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Executive Summary 
 
The description of essential fish habitat is required for federally managed fishery species. 
Species distribution models (SDMs) have been utilized in marine science and conservation to 
identify and predict suitable habitats for many species. SDMs can involve a range of models that 
vary in structure and complexity. Boosted regression tree models were fit to fishery-independent 
data to define the geographic extent of essential fish habitat (EFH) of sub-adult/adult life stages 
of a federally managed snapper species, Aprion virescens, commonly called “Uku”, in the main 
Hawaiian Islands. Due to differences in survey data collection methods, separate SDM models 
for Uku were constructed for shallow (0-30 m depth) depths using NOAA fish diver surveys and 
deeper (30-300 m) depths using NOAA and UH baited stereo-video camera arrays. 

For shallow models, aspect (i.e., direction that habitat slope faces), depth, and wave heights were 
strong predictors of Uku occurrence, while depth was the predominant habitat variable for the 
deep model. Output from the SDMs were used to create maps delineating Uku EFH including 
continuous probability of occurrence maps as well as categorical maps showing EFH “hot spots”, 
“core habitats”, and “basic EFH”, based on 25%, 50%, and 95% quantiles of predicted 
occurrence, respectively. For the shallow habitat range (0-30 m), Uku hot spots represent 0% of 
the area, core habitats are 0.2%, basic EFH is 55.4%, and other (i.e., non-EFH habitats) are 
44.4% of the area. For the deep habitat range (30-300 m), Uku hot spots are 0.1% of the area, 
core habitats are 2.4%, basic EFH is 60.1%, and other habitats are 37.4% of the area. Most of the 
hot spot and core habitats are in the deeper depth ranges of Penguin Bank on the N-NW coasts of 
the islands, such as the Kohala coast of Hawaii Island. Basic EFH habitats cover the majority of 
both shallow and deep habitats. Total combined EFH (i.e., hot spots, core habitats, and EFH) in 
shallow and deep habitats is 61.4% of the seafloor between 0-300 m. The “other” habitats (i.e., 
non-EFH) were predominately either shallow, nearshore habitats adjacent to shorelines or the 
habitats deeper than ~150 m throughout the main Hawaiian Islands. 

A comparison of models using static and dynamic habitat variables suggested that the inclusion 
of dynamic variables did not significantly improve the model performance although a broader 
variable set could be further examined in future studies. One strength of dynamic variables is that 
they may better allow forecasting changes to EFH due to the effects of climate change on 
environmental variables. One limitation of the study was the lack of sufficient fish length 
observations from the deep camera surveys necessary to model the sub-adult and adult fish 
independently. To address this issue, existing videos could be reanalyzed to collect Uku length 
data for this purpose. Any future video survey analysis from the BFISH project should also 
include Uku as a priority species to collect length data. These data, coupled with the existing 
information from the shallow diver surveys, should allow the EFH for the sub-adult (i.e., 
juvenile) and adult Uku populations to be modeled separately. 

The EFH maps are a visual display of the predicted quantitative relationship between Uku and 
their habitat and can be used to inform marine conservation and management activities in the 
main Hawaiian Islands. These analyses represent the first model-based approach to delineating 
EFH for a U.S. Western Pacific stock and could serve as a framework for the EFH descriptions 
of other managed species in the region.  
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INTRODUCTION 
 
The description and identification of Essential Fish Habitat (EFH) for all species managed under 
a US fisheries management plan is mandated by the Magnuson-Stevens Fishery Conservation 
and Management Act (1996). EFH is generally defined therein as “those waters and substrate 
necessary for fish for spawning, breeding and growth to maturity”.  The National Marine 
Fisheries Service has provided guidelines to evaluate the quality of available data used to 
identify EFH should be rated across four levels (Figure 1)(50 CFR Pt. 600.815): 

 
Level 1: All that is known is where a species occurs based on distribution data for all or  

part of the geographic range of the species. 
 Level 2: Data on habitat-related densities or relative abundance of the species are    

available. 
 Level 3: Data on growth, reproduction, or survival rates within habitats are available. 
  Level 4: Production rates by habitat are available. 
 

 
Figure 1. Four levels used to rate information to define Essential Fish Habitat from guidelines 
provided by the National Marine Fisheries Service (source: NOAA). 
  
In the Hawaiian Archipelago, most EFH definitions for managed species have been primarily 
qualitative descriptions of the distribution and depth range of the observed life stages (i.e., 
typically adults, but can include juveniles). For the Green Jobfish, Aprion virescens 
Valenciennes 1830 (Figure 2), or “Uku” as it is known locally in Hawaiʻi, the EFH designation 
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was classified as part of the “Shallow Complex” of bottomfish in the Hawaiian Archipelago by 
the Western Pacific Regional Fishery Management Council (WPRFMC 2016). Uku is a coastal 
piscivorous fish observed in the water column and over rocky, coral, and sandy habitats typically 
between depths of 20 to 200 m (Pyle et al. 2016, Asher et al. 2017). Maximum length is ~100 cm 
(Sundberg & Undekoffler 2011) with L50 maturity at 45 cm (Everson & Williams 1989). 
Commercial and non-commercial fisheries for Uku operate in the MHI. Based on the most recent 
stock assessment for the MHI, Uku is not overfished, nor is overfishing occurring (Nadon et al. 
2020).  
 
In the Western Pacific region, four life stage categories are defined for EFH: egg, post-hatch 
pelagic, post-settlement, and sub-adult/adult. For the sub-adult/adult stage of Uku, the EFH was 
described as “the benthopelagic zone, including all bottom habitats, in depths from the surface to 
240 m bounded by the official US baseline and 240 m isobath” and maps to reflect that 
description were generated. Definitions for the Uku egg, post-hatch pelagic, and post-settlement 
stages interpreted in aggregate generically identified all water column (out to 50 mi from shore 
for eggs) and benthic habitats from 0 to 240 m depths as EFH. The current approach used could 
be classified as “Level 0” EFH since it provides a definition based solely on the potential 
presence of uku uniformly distributed throughout the entire domain without considering that 
specific habitat characteristics may disproportionately influence the presence or absence of Uku 
which, if considered, would lead to a non-uniform geographic distribution of habitats that are 
move heavily utilized (i.e., are more essential).  
 

 

Figure 2. Drawing of adult Green Jobfish or “Uku”, Aprion virescens. Source: Hawaiʻi DLNR. 

