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Abstract 
 

The description of essential fish habitat is required for federally managed fishery species. 
Species distribution models (SDMs) have been utilized in marine science and conservation to 
identify and predict suitable habitats for many species. SDMs can involve a range of models that 
vary in structure and complexity. Boosted regression tree models were fit to fishery-independent 
data to define the geographic extent of essential fish habitat (EFH) of sub-adult/adult life stages 
of a federally managed snapper species, Aprion virescens, commonly called “Uku”, in the main 
Hawaiian Islands. Due to differences in survey data collection methods, separate SDM models 
for Uku were constructed for shallow (0-30 m depth) depths using NOAA fish diver surveys and 
deeper (30-300 m) depths using NOAA and UH baited stereo-video camera arrays. For shallow 
models, aspect (i.e., direction that habitat slope faces), depth, and wave heights were strong 
predictors of Uku occurrence, while depth was the predominant habitat variable for the deep 
model. Output from the SDMs were used to create maps delineating Uku EFH including 
continuous probability of occurrence maps as well as categorical maps showing EFH “hot spots”, 
“core habitats”, and “basic EFH”, based on 25%, 50%, and 95% quantiles of predicted 
occurrence, respectively. For shallow depths, Uku hot spots were 0% of the MHI, core habitat 
was 0.2%, basic EFH was 55.4%, and other habitat was 44.4%. For deep depths, Uku hot spots 
were 0.09% of the MHI, core habitat was 2.4%, basic EFH was 59.8%, and other habitat was 
37.3%. The maps are a visual display of the predicted quantitative relationship between Uku and 
their habitat and can be used to inform marine conservation and management activities in the 
main Hawaiian Islands. These analyses represent the first model-based approach to delineating 
EFH for a U.S. Western Pacific stock and could serve as a framework for the EFH descriptions 
of other managed species in the region. A future phase of this work will expand the 
environmental covariates in the SDMs to include dynamic variables such as seawater 
temperature, salinity, productivity, and current velocity. 
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INTRODUCTION 
 

The description and identification of Essential Fish Habitat (EFH) for all species 
managed under a US fisheries management plan is mandated by the Magnuson-Stevens Fishery 
Conservation and Management Act (1996). EFH is generally defined therein as “those waters 
and substrate necessary for fish for spawning, breeding and growth to maturity”.  The National 
Marine Fisheries Service has provided guidelines to evaluate the quality of available data used to 
identify EFH should be rated (50 CFR Pt. 600.815): 

 
Level 1: All that is known is where a species occurs based on distribution data for all or  

part of the geographic range of the species. 
 Level 2: Data on habitat-related densities or relative abundance of the species are    

available. 
 Level 3: Data on growth, reproduction, or survival rates within habitats are available. 
  Level 4: Production rates by habitat are available. 
 
 In the Hawaiian Archipelago, most EFH definitions for managed species have been 
primarily qualitative descriptions of the distribution and depth range of the observed life stages 
(i.e., typically adults, but can include juveniles). For the Green Jobfish, Aprion virescens 
Valenciennes 1830 (Figure 1), or “Uku” as it is known locally in Hawaiʻi, the EFH designation 
was classified as part of the “Shallow Complex” of bottomfish in the Hawaiian Archipelago by 
the Western Pacific Regional Fishery Management Council (WPRFMC 2016). In the Western 
Pacific region, four life stage categories are defined for EFH: egg, post-hatch pelagic, post-
settlement, and sub-adult/adult. For the sub-adult/adult stage of Uku, the EFH was described as 
“the benthopelagic zone, including all bottom habitats, in depths from the surface to 240 m 
bounded by the official US baseline and 240 m isobath” and maps to reflect that description were 
generated. Definitions for the Uku egg, post-hatch pelagic, and post-settlement stages interpreted 
in aggregate generically identified all water column (out to 50 mi from shore for eggs) and 
benthic habitats from 0 to 240 m depths as EFH. 

 

Figure 1. Drawing of adult Green Jobfish or “Uku”, Aprion virescens. Source: Hawaiʻi DLNR. 

This scope of work outlines methods to utilize existing fisheries-independent survey data 
with geographically-explicit marine habitat information (i.e., GIS data) to identify EFH for the 
sub-adult/adult phases for Aprion virescens in the main Hawaiian Islands (MHI) of the Hawaiian 
Archipelago (i.e., the Northwestern Hawaiian Islands are not included in this analyses). This 
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work uses statistical and geospatial methods whose complexity depended upon the quality, type, 
and amount of data available for each species. This work did not attempt to delineate EFH for the 
egg of post-hatch pelagic stages of the fish species. 

To expand on the existing EFH definitions from Uku in the MHI, the purpose of this 
work is to generate species distribution models (SDMs) for Uku for sub-adult/adult life stages to 
the highest EFH Levels possible based on available data. In this report, the SDMs were 
constructed by fitting boosted regression tree (BRT) models to fishery-independent survey data 
from NOAA and the University of Hawaii. The BRT models provide optimal fits between 
habitat covariates and in situ diver or video survey data of Uku. Output from the SDMs were 
used to create maps delineating Uku EFH including continuous probability of occurrence maps 
as well as EFH categorical maps. The resulting categorical maps allow the geographic 
identification of “hot spot”, “core habitat”, and “basic EFH” areas for Uku EFH throughout the 
main Hawaiian Islands. These analyses represent the first model-based approach to delineating 
EFH for a U.S. Western Pacific stock and could serve as a framework for the EFH descriptions 
of other managed species in the region.  
 

