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A B S T R A C T

To meet global conservation targets, there is a growing effort to establish oceanic (waters >200 m depth) marine 
protected areas (oMPAs). However, despite substantial evidence for benefits of coastal MPAs to fish and fisheries, 
the effectiveness of oMPAs has been challenging to assess robustly. This is mainly because targeted data 
collection is expensive, so research often relies on catch data restricted to areas outside oMPA boundaries. Here 
we explore the use of drifting fish aggregating devices (dFADs) as a novel method to assess the effectiveness of 
oMPAs. We used acoustic data from 902 dFADs deployed by the fishing industry that drifted across the US Pacific 
Islands Heritage Marine National Monument around Palmyra Atoll – providing data both inside and outside the 
oMPA – to study spatial variation in tuna biomass density. Using a generalised additive mixed model with a suite 
of environmental covariates, we found the relationship between tuna biomass density and many environmental 
covariates made intuitive ecological sense with respect to known tuna behaviour, providing confidence in the 
model. We found no measurable increase in tuna biomass density inside the oMPA. This finding could have been 
influenced by the low fishing pressure around this particular oMPA, and regions with greater contrast in fishing 
pressure might show different results. This research highlights the utility of dFADs as a cost-effective tool for 
future studies to assess tuna biomass, especially in regions difficult or costly to sample as oMPAs.

1. Introduction

Marine protected areas (MPAs) are a powerful conservation tool for 
biodiversity (Lubchenco and Grorud-Colvert, 2015). Increasingly, 
oceanic MPAs (oMPAs), those protected areas beyond the 200-m depth 
contour of the continental shelf (Blanluet et al., 2023), are being 
declared to meet objectives of international conservation agreements, 
including the Kunming-Montreal Global Biodiversity Framework target 
3, to protect 30 % of marine areas (https://www.cbd.int/gbf/). To 
ensure adequate representation of Earth’s ecosystems in protected areas, 
more oceanic habitats will need to be protected (Blanluet et al., 2023). 
As most oceanic habitats are in the high seas, there is now further 

opportunity for conservation of these areas with the recent agreement of 
the UN High Seas Treaty (https://www.un.org/bbnj), which lays the 
groundwork for a global mechanism to establish MPAs in waters beyond 
national jurisdiction.

Although oceanic marine protected areas (oMPAs) have broad ob
jectives, including pelagic and benthic biodiversity conservation and 
potential fisheries benefits, most scientific studies emphasise fisheries 
benefits (Blanluet et al., 2023; Gilman et al., 2019). While the conser
vation benefits of coastal MPAs for exploited populations are clear (Gell 
and Roberts, 2003; Di Lorenzo et al., 2020; Grorud-Colvert et al., 2021), 
the evidence for benefits of oMPAs is equivocal (Blanluet et al., 2023). 
The high mobility of pelagic fauna may pose a challenge for area-based 
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management (Breen et al., 2015). Further, fisheries data (i.e., catch per 
unit effort), the main information currently used to sample tuna pop
ulations in oceanic environments (Letessier et al., 2017), are limited to 
fished areas. Thus, following the closure of an oMPA, these studies are 
limited to sample in the vicinity of the MPA and cannot document the 
variation of tuna population inside the MPA (Blanluet et al., 2023; White 
et al., 2020), and direct evaluations of the benefits of oMPAs have been 
difficult because of the high-cost of fisheries-independent sampling.

To assess the potential conservation benefits of oMPAs, most studies 
have investigate tuna because they are the main exploited species in 
oceanic environments (Ortuño Crespo and Dunn, 2017). Tuna fisheries 
mainly use longlines and purse seines. Over the past 20 years, purse 
seine fleets have largely moved from free-school searching, using sonars 
and natural markers such as birds or dolphins to find tuna aggregations, 
to deploying drifting fish aggregating devices (dFADs) to attract and 
retain tuna (Fonteneau et al., 2013). A dFAD (Fig. 1B) generally 
comprise a simple raft equipped with a GPS and a basic echosounder 
device, and a long tail of net or rope to attract tuna and slow the drift. 
dFADs are now ubiquitous in the tropical and equatorial zone of the 
Atlantic, Pacific and Indian Oceans. In the Western Pacific alone, be
tween 40,000 and 60,000 dFADs are deployed each year (Lopez et al., 
2020; Escalle et al., 2021a).

Although tuna fishing fleets have substantially benefited from this 
technological leap (Ehrhardt et al., 2017), conservation and fisheries 
science could also potentially benefit from this network of drifting 
platforms (Moreno et al., 2016). For example, dFADs can be used to 
study tuna aggregation behaviour (Orue et al., 2019b) or build 
fisheries-independent indicators for stock assessment (Baidai et al., 
2020; Escalle et al., 2021b; Uranga et al., 2024). Notably, dFADs cross 
exclusive economic zones (EEZ) and MPA boundaries alike, making 
them a promising tool to sample tuna both inside and outside oMPAs. 
The lack of data within oMPAs because of the reliance on fisheries catch 
data has been a blind spot in assessing their ecological benefits (White 
et al., 2020).