To evaluate the non-uniform geographic distribution of Uku associated habitats, this work 
outlines methods to utilize existing fisheries-independent survey data with geographically-
explicit marine habitat information (i.e., GIS data) to identify EFH for the sub-adult/adult phases 
for Aprion virescens in the main Hawaiian Islands (MHI) of the Hawaiian Archipelago (i.e., the 
Northwestern Hawaiian Islands are not included in this analyses). This work uses statistical and 
geospatial methods whose complexity depended upon the quality, type, and amount of data 
available for each species. The approach used would be categorized as Level 1 EFH (Figure 1) 
based on modeling the presence and absence of Uku from survey observations. Since Uku utilize 
habitats across a range of depths, it was necessary to utilize different survey data for shallow (0-
30 m depths) and deep (30-300 m) depths. NOAA Pacific Island Fisheries Science Center 
(PIFSC) stationary visual diver surveys were used for shallow depths and baited stereo-video 
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camera surveys were used for deep depths. Due to the non-overlapping depth and geographic 
ranges between the different surveys, two separate models were generated to identify EFH, one 
for shallow habitats (0-30 m) and one for deep habitats (30-300 m). Within the models, “static” 
habitat variables included seafloor depth (i.e., bathymetry), slope of the seafloor, aspect of the 
seafloor (i.e., compass direction that slope of seafloor faced), seafloor rugosity (i.e., complexity 
of the geomorphology of the seafloor) and bottom substrate (i.e., sand or hardbottom) and 
“dynamic” variables included sea surface temperature (i.e., satellite measurement), sea surface 
net primary productivity (i.e., satellite derived chlorophyll measurement), and maximum and 
minimum significant wave height (model derived for the shallow model only). It was not 
possible to generate separate models for juvenile and adult stages of Uku because of insufficient 
size information for the deep surveys (i.e., the MOUSS surveys) so models represent combined 
sub-adult (i.e., juvenile) and adult Uku EFH. Level 2 EFH models based on density of Uku were 
not possible due to the biases and inaccuracies inherent in directly comparing estimates of 
relative abundance (i.e., fish per unit area) between the different sampling methods used by 
shallow visual diver surveys and deep stereo-video surveys (Willis et al. 2000, Harvey et al. 
2004) and insufficient intercalibration exists between the survey methods. The current work also 
did not attempt to delineate EFH for the egg of post-hatch pelagic stages of the fish species due 
to insufficient information available. 
 
To expand on the existing EFH definitions for Uku in the MHI as described in Amendment 4 to 
the Fishery Ecosystem Plan for the Hawaii Archipelago (WPRFMC 2016), the purpose of this 
work is to generate species distribution models (SDMs) from shallow and deep surveys 
documenting the presence and absence of Uku at sub-adult and adult life stages for Level 1 EFH 
using static and dynamic habitat and environmental covariates. SDMs relate species observations 
to environmental and habitat covariates and predict the occurrence of the target organism across 
the study domain. SDMs are commonly used to describe habitat associations for marine 
organisms (Elith et al. 2008, Franklin et al. 2013, Oyafuso et al. 2017) and have been used 
previously by NOAA Fisheries to define EFH for federally managed species in the Alaska region 
(Laman 2017). In this report, the SDMs were constructed by fitting boosted regression tree 
(BRT) models (Elith et al. 2008) to fishery-independent survey data for models of the shallow 
(0-30 m) and deep (30 -300 m) Uku habitats. The BRT models provide optimal fits between 
habitat covariates and in situ diver or stereo-video survey data of Uku. Outputs from the SDMs 
are used to create geographic maps delineating Uku EFH identified as continuous probability of 
occurrence maps as well as categorical maps of EFH. The probability of Uku occurrence maps 
describe the possibility between 0% to 100% that the habitat at a particular location, based on the 
characteristics described by the combination of habitat and environmental covariates, would have 
an Uku present. The EFH categorical maps allow the geographic identification of “EFH hot 
spots” (75%-100% probability of Uku occurrence), “EFH core habitats” (50%-74%), and “EFH” 
(5%-49%) areas for Uku EFH throughout the main Hawaiian Islands, following methods 
developed for the Alaska EFH delineations (Laman et al. 2017). The categories are hierarchical 
such that all hot spots are within core habitats and all core habitats are within EFH. The maps 
also identify areas of low probability of Uku occurrence (<5%) which are described as “other” 
habitats that are not considered essential for Uku. These analyses represent the first model-based 
approach to delineating EFH for a U.S. Western Pacific stock and could serve as a framework for 
the EFH descriptions of other managed species in the region.  
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MATERIAL AND METHODS 
 
Study Area 
 
The Hawaiian archipelago encompasses a group of volcanic islands and atolls that span 2500 km 
in the central north Pacific Ocean. The study area included the “shallow” (0 to 30 m depth) and 
“deep” (30 m to 300 m) benthic habitats around the eight main Hawaiian Islands (MHI) which 
are Niihau, Kauai, Oahu, Maui, Molokai, Kahoolawe, Lanai, and Hawaii (Figure 3). The 
geography of these volcanic islands is characterized by prominent coastal capes and headlands 
that demarcate coastal exposures to different climate and ocean conditions. The north coasts of 
Kauai, Oahu, and Maui are exposed to large northern hemisphere winter swells (≥7 m), while 
southern hemisphere storms produce waves (3 to 5 m) along Hawaiian south shores in summer 
(Fletcher et al. 2008). Molokini is a small, partially submerged volcanic cone offshore of Maui 
with extensive coral reefs within the crater (Figure 3). The eastern or windward side of the 
islands experience consistent easterly trade winds (10 to 20 knots) that generate steady wind-
driven waves (1 m; Fletcher et al. 2008). There are only two large, natural semi-enclosed waters 
bodies in the MHI, Pearl Harbor and Kaneohe Bay on Oahu. In shallow waters (0 – 30 m), coral 
reefs are found around the coasts and embayments of all islands (Battista et al. 2007). In deeper 
waters (30 – 300 m), a mix of softbottom and hardbottom habitats are found through the region 
with coral reefs less common at these depths. 

