17,051	12,921	34,878	3,659	33,556		178,261	
Jarvis	1,414	89,337	14,809	67,862	18,381	104,784		642,975	
Johnston	20,284	200,238	82,474	775,999	128,146	411,089		3,233,374	
Kingman	2,912	606,216	36,529	438,368	93,490	598,499		3,940,379	
Palmyra	16,457	655,443	56,611	618,825	129,291	1,510,014		5,176,021	
Wake	11,015	82,403	8,570	97,544	38,216	244,140		826,996	
TOTAL	55,068	1,699,194	237,345	2,098,517	416,888	2,987,300		14,330,763	

Notes: (1) No existing CRED SPC data from Palmyra channel or backreef habitat. Biomass densities from Palmyra forereef used for channel ahbitats; Kingman backreef values used for Palmyra backreef habitats; (2) No existing CRED SPC data from Wake backreef. Biomass densities from those strata at Kingman were used for population estimates.

As with other regions, estimated soft-bottom habitat was considerable at several of the islands, particularly Johnston, and Kingman and Palmyra Atolls (Table 9).

Table 9. Area of hardbottom 0-30 m; softbottom 0-30 m; and deeper reef (all bottom types 30-100 m) per island/reef area at Pacific Remote Island Areas. The 0-30 m and 30-100 m areas were derived from CRED bathymetric maps. The proportion of hard/soft-bottom by habitat and island was estimated by CRED staff familiar with PRIA reefs.

	Area 0-30 m	Area 0-30 m	Area 30-100 m
Island	Hardbottom (Ha)	Softbottom (Ha)	All bottom types (Ha)
Baker	390	8	137
Howland	173	5	94
Jarvis	366	4	131
Johnston	8,932	9,991	1,712
Kingman	3,721	1,042	3,483
Palmyra	4,213	1,037	578
Wake	1,282	636	158
TOTAL	19,555	12,723	6,294

Hawaiian Archipelago Reef Fish Population Estimates by CREMUS Grouping (0-30 m hardbottom)

The Hawaiian Archipelago stretches approximately 2,400 km from Hawaii Island in the south to Kure Atoll at the north of the chain. Following the approach used elsewhere in the document, the estimated areas of hardbottom habitat in the 0-30 m range and estimated population biomass of CREMUS groups in that habitat are given in Table 10, which distinguishes between the main Hawaiian Islands (MHI: Hawaii Island to Kauai, all of which are populated or close to human population centers) and the Northwestern Hawaiian Islands (NWHI: French Frigate Shoals to Kure, all of which are unpopulated or very lightly populated by some combination of management, scientific and contract staff). For the MHI other than Kahoolawe, sufficient bathymetric and habitat information is generally available to make reliable estimates of hardbottom habitat in the target range (0-30 m) and deeper categories. We also present information for other depths (30-100 m). However, comparable information is much patchier for several of the NWHI reef areas, particularly for the submerged banks – where there tends to be very little widespread information on bottom type (hard/soft) in shallower depth ranges. In some cases, missing bathymetry (e.g., 30 m contour at Gardener and St Rogatien) further complicates estimation of habitat areas used for reef fish population estimates. Gaps in available bathymetry and/or bottom composition are also a concern for some of the emergent islands and atolls. For example at Lisianski, CRED estimates that there are 954 km2 of habitat in < 30 m of water. However, hard/soft information is only available for 32% of that area, and similarly, for more than half of the total area shallower than 30 m there is insufficient bathymetric information to be able to determine depth strata (i.e., whether it is in 0-6; 6-18; or 18-30 m depth ranges; we know it is shallower than 30 m, but can't further subdivide it). Those gaps reduce our ability to generate robust reef fish population estimates for Lisianski, as further estimations have to be introduced (in this case (i) it was assumed that 36% of habitat of unknown bottom type was hardbottom – based on the weighted average of known bottom type in 0-30 m habitats; and (ii) reef fish biomass densities were generated for the entire 0-30 m range rather than subdividing that into depth strata as we have done elsewhere, and total 0-30 m hardbottom area was multiplied by that overall density to estimate population biomass. Habitat and bathymetric gaps are particularly important for Lisianski because of its large size (total estimated 0-30 m hardbottom area there makes up $\sim 10\%$ of the total 0-30 m area for the archipelago), but information gaps were also concerns for Laysan and Nihoa, and forereef areas at Maro had very limited hard/soft information. In addition, CRED did not survey any submerged banks in the 2007-2008 period, and in fact has only conducted rather few surveys on those areas since the inception of RAMP. Therefore, reef fish biomass densities for submerged banks are guesses based on density values estimated in other strata where conditions are assumed to be similar. Published reports of fish assemblages on submerged NWHI banks – at slightly deeper levels than targeted here - have indicated that habitat quality is often fairly poor on submerged banks, which are mostly low relief with limited coral cover, and that, relative to shallower reef areas in the NWHI, fish biomass tends to be considerably lower on submerged banks (Parrish and Boland 2004; Parrish 2009). In the absence of solid quantitative information, biomass densities on submerged banks of the NWHI were assumed to be 1/3 of the average density in NWHI forereef areas for population estimates given in Table 10.

Another caveat is that RAMP surveys to date have not covered the west coast of the island of Hawaii or south part of Oahu, and therefore biomass densities for those islands are based on surveys of other parts of those islands.

Table 10. Reef fish population estimates for Hawaiian Archipelago. Fish biomass densities come from RAMP surveys in 2007-2008.

	# Srvv	Area 0-30 m hardbottom		ESTIM	IATED POPULATI	ON BIOMASS (k	g)	
Island / Atoll/ Reef	Sites	(Ha)	Emperor	Goatfish	Grouper	Jack	Parrot	Reef Shark
NWHI								
Kure ¹	22	3,699	-	124,745	-	3,186,804	862,161	79,730
Midway ¹	16	4,996	-	697,989	-	92,315	1,222,131	698,281
Pearl & Hermes	53	11,440	13,619	284,157	-	9,976,321	3,035,306	550,593
Lisianski²	16	30,955	52,601	187,448	-	30,915,650	4,736,039	963,859
Pioneer ³	-	5	47	44	-	803	406	104
Laysan ²	11	3,400	212,862	105,743	-	761,833	775,690	-
Maro ²	14	34,193	2,767,710	1,251,927	-	3,957,171	10,653,738	612,341
Raita Bank³	-	1,007	30,393	28,477	-	521,205	263,702	67,224
Gardner³	-	31,733	279,239	261,643	-	4,788,681	2,422,816	617,635
St Rogatien Bank³	-	168	15,196	14,239	-	260,602	131,851	33,612
Brooks Bank ³	-	66	583	546	-	9,992	5,055	1,289
Fr. Frigate Shoals	49	27,797	724,552	620,893	-	3,628,746	4,643,263	3,283,193
Mokumanamana ⁴	-	637	16,806	15,747	-	288,207	145,817	37,172
Nihoa ⁴	-	410	10,820	10,138	-	185,552	93,879	23,932
мні								
Kaula Rock⁵	-	346	4,416	6,572	6,400	4,811	28,956	1,429
Niihau-Lehua	20	9,402	64,519	214,642	116,693	74,777	581,389	90,817
Kauai	24	18,421	31,736	192,670	276,770	392,243	1,681,621	
Oahu ⁶	14	30,640	69,839	575,202	113,278	5,492	1,042,696	
Lanai	16	3,603	-	41,818	30,913	8,617	217,357	-
Kahoolawe ⁷	-	1,801	-	57,444	38,581	9,076	204,174	-
Molokai	16	14,495	47,343	271,977	67,725	27,058	674,962	
Maui	34	11,772	-	171,694	117,498	26,668	677,420	-
Molokini ⁷	-	25	-	797	535	126	2,834	
Hawaii ⁸	62	16,196	29,587	314,453	294,599	81,247	794,711	-
TOTAL	367	267,584	4,371,867	5,451,005	1,062,992	59,203,998	34,897,975	7,061,210

