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1 | INTRODUCTION

Daniel W. Fuller

Abstract

A total of 1522 yellowfin tuna, Thunnus albacares, were captured, tagged, and
released with surgically implanted archival tags (ATs), in six discrete areas of the
eastern and central Pacific Ocean, during 2002 through 2019. Of 483 ATs returned
(31.7%), 227 ATs from yellowfin (48-147 cm in fork length) at liberty from 32 to
1846 d (x=300.1d) provided suitable data sets which were processed using an
unscented Kalman filter model with sea-surface temperature measurements
integrated (UKFsst) in order to obtain most probable tracks and movement parame-
ters. Although some differences were observed in the movement patterns for fish
from within and among the six release areas, 99% of the 227 fish remained within
1000 M of their release locations, indicating limited dispersion and fidelity to release
locations. The median movement parameter D, which defines dispersion from the
UKFsst model, for the fish released in the offshore equatorial areas showed much
greater dispersion rates compared to those for the fish released along the coast or
around islands. The rates of mixing of yellowfin among the release areas were found
to be dependent on the distances between release areas, with, in general, the
greatest mixing occurring among areas in closest proximity, whereas for the two
areas offshore Mexico and the two offshore equatorial areas, the rates of mixing

were nonexistent or negligible.
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167 to 412 thousand metric tons) (Anonymous, 2019). Yellowfin were
caught by purse-seine vessels operating in the EPO during 2013-

Yellowfin tuna, Thunnus albacares, is a large highly mobile pelagic
species, distributed worldwide in tropical and subtropical seas except
the Mediterranean, and is of substantial socioeconomic importance
(Collette & Graves, 2019; Miyake et al., 2010). Yellowfin is the princi-
pal target species of a large international purse-seine fishery in the
eastern Pacific Ocean (EPO), from which the average annual retained

catch during 1999-2018 was 253 thousand metric tons (range:

2018 from about 30°N to 20°S and from the coast of the Americas
west to about 150°W (Anonymous, 2019).

Yellowfin spawning in the Pacific Ocean is widespread, occurring
throughout the year in the warm northern equatorial and tropical
waters, but in the more northern or southern regions, it is seasonal,
restricted to periods when sea-surface temperatures (SSTs) exceed
24°C (Schaefer, 2001). Yellowfin spawn throughout the EPO from at
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least 26°N to 14°S and from the coast of the Americas to 150°W
(Schaefer, 1998). Yellowfin do not undertake spawning migrations like
the temperate Pacific bluefin (Thunnus orientalis) and albacore
(Thunnus alalunga) tunas which exhibit transpacific migrations and
have spatiotemporally confined spawning patterns in the central
and western Pacific (Block et al, 2011; Childers et al, 2011;
Schaefer, 2001). Tagging studies on yellowfin throughout the EPO,
utilizing plastic dart tags (PDTs), have indicated that movements of
tagged fish at liberty for more than 30 d tend to be restricted to less
than 1000 M of their release positions (Bayliff, 1979, 1984; Bayliff &
Rothschild, 1974; Fink & Bayliff, 1970). Those studies indicate
regional fidelity to tagging areas, with little exchange of fish between
the northern and southern regions of the EPO. A more recent
yellowfin tagging study in the northern region of the EPO, from which
126 archival tags (ATs) were recovered from yellowfin (57-162 cm in
fork length) at liberty from 90 to 1161 d (x = 273.2 d), indicated that
95% of the yellowfin remained within 844 M of their release locations,
indicating restricted horizontal utilization distributions (UDs) and fidel-
ity to the areas of release (Schaefer et al., 2011).

Analyses of morphometric and meristic data collected from
yellowfin have shown differences among fish from the eastern,
central, and western Pacific and latitudinal differences for fish from
both the eastern and western Pacific (Schaefer, 1991, 1992). Although
there is annual variability in the morphometric characters, the results
demonstrated that the stocks examined are morphometrically distin-
guishable and that their phenetic relationships reflect their geographic
origin (Schaefer, 1992). Geographic variation observed in morphomet-
ric characters and gill raker counts of yellowfin from northern and
southern regions of the EPO results from restricted movements, lim-
ited mixing, and environmental variation (Schaefer, 1992). In addition,
a genomic study utilizing microsatellite variation provided some
preliminary evidence of the presence of discrete northern and
southern yellowfin populations in the EPO (Diaz-Jaimes & Uribe-
Alcocer, 2006).

A benchmark stock assessment for yellowfin in the EPO was
recently undertaken (Minte-Vera et al., 2020), utilizing a risk analysis
approach, in which a variety of reference models were used to repre-
sent plausible alternative hypotheses about the biology of the fish,
the productivity of the stocks, and/or the operation of the fisheries
(Aires-da-Silva et al., 2020). The overall results of the risk analysis indi-
cate only a 9% probability that the fishing mortality corresponding to
the maximum sustainable yield and a 12% probability that the
spawning stock biomass corresponding to the maximum sustainable
yield have been breached. However, the main uncertainty within the
risk analysis (Maunder et al., 2020) which may explain the inconsis-
tencies among catch-per-unit-of-effort indices from the northern and
southern regions of the EPO is the degree of spatial mixing. The low
mixing and episodic mixing hypotheses that imply the existence of
more than one stock of yellowfin in the EPO were not included in the
reference models.

Over the past two decades, tagging experiments, utilizing ATs,
with large pelagics have provided rich data sets for evaluating spatio-

temporal movement patterns and habitat utilization for the species

investigated (Arnold & Dewar, 2001; Block et al., 2011; Schaefer &
Fuller, 2016). ATs can vastly improve our understanding of movement
patterns, UDs, mixing rates, and putative stock structure of tunas, all
of which are essential for improving stock assessments (Senina
et al., 2012; Sippel et al., 2015; Taylor et al., 2011). Current generation
ATs are capable of autonomous sampling of high-resolution data for
several years, providing opportunities to evaluate the influence of sea-
sonal and annual environmental variability and ontogenetic changes in
movement patterns and habitat utilization (Schaefer & Fuller, 2016).
Furthermore, utilizing state-space models such as the unscented
Kalman filter model with SST measurements integrated (Lam
et al., 2008; Nielsen et al., 2006) for analyses of AT geolocation data
sets provides improved estimates of geographic positions and most
probable tracks (MPTs) along with their confidence intervals.