MATERIAL AND METHODS 
 
Study Area 
 
The study area included the “shallow” (0 to 30 m depth) and “deep” (30 m to 300 m) seafloor 
around the 8 main Hawaiian Islands (MHI). The Hawaiian archipelago encompasses a group of 
volcanic islands and atolls that span 2500 km in the central north Pacific Ocean (Figure 2). The 
geography of these volcanic islands is characterized by prominent coastal capes and headlands 
that demarcate coastal exposures to different climate and ocean conditions. The north coasts of 
Kauai, Oahu, and Maui are exposed to large northern hemisphere winter swells (≥7 m), while 
southern hemisphere storms produce waves (3 to 5 m) along Hawaiian south shores in summer 
(Fletcher et al. 2008). The eastern or windward side of the islands experience consistent easterly 
trade winds (10 to 20 knots) that generate steady wind-driven waves (1 m; Fletcher et al. 2008). 
There are only 2 large, natural semi-enclosed waters bodies in the MHI, Pearl Harbor and 
Kaneohe Bay on Oahu (Fig. 1). In shallow waters (0 – 30 m), coral reefs are found around the 
coasts and embayments of all islands (Battista et al. 2007). In deeper waters (30 – 300 m), a mix 
of softbottom and hardbottom habitats are found through the region with coral reefs are less 
common at these depths. 
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Figure 2. A map of the eight Main Hawaiian Islands. 

 
Literature and Data Search 
 
I searched the scientific literature (i.e., Google Scholar and Web of Science) and reviewed 
fishery-independent survey data information relevant to the delineation of EFH for Aprion 
virescens in the main Hawaiian Islands. Here, the main Hawaiian Islands are defined as the area 
of the US EEZ that encompasses the Niihau, Kauai, Oahu, Maui Nui, and Hawaii. GIS 
bathymetry and habitat layers were provided by the Pacific Islands Benthic Habitat Mapping 
Center (https://www.soest.hawaii.edu/pibhmc/cms/), the Hawaii Mapping Research Group 
(http://www.soest.hawaii.edu/HMRG/cms/about-hmrg/), and the NOAA Centers for Coastal 
Ocean Science (https://coastalscience.noaa.gov/research/project-explorer/). The NOAA Pacific 
Islands Fishery Science Center (PIFSC), The Nature Conservancy, and the Hawaii State Division 
of Aquatic Resources provided diver survey data for Uku. NOAA PIFSC and Jake Asher 
provided baited stereo-video camera survey data for Uku. 
 
Survey Data Sources 
 
A number of survey data sources were reviewed for Uku observations in the main Hawaiian 
Islands between 2010 and 2019. Two primary field methods were used for the direct observation 
of Uku in fishery-independent surveys, diver surveys (Heenan et al. 2017) and baited stereo-
video cameras (Merritt et al. 2011, Amin et al. 2017, Asher et al. 2017). The details of these data 
sources are provided in the following sections.  
 

https://www.soest.hawaii.edu/pibhmc/cms/
http://www.soest.hawaii.edu/HMRG/cms/about-hmrg/
https://coastalscience.noaa.gov/research/project-explorer/
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Stationary Diver Fish Surveys - NOAA Fisheries Pacific Island Fisheries Science Center 
(PIFSC) 

• Number of surveys: 1,682 
• Surveys with A. virescens observed: 252 (14.9% of total) 
• Year range: 2010-2019 
• Island areas surveyed (8): Niihau, Kauai, Oahu, Molokai, Lanai, Maui, Kahoolawe, 

Hawaii 
• Depth range: 1.3 m – 30.0 m 
• Median uku length (and range): 54 cm (22 cm – 110 cm) FL 
• Methods: Visual observations of fish community by SCUBA divers using the stationary 

point count method in shallow coral reef habitats (Heenan et al. 2017). Each survey 
represents data averaged from multiple diver surveys, typically two per site. Uku 
observations were collected along with observations of multiple species of fish. The 
number and length of uku were visually estimated by divers, not measured directly. 

• Comments: These surveys were performed during 2010, 2012, 2013, 2015, 2016, and 
2019. Not all islands and coastlines were surveyed in each year (Figure 3).  

• Contact: Tye Kindinger, tye.kindinger@noaa.gov 

Figure 3. NOAA PIFSC diver surveys for uku (Aprion virescens) in the main Hawaiian Islands, 
2010-2019. Surveys include those with uku observed (red circles) and those with no uku 
observed (open circles). 

mailto:tye.kindinger@noaa.gov
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Diver Transect Surveys (FAHU) – Hawaii Division of Aquatic Resources (DAR) 

• Number of surveys: 2,395 
• Surveys with A. virescens observed: 127 (5.3% of total) 
• Year range: 2015-2020 
• Island areas surveyed (3): Kauai, Lanai, Maui 
• Depth range: 0.6 m – 22.9 m 
• Median uku length (and range): 40 cm (12.5 cm – 120 cm) FL 
• Methods: Visual observations of fish community by SCUBA divers using the belt 

transect method in shallow coral reef habitats (cite?). The method used 25 m x 5 m belt 
transects. Uku observations were collected along with observations of a multiple coral 
reef species. The number and length of uku were visually estimated by divers, not 
measured directly. Results from survey replicates were averaged together for each site. 

• Comments: These surveys were performed annually during 2015-2020. Not all coastlines 
were surveyed in each year (Figure 4). 