Notes: (1) Kure and Midway deep forereefs were not surveyed by CRED in 2007-2008, hence deep forereef population estimates for those strata use mid-depth forereef biomass densities from those locations. (2) Substantial gaps in bathymetric and/or bottom type information for Lisianski, Laysan and Maro introduced additional error in estimation of hardbottom areas and extrapolated population sizes based on those habitat areas. (3) For a majority of NWHI banks, habitat and bathymetric information is missing or patchy. In addition, CRED did not conduct visual surveys on NWHI banks during the period used. Published quantitative and semi-quantitative information on fish assemblages on banks in NWHI indicates that reef fish biomass on banks tends to be much lower than on shallower reef areas in the NWHI (Parrish and Boland 2004; Parrish 2009). Therefore, in the absence of other information, NWHI bank biomass densities are assumed to be one-third of average for NWHI forereefs. (4) CRED did not survey reef fishes at Mokumanana or Nihoa in the period 2007-2008. Biomass densities assumed to be average of NWHI forereef. (5) Kaula biomass densities assumed to be same as for Niihau-Lehua. (6) CRED RAMP surveys around Oahu in 2007-2008 did not encompass south Oahu reef areas. As south-shore Oahu reefs have some of the lowest reef fish biomass values in the state of Hawaii(Friedlander, Brown et al. 2006), Oahu biomass densities may be slightly overestimated. (7) Molokini and Kahoolawe were not visited during CRED RAMP cruises in 2007-2008. Biomass densities there are assumed to be double the mean densities for Maui Island. In addition, estimated areas of hardbottom for those locations was not available, hence Molokini hardbottom area was estimated to be 500 m*500 m, and Kahoolawe hardbottom assumed to be 1/2 of that for Lanai, based on published area of habitat in < 10 fathoms (Rohmann, Hayes et al. 2005). (8) Few surveys were conducted in West Hawaii, hence biomass densities used for Hawaii Island, which-are largely based on surveys around the rest of the island, may underestimate island-wide density. Table cont.next page.

Table 10 continued.

			EST	IMATED POPULATI	ON BIOMASS (kg	3)	
Island/Atoll/Reef	Rudderfish	Snapper	Squirrel/Soldier	Surgeonfish	Wrasse	Other Fish	Total Fish Bio
NWHI							
Kure	1,147,241	71,041	112,921	725,792	535,206	640,835	7,486,476
Midway	1,532,521	295,072	146,418	1,582,091	666,555	1,504,045	8,437,418
Pearl & Hermes	135,856	411,452	259,923	1,371,020	1,326,962	1,697,038	19,062,248
Lisianski	121,314	2,728,747	368,013	3,508,697	2,594,699	5,343,049	51,520,115
Pioneer	174	100	43	578	161	316	2,775
Laysan	387,236	289,310	-	1,551,178	298,100	810,089	5,192,040
Maro	508,429	1,251,979	127,765	8,768,269	2,386,689	2,594,523	34,880,541
Raita Bank	113,205	64,714	27,755	374,995	104,705	205,306	1,801,678
Gardner	1,040,091	594,570	255,002	3,445,343	961,997	1,886,294	16,553,311
St Rogatien Bank	56,602	32,357	13,877	187,497	52,352	102,653	900,839
Brooks Bank	2,170	1,241	532	7,189	2,007	3,936	34,539
Fr. Frigate Shoals	430,216	5,373,305	949,815	8,633,369	1,882,372	3,484,055	33,653,780
Mokumanamana	62,598	35,784	15,347	207,358	57,898	113,527	996,263
Nihoa	40,301	23,038	9,881	133,500	37,275	73,090	641,408
МНІ							
Kaula Rock	3,490	40,024	27,502	81,380	10,340	27,087	242,406
Niihau-Lehua	175,855	815,124	318,737	2,067,681	265,429	712,368	5,498,031
Kauai	166,549	1,243,601	57,785	5,884,420	500,024	1,489,266	11,916,685
Oahu	-	224,679	111,329	2,155,676	645,269	2,459,835	7,403,295
Lanai	16,214	5,524	21,580	378,354	74,543	156,486	951,407
Kahoolawe	6,250	63,012	4,500	375,143	102,965	249,086	1,110,230
Molokai	700,429	1,026,894	60,272	1,460,826	273,548	876,864	5,487,899
Maui	21,798	181,250	16,342	1,213,991	326,641	824,589	3,577,891
Molokini	87	875	62	5,206	1,429	3,457	15,408
Hawaii	398,096	448,016	292,184	3,184,023	454,369	1,228,717	7,520,001
TOTAL	7,066,721	15,221,708	3,197,586	47,303,578	13,561,536	26,486,511	224,886,685

As with other regions, estimated soft-bottom habitat was considerable at several reef areas, particularly Lisianski, Maro, Gardner, French Frigate Shoals, and Peal and Hermes (Table 11). Incomplete bathymetric information meant that is was not possible to estimate 30-100 m habitat areas for several of the NWHI (Table 11), but some of those areas are likely extensive. Compared to other regions, NWHI habitat area estimates, and reef fish population estimates which are based on those, have relatively large uncertainty.

Table 11. Estimated Area of hardbottom 0-30 m; softbottom 0-30 m; and deeper reef (all bottom types 30-100 m) per island/reef/bank in Hawaiian Archipelago. The 0-30 m and 30-100 m areas were derived from CRED bathymetric maps. The proportion of hard/soft bottom were derived from bottom type maps where available.