Here, we assessed the potential of using dFADs as a sampling plat
form to investigate tuna biomass density differences inside and outside 
of an oMPA. We used data from dFADs collected in the vicinity of the 
protected island of Palmyra Atoll (part of the US “Pacific Islands Heri
tage Marine National Monument”,PIHMNM; Fig. 1A, C). We used data 
from 902 satellite and echosounder buoys attached to dFADsto explore 
whether tuna biomass density inside the unfished oMPA was higher than 
in waters surrounding the MPA which were open to tuna fishing. Data 
were obtained through the Palmyra “FAD Watch Program”, an agree
ment between The Nature Conservancy (TNC) and several purse seine 
fishing companies to mitigate dFAD groundings on Palmyra’s sensitive 
coral reef ecosystem.

2. Material and methods

The Pacific Remote Islands Marine National Monument (PRIMNM), 
now the Pacific Islands Habitat and Marine National Monument 
(PIHMNM), was established around several United States Pacific Island 
territories, including Palmyra Atoll, in 2009 (Fig. 1A). Following its 
extension in 2014, it became the third-largest MPA globally in terms of 
surface area.1 The PIHMNM’s primary objectives include protecting 
habitats, ecosystems, and biodiversity, reducing human impacts, and 
supporting exploited fish populations (Office of the Press Secretary, 
2014; Blanluet et al., 2023)

The protected area around Palmyra Atoll, part of a broader 
53,503 km² MPA that includes Kingman Reef, was not a major focus for 
tuna fisheries before or after the establishment of the closed area in 
2009. Effort levels in its vicinity are low within the US Exclusive Eco
nomic Zone (EEZ), with moderate fishing activity in other nearby zones 

(Figures S1 and S2, Western and Central Pacific Fisheries Commission 
(WCPFC) public data). As such, the fisheries context around Palmyra 
reflects the typical characteristics of many offshore MPAs in the Pacific, 
including its remoteness (e.g., 5300 km from New Zealand and 1700 km 
from Hawaii), limited fishing history (Blanluet et al., 2023; Hilborn 
et al., 2025), and large size, which encompasses a range of habitats from 
nearshore island environments to depths > 4000 m.

Palmyra Atoll within the PIHMNM was selected for this case study 
due to the availability of high-resolution dFAD trajectory data associ
ated with the TNC FAD Watch program. Comparable data were not 
available for other offshore MPAs at the time of the study. While the 
PRIMNM is indeed relatively small in spatial extent (53,503 km2) 
compared to the broader migratory range of skipjack tuna, it is repre
sentative of many recently implemented offshore MPAs in the Pacific 
that have been placed in low fishing effort zones (Blanluet et al., 2023), 
often to minimise conflict with industrial fisheries. Our primary goal 
was to demonstrate the utility of a new spatial approach for assessing the 
efficacy of oMPAs. We acknowledge that future application of this 
method to larger oMPAs with greater baseline fishing pressure would 
provide a more robust test, pending availability of suitable dFAD data.

2.1. Data collection and processing

The dFAD manufacturer Satlink provided the dFAD data in the US 
EEZ around Palmyra Atoll (a box with ~350 kmsides), which included 
the PIHMNM protected area and the close vicinity (Fig. 1C). The Kiribati 
EEZ in the southeast was not sampled. The dataset only includes infor
mation from companies that were collaborating on the project, although 
these companies are likely to own the majority of dFADs in the area, as 
the primary fishing zones of other companies are farther afield.

Satlink dFADs provide data on date, position and fish biomass den
sity. Date and position data were initially every 24 h from July to 
December 2021, then upgraded from January 2022 to every 4 h, to 
facilitate recovery operations. Biomass data were obtained every 2 h 
through the dFAD-mounted SIMRAD echosounders acquisitions. As 
dFAD biomass and position data were not synchronised, we estimated 
the position of each biomass measurement at the time the biomass was 
recorded using a linear interpolation between the previous and the next 
position. Acquisitions of biomass data comprised an ensemble of 32 
pings echo-integrated by layer over 5-min periods (Lopez et al., 2016). 
The “backscattering volume strength” (Sv) obtained was stored and 
converted to an estimation of biomass internally using the “target 
strength” of a horizontally oriented 5-kg skipjack tuna (Satlink, personal 
communication). The highest biomass value over the 2 h period is then 
sent to the satellite and added to the dataset.

