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ARTICLE INFO ABSTRACT

Handled by Beatriz Morales-Nin To meet global conservation targets, there is a growing effort to establish oceanic (waters >200 m depth) marine
protected areas (0MPAs). However, despite substantial evidence for benefits of coastal MPAs to fish and fisheries,
the effectiveness of oMPAs has been challenging to assess robustly. This is mainly because targeted data
collection is expensive, so research often relies on catch data restricted to areas outside oMPA boundaries. Here
we explore the use of drifting fish aggregating devices (dFADs) as a novel method to assess the effectiveness of
oMPAs. We used acoustic data from 902 dFADs deployed by the fishing industry that drifted across the US Pacific
Islands Heritage Marine National Monument around Palmyra Atoll - providing data both inside and outside the
oMPA - to study spatial variation in tuna biomass density. Using a generalised additive mixed model with a suite
of environmental covariates, we found the relationship between tuna biomass density and many environmental
covariates made intuitive ecological sense with respect to known tuna behaviour, providing confidence in the
model. We found no measurable increase in tuna biomass density inside the oMPA. This finding could have been
influenced by the low fishing pressure around this particular oMPA, and regions with greater contrast in fishing
pressure might show different results. This research highlights the utility of dFADs as a cost-effective tool for
future studies to assess tuna biomass, especially in regions difficult or costly to sample as oMPAs.
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1. Introduction

Marine protected areas (MPAs) are a powerful conservation tool for
biodiversity (Lubchenco and Grorud-Colvert, 2015). Increasingly,
oceanic MPAs (oMPAs), those protected areas beyond the 200-m depth
contour of the continental shelf (Blanluet et al., 2023), are being
declared to meet objectives of international conservation agreements,
including the Kunming-Montreal Global Biodiversity Framework target
3, to protect 30 % of marine areas (https://www.cbd.int/gbf/). To
ensure adequate representation of Earth’s ecosystems in protected areas,
more oceanic habitats will need to be protected (Blanluet et al., 2023).
As most oceanic habitats are in the high seas, there is now further

opportunity for conservation of these areas with the recent agreement of
the UN High Seas Treaty (https://www.un.org/bbnj), which lays the
groundwork for a global mechanism to establish MPAs in waters beyond
national jurisdiction.

Although oceanic marine protected areas (0MPAs) have broad ob-
jectives, including pelagic and benthic biodiversity conservation and
potential fisheries benefits, most scientific studies emphasise fisheries
benefits (Blanluet et al., 2023; Gilman et al., 2019). While the conser-
vation benefits of coastal MPAs for exploited populations are clear (Gell
and Roberts, 2003; Di Lorenzo et al., 2020; Grorud-Colvert et al., 2021),
the evidence for benefits of oMPAs is equivocal (Blanluet et al., 2023).
The high mobility of pelagic fauna may pose a challenge for area-based
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management (Breen et al., 2015). Further, fisheries data (i.e., catch per
unit effort), the main information currently used to sample tuna pop-
ulations in oceanic environments (Letessier et al., 2017), are limited to
fished areas. Thus, following the closure of an oMPA, these studies are
limited to sample in the vicinity of the MPA and cannot document the
variation of tuna population inside the MPA (Blanluet et al., 2023; White
et al., 2020), and direct evaluations of the benefits of oMPAs have been
difficult because of the high-cost of fisheries-independent sampling.

To assess the potential conservation benefits of oMPAs, most studies
have investigate tuna because they are the main exploited species in
oceanic environments (Ortuno Crespo and Dunn, 2017). Tuna fisheries
mainly use longlines and purse seines. Over the past 20 years, purse
seine fleets have largely moved from free-school searching, using sonars
and natural markers such as birds or dolphins to find tuna aggregations,
to deploying drifting fish aggregating devices (dFADs) to attract and
retain tuna (Fonteneau et al, 2013). A dFAD (Fig. 1B) generally
comprise a simple raft equipped with a GPS and a basic echosounder
device, and a long tail of net or rope to attract tuna and slow the drift.
dFADs are now ubiquitous in the tropical and equatorial zone of the
Atlantic, Pacific and Indian Oceans. In the Western Pacific alone, be-
tween 40,000 and 60,000 dFADs are deployed each year (Lopez et al.,
2020; Escalle et al., 2021a).

Although tuna fishing fleets have substantially benefited from this
technological leap (Ehrhardt et al., 2017), conservation and fisheries
science could also potentially benefit from this network of drifting
platforms (Moreno et al., 2016). For example, dFADs can be used to
study tuna aggregation behaviour (Orue et al., 2019b) or build
fisheries-independent indicators for stock assessment (Baidai et al.,
2020; Escalle et al., 2021b; Uranga et al., 2024). Notably, dFADs cross
exclusive economic zones (EEZ) and MPA boundaries alike, making
them a promising tool to sample tuna both inside and outside oMPAs.
The lack of data within oMPAs because of the reliance on fisheries catch
data has been a blind spot in assessing their ecological benefits (White
et al., 2020).