	Area 0-30 m	Area 0-30 m	Area 30-100 m
Island/Atoll/Reef	Hardbottom (Ha)	Softbottom (Ha)	All bottom types (Ha)
NWHI			
Kure	3,699	4,615	13,484
Midway	4,996	5,156	16,366
Pearl & Hermes	17,812	28,915	20,141
Lisianski ¹	30,955	64,450	23,038
Pioneer 1	5	UNKNOWN	UNKNOWN
Laysan 1,2	3,400	1,831	41,925
Maro ¹	34,193	73,352	74,372
Raita Bank ¹	3,454	10,362	23,541
Gardner ^{1,2}	31,733	95,200	UNKNOWN
St Rogatien Bank ^{1,2}	1,727	5,181	UNKNOWN
Brooks Bank ¹	66	199	26,598
French Frigate Shoals	27,797	39,999	17,859
Necker/Mokumanamana	637	165	25,087
Nihoa ^{1,2}	410	37	UNKNOWN
МНІ			
Kaula Rock	346	-	5,651
Niihau-Lehua	9,402	1,404	16,251
Kauai	18,421	5,749	20,633
Oahu	30,640	11,633	36,925
Lanai	3,603	1,946	29,670
Kahoolawe ^{1,2}	1,201	649	UNKNOWN
Molokai	14,495	5,357	109,320
Maui	11,772	7,911	63,335
Molokini ^{1,2}	25	-	UNKNOWN
Hawaii	16,196	3,971	38,909
TOTAL	266,984	> 368,079	UNKNOWN

Notes: (1) Incomplete or completely lacking information on hard/soft proportions of bottom. Where some information exists, the proportion of hard/soft-bottom per habitat per island was calculated using weighted averages of known bottom type per strata extrapolate to areas with unknown bottom type. For all submerged banks, bottom type information was almost completely lacking, and there % hard was assumed to be 25%. (2) Missing bathymetric information required the area in 0-30 m range to be estimated rather than measured, using following approach: Laysan area in 0-30 m range estimated as double the area in < 10 fathoms derived from NOAA nautical charts (Rohmann, Hayes et al. 2005), as that was close fit for values from known areas in the NWHI; an available 36.6 m contour used for Gardner 36.6 m was used unadjusted as best available estimate for 30 m contour; St Rogatien was assumed to be half the size of Raita Bank based on data given in a published report on NWHI banks (Parrish and Boland 2004); for Nihoa, 14,700 Ha of water estimated to be in < 100 fathoms on the basis of NOAA nautical charts, but for which no more depth information is available, are assumed to all be > 100m deep, as published 10 fathom habitat estimates for Nihoa are similar to CRED GIS estimates for same depth range (Rohmann, Hayes et al. 2005); Kahoolawe is assumed to have 1/3 the reef area of Lanai on basis of relative island size; Molokini assumed to have 500 m*500m of 0-30 m habitat based on NOAA habitat maps.

Utility of CRED Visual Survey Data in Support of Reef Fish ACLs

Strong points of the CRED survey data for ACL development include:

- Consistent methods and survey design across the areas surveyed, hence the data provide excellent *relative* measures of reef fish stocks in surveyed habitats among locations.
- Fish sizes are estimated to nearest cm for all fishes encountered during surveys, making it possible to generate species' size distributions which can be converted into age distributions where appropriate sizeage data is available. Where age-distribution and sufficient life-history information are available, it is possible to derive a range of fishing and stock metrics including F, MSY, SPR, as demonstrated by Ault and colleagues in a number of recent papers (Ault, Smith et al. 2005; Ault, Smith et al. 2008).
- Estimated fish biomass/abundance densities from surveys can be combined with habitat and bathymetric information to derive total *absolute* population sizes within the survey domain.

Potential problems with applying visual survey data in ACL development include:

- Surveys are conducted in hard-bottom habitats only, therefore taxa such as mullet and razorfishes which are predominantly found in non hard-bottom habitats are not well covered by RAMP.
- Visual surveys are restricted to safe-diving depths of < 30 m, hence other methods will have to be used to quantify deeper reef fish stocks and/or appropriate correction factors to account for the portion of stocks present in deeper habitats. Determining appropriate adjustment factors will be difficult for most species given the limited amount of quantitative information available on reef fish distributions in deeper water.
- Taxa with very heavily clumped distributions, or which are very spatially-restricted, such as species which are found predominantly in the shallow surge zone or in shallow coves (e.g. rabbitfishes), are unlikely to be well surveyed by a method which randomizes site locations within the full 0-30 m range;
- Diurnally-cryptic and/or nocturnal taxa, such as soldierfishes, cannot be readily censused by means of daytime visual surveys.
- Impacts of divers on fish behavior (and therefore on counts in visual surveys) are difficult to quantify.
- Habitat and bathymetric data necessary to extrapolate survey density estimates to total population estimates are incomplete and/or of uncertain quality at some US Pacific coral reef locations.

While the problems identified above are non-trivial, current gaps in coral reef fishery dependent data, and the difficulty of gathering reliable high resolution data on the highly diverse and largely non-commercial coral reef fishery, suggest that CRED visual survey data are likely to be among the best data available for assessing reef population status at the majority of US Pacific coral reef areas.

CRED staff will continue to work with PIRO, the Western Pacific Regional Fisheries Management Council and local partners to derive best available relative and absolute biomass estimates for reef fish stocks at appropriate spatial and taxonomic scales.

In the longer term, PIFSC is committed to improving the utility of visual survey data for fisheries assessments. To best accomplish that, attention and resources will need to be devoted to:

- Improving the quality and availability of life-history information for target species in the Pacific:
- Increasing CRED survey replication around important population centers, such as Guam, Saipan, Oahu;
- Improving the quality and availability of nearshore habitat and bathymetric maps for US Pacific territories;
- Improving the scope for calibrations to account for reef fishes in waters below the 100 ft safe-diving limit;
- Using remote vehicles or other assessment tools to determine the extent of fishbehavioral impacts on population estimates from visual survey data; and
- Improving understanding of scales of demographic connectivity of reef fishes, so that population and stock assessments can be made at appropriate spatial scales.

In addition, staff of CRED are exploring the use of visual survey data for stock and population level analyses of Pacific coral reef fish species using the approach of Ault and colleagues (Ault, Smith et al. 2005; Ault, Smith et al. 2008) – i.e. using visual survey data together with life history parameters to generate metrics such as SPR, F/Fmsy, and B/Bmsy for exploited coral reef fishes. That approach offers scope for deriving acceptable extraction limits for reef fish species, and or cross-validating such estimates derived from other data sets (e.g. from fishery dependent data). Further work in these and other areas will greatly improve the utility of the visual survey data.