The echosounder range is from 3 to 115 m, with a 32◦ beamwidth, 
separated in 10 layers of 11.2 m, each with an independent biomass 
density value. To remove plankton and small fish from the acquisition, 
only Sv values over − 45 kHz are considered in the echo-integration. 
Biomass density values < 1 t by layer are neglected, and the 
echosounder saturates for biomass density value > 63 t by layer. Each 
dFAD is calibrated by the manufacturer in a tank before delivery. Two 
Satlink buoy types are included in the dataset: the ISL+ characterised by 
a SIMRAD ES12 transducer and emitting a pulse at 190.5 kHz and 
120 W; and the SLX+ (the large majority of the buoys), characterised by 
a SIMRAD ES16 transducer, emitting a modulated pulse at 200 kHz and 
200 W.

Data were collected from 1st August 2021–30 April 2023. During this 
time, dFADs with at least one position acquired in the sampled area were 
detected, with some dFADs crossing the area several times over the 
period. The longest, uninterrupted track in our data set is 65 days, 
although dFADs averaged 5 days in the sampling area. Following the 
recommendation of Orue et al. (2019a), we removed every dFAD with a 
speed > 3 knots, considering that these are likely to be onboard a vessel. 
We have no previous information on the fishing history and soak time of 
dFADs before they entered our area. Further, we have no information on 1 https://mpatlas.org/large-mpas/, from Marine Conservation Institute
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potential fishing events in our dataset. We considered every dFAD that 
left the oMPA for > 3 days as a new dFAD in our analysis, to take ac
count that it could have been fished whilst outside the area. We also 
assumed that the fish biomass density measured by the dFADs is pre
dominantly composed of tuna because the dFADs algorithm uses the 
backscattering of skipjack tuna as a reference Target Strength (Lopez 
et al., 2016) to transform acoustic data to biomass, and there is strong 
evidence that most of the biomass recorded around dFADs is from tuna 
(Lopez et al., 2017a; Orue et al., 2019b), at least for the deeper layers 
(>20 m, Lopez et al., 2016). Data too close to the Islands (<10 km from 
their centres) were removed due to the risk of misinterpreting the sea 
floor as tuna biomass.

For the purposes of this study, we assumed that all satellite buoys in 
the dataset were attached to dFAD structures. While data from the FAD 
Watch Program indicate that a small proportion (<5 %) of buoys are 
recovered without associated raft or netting material—likely due to 
degradation or detachment over time—these cases are rare. It is possible 
that buoys drifting without a submerged structure exhibit different 
movement patterns; however, without consistent metadata confirming 
attachment status, we were unable to systematically differentiate be
tween buoy-only and dFAD-attached trajectories in our dataset. This 
remains a potential source of uncertainty, though we consider it unlikely 
to substantially affect our results given the low frequency of such events.

Acoustic biomass estimates from echo-sounder buoys are widely 
used by fishers as indicators of tuna presence, but they are imperfect 
proxies for actual tuna biomass, particularly at the scale of individual 
buoys (Baidai et al., 2020; Escalle et al., 2021b). These estimates can be 
influenced by species composition, depth distribution, and behavioural 
patterns that affect detectability. However, when analysed aggregate 
across large datasets, these data can provide useful insights into spatial 
and temporal patterns in tuna association with dFADs (Baidai et al., 
2020; Escalle et al., 2021b; Uranga et al., 2024). In this study, we first 
used high-resolution (2-hourly) data from our large number of buoys to 
analyse tuna spatial biomass patterns. In a second time, we fitted a 
statistical model to examine the influence of spatial, temporal, and 
environmental predictors—including oMPA presence—on tuna 
biomass.

We used an Inverse Distance Weighted interpolation (IDW, via the 
‘gstat’ package in R; Pebesma, 2004) for generating a map of tuna 
biomass spatial distributions, aggregated over depth layers. Four 
different settings of the smoothing parameter - the inverse distance 
weighting power (idp) - were tested in the IDW function in the R package 
gstat inverse-distance-weighted map of tuna biomass: 0.25, 0.5, 0.75, 
and 1. We show the map of tuna biomass density based on the IDW 
smooth as the deviation from the mean across all depth layers (~3.37 t) 
for a idp of 0.75 in Fig. 2, when maps for other values of idp are 

Fig. 1. Study context. (A) Map of the “Pacific Islands Habitat and Marine National Monument” (PIHMNM) in the Pacific Ocean, with an inset of the US exclusive 
economic zone around Palmyra Atoll. (B) A schematic of a drifting fish aggregating device (dFAD). (C) The 902 dFAD trajectories in the current study – the colours 
are used to help distinguish individual dFAD tracks.
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presented in figure 5 of SI. IDW maps for each year and season are also 
presented in figure 6 of SI.

2.2. Generalised additive mixed model

Tuna biomass density associated with dFADs is influenced by many 
temporal and spatial environmental variables (Baidai et al., 2020; 
Capello et al., 2016; Lopez et al., 2017b; Orue et al., 2020). We use a 
Generalised Additive Mixed Model (GAMM, Wood, 2020) to disentangle 
the spatial effect of the oMPA from other predictors affecting the tuna 
biomass density (using the mgcv R package, Wood, 2020). GAMMs are 
able to handle many non-linear predictors, are relatively robust to 
collinearity between predictors, and can include cyclic effects such as 
day-night cycles (Wood, 2020).

