Pelagic Fisheries of the Western Pacific Region

2011 Annual Report

Cover photo: Opah at the United Fish Auction, Honolulu, Hawaii (Photo by Don Hawn, National Marine Fisheries Service Pacific Islands Regional Office)

A report of the Western Pacific Regional Fishery Management Council

Pelagic Fisheries of the Western Pacific Region 2011 Annual Report

May 15, 2013

Prepared by the Pelagics Plan Team and Council Staff

for the

Western Pacific Regional Fishery Management Council 1164 Bishop Street, Suite 1400, Honolulu, Hawaii 96813

Table of Contents

Table of Contents	iv
I. Introduction	1
A. Background to the Annual Report	1
B. The Pelagic Species of the Western Pacific Region	3
C. Pelagic Gear Types and Fisheries of the Western Pacific Region	5
II. Development and Description of the Fisheries of the Western Pacific Region	6
A. American Samoa	6
Traditional and Historical Pelagic Fisheries	6
2. Pelagic Fisheries Development	
3. Administrative or Management Actions to Date	
B. Guam	
Traditional and Historical Pelagic Fisheries	
2. Pelagic Fisheries Development	
3. Administrative or Management Actions to Date	
C. Hawaii	
Traditional and Historical Pelagic Fisheries	
2. Pelagic Fisheries Development	
3. Administrative or Management Actions to Date	
D. Commonwealth of the Northern Marianas Islands	
Traditional and Historical Pelagic Fisheries	
2. Pelagic Fisheries Development	
3. Administrative or Management Actions to Date	
E. Pacific Remote Island Areas	
Traditional and Historical Pelagic Fisheries	
2. Pelagic Fisheries Development	
3. Administrative or Management Actions to Date	
III. The Current Status of Pelagic Fisheries of the Western Pacific Region	
V. Data Modules	
A. American Samoa	
B. Commonwealth of the Northern Mariana Islands	
C. Guam	
D. Hawaii	
E. International	297
1. The 2011 purse-seine fishery in the WCPFC Convention Area	
2. The 2011 longline fishery in the WCP-CA	
3. Stock status and WPRFMC reference points	
F. Marine Recreational Fisheries of the Western Pacific Region	
Appendix 1	
Appendix 2	
Glossary of Terms	
List of Acronyms	338

List of Tables

Table 1. Names of Pacific Pelagic Management Unit Species	4
Table 2. Total pelagic landings in lbs in the Western Pacific Region in 2011	
American Samoa	
Table 3. American Samoa 2011 estimated total landings of pelagic species by gear type Table 4. American Samoa 2011 estimated commercial landings, value and average price by	
pelagic species.	•
Table 5. Longline effort by American Samoan vessels during 2011	
Table 6. Number of fish kept, released and percent released for all American Samoa longly vessels during 2011	line
Table 7. American Samoa 2011 trolling bycatch	
Table 8. American Samoa annual estimated total landings of tuna and non-tuna	33
PMUS in pounds	37
Table 9. American Samoa annual estimate total landings of mahimahi by gear in pounds.	
Table 10. American Samoa annual estimated total landings of wahoo by gear in pounds	
Table 11. American Samoa annual estimated total landings of blue marlin by gear in pour	
Table 12. American Samoa annual estimated total sailfish landing in pounds by gear type	
Table 13. American Samoa annual estimated total landings of skipjack tuna in pounds	
	47
Table 14. American Samoa annual estimated total landings of yellowfin tuna by gear	
in pounds	49
Table 15. American Samoa annual commercial landings of tunas and non-tuna PMUS	54
Table 16. Number of American Samoa boats landing any pelagic species, tunas and	
non-tuna PMUS	56
Table 17. Number of American Samoa boats landing any pelagic species by longlining,	
\mathcal{U}	58
Table 18. Number of American Samoa troll trips and longline sets for all pelagic species	
by method	
Table 19. Number of American Samoa sample days, trolling interviews, and trolling trips	
Table 20. Number of American Samoa hours fished for all pelagic species by longlining.	66
Table 21. Thousands of American Samoa longline hooks set from logbook and creel	_
survey data	
Table 22. American Samoa pelagic catch per hour of trolling and number of trolling hours	s 70
Table 23. American Samoa trolling CPUEs in pounds per hour fished for blue marlin, mahimahi, and wahoo.	72
Table 24. American Samoa trolling CPUEs for skipjack and yellowfin tuna in pounds	
per hour fished	74
Table 25. American Samoa catch/1000 hooks for two types of longline vessels from	
1996 to 1999	76
Table 26. American Samoa catch/1000 hooks for two types of longline vessels from	
2003 to 2005	77

Table 27.	American Samoa catch/1000 hooks for two types of longline vessels	
	from 2006 to 2011	
Table 28.	Creel survey average weight per fish in pounds (1996-2002)	80
Table 29.	Creel survey average weight per fish (2003-2009)	80
Table 30.	Creel survey average weight per fish (2010-2011)	81
Table 31.	Cannery sampled average weight per fish in pounds (1998-2002)	82
Table 32.	Cannery-sampled average weight per fish in pounds (2003-2008)	82
	Cannery-sampled average weight per fish in pounds (2009-2011)	
Table 34.	American Samoa commercial pelagic fishing revenues in unadjusted and	
	inflation-adjusted dollars 1982-2011 including consumer price index (CPI)	85
Table 35.	American Samoa average price per pound of tuna PMUS and non-tuna	
	PMUS in unadjusted and inflation-adjusted dollars 1982-2011	87
Table 36.	American Samoa commercial pelagic revenues in unadjusted and	
	inflation-adjusted dollars per trip	89
CNMI		
Table 37.	CNMI Creel Survey 2011 pelagic species composition	92
	CNMI 2011 estimated commercial pelagic landings, revenues and price	
	(from Commercial Receipt invoices)	93
Table 39.	Boat-based survey statistics: raw data	102
Table 40.	CNMI trolling catch rates from commercial receipt invoices for mahimahi,	
	wahoo, and blue marlin (pounds/trip)	113
Table 41.	CNMI trolling catch rates from commercial receipt invoices for skipjack tuna,	
	yellowfin tuna, and skipjack tuna from the Creel Survey (pounds/trip)	115
Table 42.	CNMI consumer price indices (CPI), CPI adjustment factors, and commercial	
	receipt invoice coverage	116
Table 43.	CNMI estimated total commercial landings (lbs) from commercial receipt	
	invoices for tuna and non-tuna PMUS	
	CNMI estimated commercial landings for mahimahi, wahoo, and blue marlin	120
Table 45.	CNMI estimated commercial purchase database landings for skipjack tuna	
	and yellowfin tuna	
	CNMI number of commercial vessels	
	CNMI Number of fishing trips commercially landing pelagic species	
	CNMI annual adjusted commercial revenues from pelagic species	
	CNMI average adjusted price for commercially landed species (\$/lb)	
	CNMI per-trip adjusted revenues for commercially sold pelagic species	132
Table 51.	CNMI non-charter and charter trolling bycatch summary based on interview	
	catch data, 2000-2011	133
Cuarr		
Guam Table 52	Guam 2011 creel survey - pelagic species composition	127
	Guam 2011 average commercial price of pelagic species	
	Annual consumer price indices (CPI) and CPI adjustment factors	
1 aut 34.	randal consumer price marces (Cr. 1) and Cr. 1 adjustment factors	133

Table 55.	Guam estimated total pelagics landings: all pelagics landings, tuna PMUS	1 4 1
T 11 56	landings, and non-tuna PMUS landings	141
Table 56.	Guam annual boat-based creel estimated landings: total pelagics, non-charter	1.40
m 11 <i>57</i>	landings, and charter landings	143
Table 57.	Guam annual boat-based creel estimated tuna landings: total landings,	1 45
T-1-1- 50	non-charter landings, and charter landings.	145
Table 58.	Guam annual boat-based creel estimated non-tuna PMUS landings: total,	1.47
Table 50	non-charter vessels, and charter vessels (pounds)	14/
1 able 39.	Guam annual estimated mahimahi landings: total, non-charter landings, and charter landings (pounds)	149
Table 60	Guam annual estimated wahoo landings: total landings, non-charter landings,	149
Table 00.	and charter landings (pounds)	151
Table 61	Guam annual estimated blue marlin landings: total landings, non-charter	131
Table 01.	landings, charter landings (pounds)	153
Table 62	Guam annual estimated skipjack tuna landings: total, non-charter, and charter	133
1 4010 02.	landings (pounds)	155
Table 63	Guam annual estimated yellowfin tuna landings: total, non-charter, and	133
1 4010 03.	charter landings (pounds)	157
Table 64	Guam annual estimated commercial landings: all pelagics, tuna PMUS, and	157
1 4010 0 1.	non-tuna PMUS	159
Table 65.	Guam estimated number of trolling vessels from boat-based creel surveys	
	Guam Estimated number of trolling trips	
	Guam estimated number of trolling hours	
	Guam estimated trip length (hours per trip)	
	Guam estimated annual commercial revenues in inflation-adjusted dollars:	
	all pelagics, tuna PMUS, and non-tuna PMUS	169
Table 70.	Guam annual estimated inflation-adjusted average price of pelagics (\$/lb):	
	all pelagics, tuna PMUS, and non-tuna PMUS	171
Table 71.	Guam trolling CPUE (lbs/hr)	173
Table 72.	Guam trolling CPUE (lbs/hr): mahimahi	175
Table 73.	Guam trolling CPUE (lbs/hr): wahoo	177
Table 74.	Guam trolling CPUE (lbs/hr): skipjack tuna	179
Table 75.	Guam trolling CPUE (lbs/hr): yellowfin tuna	181
Table 76.	Guam trolling CPUE (lbs/hr): blue marlin	183
Table 77.	Guam annual inflation-adjusted revenue per trolling trip: all pelagics, tuna	
	PMUS, and non-tuna PMUS	
	Guam foreign longline transshipment landings (mt)	
	Guam numbers of trips and interviews for the creel trolling method	
	2011 Guam trolling bycatch data	
Table 81.	Trolling bycatch annual summaries	189
<u>Hawaii</u>		
Table 82.	Number of Hawaii licenses per fishing method in 2010-2011	193

Table 83. Hawaii commercial pelagic landings, revenue, and average price by species, 2010-2011	195
Table 84. Hawaii commercial pelagic landings, revenue, and average price by fishery,	
2010-2011	
Table 85. Hawaii total commercial landings and revenue, 1987-2011	199
1987-2011	201
Table 87. Hawaii total commercial pelagic landings by gear type, 1987-2011	
Table 88. Hawaii total commercial pelagic ex-vessel revenue by gear type, 1987-2011	
Table 89. Hawaii commercial tuna landings by gear type, 1987-2011	
Table 90. Species composition of tuna landings, 1987-2011	
Table 91. Hawaii bigeye tuna landings, 1987-2011	
Table 92. Hawaii yellowfin tuna landings, 1987-2011	
Table 93. Hawaii skipjack tuna landings, 1987-2011	
Table 94. Hawaii albacore tuna landings, 1987-2011	
Table 95. Hawaii billfish landings, 1987-2011	
Table 96. Species composition of billfish landings, 1987-2011	
Table 97. Hawaii swordfish landings, 1987-2011	
Table 98. Hawaii blue marlin landings by gear type, 1987-2011	
Table 99. Hawaii striped marlin landings by gear type, 1987-2011	
Table 100. Hawaii commercial landings of other PMUS by gear type, 1987-2011	
Table 101. Species composition of other PMUS by gear type, 1987-2011	
Table 103. Hawaii shark landings, 1987-2011	
Table 104. Hawaii longline tuna landings, 1987-2011	
Table 105. Hawaii longline landings of other PMUS, 1987-2011	
Table 106. Hawaii longline landings of blue, mako, thresher, and other sharks,	240
1987-2011	250
Table 107. Hawaii-based longline catch (number of fish) by area, 1991-2011	
Table 108. Average weight in pounds of tunas landed by the Hawaii-based longline	231
fishery, 1987-2011	254
Table 109. Average weight in pounds of marlin, sailfish, swordfish, and spearfish	234
landed by the Hawaii-based longline fishery, 1987-2011	255
Table 110. Average weight in pounds of mahimahi, wahoo, moonfish, pomfrets, oilfish,	233
and sharks landed by the Hawaii-based longline fishery, 1987-2011	256
Table 111. Bycatch, retained catch, and total catch for the Hawaii-based longline	230
fishery, 2011	259
Table 112. Hawaii longline CPUE for major tunas on tuna trips, 1991-2011	
Table 113. Hawaii longline swordfish CPUE by trip type, 1991-2011	
Table 114. Hawaii longline striped and blue marlin CPUE by trip type, 1991-2011	
Table 115. Hawaii longline mahimahi and ono CPUE by trip type, 1991-2011	
Table 116. Hawaii longline moonfish and pomfret CPUE by trip type, 1991-2011	
Table 117. Number of Main Hawaiian Islands troll fishers and number of days	200
fished, 1987-2011	271
115HOU, 1707-4011	4/1

Table 118. Main Hawaiian Islands troll tuna landings, 1987-2011	. 274
Table 119. Number of Main Hawaiian Islands handline fishers and days fished, 1987-2011	
Table 120. Main Hawaiian Island handline tuna landings per trip, 1987-2011	
Table 121. Main Hawaiian Island handline tuna CPUE, 2003-2011	
Table 122. Number of offshore handline fishers and days fished, 1990-2011	. 287
Table 123. Offshore handline landings of bigeye, yellowfin, and mahimahi, 1990-2011	. 290
Table 124. Average weight by species for the troll and handline landings, 1987-2011	. 292
International Fisheries	
Table 125. Total reported purse seine catch (metric tons) of skipjack, yellowfin and	
bigeye tuna in the Pacific Ocean	
Table 126. Total reported longline catch (metric tonnes) of PMUS in the Pacific Ocean	. 303
Table 127. Total reported pole-and-line catch (metric tonnes) of skipjack in the Pacific	20.5
Ocean.	
Table 128. Estimated annual catch (metric tons) of tuna species in the Pacific Ocean	
Table 129. Schedule of completed stock assessments for WPRFMC PMUS	. 310
Table 130. Estimates of stock status in relation to overfishing and overfished reference	210
points for WPRFMC PMUS	. 318
Table 131. U.S. and American Samoa longline landings in the North Pacific Ocean,	
American Samoa landings in the South Pacific Ocean, and total landings as reported to WCPFC and IATTC, 2007-2011	210
Table 132. U.S. longline landings in the Pacific and Eastern Pacific Oceans as reported to	. 319
WCPFC and IATTC, 2007-2011	320
WCITC and IATIC, 2007-2011	. 320
Recreational Fisheries	
Table 133. Estimated recreational pelagic fish catches in the four principal island groups	
of the Western Pacific Region in 2011	. 326
Table 134. Estimated catches by pelagic charter fishing vessels in Guam, Hawaii and	
CNMI in 2011	. 326
Table 135. Comparison of species composition of landings made by Hawaii pelagic charter	
vessels versus commercial troll vessels, 2011	. 327
Table 136. Comparison of species composition of landings made by Guam pelagic charter	
vessels versus commercial troll vessels, 2011	. 327
Table 137. Charter vessel catches in Hawaii by island, 2011	
Table 138. Composition of charter vessel catches in the Main Hawaiian Islands, 2011	. 328
Table 139. Recreational fish catches in Hawaii from 2003-2011	. 331
List of Figures	
List of Figures Figure 1. Map of the Western Pacific Region	1
Tigule 1. Map of the western Facilie Region	1
American Samoa	
Figure 2. Number of fish released by American Samoa longline vessels	34

Figure 3. American Samoa annual estimated total landings of tuna and non-tuna PMUS in	
pounds	36
Figure 4. American Samoa annual estimated total landings of mahimahi by gear in pounds	38
Figure 5. American Samoa annual estimated total landings of wahoo by gear in pounds	40
Figure 6. American Samoa annual estimated total landings of blue marlin by gear in pounds	42
Figure 7. American Samoa annual estimated total sailfish landing in pounds by gear type	44
Figure 8. American Samoa annual estimated total landings of skipjack tuna in pounds	
by gear type	46
Figure 9. American Samoa annual estimated total landings of yellowfin tuna by gear	
in pounds	48
Figure 10. American Samoa annual estimated total landings of bigeye tuna by longlining	
in pounds	50
Figure 11. American Samoa annual estimated total landings of albacore by longlining in	
pounds	51
Figure 12. American Samoa annual estimated total longline swordfish landings in pounds	
Figure 13. American Samoa annual commercial landings of tunas and non-tuna PMUS	53
Figure 14. Number of American Samoa boats landing any pelagic species, tunas and	
non-tuna PMUS	55
Figure 15. Number of American Samoa boats landing any pelagic species by longlining,	
trolling and all methods.	57
Figure 16. Number of permitted and active longline fishing vessels in the A (\geq 40 foot)	
and D (> 70.1 foot) size classes	59
Figure 17. Number of permitted and active longline fishing vessels in the B (40.1 to 50 foot)	
and C (50.1 to 70 foot) size classes	59
Figure 18. Number of American Samoa troll trips and longline sets for all pelagic species	~1
J	61
Figure 19. Number of American Samoa sample days, trolling interviews, and trolling trips	
Figure 20. Number of American Samoa hours fished for all pelagic species by longlining	03
Figure 21. Thousands of American Samoa longline hooks set from logbook and creel	67
survey data	67
Figure 22. American Samoa pelagic catch per hour of trolling and number of trolling hours	09
Figure 23. American Samoa trolling CPUEs in pounds per hour fished for blue marlin,	71
mahimahi, and wahoo	/ 1
Figure 24. American Samoa trolling CPUEs for skipjack and yellowfin tuna in pounds	70
per hour fished	73
Figure 25. American Samoa longline albacore tuna CPUE for alias and mono-hull vessels	
based on longline logbook data	
Figure 26. Albacore: average weight per fish	
Figure 27. Average weight per fish for other cannery species (cannery-sampled)	
Figure 28. American Samoa annual inflation-adjusted revenue in 2011 dollars for	84
Figure 29. American Samoa average inflation-adjusted price per pound of tunas and	
non-tuna PMUS	86

Figure 30. American Samoa average inflation-adjusted revenue per trolling trip landing pelagic species	88
CNMI	
Figure 31. Annual CNMI boat-based creel estimated total landings for all pelagics, tuna PMUS, and non-tuna PMUS	94
Figure 32. Annual CNMI boat-based creel estimated tuna landings for all, non-charter, and charter pelagics for 2000-2011	
Figure 33. Annual CNMI boat-based creel estimated non-tuna PMUS landings for all,) 5
non-charter, and charter pelagics for 2000-2011	96
Figure 34. Annual CNMI boat-based creel estimated mahimahi landings	97
Figure 35. Annual CNMI boat-based creel estimated wahoo landings	98
Figure 36. Annual CNMI boat-based creel estimated blue marlin landings	
Figure 37. Annual CNMI boat-based creel estimated skipjack tuna landings	100
Figure 38. Annual CNMI boat-based creel estimated yellowfin landings	
Figure 39. CNMI boat-based creel estimated number of trolling trips	
Figure 40. CNMI boat-based creel estimated number of trolling hours	104
Figure 41. CNMI boat-based creel estimated average troll trip length (hours/trip)	
Figure 42. CNMI boat-based creel trolling CPUE (pounds/hour) for all pelagic species	
Figure 43. CNMI boat-based creel trolling CPUE (pounds/hour) for mahimahi	
Figure 44. CNMI boat-based creel trolling CPUE (pounds/hour) for wahoo	
Figure 45. CNMI boat-based creel trolling CPUE (pounds/hour) for skipjack tuna	
Figure 46. CNMI boat-based creel trolling CPUE (pounds/hour) for yellowfin tuna	
Figure 47. CNMI boat-based creel trolling CPUE (pounds per hour) for blue marlin	111
Figure 48. CNMI trolling catch rates from commercial receipt invoices for mahimahi,	
wahoo, and blue marlin (pounds/trip)	112
Figure 49. CNMI trolling catch rates from commercial receipt invoices for skipjack tuna,	
yellowfin tuna, and skipjack tuna from the Creel Survey (pounds/trip)	114
Figure 50. CNMI estimated total commercial landings (lbs) from commercial receipt	
invoices for tuna and non-tuna PMUS	
Figure 51. CNMI estimated commercial landings for mahimahi, wahoo, and blue marlin	119
Figure 52. CNMI estimated commercial purchase database landings for skipjack tuna and	
yellowfin tuna	121
Figure 53. CNMI number of commercial vessels landing pelagic species from commercial	
receipt invoices	
Figure 54. CNMI number of fishing trips commercially landing pelagic species	
Figure 55. CNMI annual adjusted commercial revenues from pelagic species	127
Figure 56. CNMI average inflation-adjusted price for commercially landed pelagic	120
species (dollars per pound)	
Figure 57. CNMI per-trip adjusted revenues for commercially sold pelagic species	131
<u>Guam</u>	
Figure 58. Guam annual estimated total landings: all pelagics landings, tuna PMUS	
landings, and non-tuna PMUS landings	140