Figure 3. A map of the eight Main Hawaiian Islands. 
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Literature and Data Search 
 
To collect information and data for the study, I searched the scientific literature (i.e., Google 
Scholar and Web of Science) and reviewed fishery-independent and fishery-dependent 
information relevant to the delineation of EFH for Uku Aprion virescens in the main Hawaiian 
Islands. Here, the main Hawaiian Islands are defined as the area of the US EEZ that encompasses 
the islands of Niihau, Kauai, Oahu, Maui, Molokai, Kahoolawe, Lanai, and Hawaii. Collectively, 
the islands of Maui, Molokai, Kahoolawe, and Lanai are referred to as “Maui Nui”. GIS 
bathymetry and habitat layers were provided by the Pacific Islands Benthic Habitat Mapping 
Center (https://www.soest.hawaii.edu/pibhmc/cms/), the Hawaii Mapping Research Group 
(http://www.soest.hawaii.edu/HMRG/cms/about-hmrg/), and the NOAA Centers for Coastal 
Ocean Science (https://coastalscience.noaa.gov/research/project-explorer/). The NOAA Pacific 
Islands Fishery Science Center (PIFSC) provided diver survey data for Uku. NOAA PIFSC and 
Jake Asher (formerly of PIFSC) provided baited stereo-video camera survey data for Uku. US 
federal guidance on EFH mapping requirements is listed as an Appendix. 
 
A number of survey data sources were reviewed for Uku observations in the main Hawaiian 
Islands between 2010 and 2019. Two primary field methods were used for the direct observation 
of Uku in fishery-independent surveys, shallow (0-30 m) diver surveys (Heenan et al. 2017) and 
deep (30-300 m) baited stereo-video cameras (Merritt et al. 2011, Amin et al. 2017, Asher et al. 
2017). Diver survey data from the Hawaii Division of Aquatic Resources and The Nature 
Conservancy were reviewed and considered for the shallow model but were not incorporated into 
the study due to differences in sampling methodology with the NOAA diver surveys. The details 
of the final data sources used in the study are provided in the following sections.  
 
Stationary Diver Fish Surveys - NOAA Fisheries Pacific Island Fisheries Science Center 
(PIFSC) 

• Number of surveys: 1,682 
• Surveys with A. virescens observed: 252 (14.9% of total) 
• Year range: 2010-2019 
• Island areas surveyed (8): Niihau, Kauai, Oahu, Molokai, Lanai, Maui, Kahoolawe, 

Hawaii 
• Depth range: 1.3 m – 30.0 m 
• Median uku length (and range): 54 cm (22 cm – 110 cm) FL 
• Methods: Visual observations of fish community by SCUBA divers using the stationary 

point count method in shallow coral reef habitats (Heenan et al. 2017). Each survey 
represents data averaged from multiple diver surveys, typically two per site. Uku 
observations were collected along with observations of multiple species of fish. The 
number and length of uku were visually estimated by divers, not measured directly. 

• Comments: These surveys were performed during 2010, 2012, 2013, 2015, 2016, and 
2019. Not all islands and coastlines were surveyed in each year (Figure 4).  

• Contact: Tye Kindinger, tye.kindinger@noaa.gov 

https://www.soest.hawaii.edu/pibhmc/cms/
http://www.soest.hawaii.edu/HMRG/cms/about-hmrg/
https://coastalscience.noaa.gov/research/project-explorer/
mailto:tye.kindinger@noaa.gov
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Figure 4. NOAA PIFSC diver surveys for uku (Aprion virescens) in the main Hawaiian Islands, 
2010-2019. Surveys include those with uku observed (red circles) and those with no uku 
observed (open circles). 
 
Baited Remote Underwater Video (BRUVs) Surveys – NOAA PIFSC 

• Number of surveys: 107 
• Surveys with A. virescens observed: 28 (26.2% of total) 
• Year range: 2010-2013 
• Island areas surveyed (4): Oahu, Molokai, Lanai, Maui 
• Median depth (and range): 39 m (2.7 m – 96.6 m) 
• Uku length range: 22.2 cm – 107.2 cm FL 
• Methods: Baited remote underwater video (BRUVs) surveys recorded visual observations 

of the fish community using stationary stereo-video baited camera arrays in shallow to 
mesophotic hardbottom and softbottom habitats (Asher et al. 2017). Uku observations 
were collected along with observations of multiple fish species. The maximum number 
and length of uku were visually estimated from the videos using software tools (i.e., 
Event Measure), not measured directly. Note: Only surveys deeper than 30 m (n = 67) 
were included in the SDM deep model analysis of the current study. 

• Comments: These surveys were performed during 2010-2013 (Figure 5).  
• Contact: Jacob Asher, jakeasher@hotmail.com 
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Figure 5. Baited remote underwater videos (BRUVs) for uku (Aprion virescens) in the main 
Hawaiian Islands, 2010-2013. Surveys include those with uku observed (red circles) and those 
with no uku observed (open circles). 
 
 
BotCAM Video Surveys – NOAA PIFSC / University of Hawaii 

• Number of surveys: 465 
• Surveys with A. virescens observed: 24 (5.2% of total) 
• Year range: 2011-2014 
• Island areas surveyed (3): Lanai, Maui, Kahoolawe 
• Median depth (and range): 164.5 m (63.7 m – 314.0 m) 
• Uku length range: 52.7 cm – 75.3 cm FL 
• Methods: Baited underwater video surveys recorded visual observations of the fish 

community using stationary stereo-video baited camera arrays in mesophotic hardbottom 
and softbottom habitats (Merritt et al. 2011). 

• Comments: These surveys were performed annually during 2011-2014 (Figure 6). Uku 
observations were collected along with observations of multiple fish species. Surveys 
with “at least 1” uku were given a value of 1 for Nmax. Survey records with a Species 
identification of “Lutjanid/ae”, “Perciformes”, “Teleost”, or “too dark to annotate” were 
not included in the analysis. 

• Contact: Audrey Rollo, audrey.rollo@noaa.gov 
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Figure 6. BotCam underwater video surveys for uku (Aprion virescens) in the main Hawaiian 
Islands, 2011-2014. Surveys include those with uku observed (red circles) and those with no uku 
observed (open circles). 
 
 
MOUSS Video Surveys – NOAA PIFSC 

• Number of surveys: 951 
• Surveys with A. virescens observed: 105 (11.0% of total) 
• Year range: 2016-2019 
• Island areas surveyed (8): Niihau, Kauai, Oahu, Molokai, Lanai, Maui, Kahoolawe, 

Hawaii  
• Median depth (and range): 159.5 m (44.8 m – 291.7 m) 
• Uku length range: NA 
• Methods: Baited underwater video surveys recorded visual observations of the fish 

community using stationary stereo-video camera arrays in shallow to mesophotic 
hardbottom and softbottom habitats (Amin et al. 2017). 