Considering the apparent restricted movements and incomplete
mixing of yellowfin in the EPO, the importance of developing a
spatially structured stock assessment model with mixing incorporated
has been noted (Minte-Vera et al., 2020). In order to develop a realis-
tic spatially structured assessment model, it is necessary to better
understand yellowfin movement patterns, UDs, mixing rates, and
putative stock structure within the region. This can be achieved but
requires large-scale tagging studies utilizing ATs, conducted through-
out the region of the EPO inhabited by yellowfin.

The objectives of this investigation are to quantify and elucidate
the movement patterns, UDs, and mixing rates of yellowfin, based on
a total of 1522 fish (30-161 cm fork length) tagged and released with
ATs in six discrete areas of the EPO and central Pacific Ocean (CPO),
at liberty from 32 to 1846 d (x = 300.1d, median =241.5 d) during
2002-2019. The results obtained are informative and useful to
evaluate putative stock structure and connectivity for consideration
of incorporating into future stock assessments and for conservation

and management measures for yellowfin in the EPO.

2 | MATERIALS AND METHODS

21 | Tagreleases
The materials and methods utilized for the capture, handling, and tag-
ging of the yellowfin is described in Schaefer et al. (2007). The AT
configurations are designed for internal implantation of the tag body
into the coelom of fish. The external sensor stalk exits the body of the
fish through an incision, from which the ambient light-level and tem-
perature measurements originate. A label with information about
reporting the recovery of the AT and the associated reward (US$250)
was printed on the main body of the AT. The depth (pressure),
ambient and internal temperatures, and light-level data were
programmed to be stored in the memory of the ATs at frequencies of
either 30 or 60 s, dependent on tag type and available memory.
Yellowfin with implanted ATs were also tagged with one serially
numbered 13-cm green PDT manufactured by Hallprint Pty, Ltd.,
Hindmarsh Valley, South Australia, using tubular stainless-steel

applicators. PDTs were inserted, on one side of the fish, into the
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dorsal musculature with the barbed heads passing between the
pterygiophores below the base of the second dorsal fin. A request
that the finder report the recapture of the fish and informing him or
her that there was a $250 reward for the return of the AT was printed
on these tags.

All fish were captured and handled following the guidelines out-
lined by the National Institutes of Health (NIH), international guiding

principles for biomedical research involving animals (NIH, 2012).

2.2 | Baja California, Mexico

The tagging was conducted aboard the San Diego-based sport-fishing
vessels FV Royal Star (28 m) and the FV Shogun (27 m). A total of
644 fish (mean fork length = 76.4 cm; range = 55-135 cm) were
captured, tagged, and released with ATs, between October 2002 and
December 2008. The ATs used were model LTD2310 manufactured
by Lotek Wireless Inc. (St. John's, Newfoundland, Canada). The design,
specifications, and performance of those ATs are described in
Schaefer and Fuller (2016).

2.3 | Revillagigedo Islands, Mexico

The tagging was conducted aboard the San Diego-based 28-m sport-
fishing vessel FV Royal Star. A total of 345 fish (mean fork
length = 102.3 cm; range = 56-161 cm) were captured, tagged, and
released with ATs between February 2006 and March 2013. Two
hundred twenty-seven of the ATs were model LTD2310, and
118 were model Mk9 ATs manufactured by Wildlife Computers
(Redmond, Washington, United States). The design, specifications,
and performance of the Mk9 ATs are described in Schaefer and
Fuller (2016).

24 | Clipperton Island, France

The tagging was conducted aboard the San Diego-based 28-m sport-
fishing vessel FV Royal Star. A total of 147 fish (mean fork
length = 106.6 cm; range = 69-160 cm) were captured, tagged, and
released with ATs between February 2012 and March 2013. The ATs
used were models LAT2910 in 2012 and LAT2810 in 2013, both
manufactured by Lotek Wireless Inc. (St. John's, Newfoundland,
Canada). The design, specifications, and performance of those ATs are
described in Schaefer and Fuller (2016).

25 | Panama

The fishing and tagging was conducted aboard the 7.6-m Kihada Maru,
a panga operating out of the IATTC Achotines Laboratory, located on
the Azuero Peninsula, Panama (Margulies et al., 2007). A total of
110 fish (mean fork length = 60.0 cm; range = 47-82) were captured,

tagged, and released with ATs around the Frailes Islands, Panama,
between January 2007 and September 2009. The ATs used were
models LAT2510 in 2008 and LTD2310 in 2007, 2008, and 2009,
manufactured by Lotek Wireless Inc. (St. John's, Newfoundland,
Canada).

2.6 | Equatorial EPO

Tagging was conducted on the chartered MV Her Grace, a 17.7-m US
west-coast-style live-bait pole-and-line vessel, with home port of San
Diego, CA. A total of 95 fish (mean fork length = 50.0 cm; ran-
ge = 30-80 cm) associated with Tropical Atmosphere Ocean (TAO)
moorings, were captured, tagged, and released with ATs in the equa-
torial EPO from about 5°N to 5°S and 95°W to 110°W between May
2003 and April 2019. Releases consisted of eight LAT1100,
45 LTD2310, 19 LAT2910, and 14 ArcGeo 9 ATs manufactured by
Lotek Wireless Inc. (St. John's, Newfoundland, Canada) and nine Mk9
ATs manufactured by Wildlife Computers (Redmond, Washington,
United States).

