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ABSTRACT: We estimated abundance of the endangered main Hawaiian Islands (MHI) insular
population of false killer whales Pseudorca crassidens from 1999—2022 using a modeling technique
that incorporates animal availability in a capture—recapture analysis. The population was sampled
using different sampling methods, resulting in yearly encounter histories of 265 individuals and 53
satellite-tagged whales. Survey effort and animal location data were separately analyzed using ker-
nel density estimators, and the degree of overlap between these 2 processes was used to model
detection probability in a Bayesian Jolly-Seber population model. This approach better addresses
spatiotemporally variable sampling effort than traditional capture—recapture methods, improving
the estimation of reliable abundance trends. Using simulated data, the model was robust to many
sampling and ecological complications, such as variable low detectability, unequal tag deployment
lengths, and variable social group sizes. Fitting the model to the MHI false killer whale data set, we
found that the insular population of false killer whales remains small, with an estimated 139 individ-
uals (95% credible interval, CRI = [114, 162]) in 2022. The population appears to be in decline
throughout the study period, with a mean annual percent change of —1.09 (95% CRI = [-2.11,
—0.023]) over the entire time series and —3.51 (95% CRI = [-5.08, —1.88]) since 2013, when the
population was listed as endangered. Given the magnitude of the decline, identifying which of the
many factors affecting this population is most responsible is key in order to guide potential man-
agement responses.

KEY WORDS: Telemetry - Data integration - Mark—recapture - Endangered species * Jolly-Seber -
False killer whales

HO'ULU'ULU MANA'O: Koho makou i ka nui o na pi'uo 'anehalapohe o na kohola 'ahuka iwi po'o
like (Pseudorca crassidens) a puni ka pae'aina 'o Hawai'i (MHI) mai na makahiki 1999-2022 ma o
kekahi '0naehana e kalailai ana i ka loa'a 'ana o ka holoholona i kekahi kalailai loa'a-loa'a hou. Mai
na makahiki 1999-2022 mai, he mau ki'ina 'ohi hapana i nana 'ia a 'o ka loa'a, 'ike kimakahiki 'ia he
265 kohola iwi po'o like a he 53 mea i poelele lepili 'ia. Kalailai pakahi 'ia ke anapt'uo a me ka 'ikepili
henua ma o na koho pa'apt kenele, a'o ka nui o ke kaulapa ma waena o ia mau 'elua, ua ho'ohana 'ia
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i kumu ho'ohalike i ka papaha 'ikena ma ka pt'uo ho'ohalike Bayesian Jolly-Sever. 'Oi aku ka maika'i
o kéia hana ma mua o na hana loa'a-loa'a hou ma'amau no ka nana 'ana i na 'ano ao henua 'ohi
hapana, a he ho'oikaika i ke koho i ka 'aui 'ana o na lawa kiipono. Ma ka ho'ohana 'ana i ka 'ikepili
ho'oktikohukohu 'ia, he kumu ho'ohalike maika'i no kéia i ka nui 'ohi hapana a me ka nui o na
hopena kaiaola, e la'a ho'i me ke kumuloli 'ikena ha'aha'a, ka 10'ihi o ka lepili 'oko'a, a me ke kumuloli
o ka nui pt'ulu launa. Ma ka launa 'ana o ia kumu ho'ohalike me ka 'ikepili o ko Hawai'i pae'aina
kohola 'ahuka iwi po'o like, 'ike makou i ka 1i'ili'i mau o ka pt'uo kohola 'ahuka iwi po'o like 'ane'ane
puni 'ia e ke kai, ma kahi o 139 (95% CRI = [114, 162]) ma ka makahiki 2022. Ma o ka wa kalailai,
kohu mea 13, emi mai ka pu'uo, he -1.09 pakéneka loli (95% CRI = [-2.11, -0.023]) 'awelike o ka
makahiki, a he -3.51 (95% CRI = [-5.08, -1.88]) mai ka makahiki 2013, i ka wa i helu 'ia ai ka pt'uo
he mea 'anehalapohe. No ka nui o ia'ano emi 'ana, ko'iko'i no ka 'ike 'ana i na mea e pa nui ana i kéia
pl'uo i mea e alaka'i aku ai i na hapane ho'oponopono.

1. INTRODUCTION

The importance of detecting declines in wildlife
populations has long been recognized (Ceballos &
Ehrlich 2002). Even in cases where species extinction
is not imminent, population decline can lead to local-
ized extirpation and loss of ecosystem function and
services (Ceballos & Ehrlich 2002, Nichols & Williams
2006). Identifying that population declines are occur-
ring and the factors that may be driving losses of indi-
viduals is needed to inform conservation and manage-
ment planning. Detecting trends in population growth,
positive or negative, allows for an evaluation of the ef-
ficacy of management actions and can inform future
decision-making (Yoccoz et al. 2001). However, the
challenges of data collection, particularly for dispersed
or inaccessible species such as marine mammals, can
lead to time series of abundance or related indices that
lack the statistical power to detect declines (e.q.
Taylor et al. 2007). This predicament emphasizes the
importance of incorporating novel analytical tech-
niques and auxiliary data sets in what may otherwise
be considered the best available science (e.g. Murphy
& Weiland 2016) when assessing marine mammal and
other difficult-to-study wildlife populations.

False killer whales Pseudorca crassidens are an ex-
ample of a species whose life history and behavior
makes them challenging to survey and, consequently,
collect data necessary for robust evaluation of their
population dynamics. False killer whales are long-
lived (females live well into their 60s) and are slow to
mature (10—15 yr old at sexual maturity; Ferreira et al.
2014, Photopoulou et al. 2017). They are strongly so-
cial, known to often travel in large, coordinated
groups, and exhibit cohesive social structure (Baird et
al. 2008, Mahaffy et al. 2023). They have a matrilineal
social structure, with strong, long-term bonds, and
they are one of a few species where females are known
to undergo a post-reproductive period (Photopoulou

et al. 2017, Martien et al. 2019). False killer whales
inhabit sub-tropical and tropical oceanic regions
worldwide (Stacey et al. 1994, Baird 2018, Zaeschmar
& Estrela 2020), and a number of coastal and island-
associated populations have been documented (Baird
et al. 2008, Silva et al. 2013, Zaeschmar et al. 2014,
Baird 2016, Palmer et al. 2017, Douglas et al. 2023).
Their generally offshore distribution and tendency to
move frequently over large spatial domains (Baird et
al. 2012, Anderson et al. 2020) make it challenging to
adequately survey their populations.