Here, we assessed the potential of using dFADs as a sampling plat-
form to investigate tuna biomass density differences inside and outside
of an oMPA. We used data from dFADs collected in the vicinity of the
protected island of Palmyra Atoll (part of the US “Pacific Islands Heri-
tage Marine National Monument”,PIHMNM; Fig. 1A, C). We used data
from 902 satellite and echosounder buoys attached to dFADsto explore
whether tuna biomass density inside the unfished oMPA was higher than
in waters surrounding the MPA which were open to tuna fishing. Data
were obtained through the Palmyra “FAD Watch Program”, an agree-
ment between The Nature Conservancy (TNC) and several purse seine
fishing companies to mitigate dFAD groundings on Palmyra’s sensitive
coral reef ecosystem.

2. Material and methods

The Pacific Remote Islands Marine National Monument (PRIMNM),
now the Pacific Islands Habitat and Marine National Monument
(PIHMNM), was established around several United States Pacific Island
territories, including Palmyra Atoll, in 2009 (Fig. 1A). Following its
extension in 2014, it became the third-largest MPA globally in terms of
surface area.! The PIHMNM'’s primary objectives include protecting
habitats, ecosystems, and biodiversity, reducing human impacts, and
supporting exploited fish populations (Office of the Press Secretary,
2014; Blanluet et al., 2023)

The protected area around Palmyra Atoll, part of a broader
53,503 km? MPA that includes Kingman Reef, was not a major focus for
tuna fisheries before or after the establishment of the closed area in
2009. Effort levels in its vicinity are low within the US Exclusive Eco-
nomic Zone (EEZ), with moderate fishing activity in other nearby zones

! https://mpatlas.org/large-mpas/, from Marine Conservation Institute
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(Figures S1 and S2, Western and Central Pacific Fisheries Commission
(WCPFQC) public data). As such, the fisheries context around Palmyra
reflects the typical characteristics of many offshore MPAs in the Pacific,
including its remoteness (e.g., 5300 km from New Zealand and 1700 km
from Hawaii), limited fishing history (Blanluet et al., 2023; Hilborn
etal., 2025), and large size, which encompasses a range of habitats from
nearshore island environments to depths > 4000 m.

Palmyra Atoll within the PIHMNM was selected for this case study
due to the availability of high-resolution dFAD trajectory data associ-
ated with the TNC FAD Watch program. Comparable data were not
available for other offshore MPAs at the time of the study. While the
PRIMNM is indeed relatively small in spatial extent (53,503 km?)
compared to the broader migratory range of skipjack tuna, it is repre-
sentative of many recently implemented offshore MPAs in the Pacific
that have been placed in low fishing effort zones (Blanluet et al., 2023),
often to minimise conflict with industrial fisheries. Our primary goal
was to demonstrate the utility of a new spatial approach for assessing the
efficacy of oMPAs. We acknowledge that future application of this
method to larger oMPAs with greater baseline fishing pressure would
provide a more robust test, pending availability of suitable dFAD data.

2.1. Data collection and processing

The dFAD manufacturer Satlink provided the dFAD data in the US
EEZ around Palmyra Atoll (a box with ~350 kmsides), which included
the PIHMNM protected area and the close vicinity (Fig. 1C). The Kiribati
EEZ in the southeast was not sampled. The dataset only includes infor-
mation from companies that were collaborating on the project, although
these companies are likely to own the majority of dFADs in the area, as
the primary fishing zones of other companies are farther afield.

Satlink dFADs provide data on date, position and fish biomass den-
sity. Date and position data were initially every 24 h from July to
December 2021, then upgraded from January 2022 to every 4 h, to
facilitate recovery operations. Biomass data were obtained every 2 h
through the dFAD-mounted SIMRAD echosounders acquisitions. As
dFAD biomass and position data were not synchronised, we estimated
the position of each biomass measurement at the time the biomass was
recorded using a linear interpolation between the previous and the next
position. Acquisitions of biomass data comprised an ensemble of 32
pings echo-integrated by layer over 5-min periods (Lopez et al., 2016).
The “backscattering volume strength” (Sv) obtained was stored and
converted to an estimation of biomass internally using the “target
strength” of a horizontally oriented 5-kg skipjack tuna (Satlink, personal
communication). The highest biomass value over the 2 h period is then
sent to the satellite and added to the dataset.