2.7 | Equatorial CPO

Tagging was conducted aboard the chartered FV Ao Shibi Go (19 m)
and the FV Gutsy Lady 4 (26 m), longline vessels outfitted for fishing
using danglers and short troll lines, with home ports of Honolulu,
Hawaii. A total of 181 fish (mean fork length = 63.0 cm; range = 42-
115 cm) found associated with TAO moorings were captured, tagged,
and released with ATs in the equatorial CPO from about 5°S to 8°N
and 140°W to 155°W between October 2009 and October 2015.
Releases consisted of 104 LAT2810, two LTD2310, and 56 LAT2910
ATs manufactured by Lotek Wireless Inc. (St. John's, Newfoundland,
Canada) and 19 Mk9ATs manufactured by Wildlife Computers
(Redmond, Washington, United States).

2.8 | Tagrecoveries

Most all recoveries of ATs were made during the unloading of purse-
seine vessels while in port, but there were also a few recoveries
aboard gillnet, longline, pole-and-line, purse-seine, and recreational
vessels at sea. The primary recapture information sought is the recap-
ture date and location, vessel name and type, and the length of the
fish. However, most of the tags are recovered by unloaders of purse-
seine vessels, and the information commonly provided is the date the
tagged fish was found, along with the vessel name and the number of
the storage well in which it was found. Comparing that information
with observer records from purse-seine trips in the EPO, it is normally
possible to verify with reasonable accuracy the recapture dates and
locations for most tagged fish recovered during the unloading of
purse-seine vessels. Further validation of recovery dates and locations

was conducted when reviewing data downloaded from ATs, as it is
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possible from the depth and temperature data to determine when fish
are captured, loaded into cold storage, and subsequently unloaded.

In cases for which a staff member from one of the IATTC field
offices received a fish with the tag intact from a finder during the
unloading of a purse-seine vessel and the storage well number
confirmed, or an observer aboard a purse-seine vessel during a trip
was shown a recaptured tagged fish following a set, the recapture
information was classified as high confidence. Recaptures by longline
vessels were usually found at sea, and accurate recapture details

provided. Such recaptures were also classified as high confidence.

29 | Data processing

Data sets from ATs returned for fish at liberty for 30 d or greater are
included in this study, except those AT data sets from releases off
Baja California and the Revillagigedo Islands which are for fish at
liberty for 90 d or greater, because of an overabundance of AT returns
from those release areas.

Data were downloaded from the recovered tags using software
provided by the tag manufacturers. AT data sets were imported into
Tagbase for simple, single-point data management (Lam &
Tsontos, 2011). Queries were written to extract information from the
Tagbase for use in other software packages, including R (R core
team, 2017), Microsoft Excel, and the Environmental Systems
Research Institute (ESRI) ArcMap.

AT recapture date is determined directly from the time series data
downloaded from the tag. Utilizing the date of recapture and the
vessel name provided by the finder, recapture position is determined
from observer records and/or an abstract of the vessel logbook.

Position estimates provided from the tag manufacturer's proprie-
tary software were based on ambient light-level data, with times of
dawn and dusk used to estimate longitude from the estimated time
of local noon and latitude from the local day length (Ekstrom, 2004).
The raw light-based latitude estimates were highly variable and
unreliable around the time of the equinoxes due to the nearly
constant 12-h day length at all latitudes. Daily SSTs recorded by the
tags matched to SSTs from remote sensing have been shown to signif-
icantly improve estimates of latitude (Nielsen et al., 2006; Teo
et al, 2004). Daily SST values derived from the AT data were
calculated with algorithms provided by the tag manufacturers.

The unscented Kalman filter model with SST measurements inte-
grated (UKFsst) (Lam et al., 2008) was used to obtain improved esti-
mates of positions, MPTs, and movement parameters. The UKFsst
model, a state-space model in which the transition equation describes
the movements, is very similar to the Kalman filter model, with SST
measurements integrated, described by Nielsen et al. (2006). The
UKFsst model is a better model for handling nonlinearities and has
the advantage that every model parameter is handled within a statisti-
cal framework. The UKFsst model can also utilize remotely sensed
SST data of various spatial resolutions, and it automatically estimates
the amount of smoothing required for the SST field. The UKFsst

model parameterizes movement as a biased random walk, with the

movement partitioned into directed (u and v) and dispersive (D)
movements. The model also estimates the geolocation errors as the
longitude (o) and latitude (c,) standard deviations. The NCEP Reyn-
olds Optimally Interpolated 8-d SST (R-Ol) composite product with 1°
area resolution (accuracy of 0.5-0.7°C), derived from Advanced Very
High Resolution Radiometer (AVHRR) Pathfinder data and in situ mea-
surements of SST (Reynolds & Smith, 1994), was utilized in the
UKFsst model to obtain initial parameter estimates. In an effort to
reduce error in latitude and longitude, the UKFsst model was then fit,
utilizing the parameters derived within the R-Ol model runs, using
either the NOAA POES AVHRR Global Area Coverage (GAC) 8-d SST
composite product with 0.1° area resolution (accuracy of 0.3-0.5°C)
(Vazquez et al., 1998), or the NOAA CoastWatch Blended 5-d SST
composite product with an 11 km resolution (NOAA, 2020), to obtain
the final MPT and parameter estimates (Schaefer et al., 2011).

Due to the relatively coarse resolution of satellite-derived SST
data and the error of light-based estimates, fish released along the
coast of Panama had a high incidence of positions occurring on land.
To overcome unrealistic positions, a bathymetry correction was
applied using the analyzepsat package in R, which incorporated the
maximum daily depth recorded on each tag, the ETOPO1 Global
Relief bathymetry data set, and the UKFsst model fits (Galuardi
et al., 2010). The resulting MPTs no longer have position estimates on
land without sacrificing the error estimates about each position
(Galuardi et al., 2010).