The main Hawaiian Islands (MHI) insular popula-
tion of false killer whales is small, last estimated to
number 167 = 23 individuals in 2015 (Bradford et al.
2018). This population is sparse throughout their
range, with individuals known to move widely among
and frequently between island areas within the MHI
(Baird et al. 2012). Individuals preferentially form so-
cial groups, hereafter referred to as ‘clusters’ (Mahaffy
et al. 2023). Four stable clusters have been recognized
(Mahaffy et al. 2023) that consist of family members
and regular associates (Martien et al. 2019). There has
been some evidence for cluster-specific space-use
patterns (Baird et al. 2012, 2023, Mahaffy et al. 2023).
When encountered during survey effort, individuals
and subgroups within larger groups are often spread
out, traveling 10s of km apart (Bradford et al. 2014,
Baird 2016). The MHI insular population of false killer
whales was listed as endangered under the US Endan-
gered Species Actin 2012 following a decline in recent
decades (Oleson et al. 2010). The greatest suspected
threats to this population's viability include interac-
tions with nearshore fisheries (Baird et al. 2015), expo-
sure to pollutants (Ylitalo et al. 2009, Bachman et al.
2014, Kratofil et al. 2020), and reduced genetic diver-
sity (Chivers et al. 2010, Martien et al. 2014).

The MHI insular population is the most thoroughly
studied population of false killer whales in the
world, with numerous boat-based surveys, photo-
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identification, satellite-telemetry, and genetic stu-
dies conducted over the last few decades (Baird
2016). Individually, each of these data streams pre-
sents unique challenges to estimate crucial metrics
(such as abundance and population growth rate) to
monitor this endangered population. For example,
there is variable boat-based survey effort around the
MHI, and as this population is wide-ranging, these
surveys will only encompass a small proportion of
the population's range in any given period. Weather
and sea conditions generally further restrict areas
viable for visual sampling, with surveys almost
exclusively conducted on leeward sides of islands
protected from trade winds (Baird et al. 2013, 2024).
Without information on individual space use (e.qg. if
animal movement is random with respect to island
geography), it is unclear how this sampling may
affect capture availability and subsequent metrics.

Substantial work has been done to estimate abun-
dance for this population through photo-identifica-
tion-based capture—recapture (CR) models, generat-
ing estimates that are robust to many forms of
sampling variability and bias (Bradford et al. 2018).
However, availability bias is inadequately accounted
for within conventional CR models (Marsh & Sinclair
1989, Hammond et al. 2021). Abundance estimates
resulting from conventional CR models only repre-
sent the sampled population in each year rather than
the annual full population abundance. As it is unclear
what proportion of the MHI false killer whale popula-
tion is sampled each year, the estimates obtained by
Bradford et al. (2018) were insufficient to determine
population trend, and thus difficult to incorporate
into recovery plans.

Here, we estimate yearly abundance and long-
term trend of the MHI insular population of false
killer whales from 1999 to 2022 using a novel CR
modeling technique that incorporates animal space
use information to more fully alleviate sampling bias
concerns (detailed in Badger et al. 2024). Our results
provide a more robust estimate of yearly abundance
and recent population trends, allowing an examina-
tion of this population's dynamics since it was listed
as endangered.

2. MATERIALS AND METHODS
2.1. Data collection
Data used in this analysis were predominantly

sourced from dedicated nonrandom, nonsystematic
small-boat surveys for odontocetes conducted by

Cascadia Research Collective (CRC) from 1999 to
2022 (Fig. 1). Collectively, CRC has conducted sur-
veys of nearshore waters around all MHI; however,
only a few areas can be surveyed every year and more
than half of the effort has been undertaken off of
Hawai'i Island (Baird et al. 2024). Generally, 1-6
occasions of such efforts lasting 1—6 wk were con-
ducted throughout each year. Areas selected to be
surveyed are designed to maximize the probability of
animal encounters (details of the field operations are
provided in Baird et al. 2013, 2024). Even with this
focused sampling, false killer whales are only rarely
encountered, with just 124 group sightings from 1999
to 2022, making up 3.8% of all odontocete sightings
(Baird et al. 2024). At each false killer whale group
sighting, researchers recorded the location of the
group and took photographs for individual identifica-
tion based on the prevalence of persistent markings
(e.g. nicks, notches) on the leading and trailing edge
of the dorsal fin (Baird et al. 2008). Individuals consid-
ered 'distinctive’ or ‘very distinctive' (Baird et al.
2008), hereafter characterized as 'distinctive’, were
assigned to 1 of 4 identified social clusters using the
analysis of network modularity explained in Mahaffy
et al. (2023).

Along with their own archive, CRC has curated
photos from other research groups, such as NOAA
Fisheries Pacific Islands Fisheries Science Center
(PIFSC), the Pacific Whale Foundation (PWF), and
Wild Dolphin Foundation (WDF) as well as from
ocean users such as whale watch operators and photo-
graphers (Fig. 1). High-quality photographs of dis-
tinctive individuals from all relevant sources were
combined following Bradford et al. (2018). Encounter
data were then compiled at the annual scale, with dis-
tinctive individuals recorded as either encountered or
not encountered each year.