The echosounder range is from 3 to 115 m, with a 32° beamwidth,
separated in 10 layers of 11.2 m, each with an independent biomass
density value. To remove plankton and small fish from the acquisition,
only Sv values over —45 kHz are considered in the echo-integration.
Biomass density values <1t by layer are neglected, and the
echosounder saturates for biomass density value > 63 t by layer. Each
dFAD is calibrated by the manufacturer in a tank before delivery. Two
Satlink buoy types are included in the dataset: the ISL+ characterised by
a SIMRAD ES12 transducer and emitting a pulse at 190.5 kHz and
120 W; and the SLX+ (the large majority of the buoys), characterised by
a SIMRAD ES16 transducer, emitting a modulated pulse at 200 kHz and
200 W.

Data were collected from 1st August 2021-30 April 2023. During this
time, dFADs with at least one position acquired in the sampled area were
detected, with some dFADs crossing the area several times over the
period. The longest, uninterrupted track in our data set is 65 days,
although dFADs averaged 5 days in the sampling area. Following the
recommendation of Orue et al. (2019a), we removed every dFAD with a
speed > 3 knots, considering that these are likely to be onboard a vessel.
We have no previous information on the fishing history and soak time of
dFADs before they entered our area. Further, we have no information on
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Fig. 1. Study context. (A) Map of the “Pacific Islands Habitat and Marine National Monument” (PIHMNM) in the Pacific Ocean, with an inset of the US exclusive
economic zone around Palmyra Atoll. (B) A schematic of a drifting fish aggregating device (dFAD). (C) The 902 dFAD trajectories in the current study — the colours

are used to help distinguish individual dFAD tracks.

potential fishing events in our dataset. We considered every dFAD that
left the oMPA for > 3 days as a new dFAD in our analysis, to take ac-
count that it could have been fished whilst outside the area. We also
assumed that the fish biomass density measured by the dFADs is pre-
dominantly composed of tuna because the dFADs algorithm uses the
backscattering of skipjack tuna as a reference Target Strength (Lopez
et al., 2016) to transform acoustic data to biomass, and there is strong
evidence that most of the biomass recorded around dFADs is from tuna
(Lopez et al., 2017a; Orue et al., 2019b), at least for the deeper layers
(>20 m, Lopez et al., 2016). Data too close to the Islands (<10 km from
their centres) were removed due to the risk of misinterpreting the sea
floor as tuna biomass.

For the purposes of this study, we assumed that all satellite buoys in
the dataset were attached to dFAD structures. While data from the FAD
Watch Program indicate that a small proportion (<5 %) of buoys are
recovered without associated raft or netting material—likely due to
degradation or detachment over time—these cases are rare. It is possible
that buoys drifting without a submerged structure exhibit different
movement patterns; however, without consistent metadata confirming
attachment status, we were unable to systematically differentiate be-
tween buoy-only and dFAD-attached trajectories in our dataset. This
remains a potential source of uncertainty, though we consider it unlikely
to substantially affect our results given the low frequency of such events.

Acoustic biomass estimates from echo-sounder buoys are widely
used by fishers as indicators of tuna presence, but they are imperfect
proxies for actual tuna biomass, particularly at the scale of individual
buoys (Baidai et al., 2020; Escalle et al., 2021b). These estimates can be
influenced by species composition, depth distribution, and behavioural
patterns that affect detectability. However, when analysed aggregate
across large datasets, these data can provide useful insights into spatial
and temporal patterns in tuna association with dFADs (Baidai et al.,
2020; Escalle et al., 2021b; Uranga et al., 2024). In this study, we first
used high-resolution (2-hourly) data from our large number of buoys to
analyse tuna spatial biomass patterns. In a second time, we fitted a
statistical model to examine the influence of spatial, temporal, and
environmental predictors—including oMPA presence—on tuna
biomass.

We used an Inverse Distance Weighted interpolation (IDW, via the
‘gstat’ package in R; Pebesma, 2004) for generating a map of tuna
biomass spatial distributions, aggregated over depth layers. Four
different settings of the smoothing parameter - the inverse distance
weighting power (idp) - were tested in the IDW function in the R package
gstat inverse-distance-weighted map of tuna biomass: 0.25, 0.5, 0.75,
and 1. We show the map of tuna biomass density based on the IDW
smooth as the deviation from the mean across all depth layers (~3.37 t)
for a idp of 0.75 in Fig. 2, when maps for other values of idp are
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Fig. 2. Map of the anomaly in mean tuna biomass (t) in the region. This is
based on an inverse distance weighted smoothing (IDW) of the biomass data
collected by all the dFADs in the study summed over all depth layers for each 2-
hourly interval, after subtracting the mean of 3.37 t. The Pacific Remote Island
Marine National Monument (in red) and the position of Kingman Reef and
Palmyra Atoll and the National Wildlife Refuge boundaries (in green)
are shown.

presented in figure 5 of SI. IDW maps for each year and season are also
presented in figure 6 of SI.