Figure 59. Guam annual estimated total landings: total pelagics landings, non-charter	142
landings, and charter landings	142
and charter landings.	144
Figure 61. Guam estimated non-tuna PMUS landings: total landings, non-charter	• • •
	146
Figure 62. Guam annual estimated mahimahi landings: total landings, non-charter	
	148
Figure 63. Guam annual estimated wahoo landings: total landings, non-charter landings,	
and charter landings	150
Figure 64. Guam annual estimated blue marlin landings: total landings, non-charter	
landings, charter landings	152
Figure 65. Guam annual estimated skipjack tuna landings: total, non-charter, and charter	151
	154
Figure 66. Guam annual estimated yellowfin tuna landings: total, non-charter, and charter landings	156
Figure 67. Guam annual estimated commercial landings: all pelagics, tuna PMUS, and	150
non-tuna PMUS	158
Figure 68. Guam estimated number of trolling vessels	
Figure 69. Guam estimated number of trolling trips	
Figure 70. Guam estimated number of trolling hours	
Figure 71. Guam estimated trip length (hours per trip)	
Figure 72. Guam estimated annual commercial revenues in inflation-adjusted dollars:	
all pelagics, tuna PMUS, and non-tuna PMUS	168
Figure 73. Guam annual estimated inflation-adjusted average price of pelagics (\$/lb):	
all pelagics, tuna PMUS, and non-tuna PMUS	170
Figure 74. Guam trolling CPUE (lbs/hr)	172
Figure 75. Guam trolling CPUE (lbs/hr): mahimahi	
Figure 76. Guam trolling CPUE (lbs/hr): wahoo	
Figure 77. Guam trolling CPUE (lbs/hr): skipjack tuna	
Figure 78. Guam trolling CPUE (lbs/hr): yellowfin tuna	
Figure 79. Guam trolling CPUE (lbs/hr): blue marlin	182
Figure 80. Guam annual inflation-adjusted revenue per trolling trip: all pelagics, tuna	
PMUS, and non-tuna PMUS	184
Figure 81. Guam foreign longline transshipment landings (mt) from vessels fishing	
outside the Guam EEZ	186
TT!!	
Hawaii Figure 82. Hawaii total commercial landings and revenue, 1987-2011	108
Figure 83. Hawaii commercial tuna, billfish, shark, and other PMUS landings, 1987-2011	
Figure 84. Hawaii total commercial pelagic landings by gear type 1987-2011	
Figure 85. Total commercial pelagic ex-vessel revenue by gear type 1987-2011	
Figure 86. Hawaii commercial tuna landings by gear type, 1987-2011	
Figure 87. Species composition of the tuna landings by gear type, 1987-2011	

Figure 88. Hawaii bigeye tuna landings by gear type, 1987-2011	210
Figure 89. Hawaii yellowfin tuna landings by gear type, 1987-2011	
Figure 90. Hawaii skipjack tuna landings by gear type, 1987-2011	
Figure 91. Hawaii albacore landings by gear type, 1987-2011	
Figure 92. Hawaii commercial billfish landings by gear type, 1987-2011	
Figure 93. Species composition of the billfish landings, 1987-2011	220
Figure 94. Hawaii swordfish landings, 1987-2011	
Figure 95. Hawaii blue marlin landings by gear type, 1987-2011	224
Figure 96. Hawaii striped marlin landings by gear type, 1987-2011	
Figure 97. Hawaii commercial landings of other PMUS by gear type, 1987-2011	
Figure 98. Species composition of other PMUS landings, 1987-2011	
Figure 99. Hawaii mahimahi landings by gear type, 1987-2011	232
Figure 100. Hawaii wahoo (ono) landings by gear type, 1987-2011	234
Figure 101. Hawaii moonfish landings, 1987-2011	
Figure 102. Hawaii pomfret landings, 1987-2011	236
Figure 103. Hawaii shark landings, 1987-2011	
Figure 104. Number of Hawaii-based longline vessels, 1987-2011	239
Figure 105. Number of trips by the Hawaii-based longline fishery, 1991-2011	240
Figure 106. Number of hooks set by the Hawaii-based longline fishery, 1991-2011	241
Figure 107. Hawaii longline landings and revenue, 1987-2011	
Figure 108. Hawaii longline tuna landings, 1987-2011	
Figure 109. Hawaii longline billfish landings, 1987-2011	245
Figure 110. Hawaii longline marlin landings, 1987-2011	245
Figure 111. Hawaii longline landings of other PMUS, 1987-2011	247
Figure 112. Hawaii longline blue and total shark landings, 1987-2011	
Figure 113. Hawaii longline mako, thresher and other shark landings, 1987-2011	249
Figure 114. Hawaii longline CPUE for major tunas on tuna trips, 1991-2011	259
Figure 115. Hawaii longline swordfish CPUE by trip type, 1991-2011	261
Figure 116. Longline blue marlin CPUE by trip type, 1992-2011	
Figure 117. Longline striped marlin CPUE by trip type, 1992-2011	263
Figure 118. Hawaii longline mahimahi CPUE by trip type, 1991-2011	
Figure 119. Hawaii longline ono (wahoo) CPUE by trip type, 1991-2011	265
Figure 120. Hawaii longline moonfish CPUE by trip type, 1991-2011	267
Figure 121. Hawaii longline pomfret CPUE by trip type, 1994-2011	267
Figure 122. Hawaii longline blue shark CPUE by trip type, 1991-2011	269
Figure 123. Number of Main Hawaiian Islands troll fishers and number of days fished,	
1987-2011	270
Figure 124. Main Hawaiian Islands troll landings and revenue, 1987-2011	272
Figure 125. Main Hawaiian Islands troll tuna landings, 1987-2011	273
Figure 126. Main Hawaiian Islands troll billfish landings, 1987-2011	
Figure 127. Main Hawaiian Islands troll landings of other pelagic PMUS, 1987-2011	
Figure 128. Main Hawaiian Islands troll tuna CPUE, 1987-2011	
Figure 129. Main Hawaiian Island troll marlin CPUE, 1987-2011	278
Figure 130. Main Hawaiian Island troll mahimahi and wahoo (ono) CPUE, 1987-2011	

Figure 131.	Number of Main Hawaiian Islands handline fishers and days fished, 1987-2011	280
_	Main Hawaiian Island handline landings and revenue, 1987-2011	
	Main Hawaiian Island handline tuna landings, 1987-2011	
•	Main Hawaiian Island handline tuna CPUE, 1987-2011	
_	Number of offshore handline fishers and days fished, 1990-2011	
	Offshore handline landings and revenue, 1990-2011	
Figure 137.	Offshore handline landings of bigeye and yellowfin tuna, 1990-2011	289
Figure 138.	Offshore handline CPUE, 1990-2011	291
Figure 139.	Hawaii aku boat (pole and line) vessel and trip activity, 1987-2011	293
	Hawaii aku boat (pole and line) landings and revenue, 1987-2011	
Figure 141.	Hawaii aku boat (pole and line) fishery landings, 1987-2011	295
Figure 142.	Hawaii aku boat (pole and line) fishery total landings per trip, 1987-2011	296
Internationa	al Fisheries	
Figure 143.	The western and central Pacific Ocean (WCPO), the eastern Pacific Ocean (EPO) and the WCPFC Convention Area	
Figure 144.	Total purse seine catch of skipjack and yellowfin tuna in the Pacific Ocean,	
8	1968–2011	300
Figure 145.	Reported longline tuna catches in the Pacific Ocean	
	Reported longline billfish catches in the Pacific Ocean	
	Reported pole-and-line catch (metric tons) in the Pacific Ocean	
-	Estimated total catch of tuna species in the Pacific Ocean	
•	Specification of fishing mortality and biomass reference points in the	
8	WPRFMC Pelagics FMP and current stock status in the western-central	
	(WCPO) and eastern Pacific Ocean (EPO)	310
Figure 150.	Ratios of F/F _{MSY} (top) and B/B _{MSY} (bottom) for skipjack tuna in the WCP-CA	
-	Ratios of F/ F_{MSY} (top) and B/ B_{MSY} (bottom) for yellowfin tuna in the WCP-CA	
-	Ratios of F/F _{MSY} F (top) and B/B _{MSY} (bottom) for bigeye tuna in the WCP-CA	
-	Ratios of F/F_{MSY} (top) and B/B_{MSY} (bottom) for South Pacific albacore	
Recreationa		
Figure 154.	Annual number of small vessel fleet registrations in Hawaii, 1966-2010 - total fle	eet
	size and percentage of vessels being registered for commercial fishing	323
-	Catch number estimates for six major pelagic species in 2003-2011	332
Figure 156.	Annual recreational fishery landings by weight of six major pelagic fish species	
	in Hawaii between 2003 and 2011	332
Figure 157.	Average weight of six major pelagic fish species caught by recreational fishing	
	in Hawaii between 2003 and 2011	333
Figure 158.	Annual recreational catch per unit effort (lbs per trip) for six major pelagic	
	species in Hawaii between 2003 and 2011	
Figure 159.	Boat fishing trip estimates (number of angler trips) from 2003-2011	334

Pelagic Fisheries of the Western Pacific Region — 2010 Annual Report

I. Introduction

A. Background to the Annual Report

The Fishery Management Plan (FMP) for Pelagic Fisheries of the Western Pacific Region was implemented by the National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NMFS) on 23 March 1987. The Western Pacific Regional Fishery Management Council (WPRFMC, or Council) developed the FMP to manage the pelagic resources that are covered by the Magnuson Fishery Conservation and Management Act of 1976 and that occur in the US Exclusive Economic Zone (EEZ) around American Samoa, Guam, Hawaii, the Commonwealth of the Northern Mariana Islands (CNMI), and the US possessions in the Western Pacific Region (Johnston Atoll, Kingman Reef and Palmyra, Jarvis, Howland, Baker, Midway, and Wake Islands). In 2010, the Council and NMFS implemented the Pelagics Fishery Ecosystem Plan (FEP) that manages the fisheries while taking ecosystem considerations into account.

Figure 1. Map of the Western Pacific Region

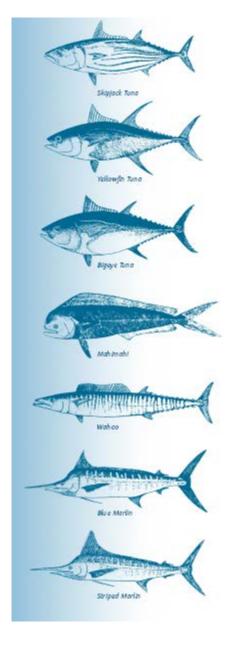
The abridged objectives of the Pelagics FEP are to:

• Utilize a science-based ecosystem approach to resource management in an ecologically and culturally-sensitive manner to maintain diverse, productive marine ecosystems.

- Flexible and adaptive management systems that respond quickly to new scientific information and changes in environmental conditions or human use patterns.
- Reduce unsustainable human impacts and foster stewardship through improving public and government awareness and understanding of marine environments.
- Encourage and provide for sustained and substantive participation of local communities in exploration, development, conservation, and management of marine resources.
- Minimize fishery bycatch and waste to the extent practicable.
- Manage and co-manage protected species, protected habitats, and protected areas.
- Promote safety of human life at sea.
- Encourage and support appropriate compliance and enforcement with local and federal fishery regulations.
- Increase collaboration with domestic and foreign regional fishery management organizations, communities, and public to successfully manage marine ecosystems.
- Improve quantity and quality of available information to support marine ecosystem management.

Non-tuna PMUS are sometimes referred to as "other PMUS" in this report. This term is equivalent to PMUS (Pelagic Management Unit Species) used in annual reports previous to 1992, before tunas were included in the management unit.

The PMUS are caught in the troll, longline, handline and pole-and-line (baitboat) fisheries. They are caught in oceanic as well as insular pelagic waters. Most of these species are considered to be epipelagic because they occupy the uppermost layers of the pelagic zone. All are trophically high-level predators. Pelagic fisheries for PMUS are among the most important, if not the dominant, Pacific Island fisheries.

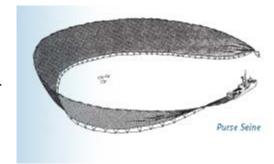

This report contains fishery performance data from each of the four island groups through 2011, and interpretations of trends or important events occurring in the fisheries and recommendations. The Hawaii report is an integration of State of Hawaii Division of Aquatic Resources and NMFS summaries. This report was prepared using reports submitted by the following agencies:

- Territory of American Samoa, Department of Marine and Wildlife Resources
- Territory of Guam, Division of Aquatic and Wildlife Resources
- Territory of Guam, Department of Commerce
- State of Hawaii, Division of Aquatic Resources
- Commonwealth of the Northern Mariana Islands, Division of Fish and Wildlife
- NMFS, Pacific Islands Region (including Pacific Islands Fisheries Science Center, Pacific Islands Regional Office, and Office for Law Enforcement)
- US Coast Guard, District 14
- Pelagic Fisheries Research Program, University of Hawaii

A list of the Pelagic Plan Team members during 2011 and persons responsible for compilation of this report are included in Appendix 1.

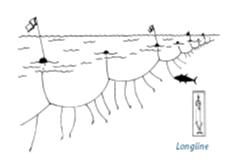
B. The Pelagic Species of the Western Pacific Region

The Management Unit Species (MUS) managed under the Pelagic FEP excludes dogtooth tuna (*Gymnosarda unicolor*) and all sharks except the following nine species: pelagic thresher shark (*Alopias pelagicus*), bigeye thresher shark (*Alopias superciliosus*), common thresher shark (*Alopias vulpinus*), silky shark (*Carcharhinus falciformis*), oceanic whitetip shark, (*Carcharhinus longimanus*), blue shark (*Prionace glauca*), shortfin mako shark (*Isurus oxyrinchus*), longfin mako shark (*Isurus paucus*), and salmon shark (*Lamna ditropis*) (Table 1).


Table 1. Names of Pacific Pelagic Management Unit Species

English Common Name	Scientific Name	Samoan or AS local	Hawaiian or HI local	Chamorroan or Guam local	S. Carolinian or NMI local	N. Carolinian or NMI local
Mahimahi (dolphinfishes)	Coryphaena spp.	Masimasi	Mahimahi	Botague	Sopor	Habwur
Wahoo	Acanthocybium solandri	Paala	Ono	Toson	Ngaal	Ngaal
Indo-Pacific blue marlin Black marlin	Makaira mazara: M. indica	Sa'ula	A'u, Kajiki	Batto'	Taghalaar	Taghalaar
Striped marlin	Tetrapturus audax		Nairagi			
Shortbill spearfish	T. angustirostris	Sa'ula	Hebi	Spearfish		
Swordfish	Xiphias gladius	Sa'ula malie	A'u kū, Broadbill, Shutome	Swordfish	Taghalaar	Taghalaar
Sailfish	Istiophorus platypterus	Sa'ula	A'u lepe	Guihan layak	Taghalaar	Taghalaar
Pelagic thresher shark Bigeye thresher shark Common thresher shark Silky shark Oceanic whitetip shark Blue shark Shortfin mako shark Longfin mako shark Salmon shark	Alopias pelagicus Alopias superciliosus Alopias vulpinus Carcharhinus falciformis Carcharhinus longimanus Prionace glauca Isurus oxyrinchus Isurus paucus Lamna ditropis	Malie	Mano	Halu'u	Paaw	Paaw
Albacore	Thunnus alalunga	Apakoa	'Ahi palaha, Tombo	Albacore	Angaraap	Hangaraap
Bigeye tuna	T. obesus	Asiasi, To'uo	'Ahi po'onui, Mabachi	Bigeye tuna	Toghu, Sangir	Toghu, Sangir
Yellowfin tuna	T. albacares	Asiasi, To'uo	'Ahi shibi	'Ahi, Shibi	Yellowfin tuna	Toghu
Northern bluefin tuna	T. thynnus		Maguro			
Skipjack tuna	Katsuwonus pelamis	Atu, Faolua, Ga'oga	Aku	Bunita	Angaraap	Hangaraap
Kawakawa	Euthynnus affinis	Atualo, Kavalau	Kawakawa	Kawakawa	Asilay	Hailuway
Moonfish	Lampris spp	Koko	Opah		Ligehrigher	Ligehrigher
Oilfish family	Gempylidae	Palu talatala	Walu, Escolar		Tekiniipek	Tekiniipek
Pomfret	family Bramidae	Manifi moana	Monchong			
Other tuna relatives	Auxis spp, Scomber spp; Allothunus spp	(various)	Ke'o ke'o, saba (various)	(various)	(various)	(various)

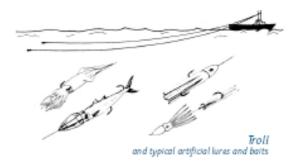
C. Pelagic Gear Types and Fisheries of the Western Pacific Region


U.S. pelagic fisheries in the Western Pacific Region are, with the exception of purse seining, primarily variations of hook-and-line fishing. These include longlining, trolling, handlining, and pole-and-line fishing.

The largest fishery in terms of tonnage of fish landed is the U.S. purse-seine fishery, with catches of skipjack, yellowfin and bigeye tuna amounting to 87,994 mt. However, this fleet has decreased in size from a peak in 1984 of 61 vessels to 14 vessels in 2004, but rebuilt after 2006 to between 36-38 vessels as of 2011.

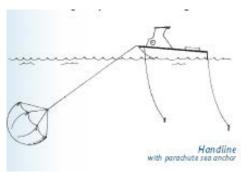
The U.S. fleet of albacore trollers, based at West Coast ports, amounts to about 400 vessels, fishing primarily in

the temperate waters of the North Pacific and landing in 2003 about 17,000 mt of fish. Some vessels from this fleet also fish seasonally for albacore in the South Pacific. In the past catches by this fishery reached abour 4,900 mt (in 1991) but more recently catches have amounted to between 200-300 mt.



U.S. longline vessels in the Western Pacific Region are based primarily in Hawaii and American Samoa, although Hawaii-based vessels targeting swordfish have also fished seasonally out of California. The Hawaii fishery, with 128 vessels, targets a range of species, with vessels setting shallow longlines to catch swordfish or fishing deep to maximize catches of bigeye tuna. Catches by the Hawaii fleet also include yellowfin tuna, mahimahi (dolphinfish, dorado), wahoo, blue and striped marlins, opah (moonfish) and

monchong (pomfret). The Hawaii fishery does not freeze its catch, which is sold to the fresh fish and sashimi markets in Hawaii, Japan, and the U.S. mainland.


The American Samoa fleet of about 24 active vessels, down from a peak of 70 active vessels in 2001, fishes almost exclusively for albacore tuna, which is landed to two tuna canneries in American Samoa. The combined landings from the two fisheries in 2011 amounted to 33.1 million pounds of all pelagic management unit species, with about 80% of landings coming from the Hawaii fishery. In 2011, the combined landings of blue and striped marlins from the longline fishery amounted to 1.8 million pounds, 95% of which were landed in Hawaii.

Trolling and, to lesser extent, handline fishing for pelagics is the largest commercial fishery in terms of participation, although it catches annually a relative modest volume of fish amounting to about 5.1 million lbs (3,000 mt). Part of this catch is made by charter or for-hire fishing vessels. There are 1,598 troll vessels and 496 handline vessels in Hawaii, 37

troll vessels in CNMI, 454 troll vessels in Guam, and 10 troll vessels in American Samoa. Troll and handline catches are dominated by yellowfin tuna in Hawaii, by skipjack tuna in Guam and CNMI, and skipjack and yellowfin tuna in American Samoa. Other commonly caught troll catches include mahimahi, wahoo, and blue marlin. About 81 percent of the troll and handline landings are made by Hawaii vessels.

Troll fishing for pelagics is the commonest recreational fishery in the islands of the Western Pacific Region. The definition of recreational fishing, however, continues to be problematic in a region where many fishermen who are fishing primarily for recreation may sell their fish to cover their expenses. Hawaii's 2011 recreational fishery landings amounted to about 40 million lbs, based on surveys of fishermen, with blue marlin landings at about 183,000 lbs (31%). Recreational or non-commercial landings from boats in Guam were about 61,000 lbs in 2011, 60% of which was blue marlin.

In 2011, tuna fisheries in the Pacific Ocean as a whole catch about 2.9 million mt of fish, with U.S. fisheries in the Western Pacific Region catching about 0.6% of the total. Most of the catch is taken by fleets of high seas longliners and purse seiners from countries such as Japan, Taiwan, Korea and the nations of Central and South America. More recently, Pacific Island countries such as Papua New Guinea have grown in importance in terms of their large scale purse-seine and longline fisheries. Small

scale artisanal longlining is also conducted in Pacific Island countries like Samoa and in South America, where there are thousands of small scale longline vessels fishing in coastal waters.

II. Development and Description of the Fisheries of the Western Pacific Region

A. American Samoa

The islands of American Samoa are an area of modest productivity relative to areas to the north and west. The region is traversed by two main currents: the southern branch of the westward-flowing South Equatorial Current during June - October and the eastward-flowing South Equatorial Counter Current during November - April. Surface temperatures vary between 27°-29° C and are highest in the January - April period. The upper limit of the thermocline in ocean areas is relatively shallow (27° C isotherm at 100m depth) but the thermocline itself is diffuse (lower boundary at 300m depth).