• Contact: Laura Gajdzik, lgajdzik@hawaii.edu  
 

 
Figure 4. DAR FAHU diver surveys for uku (Aprion virescens) in the main Hawaiian Islands, 
2015-2020. Surveys include those with uku observed (red circles) and those with no uku 
observed (open circles).  
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Diver Transect Surveys – The Nature Conservancy 
• Number of surveys: 2,730 
• Surveys with A. virescens observed: 112 (4.1% of total) 
• Year range: 2012-2020 
• Island areas surveyed (4): Oahu, Maui, Kahoolawe, Hawaii 
• Depth range: 0 m – 60.6 m 
• Median uku length (and range): 40 cm (6.3 cm – 130 cm) FL 
• Methods: Visual observations of fish community by SCUBA divers using the belt 

transect method in shallow coral reef habitats. The method used 25 m x 5 m belt 
transects. Uku observations were collected along with observations of a multiple coral 
reef species. The number and length of uku were visually estimated by divers, not 
measured directly. Results from survey replicates were averaged together for each site. 

• Comments: These surveys were performed during 2012-2020 but not necessarily every 
year at all locations (Figure 5). 

• Contact: Eric Conklin, econklin@tnc.org 

 
Figure 5. The Nature Conservancy diver surveys for uku (Aprion virescens) in the main 
Hawaiian Islands, 2012-2020. Due to data confidentiality, survey locations with uku 
observations cannot be identified. 
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Towed Diver Fish Surveys - NOAA Fisheries Pacific Island Fisheries Science Center 

• Number of surveys: 1,722 
• Surveys with A. virescens observed: 44 (2.6% of total) 
• Year range: 2010-2016 
• Island areas surveyed (7): Niihau, Kauai, Oahu, Molokai, Lanai, Maui, Hawaii 
• Depth range: 10 m – 20 m 
• Median uku length range: 62.5 cm (50 cm – 90 cm) FL 
• Methods: Visual observations of fish community by SCUBA divers using the stationary 

point count method in shallow coral reef habitats (cite). 
• Comments: These surveys were performed during 2010 and 2016 (Figure 6). Each survey 

represents data collected during a tow “segment”. The centroid of the tow segment was 
used to identify the geographic coordinates for the survey location. Uku observations 
were collected along with observations of a multiple coral reef species. The number and 
length of uku were visually estimated by divers, not measured directly. 

• Contact: Tye Kindinger, tye.kindinger@noaa.gov 

 
Figure 6. NOAA PIFSC towed diver surveys for uku (Aprion virescens) in the main Hawaiian 
Islands, 2010-2016. Surveys include those with uku observed (red circles) and those with no uku 
observed (open circles). 
 
  

mailto:tye.kindinger@noaa.gov
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Baited Remote Underwater Video (BRUVs) Surveys 
• Contact: Jacob Asher, jakeasher@hotmail.com 
• Number of surveys: 107 
• Surveys with A. virescens observed: 28 (26.2% of total) 
• Year range: 2010-2013 
• Island areas surveyed (4): Oahu, Molokai, Lanai, Maui 
• Depth range: 2.7 m – 96.6 m 
• Uku length range: 22.2 cm – 107.2 cm FL 
• Methods: Baited remote underwater video (BRUVs) surveys recorded visual observations 

of the fish community using stationary stereo-video baited camera arrays in shallow to 
mesophotic hardbottom and softbottom habitats (Asher et al. 2017). Uku observations 
were collected along with observations of multiple fish species. The maximum number 
and length of uku were visually estimated from the videos using software tools (i.e., 
Event Measure), not measured directly. 

• Comments: These surveys were performed during 2010-2013 (Figure 7).  

 
Figure 7. Baited remote underwater videos (BRUVs) for uku (Aprion virescens) in the main 
Hawaiian Islands, 2010-2013. Surveys include those with uku observed (red circles) and those 
with no uku observed (open circles). 
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BotCAM Video Surveys – NOAA PIFSC / University of Hawaii 
• Number of surveys: 465 
• Surveys with A. virescens observed: 24 (5.2% of total) 
• Year range: 2011-2014 
• Island areas surveyed (3): Lanai, Maui, Kahoolawe 
• Median depth (and range): 164.5 m (63.7 m – 314.0 m) 
• Uku length range: 52.7 cm – 75.3 cm FL 
• Methods: Baited underwater video surveys recorded visual observations of the fish 

community using stationary stereo-video baited camera arrays in mesophotic hardbottom 
and softbottom habitats (Merritt et al. 2011). 

• Comments: These surveys were performed annually during 2011-2014 (Figure 8). Uku 
observations were collected along with observations of multiple fish species. Surveys 
with “at least 1” uku were given a value of 1 for Nmax. Survey records with a Species 
identification of “Lutjanid/ae”, “Perciformes”, “Teleost”, or “too dark to annotate” were 
not included in the analysis. 

• Contact: Audrey Rollo, audrey.rollo@noaa.gov 

 
Figure 8. BotCam underwater video surveys for uku (Aprion virescens) in the main Hawaiian 
Islands, 2011-2014. Surveys include those with uku observed (red circles) and those with no uku 
observed (open circles). 
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MOUSS Video Surveys – NOAA PIFSC 
• Number of surveys: 951 
• Surveys with A. virescens observed: 105 (11.0% of total) 
• Year range: 2016-2019 
• Island areas surveyed (8): Niihau, Kauai, Oahu, Molokai, Lanai, Maui, Kahoolawe, 

Hawaii  
• Median depth (and range): 159.5 m (44.8 m – 291.7 m) 
• Uku length range: NA 
• Methods: Baited underwater video surveys recorded visual observations of the fish 

community using stationary stereo-video camera arrays in shallow to mesophotic 
hardbottom and softbottom habitats (Amin et al. 2017). 