• Comments: These surveys were performed annually during 2016-2019 (Figure 7). Uku 
observations were collected along with observations of multiple fish species. Surveys 
with “at least 1” uku were given a value of 1 for Nmax. Survey records with a Species 
identification of “Lutjanid/ae”, “Perciformes”, “Teleost”, or “too dark to annotate” were 
not included in the analysis. 

• Contact: Audrey Rollo, audrey.rollo@noaa.gov 
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Figure 7. MOUSS underwater video surveys for uku (Aprion virescens) in the main Hawaiian 
Islands, 2016-2019. Surveys include those with uku observed (red circles) and those with no uku 
observed (open circles). 
 
Survey Data Used for SDM Models 
 
While several potential survey data sources were evaluated for inclusion in the SDMs (including 
data from Hawaii Division of Aquatic Resources and The Nature Conservancy), only the NOAA 
PIFSC SPC diver surveys for shallow habitats and NOAA/UH baited remote underwater stereo-
video surveys (i.e., BotCam, MOUSS, & BRUVs) for deep habitats were used. These surveys 
were selected based on their methodological consistency, well-documented field techniques, and 
data collection QA/QC procedures by NOAA scientists (Merritt et al. 2011, Amin et al. 2017, 
Asher et al. 2017, Heenan et al. 2017). Due to differences in the survey data collection methods 
and a lack of geographic and depth overlap between diver surveys and stereo-video camera 
surveys, separate SDM models for Uku were constructed for shallow (0-30 m depth) depths 
using stationary visual diver surveys and deep (30-300 m) depths using baited stereo-video 
camera arrays. Shallow diver surveys included information on fish lengths but most of the deep 
video surveys (i.e., MOUSS surveys) did not include length information for observed Uku. The 
lack of length data for most of the surveys meant that sufficient information was not available to 
create separate EFH maps for sub-adult and adult fish for the majority of the study domain (i.e., 
30-300 m). Thus, the EFH analyses and maps that follow are for aggregated sub-adult/adult life 
stages. In addition, Level 2 EFH models based on density of Uku were not possible due to the 
biases and inaccuracies inherent in directly comparing estimates of relative abundance (i.e., fish 
per unit area) between the different sampling methods used by shallow visual diver surveys and 
deep stereo-video surveys (Willis et al. 2000, Harvey et al. 2004) and insufficient intercalibration 
exists between the survey methods. Some stereo-video camera surveys were performed in depths 
shallower than 30 m but these surveys were not included in the SDMs. A few surveys had bad 
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geographic coordinates that were located on land or in water much deeper than 300 m. These 
were not included in the models. Shallow and deep survey sites were present around Niihau and 
Kauai (Figure 8), Oahu (Figure 9), Maui Nui (Figure 10), and Hawaii (Figure 11). 
 

 
Figure 8. Shallow and deep survey sites for Uku (Aprion virescens) in Niihau and Kauai. 
 

 
Figure 9. Shallow and deep survey sites for Uku (Aprion virescens) around Oahu. 
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Figure 10. Shallow and deep survey sites for Uku (Aprion virescens) around Maui Nui. 
  

 
Figure 11. Shallow and deep survey sites for Uku (Aprion virescens) around Hawaii Island. 
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Habitat Covariates 

A set of habitat covariates were used to parameterize and select the best fit SDMs. The 
covariates represented observed, calculated, and modeled variables that were expected to 
influence the distribution of Uku. For all covariates, the values were resampled to regular spatial 
raster grids of 50 m x 50 m resolution. Bathymetry-derived variables—slope, aspect, and 
rugosity—were calculated in ArcGIS (V.10.7.1) with an eight-cell neighborhood (Burrough and 
McDonnell, 1998). Terrain ruggedness, referred to as rugosity hereafter, was calculated with an 
eight-cell neighborhood using ArcGIS Benthic Terrain Modeler (Wright et al., 2005) and ranged 
from 0 (no variation) to 1 (complete variation). Bathymetry-derived variables were calculated at 
50-m resolution of bathymetry provided by the Hawaii Mapping Research Group’s bathymetry 
synthesis. The bathymetry derived variables are considered “static” variables that don’t change 
often. In contrast to static variables, three dynamic variables were included in the analyses for 
the shallow models only. SWAN wave model output provided maximum significant wave height 
and mean significant wave height for the climatology from 2010-2019 (Franklin et al. 2013). The 
8-day composite sea surface temperature (SST) and net primary productivity (NPP) from the 
Aqua MODIS sensor (NASA 2021) were extracted to match the location and time of each Uku 
survey using rerddap in R (Chamberlin 2021) from the NOAA PFEG ERDDAP server 
(https://coastwatch.pfeg.noaa.gov/erddap/index.html). Collinearity among covariates was 
examined prior to using them in the SDMs. Paired correlations for all covariates were below r = 
0.6, an acceptable threshold for boosted regression tree models (Elith et al. 2008). Records with 
no data values for any variables were dropped from the analyses. 
 

Species distribution modeling 
 
SDM modeling adapted methods used by Franklin et al. (2013) and Oyafuso et al. (2017). 
Boosted regression tree (BRT) models were constructed for Uku occurrence (i.e., 
presence/absence) using the routines gbm (generalized boosted regression models) v2.1.8 
(Ridgeway 2020) and gbm.step (Elith et al. 2008) in the R statistical program V4.03 (R 
Development Core Team, www.r-project. org). BRT models combine re gression trees that fit 
environmental predictors to response variables with a boosting algorithm that assembles an 
ensemble of trees in an additive, stage-wise fashion (Hastie et al. 2001, Elith et al. 2008). Within 
the BRT models, 3 terms were used to optimize predictive performance: tree complexity, 
learning rate, and bag-fraction. Tree complexity (tc) determined the number of nodes in a tree 
that should reflect the true interaction order on the response being modeled, although this is often 
unknown, and learning rate (lr) was used to shrink the contribution of each tree as it is added to 
the model (Elith et al. 2008). The bag-fraction determined the proportion of data to be selected at 
each step and, therefore, the model stochasticity (Elith et al. 2008). For each species, the BRT 
model training dataset was a one-time random selection of 70% of the original total dataset of 
model grid cells (Table 1). The remaining 30% was held out for independent validation of each 
optimal BRT model. I determined optimal settings for these parameters by examining the cross-
validation deviance over tc values 1−5, lr values of 0.01, 0.05 and 0.001, and bag fractions of 0.5 
and 0.75. All possible combinations were run, with the optimal number of trees in each case 
being determined by gbm.step (Elith et al. 2008). Each model run included 10-fold cross-
validation using training data sets. The combination of the 3 parameter settings with the lowest 
cross-validation deviance was then selected to produce the optimal BRT model for each species 