We used a GAMM to isolate the potential effect of the oMPA on tuna 
biomass density whilst adjusting for the effect of a suite of temporal and 
environmental variables on tuna biomass density. The response variable 
was the maximum tuna biomass (tonnes) per 2 h time period for each 
depth layer, corresponding to n = 199 394 single data points. The 
GAMM included the dFAD identification number as a random effect to 
capture individual differences in each dFAD in terms of their physical 
and acoustic configuration and calibration, deployment history, and the 
multiple data generated from each dFAD.

Fish catch data are commonly zero inflated (i.e., the data contain an 
excess of zeros) (Arcuti et al., 2013; Thorson, 2018) and it was same for 
our fish biomass density data from dFADs. To account for zero inflation, 
it is typical to use a hurdle model (Thorson, 2018). However, this 
method can complicate interpretation because two sub-models are 
combined (Li et al., 2011). We thus used a Tweedie distribution model 
that could handle zeros and positive data (Li et al., 2011). A Tweedie 
distribution can be considered a mix of a Poisson (Tweedie power 
parameter p = 1) and a Gamma (Tweedie power parameter p = 2) dis
tribution, where p will be fixed by the model between 1 and 2 (Li et al., 
2011).

GAMM equation (in R mgcv format, Wood, 2020) are presented in 
equation 1. We considered four temporal predictors in the GAMM. The 
first was Time (days), that measure since how long a single dFADs stayed 
in our dataset. The second was the Time of day (hours), as tuna exhibit a 
well-known daily aggregation/dispersion behaviour (Fréon and Dagorn, 
2000). The third temporal variable was Season, to capture seasonal 

migrations of tuna (Shadwick et al., 2013), where tuna might leave or 
return to Palmyra. The last temporal variable was Years, to investigate 
the inter-annual variability between the two sampling years (August 
2021 to July 2022 and August 2022 to July 2023) and potential links of 
tuna biomass to the El Niño southern oscillation (Lehodey et al., 1997).

We included three spatial predictors in the GAMM. The first was 
presence in MPA, which represents the presence Inside/Outside of each 
dFAD position to investigate the potential effect of the oMPA on tuna 
biomass density. The second spatial predictor was the Depth Layer (m), 
which represents the different depths that tuna biomass density were 
recorded. To capture the potential daily migration pattern of tuna, we 
included an interaction between Depth Layer and Time of day, which 
could also provide some clue to species composition, as different species 
prefer different depths (Lopez et al., 2017a). The last spatial predictor 
included was the distance to the nearest dFAD (km), based on the hy
pothesis that dFADs in close proximity may share tuna biomass (Stehfest 
et al., 2013). However, this variable is based only on the dFADs included 
in our dataset. We acknowledge that other dFADs not captured in our 
data—such as those from non-U.S. fleets—may also influence tuna dis
tribution in the vicinity, but these cannot be accounted for in this 
analysis. Two other spatial predictors were considered but removed 
from the final model as they were highly collinear with other predictors. 
The first one was the longitude/latitude interaction, which provided 
inconsistent results with other predictors in the model. The second was 
bathymetry, but it was highly collinear with the MPA predictor, as the 
oMPA was centred on two islands.

Environmental oceanographic variables can also affect tuna biomass 
density and distribution (Lopez et al., 2017b) and are used by fishermen 
to optimise fishing. We used six environmental predictors in the GAMM, 
four of which represented surface conditions: Salinity (unitless), Chlo
rophyll a (mg.m− 3), Current velocity (m.s− 1), and Sea surface temper
ature (◦C). Two other environmental predictors were included: 
Thermocline depth (m) because the position of thermocline is important 
for many tuna species (Schaefer et al., 2009; Matsumoto et al., 2016); 
and Moon fraction (unitless) because as moon illumination could 
potentially affect tuna foraging behavior (Scutt Phillips et al., 2019). 
Environmental predictors other than Moon fraction were obtained from 
the model Copernicus (European Union-Copernicus Marine Service, 
2016), and had a grid resolution of 0.083◦. Moon fraction was calculated 
using the R package “suncalc”.

An alternative approach using the maximum biomass per dFAD per 
day as the response variable in a GAMM was also tested. This simplified 
model yielded results that were qualitatively similar to those from the 
full depth-resolved analysis. However, model performance was reduced, 
with a notably lower proportion of deviance explained. This decline 
likely reflected the loss of temporal and vertical resolution, which are 
important given diel vertical migration patterns and species-specific 
depth preferences. As a result, we retained the depth-integrated 
biomass estimates, which provided greater explanatory power and 
ecological relevance for our study objectives.