• Comments: These surveys were performed annually during 2016-2019 (Figure 9). Uku 
observations were collected along with observations of multiple fish species. Surveys 
with “at least 1” uku were given a value of 1 for Nmax. Survey records with a Species 
identification of “Lutjanid/ae”, “Perciformes”, “Teleost”, or “too dark to annotate” were 
not included in the analysis. 

• Contact: Audrey Rollo, audrey.rollo@noaa.gov 
 

 
Figure 9. MOUSS underwater video surveys for uku (Aprion virescens) in the main Hawaiian 
Islands, 2011-2014. Surveys include those with uku observed (red circles) and those with no uku 
observed (open circles). 
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Survey Data Used for SDM Models 
 
While several potential survey data sources were evaluated for inclusion in the SDMs (see prior 
sections), only the NOAA PIFSC SPC diver surveys for shallow habitats and NOAA/UH baited 
remote underwater stereo-video surveys (i.e., BotCam, MOUSS, & BRUVs) for deep habitats 
were used. These surveys were selected based on their methodological consistency, well-
documented field techniques, and data collection QA/QC procedures by NOAA scientists. Due 
to differences in survey data collection methods between diver surveys and stereo-video camera 
surveys, separate SDM models for Uku were constructed for shallow (0-30 m depth) depths 
using NOAA fish SPC diver surveys and deep (30-300 m) depths using NOAA and UH baited 
stereo-video camera arrays. Shallow diver surveys included information on fish lengths but most 
of the deep video surveys did not include length information for observed Uku. The lack of 
length data for most of the surveys meant that sufficient information was not available to create 
separate EFH maps for sub-adult and adult fish. The EFH analyses and maps that follow are for 
aggregated sub-adult/adult life stages. Some stereo-video camera surveys were performed in 
depths shallower than 30 m but these surveys were not included in the SDMs. A few surveys 
were located on land or in water deeper than 300 m. These were not included in the models and 
required additional QA/QC by the primary data providers. Shallow and deep survey sites were 
present around Niihau and Kauai (Figure 10), Oahu (Figure 11), Maui Nui (Figure 12), and 
Hawaii (Figure 13). 
 

 
Figure 10. Shallow and deep survey sites for Uku (Aprion virescens) in Niihau and Kauai. 



13 
 

 
Figure 11. Shallow and deep survey sites for Uku (Aprion virescens) around Oahu. 
 

 
Figure 12. Shallow and deep survey sites for Uku (Aprion virescens) around Maui Nui. 
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Figure 13. Shallow and deep survey sites for Uku (Aprion virescens) around Hawaii Island. 
 

Habitat Covariates 

A set of habitat covariates were used to parameterize and select the best fit SDMs. The 
covariates represented observed, derived and modeled variables that were expected to influence 
the distribution of Uku. For all covariates, the values were resampled to regular spatial raster 
grids of 50 m x 50 m resolution. Bathymetry-derived variables—slope, aspect, and rugosity—
were calculated in ArcGIS (V.10.7.1) with an eight-cell neighborhood (Burrough and 
McDonnell, 1998). Terrain ruggedness, referred to as rugosity hereafter, was calculated with an 
eight-cell neighborhood using ArcGIS Benthic Terrain Modeler (Wright et al., 2005) and ranged 
from 0 (no variation) to 1 (complete variation). Bathymetry-derived variables were calculated at 
50-m resolution of bathymetry provided by the Hawaii Mapping Research Group’s bathymetry 
synthesis. As an example of a “dynamic” habitat variable, for the shallow model only, SWAN 
wave model output of maximum significant wave height and mean significant wave height were 
estimated. Collinearity among covariates was examined prior to using them in the SDMs. Paired 
correlations for all covariates were below r = 0.6, an acceptable threshold for boosted regression 
tree models (Elith et al. 2008). 
 

Species distribution modeling 
 
SDM modeling adapted methods used by Franklin et al. (2013) and Oyafuso et al. (2017). 
Boosted regression tree (BRT) models were constructed for Uku occurrence (i.e., 
presence/absence) using the routines gbm (generalized boosted regression models) v2.1.8 
(Ridgeway 2020) and gbm.step (Elith et al. 2008) in the R statistical program V4.03 (R 
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Development Core Team, www.r-project. org). BRT models combine re gression trees that fit 
environmental predictors to response variables with a boosting algorithm that assembles an 
ensemble of trees in an additive, stage-wise fashion (Hastie et al. 2001, Elith et al. 2008). Within 
the BRT models, 3 terms were used to optimize predictive performance: tree complexity, 
learning rate, and bag-fraction. Tree complexity (tc) determined the number of nodes in a tree 
that should reflect the true interaction order on the response being modeled, although this is often 
unknown, and learning rate (lr) was used to shrink the contribution of each tree as it is added to 
the model (Elith et al. 2008). The bag-fraction determined the proportion of data to be selected at 
each step and, therefore, the model stochasticity (Elith et al. 2008). For each species, the BRT 
model training dataset was a one-time random selection of 70% of the original total dataset of 
model grid cells (Table 1). The remaining 30% was held out for independent validation of each 
optimal BRT model. I determined optimal settings for these parameters by examining the cross-
validation deviance over tc values 1−5, lr values of 0.01, 0.05 and 0.001, and bag fractions of 0.5 
and 0.75. All possible combinations were run, with the optimal number of trees in each case 
being determined by gbm.step (Elith et al. 2008). Each model run included 10-fold cross-
validation using training data sets. The combination of the 3 parameter settings with the lowest 
cross-validation deviance was then selected to produce the optimal BRT model for each species 
fit with the entire training dataset (Elith et al. 2008). Finally, the deviance of the optimal model 
was evaluated on the test (30%) dataset. All models were run with binary measures of Uku 
presence (i.e., 0 or 1) which were treated as a binomial response distribution. For the final BRT 
models, the relative contribution of each predictor was based on the number of times the variable 
was selected for splitting, weighted by the squared improvement to the model as a result of each 
split, and averaged over all trees (Friedman & Meulman 2003, Elith et al. 2008). Partial 
dependency plots were used for interpretation and to quantify the relationship between 
each predictor variable and response variable, after accounting for the average effect of all other 
predictor variables in the model. I used gbm.interactions (Elith et al. 2008) to quantify 
interaction effects between predictors. The relative strength of interaction fitted by BRT was 
quantified by the residual variance from a linear model, and the value indicates the relative 
relative degree of departure from a purely additive effect, with zero indicating no interaction 
effects fitted (Elith et al. 2008). I defined a threshold interaction value and reported the 
interactions with values ≥0.1. 
 
