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Abstract

Marine protected areas (MPAs) cover 3–7% of the world’s ocean, and international orga-
nizations call for 30% coverage by 2030. Although numerous studies show that MPAs
produce conservation benefits inside their borders, many MPAs are also justified on the
grounds that they confer conservation benefits to the connected populations that span
beyond their borders. A network of MPAs covering roughly 20% of the Channel Islands
National Marine Sanctuary was established in 2003, with a goal of providing regional con-
servation and fishery benefits. We used a spatially explicit bioeconomic simulation model
and a Bayesian difference-in-difference regression to examine the conditions under which
MPAs can provide population-level conservation benefits inside and outside their borders
and to assess evidence of those benefits in the Channel Islands. As of 2017, we estimated
that biomass densities of targeted fin-fish had a median value 81% higher (90% credible
interval: 23–148) inside the Channel Island MPAs than outside. However, we found no
clear effect of these MPAs on mean total biomass densities at the population level: esti-
mated median effect was –7% (90% credible interval: –31 to 23) from 2015 to 2017. Our
simulation model showed that effect sizes of MPAs of <30% were likely to be difficult to
detect (even when they were present); smaller effect sizes (which are likely to be common)
were even harder to detect. Clearly, communicating expectations and uncertainties around
MPAs is critical to ensuring that MPAs are effective. We provide a novel assessment of
the population-level effects of a large MPA network across many different species of tar-
geted fin-fish, and our results offer guidance for communities charged with monitoring
and adapting MPAs.
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Resumen

Las áreas marinas protegidas (AMPs) cubren entre 3–7% de los océanos del planeta y
las organizaciones internacionales piden una cobertura del 30% para el 2030. Aunque
numerosos estudios muestran que las AMPs producen beneficios de conservación dentro
de sus límites, muchas de estas áreas también están justificadas por otorgarles beneficios
de conservación a las poblaciones conectadas que abarcan más allá de sus fronteras. Una
red de AMPs que cubre aproximadamente el 20% del Santuario Marino Nacional de las
Islas del Canal fue establecida en 2003 con el objetivo de proporcionar beneficios para la
conservación y las pesquerías regionales. Usamos un modelo de simulación bioeconómica
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espacialmente explícito y una regresión bayesiana de diferencia-en-diferencia para exami-
nar las condiciones bajo las que las AMPs pueden proporcionar beneficios de conservación
a nivel poblacional dentro y fuera de sus límites y para evaluar las evidencias de esos ben-
eficios en las Islas del Canal. Hasta el 2017, estimamos que la densidad de la biomasa de los
peces focalizados tuvo un valor medio de 81% (90% intervalo creíble 23–148) dentro de
las AMPs de las Islas del Canal que fuera de ellas. Sin embargo, no encontramos un efecto
claro de estas AMPs sobre la densidad de biomasa total promedio a nivel poblacional; el
efecto medio estimado fue de -7% (90% intervalo creíble -31 - 23) entre 2015 y 2017. Nue-
stro modelo de simulación mostró que los tamaños del efecto de las AMPs menores al 30%
tenían mayor probabilidad de ser difíciles de detectar (incluso cuando estaban presentes);
los tamaños de efecto más pequeños (que es probable que sean comunes) fueron incluso
más difíciles de detectar. Claramente, es muy importante comunicar las expectativas e incer-
tidumbres en torno a las AMPs para asegurar que éstas sean efectivas. Proporcionamos una
evaluación novedosa de los efectos a nivel poblacional de una red extensa de AMPs para
muchas especies de peces focalizados y nuestros resultados ofrecen una guía para las comu-
nidades encargadas de monitorear y adaptar las AMPs.

PALABRAS CLAVE

conservación marina, inferencia causal, modelo bioeconómico, programa de evaluación, redes de áreas marinas
protegidas, Santuario Marino Nacional de las Islas del Canal

INTRODUCTION

No-take marine protected areas (MPAs), spatial regions of the
ocean in which fishing is prohibited, have a long history in
the management of marine resources (Johannes, 1978). Mod-
ern MPAs were first established largely as marine analogs to
the terrestrial protection of iconic landscapes (IUCN, 1976).
Recent international efforts to expand MPAs, such as The Inter-
national Union for Conservation of Nature’s 30% by 2030
MPA targets, are based in part on the assumption that well-
designed MPAs will not only provide conservation benefits
inside their borders, but also have broader conservation effects
on unprotected areas surrounding the MPAs, whether MPAs are
designed explicitly for conservation, fishery benefits, or both
(Gaines et al., 2010).

The empirical MPA literature has focused on assessing the
ability of MPAs to provide conservation gains within their bor-
ders (Lester et al., 2009; Edgar et al., 2014). However, as conser-
vation benefits accrue inside MPAs, MPAs also affect the waters
beyond their borders through the spillover of adult and larval
fish from the protected to the fished areas, as well as through
displacement of fishing effort. Therefore, MPAs contribute to
local and regional population-level effects. Numerous factors
influence the population-level effects of MPAs. These include
the scale of adult and larval dispersal relative to the size of the
MPAs (Gaines et al., 2003); strength, timing, and location of
density dependence (Burgess et al., 2014); design of the network
(Gaines et al., 2010; Rassweiler et al., 2014); degree of enforce-
ment (Edgar et al., 2014); level of fishing pressure; time span
under evaluation; and how fishing and management responds to
the implementation of the MPAs (Walters et al., 2000; Botsford
et al., 2003; Gerber et al., 2003; Smith & Wilen, 2003; Hilborn
et al., 2004; Gaines et al., 2010; White et al., 2011; Moffitt et al.,
2013; Ovando et al., 2016; Jaco & Steele, 2020).