3. Results

From August 2021 to July 2023, a total of 902 Satlink buoys asso
ciated with dFADs and belonging to the collaborating fishing companies 
crossed the sampling area boundaries (Fig. 1C). The inverse distance 
weighted smoothing of the tuna biomass density distribution in the 
PIHMNM suggested that there was no increase in tuna biomass density 
in the oMPA compared with immediately adjacent waters (Fig. 2). Mean 
tuna biomass density (sum over all the depth layers) varied little across 
the region (+/- 0.4 t), but was highest in the south and lowest in the 
north, with little observable impact of Palmyra Atoll or the oMPA. 
However, these data were collected across different temporal (e.g., 
years, seasons, time of day) and environmental conditions (sea surface 
temperature and chlorophyll), and from different dFADs that may have 
been assembled differently, all of which could influence the results.

Fig. 2. Map of the anomaly in mean tuna biomass (t) in the region. This is 
based on an inverse distance weighted smoothing (IDW) of the biomass data 
collected by all the dFADs in the study summed over all depth layers for each 2- 
hourly interval, after subtracting the mean of 3.37 t. The Pacific Remote Island 
Marine National Monument (in red) and the position of Kingman Reef and 
Palmyra Atoll and the National Wildlife Refuge boundaries (in green) 
are shown.
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After adjusting for temporal and environmental covariates, as well as 
accounting for the random effect of individual dFADs in the GAMM, we 
found a statistically significant difference in predicted tuna biomass 
density inside versus outside the oMPA (p = 0.0043). However, the di
rection of the effect was opposite to expectations: mean tuna biomass 
density inside the oMPA was slightly lower (0.100 ± 0.013 t) than 
outside (0.102 ± 0.013 t) (Fig. 3a). While statistically significant, the 
effect size is minimal and unlikely to be ecologically meaningful. This 
result reinforces the interpretation that there is no observable increase in 
tuna biomass density within the oMPA.

The most significant predictor of tuna biomass density in the GAMM 
was the interaction between the Depth layer and Time of day. We found 
tuna biomass density around dFADs to be significantly driven by the 
day/night cycle (Fig. 3d), with tuna biomass density associated with 
dFADs peaking at sunrise (5 am), declining during the day, and lowest 
just before nightfall (~4 pm). The greatest amplitude in the daily cycle 
was deeper in the water column, and there was a strong decrease in the 
amplitude shallower, with the surface layer exhibiting little change. 
There was also a slight shift in timing of the biomass density peak with 
depth: deeper layers peak around 5 am, whereas mid layers (from 
36.6 m to 81.4 m) peaked between 3 am and 5 am.

Other temporal predictors in the GAMM were less important. Tuna 
biomass density over Time (Fig. 3e) was marked by a peak in the first 
few days each dFAD entered the study region, followed by a decrease 
over time. Tuna biomass density varied significantly seasonally (Fig. 3c), 
with a peak during summer (July-September) and a low during winter 
(January-March), with spring and autumn having intermediate biomass 
density. There is also a significant difference in tuna biomass density 
between the two years of sampling (Fig. 3b), with greater biomass in 
2021–2022 than in 2022–2023.

There were several important environmental predictors in the 
GAMM. Tuna biomass density was significantly related with Current 
velocity (Fig. 3h), with higher biomass density with faster currents 
> 0.5 m s− 1. Tuna biomass density was also related to Thermocline 
depth (Fig. 3l), with a deeper thermocline associated with higher tuna 
biomass density. Tuna biomass density was significantly, positively and 
near-linearly related to Chlorophyll (Fig. 3j), Moon illumination (Fig. 3f) 
and Salinity (Fig. 3i), but there was little effect of Sea surface temper
ature. Finally, there was a proximity effect among dFADs, with lower 
tuna biomass density when Distance to nearest dFADs was < 50 km 
apart (Fig. 3g).

4. Discussion

To test whether the dFAD acoustic data of tuna biomass density could 
be used to assess the potential efficacy of oMPAs, we developed a GAMM 
to estimate biomass density in the PIHMNM marine reserve and the 
surrounding waters within the United States exclusive economic zone. 
While we found no observable effect of the oMPA on tuna biomass 
density, the interpretability of many of the covariates in the GAMM 
suggests that the bioacoustic data from the dFADs reflect real trends in 
tuna biomass density and therefore was sufficiently robust to observe 
changes in tuna biomass density inside and outside the oMPA. This study 
is the first to investigate the biomass density of tuna inside and outside 
an oMPA using bioacoustic data from dFADs, and will hopefully lead to 
similar studies of other oMPAs in the future.