1. Traditional and Historical Pelagic Fisheries

Small-scale longline: This fishery is almost defunct with only one vessel still operating. Most participants in the small-scale domestic longline fishery were indigenous American Samoans with vessels under 50 ft in length, most of which are alia boats under 40 ft in length. The stimulus for American Samoa's commercial fishermen to shift from troll or handline gear to longline gear in the mid-1990s was the fishing success of 28' alia catamarans that engaged in longline fishing in the EEZ around Independent Samoa. Following this example, the fishermen in American Samoa deployed a short monofilament longline, with an average of 350 hooks per

set, from a hand-powered reel (WPRFMC, 2000). An estimated 90 percent of the crews working in the American Samoa small-scale alia longline fleet were from Independent Samoa. Like the conventional monohull longline fishery (see below) the predominant catch from the small scale fishery albacore tuna, which is marketed to the local tuna canneries.

Large-scale longline: American Samoa's domestic longline fishery expanded rapidly in 2001. Much of the recent (and anticipated future) growth is due to the entry of monohull vessels larger than 50 ft in length. The number of permitted longline vessels in this sector increased from seven in 2000 to 38 by 2003. Of these, five permits for vessels between 50.1 ft - 70 ft and five permits for vessels larger than 70 ft were believed to be held by indigenous American Samoans as of March 21, 2002. Economic barriers have prevented more substantial indigenous participation in the large-scale sector of the longline fishery. The lack of capital appears to be the primary constraint to substantial indigenous participation in this sector. In 2011, although there are still 39 permitted vessels greater than 50 feet length, only 23 are active compared to the 31 active vessels in 2003.

While the smallest (less than or equal to 40 ft) vessels average 350 hooks per set, a vessel over 50 ft can set 5-6 times more hooks and has a greater fishing range and capacity for storing fish (8-40 mt as compared to 0.5-2 mt on a small-scale vessel). Larger vessels are also outfitted with hydraulically-powered reels to set and haul mainline, and modern electronic equipment for navigation, communications and fish finding. Most are presently being operated to freeze albacore onboard, rather than to land chilled fish. Three vessels that left Hawaii after the swordfish longline fishery closure are operating in the American Samoa tuna longline fishery under new ownership. It does not appear that large numbers of longliners from Hawaii are relocated in American Samoa. Instead, large vessels have participated in the American Samoa longline fishery from diverse ports and fisheries, including the US west coast (6), Gulf of Mexico (3), and foreign countries (4 now under U.S. ownership).

Distant-water purse seine fishery: The US purse seine fleet operating in the central and western Pacific uses large nets to capture skipjack, yellowfin and bigeye tuna near the ocean surface, in free-swimming schools and around fish aggregation devices (FADs) deployed by the fleet. These vessels often land their catches at canneries based in American Samoa. These large vessels (200-250 ft length) could not be economically operated for longline fishing but some former participants in the U.S. purse seine fishery have acquired more suitable vessels and participated in the American Samoa-based longline fishery.

Distant-water jig albacore fishery: Domestic albacore jig vessels also supply tuna to the canneries in American Samoa. Between 1988 and 2001 about 30-55 US vessels participated in the high-seas troll fishery for albacore. This fishery occurs seasonally (December through April) in international waters at 35°-40° S latitude. The vessels range in length from 50 to 120 feet, with the average length about 75 feet. They operate with crews of 3-5 and are capable of freezing 45-90 tons of fish. Currently (2007-2011), only 3-6 vessels have operated in this fishery and catch between 150 and 300 mt of fish annually.

Troll and handline fishery: From October 1985 to the present, catch and effort data in American Samoa fisheries have been collected through a creel survey that includes subsistence and

recreational fishing, as well as commercial fishing. However, differentiating commercial troll fishing activity from non-commercial activity can be difficult.

Recreational fishing has undergone a renaissance in American Samoa through the establishment of the Pago Pago Game Fishing Association (PPGFA), which was founded by a group of recreational anglers in 2003. The motivation to form the PPGFA was the desire to host regular fishing competitions. There are about 15 recreational fishing vessels ranging from 10 ft single engine dinghies to 35 ft twin diesel engine cabin cruisers. The PPGFA has annually hosted international tournaments in each of the past five years with fishermen from neighboring Samoa and Cook Islands attending. The recreational vessels use anchored fish aggregating devices (FADs) extensively, and on tournaments venture to the various outer banks which include the South Bank (35 miles), North East Bank (40 miles NE), South East bank (37 miles SE), 2% bank (40 miles), and East Bank (24 miles East). Several recreational fishermen have aspirations to become charter vessels and are in the process of obtaining captains (6 pack) licenses. The PPGFA plays host to the Steinlager I'a Lapo'a Game Fishing Tournament, which is a qualifying event for the International Game Fish Association's Offshore World Championship in Cabo San Lucas, Mexico.

There was no full-time regular charter fishery in American Samoa similar to those in Hawaii or Guam. However, Pago Pago Marine Charters, which is concerned primarily with industrial work such as underwater welding, construction, and salvage, now operates a full time charter fishery.

Estimation of the volume and value of recreational fishing in American Samoa is not known with any precision. A volume approximation of boat based recreational fishing is generated in the Council's Pelagics Annual Report, based on the annual sampling of catches conducted under the auspices of WPacFIN. Boat-based recreational catches have ranged from 857 to 46,462 lb between 2002 and 2011, with an average of about 14,000 lbs.

2. Pelagic Fisheries Development

American Samoan dependence on fishing undoubtedly goes back as far as the peopled history of the islands of the Samoan archipelago, about 3,500 years ago. Many aspects of the culture have changed in contemporary times but American Samoans have retained a traditional social system that continues to strongly influence and depend upon the culture of fishing. Centered around an extended family (`aiga) and allegiance to a hierarchy of chiefs (matai), this system is rooted in the economics and politics of communally-held village land. It has effectively resisted Euro-American colonial influence and has contributed to a contemporary cultural resiliency unique in the Pacific islands region.

The small economy in American Samoa continues to develop. Its two most important sectors are the American Samoa Government (ASG), which receives income and capital subsidies from the federal government, and tuna canning (BOH 1997). In 2011, total export value of commodities was about \$17 million; \$13.4 million is attributed to canned tuna (ASG DOC Statistical Yearbook, pg. 203, 2011). Private businesses and commerce comprise a smaller third sector. Unlike some of its South Pacific neighbors, American Samoa has never had a robust tourist industry.

The excellent harbor at Pago Pago, 390,000 square kilometers of EEZ, and certain special provisions of U.S. law form the basis of American Samoa's decades-old fish processing industry (BOH 1997). The territory is exempt from the Nicholson Act, which prohibits foreign ships from landing their catches in U.S. ports. American Samoan products with less than 50 percent market value from foreign sources enter the United States duty free (Headnote 3(a) of the U.S. Tariff Schedule). In 1997 tuna processing directly and indirectly generated about 15 percent of current money wages, 10 to 12 percent of aggregate household income, and 7 percent of government receipts in the territory (BOH 1997) and these numbers are thought to be fairly reliable up until Chicken-of-the-Sea (COS) closed. Prior to the COS tuna cannery closure, canning provided 8,118 jobs (5,538 direct 2,580 indirect) in American Samoa – 45.6 percent of total employment (McPhee and Associates 2008). The COS closure resulted in the loss of approximately 2,000 of those jobs. Cannery exports accounted for the majority of total exports of goods and services (BEA 2011) in 2008-2009, and still do in 2011 (DOC SD 2011). In 2011, 618,000 cases of tuna were exported from American Samoa with a value of approximately \$13.4 million (DOC SD 2011).

In 2011, the ASG employed 6,177 people (34 percent of total employment; DOC Statistical Yearbook, pg. 137, 2011), and the private sector employed 10,036 people. Canneries employed only 1,815 people, which is just 10% of the people employed. As of 2011, there were 34,767 people 16 years and older in the labor force.

Harsh working conditions, low wages and long fishing trips have discouraged American Samoans from working on foreign longline vessels delivering tuna to the canneries. American Samoans prefer employment on the U.S. purse seine vessels, but the capital-intensive nature of purse seine operations limits the number of job opportunities for locals in that sector as well. However, the presence of the industrial tuna fishing fleet has had a positive economic effect on the local economy as a whole. Ancillary businesses involved in re-provisioning the fishing fleet generate a significant number of jobs and amount of income for local residents.

The tuna processing industry has had a mixed effect on the commercial fishing activities undertaken by American Samoans. The canneries often buy fish from the small-scale domestic longline fleet based in American Samoa, although the quantity of this fish is insignificant compared to cannery deliveries by the U.S. purse seine, U.S. albacore and foreign longline fleets. The ready market provided by the canneries is attractive to the small boat fleet, and virtually all of the albacore caught by the domestic longline fishery is sold to the canneries.

Local fishermen have indicated an interest in participating in the far more lucrative overseas market for fresh fish. To date, however, inadequate shore-side ice and cold storage facilities in American Samoa and infrequent and expensive air transportation links have been restrictive factors.

American Samoa's position in the industry is being eroded by forces at work in the world economy and in the tuna canning industry itself. Whereas wage levels in American Samoa are the US minimum wage, they are considerably higher than in other canned tuna production centers around the world. To remain competitive, U.S. tuna producers are purchasing more raw

materials, especially pre-cooked loins, from foreign manufacturers. Tax benefits to US canneries operating in American Samoa have also been tempered by the removal of a provision in the US tax code that previously permitted the tax-free repatriation of corporate income in US territories. Trends in world trade, specifically reductions in tariffs, are reducing the competitive advantage of American Samoa's duty-free access to the US canned tuna market.

3. Administrative or Management Actions to Date

Along with the original measures placed into the Pelagics FMP, the following amendments were made which affected the pelagic fisheries of American Samoa:

FMP AMENDMENT 1 (effective March 1, 1991) defined recruitment overfishing and optimum yield for each PMUS.

FMP AMENDMENT 2 (effective May 26, 1991) implemented permitting and logbook requirements for domestic pelagic longline fishing and transshipment vessel operators.

FMP AMENDMENT 8 (effective Feb. 3, 1999, and July 3, 2003) addressed new requirements under the 1996 Sustainable Fisheries Act, included designations of essential fish habitat, descriptions of fishing communities, overfishing definitions and bycatch.

FMP AMENDMENT 10 (prepared and transmitted to the NMFS for approval in parallel with the

FMP for Coral Reef Ecosystems of the Western Pacific Region) clarified the PMUS by removing all but truly oceanic sharks to the Coral Reef Ecosystems FMP along with dogtooth tuna.

FMP AMENDMENT 11 (effective May 24, 2005) established a limited access system for pelagic longlining in EEZ waters around American Samoa with initial entry criteria based on historical participation in the fishery.

In 2006 NMFS notified the Council that overfishing of Western and Central Pacific yellowfin tuna was occurring and requested the Council to take appropriate action to end the overfishing. The Council was informed that the entire U.S. harvest of yellowfin tuna in the Western and Central Pacific was only about 4 percent of the total area's catch and that NMFS welcomed the Council's participation as a member in international fishery management organizations.

FMP AMENDMENT 14 (partially approved by NMFS on May 16, 2007) was developed in response to NMFS' notifications that Pacific-wide bigeye and Western and Central Pacific yellowfin tuna were subject to overfishing. It contained recommendations regarding both international and domestic management, including a mechanism by which the Council could participate in international negotiations regarding these stocks.

FMP REGULATORY AMENDMENT 7 (effective May 17, 2007) provided pelagic fishery participants the option of using NMFS approved electronic logbooks in lieu of paper logbooks. This measure was implemented to improve the efficiency and accuracy of catch reporting.

FRAMEWORK MEASURE 1 (effective March 1, 2002) established an area seaward of 3 nm

out to approximately 50 nm around the islands of American Samoa in which fishing for PMUS is prohibited by vessels greater than 50 feet in length overall that did not land PMUS in American Samoa under a federal longline general permit prior to Nov. 13, 1997.

FMP AMENDMENT 15 (effective December 22, 2008) designated three species of pelagic squid as management unit species, and established permitting, reporting, and observer requirements for squid jig fishing vessels over 50ft (15.4 m) in length.

FEP AMENDMENT 1 (effective September 3, 2010) established eligibility requirements and procedures for reviewing and approving community development plans for Western Pacific fisheries.

FEP AMENDMENT 2 was disapproved on July 11, 2011. The intent was to establish a purse seine area closure in American Samoa.

FEP AMENDMENT 4 (effective June 27, 2011) established a mechanism for specifying annual catch limits for Western Pacific fisheries.

FEP AMENDMENT 5 (effective August 24, 2011) modified gear configurations for the American Samoa longline fishery to reduce sea turtle interactions.

B. Guam

Generally, the major surface current affecting Guam is the North Equatorial Current, which flows westward through the islands. Sea surface temperatures off Guam vary between $80.9^{\circ} - 84.9^{\circ}$ F, depending on the season. The mixed layer extends to depths between 300 and 400 ft.

1. Traditional and Historical Pelagic Fisheries

Guam's pelagic fisheries consist of primarily small, recreational, trolling boats that are either towed to boat launch sites or berthed in marinas and fish only within local waters, either within the EEZ around Guam or on some occasions in the adjacent EEZ waters around the Northern Mariana Islands.

Landings consisted primarily of five major species: mahimahi (*Coryphaena hippurus*), wahoo (*Acanthocybium solandri*), bonita or skipjack tuna (*Katsuwonus pelamis*), yellowfin tuna (*Thunnus albacares*), and Pacific blue marlin (*Makaira mazara*). Other minor pelagic species caught include rainbow runner (*Elagatis bipinnulatus*), great barracuda (*Sphyraena barracuda*), kawakawa (*Euthynnus affinis*), dogtooth tuna (*Gymnosarda unicolor*), double-lined mackerel (*Grammatorcynus bilineatus*), oilfish (*Ruvettus pretiosus*), and three less common species of barracuda.

The number of boats involved in Guam's pelagic or open ocean fishery gradually increased from about 200 vessels in 1982. There were 454 boats active in Guam's domestic pelagic fishery in 2011. A majority of the fishing boats are less than 10 meters (33 feet) in length and are usually owner-operated by fishermen who earn a living outside of fishing. Most fishermen

sell a portion of their catch at one time or another and it is difficult to make a distinction between recreational, subsistence, and commercial fishers. A small, but significant, segment of Guam's pelagic fishery is made up of marina-berthed charter boats that are operated primarily by full-time captains and crews.

2. Pelagic Fisheries Development

Fishing in Guam continues to be important not only in terms of contributing to the subsistence needs of the Chamorro people but also in terms of preserving their history and identity. Fishing assists in perpetuating traditional knowledge of marine resources and maritime heritage of the Chamorro culture.

The importance of commercial fishing in Guam lies mainly in the territory's status as a major regional fish transshipment center and re-supply base for domestic and foreign tuna fishing fleets. Among Guam's advantages as a home port are well-developed and highly efficient port facilities in Apra Harbor; an availability of relatively low-cost vessel fuel; a well-established marine supply/repair industry; and recreational amenities for crew shore leave. In addition, the territory is exempt from the Nicholson Act, which prohibits foreign ships from landing their catches in U.S. ports. Initially, the majority of vessels calling in Apra Harbor to discharge frozen tuna for transshipment were Japanese purse seine boats and carrier vessels. In the late 1980s, Guam became an important port for Japanese and Taiwanese longline fleets, but port calls have steadily declined and the transshipment volume has also declined accordingly.

By the early 1990s, an air transshipment operation was also established on Guam. Fresh tuna was flown into Guam from the Federated States of Micronesia and elsewhere on air cargo planes and out of Guam to the Japanese market on wide-body passenger planes. Further, vessels from Japan and Taiwan also landed directly into Guam where their fish was packed and transshipped by air to Japan. A second air transshipment operation began in the mid-1990s; it was transporting to Europe fish that did not meet Japanese sashimi market standards, but this has since ceased operations. Moreover, the entire transshipment industry has contracted markedly with only a few operators still making transshipments to Japan. Annual volumes of tuna transshipped of between 2007 and 2011 averages about 3,400 mt compared to over 12,000 mt at the peak of operations between 1995 and 2001.

3. Administrative or Management Actions to Date

Along with the original measures placed into the Pelagics FMP, the following amendments were made which affected the pelagic fisheries of Guam:

FMP AMENDMENT 1 (effective March 1, 1991) defined recruitment overfishing and optimum yield for each PMUS.

FMP AMENDMENT 2 (effective May 26, 1991) implemented permitting and logbook requirements for domestic pelagic longline fishing and transshipment vessel operators.

FMP AMENDMENT 5 (effective March 2, 1992) created domestic longline vessel exclusion zones around the Main Hawaiian Islands (MHI) ranging from 50 to 75 nm and a similar 50 nm exclusion zone around Guam and its offshore banks.

FMP AMENDMENT 6 (effective Nov. 27, 1992) specified that all tuna species are designated as fish under U.S. management authority and included tunas and related species as PMUS under the FMP. It also applied the longline exclusion zones of 50 nm around the island of Guam and the 25-75 nm zone around the MHI to foreign vessels.

AMENDMENT 8 (effective Feb. 3, 1999, and July 3, 2003) addressed new requirements under the 1996 Sustainable Fisheries Act, included designations of essential fish habitat, descriptions of fishing communities, overfishing definitions and bycatch.

FMP AMENDMENT 10 (prepared and transmitted to the NMFS for approval in parallel with the FMP for Coral Reef Ecosystems of the Western Pacific Region) clarified the PMUS by removing all but truly oceanic sharks to the Coral Reef Ecosystems FMP along with dogtooth tuna. In 2006 NMFS notified the Council that overfishing of Western and Central Pacific yellowfin tuna was occurring and requested the Council to take appropriate action to end the overfishing. The Council was informed that the entire U.S. harvest of yellowfin tuna in the Western and Central Pacific was only about 4 percent of the total area's catch and that NMFS welcomed the Council's participation as a member in international fishery management organizations.

FMP AMENDMENT 14 (partially approved by NMFS on May 16, 2007) was developed in response to NMFS' notifications that Pacific-wide bigeye and Western and Central Pacific yellowfin tuna were subject to overfishing. It contained recommendations regarding both international and domestic management, including a mechanism by which the Council could participate in international negotiations regarding these stocks.

FMP REGULATORY AMENDMENT 7 (effective May 17, 2007) provided pelagic fishery participants the option of using NMFS approved electronic logbooks in lieu of paper logbooks. This measure was implemented to improve the efficiency and accuracy of catch reporting.

FMP AMENDMENT 15 (effective December 22, 2008) designated three species of pelagic squid as management unit species, and established permitting, reporting, and observer requirements for squid jig fishing vessels over 50ft (15.4 m) in length.

FEP AMENDMENT 1 (effective September 3, 2010) established eligibility requirements and procedures for reviewing and approving community development plans for Western Pacific fisheries.

FEP AMENDMENT 4 (effective June 27, 2011) established a mechanism for specifying annual catch limits for Western Pacific fisheries.

C. Hawaii

The archipelago's position in the Pacific Ocean lies within the clockwise rotating North Pacific Subtropical Gyre, extending from the northern portion of the North Equatorial Current into the region south of the Subtropical High, where the water moves eastward in the North Pacific Current. At the pass between the MHI and the NWHI there is often a westward flow from the region of Kauai along the lee side of the lower NWHI. This flow, the North Hawaiian Ridge Current (NHRC), is extremely variable and can also be absent at times. The analysis of 10 years of shipboard acoustic Doppler current profiler data collected by the NOAA Ship Townsend Cromwell shows mean flow through the ridge between Oahu and Nihoa, and extending to a depth of 200 m.

Imbedded in the mean east-to-west flow are an abundance of mesoscale eddies created from a mixture of wind, current, and sea floor interactions. The eddies, which can rotate either clockwise or counter clockwise, have important biological impacts. For example, eddies create vertical fluxes, with regions of divergence (upwelling) where the thermocline shoals and deep nutrients are pumped into surface waters enhancing phytoplankton production, and also regions of convergence (downwelling) where the thermocline deepens. Sea surface temperatures around the Hawaiian Archipelago experience seasonal variability, but generally vary between 18°-28° C (64°-82° F) with the colder waters occurring more often in the NWHI.

A significant source of inter-annual physical and biological variation around Hawaii are El Niño and La Niña events. During an El Niño, the normal easterly trade winds weaken, resulting in a weakening of the westward equatorial surface current and a deepening of the thermocline in the central and eastern equatorial Pacific. Water in the central and eastern equatorial Pacific becomes warmer and more vertically stratified with a substantial drop in surface chlorophyll.

Physical and biological oceanographic changes have also been observed on decadal time scales. These low frequency changes, termed regime shifts, can impact the entire ocean ecosystem. Recent regime shifts in the North Pacific have occurred in 1976 and 1989, with both physical and biological (including fishery) impacts. In the late 1980's an ecosystem shift from high carrying capacity to low carrying capacity occurred in the NWHI. The shift was associated with the weakening of the Aleutian Low Pressure System (North Pacific) and the Subtropical Counter Current. The ecosystem effects of this shift were observed in lower nutrient and productivity levels and decreased abundance of numerous species in the NWHI including the spiny lobster, the Hawaiian monk seal, various reef fish, the red-footed booby, and the red-tailed tropic bird.