This largely theoretical literature is generally based on mod-
eling of closed populations with some fraction protected inside
MPAs. In contrast to this population paradigm used in MPA
simulations, MPAs are often evaluated empirically at local scales
with spatial response ratios, commonly measured as the ratio of
biomass densities (weight of organisms per unit area) of species
inside relative to selected control sites outside MPAs (Halpern,
2003; Lester et al., 2009; Edgar et al., 2014; Caselle et al., 2015).
These studies show clear evidence that well-enforced and suf-
ficiently sized MPAs are associated with high response ratios.
Several studies document empirical evidence for the existence
of adult or larval fish spillover affecting fish abundance (Russ &
Alcala, 1996; McClanahan & Mangi, 2000; Halpern et al., 2009;
Kay et al., 2012). Where response ratios are available before and
after MPA implementation, spatial before-after-control-impact
(BACI) style studies show similarly clear and positive results
(Thiault et al., 2019). These studies demonstrate the ability of
MPAs to create differences between local fished and unfished
areas.

What is lacking is clear evidence for the population-level
effects of MPAs. Spatial inside-versus-outside studies rely on
an assumption that selected control sites serve as a measure
of what would have happened in the absence of MPAs. Habi-
tat characteristics are often used to justify the selection of par-
ticular fished sites as counterfactuals (controls) in response
ratios (Ferraro et al., 2019). However, beyond habitat differ-
ences, the very spillover effects it is hoped MPAs produce can
negate the ability of spatial response ratio or BACI designs to
accurately estimate the effects of MPAs because these meth-
ods require that control sites be conditionally unaffected by the
treatment (Moffitt et al., 2013; Ferraro et al., 2019). Spillover
of adults or larvae from MPAs to control sites can mask
conservation benefits, whereas displacement of fishing effort
from MPAs to control sites (which is rarely addressed directly
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[Ferraro et al., 2019]) can lead to overestimates of conservation
gains caused by MPAs measured by spatial response ratios. Con-
trol sites sufficiently far from MPAs to negate both spillover of
fish or larvae and concentration of the fishing fleet could be
selected, but finding suitably distant sites that are also appro-
priate proxies for the ecological and economic context of the
MPAs is challenging. Because variations of spatial response
ratios and BACI studies have been a primary source of evi-
dence for the conservation effects of MPAs, this means empir-
ical understanding of the population-level impacts of MPAs is
surprisingly limited.

We conducted a paired theoretical and empirical assessment
to examine the challenges of assessing population-level impacts
of MPAs. In 2003, a network of MPAs was established in the
Channel Islands National Marine Sanctuary, California (USA)
(hereafter Channel Islands). This MPA network covers approx-
imately 20% of the Channel Islands’ waters (which span over
800 km2). The network has been used as a model in protected
area design around the world (Botsford et al., 2014). We used
data from the first 14 years of protection in a difference-in-
difference (DiD) model (Angrist & Pischke, 2009) to assess
the population-level effect of a large MPA network on a wide
array of fin-fish species. Rather than relying on spatial con-
trols, we used groups of species targeted and not targeted by
fishing pressure as our treatment and control groups. We built
on existing MPA theory to interpret our results and devised
guidance for scientists and managers as to when and how they
might expect to detect population-level conservation effects of
MPAs.

METHODS

We built a spatially explicit bioeconomic simulation model and
conducted a Bayesian DiD regression. The DiD is akin to a
BACI in that it is used to assess changes in control and treat-
ment groups before and after treatment (Larsen et al., 2019).
We used our bioeconomic simulation model to provide theoret-
ical expectations of population-level effects of MPAs, which we
then compared with the empirical results from our DiD regres-
sion.

All analyses were conducted in R (R Core Team, 2019).
Our DiD regression was fit with Stan (Carpenter et al., 2017)
through the rstanarm package (Goodrich et al., 2020). All
data and code needed to fully replicate our study are publicly
available from github.com/DanOvando/population-effects-of-
mpas. Detailed descriptions of the simulation model structure
and sensitivity analyses of our estimation model are in Appendix
S2.

Simulation model

Our bioeconomic model simulated the effect of MPAs on a spa-
tially explicit age-structured representation of a fish population.
Readers can explore the functionality of the model with the
online tool available from danovando.shinyapps.io/simmpa/.
The purpose of the simulation model was to set expectations

for our empirical results and demonstrate the ways in which eco-
logical and economic dynamics can interact to produce a wide
range of population-level MPA effects. The full range of fac-
tors explored and the equations of the simulation model are in
Appendix S2. We used this model to generate 10,168 simulated
MPA outcomes across 7618 species.

Many authors have presented simulation analyses of MPA
outcomes (Fulton et al., 2015). Our model incorporates core
ecological and economic drivers of MPA performance assessed
by these individual authors into a cohesive model, similar in
spirit to Krueck et al. (2017). The simulation model consisted
of 50 patches with wrapped edges. For each simulation, we first
randomly pulled a species and its associated life-history traits
from the FishLife (Thorson et al., 2017) package. We paired
these data with randomly selected values governing the char-
acteristics of the simulation (Appendix S2). Key choices avail-
able to the model include parameters governing fishing pressure
and MPA design. For a given simulation, the model randomly
selected a fleet model and fishing effort allocation strategy. The
fleet model could be either constant catch (fleet exerts as much
effort as needed to maintain a fixed amount of catch), constant
effort (fleet maintains a constant amount of effort over time),
or open access (fishing effort of fleet expands and contracts in
response to available profits). The total fishing effort exerted by
the fleet was then distributed in space uniformly, in proportion
to spatial catch per unit effort or in proportion to spatial profit
per unit effort.