http://www.r-project/
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fit with the entire training dataset (Elith et al. 2008). Finally, the deviance of the optimal model 
was evaluated on the test (30%) dataset. All models were run with binary measures of Uku 
presence (i.e., 0 or 1) which were treated as a binomial response distribution. For the final BRT 
models, the relative contribution of each predictor was based on the number of times the variable 
was selected for splitting, weighted by the squared improvement to the model as a result of each 
split, and averaged over all trees (Friedman & Meulman 2003, Elith et al. 2008). Partial 
dependency plots were used for interpretation and to quantify the relationship between 
each predictor variable and response variable, after accounting for the average effect of all other 
predictor variables in the model. I used gbm.interactions (Elith et al. 2008) to quantify 
interaction effects between predictors. The relative strength of interaction fitted by BRT was 
quantified by the residual variance from a linear model, and the value indicates the relative 
relative degree of departure from a purely additive effect, with zero indicating no interaction 
effects fitted (Elith et al. 2008). I defined a threshold interaction value and reported the 
interactions with values ≥0.1. Example code used for the SDM modeling is included as in the 
Appendix. 
 
Comparing SDMs With Static and Dynamic Habitat Variables 
 
Two broad categories of habitat and environmental variables that can be used to describe EFH 
are “static” and “dynamic” variables. Static variables are typically geomorphological benthic 
structures and substrates that don’t change rapidly such as depth, slope, and rugosity. Dynamic 
variables represent environmental elements that can change on hourly and diurnal timescales like 
seawater temperature and wave energy. To evaluate, the relative contribution of static and 
dynamic variables, I compared shallow (0-30 m) SDMs constructed from (1) only static 
variables, (2) only dynamic variables, and (3) a full model of all static and dynamic variables. 
Models were evaluated using standard procedures and metrics described in the next section. 
 
SDM Evaluation 
 
A set of common evaluation metrics of predictive performance was calculated on the models 
fitted to the test datasets. Area Under the Receiving Operating Curve (AUC) calculates the 
ability of a model to discriminate between a presence or absence observation. Values of AUC are 
coarsely interpreted as: bad: 0.50–0.59; poor: 0.60–0.69; fair: 0.70–0.79; good: 0.80–0.89; 
excellent: 0.90–1.0 (Hosmer et al., 2013). Specificity, Sensitivity and the True Skill Statistic 
(TSS) were calculated using a probability threshold that balances sensitivity and specificity 
similar to Schröder and Richter (2000). True Skill Statistic values range from −1 to +1 where 
values <0 indicating a predictive model worse than random, zero indicating an indiscriminate 
predictive model, and +1 indicating a perfect predictive model. Lastly, percent deviance 
explained was calculated as: % Deviance Explained = 100%*(1 − Residual Deviance/Null 
Deviance). 

RESULTS 

Uku was a habitat generalist found in both hardbottom and softbottom habitats with most 
observations occurring in depths between 30-120 m. The species seems to be a solitary predator, 
with most positive observations of only single fish (e.g., only 18 of 156, 12%, of deep camera 
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observations had more than one Uku). The final optimal BRT models for shallow and deep 
habitats predicted the habitat suitability of combined sub-adult/adult Uku probability of 
occurrence for the MHI. Model parameter settings for the optimal BRT models were selected 
from a set of possible combinations of bag fraction, tree complexity, and learning rate (Table 1). 
The optimal models for shallow and deep habitats had “good” model fits based on AUC and the 
Total Skill Statistic with acceptable performances in model specificity and sensitivity (Table 2). 
The occurrence of Uku was higher on N-NW and SE-SW facing habitats and increased with 
decreasing depths and increasing wave heights in the shallow model (0-30 m) (Figure 12). 
Ranked relative importance of variables for the optimal shallow model was aspect (25.2% of 
relative importance), depth (24.4%), maximum wave height (16.8%), mean wave height (12.3%), 
slope (9.7%), rugosity (8.4%), and sand (3.2%) (Figure 12). For the deeper model (30-300 m), 
the occurrence of Uku was higher in depths shallower than 100 m and hard-bottom habitats 
(Figure 13). Ranked relative importance of variables for the optimal deep model was depth 
(44.9%), sand (17.2%), slope (13.1%), aspect (12.7%), and rugosity (12.2%) (Figure 13). 
 
Table 1. Surveys with Uku observed, model sample sizes, and parameter values selected for 
shallow and deep optimal BRT models. Abbreviations are for bag fraction (bf), tree complexity 
(tc), learning rate (lr), number of trees (trees), and mean deviance for cross validated model runs 
(devmean) 

Model 

Samples 
with Uku 

present 

Total 
Sample 

size bf tc lr trees devmean 
Shallow 159 1198 0.5 4 0.001 4400 0.537 
Deep 138 1423 0.5 4 0.001 3300 0.488 

 
Table 2. Model performance values for the shallow and deep optimal BRT models. 
Abbreviations are for proportion of deviance explained (Environ_DEV), area under curve-
receiver operating characteristic (AUC), total skill statistic (TSS), and model specificity and 
sensitivity. 

Model Environ_DEV AUC TSS Specificity Sensitivity 
Shallow 0.42 0.82 0.43 0.83 0.61 
Deep 0.39 0.86 0.55 0.76 0.79 
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Figure 12. Partial regression plots for covariates in the optimal “shallow” BRT model. 
 
 

 
Figure 13. Partial regression plots for covariates in the optimal “deep” BRT model. 
 
In a comparison between SDMs, the “only static variables” model outperformed the “only 
dynamic variables” model but performed similarly to the full model that incorporated all the 
static and dynamic habitat variables (Table 3). Overall, the model performances were not good 
compared to the prior optimal shallow BRT model most likely due to a smaller set of samples 
being used in the comparison. The data set used for the comparison was trimmed to 1,018 
samples (1,198 samples) from to eliminate records that had no data values from the dynamic SST 
and NPP variables (Table 4). A disproportionate number of the trimmed records had positive 
Uku observations (57 of the 180) which most likely contributed to the diminished model 
performance compared to the prior optimal shallow model. 
 
Table 3. Model performance values for the shallow and deep optimal BRT models. 
Abbreviations are for proportion of deviance explained (Environ_DEV), area under curve-
receiver operating characteristic (AUC), total skill statistic (TSS), and model specificity and 
sensitivity. 