2.2. Generalised additive mixed model

Tuna biomass density associated with dFADs is influenced by many
temporal and spatial environmental variables (Baidai et al., 2020;
Capello et al., 2016; Lopez et al., 2017b; Orue et al., 2020). We use a
Generalised Additive Mixed Model (GAMM, Wood, 2020) to disentangle
the spatial effect of the oMPA from other predictors affecting the tuna
biomass density (using the mgev R package, Wood, 2020). GAMMs are
able to handle many non-linear predictors, are relatively robust to
collinearity between predictors, and can include cyclic effects such as
day-night cycles (Wood, 2020).

We used a GAMM to isolate the potential effect of the oMPA on tuna
biomass density whilst adjusting for the effect of a suite of temporal and
environmental variables on tuna biomass density. The response variable
was the maximum tuna biomass (tonnes) per 2 h time period for each
depth layer, corresponding to n =199 394 single data points. The
GAMM included the dFAD identification number as a random effect to
capture individual differences in each dFAD in terms of their physical
and acoustic configuration and calibration, deployment history, and the
multiple data generated from each dFAD.

Fish catch data are commonly zero inflated (i.e., the data contain an
excess of zeros) (Arcuti et al., 2013; Thorson, 2018) and it was same for
our fish biomass density data from dFADs. To account for zero inflation,
it is typical to use a hurdle model (Thorson, 2018). However, this
method can complicate interpretation because two sub-models are
combined (Li et al., 2011). We thus used a Tweedie distribution model
that could handle zeros and positive data (Li et al., 2011). A Tweedie
distribution can be considered a mix of a Poisson (Tweedie power
parameter p = 1) and a Gamma (Tweedie power parameter p = 2) dis-
tribution, where p will be fixed by the model between 1 and 2 (Li et al.,
2011).

GAMM equation (in R mgev format, Wood, 2020) are presented in
equation 1. We considered four temporal predictors in the GAMM. The
first was Time (days), that measure since how long a single dFADs stayed
in our dataset. The second was the Time of day (hours), as tuna exhibit a
well-known daily aggregation/dispersion behaviour (Fréon and Dagorn,
2000). The third temporal variable was Season, to capture seasonal
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migrations of tuna (Shadwick et al., 2013), where tuna might leave or
return to Palmyra. The last temporal variable was Years, to investigate
the inter-annual variability between the two sampling years (August
2021 to July 2022 and August 2022 to July 2023) and potential links of
tuna biomass to the El Nino southern oscillation (Lehodey et al., 1997).

We included three spatial predictors in the GAMM. The first was
presence in MPA, which represents the presence Inside/Outside of each
dFAD position to investigate the potential effect of the oMPA on tuna
biomass density. The second spatial predictor was the Depth Layer (m),
which represents the different depths that tuna biomass density were
recorded. To capture the potential daily migration pattern of tuna, we
included an interaction between Depth Layer and Time of day, which
could also provide some clue to species composition, as different species
prefer different depths (Lopez et al., 2017a). The last spatial predictor
included was the distance to the nearest dFAD (km), based on the hy-
pothesis that dFADs in close proximity may share tuna biomass (Stehfest
et al., 2013). However, this variable is based only on the dFADs included
in our dataset. We acknowledge that other dFADs not captured in our
data—such as those from non-U.S. fleets—may also influence tuna dis-
tribution in the vicinity, but these cannot be accounted for in this
analysis. Two other spatial predictors were considered but removed
from the final model as they were highly collinear with other predictors.
The first one was the longitude/latitude interaction, which provided
inconsistent results with other predictors in the model. The second was
bathymetry, but it was highly collinear with the MPA predictor, as the
oMPA was centred on two islands.

Environmental oceanographic variables can also affect tuna biomass
density and distribution (Lopez et al., 2017b) and are used by fishermen
to optimise fishing. We used six environmental predictors in the GAMM,
four of which represented surface conditions: Salinity (unitless), Chlo-
rophyll a (mg.m_s), Current velocity (m.s_l), and Sea surface temper-
ature (°C). Two other environmental predictors were included:
Thermocline depth (m) because the position of thermocline is important
for many tuna species (Schaefer et al., 2009; Matsumoto et al., 2016);
and Moon fraction (unitless) because as moon illumination could
potentially affect tuna foraging behavior (Scutt Phillips et al., 2019).
Environmental predictors other than Moon fraction were obtained from
the model Copernicus (European Union-Copernicus Marine Service,
2016), and had a grid resolution of 0.083°. Moon fraction was calculated
using the R package “suncalc”.