For the 227 yellowfin AT data sets evaluated in this study, a daily
position was estimated along the MPTs, except when no position was
available due to the lack of a light-based position estimate, or tag fail-
ure. The number of estimated positions as a percentage of the deploy-
ment period for each fish ranged from 16% to 100%. For the 227 fish,
a total of 54,157 estimated daily positions were obtained.

Each set of position estimates along the MPT for individual fish,
derived from the UKFsst model, was integrated into ESRI ArcMap
10.0, a Geographic Information System (GIS) platform. ArcMap was
used for spatial analyses of all data sets. Volume contours (UDs) were
derived from a kernel density function for aggregated positions using
a 1° search radius and a 0.01° output cell for each release area.

The mixing rates of fish among the six areas were estimated by
evaluating the proportion of fish from a release area whose MPTs
entered into the 100% UD of the fish from another release area for a

period of 1 day or longer.

3 | RESULTS

3.1 | Releases and recoveries of ATs

The positions where 1522 yellowfin were tagged and released with
ATs is shown in Figure 1. The pertinent information associated
with the releases and recaptures of fish, with ATs returned and
utilized in this study by area, are given in Appendix A. The total num-
bers of fish released with ATs and subsequent returns by areas are
considerably different (Table 1). Of the total 1522 ATs deployed,
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returns by area to date range from 308 (47.8%) for off Baja California
to 8 (4.4%) for the equatorial CPO. For the total 483 (31.7%) fish reca-
ptured with ATs returned, 202 (89.0%) came from purse-seine vessels,
one (0.4%) came from longline vessels, one (0.4%) came from pole and
line vessels, 22 (9.8%) came from recreational fishing vessels, and one
(0.4%) came from a coastal gillnet boat.

3.2 | Length distributions of releases by area

The length-frequency distributions of fish released by areas with ATs
are given in Figure 2. The length-frequency distributions for the fish
released at the Revillagigedo Islands and Clipperton Island exhibit
greater fork length ranges than for the other areas. The median fork
length was considerably larger for releases at Clipperton Island, and
the median fork length was considerably smaller for releases in the
equatorial EPO, compared to the other release areas.

1 5.00 14.00 130° 120° 1 1.00 IQO" 99" 80°

Baja California ‘_\%5
50°9 O Revillagigedo Islands F50°
O Clipperton Island
Panama
401 o Equatorial Eastern Pacifi r40°
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201 20°
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@B®
10° - r10°
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FIGURE 1 Positions where 1522 yellowfin were tagged and

released with archival tags

3.3 | Days atliberty

The numbers of fish released with ATs and returns by days at liberty
(DAL) are considerably different among release areas (Table 1).
For the fish released off Baja California and the Revillagigedo
Islands, for which only ATs recovered from fish at liberty for
290 d are included in this study, the mean DAL was 323.3 d (range:
90.0-1846.5 d). For the fish released around Clipperton Island, off the
coast of Panama, and in the equatorial EPO, for which all ATs
recovered from fish at liberty for 230 d are included in this study, the
mean DAL was 217.0 d (range: 32.2-834.7 d). However, for the fish
released in the equatorial CPO, for which all ATs recovered from fish
at liberty for 230 d are included in this study, the mean DAL was
77.4 d (range: 58-99 d), considerably less than for the other five
release areas.

3.4 | MPTsand UDs

MPTs for the fish with the longest linear displacement (LD) and the
fish with the longest DAL released off Baja California are plotted in
Figure 3a,b, respectively. The fish in Figure 3a was recaptured after
560 d by a purse-seine vessel, 1115 M 211° from the release location,
and the fish in Figure 3b was recaptured after 1161 d by a recrea-
tional fishing vessel, 151 M 149° from the release location. The kernel
density plot for all position estimates along the MPTs for the 126 fish
released off Baja California with DAL 2 90 d is shown in Figure 3c.
The summary statistics describing the movements and dispersion for
those fish are given in Table 2.

MPTs for the fish with the longest LD and the fish with the lon-
gest DAL released around the Revillagigedo Islands are plotted in
Figure 4a,b, respectively. The fish in Figure 4a was recaptured after
507 d by a purse-seine vessel 930 M 240° from the release location,
and the fish in Figure 4b was recaptured after 655 d by a recreational
fishing vessel 8.8 M 57° from the release location. The kernel density
plot for all position estimates along the MPTs for the 58 fish released
around the Revillagigedo Islands with DAL = 90 d is shown in
Figure 4c. The summary statistics describing the movements and

dispersion for those fish are given in Table 2.

Releases and returns of archival tags implanted in yellowfin, by release area, and days at liberty

TABLE 1
Returned
Area Released <30
Baja California 644 88 44
Revillagigedo Islands 345 9 23
Clipperton Island 147 5 10
Panama 110 0
Equatorial eastern Pacific 95 4 4
Equatorial central Pacific 181 0
All 1522 106 86

30-89

90-179 180-365 >365 Total (%)
35 115 26 308 (47.8)
22 14 28 96 (27.8)
3 11 5 34(23.1)
10 9 3 24 (21.8)
3 1 1 13(13.7)
3 0 2 8(4.4)
76 150 65 483 (31.7)
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MPTs for the fish with the longest LD and the fish with the lon-
gest DAL released around Clipperton Island are plotted in Figure 5a,b,
respectively. The fish in Figure 5a was recaptured after 88 d by a
purse-seine vessel 647 M 269° from the release location, and the fish
in Figure 5b was recaptured after 529 d by a purse-seine vessel
632 M 100° from the release location. The kernel density plot for all
position estimates along the MPTs for the 13 fish released off
Clipperton Island with DAL 2 30d is shown in Figure 5c. The

summary statistics describing the movements and dispersion for those
fish are given in Table 2.