The simulation then applied the fleet model to the popu-
lation, and in a randomly selected year implemented an MPA
network. The model sampled a percentage of the population’s
range to place in MPAs, and randomly assigned patches to
MPAs either across a uniform system or preferentially on higher
quality habitat. The model then randomly selected whether fish-
ing effort that used to operate inside the MPAs was redistributed
to areas outside the MPAs or left the fishery entirely. We then
continued the simulations with the MPAs in place. Each simu-
lation was paired with a simulation identical in every way except
that MPAs were not implemented (i.e., a simulated control).
Using these paired simulations, we calculated the effect of the
MPAs on the population as the difference between biomass
densities in the simulation with MPAs and biomass densities in
the simulation without MPAs.

These simulation results provided a library of plausible MPA
effects for a range of biological and economic assumptions.
One set of simulations was specifically designed to reflect the
dynamics of the subset of species available in the Partnership
for Interdisciplinary Studies of Coastal Oceans (PISCO), which
provided the data from the Channel Islands that we used in this
study. For this set, we only included species of the same genus as
those targeted by fishing in the PISCO data. We also restricted
fishing pressure such that the simulated populations were mod-
erately to lightly exploited (because the PISCO data we used
exclude deeper water species, such as boccacio [Sebastes paucispi-

nis], which were overexploited at the inception of the MPAs, and
threatened invertebrates, such as red abalone [Haliotis rufescens]),
and capped the MPA size at 20% of the population’s range
(Rassweiler et al., 2012). For each of these Channel Islands
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FIGURE 1 Map of the study region in the Northern Channel Islands,
California (USA) (shading, binned number of Partnership for Interdisciplinary
Studies of Coastal Oceans [PISCO] sampling events over the study period)

simulations, we calculated the true population-wide difference
in biomass between the simulations with and without the MPAs
and the response ratio of biomass densities inside and outside
the simulated MPAs. We then calculated the response ratios
observed in the PISCO survey data from the Channel Islands
and matched these empirical results with simulations that pro-
duced similar response ratios after the same number of years of
MPA protection. Because each simulation included measures of
both response ratios and population-level effects, this process
provided a library of simulations (and their associated attributes)
that could have produced the types of empirical response ratios
measured in the Channel Islands.

Difference-in-difference regression

We used kelp forest survey data from the PISCO surveys in the
Channel Islands in the DiD analyses. Divers from PISCO con-
ducted visual scuba surveys at a large number of rocky reef and
kelp forest sites inside and outside MPAs throughout the Chan-
nel Islands to produce estimates of densities of fishes that are
both targeted and nontargeted by fishers (Figures 1 and 2). The
details of the monitoring program are described in Caselle et al.
(2015). We defined the population-level conservation effects of
MPAs as the change in mean total biomass densities of tar-
geted fin-fish inside and outside MPAs relative to the mean total
biomass densities of targeted fin-fish inside and outside MPAs
that would have occurred without the MPAs.

Building on Caselle et al. (2015), we used an identification
strategy in which 11 species not directly targeted by fishing
comprised the control group (nontargeted) and 12 species tar-
geted by fishing comprised the treatment group (Figure 2). We
then measured differences between the trends of biomass den-
sities of the treated group relative to the trends we would have
expected based on the biomass densities of the control group.
Data on targeted fin-fish species in the Channel Islands available

to this study included California sheephead (Semicossyphus pulcher)
and copper (Sebastes caurinus) and blue rockfish (Sebastes mysti-

nus). Nontargeted species included garibaldi (Hypsypops rubicun-

dus), halfmoons (Medialuna californiensis), and blacksmith (Chromis

punctipinnis). Our regression estimated any difference in mean
total biomass densities of fin-fish species targeted by fishing
effort (i.e., those potentially affected by an MPA) and those
species not targeted by fishing before and after MPA implemen-
tation. To account for the fact that sampling locations were not
uniformly distributed across the islands, we weighted the sam-
ples in our regression in proportion to the total area inside and
outside the MPAs.

This identification strategy attempted to control for unob-
served environmental shocks to the system that are independent
of the MPAs. Conditional on the assumptions of the model, this
regression produced an estimate of the effect of the MPAs on
the mean total biomass densities of targeted species throughout
the Channel Islands. For example, consider an evenly distributed
population that has 50% of its range protected by an MPA. If
the MPA increased biomass densities by 20% insides its bound-
aries, but had a 0% effect on the connected population outside
its boundaries, the population effect of the MPA estimated by
our DiD would be 10%.

The DiD regression amounts to estimating the pre- and post-
MPA difference in the biomass densities of targeted species,
minus the same difference for nontargeted species in the Chan-
nel Islands:

[
log

(
DMPA=1,T =1

)
− log

(
DMPA=0,T =1

)]

−
[
log

(
DMPA=1,T =0

)
− log

(
DMPA=0,T =0

])
(1)

where T is targeted (T = 1) or nontargeted (T = 0) by fishing,
MPA indicates whether the data are pre-MPA (0) or post-MPA
(1), and D is the observed mean total biomass density across all
observations of the appropriate group.