SDM Evaluation 
 

A set of common evaluation metrics of predictive performance was calculated on the 
models fitted to the test datasets. Area Under the Receiving Operating Curve (AUC) calculates 
the ability of a model to discriminate between a presence or absence observation. Values of AUC 
are coarsely interpreted as: bad: 0.50–0.59; poor: 0.60–0.69; fair: 0.70–0.79; good: 0.80–0.89; 
excellent: 0.90–1.0 (Hosmer et al., 2013). Specificity, Sensitivity and the True Skill Statistic 
(TSS) were calculated using a probability threshold that balances sensitivity and specificity 
similar to Schroeder and Richter (2000). True Skill Statistic values range from −1 to +1 where 
values <0 indicating a predictive model worse than random, zero indicating an indiscriminate 
predictive model, and +1 indicating a perfect predictive model. Lastly, percent deviance 
explained was calculated as: %Deviance Explained = 100%(1 − Residual Deviance/Null 
Deviance). 

http://www.r-project/
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RESULTS 

Uku was a habitat generalist found in both hardbottom and softbottom habitats with most 
observations occurring in depths between 30-120 m. The species seems to be a solitary predator, 
with most positive observations of only single fish (e.g., only 18 of 156, 12%, of deep camera 
observations had more than one Uku). The final optimal BRT models for shallow and deep 
habitats predicted the habitat suitability of combined sub-adult/adult Uku probability of 
occurrence for the MHI. Model parameter settings for the optimal BRT models were selected 
from a set of possible combinations of bag fraction, tree complexity, and learning rate (Table 1). 
The optimal models for shallow and deep habitats had “good” model fits based on AUC and the 
Total Skill Statistic with acceptable performances in model specificity and sensitivity (Table 2). 
The occurrence of Uku was higher on N-NW and SE-SW facing habitats and increased with 
decreasing depths and increasing wave heights in the shallow model (0-30 m) (Figure 14). 
Ranked relative importance of variables for the optimal shallow model was aspect (25.2% of 
relative importance), depth (24.4%), maximum wave height (16.8%), mean wave height (12.3%), 
slope (9.7%), rugosity (8.4%), and sand (3.2%) (Figure 14). For the deeper model (30-300 m), 
the occurrence of Uku was higher in depths shallower than 100 m and hard-bottom habitats 
(Figure 15). Ranked relative importance of variables for the optimal deep model was depth 
(44.9%), sand (17.2%), slope (13.1%), aspect (12.7%), and rugosity (12.2%). 
 
Table 1. Parameter values selected for shallow and deep optimal BRT models. Abbreviations are 
for bag fraction (bf), tree complexity (tc), learning rate (lr), number of trees (trees), and mean 
deviance for cross validated model runs (devmean) 
Model bf tc lr trees devmean 
Shallow 0.5 4 0.001 4400 0.537 
Deep 0.5 4 0.001 3300 0.488 
 
Table 2. Model performance values for the shallow and deep optimal BRT models. 
Abbreviations are for proportion of deviance explained (Environ_DEV), area under curve-
receiver operating characteristic (AUC), total skill statistic (TSS), and model specificity and 
sensitivity. 
Model Environ_DEV AUC TSS Specificity Sensitivity 
Shallow 0.42 0.82 0.43 0.83 0.61 
Deep 0.39 0.86 0.55 0.76 0.79 
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Figure 14. Partial regression plots for covariates in the optimal “shallow” BRT model. 
 
 

 
Figure 15. Partial regression plots for covariates in the optimal “deep” BRT model. 
 
Uku EFH Habitat Suitability Maps 

The optimal shallow (0-30 m) and deep (30-300 m) BRT models were used to predict Uku sub-
adult/adult occurrence to the waters around the main Hawaiian Islands. The GIS maps were 
generated by using the optimal models fit to the values of habitat covariates from each 
geographic location in the main Hawaiian Islands domain (in R) to generate a predicted 
probability of Uku occurrence. Across the shallow habitat range, the mean probability of 
occurrence per habitat cell was 0.09 (range = 0.02 – 0.71, sd = 0.09, n = 477,795 habitat cells). 
For the deeper habitat range, the mean probability of occurrence per habitat cell was 0.12 (range 
= 0.01 – 0.88, sd = 0.12, n = 2,259,733 habitat cells). The maps show the model-predicted 
probability of occurrence for sub-adult/adult Uku for Kauai and Niihau (Figure 16), Oahu 
(Figure 17), Maui Nui (Figure 18), and Hawaii island (Figure 19). 
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Figure 16. Uku (Aprion virescens) predicted probability of occurrence around Kauai and Niihau 
from optimal BRT models for shallow (0-30 m) and deep (30-300 m) habitats. 
 