4.1. No detectable effect of the MPA on tuna biomass

There have been contradictory results from studies investigating the 
effect of oMPAs on tuna biomass density, with some studies reporting 
tuna spillover (Boerder et al., 2017; Medoff et al., 2022) and others not 
(Chan, 2020; Gilman et al., 2020; Hampton et al., 2023; Hilborn et al., 
2025), although all these studies used fisheries catch data. Tuna are 
highly mobile and migratory, and previous work has called into question 
the utility of oMPAs given the relatively small size of oMPAs (e.g., 

~230 km side squares for the PIHMNM that surround Palmyra) 
compared to the potential daily range of tuna species associated with 
dFADs (skpijack Katsuwonus pelamis: ~80 km.d− 1; yellowfin Thunnus 
albacares: ~110–135 km.d− 1, bigeye tuna Thunnus obesus: ~110 km. 
d− 1; based on their mean swimming speed and directed movement, 
Shadwick et al., 2013). Others have questioned the utility of MPAs in 
general due to the displacement (not reduction) of fishing effort 
(Hilborn, 2018). Lack of evidence of differences in biomass inside and 
outside of oMPAs could also be a consequence of low fishing effort in the 
vicinity of many oMPAs before and after their closing (White et al., 
2020).

Given the relatively low levels of fishing effort in the US EEZ around 
PIHMNM (see Supplementary Material S2 and S3), we might not expect 
to see significant differences in biomass inside and outside of PIHMNM. 
This was borne out through our analysis, which shows no evidence of 
tuna spillover from Palmyra and Kingman PIHMNM in the immediate 
vicinity of the oMPA, consistent with study of the same ecosystem based 
on Catch Per Unit Effort (CPUE) data (Gilman et al., 2020) and satellite 
positions of fishing vessels (White et al., 2020). Although we might 
expect a greater potential effect of an oMPA in heavily fished areas 
(Quinn and Deriso, 1999), low levels of fishing effort are common in 
many oceanic areas (White et al., 2020), so the results here might not be 
atypical of the case for other oMPAs. Increasing target tuna populations 
is usually not a direct objective of the marine reserve, nor is the marine 
reserve placed to provide protection to a critical life history stage of tuna 
(e.g., a spawning aggregation), both of which might influence the 
biomass seen inside vs outside the protected area. However, as was seen 
with the levels of fishing effort, this is not abnormal: most oMPAs are not 
directly designated or sited with the purpose of conserving pelagic 
populations (Blanluet et al., 2023).

The present study also showed that tuna biomass density around 
dFADs decreased slowly over time (based on the Time predictor, 
Fig. 3e). If there was more tuna inside than outside the oMPA, we might 
expect dFADs to aggregate more tuna as they crossed the MPA boundary 
and an increase in tuna biomass density over time whilst in the MPA. 
Thus, our results suggest that there was no increase in tuna biomass 
density after dFADs entered the MPA. Further, the overall decrease of 
biomass density with time suggests that dFADs did not “drain” tuna from 
the MPA. However, clear interpretation of the Time predictor is chal
lenging because we did not know the last time each dFAD was fished and 
the residence time of tuna. This information was not readily available in 
the current study but could be key in future studies.

4.2. The robustness of using dFADs for understanding drivers of tuna 
biomass

There is compelling evidence that the bioacoustic data in the current 
study was sufficiently informative to understand drivers of tuna biomass 
density, and thus detect changes in tuna biomass density inside the 
oMPA. This is because many of the observed relationships were 
consistent with known tuna ecology. For example, tuna biomass density 
associated with dFADs peaked at sunrise (5 am, Fig. 3d), consistent with 
other work that shows tuna at that time form coherent schools in close 
proximity to dFADs (Schaefer and Fuller, 2013). During most daylight 
hours, we found that tuna stay in deeper layers around the dFAD and 
above the thermocline, as found by Matsumoto et al. (2016). During the 
early evening, we noted that tuna biomass density around the dFADs 
declined, likely because tuna disperse from the vicinity of dFADs for 
opportunistic foraging on the migrating deep scattering layer (Schaefer 
et al., 2009).

We also found that tuna biomass density was concentrated in deeper 
layers, suggesting that populations in the area comprise larger tuna 
species and individuals (Lopez et al., 2017b). Generally, larger tuna 
species such as yellowfin and bigeye tuna gather in deeper layers around 
dFADs, whereas smaller tuna species, such as skipjack, aggregate in 
shallow layers (Shadwick et al., 2013; Lopez et al., 2016). However, this 
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separation of species/size by depth is less clear in the Central Pacific 
Ocean (Matsumoto et al., 2016).

Furthermore, a greatest tuna biomass density was observed in sum
mer and autumn, which is consistent with the known longitudinal sea
sonal migration of skipjack tunas whereby the centre of skipjack biomass 
in the central Pacific Ocean is generally located further east in winter 
(~140◦E) and further west in summer (Lehodey et al., 1997) closer to 
our sampling area (~160◦W). This seasonal skipjack migration is 
strongly influenced by the El Niño-Southern Oscillation (ENSO), with 
stocks typically shifting eastward during El Niño and westward during 

La Niña events (Lehodey et al., 1997). Thus, skipjack abundance near 
Palmyra would be expected to decrease during La Niña conditions. 
However, our highest tuna biomass estimates occurred in 2021–2022, 
during a strong La Niña2 (McGowan and Theobald, 2023), which sug
gests that local biomass dynamics may not have followed large-scale 
regional patterns. Given the relatively small size of our study area in 
the context of skipjack distribution, such deviations from expected 
ENSO-driven trends highlight the importance of considering local vari
ability alongside basin-scale processes.