References

- Ault, J. S., S. G. Smith, et al. (2005). "Evaluation of average length as an estimator of exploitation status for the Florida coral-reef fish community." Ices Journal of Marine Science **62**(3): 417-423.
- Ault, J. S., S. G. Smith, et al. (2008). "Length-based assessment of sustainability benchmarks for coral reef fishes in Puerto Rico." Environmental Conservation **35**(3): 221-231.
- Chave, E. H. and B. C. Mundy (1994). "Deep-sea benthic fishes of the Hawaiian Archipelago, Cross Seamount, and Johnston Atoll." Pacific Science **48**(4): 367-409.
- Choat, J. H. and L. M. Axe (1996). "Growth and longevity in acanthurid fishes an analysis of otolith increments." Marine Ecology Progress Series **134**(1-3): 15-26.
- FishBase. (2000). "FishBase." from http://www.fishbase.org/home.htm.
- Friedlander, A. M., E. Brown, et al. (2007). "Defining reef fish habitat utilization patterns in Hawaii: comparisons between marine protected areas and areas open to fishing." Marine Ecology-Progress Series **351**: 221-233.

- Friedlander, A. M., E. K. Brown, et al. (2006). Fish Habitat Utilization Patterns and Evaluation of the Efficacy of Marine Protected Areas in Hawaii: Integration of NOAA Digital Benthic Habitats Mapping and Coral Reef Ecological Studies. NOAA Technical Memorandum NOS NCCOS 23.: 213.
- Jennings, S. and N. V. C. Polunin (1995). "Biased underwater visual census biomass estimates for target-species in tropical reef fisheries." Journal of Fish Biology **47**(4): 733-736.
- Kulbicki, M., N. Guillemot, et al. (2005). "A general approach to length-weight relationships for New Caledonian lagoon fishes." Cybium **29**(3): 235-252.
- Parrish, F. A. (2009). "Do monk seals exert top-down pressure in subphotic ecosystems?" Marine Mammal Science **25**(1): 91-106.
- Parrish, F. A. and R. C. Boland (2004). "Habitat and reef-fish assemblages of banks in the Northwestern Hawaiian Islands." Marine Biology **144**(6): 1065-1073.
- Rohmann, S. O., J. J. Hayes, et al. (2005). "The area of potential shallow-water tropical and subtropical coral ecosystems in the United States." Coral Reefs **24**(3): 370-383.
- Sudekum, A. E., J. D. Parrish, et al. (1991). "Life-History and Ecology of Large Jacks in Undisturbed, Shallow, Oceanic Communities." Fishery Bulletin **89**(3): 493-513.
- Thresher, R. E. and P. L. Colin (1986). "Trophic structure, diversity and abundance of fishes of the deep reef (30- 300m) at Enewetak, Marshall Islands." Bulletin of Marine Science **38**(1): 253-272.

Appendix D Regulatory Impact Review

Regulatory Impact Review for Proposed Annual Catch Limit Specifications and Accountability Measures for Pacific Island Coral Reef Ecosystem Fisheries in 2012 and 2013

1. Introduction

This document is a regulatory impact review (RIR) prepared under Executive Order (E.O.) 12866, "Regulatory Impact Review." The regulatory philosophy of E.O. 12866 stresses that in deciding whether and how to regulate, agencies should assess all costs and benefits of all regulatory alternatives and choose those approaches that maximize the net benefits of all regulatory alternatives and choose those approaches that maximize the net benefits to the society. To comply with E.O. 12866, NMFS prepares an RIR for all regulatory actions that are of public interest. The RIR provides a review of the problems, policy objectives, and anticipated impacts of regulatory actions.

This RIR is for the proposed annual catch limit (ACL) specifications and accountability measures (AM) for Coral Reef Ecosystem Fisheries of American Samoa, Guam, the Northern Mariana Islands, and Hawaii in 2012 and 2013.

2. Problems and Management Objectives

The purpose of this action is to implement the statutory requirements of the Magnuson-Stevens Act, in conformance with the procedural methods for implementing ACLs and AMs for stocks managed by the Western Pacific Fishery Management Council that are defined in the five fishery ecosystem plans by specifying an ACL and AM for each stock or stock complex managed in the coral reef ecosystem fishery.

The management objective is to specify an ACL for all western Pacific coral reef ecosystem stocks and stock complexes in order to prevent overfishing from occurring, and ensure long-term sustainability of the resource while allowing fishery participants to continue to benefit from its utilization. AMs are needed to account for, address and mitigate overages of the ACL, should overages occur.

3. Description of the Fishery

Descriptions of the Coral Reef Ecosystem (CRE) fisheries operating in American Samoa, CNMI, Guam, and Hawaii are provided in Section 3.1 of the Environmental Assessment (EA). A brief summary of the affected fisheries will be provided here.

3.1 American Samoa Coral Reef Fisheries

Overview of American Samoa Coral Reef Fisheries

In American Samoa, coral reef fishes and invertebrates are harvested in subsistence, recreational, and small-scale commercial fisheries by various gear types including hook and line, spear,

speargun, and gillnets. According to a recent report, the average annual CREMUS catch composition in American Samoa is dominated by the following six families/groups: surgeonfishes (16,181 lb), snappers (15,838 lb), atule or bigeye scad (15,533 lb), mollusks including top shells, octopus, clams (11,672 lb per year), jacks (8,200 lb), and Scaridae or parrotfishes (7,764 lb) (Sabater and Tulafono 2011).

Although coral reef fisheries surveys in American Samoa collect information on fishing by persons engaged in commercial, recreational, and subsistence fishing activities, only estimates of total commercial landings of "Reef fishes" are made available on the WPacFIN website. These fishery surveys sample the fishery and are not comprehensive. WPacFIN estimates 2010 commercial landings to be 26,453 lb⁴. However, WPacFIN reef fish landings do not include catch of all species defined as CREMUS under the American Samoa FEP, so actual commercial reef fish landings are expected to be higher.

Coral reef fisheries landings in commercial, recreational, and subsistence fisheries have generally declined since the 1990's. Annual commercial reef fish catches are believed to have remained below 30,000 lb since 2001.

The boat-based coral reef fisheries have the potential to harvest coral reef taxa in federal waters, particularly in association with bottomfish fishing. The spear fishery primarily harvests fish and invertebrates from within territorial waters. Coral reef fishery participation has fluctuated over the years due to socio-economic changes, hurricane effects, and changes in fishery management laws such as the ban on SCUBA spearfishing in 2001. The number of boats ranged from a low of 15 in 1992 following a hurricane (Val) that hit the islands in December 1991 to a high of 37 boats in 1986 during the peak of the bottomfish fishery. Most recent estimates indicate that 22 boats are participating in the commercial coral reef fishery in American Samoa. These shift between spearfishing and bottomfishing with occasional trolling activities. The average number of fishermen per boat on a typical bottomfishing trip is three, while that of a spearfishing trip ranges from 1 to 7. Overall, regardless of the method used, there are approximately 88 fishermen participating in the boat based coral reef fishery.

Based on information provided through WPacFIN, the commercial price per pound for CREMUS in American Samoa ranged from \$2.22 to \$3.71 in 2010. The commercial value of the coral reef fishery was an estimated \$70,894, based on the 2010 catch of 26,453 lb and the average price of reef fish of \$2.68 per pound. Assuming participation and fishing effort were equal throughout the fleet in 2010 each vessel would have caught approximately 1,202 lb of CREMUS valued at \$3,222.