 
 
Figure 17. Uku (Aprion virescens) predicted probability of occurrence around Oahu from 
optimal BRT models for shallow (0-30 m) and deep (30-300 m) habitats. 
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Figure 18. Uku (Aprion virescens) predicted probability of occurrence around Maui Nui from 
optimal BRT models for shallow (0-30 m) and deep (30-300 m) habitats. 
 
 

 
Figure 19. Uku (Aprion virescens) predicted probability of occurrence around Hawaii island 
from optimal BRT models for shallow (0-30 m) and deep (30-300 m) habitats. 
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Uku EFH Categorical Maps 
 
Maps of the predicted probability of occurrence from habitat suitability models display a 
continuous scale of the response variable that is difficult to interpret for decision making. To 
better visualize the relative importance of different habitat areas, a categorical method for EFH 
using the absolute 25%, 50% and 95% quantiles of the Uku probability of occurrence is 
introduced. This approach has been utilized for delineation of EFH in other US Fishery 
Management Regions such as the North Pacific (Pirtle et al. 2020). The quantiles identified “hot 
spots” (predicted probability of occurrence: 1.0 – 0.75), “core habitat” (0.75 – 0.50), and “basic 
EFH” (0.50 – 0.05) for waters around Kauai and Niihau (Figure 20), Oahu (Figure 21), Maui Nui 
(Figure 22), and Hawaii island (Figure 23). For the shallow habitat range (0-30 m), Uku hot 
spots represent 0% of the area, core habitats are 0.2%, basic EFH is 55.4%, and other (i.e., non-
EFH habitats) are 44.4% of the area. For the deep habitat range (30-300 m), Uku hot spots are 
0.09% of the area, core habitats are 2.4%, basic EFH is 59.8%, and other habitats are 37.3% of 
the area. Most of the hot spot and core habitats are in the deeper depth ranges of Penguin Bank 
(Figure 24) on the N-NW coasts of the islands, such as the Kohala coast of Hawaii Island (Figure 
25). Basic EFH habitats cover the majority of both shallow and deep habitats. The “other” 
habitats (i.e., non-EFH) were predominately either shallow, nearshore habitats adjacent to 
shorelines or the habitats deeper than ~150 m throughout the main Hawaiian Islands.  
 

 
Figure 20. Uku (Aprion virescens) EFH hot spots (predicted occurrence probability of 0.75-1.0), 
core habitats (0.5-0.75), and basic EFH (0.05-0.5) around Kauai and Niihau from optimal BRT 
models for shallow (0-30 m) and deep (30-300 m) habitats. 
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Figure 21. Uku (Aprion virescens) EFH hot spots (i.e., predicted occurrence probability of 0.75-
1.0), core habitats (0.5-0.75), and basic EFH (0.05-0.5) around Oahu from optimal BRT models 
for shallow (0-30 m) and deep (30-300 m) habitats. 
 
 

 
Figure 22. Uku (Aprion virescens) EFH hot spots (i.e., predicted occurrence probability of 0.75-
1.0), core habitats (0.5-0.75), and basic EFH (0.05-0.5) around Maui Nui from optimal BRT 
models for shallow (0-30 m) and deep (30-300 m) habitats. 
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Figure 23. Uku (Aprion virescens) EFH hot spots (i.e., predicted occurrence probability of 0.75-
1.0), core habitats (0.5-0.75), and basic EFH (0.05-0.5) around Hawaii island from optimal BRT 
models for shallow (0-30 m) and deep (30-300 m) habitats. 
 
 

 
Figure 24. Uku (Aprion virescens) EFH hot spots (i.e., predicted occurrence probability of 0.75-
1.0), core habitats (0.5-0.75), and basic EFH (0.05-0.5) on Penguin Bank from optimal BRT 
models for shallow (0-30 m) and deep (30-300 m) habitats. 
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Figure 25. Uku (Aprion virescens) EFH hot spots (i.e., predicted occurrence probability of 0.75-
1.0), core habitats (0.5-0.75), and basic EFH (0.05-0.5) on Penguin Bank from optimal BRT 
models for shallow (0-30 m) and deep (30-300 m) habitats. 
 
 

CONCLUSIONS 

A species distribution modelling approach was successfully demonstrated for the delineation of 
EFH for sub-adult/adult Uku (Aprion virescens) in the main Hawaiian Islands. The availability of 
fisheries-independent diver surveys for shallow (0 – 30 m) habitats and stereo-video camera 
surveys for deeper (30 – 300 m) provided sufficient observations to model the predicted 
occurrence of Uku across the entire spatial domain. Output from the SDMs were used to create 
maps delineating Uku EFH including continuous probability of occurrence maps as well as EFH 
categorical maps. The resulting categorical maps allowed the geographic identification of “hot 
spot”, “core habitat”, and “basic EFH” areas for Uku EFH to facilitate management activities.  
 