An alternative approach using the maximum biomass per dFAD per
day as the response variable in a GAMM was also tested. This simplified
model yielded results that were qualitatively similar to those from the
full depth-resolved analysis. However, model performance was reduced,
with a notably lower proportion of deviance explained. This decline
likely reflected the loss of temporal and vertical resolution, which are
important given diel vertical migration patterns and species-specific
depth preferences. As a result, we retained the depth-integrated
biomass estimates, which provided greater explanatory power and
ecological relevance for our study objectives.

3. Results

From August 2021 to July 2023, a total of 902 Satlink buoys asso-
ciated with dFADs and belonging to the collaborating fishing companies
crossed the sampling area boundaries (Fig. 1C). The inverse distance
weighted smoothing of the tuna biomass density distribution in the
PIHMNM suggested that there was no increase in tuna biomass density
in the oMPA compared with immediately adjacent waters (Fig. 2). Mean
tuna biomass density (sum over all the depth layers) varied little across
the region (+/- 0.4 t), but was highest in the south and lowest in the
north, with little observable impact of Palmyra Atoll or the oMPA.
However, these data were collected across different temporal (e.g.,
years, seasons, time of day) and environmental conditions (sea surface
temperature and chlorophyll), and from different dFADs that may have
been assembled differently, all of which could influence the results.
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After adjusting for temporal and environmental covariates, as well as
accounting for the random effect of individual dFADs in the GAMM, we
found a statistically significant difference in predicted tuna biomass
density inside versus outside the oMPA (p = 0.0043). However, the di-
rection of the effect was opposite to expectations: mean tuna biomass
density inside the oMPA was slightly lower (0.100 + 0.013 t) than
outside (0.102 £ 0.013 t) (Fig. 3a). While statistically significant, the
effect size is minimal and unlikely to be ecologically meaningful. This
result reinforces the interpretation that there is no observable increase in
tuna biomass density within the oMPA.

The most significant predictor of tuna biomass density in the GAMM
was the interaction between the Depth layer and Time of day. We found
tuna biomass density around dFADs to be significantly driven by the
day/night cycle (Fig. 3d), with tuna biomass density associated with
dFADs peaking at sunrise (5 am), declining during the day, and lowest
just before nightfall (~4 pm). The greatest amplitude in the daily cycle
was deeper in the water column, and there was a strong decrease in the
amplitude shallower, with the surface layer exhibiting little change.
There was also a slight shift in timing of the biomass density peak with
depth: deeper layers peak around 5 am, whereas mid layers (from
36.6 m to 81.4 m) peaked between 3 am and 5 am.

Other temporal predictors in the GAMM were less important. Tuna
biomass density over Time (Fig. 3e) was marked by a peak in the first
few days each dFAD entered the study region, followed by a decrease
over time. Tuna biomass density varied significantly seasonally (Fig. 3c),
with a peak during summer (July-September) and a low during winter
(January-March), with spring and autumn having intermediate biomass
density. There is also a significant difference in tuna biomass density
between the two years of sampling (Fig. 3b), with greater biomass in
2021-2022 than in 2022-2023.

There were several important environmental predictors in the
GAMM. Tuna biomass density was significantly related with Current
velocity (Fig. 3h), with higher biomass density with faster currents
> 0.5ms ! Tuna biomass density was also related to Thermocline
depth (Fig. 31), with a deeper thermocline associated with higher tuna
biomass density. Tuna biomass density was significantly, positively and
near-linearly related to Chlorophyll (Fig. 3j), Moon illumination (Fig. 3f)
and Salinity (Fig. 3i), but there was little effect of Sea surface temper-
ature. Finally, there was a proximity effect among dFADs, with lower
tuna biomass density when Distance to nearest dFADs was < 50 km
apart (Fig. 3g).

4. Discussion

To test whether the dFAD acoustic data of tuna biomass density could
be used to assess the potential efficacy of oMPAs, we developed a GAMM
to estimate biomass density in the PIHMNM marine reserve and the
surrounding waters within the United States exclusive economic zone.
While we found no observable effect of the oMPA on tuna biomass
density, the interpretability of many of the covariates in the GAMM
suggests that the bioacoustic data from the dFADs reflect real trends in
tuna biomass density and therefore was sufficiently robust to observe
changes in tuna biomass density inside and outside the oMPA. This study
is the first to investigate the biomass density of tuna inside and outside
an oMPA using bioacoustic data from dFADs, and will hopefully lead to
similar studies of other oMPAs in the future.