The expanded DiD regression is

di ∼ Gamma
(
e𝛽0+𝛽1Ti+𝛽2MPAi+𝛽3Ti MPAi+Bc Xi+Bs Si , shape

)

Bs ∼ Normal (𝛽r , 𝜎r ) (2)

where di is the biomass density at observation i. To account for
the fact that MPA effects evolve over time, we estimated a vec-
tor of MPA effects in 3-year blocks for all years after the MPAs
were implemented in 2003. The Bc is a vector of coefficients for
additional control variables in matrix X, such as water tempera-
ture and observer experience, and Bs is a vector of hierarchical
coefficients for each sampling location S, clustered by island 𝛽r

with variance 𝜎2
r . Under the assumptions of this model, 𝛽3 is

the causal effect of the treatment (MPA = 1) on the treated
targeted group (T = 1) (Appendix S4). We used a Bayesian
hierarchical generalized linear model because it allowed us to
interpret our estimated effects probabilistically. Being a Bayesian
regression, our DiD analysis produced posterior probability dis-
tributions (the probability distribution of our coefficients con-
ditional on the data, priors, and model assumptions) of our
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(a)

(b) (c)

FIGURE 2 Centered and scaled trends in biomass densities of targeted (solid lines) and nontargeted (dashed lines) fin-fish included in our study of the Channel
Islands Marine Protected Area (MPA) network: (a) mean trends across all sites and the same trends for sites only (b) outside and (c) inside MPAs (shaded areas, 95%
confidence intervals; vertical dotted line, MPA implementation in 2003)

coefficients, from which we constructed Bayesian credible inter-
vals (also termed uncertainty or compatibility intervals) (Gelman,
2014; McElreath, 2020).

Simulating difference-in-difference
performance

Our library of simulation results allowed us to explore how
accurate estimates of population-level MPA effects generated
by a DiD regression in the style used here are likely to be under
a plausible set of scenarios. We fitted a simplified DiD regres-
sion to data generated from simulation results that spanned
a range of observation error and degrees of autocorrelated
recruitment variation and allowed for potentially negatively cor-
related recruitment shocks between targeted and nontargeted
species. We then estimated the percent error between the pos-
terior probability distribution of the estimated MPA effect from

the regression and the true simulated MPA effect and examined
how the error in the DiD estimate changed as a function of the
true simulated MPA effect.

RESULTS

Updating the results of Caselle et al. (2015) with data col-
lected through 2017, we found an increasing but fluctuating
trend in the empirical response ratios of targeted species (Fig-
ure 3). We then compared these empirical response ratios to the
population-level effects generated by simulated MPAs that had
simulated response ratios similar to those observed in the data.

Simulations of the Channel Island MPAs that produced
response ratios over 50% had a median simulated population-
level effect on total biomass of 2.5% (90% of which fell between
0% and 24%). This means that in the majority of simula-
tions, response ratios >50% were produced by population-level
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(a)

(b)

FIGURE 3 For the Channel Islands Marine Protected Area (MPA), (a)
empirically observed 90% posterior probability distributions of response ratios
of biomass densities inside MPAs relative to biomass densities outside MPAs
(0%, biomass densities of targeted species identical inside and outside MPAs;
100%, biomass densities 100% greater inside MPAs than outside) and (b)
simulated population-level effects on biomass densities of fin-fish matched to
empirical response ratios that could have produced observed response ratios in
(a) (0% difference, biomass densities are identical in the with- and
without-MPA scenarios; 100% difference, biomass densities are 100% greater
in the scenario with MPAs than the scenario without)

effects of <10%, measured as a percent gain in total population
biomass inside and outside MPAs.

Over the first 3 years of implementation (2003–2006), the
effects of the MPAs were unclear. The median estimated
population-level effect over this period was 31%. There was sta-
tistical support for a small (3%, bottom 5th percentile of the
posterior probability distribution) to large (>69%, top 95th per-
centile of the posterior probability distribution) effect.

From 2006 to 2012, the model estimated greater proba-
bilities of an increasingly positive MPA effect that peaked in
2009–2011. The median estimate of the population-level MPA
effect in this period was a 79% increase in mean total biomass
density of targeted species (90% credible interval, 40–133)
(Figure 4). These estimates were in line with outcomes our sim-
ulation model suggested were plausible. However, in the sub-
sequent years the trend reversed, and in 2015–2017 there was
once again no clear effect of the MPAs (median estimated effect,
−7%; 90% credible interval, −31 to 23) (Figure 4).

Turning to our assessment of the ability of the kind of DiD
model employed here to detect the true population-level effect
of an MPA network, the percent error in the DiD regression’s

estimate of the population-level MPA effect was extremely high
when MPA effect sizes were <25%, and the model had both
observation and process errors in the simulated data (Figure 5).
Even models fitted to data generated from large effect sizes
commonly mis-estimated the true MPA effect by 50% or more.
Obtaining a mean absolute percent error (MAPE) of 25% or
less across our simulated data sets required a true population-
level MPA effect of at least 30%.

Two of the most critical drivers of MPA effect size were the
size of the MPA network and the degree of fishing pressure
(Figure 6). Based on our simulations, the MPA network had to
be large (25% or more of a species’ range) and the target species
overfished (pre-MPA depletion >60%) to achieve an effect size
with a likely MAPE of 25% or less (Figures 5 and 6).