When crew expertise, ocean conditions, and animal
behavior allowed, CRC and PIFSC research efforts
also included satellite tag deployments to obtain in-
formation on false killer whale space use (see Baird et
al. 2010). Between 2007 and 2022, whales were tagged
using location-only satellite tags (SPOTS5 or SPOT6;
Wildlife Computers), or location-and-dive behavior-
transmitting satellite tags (SPLASH10 or SPLASH10-F
Fastloc®-GPS; Wildlife Computers) in the low-
impact minimally percutaneous external-electronics
transmitter (LIMPET) configuration (Andrews et al.
2008). Relevant permits for tagging were issued by
NOAA Fisheries, and the methods were approved by
the Institutional Animal Care and Use Committees
of CRC and PIFSC. The tags were deployed with a
pneumatic projector and attached using two 6.7 cm
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Fig. 1. Tracks from cetacean surveys conducted by Cascadia Research Collective (CRC), Pacific Islands Fisheries Science
Center (PIFSC, with systematic ship surveys in light grey), Pacific Whale Foundation (PWF), and Wild Dolphin Foundation
(WDF), as well as other opportunistic contributors, from 1999 to 2022 in the main Hawaiian Islands. The extent of the mapped
tracklines represents the boundary of the main Hawaiian Islands insular false killer whale population (Bradford et al. 2015)

surgical-grade titanium darts with backward-facing
petals to the dorsal fin (or just below the fin) of the
whales. Tag duty cycles were configured to transmit
during hours with the greatest probability of a satel-
lite pass occurring in the study area.

Prior to analyses, location data were filtered
through the Douglas-Argos Filter (Douglas et al.
2012) via Movebank (Kranstauber et al. 2011) to filter
out locations based on unrealistic traveling speeds
and turning angles (see Baird et al. 2012 for user-
defined settings). Fastloc®-GPS locations for relevant
tag deployments (n = 2) were filtered by first exclud-
ing locations with residual values greater than 35 and
time errors greater than 10 s (Dujon et al. 2014).
Resulting GPS locations were then processed through
a general speed filter via Movebank (Kranstauber et
al. 2011). When tags were deployed on multiple indi-
viduals from the same group, one of each pair of
tagged individuals moving in concert was removed
before analyses to avoid pseudoreplication, allowing
tagged individuals to represent their respective
group (see Schorr et al. 2010 for details).

2.2. Statistical analysis

To account for the spatiotemporal variability in
sampled areas, we used a novel pseudospatial tech-
nique following Badger et al. (2024). This method
involves estimating the coverage of survey effort
relative to animal space use, hereafter referred to
as ‘'overlap’, and using this variable to inform
animal availability within a CR model. The multistep
process entails (1) computing a kernel density esti-
mate of individual tagged whales and scaling to
social clusters to estimate population-level ‘animal
space use'; (2) computing kernel density estimates
of survey effort from research groups and ocean
users to obtain estimates of 'survey coverage'; (3)
determining availability of animals to survey cover-
age by finding the interaction between (1) and (2),
or the overlap, using Bhattacharyya's affinity (BA);
and (4) incorporating this overlap measure within
the detection process of an open-population Jolly-
Seber CR model (Jolly 1965, Seber 1965) fit in a
Bayesian framework.
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2.2.1. Describing animal space use

As described in Badger et al. (2024), first, for each
tagged false killer whale, locations were fit to a
continuous-time correlated random walk (CTCRW)
model using the R (v.4.2.2; R Core Team 2022) pack-
age 'crawl’ (v.2.2.1; Johnson et al. 2008) to account for
location error and predict locations (paths) from
observed animal locations. These imputed paths were
then rerouted around islands using the R package
‘pathroutR’' (London 2020). Then, individual utiliza-
tion distributions (UDs) were described by a kernel
density estimator (KDE) using the R package 'ks'
(Duong 2007). For the KDE, we used a plug-in band-
width (h;) equal to:

h;=ng"3-%; (1)

where ¥; is the covariance matrix among locations for
the i individual and n,; is the effective sample size
(ESS), as described by Gelman et al. (2013) and
updated in Vehtari et al. (2021), of the i" telemetry
data set. The ESS uses the correlation structure of the
CTCRW model to assess the effective number of
observations that will be less than the total number of
observed locations, which will inflate the kernel size.
This approach seeks to produce a more predictive UD
that accounts for the limited time observation of an
animal's correlated travel, similar in effect to the
autocorrelated KDE (AKDE, Fleming et al. 2015). The
full form of the KDE for the i** tagged individual, fl-, is
given below.

Let s = (sy,...8,) be tag locations, such that s; =
{x;,y;}, where j €{1,....n;} and n; is the total number of
locations for the i"" individual. Then,

R N /s—s)
i =5 k() 2
2

1 Lp
: Jon e 2%,
The resulting f; was then normalized to sum to 1 over
the study area.

The resulting UD provided a density surface for
individual presence in space. However, in order to
use the tag data information for animals not equipped
with telemetry tags in the CR sample, we required an
estimate of population-level space use to determine
animal availability during our survey efforts. While
there are many ways to weight individual UDs when
averaging (see Conn et al. 2022), we aimed to develop
an overall use index for use as a covariate in a CR
model that can be adjusted to best model detections
using the associated coefficients of the model. There-
fore, we used the straight average UD. Given that this

where K is a Gaussian kernel, i.e. K(u) =

population is known to be affiliated as stable, distinct
social clusters, these individual UDs were summed by
social cluster to a 'cluster UD', henceforth referred to
as UD., where c €{1,2,3,4} for the current 4 cluster
designations (Fig. 2).

2.2.2. Defining survey effort

Survey effort for the purpose of this analysis was
computed using time-specific kernel density esti-
mates based on contributor coverage of the waters
around the MHI. CRC's surveys were nonsystematic
and nonrandom, although they did attempt to cover a
broad range of habitats and space over the course of
each sampling period. Alternatively, PWF generally
used a systematic approach, and other ocean users
opportunistically encountered false killer whales on
routine whale- or dolphin-watching tours or fishing
routes. PIFSC encountered false killer whales while
on systematic ship-based surveys, such as the Hawai-
ian Islands Cetacean and Ecosystem Assessment Sur-
vey (Yano et al. 2018), as well as on nonsystematic and
nonrandom ship and small-boat surveys.

As each contributor to the photo-identification ar-
chive used varying methods to encounter false killer
whales throughout the study, we used a flexible ap-
proach to defining effort. For the 3 largest contri-
butors to the archive (CRC, PWF, and PIFSC), survey
tracks were recorded via an affixed GPS for almost the
entire time series (details of the field operations
for PWF are provided in Stack et al. 2019). WDF, an-
other main contributor, provided GPS tracks when
available, but these were not recorded for many years.
WDF, along with other organizations and other con-
tributing ocean users, were able to define regularly
covered areas that for many of these sources, were vis-
ited daily throughout the year. We randomly sampled
1000 points within these defined effort areas (using R
package 'sf'; Pebesma 2018) for inclusion in the KDE
for each year the contributor was active. Photographs
from individuals or groups that did not provide any ef-
fort information were not included in this analysis, al-
though these photos accounted for only a very small
proportion of the total yearly records (~3.6 %).