3.2 Guam Coral Reef Fisheries

Overview of Guam Coral Reef Fisheries

Shore-based or inwater fishing accounts for most of the fish and invertebrate harvest from coral reefs around Guam. Less than 20% of coral reef resources are harvested from the offshore banks

⁴ (<u>http://www.pifsc.noaa.gov/wpacfin/as/Data/ECL_Charts/ae3amain.htm</u>. Website accessed on September 12, 2011).

located in the EEZ. Most offshore banks are deep, remote, and subject to strong currents; these banks are generally accessible only during the summer months.

Although coral reef fisheries surveys in Guam collect information on fishing by persons engaged in commercial, recreational, and subsistence fishing activities, only estimates of total commercial landings of "Reef fishes" are made available on the WPacFIN website. The fishery surveys are not comprehensive and are designed to monitor the fishery over time. In 2009, Guam commercial CRE landings totaled 124,401 lb

(http://www.pifsc.noaa.gov/wpacfin/guam/dawr/Data/Landings_Charts/ge3b.htm. Website accessed on September 12, 2011). However, as occurs in the American Samoa CRE fishery, this figure is likely to be underestimated because WPacFIN reef fish landings do not include catch of all species defined as CREMUS under the Mariana Archipelago FEP such as bigeye scad, round scad, mollusks and shallow water snappers, emperors and groupers which together comprise a significant component of the total CREMUS catch. Instead, for public dissemination WPacFIN may report these taxa under the categories "Other fishes" or "bottomfishes."

The coral reef fishery long term commercial landing trends in Guam showed a general upward trend from 1982 to 2000, then exhibited a drop in landings after 2000. Recent landings ranged between 80,000 and 100,000 lb⁵. Figure 4 of the EA depicts Guam coral reef landings from 1982 to 2009. Low catch years associated with hurricanes may be the result of fleet damage or fishermen being occupied with other work. In 2001, the American Samoa Department of Marine and Water Resources prohibited the use of scuba gear while fishing to help reduce fishing pressure on the reefs, which led to the general decline in coral reef landings over the past decade relative to earlier years.

The number of boats participating in the coral reef fishery ranged from 58 in 1983 to 210 in 1995. Approximately 116 boats actively fished in the Guam coral reef fishery in 2009. There were 3 to 4 fishermen per boat, thus, the estimated coral reef boat based fishing population is approximately 348 individuals.

The average price per pound of coral reef fish in 2009 was \$2.82 per pound. With a total landing of 124,401 lb, the commercial coral reef fishery in Guam is valued at approximately \$350,811. Assuming participation and fishing effort was equal throughout the fleet in 2009, each vessel would have caught approximately 1,072 lb of CREMUS valued at \$3,023.

3.3 CNMI Coral Reef Fisheries

Overview of CNMI Coral Reef Fisheries

Coral reef fisheries in the CNMI are mostly limited to nearshore areas of the three southern most islands of Saipan, Rota, and Tinian. Limited fishing for CREMUS occurs north of Saipan. Finfish and invertebrates are the primary targets, but small quantities of seaweed are also taken.

Although coral reef fisheries surveys in the CNMI collect information on fishing by persons engaged in commercial, recreational, and subsistence fishing activities, only estimates of total

⁵ <u>http://www.pifsc.noaa.gov/wpacfin/guam/dawr/Data/Landings_Charts/ge3b.htm</u>. Website accessed on September 12, 2011).

commercial landings of "Reef fishes" are made available on the WPacFIN website. The fishery surveys are samples and are not comprehensive.

WPacFIN provides estimates for 2009 commercial landings to be 72,211 lb⁶. However, WPacFIN reef fish landings do not include catch of all species defined as CREMUS under the Mariana Archipelago FEP, so actual commercial reef fish landings are expected to be higher. Commercial landings peaked in 1989 at an estimated 300,000 lb, but have generally ranged between 50,000 to 150,000 lb over the past decade.

The number of participants in the coral reef fishery of the CNMI has fluctuated over the past decade. CNMI DMWR (unpublished data) estimates that the highest number of boats engaged in bottomfishing and spearfishing that also caught shallow water coral reef taxa was 27 boats in 2007 (see Figure 7 of the EA). The most recent data indicate that 16 vessels participated in the coral reef fishery in 2009. The average number of fisherman was estimated to be about 45 fishermen over the past decade with a range of 2 to 5 fishermen per boat depending on the method used.

The average price per pound of reef fish in 2009 was approximately \$2.59. With a total estimated landing of 72,211 lb, the coral reef fishery in the CNMI is valued at approximately \$187,026. Assuming participation and fishing effort was equal throughout the fleet in 2009, each vessel would have landed approximately 18,053 lb of CREMUS valued at \$11,689.

3.4 Hawaii Coral Reef Fisheries

Overview of Hawaii Coral Reef Fisheries

In Hawaii, the coral reef ecosystem management area includes the U.S. EEZ around the main Hawaiian Islands which generally extends from 3-200 nmi offshore; however, the majority of CREMUS catch are harvested from nearshore waters under the jurisdiction of the State of Hawaii from the shoreline, inwater fishing methods, and from vessels by both commercial and non-commercial fishermen. Under state law, anyone who takes marine life for commercial purposes is required to obtain a commercial marine license (CML) and submit a catch report (popularly known as a "C3" form) on a monthly basis. MHI catches of the ten most commonly reported coral reef species include akule, opelu, jacks, goatfish, surgeonfish, squirrelfish, mullets, snappers, octopus, and parrotfish.

The commercial landing of CREMUS in Hawaii has fluctuated over the past six decades peaking in 1999 with close to 3.5 million lb. In 2010, estimated commercial landings of CREMUS were just over 1.3 million lb with akule and opelu accounting for nearly one-third of the commercial catch (254,996 lb and 204,643 lb, respectively).

In 2010, the average price per pound for coral reef fish in Hawaii was \$3.01. With a total estimated commercial landing of 1.3 million lb, the total value of the 2010 coral reef fishery landings in Hawaii is estimated to be approximately \$3.9 million.

-

⁶ http://www.pifsc.noaa.gov/wpacfin/as/Data/ECL_Charts/ae3amain.htm. Website accessed on September 12, 2011.

The total number of individuals that participate in Hawaii's coral reef fisheries is currently unknown and could include hundreds of thousands of individuals that fish from both the shoreline, in water, and from vessels commercially and non-commercially. Hamm et al., (2010) provides the most recent estimate of the number of licensed commercial fishermen in Hawaii and reports there were 4,263 licensees in 2008. However, not all licensed fishers harvest CREMUS, therefore the exact number of individual participating in Hawaii's coral reef fisheries is unknown.