4.1. No detectable effect of the MPA on tuna biomass

There have been contradictory results from studies investigating the
effect of oMPAs on tuna biomass density, with some studies reporting
tuna spillover (Boerder et al., 2017; Medoff et al., 2022) and others not
(Chan, 2020; Gilman et al., 2020; Hampton et al., 2023; Hilborn et al.,
2025), although all these studies used fisheries catch data. Tuna are
highly mobile and migratory, and previous work has called into question
the utility of oMPAs given the relatively small size of oMPAs (e.g.,

Fisheries Research 289 (2025) 107474

~230 km side squares for the PIHMNM that surround Palmyra)
compared to the potential daily range of tuna species associated with
dFADs (skpijack Katsuwonus pelamis: ~80 km.d™}; yellowfin Thunnus
albacares: ~110-135 km.d~!, bigeye tuna Thunnus obesus: ~110 km.
d!; based on their mean swimming speed and directed movement,
Shadwick et al., 2013). Others have questioned the utility of MPAs in
general due to the displacement (not reduction) of fishing effort
(Hilborn, 2018). Lack of evidence of differences in biomass inside and
outside of oMPAs could also be a consequence of low fishing effort in the
vicinity of many oMPAs before and after their closing (White et al.,
2020).

Given the relatively low levels of fishing effort in the US EEZ around
PIHMNM (see Supplementary Material S2 and S3), we might not expect
to see significant differences in biomass inside and outside of PIHMNM.
This was borne out through our analysis, which shows no evidence of
tuna spillover from Palmyra and Kingman PIHMNM in the immediate
vicinity of the oMPA, consistent with study of the same ecosystem based
on Catch Per Unit Effort (CPUE) data (Gilman et al., 2020) and satellite
positions of fishing vessels (White et al., 2020). Although we might
expect a greater potential effect of an oMPA in heavily fished areas
(Quinn and Deriso, 1999), low levels of fishing effort are common in
many oceanic areas (White et al., 2020), so the results here might not be
atypical of the case for other oMPAs. Increasing target tuna populations
is usually not a direct objective of the marine reserve, nor is the marine
reserve placed to provide protection to a critical life history stage of tuna
(e.g., a spawning aggregation), both of which might influence the
biomass seen inside vs outside the protected area. However, as was seen
with the levels of fishing effort, this is not abnormal: most oMPAs are not
directly designated or sited with the purpose of conserving pelagic
populations (Blanluet et al., 2023).

The present study also showed that tuna biomass density around
dFADs decreased slowly over time (based on the Time predictor,
Fig. 3e). If there was more tuna inside than outside the oMPA, we might
expect dFADs to aggregate more tuna as they crossed the MPA boundary
and an increase in tuna biomass density over time whilst in the MPA.
Thus, our results suggest that there was no increase in tuna biomass
density after dFADs entered the MPA. Further, the overall decrease of
biomass density with time suggests that dFADs did not “drain” tuna from
the MPA. However, clear interpretation of the Time predictor is chal-
lenging because we did not know the last time each dFAD was fished and
the residence time of tuna. This information was not readily available in
the current study but could be key in future studies.

4.2. The robustness of using dFADs for understanding drivers of tuna
biomass

There is compelling evidence that the bioacoustic data in the current
study was sufficiently informative to understand drivers of tuna biomass
density, and thus detect changes in tuna biomass density inside the
oMPA. This is because many of the observed relationships were
consistent with known tuna ecology. For example, tuna biomass density
associated with dFADs peaked at sunrise (5 am, Fig. 3d), consistent with
other work that shows tuna at that time form coherent schools in close
proximity to dFADs (Schaefer and Fuller, 2013). During most daylight
hours, we found that tuna stay in deeper layers around the dFAD and
above the thermocline, as found by Matsumoto et al. (2016). During the
early evening, we noted that tuna biomass density around the dFADs
declined, likely because tuna disperse from the vicinity of dFADs for
opportunistic foraging on the migrating deep scattering layer (Schaefer
et al., 2009).

We also found that tuna biomass density was concentrated in deeper
layers, suggesting that populations in the area comprise larger tuna
species and individuals (Lopez et al., 2017b). Generally, larger tuna
species such as yellowfin and bigeye tuna gather in deeper layers around
dFADs, whereas smaller tuna species, such as skipjack, aggregate in
shallow layers (Shadwick et al., 2013; Lopez et al., 2016). However, this
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separation of species/size by depth is less clear in the Central Pacific
Ocean (Matsumoto et al., 2016).

Furthermore, a greatest tuna biomass density was observed in sum-
mer and autumn, which is consistent with the known longitudinal sea-
sonal migration of skipjack tunas whereby the centre of skipjack biomass
in the central Pacific Ocean is generally located further east in winter
(~140°E) and further west in summer (Lehodey et al., 1997) closer to
our sampling area (~160°W). This seasonal skipjack migration is
strongly influenced by the El Nino-Southern Oscillation (ENSO), with
stocks typically shifting eastward during El Nino and westward during

La Nina events (Lehodey et al., 1997). Thus, skipjack abundance near
Palmyra would be expected to decrease during La Nina conditions.
However, our highest tuna biomass estimates occurred in 2021-2022,
during a strong La Nina” (McGowan and Theobald, 2023), which sug-
gests that local biomass dynamics may not have followed large-scale
regional patterns. Given the relatively small size of our study area in
the context of skipjack distribution, such deviations from expected
ENSO-driven trends highlight the importance of considering local vari-
ability alongside basin-scale processes.