Most environmental predictors in the GAMM were relatively weak 

Fig. 3. Variation in tuna biomass (y-axis) as a function of the predictors in the Generalised Additive Mixed Model (GAMM). Confidence bands shown in grey. Tuna 
biomass is similar inside and outside the oMPA. Note that the larger the y-axis range in the GAMM, the more important the predictor.

2 https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensost 
uff/ONI_v5.php
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but several were interpretable. We found increased tuna biomass density 
around dFADs at full moon (higher light levels) and lower biomass 
density at new moon (Fig. 3f). This is consistent with data on bigeye 
tuna, which have stronger hunting behaviour at new than full moon 
(Scutt Phillips et al., 2019), presumably foraging in low light and 
aggregating around dFADs in better light conditions. Higher tuna 
biomass density appeared to coincide with higher chlorophyll levels 
(Fig. 3j), which could be an index of greater prey availability (Mugo 
et al., 2010). Our finding that tuna biomass increased with distance to 
the nearest dFAD up to ~50 km (Fig. 3g) supports the ‘tuna school 
fragmentation hypothesis’ (Sempo et al., 2013), which posits that high 
densities of dFADs can divide aggregations into smaller groups. This 
pattern suggests that tuna may distribute their biomass among multiple 
nearby dFADs when they are closely spaced (Stehfest et al., 2013; Scutt 
Phillips et al., 2019). Beyond ~50 km, this effect appears to plateau, 
indicating that tuna are less likely to move between widely spaced 
dFADs. This has important implications given the high density of dFAD 
deployments in parts of the western and central Pacific Ocean (Escalle 
et al., 2021a). Such spatial concentration may alter tuna aggregation 
behavior, potentially reducing catchability at individual dFADs and 
influencing estimates of local biomass. Our results highlight the need to 
consider dFAD spacing in both fishery management and ecological 
studies of tuna dynamics based on dFADs.

4.3. Caveats

Our approach differs from much of the existing literature on dFAD- 
derived biomass estimation (e.g. Santiago et al., 2019; Baidai et al., 
2020; Escalle et al., 2021b; Precioso et al., 2022) in that we did not have 
access to full life-history metadata for individual dFADs (e.g. time since 
deployment, fishing set events) or species-validated catch data from 
logbooks. These limitations preclude precise biomass estimation or 
species-specific analyses. However, our objective was not to estimate 
absolute tuna abundance, but rather to assess relative variation in 
biomass density across space, particularly in relation to oMPA bound
aries. This allows us to avoid the more complex data filtering and 
transformation often required to isolate unfished or early-stage dFADs 
(e.g. Santiago et al., 2019; Uranga et al., 2024). While we interpret 
variation in patterns in biomass, we caution that absolute biomass 
values derived from buoy data should be treated with care, given the 
known biases and uncertainties associated with echo-sounder readings.

As with all studies relying on acoustic data from dFADs (Orue et al., 
2019b; Escalle et al., 2021b; Precioso et al., 2022), biomass density es
timates must be interpreted with caution. The low-cost echosounders 
mounted on buoys are not designed for precise biomass estimation: they 
operate at lower spatial and temporal resolution compared to scientific 
echosounders, and their data are further compressed for satellite 
transmission, amplifying potential noise and error (Diallo et al., 2019). 
In addition, the echo-integration algorithm used by Satlink software is 
configured to estimate aggregations of skipjack tuna, using a reference 
target strength based on 5 kg individuals of this species, which lacks a 
swimbladder. This can lead to bias in biomass estimates when other 
species such as yellowfin or bigeye tuna—both of which have swim
bladders—are present, particularly at greater depths.

It is also important to note that these buoys do not report biomass 
values below 1 tonne per layer, which may lead to underestimation of 
biomass when smaller aggregations are present (Navarro-García et al., 
2021). Conversely, biomass can be overestimated when non-tuna spe
cies are detected or when tuna are not tightly aggregated (Wang et al., 
2012). Moreover, buoy-derived estimates are highly variable on short 
time scales (day-to-day), reflecting not only true movement dynamics of 
fish under dFADs but also methodological limitations (Lopez et al., 
2017b; Diallo et al., 2019). While we retained all vertical layers in our 
analysis to preserve internal consistency and data volume, we 
acknowledge that both overestimation and underestimation of biomass 
are possible, and this should be considered when interpreting our 

results. Echosounder buoys only detect tuna aggregated beneath dFADs, 
which represents a fraction of the total biomass in the area. The dy
namics of tuna aggregation—including residence time, attraction 
behaviour, and turnover—remain poorly understood and may vary with 
oceanographic conditions, tuna behaviour, and local dFAD density 
(Dagorn et al., 2013). As such, the relationship between 
dFAD-associated biomass and total tuna abundance at the seascape scale 
remains uncertain and may be confounded in areas with high dFAD 
saturation.