We computed survey effort coverage using a sim-
ple KDE of survey tracks and sampled points from
effort areas e for each year ¢, subsequently referred to
as UD,,for t €{1,...,T}, where T is the data time series
length, and with a bandwidth based on a reasonable
maximum sighting distance from the survey vessels
(2 km on each side). Although this seems like a large
maximum detection distance, false killer whales are a
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Fig. 2. (a—d) Cluster-level space use of main Hawaiian Islands insular false killer whales determined from kernel density esti-
mators of location data from 53 satellite-tagged groups from 4 social clusters from 2007 to 2022. The extent of the mapped area
represents the boundary of the main Hawaiian Islands insular false killer whale population (Bradford et al. 2015)

highly surface-active species that are typically only
surveyed during ideal weather conditions.

2.2.3. Computing the overlap metric

To calculate the overlap between animal space use,
UD,, and survey efforts, UD, ;, we computed BA:

BAc,e,z=foy\/UDc(X,y) -/UDei(x,y) 3)

where UD,(x,y) and UD, (x,y) are the values of the UD
of the clusters and survey efforts, respectively, at
the point (x,y) in the year t, where t €{1,...,T}. This
overlap measure was then standardized over time for
modeling purposes, i.e.:

BAC,e,Z—H

Overlap., = o

where

Y (BAcei—W)2

: )

1 T
“, = TZI BAC,e,[ and O =

2.2.4. Model form

We used the overlap variable as a covariate in
the detection process of a hierarchical Jolly-Seber
open-population CR model to estimate abundance
(Jolly 1965, Seber 1965, also see Kéry & Schaub
2012). As described in Badger et al. (2024), at each
sampling occasion (in this case, year), individuals
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can be in 1 of 3 possible states: 'not yet entered’,
‘alive’, or 'dead’, and transitions among these states
are governed by 2 ecological processes: entry and
survival.

Suppose we have an augmented population of M
individuals, of which N are genuine and M — N are
pseudo-individuals. Entry is described using vy, the
probability that governs movement from the state
‘not yet entered’ (i.e. appended animals not entered
in the population of interest yet) to the state ‘alive’.
The state of individual i at the first occasion is deter-
mined by a Bernoulli trial with probability y at the
first time step:

Z;1 ~ Bernoulli(¥,) (5)

Subsequent states are determined either by survival,
¢, for an individual already entered (z;, = 2) or by
entry, W, for those that have not (z;, = 1) via a tran-
sition matrix:

not yet entered alive dead

| not yet entered 11—y 0 0
Zitl Zit=1~ alive g} on: 0
dead 0 1-¢¢ 1

(6)

Similarly, observations are governed by a detection
process with detection probability p, that depends on
an individual's cluster assignment, c;:

not yetentered alive dead

Vit | Zijt ~| observed 0 Di.t 0
unobserved 1 1-pir 1

(7)

where logit(p;¢) = a;+ & X overlap,;, with estimated

parameter intercepts o, and coefficient for overlap 9.

Population abundance in a given year, N, is then
defined as the number of distinctive individuals in the
‘alive’ state; that is, N, = X;I(z;;, — 2), where I(x) is an
indicator that x = 0.

We f{it a saturated model, with time-varying detec-
tion, entry, and survival. To ease model fit and iden-
tifiability, we set the mean detection of the first 2
occasions equal (o; = o,) and used a smoothed
function (penalized regression splines) of survival.
To achieve the smooth function, in pre-processing
we simulated binomial draws based on the pre-
viously estimated constant annual survival rate
(0.94; Bradford et al. 2018), fit a generalized additive
model (GAM) using the R package 'mgcv' (Wood
2011), and extracted the values of the linear predic-
tor, coefficients, and variance—covariance matrix
from the model fit as the prior for the sequence of
survival estimates.

2.2.5. Accounting for nondistinctive individuals

Importantly, in using photo-identification for CR
analyses, abundance estimates N, will only reflect the
number of distinctive individuals in the population, as
nondistinctive individuals are excluded from our data
set (until they become distinctive; Hammond et al.
1990). To estimate total abundance, we must adjust
abundance estimates by the proportion of the popula-
tion that is distinctive in each year (6,). Total abun-
dance is then estimated by the Horvitz-Thompson
ratio Niga1 = N;/ 0, where Ny, is the abundance of
all individuals (distinctive and nondistinctive) at each
capture occasion t.

We estimated 0, in pre-processing using photo-
graphs taken from encounters by CRC where the
number of nondistinctive and distinctive individuals
were determined in each encountered group to esti-
mate the proportion of distinctive individuals in the
population in each year, expanding on the approach
of Bradford et al. (2018) by accounting for variation
through time and including all observed groups re-
gardless of size. We fit a binomial (logit link) GAM to
these data using the R package ‘mgcv' (Wood 2011)
with year as a covariate to obtain a smoothed function
of the proportion of distinctive individuals by year.
We then extracted the values of the linear predictor,
coefficients, and variance—covariance matrix to gen-
erate a prior on the time series of 6,. At each iteration
of the CR Markov chain Monte Carlo (MCMC; see
details in Section 2.2.8), we pulled predicted curves
from this model (Fig. 3) to appropriately propagate
uncertainty in 0; to the Ny, calculation that ad-
justed our abundance estimates to account for non-
distinctive individuals in the population. For CRC
encounters, efforts were consistently made to photo-
graph all individuals in each group, regardless of dis-
tinctiveness. Given that CRC encounters comprise
the majority of this data set, we deemed it reasonable
to apply estimates of 6 from CRC encounters to those
from all contributors.