Model Environ_DEV AUC TSS Specificity Sensitivity 
Static only 0.26 0.75 0.27 0.72 0.55 
Dynamic only 0.11 0.59 0.09 0.74 0.35 
Static and Dynamic 0.32 0.74 0.27 0.75 0.52 

 
Table 4. Surveys with Uku observed, model sample sizes, and parameter values selected for 
optimal BRT models using static variables only, dynamic variables only, and a full model with 
both sets of variables. Abbreviations are for bag fraction (bf), tree complexity (tc), learning rate 
(lr), number of trees (trees), and mean deviance for cross validated model runs (devmean). 

Model 

Samples 
with Uku 

present 

Total 
Sample 

size bf tc lr trees devmean 
Static only 102 1018 0.5 2 0.001 2950 0.584 
Dynamic only 102 1018 0.75 2 0.001 1700 0.646 
Static and Dynamic 102 1018 0.75 4 0.001 3200 0.564 
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Uku EFH Habitat Suitability Maps 

The optimal shallow (0-30 m) and deep (30-300 m) BRT models were used to predict Uku sub-
adult/adult occurrence to the waters around the main Hawaiian Islands. The GIS maps were 
generated by using the optimal models fit to the values of habitat covariates from each 
geographic location in the main Hawaiian Islands domain (in R) to generate a predicted 
probability of Uku occurrence. Across the shallow habitat range, the mean probability of 
occurrence per habitat cell was 0.09 (range = 0.02 – 0.71, sd = 0.09, n = 477,795 habitat cells). 
For the deeper habitat range, the mean probability of occurrence per habitat cell was 0.12 (range 
= 0.01 – 0.88, sd = 0.12, n = 2,259,733 habitat cells). The maps show the model-predicted 
probability of occurrence for sub-adult/adult Uku for Kauai and Niihau (Figure 14), Oahu 
(Figure 15), Maui Nui (Figure 16), and Hawaii island (Figure 17). A visual comparison of the 
probability of Uku occurrence model output and the total commercial Uku catch in fishery 
reporting grids for 2010-2019 showed generally good geographic correspondence between them 
(Figure 18). In particular, there appeared to be good correspondence between the model output 
and catch records from Niihau, Kaena Pt (Oahu), Penguin Bank, and the Kohala coast (Hawaii 
Island). For Kauai and south Lanai, there was a mismatch between the model and recorded catch. 
Near Kauai, the higher relative catches are reported on the east and south shores while the model 
predicted higher probability of Uku occurrence on the north shore (Figure 14). For the southeast 
coast of Lanai, the model predicted very low probability of Uku occurrences but the catch 
records were relative high from that area. 
 

 
Figure 14. Uku (Aprion virescens) predicted probability of occurrence around Kauai and Niihau 
from optimal BRT models for shallow (0-30 m) and deep (30-300 m) habitats. 
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Figure 15. Uku (Aprion virescens) predicted probability of occurrence around Oahu from 
optimal BRT models for shallow (0-30 m) and deep (30-300 m) habitats. 
 
 

 
Figure 16. Uku (Aprion virescens) predicted probability of occurrence around Maui Nui from 
optimal BRT models for shallow (0-30 m) and deep (30-300 m) habitats. 
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Figure 17. Uku (Aprion virescens) predicted probability of occurrence around Hawaii island 
from optimal BRT models for shallow (0-30 m) and deep (30-300 m) habitats. 

 
Figure 18. Uku predicted probability of occurrence in the main Hawaiian Islands and the total 
commercial Uku catch in fishery reporting grids for 2010-2019. 
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Uku EFH Categorical Maps 
 
Maps of the predicted probability of occurrence from habitat suitability models display a 
continuous scale of the response variable that is difficult to interpret for decision making. To 
better visualize the relative importance of different habitat areas, a categorical method for EFH 
using the absolute 25%, 50% and 95% quantiles of the Uku probability of occurrence is 
introduced. This approach has been utilized for delineation of EFH in other US Fishery 
Management Regions such as the North Pacific (Pirtle et al. 2020). The quantiles identified “hot 
spots” (predicted probability of occurrence: 1.0 – 0.75), “core habitats” (0.75 – 0.50), and basic 
“EFH” (0.50 – 0.05) for waters around Kauai and Niihau (Figure 18), Oahu (Figure 19), Maui 
Nui (Figure 20), and Hawaii island (Figure 21). For the shallow habitat range (0-30 m), Uku hot 
spots represent 0% of the area, core habitats are 0.2%, basic EFH is 55.4%, and other (i.e., non-
EFH habitats) are 44.4% of the area. For the deep habitat range (30-300 m), Uku hot spots are 
0.1% of the area, core habitats are 2.4%, basic EFH is 60.1%, and other habitats are 37.4% of the 
area. Most of the hot spot and core habitats are in the deeper depth ranges of Penguin Bank 
(Figure 22) on the N-NW coasts of the islands, such as the Kohala coast of Hawaii Island (Figure 
23). Basic EFH habitats cover the majority of both shallow and deep habitats. Total combined 
EFH (i.e., hot spots, core habitats, and EFH) in shallow and deep habitats is 61.4% of the 
seafloor between 0-300 m. The “other” habitats (i.e., non-EFH) were predominately either 
shallow, nearshore habitats adjacent to shorelines or the habitats deeper than ~150 m throughout 
the main Hawaiian Islands. An ESRI ArcGIS layer package is provided with this report that 
includes the map files for the Uku EFH categorical maps (efh_sh_dp.lpk). 
 

 
Figure 18. Uku (Aprion virescens) EFH hot spots (predicted occurrence probability of 0.75-1.0), 
core habitats (0.5-0.75), and basic EFH (0.05-0.5) around Kauai and Niihau from optimal BRT 
models for shallow (0-30 m) and deep (30-300 m) habitats. 
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Figure 19. Uku (Aprion virescens) EFH hot spots (i.e., predicted occurrence probability of 0.75-
1.0), core habitats (0.5-0.75), and basic EFH (0.05-0.5) around Oahu from optimal BRT models 
for shallow (0-30 m) and deep (30-300 m) habitats. 
 
 

 
Figure 20. Uku (Aprion virescens) EFH hot spots (i.e., predicted occurrence probability of 0.75-
1.0), core habitats (0.5-0.75), and basic EFH (0.05-0.5) around Maui Nui from optimal BRT 
models for shallow (0-30 m) and deep (30-300 m) habitats. 
 



22 
 

 
Figure 21. Uku (Aprion virescens) EFH hot spots (i.e., predicted occurrence probability of 0.75-
1.0), core habitats (0.5-0.75), and basic EFH (0.05-0.5) around Hawaii island from optimal BRT 
models for shallow (0-30 m) and deep (30-300 m) habitats. 
 