DISCUSSION

Containing a carefully designed, well-enforced, and well-studied
MPA network, the Channel Islands seems to be an ideal loca-
tion to study the population-level effects of protected areas. But,
in contrast to clear differences in biomass densities observed
inside and outside well-protected MPAs, both globally (Lester
et al., 2009) and in the Channel Islands (Caselle et al., 2015) we
were unable to detect a clear population effect from the Channel
Islands MPAs.

Caselle et al. (2015) found a statistically significant increase in
the response ratios of targeted species over time and evidence
that this increase is smaller for nontargeted species. We found a
similar increasing trend in the response ratios of targeted species
(Figure 3). This provides evidence that the Channel Islands
MPAs are large enough and sufficiently well-enforced as to pro-
vide meaningful protection within their borders (White et al.,
2020). These response ratios cannot, however, be used as a
definitive indicator of population-level effects of these MPAs. In
the case of the Channel Islands MPAs, control sites were often
located within a few kilometers of an MPA, making them sus-
ceptible to both biological spillover and concentration of fishing
effort excluded from the MPAs. According to our simulations,
the response ratio trends we observe in the data could plausibly
be produced by a wide range of population-level MPA effects,
the majority of which were <10% (Figure 3). This can occur
if, for example, fishing pressure is moderate, adult movement is
low, larval dispersal is high, and displaced fishing effort concen-
trates around the border of the MPAs.

Our targeted versus nontargeted DiD regression provides
an alternative approach to spatial controls for estimating
population-level MPA effects that does not rely on the assump-
tion that MPAs do not affect control sites, a required assump-
tion of spatial response ratios. Although we estimated an uncer-
tain but overall positive effect of the MPA network in its first
few years of existence, we were unable to detect a robust sig-
nal from 2012 to 2017. We found that given the dynamics
of the Channel Islands, particularly given the lack of heav-
ily exploited species (e.g., abalone and deep-water rockfish),
that helped motivate the Channel Island MPAs in the available
data, this result was to be expected. After 14 years of MPA
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FIGURE 4 Results of difference-in-difference regression estimating the population-level effect of the Channel Island Marine Protect Area (MPA) on mean
total biomass densities of targeted species. Gray distributions show posterior probability distribution of estimated MPA effect; red point is median estimated effect,
thicker red line 50% credible interval, and thinner red line 90% credible interval. Blue distributions in background show range of MPA effects produced by
simulation model tuned to reflect the dynamics of the Channel Island MPAs (black dashed line is median simulated value). Results are estimated in blocks of 3 years,
with notation of (2003,2006] indicating that that block includes years ≥2003 and <2006. MPAs were implemented in 2003

FIGURE 5 Distribution of percent error (y-axis) in posterior estimates of
population-level marine protected area effect relative to true simulated MPA
effect (x-axis). Shading shows concentration of simulations. Black line shows
mean absolute percent error (MAPE) as a function of simulated
population-level MPA effect

protection, there is no clear picture of the population-level
effect of the Channel Island MPA network on biomass densi-
ties of targeted fin-fish.

Fishing dynamics may be one factor contributing to a lack
of strong MPA network effects. Much of the theoretical litera-
ture on MPAs is based on the assumption that larger reserves
produce larger conservation gains (White et al., 2011). How-
ever, these models generally simulate fleet dynamics through
fishing mortality rates; that is, the proportion of total mortal-
ity experienced by a population attributable to fishing pressure
(e.g., Halpern et al. 2004). Alternatively, under a constant-catch
strategy, fishers have a catch objective and exert as much (or lit-
tle) effort as needed to achieve that objective. Subsistence fish-
ers may use a constant-catch style policy over the short term
if they seek to ensure that food needs are met. Constant-catch
dynamics might also occur in fisheries with constraining quotas
that are not updated after the implementation of MPAs. Fishers
pursuing a constant-catch strategy in areas outside an MPA may
have to fish harder to achieve the same catch from a smaller part
of the population, causing a population loss under 70% of our
constant-catch simulations. This potential negative interaction
between constant catch and MPAs is an important risk to con-
sider (as done in Little et al. [2011]), especially because MPAs are
increasingly implemented in quota-managed fisheries (Liu et al.,
2018). We did not have access to fine-scale fishing data from
the Channel Islands alone, but reported catches for the species
of interest in the Santa Barbara region exhibited a mix of sta-
ble, downward, and upward trajectories (Appendix S3), which
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(a) (b)

FIGURE 6 Simulated population-level effects of marine protected areas (MPAs). (a) Median simulated fin-fish population-level (pop.) MPA effect sizes
(percent change in total biomass) as a function of percentage of species’ range inside MPA (y-axis) and pre-MPA depletion (x-axis). Pre-MPA depletion is a measure
of fishing pressure, where 0% means the population is unfished and 100% means the population is extinct in the period immediately prior to MPA implementation.
(b) Distribution of simulations across range of MPA sizes and pre-MPA depletions, shown separately

indicates that a negative MPA effect caused by a constant-catch
fishing strategy is unlikely.