1. Traditional and Historical Pelagic Fisheries

Hawaii's pelagic fisheries, which include the longline, Main Hawaiian Islands troll and handline, offshore handline, and the aku boat (pole and line) fisheries; are the state's largest and most valuable fishery sector. The target species are tunas and billfish, but a variety of other species are also important. Collectively, these pelagic fisheries made approximately 31.5 million lbs of commercial landings with a total ex-vessel value of \$87.5 million in 2011.

The largest component of pelagic catch in 2011 was tunas. Bigeye tuna was the largest component and has increased almost seven-fold from its 1987 catch. Swordfish was the largest component of the billfish catch from 1990 through 2000, but was replaced by blue marlin in the next two years, and followed by striped marlin in 2003 due to a swordfish fishery closure between 2001-2004. Swordfish re-assumed its preeminence as the principal landed billfish when the swordfish fishery reopened after April 2004. Mahimahi was the traditionally largest component of the non-tuna and non-billfish catch but is now about equal to moonfish (opah).

2. Pelagic Fisheries Development

Fishermen in Hawai'i earned \$71 million from their commercial harvest in 2009, landing almost 27 million pounds of finfish and shellfish. The Hawaii longline fishery is by far the most important economically, accounting for about 77 percent of the estimated ex-vessel value of the total commercial fish landings in the state. In 2009, it is estimated that the commercial seafood industry in Hawaii generated sales impacts of \$629 million, income impacts of \$184 million, and value-added impacts of \$273 million while supporting approximately 7,300 jobs in the State of Hawaii.

Recreational fisheries are also extremely important in the State of Hawaii, economically, socially, and culturally. The total estimated recreational fisheries production in 2009 and 2010 was 17.8 and 13 million pounds respectively. The resident angler population in 2009 was estimated to be 140,000 residents, supplemented by an additional 106,000 visitors who went fishing in Hawaii. These anglers took 2.2 million fishing trips in 2009 (80% were shore-based trips). In 2009, it is estimated that the recreational and charter fisheries in Hawaii generated sales impacts of \$460 million, income impacts of \$150 million, and value-added impacts of \$228 million while supporting approximately 4,300 jobs in the State of Hawaii.

3. Administrative or Management Actions to Date

Along with the original measures placed into the Pelagics FMP, the following amendments were made which affected the pelagic fisheries of Hawaii:

FMP AMENDMENT 1 (effective March 1, 1991) defined recruitment overfishing and optimum yield for each PMUS.

FMP AMENDMENT 2 (effective May 26, 1991) implemented permitting and logbook requirements for domestic pelagic longline fishing and transshipment vessel operators.

FMP AMENDMENT 3 (effective Oct. 14, 1991) created a 50 nm longline exclusion zone around the Northwestern Hawaiian Islands (NWHI) to protect endangered Hawaiian monk seals and also implemented framework provisions for establishing a mandatory observer program to collect information on interactions between longline fishing and sea turtles.

FMP AMENDMENT 4 (effective Oct. 10, 1991, through April 22, 1994) established a three-year moratorium on new entry into the Hawaii-based domestic longline fishery and required Hawaii-based longline vessels to carry and use a National Marine Fisheries Service (NMFS)-

owned vessel monitoring system (VMS) transmitter to ensure that they do not fish within prohibited areas.

FMP AMENDMENT 5 (effective March 2, 1992) created domestic longline vessel exclusion zones around the Main Hawaiian Islands (MHI) ranging from 50 to 75 nm and a similar 50 nm exclusion zone around Guam and its offshore banks.

FMP AMENDMENT 6 (effective Nov. 27, 1992) specified that all tuna species are designated as fish under U.S. management authority and included tunas and related species as PMUS under the FMP. It also applied the longline exclusion zones of 50 nm around the island of Guam and the 25-75 nm zone around the MHI to foreign vessels.

FMP AMENDMENT 7 (effective June 24, 1994) instituted a limited entry program for the Hawaii-based domestic longline fishery with transferable permits, a limit of 164 vessels, and a maximum vessel size of 101 feet in length overall.

FMP AMENDMENT 8 (effective Feb. 3, 1999, and July 3, 2003) addressed new requirements under the 1996 Sustainable Fisheries Act, included designations of essential fish habitat, descriptions of fishing communities, overfishing definitions and bycatch.

FMP AMENDMENT 9 (under development since early 2000) would manage the harvest and retention of sharks in the Hawaii-based longline fishery.

FMP AMENDMENT 10 (prepared and transmitted to the NMFS for approval in parallel with the FMP for Coral Reef Ecosystems of the Western Pacific Region) clarified the PMUS by removing all but truly oceanic sharks to the Coral Reef Ecosystems FMP along with dogtooth tuna.

In 2006 NMFS notified the Council that overfishing of Western and Central Pacific yellowfin tuna was occurring and requested the Council to take appropriate action to end the overfishing. The Council was informed that the entire U.S. harvest of yellowfin tuna in the Western and Central Pacific was only about 4 percent of the total area's catch and that NMFS welcomed the Council's participation as a member in international fishery management organizations.

FMP AMENDMENT 14 (partially approved by NMFS on May 16, 2007) was developed in response to NMFS' notifications that Pacific-wide bigeye and Western and Central Pacific yellowfin tuna were subject to overfishing. It contained recommendations regarding both international and domestic management, including a mechanism by which the Council could participate in international negotiations regarding these stocks. Amendment 14 also contained measures to implement control dates for Hawaii's non-longline commercial pelagic vessels (70 FR 47781, see above) and purse seine and longline vessels (70 FR 47782, see above), as well as requirements for federal permits and reporting for Hawaii-based non-longline commercial pelagic vessels. NMFS disapproved the Amendment's international measures as premature given ongoing international negotiations as well as the development of a memorandum of understanding by the Councils and the Secretary of Commerce, in consultation with the Secretary of State, regarding participation in U.S. delegations and other issues. NMFS disapproved Amendment 14's domestic permit and reporting requirements as duplicative of

existing requirements imposed by the State of Hawaii and stated that they were working with the State to improve their data collection and processing system. NMFS also noted that Amendment 14 met the requirements of the Magnuson-Act regarding overfishing of fisheries that have been determined to be subject to overfishing due to excessive international fishing pressure.

At the request of the Council NMFS issued a control date of March 16, 2007 to notify persons who entered the Hawaii-based pelagic charter fishery after that date that they would not necessarily be assured of continuing participation if a limited entry program was subsequently implemented for their fishery. The control date was issued in response to concerns regarding significant expansion of the charter vessel fleet and its potential to impact billfishes and other pelagic species.

FMP AMENDMENTS 9, 12 and 13 were intended to address issues which have now become moot due to changing circumstances, thus these amendment numbers may be used to designate future amendments.

FMP FRAMEWORK MEASURE 2 (effective June 13, 2002) incorporated the terms and conditions of a Nov. 28, 2000, Biological Opinion issued by the U.S. Fish and Wildlife Service under section 7 of the Endangered Species Act to protect seabirds from longline fishing. These measures require Hawaii-based pelagic longline vessel operators to use blue-dyed bait, strategic offal discards and line shooters with weighted branch lines to mitigate seabird interactions when fishing north of 23° N. Also included was a requirement that all Hawaii-based longline vessel owners and operators annually attend a protected species workshop conducted by NMFS.

FMP REGULATORY AMENDMENT 1 (effective June 9, 2002) incorporated the reasonable and prudent alternative of a March 2001 Biological Opinion issued by NMFS under section 7 of the Endangered Species Act. To mitigate interactions with sea turtles, this amendment prohibits shallow set pelagic longlining north of the equator by vessels managed under the FMP and closed waters between 0° and 15°N from April through May of each year to longline fishing. It also institutes sea turtle handling requirements for all vessels using hooks to target pelagic species in the region's EEZ waters.

FMP REGULATORY AMENDMENT 2 (effective Oct. 4, 2002) established federal permit and reporting requirements for any vessel using troll or handline gear to catch PMUS in EEZ waters around the Pacific Remote Island Areas of Kingman Reef; Howland, Baker, Jarvis, Johnston and Wake Islands; and Palmyra and Midway Atolls.

FMP REGULATORY AMENDMENT 3 (effective April 1, 2005) reopened swordfish longline fishing in Hawaii. The amendment requires vessels targeting swordfish to use mackerel type bait and 18/0 circle hooks. It also set an effort limit of 2,120 set per year and hard caps on loggerhead and leatherback turtles takes, which if reached would close the fishery for the remainder to the year.

FMP REGULATORY AMENDMENT 5 (effective January 18, 2006) allowed operators of Hawaii-based longline vessels fishing north of 23 degrees north latitude, as well as those targeting swordfish south of 23 degrees north, to utilize side-setting to reduce seabird interactions in lieu of the seabird mitigation measures required by Framework Measure 1. Side-

setting was tested on Hawaii-based longline vessels and found to be highly effective in reducing seabird interactions.

At the request of the Council NMFS published a temporary rule removing the delay in effectiveness for closing the Hawaii-based longline shallow-set swordfish fishery as a result of it having reached one of its turtle interaction limits (71 FR 14416). This rule was implemented as vessel communications had improved to the point that vessel operators could be immediately notified of a closure, thus removing the possibility of exceeding a turtle limit during the notification period. This rule was effective March 20, 2006 through September 18, 2006.

FMP REGULATORY AMENDMENT 6 (effective March 28, 2007) made the above temporary rule permanent.

FMP REGULATORY AMENDMENT 7 (effective May 17, 2007) provided pelagic fishery participants the option of using NMFS approved electronic logbooks in lieu of paper logbooks. This measure was implemented to improve the efficiency and accuracy of catch reporting.

NMFS published a temporary rule effective March 20, 2006 through December 31, 2006 closing the Hawaii-based longline swordfish fishery for the remainder of the calendar year due to its having reached its annual limit of 17 interactions with loggerhead turtles.

CONTROL DATE of June 19, 2008 set for Hawaii-based pelagic charter fishery. Anyone who enters this fishery after this control date is not guaranteed future participation in the fishery if the Western Pacific Regional Fishery Management Council recommends, and NMFS approves, management measures for this fishery (e.g. limited entry).

FMP AMENDMENT 15 (effective December 22, 2008) designated three species of pelagic squid as management unit species, and established permitting, reporting, and observer requirements for squid jig fishing vessels over 50ft (15.4 m) in length.

FEP AMENDMENT 1 (effective September 3, 2010) established eligibility requirements and procedures for reviewing and approving community development plans for Western Pacific fisheries.

FEP AMENDMENT 4 (effective June 27, 2011) established a mechanism for specifying annual catch limits for Western Pacific fisheries.

D. Commonwealth of the Northern Marianas Islands

Generally, the major surface current affecting CNMI is the North Equatorial Current, which flows westward through the islands, however the Subtropical Counter Current affects the Northern Islands and generally flows in a easterly direction. Depending on the season, sea surface temperatures near the Northern Mariana Islands vary between 80.9° – 84.9° F. The mixed layer extends to between depths of 300-400 ft.

1. Traditional and Historical Pelagic Fisheries

The CNMI's pelagic fisheries occur primarily from the island of Farallon de Medinilla south to the island of Rota. Trolling is the primary fishing method utilized in the pelagic fishery. The pelagic fishing fleet consists primarily of vessels less than 24 ft in length which usually have a limited 20-mile travel radius from Saipan.

The primary target and most marketable species for the pelagic fleet is skipjack tuna (64% of 2011 commercial landings). Yellowfin tuna and mahimahi are also easily marketable species but are seasonal. During their runs, these fish are usually found close to shore and provide easy targets for the local fishermen. In addition to the economic advantages of being near shore and their relative ease of capture, these species are widely accepted by all ethnic groups which has kept market demand fairly high.

2. Pelagic Fisheries Development

Fishery resources have played a central role in shaping the social, cultural and economic fabric of the CNMI. The aboriginal peoples indigenous to these islands relied on seafood as their principal source of protein and developed exceptional fishing skills. Later immigrants to the islands from East and Southeast Asia also possessed a strong fishing tradition. Under the MSA, the CNMI is defined as a fishing community.

In the early 1980s, U.S. purse seine vessels established a transshipment operation at Tinian Harbor. The CNMI is exempt from the Jones Act, which requires the use of U.S.-flag and U.S.-built vessels to carry cargo between U.S. ports. The U.S. purse seiners took advantage of this exemption by offloading their catch at Tinian onto foreign vessels for shipment to tuna canneries in American Samoa; however this operation closed in the 1990s. Over the past ten years a small 2-4 vessel longline fishing operation has operated in the CNMI but this ceased in 2012.

3. Administrative or Management Actions to Date

Along with the original measures placed into the Pelagics FMP, the following amendments were made which affected the pelagic fisheries of CNMI:

FMP AMENDMENT 1 (effective March 1, 1991) defined recruitment overfishing and optimum yield for each PMUS.

FMP AMENDMENT 2 (effective May 26, 1991) implemented permitting and logbook requirements for domestic pelagic longline fishing and transshipment vessel operators.

FMP AMENDMENT 8 (effective Feb. 3, 1999, and July 3, 2003) addressed new requirements under the 1996 Sustainable Fisheries Act, included designations of essential fish habitat, descriptions of fishing communities, overfishing definitions and bycatch.

FMP AMENDMENT 10 (prepared and transmitted to the NMFS for approval in parallel with the FMP for Coral Reef Ecosystems of the Western Pacific Region) clarified the PMUS by removing all but truly oceanic sharks to the Coral Reef Ecosystems FMP along with dogtooth tuna.

In 2006 NMFS notified the Council that overfishing of Western and Central Pacific yellowfin tuna was occurring and requested the Council to take appropriate action to end the overfishing. The Council was informed that the entire U.S. harvest of yellowfin tuna in the Western and Central Pacific was only about 4 percent of the total area's catch and that NMFS welcomed the Council's participation as a member in international fishery management organizations.

FMP AMENDMENT 14 (partially approved by NMFS on May 16, 2007) was developed in response to NMFS' notifications that Pacific-wide bigeye and Western and Central Pacific yellowfin tuna were subject to overfishing. It contained recommendations regarding both international and domestic management, including a mechanism by which the Council could participate in international negotiations regarding these stocks.

FMP REGULATORY AMENDMENT 7 (effective May 17, 2007) provided pelagic fishery participants the option of using NMFS approved electronic logbooks in lieu of paper logbooks. This measure was implemented to improve the efficiency and accuracy of catch reporting.

CONTROL DATE of June 19, 2008 was set for the CNMI pelagic longline fishery. Anyone who enters this fishery after this control date is not guaranteed future participation in the fishery if the Western Pacific Regional Fishery Management Council recommends, and NMFS approves, management measures for this fishery (e.g. limited entry).

FMP AMENDMENT 15 (effective December 22, 2008) designated three species of pelagic squid as management unit species, and established permitting, reporting, and observer requirements for squid jig fishing vessels over 50ft (15.4 m) in length.

FEP AMENDMENT 1 (effective September 3, 2010) established eligibility requirements and procedures for reviewing and approving community development plans for Western Pacific fisheries.

FEP AMENDMENT 3 (effective June 27, 2011) established a purse seine area closure and longline area closure in CNMI, of which only the longline closure was approved.

FEP AMENDMENT 4 (effective June 27, 2011) established a mechanism for specifying annual catch limits for Western Pacific fisheries.

E. Pacific Remote Island Areas

Baker Island lies within the westward flowing South Equatorial Current. Baker Island also experiences an eastward flowing Equatorial Undercurrent that causes upwelling of nutrient and plankton rich waters on the west side of the island (Brainard et. al 2005). Sea surface temperatures of pelagic EEZ waters around Baker Island are often near 30° C. Although the depth of the mixed layer in the pelagic waters around Baker Island is seasonally variable, average mixed layer depth is around 100 m.

Howland Island lies within the margins of the eastward flowing North Equatorial Counter Current and the margins of the westward flowing South Equatorial Current. Sea surface temperatures of pelagic EEZ waters around Baker Island are often near 30° C. Although the depth of the mixed layer in the pelagic waters around Howland Island is seasonally variable, average mixed layer depth is around 70 m - 90 m.

Jarvis Island lies within the South Equatorial Current which runs in a westerly direction. Sea surface temperatures of pelagic EEZ waters around Jarvis Island are often 28°- 30° C. Although depth of the mixed layer in the pelagic waters around Jarvis Island is seasonally variable, average mixed layer depth is around 80 m.

Palmyra Atoll and Kingman Reef lie in the North Equatorial Counter-current which flow in a west to east direction. Sea surface temperatures of pelagic EEZ waters around Palmyra Atoll are often 27°- 30° C. Although the depth of the mixed layer in the pelagic waters around Kingman Reef is seasonally variable, average mixed layer depth is around 80 m.

Sea surface temperatures of pelagic EEZ waters around Johnston Atoll are often 27° - 30° C. Although the depth of the mixed layer in the pelagic waters around Johnston Atoll is seasonally variable, average mixed layer depth is around 80 m.

Sea surface temperatures of pelagic EEZ waters around Wake Island are often 27°- 30° C. Although the depth of the mixed layer in the pelagic waters around Wake Atoll is seasonally variable, average mixed layer depth is around 80 m.

1. Traditional and Historical Pelagic Fisheries

As many tropical pelagic species (e.g. skipjack tuna) are highly migratory, the fishing fleets targeting them often travel great distances. Although the EEZ waters around Johnston Atoll and Palmyra Atoll are over 750 nm and 1000 nm (respectively) away from Honolulu, the Hawaii longline fleet does seasonally fish in those areas. For example, the EEZ around Palmyra is visited by Hawaii-based longline vessels targeting yellowfin tuna, whereas at Johnston Atoll, albacore tuna is often caught in greater numbers than yellowfin or bigyeye tuna. Similarly, the U.S. purse seine fleet also targets pelagic species (primarily skipjack tuna) in the EEZs around some PRIA, specifically, the equatorial areas of Howland, Baker, and Jarvis Islands. The combined amount of fish harvested from these areas from the U.S. purse seine on average is less than 5 percent of their total annual harvest.

2. Pelagic Fisheries Development

The USFWS prohibits fishing within the Howland Island, Jarvis Island, and Baker Island National Wildlife Refuge (NWR) boundaries. Currently, Howland Island and Baker Island are uninhabited. Currently the USFWS continues to manage Johnston Atoll as a National Wildlife Refuge, but does allow some recreational fishing within the Refuge boundary.

3. Administrative or Management Actions to Date

Along with the original measures placed into the Pelagics FMP, the following amendments were made which affected the pelagic fisheries of the PRIAs:

FMP AMENDMENT 1 (effective March 1, 1991) defined recruitment overfishing and optimum yield for each PMUS.

FMP AMENDMENT 2 (effective May 26, 1991) implemented permitting and logbook requirements for domestic pelagic longline fishing and transshipment vessel operators.

FMP AMENDMENT 8 (effective Feb. 3, 1999, and July 3, 2003) addressed new requirements under the 1996 Sustainable Fisheries Act, included designations of essential fish habitat, descriptions of fishing communities, overfishing definitions and bycatch.

FMP AMENDMENT 10 (prepared and transmitted to the NMFS for approval in parallel with the FMP for Coral Reef Ecosystems of the Western Pacific Region) clarified the PMUS by removing all but truly oceanic sharks to the Coral Reef Ecosystems FMP along with dogtooth tuna.

In 2006 NMFS notified the Council that overfishing of Western and Central Pacific yellowfin tuna was occurring and requested the Council to take appropriate action to end the overfishing. The Council was informed that the entire U.S. harvest of yellowfin tuna in the Western and Central Pacific was only about 4 percent of the total area's catch and that NMFS welcomed the Council's participation as a member in international fishery management organizations.

FMP AMENDMENT 14 (partially approved by NMFS on May 16, 2007) was developed in response to NMFS' notifications that Pacific-wide bigeye and Western and Central Pacific yellowfin tuna were subject to overfishing. It contained recommendations regarding both international and domestic management, including a mechanism by which the Council could participate in international negotiations regarding these stocks.

FMP REGULATORY AMENDMENT 7 (effective May 17, 2007) provided pelagic fishery participants the option of using NMFS approved electronic logbooks in lieu of paper logbooks. This measure was implemented to improve the efficiency and accuracy of catch reporting.

FMP REGULATORY AMENDMENT 2 (effective Oct. 4, 2002) established federal permit and reporting requirements for any vessel using troll or handline gear to catch PMUS in EEZ waters

around the Pacific Remote Island Areas of Kingman Reef; Howland, Baker, Jarvis, Johnston and Wake Islands; and Palmyra and Midway Atolls.

FMP AMENDMENT 15 (effective December 22, 2008) designated three species of pelagic squid as management unit species, and established permitting, reporting, and observer requirements for squid jig fishing vessels over 50ft (15.4 m) in length.

FEP AMENDMENT 1 (effective September 3, 2010) established eligibility requirements and procedures for reviewing and approving community development plans for Western Pacific fisheries.

FEP AMENDMENT 4 (effective June 27, 2011) established a mechanism for specifying annual catch limits for Western Pacific fisheries.