MPTs for the fish with the longest LD and the fish with the lon-
gest DAL released off Panama are plotted in Figure 6a,b, respectively.
The fish in Figure 6a was recaptured after 177 d by a purse-seine ves-
sel 435 M 298° from the release location, and the fish in Figure 6b
was recaptured after 254 d by a purse-seine vessel 85 M 132° from

the release location. The kernel density plot for all position estimates
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along the MPTs for the 17 fish released off Panama with DAL 2 30 d
is shown in Figure 6c. The summary statistics describing the move-

ments and dispersion for those fish are given in Table 2.

MPTs for the fish with the longest LD and the fish with the lon-
gest DAL released in the equatorial EPO are plotted in Figure 7a,b,
respectively. The fish in Figure 7a was recaptured after 65d by a
purse-seine vessel 491 M 271° from the release location, and the fish
in Figure 7b was recaptured after 112 d by a purse-seine vessel
372 M 82° from the release location. The kernel density plot for all
position estimates along the MPTs for the eight fish released in the
equatorial EPO with DAL 2 30 d is shown in Figure 7c. The summary
statistics describing the movements and dispersion for those fish are
given in Table 2.

MPTs for the fish with the longest LD and longest DAL, and the
fish with the third longest DAL, as the fish with the second
longest DAL experienced a tag failure prior to recapture, released in
the equatorial CPO, are plotted in Figure 8a,b, respectively. The fish in
Figure 8a was recaptured after 99 d by a purse-seine vessel 523 M
277° from the release location, and the fish in Figure 8b was
recaptured after 70 d by a purse-seine vessel 327 M 274° from the
release location. The kernel density plot for all position
estimates along the MPTs for the five fish released in the equatorial
CPO with DAL 2 30 d is shown in Figure 8c. The summary statistics
describing the movements and dispersion for those fish are given in
Table 2.

3.5 | Movement parameters

The median parameter estimates from the UKFsst model for errors in
longitude (ox) and latitude (oy), eastward and northward directed
movements (u and v), and dispersive movement (D) are summarized by
area of release and for all fish pooled in Table 3. Eastward directed
movement (u) is defined by a negative value, and northward
directed movement (v) is defined by a positive value.

The median parameter estimates for directed movements (u and
v) for the fish released off Baja California indicate a slight southward
component (0.77 M/d) to their movement patterns. The median
parameter estimates for the fish released around the Revillagigedo
Islands (0.07 M/d) and Clipperton Island (0.02 M/d) effectively indicate
no directional movement patterns. The median parameter estimates
for fish released off Panama indicate a westward (0.87 M/d) and slight
northward movement pattern (0.47 M/d). The median parameter
estimates for fish released in the equatorial EPO and CPO indicate
pronounced westward (2.27 and 4.74 M/d, respectively) and slight
northward (1.08 and 0.91 M/d, respectively) movement patterns.

Error in longitude (x) and latitude (y) estimated in the UKFsst
model for the six release areas ranged from 0.0° to 1.51° and 0.4° to
21.32° (0-91 M and 24-1279.2 M), respectively. The median parame-
ter estimates obtained from the pooled data for the fish from the
equatorial EPO and CPO indicate that the expected error in position
estimates along MPTs should be within 28.2 M in longitude and
86.4 M in latitude, with an estimated daily dispersion (D) of 453.1 M?/
d. However, the median parameter estimates obtained from the
pooled data for the fish from the Revillagigedo Islands and Clipperton
Island indicate that the expected error in position estimates along
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TABLE 2
area, listed in Appendix A

Release area

Summary statistics for the days at liberty and parameters describing the movements and dispersion of 227 yellowfin by release

Baja Revillagigedo Clipperton Equatorial Equatorial

Parameter California islands Island Panama EPO CPO
Number of fish 126 58 13 17 8 5
Mean days at liberty 273.2 454.9 213.3 213.7 200.8 77.4
Range of days at liberty 90-1161 90-1846 32-529 86-812 36-835 58-99
Latitude range 5.8°N to 6.3°N to 27.5°N 4.1°N to 2.1°N to 2.7°S to 6.2°S to

34.4°N 16.0°N 10.7°N 12.6°N 1.8°N
Longitude range 105-134°W 102-126°W 97-121°W 77-91°W 84-112°W 139-160°W
Number (%) of fish remaining within 124 (98) 58 (100) 13 (100) 17 (100) 8 (100) 5(100)

1000 M of release

95% of positions are within (M) of release 467 376 438 382 621 263
100% volume contour (M?) 26,257 20,207 11,093 5197 15,393 5403
50% volume contour (M?) 844 345 291 355 1811 841

Note: The 100% and 50% volume contours (utilization distributions) were calculated from a kernel density function for all positions, along most probable

tracks, utilizing a 1° search radius and a 0.01° output cell size.

MPTs should be within about 28.4 M in longitude and 109.8 M in
latitude, with an estimated daily dispersion (D) of about 123.1 M.

3.6 | Mixing rates
The 100% UDs encompassing all position estimates along MPTs for
fish from each of the six release areas separately are illustrated in
Figure 9. The numbers and percentages of fish by release area which
had one or more daily position estimates along their MPTs within the
100% UD for the fish from another release area are given in Table 4.
A high percentage of mixing is observed for fish released off Baja
California, the Revillagigedo Islands, and Clipperton Island. But there
was no mixing observed among fish from those release areas within
the UDs for fish released off Panama or in the equatorial CPO. There
was a significant amount of mixing observed for the fish released
around Clipperton Island and those in the equatorial EPO. There was
no mixing observed between fish released in the equatorial EPO and
CPO, for which the distance between the nearest release locations
within those areas was 1853 M. However, the median DAL for the
fish released in the equatorial CPO was significantly shorter than for
those from the equatorial EPO or the other release areas (Table 2).
The degree of mixing observed among fish from the six release
areas was found to be dependent on the distances between those
areas, in conjunction with the restricted 100% and 50% UDs for the

fish by release area (Table 2).