By far, the largest coral reef fishery in Hawaii in terms of catch landed is the akule fishery which harvests the coastal pelagic species primarily by surround net and in smaller amounts from shoreline casting. The second largest fishery is the opelu fishery which harvests this coastal pelagic species primarily by hoop netting at night and by hook and line during the day. Although exact numbers are not available, it is estimated that up to 35 vessels may participate in Hawaii's akule and opelu fisheries.

4. Description of the ACL Alternatives for the Coral Reef Ecosystem MUS in 2012 and 2013

Proposed ACLs:

The proposed ACLs for each CREMUS grouping under each of the preferred and non-preferred alternatives for American Samoa, CNMI, Guam, and Hawaii are summarized in Tables 19-22 of the EA.

Accountability Measures:

Under all action alternatives considered, the Council would determine as soon as possible after the fishing year, whether or not an ACL for any stock or stock complex had been exceeded. If landings of a stock or stock complex exceed the specified ACL in a fishing year, the Council would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage. NMFS would implement the Council's recommended action, which could include a downward adjustment to the ACL for that stock complex in the subsequent fishing year, or other measures, as appropriate. Additionally, as a performance measure specified in each FEP, if an ACL is exceeded more than once in a four-year period, the Council is required to re-evaluate the ACL process, and adjust the system, as necessary, to improve its performance and effectiveness. Each alternative also assumes continuation of all existing federal and local resource management laws and regulations.

4.1 Alternative 1: No Action, Status Quo

Under the No Action Alternative, NMFS would not specify an ACL for any CREMUS in any island area and AMs would not be necessary. However, this alternative would not be in compliance with the Magnuson-Stevens Act or the provisions of the FEPs which require ACLs be specified for all stocks and stock complexes in the fishery.

4.2 Alternative 2: Specify ACLs based on Arithmetic Mean of the Catch

Under Alternative 2, the ACL for each CREMUS taxonomic group would be set at the value associated with the arithmetic mean of the total catch based on the time series for which data were available. For all CREMUS taxonomic groups (except American Samoa atule and squirrelfish), the ACL under Alternative 2 would be lower than the ABC recommended by the SSC because the SSC set the ABC to that level of catch at which 75% of the catch observations were found to be lower.

Under this alternative, the ACL for species of special management interest, as determined by the Council (bumphead parrotfish, humphead or Napoleon wrasse and reef sharks), would be set equal to the total estimated biomass.

4.3 Alternative 3: Specify ACLs based on the 75th Percentile of the Catch (Preferred)

Under this alternative, the ACL for each CREMUS taxonomic group (except for Hawaii akule and opelu) would be set at the 75th percentile of the total catch based on the time series for which data were available. The ACL would be equal to the ABC recommended by the SSC. For Hawaii akule and opelu, the ACL would be set equal to the MSY values estimated by Weng and Sibert (2000), which are 651,292 lb and 393,563 lb, respectively.

The ACL for species of special management interest, as determined by the Council (bumphead parrotfish, humphead (Napoleon) wrasse and reef sharks), would be set at 5 percent of the total estimated biomass. Under this alternative, the ACL for bumphead parrotfish would be specified on an archipelagic-wide basis (i.e., computation of catch in relation to the ACL would be based on fishing in both CNMI and Guam.)

4.4 Alternative 4: Specify ACLs based on the 95th Percentile of the Catch

Under this alternative, the ACL for each CREMUS taxonomic group would be set at the 95th percentile of the catch based on the time series for which data were available. For all CREMUS taxonomic groups, the ACL values would exceed the SSC recommended ABCs under this alternative.

Additionally, under this alternative, the ACL for species of special management interest, as determined by the Council (bumphead parrotfish, humphead [Napoleon] wrasse and reef sharks), would be set at 10 percent of the total estimated biomass. Under this alternative, the ACL for bumphead parrotfish (*Bolbometopon muricatum*) would be specified on an archipelagic-wide basis (i.e., computation of catch in relation to the ACL would be based on fishing in both CNMI and Guam).

5. Analysis of Alternatives

This section describes the potential economic effects of all alternatives that were considered and evaluates the impacts of each action alternative relative to the no-action alternative.

5.1. Alternative 1: No Action

Under Alternative 1, the no-action alternative, coral reef fisheries in American Samoa, Guam, CNMI, and Hawaii would not be managed using annual catch limits and accountability measures would not used. Fishing would continue to be monitored by each of four local resource management agencies (American Samoa Department of Marine and Wildlife Resources, Guam Division of Aquatic and Wildlife Resources, CNMI Division of Fish and Wildlife, and Hawaii Division of Aquatic Resources), NMFS and the Council. Fisheries statistics would continue to be made available approximately six months or longer after the data have been initially collected. The status of CREMUS, including species of special management interest to the Council would continue to be subject to ongoing discussion and fisheries scientific and management review.

5.2 Alternative 2: Specify ACLs based on Arithmetic Mean of the Catch

Under Alternative 2, fishing for CREMUS in American Samoa, Guam, CNMI, and Hawaii would be subject to annual catch limits generally specified based on the arithmetic mean of historical annual catch. The ACLs specified for Alternative 2 (and all other action alternatives) are provided in Tables 19-22 of the EA.

For the most part, the ACLs proposed for Alternative 2 are higher than recent average annual catches. In cases where an ACL is lower than or even just above the recent average catch, it is possible that an ACL could be exceeded in 2012 and/or 2013. Two family groupings appear to be cases where the proposed ACL under Alternative 2 would be lower than recent average catch. In American Samoa, the ACL for the category of remaining 10% of fish would be 14,991, while recent average catch for fish in this category was 16,556. In Guam, the ACL for jacks would be 38,755, while recent average catch of jacks was 42,822. In CNMI, the ACL proposed under Alternative 2 for all family groupings would be lower than average recent catch. As for the species of special management interest for each island area, the ACL would be equal to the total estimated biomass. As with the other alternatives, the Council and NMFS have not established an in-season fishery management measure (such as a closure), so there would be no restrictions for catching those species.

Under Alternative 2, as with the other action alternatives, the inability of fishery management entities to conduct in-season tracking of catch in relation to the ACLs, resulted in the Council and NMFS not considering in-season closures. This means that participants in western Pacific coral reef ecosystem fisheries would be able to fish throughout the entire season. The ACLs as specified under Alternative 2, (as is true for ACLs specified under other alternatives) would not change the conduct of the fishery each year, including gear types, areas fished, effort, or participation. Even if the post-season assessment determines that ACL overages had occurred and that downward adjustments to that ACL are needed for the following fishing year, the lack of ability in assessing catch levels during the ongoing fishing season would not result in any impact to coral reef fisheries which could still continue. Therefore, due to the lack of an inseason fishery closure, coral reef fishery participants should not face any adverse economic impacts in 2012 and 2013 as a result of the proposed ACL and AMs.