Next steps to improve EFH delineations include an expansion of the environmental covariate set 
to include “dynamic” variables such as temperature, salinity, productivity, and current velocity. 
These may provide improved model fits and better allow forecasting of changes to EFH due to 
climate change effects. These will be attempted and documented in a follow-up report to this 
work. Another deficiency was the lack of sufficient fish length observations from the deep 
camera surveys necessary to model the sub-adult and adult fish independently. To address this 
issue, existing videos could be reanalyzed to collect Uku length data for this purpose. Any future 
video survey analysis from the BFISH project should also include Uku as a priority species to 
collect length data. These data, coupled with the existing information from the shallow diver 
surveys, should allow the EFH for the sub-adult (i.e., juvenile) and adult Uku populations to be 
modeled separately (although I anticipate the results to be similar as there is not an apparent 
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ontogenetic shift in habitats for Uku in the MHI). Even with these potential improvements, the 
analyses in this report represent the first model-based approach to delineating EFH for a U.S. 
Western Pacific stock and could serve as a framework for the EFH descriptions of other 
managed species in the region. 
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Appendix: EFH Mapping Requirements 

Paragraphs from the Code of Federal Regulations that are relevant to the geographic 
representations of EFH are excerpted below (source: NOAA NMFS Habitat Conservation EFH 
Mapper: https://www.habitat.noaa.gov/application/efhmapper/index.html) . The full text of this 
section of the CFR can be accessed here  

(50 CFR Ch. VI (10-1-02 Edition) 
Subpart J-Essential Fish Habitat  

EFH)§ 600.815 Contents of Fishery Management Plans.  

(a) Mandatory contents 
(1) Description and identification of EFH  

(i) Overview. FMPs must describe and identify EFH in text that clearly states the habitats or 
habitat types determined to be EFH for each life stage of the managed species. FMPs should 
explain the physical, biological, and chemical characteristics of EFH and, if known, how these 
characteristics influence the use of EFH by the species/life stage. FMPs must identify the 
specific geographic location or extent of habitats described as EFH. FMPs must include maps of 
the geographic locations of EFH or the geographic boundaries within which EFH for each 
species and life stage is found.  

(iv) EFH determination. 

(B) FMPs must describe EFH in text, including reference to the geographic location or extent of 
EFH using boundaries such as longitude and latitude, isotherms, isobaths, political boundaries, 
and major landmarks. If there are differences between the descriptions of EFH in text, maps, and 
tables, the textual description is ultimately determinative of the limits of EFH. Text and tables 
should explain pertinent physical, chemical, and biological characteristics of EFH for the 
managed species and explain any variability in habitat usage patterns, but the boundaries of EFH 
should be static.  

(v) mapping requirements. 

(A) FMPs must include maps that display, within the constraints of available information, the 
geographic locations of EFH or the geographic boundaries within which EFH for each species 
and life stage is found. Maps should identify the different types of habitat designated as EFH to 
the extent possible. Maps should explicitly distinguish EFH from non-EFH areas. Councils 
should confer with NMFS regarding mapping standards to ensure that maps from different 
Councils can be combined and shared efficiently and effectively. Ultimately, data used for 
mapping should be incorporated into a geographic information system (GIS) to facilitate analysis 
and presentation.  

(B) Where the present distribution or stock size of a species or life stage is different from the 
historical distribution or stock size, then maps of historical habitat boundaries should be included 
in the FMP, if known. 

https://www.habitat.noaa.gov/application/efhmapper/index.html
https://www.gpo.gov/fdsys/pkg/CFR-2001-title50-vol3/xml/CFR-2001-title50-vol3-sec600-815.xml
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(C) FMPs should include maps of any habitat areas of particular concern identified under 
paragraph (a)(8) of this section.  
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Appendix: Species distribution modeling (SDM) software code 
 
Example code in the R statistical software language used to perform species distribution 
modeling for Uku EFH delineation in the main Hawaiian Islands. 
 
####################################### 
## Aprion virescens Species Distribution Modeling 
## Erik Franklin, Zack Oyafuso 
## Boosted Regression Trees 
####################################### 
setwd("") #need to set working directory 
 
########################### 
## Import Libraries 
########################### 
library(dismo); library(gbm) 
library(PresenceAbsence) 
library(corrplot) 
source("brt.functions.R") 
 
########################### 
## Import Data 
########################### 
uku_data = read.csv("") # need to set data file 
 
############################# 
## correlation matrix for covariates 
############################# 
corrplot(cor(uku_data[,]), 
 method = "number", 
 type = "upper" # show only upper 
 ) 
 
############################## 
## For BRTs, test BRT heuristic using different three types of model settings 
## All records are used for this section 
## bag: bagging fraction (50% or 75%) 
## tcomp: tree complexity (2, 3, 4, or 5) 
## lrs: learning rate (0.001, 0.002, 0.003, 0.004, or 0.005) 
############################## 
spp_name <- "Aprvire" 
brt_settings <-  expand.grid(species = spp_name, 
                             bag = c(0.75, 0.50), 
                             tcomp = 2:5, 
                             lrs = c(0.001, 0.005, 0.01), 
                             ntrees = NA, #Number of trees 
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                             devmean = NA, #mean cv deviance 
                             stringsAsFactors = FALSE) 
 
 
# split datasets into 70% train and 30% test (i.e., independent) 
splitdf <- function(dataframe, seed=NULL) { 
    if (!is.null(seed)) set.seed(seed) 
    index <- 1:nrow(dataframe) 
    trainindex <- sample(index, trunc(length(index)*0.7)) 
    trainset <- dataframe[trainindex, ] 
    testset <- dataframe[-trainindex, ] 
    list(trainset=trainset,testset=testset) 
} 
 
uku_splits <- splitdf(uku_data, seed=105) 
uku_train <- uku_splits$trainset 
uku_test <- uku_splits$testset 
dim(uku_train); dim(uku_test); dim(uku_data) 
 
for (i in 1:nrow(brt_settings)) { 
        temp_fit = dismo::gbm.step(data = uku_train,  
                                   #Column ids of covariates in argument data 
                                   gbm.x = c( 
          #4, #lat 
          #5, #long 