4 | DISCUSSION

The results presented herein from tagging experiments undertaken
with yellowfin in six discrete areas of the EPO, based on 1522 AT

deployments during 2002-2019, provide a better understanding of
the movement patterns, UDs, and mixing rates of yellowfin in the
EPO. The MPTs derived from the 227 yellowfin AT data sets evalu-
ated in this study, for a wide range of fish fork lengths (48.0-
147.0 cm, x=85.5 cm) and times at liberty (32.2-1846.5 d,
X =300.1 d), demonstrate restricted movements, with limited latitudi-
nal and longitudinal dispersion and strong fidelity to release areas,
particularly for those fish released in close proximity to coastal areas
or islands. The rates of mixing of yellowfin among the different
release areas in this study were found to be dependent on the dis-
tances between areas, with, in general, the greatest mixing occurring
among areas in closest proximity, whereas for those areas separated
by more than 1000 M, the rates of mixing were nonexistent or

negligible.

41 | MPTsand UDs

Analyses of the AT data sets utilizing the UKFsst model (Lam
et al., 2008) allowed the reconstruction of MPTs of individual fish,
and estimation of movement parameters by release areas, and for the
pooled data. The MPTs from the 227 AT data sets from the six release
areas demonstrated that 99% of those fish remained within 2000 M
of their release locations.

It is evident from the analyses in this study that there is some
variation in movement patterns among individuals from within and
between release areas. The movement patterns based on the MPTs
for the fish released off Baja California showed the largest 100% UD
(26,257 M?) of the six release areas, with 95% of the positions
within 467 M of release locations. The movement patterns based
on the MPTs for the fish released around the Revillagigedo
Islands, Clipperton lIsland, and Panama showed smaller 100% UDs
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FIGURE 4 Most probable tracks, estimated from the unscented
Kalman filter model, for fish released around the Revillagigedo Islands,
color-coded by bimonthly periods. (a) Tag D1589, the longest linear
displacement, 507 days at liberty, 508 position estimates. (b) Tag
1090062, the longest days at liberty, 655 d, 594 position estimates.
(c) Kernel density plot for all positions, from 58 fish, calculated with a
1° search radius and a 0.01° output cell size. Warmer colors indicate
higher densities
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FIGURE 5 Most probable tracks, estimated from the unscented
Kalman filter model, for fish released around Clipperton Island, color-
coded by bimonthly periods. (a) Tag B1207, the longest linear
displacement, 88 days at liberty, 89 position estimates. (b) Tag B1150,
the longest days at liberty, 529 d, 528 position estimates. (c) Kernel
density plot for all positions, from 13 fish, calculated with a 1° search
radius and a 0.01° output cell size. Warmer colors indicate higher
densities
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FIGURE 8 Most probable tracks, estimated from the unscented
Kalman filter model, for fish released in the equatorial central Pacific,
color-coded by bimonthly periods. (a) Tag D0739, the longest linear
displacement, 99 days at liberty, 99 position estimates. (b) Tag 1959,
the third longest days at liberty, 70 d, 71 position estimates. (c) Kernel
density plot for all positions, from five fish, calculated with a 1° search
radius and a 0.01° output cell size. Warmer colors indicate higher
densities

(5197-20,207 M?), with 95% of the positions within 376-438 M of
release locations. The movement patterns based on the MPTs for the
fish released in the equatorial EPO and CPO showed considerable var-
iation in their 100% UDs of 15,393 and 5403 M2, respectively, with
95% of the positions within 621 and 263 M, respectively, of release
locations. These results indicate strong fidelity for fish to their release
areas with limited dispersion. However, it should be recognized that
the numbers and durations of AT data sets obtained for the fish
released in the equatorial EPO and CPO are substantially less than
those from the other four areas, and thus, longer term movement pat-
terns for fish from the equatorial areas are less certain than those
from the four other areas.

Large-scale historical tagging studies utilizing PDTs with yellowfin
in the EPO, extending from Baja California, Mexico, to northern Peru,
indicated that movements of tagged fish at liberty for more than 30 d
tend to be restricted to less than 1000 M of their release positions
(Bayliff, 1979, 1984; Bayliff & Rothschild, 1974; Fink & Bayliff, 1970;
Schaefer et al, 1961). Those studies demonstrated fidelity of
yellowfin to release areas, with little exchange of fish between the
northern and southern regions of the EPO. Similar conclusions regard-
ing restricted movements and a high degree of fidelity to release areas
have been reached from evaluations of data obtained from large-scale
tagging experiments with yellowfin using PDTs in the CPO
(ltano & Holland, 2000) and the western Pacific Ocean (Sibert &
Hampton, 2003).

The current study includes 58 MPTs, from a wide range in fork
lengths of yellowfin at recapture (x=138.7 cm; range: 78-177 cm),
tagged and released with ATs in the Revillagigedo Islands and at
liberty for relatively long durations (x=454.9 d; range: 90-1846d).
The MPTs for those yellowfin indicate restricted movements,
low levels of dispersion, and fidelity to the Revillagigedo Islands
(Schaefer et al., 2014). To evaluate whether there was a significant
relationship between fork length at release and fidelity to the release
area, a correlation analysis was performed for the 58 fish released at
the Revillagigedo Islands. While the correlation coefficient indicated a
slightly positive relationship (?=.228, p=.09), that relationship was
not significantly different from 0. The longest duration AT data set
included in this study of 3.2 years is for a yellowfin released off Baja
California at 90 cm and recaptured just 167 M from its release location
at a fork length of 162cm. The MPT for that fish indicated that it
remained in a relatively confined area (Figure 3b), demonstrating
fidelity to the area of release throughout the 3.2 years (Schaefer
etal, 2011).