No changes in fisheries monitoring would occur as a result of implementing the ACL specifications and current monitoring of CREMUS catches through shore-based and boat-based creel surveys would continue under this alternative. American Samoa, Guam, and CNMI, and commercial catch reporting in Hawaii would continue to be compiled by the local resource agencies. However, under Alternative 2, as with the other action alternatives, the AMs for coral reef fisheries in American Samoa, Guam, CNMI, and Hawaii would require a post-season review of the annual catch data to determine whether an ACL for any coral reef stock or stock complex was exceeded. If so, the Council would take action to correct the operational issue that caused the ACL overage, which could include a downward adjustment of the ACL. NMFS would implement operational adjustments or downward adjustment to the ACL for that stock or stock complex during the following fishing year as recommended by the Council. Indirect adverse economic effects cold result should catch restrictions occur as a result of the specified ACLs. NMFS cannot predict which MUS would be affected or the magnitude of the overage adjustment that might be taken; therefore, the fishery and economic impacts of future actions such as changes to ACLs or AMs would be evaluated separately, once those future actions are available for consideration.

As the choice of the ACL under Alternative 2 would have little, if any, impact on coral reef fishing activities, this suggests that there should be no change in the amount of reef fish supplied to local markets or available for subsistence and cultural sharing practices in 2012 and 2013 as a result of this action.

Incremental costs associated with this alternative are expected to be incurred by the requirement for the Federal agency to conduct post-season fishery review in order to determine whether one or more ACLs had been exceeded and then would incur costs related to corresponding activities to address the overage. These costs may include, but are not limited to Council costs of documentation preparation, meetings, public hearings, and information dissemination. NMFS administrative costs of document preparation, meetings and reviews supporting rulemaking or otherwise respond to Council proposal. Although each alternative would have the same costs involved with post-season fishery performance review, the other incremental costs are expected to be higher when the potential to exceed one or more ACLs is higher, so Alternative 2 is more likely to incur higher public and private administrative costs than Alternative 3 or Alternative 4. It should be noted that none of the administrative activities under any of the alternatives would be substantially higher than the ongoing costs that the Council and its organizational bodies would bear in response to continuing to comply with national requirements under the MSA that call for the Council to develop and recommend appropriate ACLs and AMs, and for NMFS to implement the specifications.

5.3 Alternative 3: Specify ACLs based on the 75th Percentile of the Catch (Preferred)

Under Alternative 3, fishing for CREMUS in American Samoa, Guam, CNMI, and Hawaii would be subject to annual catch limits based on the 75th percentile of historical catch. Under this alternative, the ACLs would be set equal to the ABC recommended by the SSC. The ACLs specified for Alternative 3 (and all other action alternatives) are provided in Tables 19-22 of the EA and would be applicable to fishing years 2012 and 2013. As for the species of special management interest for each island area, the ACL would be equal to 5 percent of the estimated

biomass. As with the other alternatives, the Council and NMFS have not established an in-season fishery management measure (such as a closure), so there would be no restrictions for catching those species.

The ACLs proposed for Alternative 3 are higher than recent average annual catches. It is possible that an ACL could be exceeded in 2012 and/or 2013, especially in cases where the proposed ACL is not much more than recent average catch.

Under Alternative 3, as with the other action alternatives, the inability of fishery management entities to conduct in-season tracking of catch in relation to the ACLs resulted in the Council and NMFS not considering in-season closures. This means that participants in western Pacific coral reef ecosystem fisheries would be able to fish throughout the entire season. The ACLs as specified under Alternative 3, (as is true for the ACLs specified under other alternatives) would not change the conduct of the fishery each year, including gear types, areas fished, effort, or participation. Even if the post-season assessment determines that ACL overages had occurred and that downward adjustments to that ACL is needed for the following fishing year, the lack of ability in assessing catch levels during the ongoing fishing season suggests that fishing in coral reef fisheries could still continue. Therefore, due to the lack of an in-season fishery closure, coral reef fishery participants should not face any adverse economic impacts in 2012 and 2013 as a result of the proposed ACL and AMs.

No changes in fisheries monitoring would occur as a result of implementing the ACL specifications, and current monitoring of CREMUS catches through shore-based and boat-based creel surveys would continue under this alternative. American Samoa, Guam, and CNMI, and commercial catch reporting in Hawaii would continue and be compiled by the local resource agencies. However, under Alternative 3, as with the other action alternatives, the AMs for coral reef fisheries in American Samoa, Guam, CNMI, and Hawaii would require a post-season review of the annual catch data to determine whether an ACL for any coral reef stock or stock complex was exceeded. If so, the Council would take action to correct the operational issue that caused the ACL overage, which could include a downward adjustment of the ACL. NMFS would implement operational adjustments or downward adjustment to the ACL for that stock or stock complex during the following fishing year as recommended by the Council. Indirect adverse economic effects cold result should catch restrictions occur as a result of the specified ACLs. NMFS cannot predict which MUS would be affected or the magnitude of the overage adjustment that might be taken; therefore, the fishery and economic impacts of future actions such as changes to ACLs or AMs would be evaluated separately, once those future actions are available for consideration.

As the choice of the ACL under Alternative 3 is not likely to affect coral reef fishing activities, there should not be any change in the amount of reef fish that would be supplied to local markets or for subsistence and cultural sharing practices in 2012 and 2013 as a result of this action.

Incremental costs associated with this alternative are expected to be incurred by the requirement for the Federal agency to conduct post-season fishery review in order to determine whether one or more ACLs had been exceeded. If an ACL was exceeded, there would be costs related to corresponding activities to address the overage. Some of these potential incremental costs were

described in Alternative 2. Alternative 3 is expected to incur higher incremental costs in implementing AMs relative to the no action alternative. These incremental costs are likely to be lower relative to Alternative 2. This is because the vast majority of the ACLs proposed under Alternative 3 are higher than those proposed under Alternative 2, and so it is expected that ACL overages would occur less often under Alternative 3 as compared to Alternative 2.

5.4 Alternative 4: Specify ACLs based on the 95th Percentile of the Catch

Under Alternative 4, fishing for CREMUS in American Samoa, Guam, CNMI, and Hawaii would be subject to annual catch limits that were based on the 95th percentile of historical catch. Under this alternative, the ACLs would be higher than the ABC recommended by the SSC, and therefore would not conform to the FEP requirements of establishing ACLs. The ACLs specified for Alternative 4 (and all other action alternatives) are provided in Tables 19-22 of the EA. As for the species of special management interest for each island area, the ACL would be equal to 10 percent of the estimated biomass. As with the other alternatives, the Council and NMFS have not established an in-season fishery management measure (such as a closure), so there would be no restrictions for catching those species

The ACLs proposed for Alternative 4 are higher than recent average annual catch. It is possible that an ACL could be exceeded in 2012 and/or 2013, especially in cases where the proposed ACL is not much more than recent average catch.