Most environmental predictors in the GAMM were relatively weak

2 https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensost

uff/ONI_v5.php
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but several were interpretable. We found increased tuna biomass density
around dFADs at full moon (higher light levels) and lower biomass
density at new moon (Fig. 3f). This is consistent with data on bigeye
tuna, which have stronger hunting behaviour at new than full moon
(Scutt Phillips et al., 2019), presumably foraging in low light and
aggregating around dFADs in better light conditions. Higher tuna
biomass density appeared to coincide with higher chlorophyll levels
(Fig. 3j), which could be an index of greater prey availability (Mugo
et al., 2010). Our finding that tuna biomass increased with distance to
the nearest dFAD up to ~50 km (Fig. 3g) supports the ‘tuna school
fragmentation hypothesis’ (Sempo et al., 2013), which posits that high
densities of dFADs can divide aggregations into smaller groups. This
pattern suggests that tuna may distribute their biomass among multiple
nearby dFADs when they are closely spaced (Stehfest et al., 2013; Scutt
Phillips et al., 2019). Beyond ~50 km, this effect appears to plateau,
indicating that tuna are less likely to move between widely spaced
dFADs. This has important implications given the high density of dFAD
deployments in parts of the western and central Pacific Ocean (Escalle
et al., 2021a). Such spatial concentration may alter tuna aggregation
behavior, potentially reducing catchability at individual dFADs and
influencing estimates of local biomass. Our results highlight the need to
consider dFAD spacing in both fishery management and ecological
studies of tuna dynamics based on dFADs.

4.3. Caveats

Our approach differs from much of the existing literature on dFAD-
derived biomass estimation (e.g. Santiago et al., 2019; Baidai et al.,
2020; Escalle et al., 2021b; Precioso et al., 2022) in that we did not have
access to full life-history metadata for individual dFADs (e.g. time since
deployment, fishing set events) or species-validated catch data from
logbooks. These limitations preclude precise biomass estimation or
species-specific analyses. However, our objective was not to estimate
absolute tuna abundance, but rather to assess relative variation in
biomass density across space, particularly in relation to oMPA bound-
aries. This allows us to avoid the more complex data filtering and
transformation often required to isolate unfished or early-stage dFADs
(e.g. Santiago et al., 2019; Uranga et al., 2024). While we interpret
variation in patterns in biomass, we caution that absolute biomass
values derived from buoy data should be treated with care, given the
known biases and uncertainties associated with echo-sounder readings.

As with all studies relying on acoustic data from dFADs (Orue et al.,
2019b; Escalle et al., 2021b; Precioso et al., 2022), biomass density es-
timates must be interpreted with caution. The low-cost echosounders
mounted on buoys are not designed for precise biomass estimation: they
operate at lower spatial and temporal resolution compared to scientific
echosounders, and their data are further compressed for satellite
transmission, amplifying potential noise and error (Diallo et al., 2019).
In addition, the echo-integration algorithm used by Satlink software is
configured to estimate aggregations of skipjack tuna, using a reference
target strength based on 5 kg individuals of this species, which lacks a
swimbladder. This can lead to bias in biomass estimates when other
species such as yellowfin or bigeye tuna—both of which have swim-
bladders—are present, particularly at greater depths.

It is also important to note that these buoys do not report biomass
values below 1 tonne per layer, which may lead to underestimation of
biomass when smaller aggregations are present (Navarro-Garcia et al.,
2021). Conversely, biomass can be overestimated when non-tuna spe-
cies are detected or when tuna are not tightly aggregated (Wang et al.,
2012). Moreover, buoy-derived estimates are highly variable on short
time scales (day-to-day), reflecting not only true movement dynamics of
fish under dFADs but also methodological limitations (Lopez et al.,
2017b; Diallo et al., 2019). While we retained all vertical layers in our
analysis to preserve internal consistency and data volume, we
acknowledge that both overestimation and underestimation of biomass
are possible, and this should be considered when interpreting our
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results. Echosounder buoys only detect tuna aggregated beneath dFADs,
which represents a fraction of the total biomass in the area. The dy-
namics of tuna aggregation—including residence time, attraction
behaviour, and turnover—remain poorly understood and may vary with
oceanographic conditions, tuna behaviour, and local dFAD density
(Dagorn et al., 2013). As such, the relationship between
dFAD-associated biomass and total tuna abundance at the seascape scale
remains uncertain and may be confounded in areas with high dFAD
saturation.