Environmental disturbance is another possible explanation
for the decline in the population-level effects of Channel Islands
MPA estimated by our model. The Channel Islands region expe-
rienced a dramatic marine heatwave beginning in 2014 and per-
sisting through 2016, resulting in part in extremely elevated
water temperatures throughout the region (Gentemann et al.,
2017). Many of the nontargeted species in the Channel Islands
have warm thermal affinities and have increased in numbers
since the heatwave (Freedman et al., 2020). The targeted group
is made up mostly of fishes with cold-water affinities. In the
presence of this marine heatwave, the nontargeted species may
no longer serve as an effective control for the evolution of
biomass densities of targeted fin-fish in the absence of the
MPAs, given the magnitude of the environmental shock relative
to the size of the population-level MPA effect.

All of the species in this empirical analysis may affect each
other through mechanisms such as predation, competition,
and habitat modification. We used convergent cross mapping
(CCM), in the manner of Clark et al. (2015), to test for signif-
icant dynamic interactions between species and therefore the
possibility of the trophic cascades biasing our results. We found

no significant cross-mappings between targeted and nontar-
geted species, indicating that although clearly there were interac-
tions between these groups on some level, the effects within the
time span of the data were not pronounced enough to affect our
results (Appendix S7). However, the longer MPAs are in place,
the greater the possibility that substantial species interactions
that can affect use of nontargeted species as a control may arise.

As the number and size of global MPA networks increase,
we must set appropriate expectations for their outcomes on
both local and regional scales. Simulation modeling can help
inform the range of effect sizes that may be expected, and mon-
itoring programs can be tuned to focus on the species groups
that have the highest chance of a detectable effect size over
the early years of the reserve (Nickols et al., 2019). Expanding
data collection to include robust monitoring of spatiotemporal
fleet dynamics may help assess the validity of control sites used
in response ratios, support the direct inclusion of these fleet
dynamics into statistical models, and allow managers to take into
account potential negative interactions between MPAs and fleet
dynamics, such as those that may occur under constant-catch
dynamics. Whenever possible monitoring programs should be
implemented prior to MPA implementation to provide a pre-
treatment benchmark.
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There are many potential alternatives to spatial response
ratios for estimating the population effects of MPAs that bet-
ter account for the challenges of causal inference (though that
may be more data intensive) (Larsen et al., 2019). We applied
one such approach here, yet we were still unable to reach robust
conclusions as to the effect of MPAs on the total biomass den-
sity of targeted fin-fish in the Channel Islands, due to the likely
small size of the true effect relative to the influence of environ-
mental variability. In the context of the moderately exploited
species in the Channel Islands PISCO data, our simulation
testing suggests that we should not have been surprised at our
difficulty in precisely estimating the population-level effect of
the MPAs. There are other promising statistical approaches to
setting expectations for MPA effects, including using models
fitted to local data to set population-level expectations and cre-
ate synthetic counterfactuals (White et al., 2011; Nickols et al.,
2019).

The scientific community must effectively communicate the
challenges of estimating the population-level effects of MPAs.
Lack of a clear population-level MPA effect should not neces-
sarily be viewed as a failure of a conservation program, and,
likewise, large response ratios should not be automatically taken
as evidence of a population-level conservation success. Rather,
results and subsequent management actions must be considered
in the context of reasonable expectations given the size, age,
and degree of enforcement of the MPAs in question, together
with the ecological and economic dynamics of a given sys-
tem. Although recently some extremely large MPAs have been
enacted that may indeed reach into the higher levels of MPA
coverage, most MPA networks for near-shore commercial fin-
fish are likely to cover areas more in line with the Channel
Islands (20%) or smaller. As such, many MPA networks are
expected to have population-level effect sizes that are difficult
to detect unless the target species would have been extremely
overfished without the protection of MPAs (Figure 6a).

As advocacy for large networks of MPAs grows around the
world, MPA scientists must directly tackle the challenge of eval-
uating the performance of MPAs at the population scale. Com-
monly employed metrics, such as spatial response ratios, may
be applicable in some circumstances, but are vulnerable to inac-
curacy or misuse as metrics of population-level effects. Bioe-
conomic modeling can help frame community expectations,
reducing the potential for a reduction in support if unrealistic
conservation or fishery expectations are not realized. Statisti-
cal approaches that explicitly address complications, such as the
spatial spillover effects of MPAs, may give users an improved
understanding of the performance of their MPAs, but even they
may struggle when expected effect sizes are small. Clearly com-
municating what to expect from and what can be detected from
MPAs is critical to ensuring that MPAs play effective roles in
fisheries management and marine conservation.

ACKNOWLEDGMENTS

Funding for the simulation model was provided by the National
Marine Fisheries Service – SeaGrant Population and Ecosys-
tem Dynamics Fellowship. Empirical data collection was funded
primarily by the David and Lucille Packard Foundation in sup-

port of the Partnership for Interdisciplinary Studies of Coastal
Oceans (PISCO) with additional funding from the California
Ocean Protection Council and California SeaGrant. This study
would not have been possible without the work provided by
PISCO divers over the years. We especially thank K. Davis
Koehn and A. Parsons-Field. We also thank C. Szuwalski, J.
Lawson, A. Punt, C. Brown, and two anonymous reviewers for
helpful comments and technical support.

ORCID

Daniel Ovando https://orcid.org/0000-0003-2120-7345

LITERATURE CITED

Angrist, J. D., & Pischke, J.-S. (2009). Mostly harmless econometrics: An empiricist’s

companion. Princeton University Press.
Botsford L. W., Micheli F., & Hastings A. (2003). Principles for the design of

marine reserves. Ecological Applications, 13, 25–31.
Botsford, L. W., White, J. W., Carr, M. H., & Caselle, J. E. (2014). Marine pro-

tected area networks in California, USA. In M. L. Johnson & J. Sandell (Eds.),
Advances in marine biology (pp. 205–251). Academic Press.