III. The Current Status of Pelagic Fisheries of the Western Pacific Region

A summary of the total pelagic landings during 2011 in the Western Pacific and the percentage change between 2010 and 2011 is shown in Table 2.

Table 2. Total pelagic landings in lbs in the Western Pacific Region in 2011

	American	Samoa	Gı	ıam	CNN	⁄II	Haw	aii
		%		%		%		%
Species	Lbs	change	Lbs	change	Lbs	change	Lbs	change
Swordfish	26,979	8.72%					3,320,000	-5.84%
Blue marlin	84,956	-13.32%	18,895	-38.67%	5,335	7208.22%	1,251,000	26.11%
Striped marlin	6,192	24.99%					925,000	146.01%
Other billfish	2,468	630.18%	0	-100.00%		-100.00%	591,000	82.41%
Mahimahi								
(dolphinfish)	22,603	25.23%	90,888	-68.49%	56,291	143.08%	1,634,000	-1.92%
Wahoo	24,906	-13.71%	37,354	-17.74%	11,863	310.91%	674,000	-10.01%
Opah (moonfish)	5,828	20.41%					1,606,000	-11.71%
Sharks (whole wt)	7,010	80.62%	238				234,000	-14.91%
Albacore tuna	4,935,429	-43.14%					1,762,000	80.53%
Bigeye tuna	348,940	-11.19%					13,282,000	1.70%
Bluefin tuna							0	-100.00%
Skipjack tuna	58,546	-76.37%	350,193	8.59%	224,587	80.98%	1,110,000	69.47%
Yellowfin tuna	1,026,527	4.37%	81,814	232.59%	41,249	35.21%	3,933,000	47.52%
Other pelagics	3,626	-70.17%	148,375	1020.40%	9,236	25.03%	74,000	-93.70%
Total	6,779,010	-37.01%	727,757	0.20%	348,561	85.06%	30,393,000	7.56%

Note: Total Pelagic Landings are based on commercial reports and/or creel surveys. "Other pelagics" includes Dogtooth Tuna, Rainbow Runner, Barracudas, Kawakawa, Pomfrets, Oilfish, and Misc Pelagic Fish categories

IV. 2010 International and Region-wide Pelagics Plan Team Recommendations

The Pelagics Plan Team met in Honolulu, Hawaii on April 26-28, 2011 and made the following Region-wide recommendations:

- 1. Acknowledging the requirement for the WPRFMC to take management action and given the disparity in the U.S. fishery catches of Pacific bluefin tuna between the western and eastern Pacific Ocean, with dramatically higher catches in the latter, the PPT recommends that the Pacific Council address the stock's overfishing status. If appropriate, the Chair and appropriate members of the PPT will confer with the Pacific Fishery Management Council's (Pacific Council) Highly Migratory Species Plan Team to develop options that would assist in making recommendations to the Secretary for domestic regulations to address the relative impact of fishing vessels on the U.S. on the stock. Furthermore, the teams could assist in the development of recommendations to the Secretary of State, and to the Congress, for international actions that will end overfishing.
- 2. The PPT reviewed draft Amendment 2 to the Pacific Council's Highly Migratory Species Fishery Management Plan which addresses National Standard 1 Guidelines. The PPT

concurs with the potential primary FMP designations identified in the amendment except for the following:

- i. The three tropical tuna stocks of skipjack, yellowfin, and bigeye tunas in the eastern and western central Pacific Ocean should be assigned only to the Pelagics FEP given the minimal catches of these species in fisheries under Pacific Council's authority.
- ii. Blue shark should have a shared designation between the two Councils, given the large volume of blue sharks caught in the Hawaii longline fishery, and that the NMFS Pacific islands Fisheries Science Center has taken the lead with blue shark stock assessments.
- iii. The footnote to Table 2-4 applicable to swordfish should include North Pacific Striped Marlin because the same issues concerning striped marlin genetics and stock assessments.

V. Data Modules

A. American Samoa

Introduction

The pelagic fishery in American Samoa is, and has been, an important component of the American Samoan domestic economy. Prior to 1995, the pelagic fishery was largely a troll fishery. Horizontal longlining was introduced to the Territory by Western Samoan fishermen in 1995. Local fishers have found longlining worthwhile as they land more poundage with less effort and use less gasoline per trip. Initially, alias were used for longline fishing. These are locally built, twin-hulled (wood with fiberglass or aluminum) vessels about 30 feet long, powered by 40HP gasoline outboard engines. Larger monohull vessels capable longer multi-day trips began joining the longline fleet soon after the alias. Monohull vessels now dominate the fleet and landings. The number of alias participating in the fishery has dropped to near zero at present. Commercial troll vessels have also declined. Federal longline logbooks were required during 1996. Two 50-mile area closures for vessels longer than 50 feet were implemented by the Council and NMFS during 2002; one surrounding Swains Island and one surrounding Tutuila and Anu'u Islands. Federal longline limited entry permits were issued in December 2005. Albacore is the primary species caught by longliners. The bulk of this catch is sold to the cannery on Tutuila. Some of the catch is sold to stores, restaurants, and local residents. Catch is also donated for family functions.

Pago Pago Harbor on the island of Tutuila is also a regional base for the trans-shipment and processing of tuna taken by domestic fleets from other South Pacific nations, distant-water longline fleets, and purse seine fleets. Purse seine vessels land skipjack, yellowfin, and other tunas, with little albacore. Purse seine and non-US vessel landings are not included in this report.

Fishery Data History

Prior to 1985, only commercial landings were monitored. From October 1985 to the present, data was collected through a boat-based creel survey including subsistence, recreational, and commercial fishing sectors. In September 1990, a Commercial Purchase (receipt book) System was instituted requiring all businesses in Samoa that buy fish commercially, except for the canneries, to submit a copy of their purchase receipts to Department of Marine and Wildlife Resources (DMWR). In January 1996, in response to the developing longline fishery, a federal longline logbook system was implemented. All longline fishermen are required to obtain a federal permit and submit logs containing detailed data on each set including catch composition. From 1996 through 1999, logbooks submitted by local longliners were edited in American Samoa and sent to the NMFS Honolulu Lab weekly for further editing and data processing. Beginning in 2000, logbook data has been electronically entered and maintained in American Samoa and periodically uploaded to NMFS servers in Hawaii.

Changes to the algorithms for expanding the boat-based creel survey data were described in the 2008 Pelagics Annual Report. These changes were necessary due to peculiarities in the historical data and the emergence of multi-day trips. Data from 1982-1985 were left unchanged; data from 1986-2006 were re-expanded. This recalculation accounts for differences in figures and tables between annual reports issued prior 2008 and subsequent reports. Additionally, in 2000, larger fish began to be measured rather than weighed, and the creel survey system was modified to

calculate and incorporate length to weight conversions. Issuance of cannery sampling forms began in 2001. Cannery sampling forms allow fishery managers to determine, for each species, whether catch was sold to small local vendors, to the canneries, or was unsold. Lastly, the method for determining price per pound was revised in 2001.

2011 Summary - American Samoan Pelagic Fishery

Total landings: This category refers to all fish returned to shore for commercial, recreational, or subsistence use.

Commercial landings: This category refers to that portion of the total landings that was sold commercially in American Samoa to canneries and other local businesses. Subsistence and recreational landing are excluded.

Landings (pounds): The estimated annual pelagic landings have varied widely, ranging from 1 to 15 million pounds between 1998 and 2011. Approximately 7 million pounds of pelagic species are estimated to have been landed in American Samoa in 2011, a decrease of about 35% from 2010. Landings consisted mainly of wahoo and four major tuna species – albacore, yellowfin, bigeye, and skipjack. Other species that made up most of the total landings are blue marlin, swordfish and mahimahi. Tuna species made up 93% of the total landings; albacore tuna comprised 75% of the tuna landings, while yellowfin contributed 15%. Non-tunas and other pelagic species made up 6% of the landings.

Effort: The number of longline boats landing any pelagic species gradually decreased from 62 in 2001 to 24 in 2011. These 24 boats deployed 3,776 sets with over 10.7 million hooks. The longline boats landing pelagic species decreased by two in 2011, continuing the declining trend over the past ten years. Hours spent fishing for all pelagics species by longliners from log books and from the creel survey are about the same at around 80,000, a decrease of 17% from 2010. There are two longline alias in the longline fishery that are very active. One participates 100% in the longline fishery and the other sometimes participates in the bottomfish fishery. Hardly any interviews were collected from these longline alias because their returning time was always at midnight or early morning before the creel survey begins.

Longline CPUE: The longline CPUE for albacore varied from 18 to 12 fish per 1000 hooks between 2006 and 2011. The 2011 catch rate for albacore decreased by 30% from the previous year and is the lowest rate within this time series. The yellowfin and skipjack catch rates also declined, while bigeye tuna slightly increased. The catch rate for all tunas decreased by 23% in 2011 (Table 5C).

Pounds-Per-Hour Trolling: Average pelagic catch pounds-per-hour trolling increased twofold from 2010. This is the highest rate in the fishery history at 51 pounds. The number of hour spent trolling also increased twofold in 2011. The contributing factor to the increase may be due to the increased effort by the alia fleet to troll for bait to bottomfish for the biosampling project which buys every species sampled and offers a good price per pound for species needed for the biosampling. These entice the troll alias to actively fish 3 to 4 times during the week for bait on their way to and from their fishing grounds. Free ice is also an incentive to participate in the fisheries.

Fish Size: Average weight-per-fish from the cannery samples for albacore remained relatively stable through the years. The weight per fish from the creel survey for albacore declined from 2009 and there is no data for 2010 and 2011 as there were very few interviews collected by the creel survey. The weight per fish for other species from the cannery samples showed a slight increase for bigeye tuna, while skipjack and yellowfin remained relatively the same.

Revenues: Inflation-adjusted revenues for tunas and non-tuna PMUS both increased in 2011. Adjusted revenue for tunas increased by 37% from 2010, continuing an increasing trend from 2008. Non-tuna adjusted revenues increased by more than 50% from the 2010 adjusted revenue. For the previous 5 years, revenue for non-tunas ranged from \$200,000 to \$500,000 annually. The adjusted revenue for tuna species peaked in 2002 at \$20.7 million. The 2011 adjusted revenue is the third highest. Since 2003, the adjusted revenue ranged from \$10 to \$15 million a year.

Bycatch: The 2011 longline bycatch by all boats totaled 12% or 26,000 fishes. 3% of 26,000 were tunas with skipjack and unknown tunas topping fish released. 61% of fish released were non-tuna PMUS; oilfish and sharks top the number of fish released. Unknown and other pelagic account for 4,000 of the total released fishes.

Plan Team Recommendations

2011 Recommendations

At the 150th meeting, the Council directed staff to prepare a Pelagics FEP amendment that would specify regulations for an American Samoa shallow-set longline fishery. The PPT recommends that, until the fishing industry expresses an interest in shallow-set fishing for swordfish in the South Pacific, no regulatory action should be taken. If and when such interest is expressed, the experimental (exempted) fishing permit process or the Council's Community Development Program would be appropriate ways to gather the information needed to develop appropriate fishery management recommendations.

Table 3. American Samoa 2011 estimated total landings of pelagic species by gear type.

	Longline	Troll	Other	Total
Species	Pounds	Pounds	Pounds	Pounds
Skipjack tuna	238,578	19,870	98	258,546
Albacore tuna	4,935,429	0	0	4,935,429
Yellowfin tuna	1,014,087	12,382	58	1,026,527
Kawakawa	0	218	0	218
Bigeye tuna	348,940	0	0	348,940
Tunas (unknown)	359	0	1,559	1,918
TUNAS				
SUBTOTALS	6,537,393	32,470	1,715	6,571,578
Mahimahi	21,992	611	0	22,603
Black marlin	2,468	0	0	2,468
Blue marlin	84,956	0	0	84,956
Striped marlin	6,192	0	0	6,192
Wahoo	249,861	55	0	249,916
Sharks (all)	6,760	115	135	7,010
Swordfish	26,979	0	0	26,979
Sailfish	6,820	1,478	0	8,298
Spearfish	11,638	0	0	11,638
Moonfish	5,828	0	0	5,828
Oilfish	1,609	0	276	1,885
Pomfret	1,038	0	0	1,038
NON-TUNA PMUS				
SUBTOTALS	426,143	2,258	411	428,812
Barracudas	1,430	343	520	2,293
Rainbow runner	0	47	52	99
Dogtooth tuna	0	87	234	321
Pelagic fishes	913	0	0	913
OTHER PELAGICS				
SUBTOTAL	2,344	477	806	3,626
TOTAL PELAGICS	6,965,879	35,205	2,932	7,004,016

Interpretation: About 7.0 million pounds of pelagic species were landed by all methods in American Samoa during 2011. Longline fishing topped (99%) the pelagic landings. Albacore tuna comprised 75% of the tuna landings and 71% of all pelagic landings, followed by yellowfin at 15%; bigeye, skipjack and unknown tunas comprised the rest of the total tuna landing. Wahoo topped the non-tuna PMUS all-methods total landings with 58%, followed by blue marlin, swordfish and mahi.

Calculations: "Longline Pounds" total landing estimates are from the boat-creel survey for the alia longliners. These boat-creel survey landing estimates are augmented with longline logbook

data from the larger longliners. The "Troll Pounds" category includes the pelagic landings of combined troll/bottomfishing trips as well as the landings of purely troll trips. The "Other Pounds" category includes pelagic species not caught by longlining or trolling such as barracuda, rainbow runner and dogtooth tuna, caught with bottomfishing or spearfishing methods. In addition, the "All Sharks Species" categorizes all species of sharks that could and could not be identified by the fishermen.

Table 4. American Samoa 2011 estimated commercial landings, value and average price by pelagic species.

		Longline			Troll	
Species	Pounds	Value(\$)	Price(\$)/lb	Pounds	Value(\$)	Price/lb
Skipjack tuna	243,178	243,583	1.00	18,342	45,269	2.47
Albacore tuna	5,094,253	5,094,253	1.00	0	0	
Yellowfin tuna	1,191,645	1,195,628	1.00	11,633	29,083	2.50
Kawakawa	0	0		220	547	2.48
Bigeye tuna	377,871	377,871	1.00	0	0	
Tunas (unknown)	0	0		1,526	3,815	2.50
TUNAS						
SUBTOTAL	6,906,947	16,575	0.00	31,627	78,714	2.48
Mahimahi	19,327	19,327	1.00	609	1,522	2.50
Black marlin	2,468	2,717	1.10	009	1,322	2.30
Blue marlin	6,182	5,806	1.10	0	0	
Wahoo	278,228	282,001	1.00	55	100	1.83
Sharks (all)	0	282,001	1.01	169	85	0.50
Swordfish	2,893	7,732	2.67	0	0	0.50
Sailfish	5,982	7,732 5,982	1.00	72	181	2.50
Oilfish	0	0,982	1.00	270	675	2.50
NON-TUNA	U	U		270	073	2.30
PMUS						
SUBTOTAL	315,081	323,942	1.03	1,176	2,563	2.18
Barracuda	807	2,219	2.75	759	2072	2.73
Rainbow runner	0	2,219	2.73	86	253	2.73
Dogtooth tuna	0	0		292	755	2.59
OTHER	0	0		292	133	2.39
PELAGICS						
SUBTOTAL	807	2,219	2.75	1,138	3,080	2.71
PELAGICS		,			,	
TOTALS	7,222,836	\$7,237,496	\$1.00	34,035	\$84,357	\$2.48

Interpretation: About 7.2 million pounds of all pelagic species by all method are estimated to have been sold in 2011 which is estimated to be 97% of the estimated total pelagic landings, earning an estimated revenue of \$7.3 million.

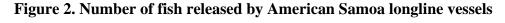
Calculation: Estimated commercial landings, value, and price per pound calculations are the same as those described for Table 3 and in greater detail in the Fishery Data History section above. The Troll/Non-Longline category in Table 3 includes pelagic species not caught by longlining such as barracuda, rainbow runner and dogtooth tuna, that were caught with bottomfishing or spearfishing methods.

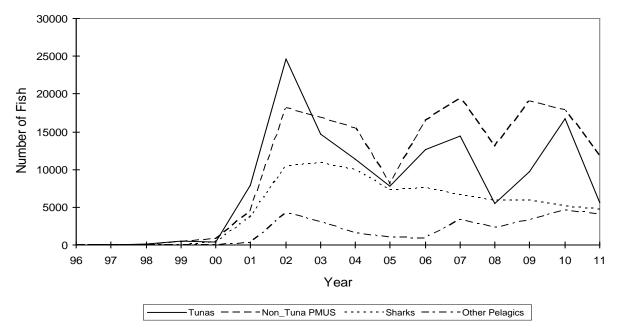
Table 5. Longline effort by American Samoan vessels during 2011

Boats	24
Trips	274
Sets	3,776
Hooks x 1000	10,768
Lightsticks	2,938

Table 6. Number of fish kept, released and percent released for all American Samoa longline vessels during 2011

	Number	Number	Percent
Species	Kept	Released	Released
Skipjack tuna	23,160	4,186	15.3%
Albacore tuna	129,930	541	0.4%
Yellowfin tuna	21,378	450	2.1%
Bigeye tuna	7,232	382	5.0%
Tuna unknown	20	8	28.6%
Tunas subtotals	181,720	5,567	3.0%
Mahimahi	1,055	352	25.0%
Black marlin	14	8	36.4%
Blue marlin	641	1,020	61.4%
Striped marlin	92	196	68.1%
Wahoo	7,589	1,609	17.5%
Sharks (all)	104	4,720	97.8%
Swordfish	213	105	33.0%
Sailfish	117	335	74.1%
Spearfish	253	976	79.4%
Moonfish	119	263	68.8%
Oilfish	85	6,394	98.7%
Pomfret	121	542	81.7%
Non-tuna PMUS			
subtotals	10,403	16,520	61.4%
Barracuda	60	187	75.7%
Dogtooth tuna	0	1	100%
Pelagic fishes (unknown)	19	3,847	99.5%
Other pelagic subtotals	79	4,035	98.1%
TOTAL PELAGICS	192,202	26,122	12%


Interpretation: Table 5 lists 24 vessels landed pelagic species during 2011. The vessels conducted 274 fishing trips deploying 3776 longline sets, using 10.7 million hooks and 2938 lightsticks. Table 5 values are used to calculate average trip, set, hooks etc. for each longline vessel based in American Samoa.


11.4 trips and 157.3 sets were made per boat 445,833 hooks and 122.4 lightsticks were used per boat 13.8 sets deployed, 50,077 hooks were set per trip 2834 hooks were used per set

About 130,000 individual albacore tuna were kept by longline fishermen landing in American Samoa during 2011; 0.4% of them were released. 12% of all pelagic were released and were mainly non-tuna PMUS and other pelagic species (mainly oilfish, sharks, pomfret and spearfish).

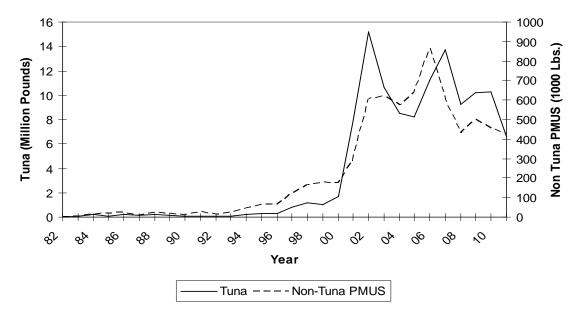
Fish can be released for various reasons including quality, handling and storage difficulties, and marketing problems. Investigation into the reasons for releasing of pelagic species are recommended because of the high release rate for many non-tuna PMUS and releases of some tuna.

Calculation: These values are sums or the number of fish kept and the number of fish released from Longline Logbook data for all of the longline vessels in Samoa. The percent released is calculated as the number released divided by the sum of the number released and the number kept. The percentages for subtotals and totals are the sum of released species for the subtotal or total divided by the sum of kept plus the sum of released for the subtotal or total. The kept values for sharks include those that were finned. All species of sharks entered in the Longline Logs are combined in the All Sharks species. Rays and Sunfish are included in the Misc Pelagic Fish species. A completed trip is denoted when a vessel makes a landing within a given calendar year.

Interpretation: Number of sharks released over the years keep declining from 10,000 to 4,000 between 2002 and 2011. Other pelagic fish are about the same. Tuna released in 2011 is lower than 2010 but same as 2008 and mostly skipjacks.

Calculation: These values are sums of Longline Logbook number released data for each year. They are summed according to the species groups in Table 3 with Sharks separated out of the "Non-Tuna PMUS" species group.