2.2.6. Trend estimation

To determine the trend in abundance for this pop-
ulation, we regressed the series of generated total
population sizes Ny, against time for each iteration
of the MCMC, estimating a population trend as the
slope parameter of the regression model that quan-
tifies the change in abundance over time. This method
results in a posterior distribution of trends that trans-
lates the uncertainty in these abundance estimates to
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Fig. 3. Output of generalized additive model fit to the proportion of distinctive individuals in sightings of main Hawaiian Is-

lands insular false killer whales by the Cascadia Research Collective from 1999 to 2022. Black line and grey shaded area: mean

and 95% confidence interval of the predicted relationship between proportion distinctive and year. Red lines: sample draws of

the multivariate normal distribution estimated by the model output, which comprised the prior distribution used for proportion
distinctive in the capture—recapture Markov Chain Monte Carlo

necessary uncertainty in population trend. As another
method to present population trend, we calculated the
annual percent change in abundance estimates at
each iteration of the MCMC.

2.2.7. Simulations of model performance

Simulations of this model's performance under
varying conditions were conducted in Badger et al.
(2024) and showed that it was robust to many realistic
complications, such as variable cluster-level space
use and low detectability. Upon fitting the pseudospa-
tial model to the full false killer whale data set, we
conducted further simulations to examine how the
performance of this model is affected by some of the
complications arising in our system, such as variable
tag deployment durations, population trends, and
variable cluster abundances. Following the procedure
in Badger et al. (2024), we simulated animal move-
ments, survey efforts, and resulting capture histories
of 300 individuals comprising 3 clusters. Starting loca-
tions for group-level movements and survey effort

were chosen at random at each of 10 time steps, and
subsequent movement and survey tracks were mod-
eled as correlated random walks (using package ‘ade-
habitatLT' v.0.3.26; Calenge 2006). For each of the 10
time steps, surveys would detect individuals with a
detection probability of 0.2 if they were <2 km from
the survey vessel. The resulting capture histories were
then fit to a pseudospatial Jolly-Seber model outlined
above in a Bayesian framework. Six simulated individ-
uals from each cluster were telemetered, and their lo-
cations were used to estimate the cluster-level UDs for
which survey overlap was determined.

Tag deployment durations were either equal among
tags, at a mean of 62.86 d, or were pulled from a nor-
mal distribution with parameters u = 62.86 d and 02 =
48.23 truncated to >0, the sample mean and standard
deviation derived from available telemetry data. We
also simulated positive and negative trends in abun-
dance, with the slope of abundance over the time
series as —5 or +5 individuals per annum. As we also
want to ensure the pseudospatial model did not per-
form poorly relative to the conventional CR model in
conditions with variable population trajectories, we
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also compared our model to a conventional model
in altering trends. Cluster abundances were either
equal, with 100 individuals in each group, or unequal,
distributed as 50, 100, and 150 individuals.

As described in Badger et al. (2024), this procedure
was repeated 30 times per set of conditions (equal vs.
unequal cluster abundances, equal vs. unequal tag de-
ployment durations, positive vs. negative population
trends) to observe the range of probabilistic outcomes
in capture histories. For each model, we report the dif-
ference in posterior precision, the number of inaccu-
rate abundance estimates (see below), and the propor-
tion of simulated data sets whose abundance estimates
exhibit an inaccurate trend. We define an inaccurate
abundance estimate as one where the 90% credible in-
terval (CRI) of the posterior distribution did not con-
tain the true population size. To detect inaccurate
trends, at each iteration of the Bayesian MCMC, we
regressed derived abundance estimates over time and
defined an inaccurate trend if the 90% CRI of the re-
sulting slope parameter posterior distribution was
distinct from the simulated trend (-5, 0, or +5).

2.2.8. Model fitting and selection

The pseudospatial CR model, as well as a null
model without the overlap variable, was fit to the
annual encounter histories compiled for each rel-
evant individual in the photo-identification data set.
For further exploration of model formulations of a
conventional Jolly-Seber model {it to a previous ver-
sion of this data set, see Bradford et al. (2018). A Bay-
esian framework was used for model fitting, selection,
and inference using the software JAGS (v.4.2.0)
through the R interface ‘rjags' (Plummer 2003, 2018).
We used an informative Beta(8,2) prior for survival
rate ¢ (given the longevity of false killer whales), but
otherwise uninformative priors, namely Uniform(0, 1)
distributions for entry parameters 1y constrained to
[0,1], and Cauchy (0, 2.5) distributions for detection
parameter intercepts u; on the logit scale (Gelman et
al. 2008). The coefficient parameter describing the
effect of overlap, 0, was given a diffuse Student-¢(0,
2.5, df = 5) (Gelman et al. 2008).

For each model, we ran 3 chains with different sets
of initial values to sample the posterior distributions
of parameters of interest. For each chain, the first
10000 MCMC iterations were discarded after having
checked that convergence was satisfactory (referred
to as the 'burn-in' period). We visually evaluated the
convergence of chains to stationary distributions
using both sample trace plots as well as the Brooks-

Gelman-Rubin diagnostic (Brooks & Gelman 1998),
with values close to 1.00 indicating adequate conver-
gence. We then ran chains for an additional 200 000
iterations, for a total of 20000 MCMC samples used
for inference. We assessed support for the inclusion
of overlap using a measure of out-of-sample predic-
tive ability, the widely applicable information crite-
rion (WAIC; Watanabe 2010), where a model with a
smaller WAIC is judged a better fit.

3. RESULTS

Collectively, survey efforts from 416 d between
1999 and 2022 resulted in a photo-identification data
set of 265 distinctive individuals represented by high-
quality photographs from sources with effort informa-
tion that can be translated into yearly encounter his-
tories for use in CR models. The number of distinctive
individuals varied by cluster, with 72 individuals
identified from Cluster 1, 52 from Cluster 2, 85 from
Cluster 3, and 46 from Cluster 4. The telemetry data
set included 53 satellite-tagged groups from the 4
social clusters (Cluster 1, n = 27, Cluster 2, n = 5;
Cluster 3, n = 16; Cluster 4, n = 5), ranging from 12 to
199 d of data (mean = 62.5; median = 48.8 d) that were
analyzed for population-level space use (Fig. 2).