Burgess S. C., Nickols K. J., Griesemer C. D., Barnett L. A. K., Dedrick A. G.,
Satterthwaite E. V., Yamane L., Morgan S. G., White J. W., & Botsford L. W.
(2014). Beyond connectivity: How empirical methods can quantify popula-
tion persistence to improve marine protected-area design. Ecological Applica-

tions, 24, :257–270.
Carpenter B., Gelman A., Hoffman M. D., Lee D., Goodrich B., Betancourt M.,

Brubaker M., Guo J., Li P., & Riddell A. (2017). Stan: a probabilistic program-
ming language. Journal of Statistical Software, 76, 1–32.

Caselle J. E., Rassweiler A., Hamilton S. L., & Warner R. R. (2015). Recovery
trajectories of kelp forest animals are rapid yet spatially variable across a net-
work of temperate marine protected areas. Scientific Reports, 5:14102.

Clark A. T., Ye H., Isbell F., Deyle E. R., Cowles J., Tilman G. D., & Sugihara G.
(2015). Spatial convergent cross mapping to detect causal relationships from
short time series. Ecology, 96, :1174–1181.

Edgar G. J., Stuart-Smith R. D., Willis T. J., Kininmonth S., Baker S. C., Banks
S., Barrett N. S., Becerro M. A., Bernard A. T. F., Berkhout J., Buxton C. D.,
Campbell S. J., Cooper A. T., Davey M., Edgar S. C., Försterra G., Galván
D. E., Irigoyen A. J., Kushner D. J., … Thomson R. J. (2014). Global con-
servation outcomes depend on marine protected areas with five key features.
Nature, 506, :216–220.

Ferraro, P. J., Sanchirico, J. N., & Smith, M. D. (2019). Causal inference in cou-
pled human and natural systems. Proceedings of the National Academy of Sciences

of the United States of America, 116(12), 5311–5318.
Freedman R. M., Brown J. A., Caldow C., & Caselle J. E. (2020). Marine pro-

tected areas do not prevent marine heatwave-induced fish community struc-
ture changes in a temperate transition zone. Scientific Reports, 10:21081.

Fulton E. A., Bax N. J., Bustamante R. H., Dambacher J. M., Dichmont C.,
Dunstan P. K., Hayes K. R., Hobday A. J., Pitcher R., Plagányi Év. E., Punt
A. E., Savina-Rolland M., Smith A. D. M., & Smith D. C. (2015). Modelling
marine protected areas: insights and hurdles. Philosophical Transactions of the

Royal Society B: Biological Sciences, 370:20140278.
Gaines S. D., Gaylord B., & Largier J. L. (2003). Avoiding current oversights in

marine reserve design. Ecological Applications, 13, :32–46.
Gaines S. D., White C., Carr M. H., & Palumbi S. R. (2010). Designing marine

reserve networks for both conservation and fisheries management. Proceed-

ings of the National Academy of Sciences, 107, :18286–18293.
Gelman, A. (2014). Bayesian data analysis (3rd ed.). CRC Press.
Gentemann C. L., Fewings M. R., & García-Reyes M. (2017). Satellite sea surface

temperatures along the West Coast of the United States during the 2014–
2016 northeast Pacific marine heat wave. Geophysical Research Letters, 44, :312–
319.

Gerber L. R., Botsford L. W., Hastings A., Possingham H. P., Gaines S. D.,
Palumbi S. R., & Andelman S. (2003). Population models for marine reserve
design: A retrospective and prospective synthesis. Ecological Applications, 13,
:47–64.

https://orcid.org/0000-0003-2120-7345
https://orcid.org/0000-0003-2120-7345


1870 OVANDO ET AL.

Goodrich, B., Ali, I., & Brilleman, S. (2020). rstanarm: Bayesian applied regres-
sion modeling via Stan. http://mc-stan.org/.

Halpern B. S. (2003). The impact of marine reserves: do reserves work and does
reserve size matter? Ecological Applications, 13, :117–137.

Halpern B. S., Gaines S. D., & Warner R. R. (2004). Confounding effects of the
export of production and the displacement of fishing effort from marine
reserves. Ecological Applications, 14, :1248–1256.

Halpern B. S., Lester S. E., & Kellner J. B. (2009). Spillover from marine reserves
and the replenishment of fished stocks. Environmental Conservation, 36, :268–
276.

Hilborn, R., Stokes, K., Maguire, J. J., Smith, T., Botsford, L. W., Mangel, M.,
Orensanz, J., Parma, A., Rice, J., Bell, J., Cochrane, K. L., Garcia, S., Hall,
S. J., Kirkwood, G. P., Sainsbury, K., Stefansson, G., & Walters, C. (2004).
When can marine reserves improve fisheries management? Ocean & Coastal

Management, 47:197–205.
International Union for Conservation of Nature (IUCN). (1976). IUCN year-

book, 1975–76: annual report of the International Union for Conserva-
tion of Nature and Natural Resources for 1975 and for January-May 1976.
https://portals.iucn.org/library/node/5984

Jaco E. M., & Steele M. A. (2020). Pre-closure fishing pressure predicts effects
of marine protected areas. Journal of Applied Ecology, 57:229–240.