		Non-		
		Tuna		Other
Year	Tunas	PMUS	Sharks	Pelagics
1996	0	0	37	0
1997	50	36	19	1
1998	71	29	28	0
1999	492	438	37	43
2000	371	815	386	0
2001	7,888	4,457	3,648	239
2002	24,601	18,100	10,459	4,183
2003	14,679	16,826	10,831	3,125
2004	11,323	15,481	9,918	1,521
2005	7,830	8,039	7,318	1,057
2006	12,609	16,498	7,487	842
2007	14,418	19,350	6,667	3,308
2008	5,542	13,039	5,833	2,274
2009	9,698	19,022	5,930	3,291
2010	16,695	17,935	5,108	4,575
2011	5,567	11,800	4,720	4,035


Table 7. American Samoa 2011 trolling bycatch

<u>Bycatch</u>]	Interview	<u>'S</u>			
Catch	Alive	Injured	Dead	Unknown	Total	%BC	BC	All	%BC
878	0	0	0	0	0	0	0	33	0

Interpretation: There was no bycatch recorded for 2011 from trolling only; 33 interviews were conducted with 878 pelagic fish landed. Using fishermen's reports at the dock may not accurately reflect the number of fish returned at sea.

Calculation: The trolling bycatch table is obtained from creel survey interviews. The bycatch numbers are obtained by counting fish on interview forms for purely troll trips with a disposition of bycatch. Bycatch is reported by fishermen when interviewed at the landing site in response to questions from the data collector; bycatch are fish thrown back at sea by the fishermen. The catch for all species is included for comparison and is obtained by counting all fish listed on the same interview forms. The number of interviews is a count of the purely trolling interview forms.

Figure 3. American Samoa annual estimated total landings of tuna and non-tuna PMUS in pounds

Interpretation: Total landing estimates declined and 2011 tuna landing is the lowest landing for the past ten years. As for non-tuna (PMUS) it shows a relative constant trend during 2008 to 2011.

Calculation: Estimated total landings for Tunas and Non-Tuna PMUS were calculated by summing the total landings for the species in these categories as defined by Table 3.

 $\begin{tabular}{ll} Table 8. American Samoa annual estimated total landings of tuna and non-tuna PMUS in pounds \end{tabular}$

		Non Tuna
Y	ear Tuna	PMUS
1983	90,057	4,806
1984	198,961	15,121
1985	107,659	19,686
1986	190,967	23,899
1987	144,037	10,894
1988	207,095	23,462
1989	171,809	20,534
1990	81,736	10,494
1991	72,645	28,092
1992	94,060	12,328
1993	47,815	21,736
1994	190,262	48,146
1995	288,667	64,329
1996	317,601	64,473
1997	802,077	119,961
1998	1,160,724	163,726
1999	1,004,615	178,648
2000	1,685,591	175,061
2001	7,870,925	292,699
2002	15,169,356	606,670
2003	10,617,519	621,523
2004	8,489,580	575,669
2005	8,204,994	639,043
2006	11,242,553	865,217
2007	13,731,224	601,292
2008	9,252,262	433,255
2009	10,214,177	497,872
2010	10,305,460	453,461
2011	6,571,578	428,812
Average	3,951,635	234,101
Std. Dev	4,953,996	257,497

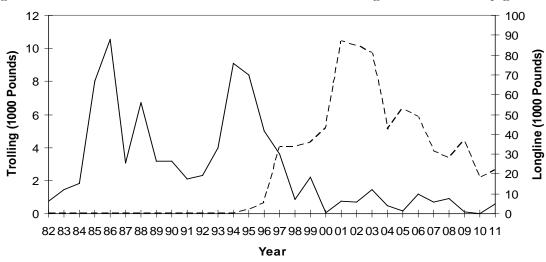
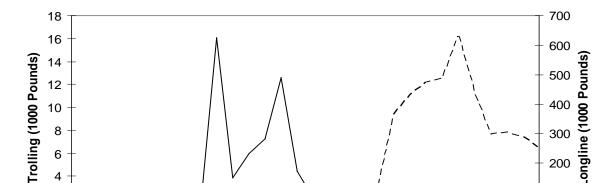


Figure 4. American Samoa annual estimated total landings of mahimahi by gear in pounds


Interpretation: Estimated landings of mahimahi by longline gear increased a little to almost 22,000 lbs in 2011. Longline gear landed more mahimahi than trolling. Trolling shows an increase from zero pounds in 2010 to 611 pounds 2011, and varies from 1400 pounds to zero pounds in the last eight years.

Trolling ----Longline

Calculation: The estimated total annual landings of mahimahi are listed for longline and trolling fishing methods as explained in Table 3.

Table 9. American Samoa annual estimate total landings of mahimahi by gear in pounds

	Pounds	Landed
Year	Longline	Trolling
1982	0	777
1983	0	1,443
1984	0	1,844
1985	0	8,011
1986	0	10,542
1987	0	3,049
1988	0	6,736
1989	0	3,170
1990	0	3,169
1991	61	2,090
1992	0	2,325
1993	212	4,000
1994	101	9,086
1995	2,373	8,393
1996	5,395	5,022
1997	33,412	3,623
1998	33,484	843
1999	35,779	2,193
2000	42,857	66
2001	87,037	782
2002	84,603	720
2003	81,022	1,434
2004	42,718	469
2005	53,078	161
2006	48,705	1,164
2007	31,415	684
2008	28,027	931
2009	36,799	113
2010	18,049	0
2011	21,922	611
Average	32,720	2,782
Std. Dev	26,864	2,905

4

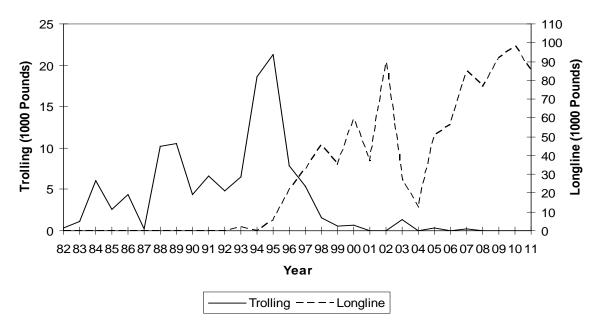
2

Figure 5. American Samoa annual estimated total landings of wahoo by gear in pounds

Year Trolling ----Longline

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

100

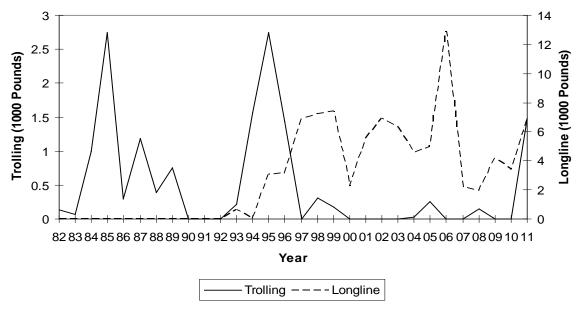

Interpretation: Estimated landings of wahoo showed an increasing trend from 199 and peaked in 2006 and gradually decreased from 2007 to 2011. Longline gear landed more wahoo. The 2011 landing decreased by 5% from 2010. Troll landings also decreased from 64 to 55 pounds.

Calculation: The estimated total annual landings of wahoo is listed for longline and trolling fishing methods as explained in Table 3.

Table 10. American Samoa annual estimated total landings of wahoo by gear in pounds

	Pounds	Landed
Year	Longline	Trolling
1982	0	114
1983	0	632
1984	0	1,777
1985	0	2,678
1986	0	2,282
1987	0	1,395
1988	84	1,962
1989	0	1,476
1990	0	1,333
1991	0	16,081
1992	0	3,904
1993	1,227	5,977
1994	0	7,261
1995	1,642	12,625
1996	3,570	4,399
1997	15,807	2,074
1998	40,439	487
1999	48,181	685
2000	47,330	140
2001	114,219	587
2002	362,689	351
2003	431,531	612
2004	475,032	537
2005	487,394	828
2006	630,329	696
2007	436,921	889
2008	299,481	165
2009	305,835	0
2010	289,545	64
2011	249,861	55
Average	176,713	2,402
Std. Dev	200,907	3,660

Figure 6. American Samoa annual estimated total landings of blue marlin by gear in pounds

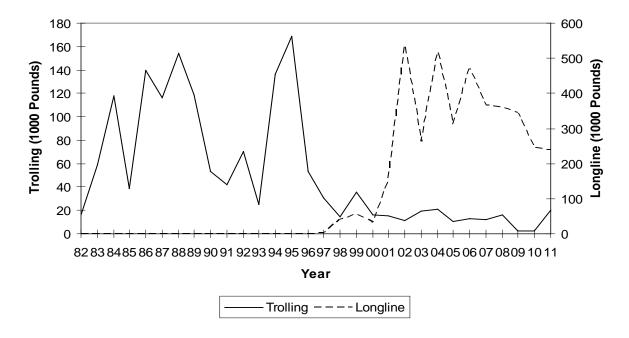

Interpretation: Estimated blue marlin landings for both longline and trolling gears total 84,950 pounds. The 2011 landing shows no landing by the troll gear and the same as the previous three years. The blue marlin landing varied between 50,000 and 90,000 pounds from 2005 to 2011. The 2010 shows the highest landing ever of approximately 98,000 pounds.

Calculation: The estimated total annual landing of blue marlin is listed for longline and trolling fishing methods as explained in Table 3. The average and standard deviation for the Longline Method is calculated from 1993 onward.

Table 11. American Samoa annual estimated total landings of blue marlin by gear in pounds

	Pounds	Landed
Year	Longline	Trolling
1982	0	315
1983	0	1,083
1984	0	6,097
1985	0	2,574
1986	0	4,327
1987	0	265
1988	0	10,217
1989	0	10,590
1990	0	4,339
1991	0	6,669
1992	0	4,807
1993	2,168	6,545
1994	0	18,661
1995	5,338	21,272
1996	21,576	7,867
1997	32,434	5,379
1998	45,475	1,592
1999	34,883	590
2000	59,505	623
2001	36,792	0
2002	89,825	0
2003	26,994	1,344
2004	12,314	0
2005	50,584	300
2006	56,047	0
2007	84,970	204
2008	76,297	0
2009	91,753	0
2010	98,141	0
2011	84,956	0
Average	47,897	3,855
Std. Dev	31,705	5,356

Figure 7. American Samoa annual estimated total sailfish landing in pounds by gear type

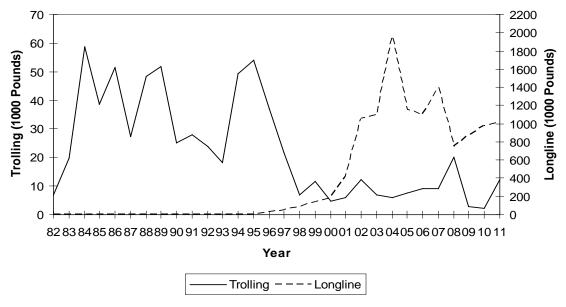

Interpretation: Estimated landings of sailfish by longline gear increased to 6,820 pounds in 2011. Troll landings also significantly increased to 1,478, a level not experienced since 1996. The 2006 landing recorded the highest pounds. Landings between 2006 and 2011 varied from 1,000 to 13,000 pounds.

Calculation: The estimated total annual landings of sailfish are listed for longline and trolling fishing methods as explained in Table 3.

Table 12. American Samoa annual estimated total sailfish landing in pounds by gear type

	Pounds	Landed
Year	Longline	Trolling
1982	0	127
1983	0	74
1984	0	989
1985	0	2,744
1986	0	294
1987	0	1,187
1988	0	394
1989	0	757
1990	0	0
1991	0	0
1992	0	0
1993	618	218
1994	0	1,561
1995	3,078	2,751
1996	3,130	1,444
1997	6,921	0
1998	7,191	314
1999	7,391	184
2000	2,257	0
2001	5,498	0
2002	6,932	0
2003	6,268	0
2004	4,598	32
2005	4,959	248
2006	12,933	0
2007	2,167	0
2008	1,931	148
2009	4,184	0
2010	3,404	0
2011	6,820	1,478
Average	4,752	498
Std. Dev	2,943	771

Figure 8. American Samoa annual estimated total landings of skipjack tuna in pounds by gear type


Interpretation: Estimated 2011 total landings of skipjack tuna for both gears increased to approximately 260,000 pounds in 2011. Estimated longline landings decreased slightly, while troll landings increased almost ten-fold and is the highest since 2004. Longline landings varied from 520,000 to 242,000 pounds between 2004 and 2011.

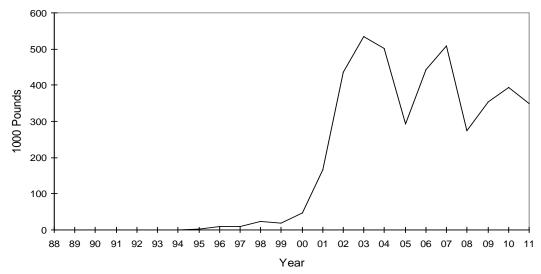
Calculation: The estimated total annual landings of skipjack tuna are listed for longline and trolling fishing methods as explained in Table 3.

 $\begin{tabular}{ll} \textbf{Table 13. American Samoa annual estimated total landings of skipjack tuna in pounds by gear type \end{tabular}$

	Pounds	Landed
Year	Longline	Trolling
1982	0	15,877
1983	0	58,997
1984	0	117,693
1985	0	38,902
1986	0	139,421
1987	0	116,436
1988	0	153,903
1989	0	118,948
1990	0	53,423
1991	345	42,137
1992	0	69,901
1993	533	25,356
1994	103	136,762
1995	160	168,389
1996	438	53,149
1997	2,546	30,430
1998	40,625	14,822
1999	56,014	35,171
2000	32,153	16,211
2001	149,565	15,086
2002	538,700	11,376
2003	264,414	19,464
2004	519,129	20,728
2005	312,055	10,845
2006	470,166	13,040
2007	365,220	12,255
2008	359,568	16,294
2009	343,586	2,775
2010	245,572	2,043
2011	238,578	19,870
Average	187,594	51,657
Std. Dev	187,105	49,946

Figure 9. American Samoa annual estimated total landings of yellowfin tuna by gear in pounds

Interpretation: Estimated total landings of yellowfin tuna increased in both fisheries in 2011. Troll landing increased 6 times and longline landing increased 16%. The most pounds of yellowfin tuna are landed by the longline gear, which shows an increasing trend from 2008 to 2011.

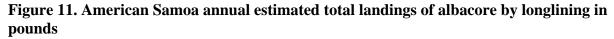

Estimated yellowfin tuna longline landings peaked in 2004 at 1,960,000 pounds.

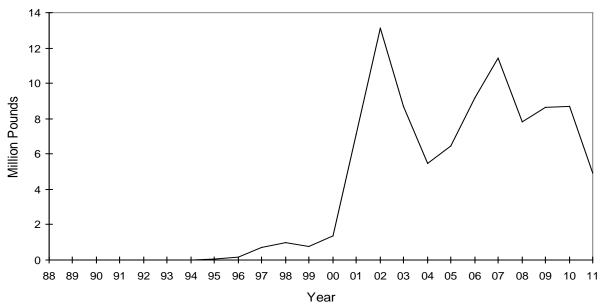
Calculation: The estimated total annual landings of yellowfin tuna are listed for longline and trolling fishing methods as explained in Table 3.

 $\begin{tabular}{ll} \textbf{Table 14. American Samoa annual estimated total landings of yellow fin tuna by gear in pounds \end{tabular}$

Year	Longline	Trolling
1982	0	7,038
1983	0	19,789
1984	0	58,704
1985	0	38,586
1986	0	51,439
1987	0	27,451
1988	1,775	48,319
1989	127	51,873
1990	0	25,188
1991	262	28,046
1992	0	23,916
1993	2,632	18,180
1994	1,716	49,415
1995	4,052	54,139
1996	25,662	37,051
1997	48,589	21,679
1998	92,528	6,762
1999	139,496	11,566
2000	190,564	4,827
2001	413,999	6,116
2002	1,060,315	12,353
2003	1,096,218	6,953
2004	1,959,674	5,939
2005	1,151,375	7,501
2006	1,095,952	9,106
2007	1,396,331	9,023
2008	749,825	20,089
2009	866,522	2,785
2010	981,258	2,052
2011	1,186,777	12,382
Average	519,402	22,609
Std. Dev	580,635	17,580

Figure 10. American Samoa annual estimated total landings of bigeye tuna by longlining in pounds

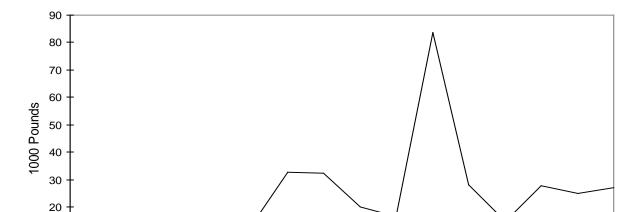



Interpretation: Estimated total longline landings of bigeye tuna shows an increasing trend from 2008 to 2011 although 2011 pounds is slightly lower than 2010. It varied from 200,000 to 550,000 pounds between 2002 and 2011.

Estimated bigeye tuna longline landings peaked during 2003 at 534,300 pounds.

Calculation: The estimated total annual landings of bigeye tuna is listed for longline fishing method as explained in Table 3. The average and standard deviation for the pounds caught is calculated from 1991 onward.

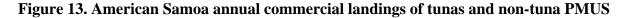
Year	Pounds
1988	0
1989	0
1990	0
1991	0
1992	0
1993	708
1994	0
1995	2,191
1996	8,701
1997	8,808
1998	22,291
1999	19,211
2000	47,710
2001	165,755
2002	436,280
2003	534,903
2004	502,541
2005	293,605
2006	443,042
2007	509,385
2008	274,482
2009	353,779
2010	392,896
2011	348,940
Average	181,885
Std. Dev	202,526

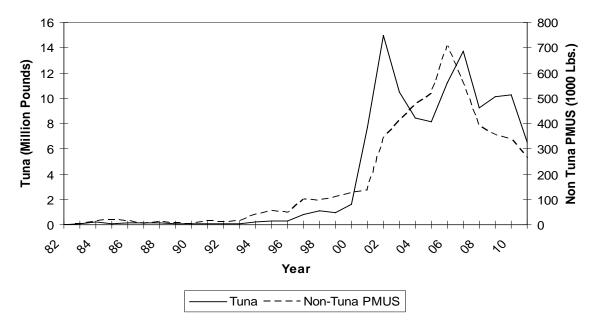


Interpretation: Estimated total albacore landings in 2011 decreased to 5.0 million pounds from 8.6 million pounds in 2010. The landings varied from 5 million pounds and 13 million pounds between 2002 and 2011. The 2002 albacore landings estimate of 13.3 million pounds is the highest ever recorded in the history of the fishery. Since the longline fishery initially began, it has been the most commonly used method of fishing for pelagic species, especially for albacore tuna.

Calculation: The estimated total annual landings of albacore tuna is listed for the longline fishing methods. The average and standard deviation is calculated from 1988 onward.

Year	Pounds
1988	1,875
1989	241
1990	0
1991	1,730
1992	0
1993	315
1994	1,609
1995	58,949
1996	190,269
1997	689,397
1998	983,560
1999	743,038
2000	1,394,011
2001	7,120,245
2002	13,109,695
2003	8,693,212
2004	5,480,841
2005	6,429,023
2006	9,210,565
2007	11,438,307
2008	7,831,590
2009	8,646,726
2010	8,680,579
2011	4,935,429
Average	3,984,959
Std. Dev	4,300,233

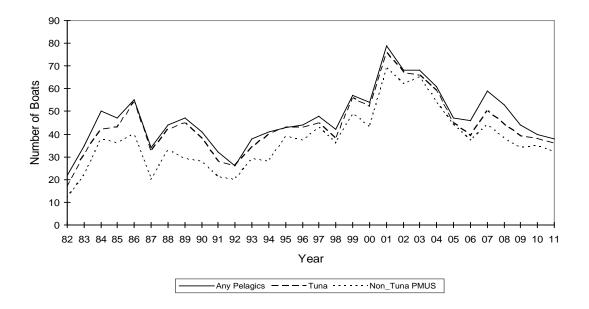

Year


Figure 12. American Samoa annual estimated total longline swordfish landings in pounds

Interpretation: More than 26,900 pounds of swordfish are estimated to have been landed in American Samoa in 2011, which is about the same as the 2009 and 2010 landings. The 2006 landings are the highest for this fishery; landings declined in 2007 and 2008 before it increasing again in 2009.

Calculation: The estimated total annual landings of swordfish are listed for longline and trolling fishing methods as explained in Table 3.

Year	Pounds
1996	893
1997	701
1998	3,716
1999	2,259
2000	2,056
2001	13,091
2002	32,710
2003	32,231
2004	20,195
2005	16,491
2006	83,615
2007	28,287
2008	14,889
2009	27,615
2010	24,816
2011	26,979
Average	20,659
Std. Dev	19,804

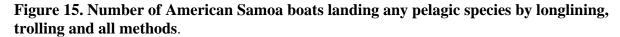

Interpretation: The estimated total commercial landing in 2011 is about 6.7 million pounds. Landings for tuna dropped by about 3 million pounds in 2011 from the 2010 estimate of approximately 10.2 million pounds. The commercial landings of non-tuna (PMUS) also decreased by about 67,000 pounds, a 20% drop from 2010 landings. Commercial landings for tuna between 2002 and 2011 varied from 6 million to 15 million pounds.