We fit the pseudospatial and conventional Jolly-
Seber model to the 265 individual encounter histories
over the 24 yr period and found strong support for the
pseudospatial model formulation (AWAIC = 28.6).
The most recent abundance estimate is 139 individ-
uals (95% CRI = [124, 161]) in 2022 (Table 1). The pos-
terior distribution of the parameter describing the
effect of overlap on detection probability was dis-
tinctly positive (posterior mean = 0.64, 95% CRI =
[0.41, 0.88]), indicating that years with higher survey
overlap with cluster-level space use had higher detec-
tion probabilities (Fig. 4). Our analysis found that the
proportion of distinctive individuals appears to
slightly decline across the time series, from roughly
75% of the individuals in encountered groups desig-
nated as distinctive in early years to about 70% in
2022 (Table 1, Fig. 3).

We found a negative trend in the abundance esti-
mates with time (posterior mean slope = —1.31 ani-
mals yr~!; Fig. 5), though the 95% CRI of the posterior
distribution of this derived parameter spanned 0 (95%
CRI = [-2.92, 0.141]; Fig. 6). The posterior distribu-
tion indicates that there is a 78.6 % probability that the
trend is negative over the entire time series, though
the relationship between abundance estimates and
time does not appear linear (Fig. 5). We also report the
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Table 1. Number of observed individuals, estimated propor-

tion of distinct individuals (6, estimated using a generalized

additive model), and derived abundance by year (Nota) 1 €8~

timated from the pseudospatial Jolly-Seber model) for each

year in the study. Values in brackets represent the 95%
credible intervals (CRI)

Year No. ofind.  Nigtar [95% CRI] ) [95% CRI]
1999 20 175 [147, 204] 0.76 [0.65, 0.84]
2000 21 184 [160, 210] 0.75[0.66, 0.83]
2001 19 185[162, 210] 0.75[0.66, 0.82]
2002 5 187 [163, 215] 0.75[0.67, 0.81]
2003 24 182 [160, 205] 0.74 [0.67, 0.79]
2004 44 192 [174, 212] 0.74 [0.67, 0.80]
2005 30 189 [175, 206] 0.73[0.68, 0.78]
2006 22 191 [178, 206] 0.73[0.68, 0.77]
2007 17 193 [181, 209] 0.72[0.68, 0.77]
2008 60 197 [181, 219] 0.72 [0.67, 0.76]
2009 63 197 [174, 219] 0.71 [0.67, 0.75]
2010 97 201 [184, 219] 0.71 [0.66, 0.75]
2011 68 191 [173, 209] 0.71 [0.65, 0.75]
2012 24 184 [167, 204] 0.70 [0.65, 0.735]
2013 26 174 [157, 194] 0.70 [0.65, 0.75]
2014 42 171 [153, 193] 0.70 [0.65, 0.735]
2015 43 171 [154, 191] 0.70 [0.65, 0.75]
2016 39 163 [145, 184] 0.70 [0.65, 0.75]
2017 72 192 [157, 194] 0.70 [0.65, 0.75]
2018 42 157 [142, 178] 0.70 [0.66, 0.73]
2019 57 152 [137, 172] 0.70 [0.65, 0.75]
2020 50 138 [123, 159] 0.71 [0.65, 0.76]
2021 49 138 [119, 163] 0.71 [0.64, 0.77]
2022 63 139124, 161] 0.71 [0.63, 0.78]
0.15

0.05

Effort Overlap (Bhattacharyya's affinity)

0.00

trend for the last 10 yr of abundance estimates (2013—
2022), which is distinctly negative (posterior mean =
—5.68 animals per year, 95% CRI = [-8.99, —2.14];
Fig. 6), with a 98.9% probability that the trend is neg-
ative over the 10 yr period. The mean annual percent
change was —1.09 (95% CRI = [-2.11, —0.023]) over
the entire time series and —3.51 (95% CRI = [—5.08,
—1.88]) from 2013 to 2022. The decline in abundance
across the entire time series is consistent among can-
didate models (conventional CR model trend mean
slope = —1.19,95% CRI = [-9.86, 2.03]).

3.1. Cluster-level results

From our simulations (see below), it was clear that
the full population model as formulated would not
suffice for estimating true cluster-level abundances.
Instead, we ran the model separately for each cluster.
Many parameters were inestimable for Clusters 2 and
4, which have more sparse data, resulting in poor con-
vergence of MCMC chains. Clusters 1, 3, and 4,
which make up the most encountered groups in the
data set, have similar estimated trends as the full pop-
ulation (Table 2). Cluster 2 is the only cluster with an
estimated increasing trend, but the estimated abun-
dances in this model had poor convergence (> 1.1).

3.2. Simulation results

We found that the performance of the
pseudospatial model is only marginally
compromised by variable tag dura-
tions, population trends, and cluster-
level abundances (Table 3). Models fit
to data with variable tag durations esti-
mated accurate abundance and trends
in 3% fewer of the simulated data sets
than models with data simulated with
constant tag durations. When fit to data
generated with variable population
trends, we find that the pseudospatial
model can better estimate population
size and trend than a conventional

Social Cluster

2000 2005 2010

Year

2015

Fig. 4. Overlap of survey efforts and social cluster-level space use of the main
Hawaiian Islands insular population of false killer whales from 1999 to 2022,

calculated using Bhattacharyya's affinity

== Cluster 1
— Cluster 2 model, whether the population is grow-
- S:E:::;i ing, shrinking, or remaining constant.
While the pseudospatial model still
50 performs well under variable cluster-

level abundances, with 90% of fits in-
cluding an accurate estimate of true
abundance, accurate trend detection
was less frequent at only 69 %. Further-
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4. DISCUSSION

We estimated abundance for the
MHI insular population of false killer
whales using a pseudospatial model
that accounts for animal availability in
detection and found the population
appears to have declined since it was
listed as endangered in 2013 (Fig. 9).
Clusters 1 and 3, the most represented
clusters in the data set, exhibited simi-
lar trends in abundance (Table 2).
These results constitute the first robust
trend estimates for this population.