 

 
Figure 22. Uku (Aprion virescens) EFH hot spots (i.e., predicted occurrence probability of 0.75-
1.0), core habitats (0.5-0.75), and basic EFH (0.05-0.5) on Penguin Bank from optimal BRT 
models for shallow (0-30 m) and deep (30-300 m) habitats. 
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Figure 23. Uku (Aprion virescens) EFH hot spots (i.e., predicted occurrence probability of 0.75-
1.0), core habitats (0.5-0.75), and basic EFH (0.05-0.5) on Penguin Bank from optimal BRT 
models for shallow (0-30 m) and deep (30-300 m) habitats. 
 
 

CONCLUSIONS 

A species distribution modelling approach was successfully demonstrated for the delineation of 
EFH for sub-adult/adult Uku (Aprion virescens) in the main Hawaiian Islands. The availability of 
fisheries-independent diver surveys for shallow (0 – 30 m) habitats and stereo-video camera 
surveys for deeper (30 – 300 m) provided sufficient observations to model the predicted 
occurrence of Uku across the entire spatial domain. Output from the SDMs were used to create 
maps delineating Uku EFH including continuous probability of occurrence maps as well as EFH 
categorical maps. The resulting categorical maps allowed the geographic identification of “hot 
spot”, “core habitat”, and “EFH” areas for Uku EFH to facilitate management and permitting 
activities. These approaches provided geographically-explicit delineations of hierarchically 
structured EFH categories that can be used by managers to evaluate the relative potential impacts 
of activities in particular locations. As an improvement to the existing EFH definitions based 
primarily on depth ranges, these EFH maps allow a quantitative assessment of Uku habitat value 
for specific sites relative to other habitats.  
 
A comparison of models using static and dynamic habitat variables suggested that the inclusion 
of dynamic variables did not significantly improve the model performance although a broader 
variable set could be further examined in future studies. One strength of dynamic variables is that 
they may better allow forecasting changes to EFH due to the effects of climate change on 
environmental variables. One limitation of the study was the lack of sufficient fish length 
observations from the deep camera surveys necessary to model the sub-adult and adult fish 
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independently. To address this issue, existing videos could be reanalyzed to collect Uku length 
data for this purpose. Any future video survey analysis from the BFISH project should also 
include Uku as a priority species to collect length data. These data, coupled with the existing 
information from the shallow diver surveys, should allow the EFH for the sub-adult (i.e., 
juvenile) and adult Uku populations to be modeled separately. Even with these potential 
improvements, the analyses in this report represent the first model-based approach to delineating 
EFH for a U.S. Western Pacific stock and could serve as a framework for the EFH descriptions 
of other managed species in the region. 
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Appendix: EFH Mapping Requirements 

Paragraphs from the Code of Federal Regulations that are relevant to the geographic 
representations of EFH are excerpted below (source: NOAA NMFS Habitat Conservation EFH 
Mapper: https://www.habitat.noaa.gov/application/efhmapper/index.html) . The full text of this 
section of the CFR can be accessed here  

(50 CFR Ch. VI (10-1-02 Edition) 
Subpart J-Essential Fish Habitat  

EFH)§ 600.815 Contents of Fishery Management Plans.  

(a) Mandatory contents 
(1) Description and identification of EFH  

(i) Overview. FMPs must describe and identify EFH in text that clearly states the habitats or 
habitat types determined to be EFH for each life stage of the managed species. FMPs should 
explain the physical, biological, and chemical characteristics of EFH and, if known, how these 
characteristics influence the use of EFH by the species/life stage. FMPs must identify the 
specific geographic location or extent of habitats described as EFH. FMPs must include maps of 
the geographic locations of EFH or the geographic boundaries within which EFH for each 
species and life stage is found.  

(iv) EFH determination. 

(B) FMPs must describe EFH in text, including reference to the geographic location or extent of 
EFH using boundaries such as longitude and latitude, isotherms, isobaths, political boundaries, 
and major landmarks. If there are differences between the descriptions of EFH in text, maps, and 
tables, the textual description is ultimately determinative of the limits of EFH. Text and tables 
should explain pertinent physical, chemical, and biological characteristics of EFH for the 
managed species and explain any variability in habitat usage patterns, but the boundaries of EFH 
should be static.  

(v) mapping requirements. 

(A) FMPs must include maps that display, within the constraints of available information, the 
geographic locations of EFH or the geographic boundaries within which EFH for each species 
and life stage is found. Maps should identify the different types of habitat designated as EFH to 
the extent possible. Maps should explicitly distinguish EFH from non-EFH areas. Councils 
should confer with NMFS regarding mapping standards to ensure that maps from different 
Councils can be combined and shared efficiently and effectively. Ultimately, data used for 
mapping should be incorporated into a geographic information system (GIS) to facilitate analysis 
and presentation.  

(B) Where the present distribution or stock size of a species or life stage is different from the 
historical distribution or stock size, then maps of historical habitat boundaries should be included 
in the FMP, if known. 

https://www.habitat.noaa.gov/application/efhmapper/index.html
https://www.gpo.gov/fdsys/pkg/CFR-2001-title50-vol3/xml/CFR-2001-title50-vol3-sec600-815.xml
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(C) FMPs should include maps of any habitat areas of particular concern identified under 
paragraph (a)(8) of this section.  
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Appendix: Species distribution modeling (SDM) software code 
 
Example code in the R statistical software language used to perform species distribution 
modeling using boosted regression trees for Uku EFH delineation in the main Hawaiian Islands. 
 