We must also not that each observation by a dFAD is not truly in
dependent of other observations from the same dFAD, as tuna are 
following the platform and each dFAD is simultaneously an observing 
and aggregating device. However, including the random effect for dFAD 
in the GAMM and the large number of dFADs in the dataset (n = 902) 
helps minimise this limitation.

4.4. dFADs as a scientific tool

The interpretability of many of the predictors in the model suggest 
dFADs could be a robust tool for examining the efficacy of oMPAs for 
enhancing tuna biomass. As existing methods such as using fisheries 
data make it difficult to sample within oMPAs, dFADs could provide an 
effective alternative (Moreno et al., 2016; Blanluet et al., 2023). Tagging 
studies of tuna in oMPAs are an alternative, but they are limited by the 
low number of tagged animals, the high tag cost, and the relatively short 
tag lifetime (Letessier et al., 2017; Richardson et al., 2018). Although 
research vessels are ideally suited to sampling inside and outside oMPAs, 
collecting data over long time scales and in remote ocean locations is 
expensive. dFADs, already widely present in many ocean areas, are 
potentially a powerful and low-cost approach to sample tuna inside and 
outside oMPAs.

The current work is the first we know of to investigate the effect of 
oMPAs on tuna inside and outside an oMPA, at similar temporal and 
spatial scales to CPUE studies. At a larger scale, using the dFAD network 
to investigate tuna populations throughout an entire ocean could bring 
unparalleled insights into tuna movement, behaviour and aggregation 
dynamics (Moreno et al., 2016). However, dFADs also have negative 
ecological consequences, including potentially increasing the over
exploitation of tuna resources (Dagorn et al., 2013), damaging coral 
reefs following collisions (Escalle et al., 2019), and causing marine 
pollution (Churchill, 2021). However, answering scientific questions to 
help better manage the ocean, using data from dFADs that are already 
being deployed by the fishing industry, is unlikely to increase their 
number. In fact, the current collaboration between TNC and several 
purse seine fishing companies has had the positive environmental 
outcome of reducing the impact of dFAD groundings on Palmyra’s 
sensitive coral reef ecosystem. This is because once the dFADs drifted 
into the vicinity of the atoll, they were tracked so they could be retrieved 
prior to impact on the reef. For now over 50 dFADs were intercepted by 
TNC staff offshore (within a 6 nautical mile recovery zone) of Palmyra 
Atoll through the life of the Palmyra FAD watch Program, in order to 
stop them from having adverse impacts on the sensitive coral reef 
ecosystem. These efforts have strongly reduced dFAD grounding at 
Palmyra

5. Conclusion

This study presents a new method to sample tuna inside and outside 
oMPAs, which will hopefully be applied more frequently in the future. 
We found no discernable benefit of the oMPA to tuna biomass, which 
may be a consequence of the limited fishing immediately outside the 
area. More studies of oMPAs using dFADs, particularly in areas that are 
heavily fished, are necessary to answer the question of whether oMPAs 
enhance tuna stocks. Despite the objectives of oMPAs often including 
benefits to tuna fisheries (Kaplan et al., 2014), the primary objective of 
oMPAs, including the PIHMNM (Office of the Press Secretary, 2014), are 
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to protect pelagic and benthic biodiversity and their ecosystem services 
(Blanluet et al., 2023). Palmyra Atoll has already proven to provide 
conservation benefits for sharks (White et al., 2017; Gilmour et al., 
2025) and seabirds (Young et al., 2015; Gilmour et al., 2025), but po
tential benefits for the broader pelagic ecosystem in PIHMNM are 
largely unknown. Ultimately, benefits of oMPAs should be judged based 
on all their objectives, not just those pertaining to tuna fisheries.

Equations

Equation 1. : We use the R package mgcv (Wood, 2020) to fit the 
GAMM. The GAMM included smooth terms s(), with k the upper limit of 
the degrees of freedom associated with the smooth, the basis spline bs is 
the type of splines of the smooth; we use the cubic regression spline for 
environmental variables, the cyclic cubic regression spline for time of 
day because its periodic, and random effects as “re”.

Biomass ~ s(time_in_dataset, k = 6, bs = "cr") + s(Chl, k = 6, bs = "cr") 
+ s(sal, k = 6, bs = "cr") + s(temperature, k = 6, bs = "cr") + s(ther
mocline_depth, k = 6,bs = "cr") + s(current_velocity, k = 6, bs = "cr") 
+ s(time_day, k = 6, by = Depth_layer, bs = "cc") + s(FAD_Name, bs =
"re") + s(Moon_Illumination, k = 6, bs = "cr") + s(dis
tance_to_nearest_dFAD, k = 6, bs = "cr") + Depth_Layer + season 
+ years + presence_in_MPA                                                                 
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