We note a decline in the proportion

225
o 200
[&]
C
[0
O
[
3175
©
e}
2
©
S
5 150
[N}
125
2000 2005 2010 2015
Year

Fig. 5. Abundance of main Hawaiian Islands insular false killer whales, 1999—
2022, estimated using a pseudospatial Jolly-Seber model. Dots: posterior mean;

error bars: 95% credible intervals

more, upon post-processing calculation of cluster-
specific abundances, we found that the model did not
accurately estimate the number of individuals in each
cluster. As the total population size was still accurate,
this is likely linked to cluster ‘label-switching' within
MCMC chains (Jasra et al. 2005).
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of distinctive individuals throughout

the time series, from roughly 75% of
the individuals in encountered groups
designated as distinctive in early years
to about 70% in 2022 (Fig. 4). We sus-
pect that this trend is an artifact of sampling limita-
tions rather than a true decline. Advancements in
camera technology have allowed field photographers
to have greater group coverage and higher quality
photos of all individuals. In early years, film was the
primary medium for photographs, and photographers
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Fig. 6. Posterior distributions of estimated population trends for the entire main Hawaiian Islands insular population of false

killer whales from (a) the entire time series, 1999—2022 and (b) the last 10 years of the study, 2013—2022. Trend was estimated

as the slope parameter of a regression model fit to the abundance estimates over time and reflects the annual change in the
number of individuals in the population
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Table 2. Main Hawaiian Islands insular false killer whale cluster-level posterior mean abundance trends estimated using the
pseudospatial Jolly-Seber model. Probability of decline over time series is calculated from the posterior distribution of the
slope parameter. Values are given as posterior mean [95% credible interval]

Cluster Trend Trend (2012—2022) Mean annual % Mean annual % Probability
(entire time series) change (entire change decline of over
time series) (2012—-2022) time series
1 —1.84[—-3.42, —0.037] —2.93[—4.01, —1.69] —1.48[—0.93,0.028] —5.82[—7.29, —3.22] 0.911
2 1.951 [—0.265, 3.87] 0.36 [—1.99, 1.29] 646 [—10.33, 4200.1] 0.039 [—1.77, 2.08] 0.038
3 —0.352 [—1.393,0.533] —1.47 [—2.20, —0.605] 0.14 [—2.38, 0.25] —1.7[-5.02, 0.044] 0.655
4 —2.64 [—6.17, 1.26] —1.82[-3.62,0.51] 16.66 [—73.7, 56.99] —4.4[—9.2,0.44] 0.946

Table 3. Performance of the pseudospatial (PS) and conventional (C) Jolly-
Seber open population model fit to 30 data sets under 8 different conditions
noted (240 data sets total). % true N and % with true trend refer to the accuracy

ings as they age (Baird et al. 2008).
However, the relatively low recruit-
ment of individuals into the distinctive

(90% credible interval) of posterior distributions of abundance and the slope

parameter in a regression fit to yearly abundance estimates. The change in
posterior precision was measured as the ratio of posterior standard deviations

between 2 competing models

(marked) population in recent years
(R. W. Baird & S. D. Mahaffy unpubl.
data) suggests that this is unlikely.

Analyses of simulated data sets, both

Simulated condition Model % True % True Change in in this abundance analysis and in a pre-

N trend posterior vious analysis of a shorter time series

precision (Badger et al. 2024), show that using

Variable tag duration PS 87 71 _ the pseudospatial method will yield

Constant tag duration PS 90 74 1.01 higher accuracy and precision in esti-

Decreasing trend C 82 58 - mating abundance and trend than con-

Decreasing trend PS 85 62 118 ventional models. These analyses also
Increasing trend C 80 58 — h d that th del' P

Increasing trend PS 86 64 1.19 S Owe. that the model’s per Qrmance

Variable cluster abundances PS 90 69 — is relatively unaffected by varying pop-

Constant cluster abundances PS 92 75 1.03 ulation trends, poor characterization of

were limited to 36 frames before having to change
rolls, limiting the number of photos taken of each
individual. The switch to digital cameras in the early
2000s removed this limitation, and as digital camera
technology improved, the higher resolution increased
the likelihood of high-quality photos being obtained
of all individuals. Thus, capturing quality identifica-
tion photographs of small, fast-moving, and generally
nondistinctive individuals increased later in the time
series. If the proportion of distinctive individuals in
the first portion of the time series is biased high as a
result, this may account for the coinciding increasing
trend in abundance for those years (1999—2002). If
left unaccounted for, this apparent decrease in the
proportion of identifiable individuals over time would
dampen the estimated magnitude of the population
decline. It is possible that there has been a shift in the
age structure in the population, with an increase in
younger cohorts (less distinctive individuals) coinci-
dent with a decrease in older cohorts (more distinc-
tive individuals), given that individuals acquire mark-

cluster-level space use, low detectabil-
ity, and unequal cluster abundances
and tag deployment duration. These simulations were
designed to target specific sample size considerations
in this data set. First, there is a vast disparity in telem-
etry sample sizes among clusters, such that space use
for Clusters 2 and 4 are informed by only 5 tagged
false killer whale groups each (after accounting for
pseudoreplication among tagged pairs), whereas
Clusters 1 and 3 are informed by 27 and 16 tagged
groups, respectively. Not only did this sparsity inhibit
our ability to adequately characterize cluster-level
space use for Clusters 2 and 4 but it precluded us from
estimating time-specific space use kernels and thus
limited us to assume constant space use over time.
Fortunately, simulations indicate that if this limita-
tion mischaracterizes space use, it does not reduce
the quality of the abundance estimates to less than
that of the conventional CR model (Badger et al.
2024). Our model did estimate a positive effect of
overlap on detection probabilities, indicating that
our calculated overlap variable is at the very least not
random with respect to observed encounter rates and
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likely explains some variability in availability.
Clusters 2 and 4 are also underrepresented in the
visual sighting data, affecting our ability to estimate a
cluster-specific trend. Given that Clusters 2 and 4 are
generally a small portion of the data regardless of
sampling site, it may be that these social clusters have
a smaller population size than Clusters 1 and 3. Our
simulation exercise indicates that this discrepancy in
cluster abundance will not greatly impact estimation
of the full population abundance. Regardless, these
findings do highlight the need for targeted field
efforts in the known ranges of Clusters 2 and 4 (Baird
et al. 2023) to better understand how cluster-level
dynamics scale up to the population-level decline.