       6, #depth 
                                           7, #aspect 
                                           8, #sand 
                                           9, #rugosity 
                                           10), #slope 
                                   #name of column that contains response 
                                   gbm.y = spp_name,  
                                   family = "bernoulli",  
                                   tree.complexity = brt_settings$tcomp[i],  
                                   learning.rate = brt_settings$lrs[i],  
                                   bag.fraction = brt_settings$bag[i],  
                                   verbose = TRUE) 
         
        brt_settings[i, c("ntrees", "devmean")] <-  
                c(temp_fit$n.trees, temp_fit$cv.statistics$deviance.mean) 
} 
 
############################ 
## Trim settings that used less than 1500 trees 
## Choose settings with the lowest mean deviance 
########################### 
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brt_settings_trimmed <- subset(x = brt_settings, 
                               subset = ntrees > 1500) 
 
(best_settings <- brt_settings_trimmed[which.min(brt_settings_trimmed$devmean), ]) 
 
############################ 
## Setup up training models with the optimized BRT settings 
########################### 
train_uku = gbm.step(data = uku_train,  
                       gbm.x = c(6:10),  
                       gbm.y = spp_name,  
                       family = "bernoulli",  
                       tree.complexity = best_settings$tcomp,  
                       learning.rate = best_settings$lrs,  
                       bag.fraction = best_settings$bag) 
 
########################################## 
## Parsimonous Models on Test Dataset 
########################################## 
test_uku = gbm.step(data = uku_test,  
                      gbm.x = c(6:10),  
                      gbm.y = spp_name,  
                      family = "bernoulli",  
                      tree.complexity = best_settings$tcomp,  
                      learning.rate = best_settings$lrs,  
                      bag.fraction = best_settings$bag) 
 
################################# 
## Evaluation Metrics 
################################# 
AUC_return = function(model.name, sp_code, thres) { 
         
        preds <- predict.gbm(model.name,  
                             uku_test,  
                             n.trees=model.name$gbm.call$best.trees,  
                             type="response") 
         
        d <- cbind(uku_test[,sp_code], preds) 
        pres <- d[d[,1]==1, 2] 
        abs <- d[d[,1]==0, 2] 
        e <- evaluate(p=pres, a=abs, tr = thres) 
        return(round(e@auc,2)) 
         
} 
 
output_df = data.frame(species = spp_name) 
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#output_df$Raw_I <- round(ape::Moran.I(x = uku_test[, spp_name], w = 
test.dists.inv)$observed, 3) 
test_pred <- predict.gbm(object = train_uku,  
                         newdata = uku_test,  
                         n.trees = train_uku$gbm.call$best.trees,  
                         type = "response") 
#residual = test_pred - uku_test[, spp_name] 
 
#output_df$Environ_I =  round(ape::Moran.I(x = residual, w = test.dists.inv)$observed, 3) 
 
tv = sum(uku_data[, spp_name]) / nrow(uku_data) 
name_assign = paste('cmx_', spp_name, sep = '') 
assign(name_assign,  
       PresenceAbsence::cmx(cbind(1:nrow(uku_test), uku_test$Aprvire,  
                                  predict.gbm(train_uku,  
                                              uku_test,  
                                              type = 'response',  
                                              n.trees = train_uku$n.trees)), threshold = tv)) 
 
output_df$Environ_DEV = 1 - (test_uku$self.statistics$mean.res /  
                                     test_uku$self.statistics$mean.null) 
output_df$AUC = AUC_return(train_uku, spp_name, tv) 
output_df$TSS = PresenceAbsence::sensitivity(get(name_assign), st.dev = FALSE) + 
PresenceAbsence::specificity(get(name_assign), st.dev = FALSE) - 1 
output_df$kappa = PresenceAbsence::Kappa(get(name_assign), st.dev = FALSE) 
output_df$specific = PresenceAbsence::specificity(get(name_assign), st.dev = FALSE) 
output_df$sens = PresenceAbsence::sensitivity(get(name_assign), st.dev = FALSE) 
output_df 
 
######################## 
## Percent Variable Importance 
######################## 
train_uku$contributions 
 
 
######################## 
## Plot fitted functions 
######################## 
gbm.plot(train_uku)#, write.title=TRUE)  
 
gbm.plot.fits(train_uku) 
 
######################### 
## Interactions 
######################### 
find.int = gbm.interactions(train_uku) 
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find.int$interactions 
find.int$rank.list 
 
## plot largest interaction size 
gbm.perspec(train_uku, 3, 1) 
 
########################## 
## Predict to grids 
########################## 
 
eval.data <- read.csv("deep_covars.csv", as.is=T) 
names(eval.data) = c("FID", "pointid", "depth", "sand", "surf_ratio", "slope", "aspect", 
"rugosity","lat","long") 
eval.data = eval.data[ , c("lat", "long", "depth", "aspect", "sand", "rugosity", "slope")] 
 
gbm.predict.grids(train_uku, eval.data, want.grids = FALSE, sp.name = "aprvire_pred") 
 
aprvire.out = cbind(eval.data, aprvire_pred) 
write.csv(aprvire.out,"pred\\aprvire_deep_total.csv") 
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