####################################### 
## Aprion virescens Species Distribution Modeling 
## Erik Franklin, Zack Oyafuso 
## Boosted Regression Trees 
####################################### 
setwd("") #need to set working directory 
 
########################### 
## Import Libraries 
########################### 
library(dismo); library(gbm) 
library(PresenceAbsence) 
library(corrplot) 
source("brt.functions.R") 
 
########################### 
## Import Data 
########################### 
uku_data = read.csv("") # need to set data file 
 
############################# 
## correlation matrix for covariates 
############################# 
corrplot(cor(uku_data[,]), 
 method = "number", 
 type = "upper" # show only upper 
 ) 
 
############################## 
## For BRTs, test BRT heuristic using different three types of model settings 
## All records are used for this section 
## bag: bagging fraction (50% or 75%) 
## tcomp: tree complexity (2, 3, 4, or 5) 
## lrs: learning rate (0.001, 0.005, 0.01) 
############################## 
spp_name <- "Aprvire" 
brt_settings <-  expand.grid(species = spp_name, 
                             bag = c(0.75, 0.50), 
                             tcomp = 2:5, 
                             lrs = c(0.001, 0.005, 0.01), 
                             ntrees = NA, #Number of trees 
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                             devmean = NA, #mean cv deviance 
                             stringsAsFactors = FALSE) 
 
 
# split datasets into 70% train and 30% test (i.e., independent) 
splitdf <- function(dataframe, seed=NULL) { 
    if (!is.null(seed)) set.seed(seed) 
    index <- 1:nrow(dataframe) 
    trainindex <- sample(index, trunc(length(index)*0.7)) 
    trainset <- dataframe[trainindex, ] 
    testset <- dataframe[-trainindex, ] 
    list(trainset=trainset,testset=testset) 
} 
 
uku_splits <- splitdf(uku_data, seed=105) 
uku_train <- uku_splits$trainset 
uku_test <- uku_splits$testset 
dim(uku_train); dim(uku_test); dim(uku_data) 
 
for (i in 1:nrow(brt_settings)) { 
        temp_fit = dismo::gbm.step(data = uku_train,  
                                   #Column ids of covariates in argument data 
                                   gbm.x = c( 
          #4, #lat 
          #5, #long 

       6, #depth 
                                           7, #aspect 
                                           8, #sand 
                                           9, #rugosity 
                                           10), #slope 
                                   #name of column that contains response 
                                   gbm.y = spp_name,  
                                   family = "bernoulli",  
                                   tree.complexity = brt_settings$tcomp[i],  
                                   learning.rate = brt_settings$lrs[i],  
                                   bag.fraction = brt_settings$bag[i],  
                                   verbose = TRUE) 
         
        brt_settings[i, c("ntrees", "devmean")] <-  
                c(temp_fit$n.trees, temp_fit$cv.statistics$deviance.mean) 
} 
 
############################ 
## Trim settings that used less than 1500 trees 
## Choose settings with the lowest mean deviance 
########################### 
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brt_settings_trimmed <- subset(x = brt_settings, 
                               subset = ntrees > 1500) 
 
(best_settings <- brt_settings_trimmed[which.min(brt_settings_trimmed$devmean), ]) 
 
############################ 
## Setup up training models with the optimized BRT settings 
########################### 
train_uku = gbm.step(data = uku_train,  
                       gbm.x = c(6:10),  
                       gbm.y = spp_name,  
                       family = "bernoulli",  
                       tree.complexity = best_settings$tcomp,  
                       learning.rate = best_settings$lrs,  
                       bag.fraction = best_settings$bag) 
 
########################################## 
## Parsimonous Models on Test Dataset 
########################################## 
test_uku = gbm.step(data = uku_test,  
                      gbm.x = c(6:10),  
                      gbm.y = spp_name,  
                      family = "bernoulli",  
                      tree.complexity = best_settings$tcomp,  
                      learning.rate = best_settings$lrs,  
                      bag.fraction = best_settings$bag) 
 
################################# 
## Evaluation Metrics 
################################# 
AUC_return = function(model.name, sp_code, thres) { 
         
        preds <- predict.gbm(model.name,  
                             uku_test,  
                             n.trees=model.name$gbm.call$best.trees,  
                             type="response") 
         
        d <- cbind(uku_test[,sp_code], preds) 
        pres <- d[d[,1]==1, 2] 
        abs <- d[d[,1]==0, 2] 
        e <- evaluate(p=pres, a=abs, tr = thres) 
        return(round(e@auc,2)) 
         
} 
 
output_df = data.frame(species = spp_name) 
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#output_df$Raw_I <- round(ape::Moran.I(x = uku_test[, spp_name], w = 
test.dists.inv)$observed, 3) 
test_pred <- predict.gbm(object = train_uku,  
                         newdata = uku_test,  
                         n.trees = train_uku$gbm.call$best.trees,  
                         type = "response") 
#residual = test_pred - uku_test[, spp_name] 
 
#output_df$Environ_I =  round(ape::Moran.I(x = residual, w = test.dists.inv)$observed, 3) 
 
tv = sum(uku_data[, spp_name]) / nrow(uku_data) 
name_assign = paste('cmx_', spp_name, sep = '') 
assign(name_assign,  
       PresenceAbsence::cmx(cbind(1:nrow(uku_test), uku_test$Aprvire,  
                                  predict.gbm(train_uku,  
                                              uku_test,  
                                              type = 'response',  
                                              n.trees = train_uku$n.trees)), threshold = tv)) 
 
output_df$Environ_DEV = 1 - (test_uku$self.statistics$mean.res /  
                                     test_uku$self.statistics$mean.null) 
output_df$AUC = AUC_return(train_uku, spp_name, tv) 
output_df$TSS = PresenceAbsence::sensitivity(get(name_assign), st.dev = FALSE) + 
PresenceAbsence::specificity(get(name_assign), st.dev = FALSE) - 1 
output_df$kappa = PresenceAbsence::Kappa(get(name_assign), st.dev = FALSE) 
output_df$specific = PresenceAbsence::specificity(get(name_assign), st.dev = FALSE) 
output_df$sens = PresenceAbsence::sensitivity(get(name_assign), st.dev = FALSE) 
output_df 
 
######################## 
## Percent Variable Importance 
######################## 
train_uku$contributions 
 
 
######################## 
## Plot fitted functions 
######################## 
gbm.plot(train_uku)#, write.title=TRUE)  
 
gbm.plot.fits(train_uku) 
 
######################### 
## Interactions 
######################### 
find.int = gbm.interactions(train_uku) 
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find.int$interactions 
find.int$rank.list 
 
## plot largest interaction size 
gbm.perspec(train_uku, 3, 1) 
 
########################## 
## Predict to grids 
########################## 
 
eval.data <- read.csv("deep_covars.csv", as.is=T) 
names(eval.data) = c("FID", "pointid", "depth", "sand", "surf_ratio", "slope", "aspect", 
"rugosity","lat","long") 
eval.data = eval.data[ , c("lat", "long", "depth", "aspect", "sand", "rugosity", "slope")] 
 
gbm.predict.grids(train_uku, eval.data, want.grids = FALSE, sp.name = "aprvire_pred") 
 
aprvire.out = cbind(eval.data, aprvire_pred) 
write.csv(aprvire.out,"pred\\aprvire_deep_total.csv") 
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