The MPTs from 12 relatively large YFT, estimated weights of 40-
90 kg, tagged and released off Kauai, Hawaii, with pop-up satellite
ATs attached for short durations of 21-59 d, revealed diverse move-
ment patterns. Seven of the fish remained near the Hawaiian Islands,
but five of the fish undertook fairly rapid long-distance movements,
predominantly in a northward direction (Lam et al., 2020). However,

of the five individuals that moved away from the Hawaiian Islands,
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TABLE 3
for 227 yellowfin listed in Appendix A

Release area n o, (degrees)
Baja California 126 Median 0.32
Range 0.08-0.83
Revillagigedo Islands 58 Median 0.46
Range 0-0.99
Clipperton Island 13 Median 0.69
Range 0.22-1.25
Panama 17 Median 0.79
Range 0.53-1.26
Equatorial eastern Pacific 8 Median 0.47
Range 0.19-1
Equatorial central Pacific 5 Median 0.39
Range 0.24-1.51
Pooled 227 Median 0.38
Range 0-1.51
160° 150° 140° 130° 120° 110° 100°
40°A " s s
Baja California
[] Revillagigedos Islands
[]Panama
30°7 [ Clipperton Island
[] Equatorial EPO
[C<=1Equatorial CPO
200 T
100-
01 :
10° -
200_

Summary of the movement parameter estimates from the unscented Kalman filter model, by release area and for the pooled data,

oy (degrees) u (M/d) v (M/d) D (M?/d)

1.36 -0.27 -0.77 144.28
0.40-5.33 —3.56-2.77 —4.31-2.99 13.34-739.57
1.83 —-0.03 -0.07 117.99
0.77-6.81 —2.16-3.19 —3.56-2.17 12.27-824.87
1.51 0.02 0.02 168.05
0.12-21.32 —3.09-1.80 —4.96-3.4 12.37-1275.85
2.07 0.87 0.47 73.57
0.41-6.6 —1.27-4.36 —-2.12-1.62 19.4-548.31
1.61 2.27 1.08 492.15
0.66-3.25 —5.46-7.39 -1.67-10.42 235.23-1130.54
1.44 4.74 0.91 214.12
1.08-1.85 —7.39-6.37 0.11-1.59 27.87-501.76
1.44 -0.12 -0.27 134.39
0.40-21.32 -7.39-7.39 —4.96-10.42 12.27-1275.85

FIGURE 9 The 100% volume
contours (utilization distributions) for
yellowfin, derived from a kernel density
estimate, using a 1°search radius and a
0.01°output cell size, for all positions
along the most probable tracks of fish by
release area

160°  150°  140°  130°  120°  110°  100°

the largest fish traveled the furthest and headed east, crossing the
IATTC management boundary at 150°W after 16 d at liberty, and
reached 139°W before the tag release mechanism failed and
prematurely released.

We recognize that the movement patterns observed are repre-
sentative only for the sizes of fish in this study and the locations and
timing of the tagging events. Movement patterns for larger and/or
older yellowfin from other areas of the EPO, or fish tagged and
released during other years, may differ due to ontogenetic changes in
behavior or responses to large-scale environmental conditions that

impact SSTs, currents, vertical structure, and productivity.

90°  80°

The MPTs and horizontal UDs observed for yellowfin tagged and
released with ATs in this study are apparently strongly influenced by
geographic features such as gulfs and islands, bathymetric features
such as banks, ridges, and seamounts, and dynamic physical oceano-
graphic processes such as gyres, upwelling, eddies, convergence, and
frontal zones (Sund et al., 1981). High prey densities have been shown
to be associated with these features and processes, providing good
which yellowfin exhibit a high affinity
(Blackburn, 1968; Blackburn et al., 1970). High concentrations of for-

age organisms (Alverson, 1963) are obviously an important biotic

foraging areas for

factor in the fine-scale distribution and abundance of yellowfin and
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TABLE 4 Number and percentage of fish by release area which had one or more daily position estimates along their most probable tracks
within the 100% utilization distribution for the fish from another release area

Most probable tracks

Utilization distribution Baja California Revillagigedo Islands

Baja California 58 (100%)
Revillagigedo Islands 108 (86%)

Clipperton Island 3(2%) 16 (28%)
Panama 0 (0%) 0 (0%)
Equatorial EPO 0 (0%) 1(2%)
Equatorial CPO 0 (0%) 0 (0%)

Clipperton Island Panama Equatorial EPO Equatorial CPO
7 (54%) 0 (0%) 0 (0%) 0(0%)
13 (100%) 0 (0%) 2 (25%) 0 (0%)
0 (0%) 6 (75%) 0(0%)
0 (0%) 1(13%) 0 (0%)
4 (31%) 0 (0%) 0 (0%)
0 (0%) 0 (0%) 0 (0%)

Note: The 100% utilization distributions were calculated, by release area, from a kernel density function for all positions along most probable tracks,

utilizing a 1° search radius and a 0.01° output cell size.

appears to be one of the primary factors contributing to their
observed fidelity to the areas where they were tagged and released in
this study. In addition, there is no apparent reason why yellowfin
tagged and released in each of the six areas in this study would need
to move outside their observed horizontal utilization distributions for
reproduction, since yellowfin spawning has been reported to be wide-
spread throughout the EPO (Schaefer, 1998), including the six tag and
release areas in this study. Yellowfin tuna evolved a different life
history strategy, consisting of restricted movements in subtropical to
tropical waters with prolonged spawning periods, compared to that of
temperate bluefin tunas exhibiting highly migratory movements in
temperate to tropical waters with spatiotemporally confined spawning
distributions (Schaefer, 2001). The molecular data support the mono-
phyletic status of the yellowfin tuna group and indicate that these
tropical tunas are recently derived taxa relative to that of the ancestral
temperate bluefin lineage (Chow et al., 2006).