We must also not that each observation by a dFAD is not truly in-
dependent of other observations from the same dFAD, as tuna are
following the platform and each dFAD is simultaneously an observing
and aggregating device. However, including the random effect for dFAD
in the GAMM and the large number of dFADs in the dataset (n = 902)
helps minimise this limitation.

4.4. dFADs as a scientific tool

The interpretability of many of the predictors in the model suggest
dFADs could be a robust tool for examining the efficacy of oMPAs for
enhancing tuna biomass. As existing methods such as using fisheries
data make it difficult to sample within oMPAs, dFADs could provide an
effective alternative (Moreno et al., 2016; Blanluet et al., 2023). Tagging
studies of tuna in oMPAs are an alternative, but they are limited by the
low number of tagged animals, the high tag cost, and the relatively short
tag lifetime (Letessier et al., 2017; Richardson et al., 2018). Although
research vessels are ideally suited to sampling inside and outside oMPAs,
collecting data over long time scales and in remote ocean locations is
expensive. dFADs, already widely present in many ocean areas, are
potentially a powerful and low-cost approach to sample tuna inside and
outside oMPAs.

The current work is the first we know of to investigate the effect of
oMPAs on tuna inside and outside an oMPA, at similar temporal and
spatial scales to CPUE studies. At a larger scale, using the dFAD network
to investigate tuna populations throughout an entire ocean could bring
unparalleled insights into tuna movement, behaviour and aggregation
dynamics (Moreno et al., 2016). However, dFADs also have negative
ecological consequences, including potentially increasing the over-
exploitation of tuna resources (Dagorn et al., 2013), damaging coral
reefs following collisions (Escalle et al., 2019), and causing marine
pollution (Churchill, 2021). However, answering scientific questions to
help better manage the ocean, using data from dFADs that are already
being deployed by the fishing industry, is unlikely to increase their
number. In fact, the current collaboration between TNC and several
purse seine fishing companies has had the positive environmental
outcome of reducing the impact of dFAD groundings on Palmyra’s
sensitive coral reef ecosystem. This is because once the dFADs drifted
into the vicinity of the atoll, they were tracked so they could be retrieved
prior to impact on the reef. For now over 50 dFADs were intercepted by
TNC staff offshore (within a 6 nautical mile recovery zone) of Palmyra
Atoll through the life of the Palmyra FAD watch Program, in order to
stop them from having adverse impacts on the sensitive coral reef
ecosystem. These efforts have strongly reduced dFAD grounding at
Palmyra

5. Conclusion

This study presents a new method to sample tuna inside and outside
oMPAs, which will hopefully be applied more frequently in the future.
We found no discernable benefit of the oMPA to tuna biomass, which
may be a consequence of the limited fishing immediately outside the
area. More studies of oMPAs using dFADs, particularly in areas that are
heavily fished, are necessary to answer the question of whether oMPAs
enhance tuna stocks. Despite the objectives of oMPAs often including
benefits to tuna fisheries (Kaplan et al., 2014), the primary objective of
oMPAs, including the PIHMNM (Office of the Press Secretary, 2014), are
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to protect pelagic and benthic biodiversity and their ecosystem services
(Blanluet et al., 2023). Palmyra Atoll has already proven to provide
conservation benefits for sharks (White et al., 2017; Gilmour et al.,
2025) and seabirds (Young et al., 2015; Gilmour et al., 2025), but po-
tential benefits for the broader pelagic ecosystem in PIHMNM are
largely unknown. Ultimately, benefits of oMPAs should be judged based
on all their objectives, not just those pertaining to tuna fisheries.

Equations

Equation 1. : We use the R package mgcv (Wood, 2020) to fit the
GAMM. The GAMM included smooth terms s(), with k the upper limit of
the degrees of freedom associated with the smooth, the basis spline bs is
the type of splines of the smooth; we use the cubic regression spline for
environmental variables, the cyclic cubic regression spline for time of
day because its periodic, and random effects as “re”.

Biomass ~ s(time_in_dataset, k = 6, bs = "cr") + s(Chl, k = 6, bs = "cr'")
+ s(sal, k = 6, bs = "cr") + s(temperature, k = 6, bs = "cr") + s(ther-
mocline_depth, k = 6,bs = "cr") + s(current_velocity, k = 6, bs = "cr")
+ s(time_day, k = 6, by = Depth_layer, bs = "cc") + s(FAD_Name, bs =
"re") + s(Moon_Illumination, k = 6, bs = "cr") + s(dis-
tance_to_nearest dFAD, k = 6, bs = "cr'") + Depth_Layer + season

+ years + presence_in MPA
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