Johannes R. E. (1978). Traditional marine conservation methods in Oceania and
their demise. Annual Review of Ecology and Systematics, 9:349–364.

Kay M. C., Lenihan H. S., Kotchen M. J., & Miller C. J. (2012). Effects of marine
reserves on California spiny lobster are robust and modified by fine-scale
habitat features and distance from reserve borders. Marine Ecology Progress

Series, 451:137–150.
Krueck N. C., Ahmadia G. N., Possingham H. P., Riginos C., Treml E. A., &

Mumby P. J. (2017). Marine reserve targets to sustain and rebuild unregulated
fisheries. PLOS Biology, 15:e2000537.

Larsen A. E., Meng K., & Kendall B. E. (2019). Causal analysis in control–
impact ecological studies with observational data. Methods in Ecology and Evo-

lution, 10:924–934.
Lester S. E., Halpern B. S., Grorud-Colvert K., Lubchenco J., Ruttenberg B. I.,

Gaines S. D., Airamé S., & Warner R. R. (2009). Biological effects within no-
take marine reserves: A global synthesis. Marine Ecology Progress Series, 384:33–
46.

Little, L. R., Grafton, R. Q., Kompas, T., Smith, A. D. M., Punt, A. E., & Map-
stone, B. D. (2011). Complementarity of no-take marine reserves and indi-
vidual transferable catch quotas for managing the line fishery of the great
barrier reef. Conservation Biology, 25:333–340.

Liu O. R., Kleisner K. M., Smith S. L., & Kritzer J. P. (2018). The use of spa-
tial management tools in rights-based groundfish fisheries. Fish and Fisheries,
19:821–838.

Mcclanahan T. R., & Mangi S. (2000). Spillover of exploitable fishes from a
marine park and its effect on the adjacent fishery. Ecological Applications,
10:1792–1805.

McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and

Stan (2nd ed.). CRC Press.
Moffitt E. A., White J. W., & Botsford L. W. (2013). Accurate assessment of

marine protected area success depends on metric and spatiotemporal scale
of monitoring. Marine Ecology Progress Series, 489:17–28.

Nickols K. J., White J. W., Malone D., Carr M. H., Starr R. M., Baskett M. L.,
Hastings A., & Botsford L. W. (2019). Setting ecological expectations for
adaptive management of marine protected areas. Journal of Applied Ecology,
56:2376–2385.

Ovando D., Dougherty D., & Wilson J. R. (2016). Market and design solutions
to the short-term economic impacts of marine reserves. Fish and Fisheries,
17:939–954.

R Core Team. (2019). R: a language and environment for statistical computing. R Foun-
dation for Statistical Computing. http://www.R-project.org/

Rassweiler A., Costello C., Hilborn R., & Siegel D. A. (2014). Integrating sci-
entific guidance into marine spatial planning. Proceedings of the Royal Society B:

Biological Sciences, 281:20132252.
Rassweiler A., Costello C., & Siegel D. A. (2012). Marine protected areas and

the value of spatially optimized fishery management. Proceedings of the National

Academy of Sciences, 109:11884–11889.
Russ G. R., & Alcala A. C. (1996). Do marine reserves export adult fish biomass?

Evidence from Apo Island, central Philippines. Marine Ecology Progress Series,
132:1–9.

Smith M. D., & Wilen J. E. (2003). Economic impacts of marine reserves: the
importance of spatial behavior. Journal of Environmental Economics and Manage-

ment, 46:183–206.
Thiault L., Kernaléguen L., Osenberg C. W., Lison De Loma T., Chancerelle Y.,

Siu G., & Claudet J. (2019). Ecological evaluation of a marine protected area
network: a progressive-change BACIPS approach. Ecosphere, 10:e02576.

Thorson J. T., Munch S. B., Cope J. M., & Gao J. (2017). Predicting life history
parameters for all fishes worldwide. Ecological Applications, 27:2262–2276.

Walters C., Pauly D., Christensen V., & Kitchell J. F. (2000). Representing den-
sity dependent consequences of life history strategies in aquatic ecosystems:
EcoSim II. Ecosystems, 3:70–83.

White J. W., Botsford L. W., Baskett M. L., Barnett L. A. K., Barr R. J., & Hast-
ings A. (2011). Linking models with monitoring data for assessing perfor-
mance of no-take marine reserves. Frontiers in Ecology and the Environment, 9:

390–399.
White J. W., Yamane M. T., Nickols K. J., & Caselle J. E. (2020). Analysis of fish

population size distributions confirms cessation of fishing in marine pro-
tected areas. Conservation Letters, 14(2), e12775.

SUPPORTING INFORMATION

Additional supporting information may be found online in the
Supporting Information section at the end of the article.

How to cite this article: Ovando D., et al. Assessing
the population-level conservation effects of marine
protected areas, Conservation Biology. 2021;35: 1861–1870.
https://doi.org/10.1002/cobi.13782

http://mc-stan.org/
https://portals.iucn.org/library/node/5984
http://www.R-project.org/
https://doi.org/10.1002/cobi.13782

	Assessing the population-level conservation effects of marine protected areas
	Abstract
	Resumen
	INTRODUCTION
	METHODS
	Simulation model
	Difference-in-difference regression
	Simulating difference-in-difference performance

	RESULTS
	DISCUSSION
	ACKNOWLEDGMENTS
	ORCID
	LITERATURE CITED
	SUPPORTING INFORMATION