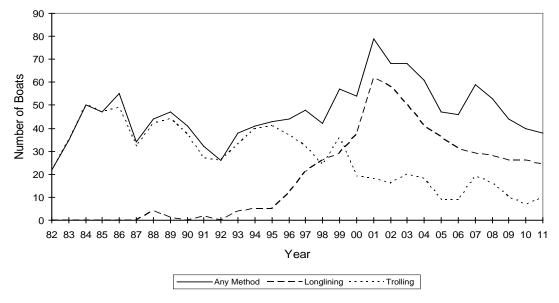
Calculation: Estimated commercial landings for Tunas and Non-Tuna PMUS were calculated by summing the commercial landings for the species these categories as defined by in Table 3.

Table 15. American Samoa annual commercial landings of tunas and non-tuna PMUS

	Pounds Landed	
	Non-	
Year	Tuna	Tuna
1982	22,065	1,515
1983	85,069	4,441
1984	196,100	13,458
1985	99,987	17,515
1986	170,150	15,291
1987	132,238	4,841
1988	172,803	12,111
1989	113,545	8,164
1990	56,622	3,627
1991	58,027	15,027
1992	90,575	11,088
1993	44,407	14,479
1994	188,980	41,330
1995	281,804	55,056
1996	311,348	46,254
1997	799,911	97,956
1998	1,115,310	95,011
1999	946,855	109,638
2000	1,646,902	124,833
2001	7,720,862	135,673
2002	14,979,562	339,587
2003	10,529,001	410,126
2004	8,449,577	473,167
2005	8,159,461	518,561
2006	11,216,937	709,015
2007	13,727,441	558,573
2008	9,251,037	388,495
2009	10,141,945	357,183
2010	10,289,490	335,894
2011	6,558,611	262,394
Average	3,918,554	172,677
Std. Dev	4,931,659	202,464

Figure 14. Number of American Samoa boats landing any pelagic species, tunas and nontuna PMUS




Interpretation: The total number of American Samoa vessels landing any pelagic species in 2011 amounts to 38. Boats landing tuna species equaled 36, and 32 boats landed non-tuna PMUS. The highest number of boats landing any pelagic, tuna and non-tuna PMUS species was 79, 76, and 70 respectively during 2001. Since the peak in 2001, the number of American Samoan vessels landing any pelagic, tuna and non-tuna species has declined.

Calculation: Prior to 1997, each boat counted in the Any Pelagics column made at least one landing in an offshore creel survey interview of at least one species in Table 4 in the given year. Likewise each boat counted in the other two columns made at least one landing in an offshore creel survey interview of at least one species in the corresponding subgroup of Table 3 in the given year. In 1997 and after, the count of non-interviewed boats that made at least one landing of the appropriate species in a longline log was added to the count of interviewed boats from the offshore creel survey.

 $\begin{tabular}{ll} Table 16. Number of American Samoa boats landing any pelagic species, tunas and nontuna PMUS \end{tabular}$

	Number of Vessels Landing Pelagic Species		
Year	Any Pelagics	Tuna	Non-Tuna PMUS
1982	22	17	12
1983	35	31	22
1984	50	42	38
1985	47	43	36
1986	55	54	40
1987	34	32	20
1988	44	42	33
1989	47	45	29
1990	41	38	28
1991	32	28	21
1992	26	26	20
1993	38	34	29
1994	41	40	28
1995	43	43	39
1996	44	43	37
1997	48	45	43
1998	42	38	36
1999	57	56	49
2000	54	52	43
2001	79	76	69
2002	68	67	62
2003	68	66	65
2004	61	59	54
2005	47	45	44
2006	46	39	37
2007	59	50	44
2008	53	44	38
2009	44	39	34
2010	40	38	35
2011	38	36	32
Average	47	44	37
Std. Dev	12	12	13

Interpretation: The number of American Samoan vessels landing pelagic species in 2011 using any method was 38. There were 24, boats using longline gearis 24 and 10 boats using troll gear amount to 10. The number of longline boats decreased by two and number of boats using trolling increased by three from 7 boats in 2010.

The number of American Samoan vessels using any method and longline gear have been declining over the years since the peak in 2001.

Calculation: Prior to 1997, each boat counted in the Any Method column made at least one landing in an offshore creel survey interview of at least one species in Table 4 in the given year. Each boat counted in the Longlining and Trolling columns made at least one landing in an offshore creel survey interview of at least one species in Table 4, using the longline or troll or combined troll/bottom fishing methods in the given year. In 1997 and after the count of non-interviewed boats that made at least one landing of the species in Table 4 in a longline log during the given year was added to the count of interviewed boats from the offshore creel survey in the Any Method and Longlining columns. The average and standard deviation for the number of boats using Longlining is calculated from 1988 onward.

Table 17. Number of American Samoa boats landing any pelagic species by longlining, trolling and all methods

	Number of Boats		
Year	Any Method	Longlining	Trolling
1982	22	0	22
1983	35	0	35
1984	50	0	50
1985	47	0	47
1986	55	0	49
1987	34	0	32
1988	44	4	42
1989	47	1	44
1990	41	0	37
1991	32	2	27
1992	26	0	26
1993	38	4	33
1994	41	5	40
1995	43	5	41
1996	44	12	37
1997	48	21	32
1998	42	26	24
1999	57	29	36
2000	54	37	19
2001	79	62	18
2002	68	58	16
2003	68	50	20
2004	61	41	18
2005	47	36	9
2006	46	31	9
2007	59	29	19
2008	53	28	16
2009	44	26	10
2010	40	26	7
2011	38	24	10
Average	47	23	28
Std. Dev	12	18	13

Figure 16. Number of permitted and active longline fishing vessels in the A (\geq 40 foot) and D (> 70.1 foot) size classes

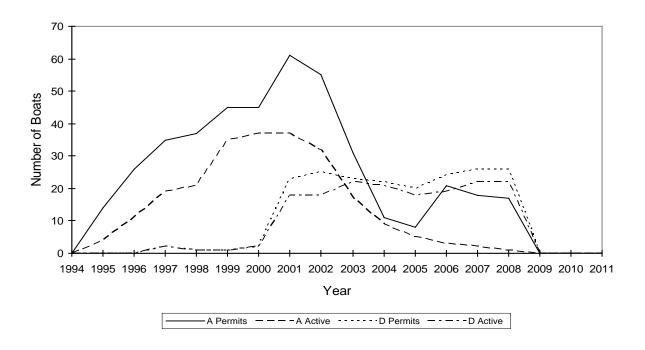
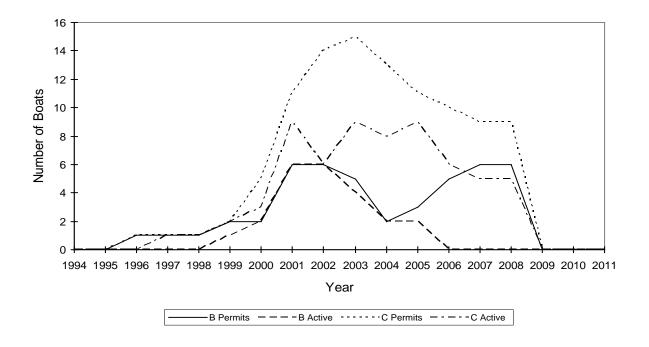
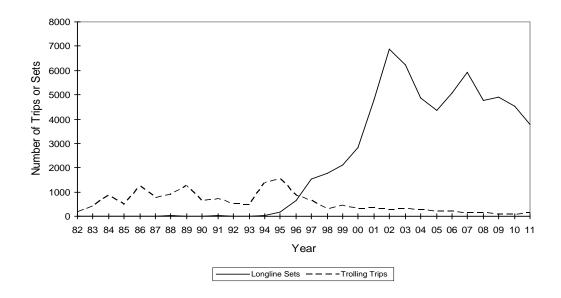



Figure 17. Number of permitted and active longline fishing vessels in the B $(40.1\ to\ 50\ foot)$ and C $(50.1\ to\ 70\ foot)$ size classes


Interpretation: In 2011, only one alia (Class A) out of the twelve permitted vessels was active. The use of *alias* has steadily declined since 2001 when 38 alias were active. One Class B permit was issued in 2011, but no vessels from this class were active. Five of 12 Class C permitted vessels were active. Class D boats dominated the American Samoa longline fishery in 2011, with 18 of 27 permitted vessels making landings. The number of Class D permits increased by one in 2011.

Calculation: For 2006 the number of permits is the number actual of Limited Entry Longline Permits issued for each size class late in 2005. For earlier years the number of permits is the number of federal general longline permits issued for each vessel size category. For the C and D size classes the number of permits may include those for Hawaiian permitted boats landing their fish in American Samoa. The number of active boats is those that have submitted longline logs or have been interviewed in the boat-based creel survey after a longline fishing trip during the year. Boats in the boat-based creel survey are not counted as active if they are interviewed using only fishing methods other than longlining such as bottomfishing or trolling.

The range of dates that constitutes a year of activity is skewed to be in line with when the longline permits are issued and expire, roughly Feb. 25th. The active year of 1996 is from February 25, 1996 to February 24 1997. This applies through 2004. The active year 2005 is from February 25, 2005 to December 31, 2005. The active year of 2006 is the calendar year; the active year of 1995 is January 1, 1995 to February 24 1996. This causes the number of active vessels to be slightly different from other counts of longline vessel activity based on the calendar year.

		Class A < 40 Feet		Class B 40.1-50 Feet		ss C '0 Feet	Clas > 70	
Year	Permits	Active	Permits	Active	Permits	Active	Permits	Active
1994	0	0	0	0	0	0	0	0
1995	14	4	0	0	0	0	0	0
1996	26	11	1	0	1	0	0	0
1997	35	19	1	0	1	1	2	2
1998	37	21	1	0	1	1	1	1
1999	45	35	2	1	2	2	1	1
2000	45	37	2	2	5	3	2	2
2001	61	37	6	6	11	9	23	18
2002	55	32	6	6	14	6	25	18
2003	31	17	5	4	15	9	23	22
2004	11	9	2	2	13	8	22	21
2005	8	5	3	2	11	9	20	18
2006	21	3	5	0	10	6	24	19
2007	18	2	6	0	9	5	26	22
2008	17	1	6	0	9	5	26	22
2009	1	1	1	0	8	5	26	20
2010	12	1	0	0	12	5	26	20
2011	12	1	1	0	12	5	27	18

Figure 18. Number of American Samoa troll trips and longline sets for all pelagic species by method

Interpretation: Longline sets decreased by 17% in 2011, which continues a declining trend. Longline sets varied from 3,000 to 6,000 sets between 2002 and 2011. The estimated number of troll trips increased by 64% from 2010.

Calculation: The number of Troll Trips is calculated by first subtracting the total longline pounds of Table 1 from the total pounds to get an estimate of the number of pounds caught by trolling and other fishing methods. This value is divided by the catch per hour for pure troll trips, from the offshore creel survey system expansion, to get the number of trolling hours. The number of trolling hours is then divided by the hours per trip for a purely trolling trip from the offshore creel survey system expansion to get the number of troll trips.

The number of longline sets using logbook data is obtained by counting all of the sets entered in the longline logbook system for the given year for interviewed and non-interviewed boats.

Prior to 1997, the number of longline sets using creel survey data is the expanded number of longline fishing trips from the offshore creel survey system. In 1997 and after this number is the expanded number of longline fishing trips from the offshore creel survey system for interviewed vessels plus the count of all of the sets entered in the longline logbook system for non-interviewed vessels. The average and standard deviation for Longline Sets from logbook data and creel data is calculated from 1996 onward for comparison.

Table 18. Number of American Samoa troll trips and longline sets for all pelagic species by method

Year	Troll Trips	Longline Sets
1982	177	0
1983	406	0
1984	853	0
1985	464	0
1986	1,234	0
1987	751	0
1988	875	31
1989	1,269	3
1990	615	0
1991	699	21
1992	513	0
1993	481	16
1994	1,355	20
1995	1,548	187
1996	847	653
1997	656	1,528
1998	316	1,754
1999	429	2,108
2000	292	2,814
2001	330	4,801
2002	288	6,872
2003	310	6,221
2004	276	4,853
2005	211	4,359
2006	193	5,069
2007	145	5,919
2008	143	4,754
2009	81	4,911
2010	53	4,533
2011	147	3,776
Average	532	4,285
Std. Dev	398	1,553

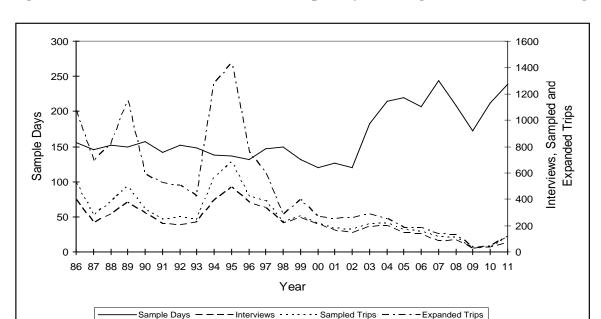


Figure 19. Number of American Samoa sample days, trolling interviews, and trolling trips

Interpretation: Sample days increased by 40 to 212 in 2010 and trolling interviews also increased to 31. Trolling trips sampled increased by 6 in 2010 but a declining trend from 200 in 2003.

Calculation: All data in this table and chart comes from the Tutuila and Manua Boat-Based Creel Survey. The number of Sample Days is the number of weekend/holiday and weekday sample days in the Tutuila Boat-based Creel survey for the year. The number of Trolling Interviews is the number of Tutuila pure trolling interviews without pooling plus the number of unadjusted Manua pure trolling interviews for the year. The number of Sampled Trips is the number of pure trolling trips actually counted in the Tutuila and Manua surveys. The Expanded Number of Trips is the expanded number of Tutuila pure troll trips plus the number of Manua troll trips adjusted for the coverage factor.

Table 19. Number of American Samoa sample days, trolling interviews, and trolling trips

Year	Sample Days	Trolling Interviews	Trolling Sampled	Trips Expanded
1986	156	398	523	1,077
1987	146	217	277	686
1987	152	285	379	817
1989	132	376	496	1,148
1990	149	293	321	583
1990	142	213	248	524
1991	152	206	263	503
	132			
1993		222	245	423
1994	138	387	567	1,273
1995	137	489	683	1,429
1996	131	377	420	754
1997	147	337	386	603
1998	150	220	227	280
1999	132	257	271	393
2000	120	212	221	263
2001	126	163	175	250
2002	120	143	169	259
2003	183	194	214	287
2004	214	198	219	252
2005	219	146	169	187
2006	207	133	156	182
2007	244	82	114	133
2008	208	90	111	132
2009	172	27	30	37
2010	212	31	36	38
2011	239	67	113	119
Average	165	222	271	486
Std. Dev	37	118	160	383

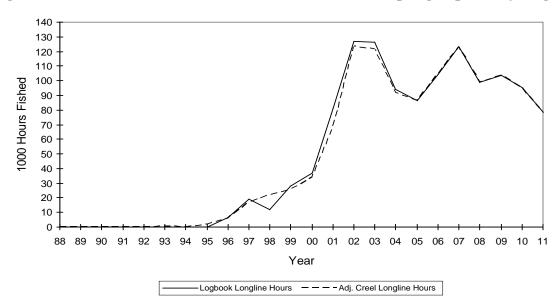
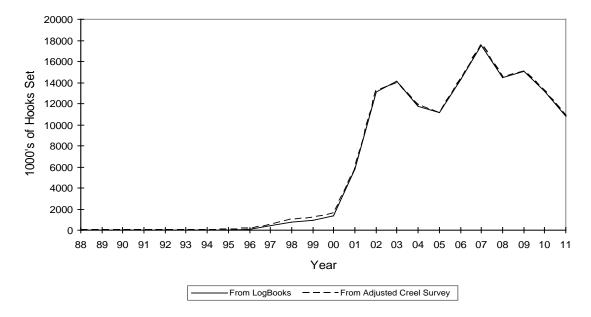


Figure 20. Number of American Samoa hours fished for all pelagic species by longlining

Interpretation: Hours fished from both longline logs and the creel survey are about the same in 2011, however, both decreased compared to 2010. The longline hours fished from the logbooks show a 17% decrease from 95,492 in 2010 to 78,825 hrs in 2011. The adjusted hours-fished from the creel survey shows a similar decrease to 77,791. Both show hours fished peaked during 2002 and 2007.

Calculation: The number of longline trip-hours using logbook data is obtained by summing the duration all of the sets entered in the longline logbook system for the given year for interviewed and non-interviewed boats. The duration of a set is defined as from beginning of set time to the end of haul time.


Prior to 1997, the number of longline trip-hours using creel survey data is the expanded number of longline fishing trip-hours from the offshore creel survey system. In 1997 and after this number is the expanded number of longline fishing trip-hours from the offshore creel survey system for interviewed vessels plus the sum of the duration of the sets entered in the longline logbook system for non-interviewed vessels. The average and standard deviation for Hours Fished from logbook data and creel data is calculated from 1996 onward for comparison.

The hours fished reported by the Longline Logbook system in the early years before the large boats dominated the fishery is usually larger than that reported by the adjusted Creel Survey System because the logbook hours are calculated from actual beginning of set times and end of haul times while many trips in the offshore creel survey system are entered as "8 hours."

Table 20. Number of American Samoa hours fished for all pelagic species by longlining

	Hours Fished				
		Longline			
	Longline	Creel			
Year	Logbook	(Adj.)			
1988	n/a	198			
1989	n/a	17			
1990	n/a	0			
1991	n/a	164			
1992	n/a	0			
1993	n/a	296			
1994	n/a	161			
1995	n/a	1,860			
1996	6,366	5,906			
1997	19,065	16,956			
1998	11,984	22,012			
1999	27,708	25,721			
2000	36,973	33,790			
2001	81,291	67,755			
2002	127,023	123,194			
2003	126,282	121,664			
2004	94,054	91,865			
2005	86,332	86,164			
2006	104,320	104,132			
2007	123,267	122,610			
2008	99,178	98,676			
2009	103,807	103,790			
2010	95,492	94,844			
2011	78,825	77,971			
Average	50,915	49,989			
Std. Dev	48,937	47,667			

Figure 21. Thousands of American Samoa longline hooks set from logbook and creel survey data

Interpretation: The number of hooks set by American Samoan longline vessels from logbooks are about the same as those recorded from creel surveys, however both decreased to 10.7 million in 2011. Since 2002, number of hooks deployed varied between 10 and 17 million.

Calculation: The number of longline hooks using logbook data is obtained by summing the number of hooks for sets entered in the longline logbook system for the given year for interviewed and non-interviewed boats and dividing by 1000.

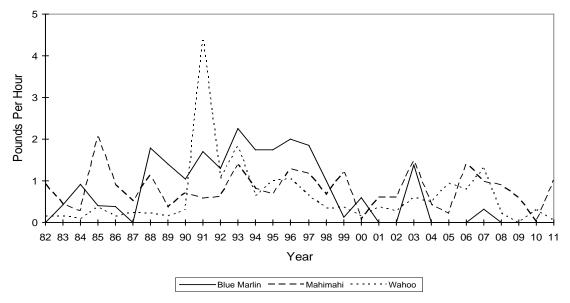
Prior to 1997, the number of longline hooks using creel survey data is the expanded number of longline hooks from the offshore creel survey system. In 1997 and after this number is the expanded number of longline fishing hooks from the offshore creel survey system for interviewed vessels plus the sum of the number of hooks for the sets entered in the longline logbook system for non-interviewed vessels. The average and standard deviation for 1000's of Hooks from logbook data and creel data is calculated from 1996 onward for comparison.

Table 21. Thousands of American Samoa longline hooks set from logbook and creel survey data

	Hooks	(x1000)
	Logbook	Creel
Year	Data	(Adjusted)
1988	0	1
1989	0	0
1990	0	0
1991	0	0
1992	0	0
1993	0	2
1994	0	0
1995	0	45
1996	99	157
1997	419	518
1998	771	1,042
1999	915	1,226
2000	1,335	1,587
2001	5,795	5,808
2002	13,096	13,245
2003	14,165	13,991
2004	11,742	11,806
2005	11,129	11,177
2006	14,262	14,319
2007	17,552	17,586
2008	14,444	14,464
2009	15,077	15,094
2010	13,171	13,186
2011	10,768	10,791
Average	5,825	5,881
Std. Dev	6,631	6,608

Figure 22. American Samoa pelagic catch per hour of trolling and number of trolling hours.

Interpretation: Catch per hour of trolling in 2011 increased by 31 lbs from 20 lbs in 2010. The number of troll hours increased in 2011 by about 430 hrs from 2010. The troll hours in 2011 are similar to those seen from 2005 to 2008.

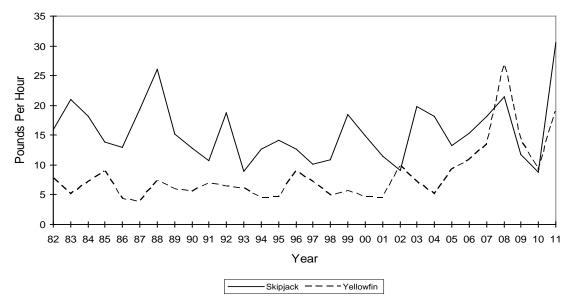

Calculation: For purely trolling trips where the number of hours was recorded, the total catch was divided by the total number of trolling hours to obtain CPUE.