The estimated decline in abundance is consistent
among candidate models. Bradford et al. (2018) did
not find a similar trend when fitting a conventional
CR model to most of the same photo-identification
data from 2000 to 2015. While some may argue this is
an artifact of the modeling process and not reflective
of a true decline in abundance, there is more evidence
that the difference stems from the information in the
additional data collected since 2015 as well as ad-
ditional data from prior to 2016 that were not avail-
able to Bradford et al. (2018). Badger et al. (2024) fit
the pseudospatial model framework to the same data
as Bradford et al. (2018), including the sightings data
from 2000—2015 from one source (CRC, though the
primary results in Bradford et al. 2018 include data
from multiple sources) and also did not find a substan-
tial trend in abundance estimates. Further, we fit the
pseudospatial model to the full time series of data
contributed by CRC from 1999 to 2022, which is the
largest portion of the data set with the best-described
effort information, and found a similar decline with
that data partition. While it garners confidence that
the decline is apparent across data partitions and
modeling frameworks, the pseudospatial model pro-
vides more reliable estimates that have accounted for
sampling bias and is better suited to estimate the
magnitude of this decline.

Among the known threats to this population of false
killer whales, interactions with fisheries have the ca-
pacity to cause immediate impacts to the population's
viability, as they can inflict injuries that impede sur-
vival or can be fatal. False killer whales in Hawaiian
waters have been documented depredating catch in
nearshore fisheries since the 1960s (Pryor 1975, Shal-
lenberger 1981). There are a variety of both commer-
cial and recreational hook and line fisheries around
the MHI, and the target catch of these fisheries largely
overlaps with the diet of false killer whales (Baird et al.
2021). There are no observer programs in any of these

nearshore fisheries, and strandings of false killer whales
are extremely rare (Baird 2016), so evidence of inter-
actions (e.g. hookings) is indirect and limited. False
killer whales that ingest hooks or are hooked in the
mouth and struggle against gear may acquire injuries
to the mouthline or dorsal fin that can be detected
from photos taken during encounters (Baird et al. 2015,
Harnish et al. 2024). Analyses of photographs over the
same period as our abundance and trend analyses re-
veal that over one-quarter of individuals from this pop-
ulation have evidence of surviving prior fisheries in-
teractions (Harnish et al. 2024). While this method
does not allow for an assessment of bycatch directly, it
does reveal that depredation of bait or catch is wide-
spread among the population and that hooking occurs
regularly. Hook ingestion may lead to mortality or de-
creased health and longevity for those that do survive
(Wells et al. 2008). Furthermore, the Harnish et al.
(2024) analysis noted that the proportion of individuals
with such fishery-related injuries appeared to vary by
cluster, from 19.4% (Cluster 2) to 38.2% (Cluster 4), al-
though this effect was not statistically significant. It is
possible that cluster-specific differences in the rates of
fishery interactions could contribute to the differences
in population trend for each cluster.

Other factors could also be playing a role, including
reduced energy intake due to a reduction in prey size
or availability, as well as possibly individuals being
deliberately killed (Baird 2009, Oleson et al. 2010).
While there is no direct evidence for intentional kill-
ing of false killer whales in Hawaiian waters, shooting
of other species of odontocetes that are at least occa-
sionally involved in fishery interactions has been doc-
umented (Kuljis 1981, Tummons 1997, Harnish et al.
2019). Other identified threats to the viability of the
MHI insular false killer whale population include
exposure to pollutants and reduced genetic diversity
(Oleson et al. 2010). Of 56 individual biopsy samples,
all adult males and about 1/3 of adult females in the
population have levels of PCBs in the blubber that
exceed a threshold that could cause impaired repro-
duction or immunosuppression, where sex-related
variation in levels is due to maternal offloading of pol-
lutants to offspring (Kratofil et al. 2020). Analyses of
mating patterns have indicated that between 36 and
64 % of matings occur within clusters, with the strong
social structure further limiting genetic diversity in
this small population (Martien et al. 2019). The syner-
gistic effects of 2 or more of these threats could have a
strong impact on an endangered population. The loss
of a single individual in such a long-lived species can
have a meaningful, immediate effect on the dynamics
of the population (Williams & Lusseau 2006). As a
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highly social, group-living species with significant
maternal investment (Mahaffy et al. 2023), false killer
whales may also be less resilient to such exploitation;
knowledge and leadership by older individuals and
cooperative behaviors (e.g. hunting, possible allopa-
rental care) are key for survival and reproductive suc-
cess (Wade et al. 2012).

This analysis could be improved in several ways for
uture abundance estimation. Firstly, the spatiotemporal
nature of the data-generating process could be more
explicitly defined and incorporated into the modeling
framework. Current development of a continuous-
time, spatially explicit CR model incorporating a time
inhomogeneous Markov-modulated Poisson process
could address this point (Choquet 2018, Rushing
2023). Additionally, as we were only able to estimate a
static cluster-level space use layer for availability
using the telemetry data, further information on tem-
poral variation in animal availability to survey efforts
would improve our method. For example, passive
acoustic monitoring data could be easily incorporated
into this framework, although these data are currently
limited to providing presence-only information in
small areas over long time periods or broader regions
over shorter time scales. However, while false killer
whales can be distinguished acoustically from other
species (Baumann-Pickering et al. 2015), it is not cur-
rently possible to attribute an acoustic detection to a
specific population (Barkley et al. 2019). There is some
overlap between the MHI insular false killer whales
and nearby populations (Baird et al. 2013, Fader et al.
2021, Oleson et al. 2023); thus, incorporating passive
acoustic monitoring data would need to take into ac-
count the potential for overlap among populations. In-
corporating additional auxiliary data into abundance
estimation will greatly aid recovery metric accuracy
and power to detect trends, as well as stakeholder con-
fidence in management actions for this population.

Data archive. Code and summarized data (encounter his-
tories, utilization distributions) that can be used to run a
pseudospatial analysis can be found at https://github.com/
badgerjj/pseudospatial CR. The raw data from which these
data were made belong to CRC and are subject to their data
access requirements.
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