Under Alternative 4, as with the other action alternatives, the inability of fishery management entities to conduct in-season tracking of catch in relation to the ACLs resulted in the Council and NMFS not considering in season closures. This means that participants in western Pacific coral reef ecosystem fisheries would be able to fish throughout the entire season. The ACLs as specified under Alternative 4, (as is true for the ACLs specified under other alternatives) would not change the conduct of the fishery each year, including gear types, areas fished, effort, or participation. Even if the post-season assessment determines that ACL overages had occurred and that downward adjustments to that ACL is needed for the following fishing year, the lack of ability in assessing catch levels during the ongoing fishing season suggests that fishing in coral reef fisheries could still continue. Therefore, due to the lack of an in-season fishery closure, coral reef fishery participants should not face any adverse economic impacts in 2012 and 2013 as a result of the proposed ACL and AMs

No changes in fisheries monitoring would occur as a result of implementing the ACL specifications and current monitoring of CREMUS catches through shore-based and boat-based creel surveys would continue. American Samoa, Guam, and CNMI, and commercial catch reporting in Hawaii would continue to be compiled by the local resource agencies. However, under Alternative 4, as with the other action alternatives, the AMs for coral reef fisheries in American Samoa, Guam, CNMI, and Hawaii would require a post-season review of the annual catch data to determine whether an ACL for any coral reef stock or stock complex was exceeded. If so, the Council would take action to correct the operational issue that caused the ACL overage, which could include a downward adjustment of the ACL. NMFS would implement operational adjustments or downward adjustment to the ACL for that stock or stock complex during the following fishing year as recommended by the Council. Indirect adverse economic effects cold

result should catch restrictions occur as a result of the specified ACLs. NMFS cannot predict which MUS would be affected or the magnitude of the overage adjustment that might be taken; therefore, the fishery and economic impacts of future actions such as changes to ACLs or AMs would be evaluated separately, once those future actions are available for consideration. As the choice of the ACL under Alternative 4 should not have any impact on coral reef fishing activities, there should be no change to the amount of reef fish supplied to local markets or for subsistence and cultural sharing practices in 2012 and 2013 as a result of this action.

Incremental costs associated with this Alternative are expected to be incurred by the requirement for the Federal agency to conduct post-season fishery review in order to determine whether one or more ACLs had been exceeded and then would incur costs related to corresponding activities to address the overage. Some of these potential incremental costs were described in Alternative 2. Alternative 4 is expected to incur higher incremental costs in implementing AMs relative to the no action alternative; however, these incremental costs are expected to be lower relative to Alternative 2 and 3. This is because all ACLs proposed under Alternative 4 are higher than those proposed under Alternative 2 and 3, and so it is expected that ACL overages would occur less often under Alternative 4 as compared to the other action alternatives.

Among the action alternatives, it is not possible to provide a quantitative assessment of which would provide a greater net benefit. While Alternative 3 may incur higher incremental costs in implementing AMs, because of the higher likelihood of triggering AMs, the additional level of post season review of the catch would also provide an enhanced level of management review of the fishery and further help the fishery from becoming overfished.

6. Distributional Changes in Net Benefit

The action alternatives are expected to have no distributional effects among large and small vessels or by geographic region, because the proposed measures should not cause an adverse economic impact to fishermen in 2012 and 2013, as described earlier.

7. Changes in Income and Employment

The action alternatives are not expected to cause adverse economic impacts to fishermen in 2012 and 2013, therefore, changes in income and regional employment are unlikely to occur as a direct consequence of the proposed measures.

8. Determination of a Significant Regulatory Action

A "significant regulatory action" means any regulatory action that is likely to result in a rule that may –

1) Have an annual effect on the economy of \$100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal government or communities;

- 2) Create a serious inconsistency or otherwise interfere with an action taken or planned by another agency;
- 3) Materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof; or
- 4) Raise novel legal or policy issues arising out of legal mandates, the President's priorities, or the principles set forth in the Executive Order.

The proposed action is not expected to have an adverse effect of \$100 million or more, create a serious inconsistency or otherwise interfere with an action taken by another agency, materially alter the budgetary impact of programs or rights or obligations of recipients, or raise novel legal or policy issues. Therefore, it is not considered to be a significant regulatory action. However, there is expected to be an increased interest on the part of fishermen regarding catch limits, especially where specified ACLs are low because of the limits to the data used in developing ACLs.

9. Impacts on Small Entities

This section provides a description of the economic impacts of the proposed alternative on small entities as well as that of the alternatives that were considered in the amendment but not selected.

The reasons why the action is being considered, the objectives of, and the legal basis for the proposed action are addressed in Sections 1.0 and 2.0 of the EA. NMFS does not believe that the proposed regulations would conflict with or duplicate other Federal regulations. Section 3.0 provides a description of the fisheries that may be affected by this action.

The proposed action would specify an annual catch limit (ACL) for each coral reef ecosystem stock and stock complex in American Samoa, Guam, the Northern Mariana Islands, and Hawaii for fishing years 2012 and 2013. The proposed specification would be set at the 75th percentile of historical catch. If the ACL for any stock or stock complex is exceeded and affects the sustainability of that stock or stock complex, NMFS would take action to correct the operational issue that caused the ACL overage, as recommended by the Council which could include a downward adjustment to the ACL for that stock or stock complex in the subsequent fishing year.

NMFS does not have annual revenue information on a per-vessel basis, but assumes that all commercial coral reef fishery participants to be small entities based on the SBA size standard for defining a small business entity in this industry with average annual receipts less than \$4.0 million. Average value of 2010 landings per vessel for CREMUS in American Samoa was estimated to be \$3,222 and in Guam, average revenue per vessel for CREMUS in 2009 was an estimated \$3,023. CNMI vessels averaged \$11,689 in CREMUS landings and in Hawaii, vessels that landed akule or opelu, the two most commonly caught species of CREMUS earned an average \$35,703 from those landings. The number of vessels participating in CREMUS fishery was estimated to be as follows: 22 in American Samoa (2010), 116 in Guam (2009), 16 in CNMI (2009), and up to 35 vessels that fish for akule or opelu in 2010 (it cannot be determined how many vessels fished for other CREMUS).

Based on available information, NMFS has determined that all vessels participating in CREMUS fisheries in American Samoa, Guam, CNMI and Hawaii are small entities under the Small Business Administration definition of small entity, i.e., they are engaged in the business of fish harvesting, are independently owned or operated, are not dominant in their field of operation and have annual gross receipts not in excess of \$4 million. The proposed action of specifying ACL and AMs is expected to have little, if any, adverse economic impact, as described in the RIR. There are no disproportionate economic impacts between large and small entities. Furthermore, there are no disproportionate economic impacts among the universe of vessels based on gear, home port, or vessel length.

NMFS is recommending that the Office of General Counsel for Department of Commerce certify to the Chief Counsel for Advocacy of the Small Business Administration that the proposed action would not have any significant economic impacts on a substantial number of small entities.