4.2 | Movement parameters
The median movement parameters from the UKFsst model, by release
area (Table 3), define the differences observed in the yellowfin MPTs
among release areas. One of the most revealing differences observed
in this study is that the median movement parameter D, which defines
dispersion, for the fish released in the equatorial EPO (492.2 M?/d)
and CPO (214.1 M?/d), show much greater dispersion rates compared
to those for the fish released along the coasts of Baja California and
Panama and around the Revillagigedo Islands and Clipperton Island
(73.6-168.1 M%/d).

In the equatorial EPO, the oceanography is extremely dynamic
(Fiedler & Talley,
et al, 2006), and resource limited (Fernandez-Alamo & Farber-

2006), with oligotrophic water (Pennington

Lorda, 2006), resulting in patchy distributions of yellowfin tuna prey
(Blackburn, 1968; Blackburn et al., 1970). Investigations of the feeding
habits of YFT in the EPO have concluded they are an opportunistic
predator (Alverson, 1963; Sund et al., 1981) due to high prey diversity
and, in general, low abundance of each prey type in the diet. Olson

et al. (2014) reported that prey diversity was higher but proportions

consumed lower in the offshore equatorial EPO, opposed to lower
prey diversity with higher proportions consumed in the more produc-
tive non-equatorial inshore upwelling regions influenced by the
California and Humboldt currents. These studies describing spatial
differences in the oceanography of the EPO, combined with the spa-
tial patterns of prey diversity and abundance, support the hypothesis
that the higher average dispersion rate for YFT in the equatorial EPO
results from their higher search rates and spatial coverage required to
obtain minimum daily rations to support their high energetic demands
(Olson & Boggs, 1986). For comparison to the variability in median
movement parameters for yellowfin by release areas in this study, the
median movement parameters from the UKFsst model for bigeye tuna
(Thunnus obesus), tagged and released in the equatorial EPO with ATs
(Schaefer & Fuller, 2009), had a similar dispersion rate (464.6 M?/d)
but with a predominantly westward movement component, to those
of bigeye tagged and released in the equatorial CPO with ATs
(496.7 M?/d) (Schaefer et al., 2015), but with a predominantly east-

ward movement component.

43 | Mixing rates
The estimated mixing rates of yellowfin among the six areas in this
study clearly indicate a lack of complete mixing of yellowfin within
the EPO, resulting from limited dispersion and fidelity to home range
distributions. A high mixing rate was observed among the fish
released off Baja California, the Revillagigedo Islands, and Clipperton
Island, but no mixing among fish from those areas with fish released
off Panama. A low mixing rate was observed among fish released off
the Revillagigedo Islands and Panama with those released in the
equatorial EPO. A high mixing rate was observed among fish released
off Clipperton Island with those released in the equatorial EPO. There
was no mixing observed among the fish released in the equatorial
CPO with fish released from the other areas.

The findings in this study regarding the lack of any significant
amount of mixing among yellowfin tagged and released off the coast
of Baja California and the Revillagigedo Islands, Mexico, with those

from off the coast of Panama and in the equatorial EPO and CPO are
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consistent with the results of an investigation of the morphometrics
and gill-raker counts of yellowfin which found there to be significant
differences between fish sampled from off Mexico with those from
off Ecuador (Schaefer, 1991, 1992). Geographic variation observed in
morphometric characters and gill raker counts of yellowfin from
northern and equatorial regions of the EPO results from restricted
movements, lack of mixing, and environmental variation.

A genomic study of yellowfin in the EPO utilizing microsatellite
variation revealed significant differentiation in comparisons between
north equatorial samples (10-25°N) and a southern equatorial sample
(16-18°S) providing some preliminary evidence of the presence of
discrete northern and southern yellowfin populations in the EPO
(Diaz-Jaimes & Uribe-Alcocer, 2006). In addition, recent yellowfin
genomic investigations utilizing high-throughput genotyping with sin-
gle nucleotide polymorphism markers have provided evidence of
some heterogeneous population structure for yellowfin from the east-
ern, central, and western Pacific (Anderson et al., 2019; Grewe
et al., 2015; Pecoraro et al., 2018).

Various stock identification methodologies have been employed
for the principal species of commercial tunas in the Pacific Ocean,
from fisheries statistics to data on tagging, spawning, morphometric
and/or meristic characters, parasites as biological markers, allozyme
variation, genomics, and elemental composition of otoliths (Moore
et al., 2020). Each methodology has advantages and disadvantages
including how each character set relates differently to the delineation
of stocks and their usefulness within stock assessments and fisheries
management. Tagging data, particularly that from ATs, appear to have
the most merit in providing estimates of home range distributions and
delineation of stock structure, diffusion rates, and the extent of mixing
between regions. However, as several investigators suggest, a multi-
method approach is optimal, which should include genomics together
with tagging and life history data for delineation of stock structure
and mixing between areas (Begg et al., 1999; Moore et al., 2020).

5 | CONCLUSIONS

Yellowfin in the EPO are not a single well-mixed population, as the
results of this study support the hypothesis of multiple stocks. How-
ever, latitudinal and longitudinal stock boundaries to date have been
difficult to delineate and are no doubt dynamic. To do so will require
additional tagging studies utilizing ATs, in conjunction with an investi-
gation of yellowfin genomics, with the success of both lines of
investigation dependent on suitable sample sizes from several discrete
areas encompassing the distribution of yellowfin in the EPO.

The findings of this study also suggest the importance of shifting
to a spatially explicit regional stock assessment model for yellowfin in
the EPO that includes area specific movement dynamics, exploitation
rates, and life history characteristics. The assumption of a single stock
with complete mixing throughout the EPO is unrealistic, and
stock assessments based on that assumption may lead to serious
biases in stock status, localized depletion and/or underutilization, and

inappropriate management advice.
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