The number of effective Trolling Hours is calculated by first subtracting the total longline pounds of Table 3 from the total pounds to get an estimate of the number of pounds caught by trolling and other fishing methods. This value is divided by the catch per hour for pure troll trips, from the offshore creel survey system expansion, to get the number of trolling trip-hours.

Table 22. American Samoa pelagic catch per hour of trolling and number of trolling hours

Year	CPUE	Hours
1982	25.91	1,019
1983	27.41	3,513
1984	30.97	7,785
1985	32.59	4,394
1986	19.36	11,294
1987	25.34	6,179
1988	38.01	6,125
1989	23.79	8,370
1990	21.86	4,362
1991	20.64	4,884
1992	28.97	3,809
1993	20.09	3,216
1994	21.23	11,448
1995	22.94	12,143
1996	27.38	4,442
1997	22.31	3,144
1998	19.93	1,405
1999	26.81	1,981
2000	22.01	1,149
2001	18.09	1,655
2002	20.62	1,362
2003	31.78	1,044
2004	25.7	1,204
2005	25.44	862
2006	36.02	883
2007	35.15	723
2008	50.44	808
2009	26.38	424
2010	20.32	308
2011	51.59	739
Average	27.30	3,689
Std. Dev	8.16	3,426

Figure 23. American Samoa trolling CPUEs in pounds per hour fished for blue marlin, mahimahi, and wahoo


Interpretation: Pounds caught per trolling hour for blue marlin are zero for 2011. For blue marlin this is the same as the last three consecutive years. Pounds caught per trolling hour of mahimahi in 2011 have increased to 1.02 from 0 in 2010. For wahoo, it decreased to 0.04 pounds from 0.29 pounds in 2010. Pounds caught per troll hour for the three species have generally declined over the years, although blue marlin has been consistent since 2001 (with exception of 2003).

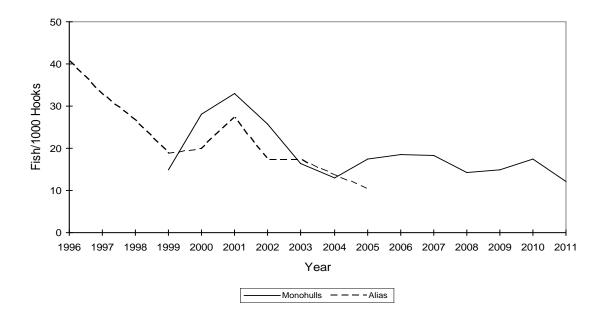
Calculation: The values for each of the three species is obtained by dividing the Troll Pounds for each species in Table 3 by the expanded number of trip-hours for purely trolling trips from the offshore creel survey system.

 $\begin{tabular}{ll} Table 23. American Samoa trolling CPUEs in pounds per hour fished for blue marlin, \\ mahimahi, and wahoo \end{tabular}$

Trolling CPUEs: Blue Marlin, Mahimahi, Wahoo (pounds per hour)						
•	Blue	,				
Year	Marlin	Mahimahi	Wahoo			
1982	0	0.92	0.14			
1983	0.43	0.43	0.15			
1984	0.91	0.28	0.09			
1985	0.41	2.06	0.36			
1986	0.39	0.9	0.15			
1987	0	0.52	0.23			
1988	1.79	1.13	0.22			
1989	1.4	0.36	0.15			
1990	1.05	0.7	0.3			
1991	1.7	0.57	4.39			
1992	1.29	0.62	1.04			
1993	2.25	1.38	1.84			
1994	1.74	0.8	0.64			
1995	1.74	0.69	1			
1996	1.99	1.27	1.05			
1997	1.86	1.18	0.63			
1998	0.99	0.65	0.35			
1999	0.13	1.21	0.37			
2000	0.6	0.06	0.14			
2001	0	0.6	0.37			
2002	0	0.59	0.28			
2003	1.39	1.49	0.59			
2004	0	0.43	0.48			
2005	0	0.21	0.94			
2006	0	1.4	0.79			
2007	0.31	0.98	1.29			
2008	0	0.9	0.22			
2009	0	0.58	0			
2010	0	0	0.29			
2011	0	1.02	0.04			
Average	0.75	0.80	0.62			
Std. Dev	0.76	0.45	0.82			

Figure 24. American Samoa trolling CPUEs for skipjack and yellowfin tuna in pounds per hour fished

Interpretation: The 2011 total pounds for both species increased and it is the highest rate per troll hour in its history. Estimated 2011 troll landings of skipjack per troll hour increased by about 22 lbs to 30.50 lbs; yellowfin catch rate increased by 10 lbs to 19.10 lbs.


Trolling regularly occurs closer to the islands of American Samoa, at different times, and targets different depths than longline fishing.

Calculation: The values for each of the two species is obtained by dividing the Troll Pounds for each species in Table 3 by the expanded number of trip-hours for purely trolling trips from the offshore creel survey system.

Table 24. American Samoa trolling CPUEs for skipjack and yellowfin tuna in pounds per hour fished

Trolling CPUE: Skipjack Tuna, Yellowfin					
Tuna (po	ound per hour)				
Year	Skipjack	Yellowfin			
1982	15.9	7.8			
1983	21	5.04			
1984	18.1	7.2			
1985	13.8	8.9			
1986	12.9	4.31			
1987	19.3	3.88			
1988	26	7.3			
1989	15.2	5.9			
1990	12.8	5.51			
1991	10.7	7.06			
1992	18.7	6.4			
1993	8.89	6.06			
1994	12.6	4.49			
1995	14.1	4.57			
1996	12.7	8.98			
1997	10.1	7.19			
1998	10.8	4.89			
1999	18.4	5.62			
2000	14.9	4.61			
2001	11.4	4.44			
2002	9.03	9.83			
2003	19.8	7.1			
2004	18.2	5.1			
2005	13.3	9.25			
2006	15.4	10.8			
2007	18.2	13.4			
2008	21.5	26.9			
2009	11.7	14			
2010	8.78	9.23			
2011	30.50	19.10			
Average	15.49	8.16			
Std. Dev	5.00	4.80			

Figure 25. American Samoa longline albacore tuna CPUE for alias and mono-hull vessels based on longline logbook data

Interpretation: Due to fishery data confidentiality, albacore information of Alias longline vessel since 2006 to 2010 is omitted. Monohulls catch rate in 2011 is 12.1, a decrease of 5.2 from 17.4 albacore per 1000 hooks landed in 2010. Monohull catch rates of albacore have been relatively close, ranging from 12 fishes to 18 fishes between 2003 and 2011.

Calculation: These values are sums of the Longline Logbook albacore catch (number of fish kept + released) from the longline logs for the two types of longline vessels in Samoa, alias and mono-hulls, divided by the total number of hooks set by each type of vessel. The 2006 mono-hull value is the value for all vessels for confidentiality reasons.

American Samoa Longline								
Albacore (CPUE (fis	sh per 1000						
	hooks)							
Year	Alias	Monohulls						
1996	40.6							
1997	32.8							
1998	26.6							
1999	18.8	14.8						
2000	19.8	28						
2001	27.3	32.9						
2002	17.2	25.8						
2003	17.3	16.4						
2004	13.7	12.9						
2005	10.3	17.4						
2006		18.4						
2007		18.3						
2008		14.2						
2009		14.8						
2010		17.4						
2011		12.1						

Table 25. American Samoa catch/1000 hooks for two types of longline vessels from 1996 to 1999

	1996	1997	1998	19	999
Species	Alias	Alias	Alias	Alias	Monohulls
Skipjack tuna	0.1	1.2	3.7	5.0	4.5
Albacore tuna	40.6	32.8	26.6	18.8	14.8
Yellowfin tuna	6.5	2.7	2.2	6.7	2.1
Bigeye tuna	1.3	0.3	0.3	0.7	0.5
TUNAS					
SUBTOTAL	48.5	37	32.8	31.2	21.9
Mahimahi	2.3	2.2	1.7	2.2	0.3
Black Marlin	0.0	0.1	0.0	0.2	0.1
Blue Marlin	0.9	0.7	0.6	0.5	0.1
Striped Marlin	0.0	0.0	0.0	0.0	0.2
Wahoo	0.8	0.9	2.2	2.1	1.2
Sharks (all)	0.7	0.1	0.1	0.1	1.2
Sailfish	0.2	0.2	0.1	0.0	0.1
Spearfish	0.0	0.0	0.0	0.0	0.1
Moonfish	0.0	0.1	0.1	0.1	0.1
Oilfish	0.0	0.0	0.0	0.0	0.6
Pomfret	0.0	0.0	0.0	0.0	0.2
NON-TUNA					
PMUS					
SUBTOTAL	4.9	4.3	4.8	5.2	4.2
Od Di					
Other Pelagic Fishes	0.0	0.0	0.2	0.3	0.2
	0.0	0.0	0.2	0.3	0.2
OTHER PELAGICS					
SUBTOTAL	0.0	0.0	0.2	0.3	0.2
SUBTOTILL	0.0	0.0	V•#	0.5	0,2
TOTAL					
PELAGICS	53.4	41.3	37.7	36.7	26

Table 26. American Samoa catch/1000 hooks for two types of longline vessels from 2003 to 2005 $\,$

	2	003	2004		2	005
Species	Alias	Monohulls	Alias	Monohulls	Alias	Monohulls
Skipjack tuna						
	4.7	2.9	3.0	3.9	1.0	2.7
Albacore tuna				10.0	10.0	
V-11	17.3	16.4	13.7	12.9	10.3	17.4
Yellowfin tuna	5.9	2.0	8.8	3.2	7.0	2.6
Bigeye tuna	3.9	2.0	0.0	3.2	7.0	2.0
	1.6	1.1	0.8	1.3	1.0	0.9
TUNAS						
SUBTOTAL						
	29.5	22.4	26.3	21.2	19.3	23.7
Mahimahi	2.2	0.4	2.1	0.2	2.0	0.2
Blue Marlin	2.2	0.4	2.1	0.2	2.0	0.3
Dide Waiiii	0.2	0.2	0.1	0.2	0.2	0.2
Striped Marlin	0.2	0.2	0.1	0.2	0.2	0.2
1	0.0	0.0	0.1	0.0	0.1	0.0
Wahoo	1.8	1.1	3.1	1.6	2.3	1.4
Sharks (all)	0.3	0.8	0.1	0.9	0.0	0.7
Swordfish	0.1	0.0	0.1	0.0	0.1	0.0
Sailfish	0.1	0.0	0.0	0.1	0.1	0.1
Spearfish	0.1	0.0	0.0	0.1	0.0	0.1
Moonfish	0.1	0.1	0.1	0.1	0.1	0.1
Oilfish	0.3	0.5	0.0	0.7	0.0	0.3
Pomfret	0.1	0.1	0.0	0.1	0.1	0.1
NON-TUNA						
PMUS	5.2	2.2	57	3.8	4.8	2.1
SUBTOTAL	5.2	3.3	5.7	3.0	4.0	3.1
Other Pelagic						
Fishes	0.2	0.2	0.0	0.1	0.0	0.1
OTHER						
PELAGICS						
SUBTOTAL	0.2	0.2	0.0	0.1	0.0	0.1
TOTAL						
PELAGICS	34.9	25.8	32	25.2	24.2	26.9

Table 27. American Samoa catch/1000 hooks for two types of longline vessels from 2006 to 2011

	2006	2007	2008	2009	2010	2011
	All	All	All	All	All	All
Species	Vessels	Vessels	Vessels	Vessels	Vessels	Vessels
Skipjack Tuna	3.2	2.3	2.4	2.3	2.4	2.5
Albacore Tuna	18.5	18.3	14.2	14.8	17.4	12.1
Yellowfin Tuna	1.6	1.9	1.0	1.1	1.8	2.0
Bigeye Tuna	1.0	0.9	0.5	0.6	0.8	0.7
TUNAS SUBTOTAL	24.2	23.5	18.2	18.8	22.4	17.4
Mahimahi	0.4	0.1	0.1	0.2	0.2	0.1
Blue Marlin	0.2	0.2	0.2	0.2	0.2	0.2
Wahoo	1.5	1.0	0.7	1.0	1.0	0.9
Sharks (all)	0.5	0.4	0.4	0.4	0.4	0.5
Swordfish	0.1	0.0	0.0	0.0	0.0	0.0
Spearfish	0.1	0.0	0.1	0.1	0.1	0.1
Oilfish	0.5	0.5	0.4	0.5	0.6	0.6
Pomfret	0.1	0.1	0.1	0.1	0.1	0.1
NON-TUNA PMUS						
SUBTOTAL	3.4	2.4	2	2.5	2.6	2.4
Other Pelagic Fishes	0.1	0.2	0.1	0.2	0.3	0.4
OTHER PELAGIC						
FISHES SUBTOTAL	0.1	0.2	0.1	0.2	0.3	0.4
TOTAL PELAGICS	27.7	26.1	20.3	21.5	25.3	20.2

Interpretation: The catch rate by all longline vessels from the past five years have generally been the same, ranging from 17 to 22 fishes for tuna species. The catch rate for tunas in 2011 amounts to 17.4, a decrease by 5.0 from 2010. Albacore tuna was the targeted species with a 12.1 catch rate, 71% of the tuna species catch rate. The non-tuna PMUS species catch are about constant in the previous five years at 2.0 to 2.5 fishes.

Calculation: These values are sums of the Longline Logbook catch (number of fish kept+released) from the longline logs for the two types of longline vessels in Samoa, alias and monohulls, divided by the total number of hooks set by each type of vessel. All species of sharks entered in the Longline Logs are combined in the All Sharks species category. Rays and Sunfish are included in the Misc Pelagic Fish category.

Figure 26. Albacore: average weight per fish

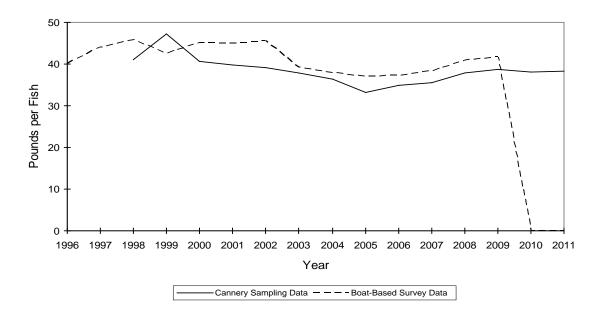


Figure 27. Average weight per fish for other cannery species (cannery-sampled)

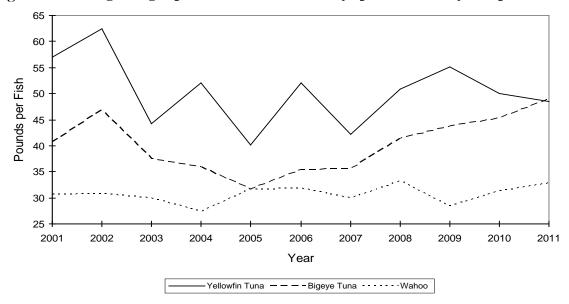


Table 28. Creel survey average weight per fish in pounds (1996-2002)

-	Average Weight per Fish in Pounds						
Species	1996	1997	1998	1999	2000	2001	2002
Skipjack tuna	9.6	8.4	12.5	9.7	11.6	15.4	11.5
Albacore tuna	39.9	44	45.7	42.6	45.1	44.9	45.6
Yellowfin tuna	37.9	44.2	45.9	33.1	38.2	30.1	27.9
Kawakawa	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Bigeye tuna	52.3	82.8	79.2	57.1	61.1	67.7	69.4
Mahimahi	26.2	25.6	23.3	22.3	24.8	19.6	19.5
Black marlin	n/a	148.3	101.9	n/a	n/a	67.2	31.9
Blue marlin	151.8	117.7	119.9	101.9	135.7	70.9	165.7
Wahoo	44.3	38.4	26.3	27.3	31.9	29.9	28.7
Sharks (all)	112.3	96.8	69.3	38	39.5	68.8	68.5
Swordfish	150	100	212.6	12	n/a	59.4	23.4
Sailfish	88.4	70.7	67	61.8	39.1	40.4	31.8
Spearfish	n/a	n/a	n/a	46	n/a	n/a	n/a
Moonfish	70.3	33.5	57.7	30.9	102.5	78.3	n/a
Oilfish	n/a	12.7	n/a	10	n/a	23.9	n/a
Pomfret	n/a	n/a	n/a	n/a	16.5	n/a	8.2
Barracudas	13.5	14.6	15.3	11	13.1	7.5	9.1
Rainbow runner	n/a	14	17.5	6.5	n/a	n/a	12.9
Dogtooth tuna	n/a	10	n/a	n/a	n/a	15.6	40.8
Pelagic fishes (unknown)	61.8	8	45.3	n/a	n/a	n/a	n/a

Table 29. Creel survey average weight per fish (2003-2009)

		Aver	age Weig	ght per Fi	sh in Pou	nds	
Species	2003	2004	2005	2006	2007	2008	2009
Skipjack tuna	8.2	7.9	8	12.5	7.4	13.5	n/a
Albacore tuna	39.1	38	37	37.2	38.3	40.9	41.8
Yellowfin tuna	17.9	35.4	32.9	19	37.5	35.4	67.3
Kawakawa	n/a	n/a	n/a	2.5	n/a	n/a	n/a
Bigeye tuna	40.8	44.1	42.7	37.1	62.2	39	n/a
Mahimahi	20.2	21.5	18.5	17.6	21.5	22.8	24.5
Black marlin	69.1	93.8	78.1	91.5	105.9	n/a	n/a
Blue marlin	87.6	50.1	117.9	175.7	136.2	84.1	n/a
Wahoo	30	28.1	29.7	29.5	33.6	31.8	17.1
Sharks (all)	62.4	71.7	n/a	47.5	65	n/a	n/a
Swordfish	106.9	40.2	25.6	28.3	115.9	n/a	n/a
Sailfish	53.3	41.2	54.2	42	65.1	56.5	n/a
Spearfish	n/a	46	n/a	n/a	n/a	n/a	n/a
Moonfish	107	71.9	101.5	117.4	97.3	n/a	n/a
Oilfish	16.3	8.5	1.9	n/a	5.9	12.9	n/a
Pomfret	n/a	8.2	2.3	1.3	8.8	n/a	n/a
Barracudas	8.7	11.3	10.5	8.2	9.6	10.5	n/a
Rainbow runner	n/a	6.9	8.8	10.1	n/a	n/a	n/a
Dogtooth tuna	n/a	16.2	n/a	n/a	n/a	n/a	n/a

Table 30. Creel survey average weight per fish (2010-2011)

	Average Weight per		
	Fish in Pounds		
Species	2010	2011	
Skipjack tuna	n/a	6.8	
Albacore tuna	n/a	n/a	
Yellowfin tuna	46.6	40.1	
Kawakawa	n/a	n/a	
Bigeye tuna	n/a	n/a	
Mahimahi	n/a	n/a	
Black marlin	n/a	n/a	
Blue marlin	n/a	n/a	
Wahoo	n/a	31.7	
Sharks (all)	n/a	n/a	
Swordfish	n/a	n/a	
Sailfish	n/a	n/a	
Spearfish	n/a	n/a	
Moonfish	n/a	n/a	
Oilfish	n/a	n/a	
Pomfret	n/a	n/a	
Barracudas	n/a	10.2	
Rainbow runner	n/a	n/a	
Dogtooth tuna	n/a	n/a	

Table 31. Cannery sampled average weight per fish in pounds (1998-2002)

Species	1998	1999	2000	2001	2002
Skipjack	n/a	n/a	n/a	16.8	11.3
Albacore	41	47.2	40.7	39.8	39.1
Yellowfin	n/a	n/a	n/a	57	62.4
Bigeye	n/a	n/a	n/a	40.7	46.8
Mahimahi	n/a	n/a	n/a	16.2	13.5
Black marlin	n/a	n/a	n/a	36.3	n/a
Blue marlin	n/a	n/a	n/a	n/a	n/a
Wahoo	n/a	n/a	n/a	30.6	30.7
Swordfish	n/a	n/a	n/a	n/a	n/a
Sailfish	n/a	n/a	n/a	n/a	27.4
Moonfish	n/a	n/a	n/a	147.6	117.6
Pomfret	n/a	n/a	n/a	5.1	6.2
Rainbow Runner	n/a	n/a	n/a	n/a	9.4

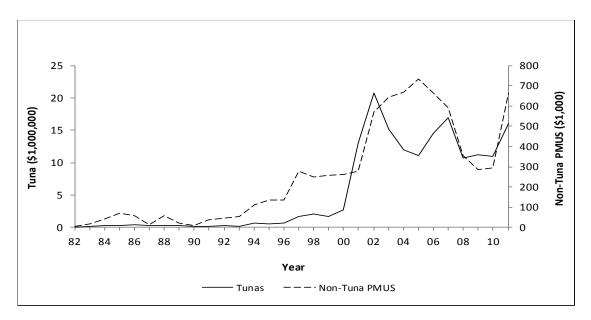
Table 32. Cannery-sampled average weight per fish in pounds (2003-2008)

Species	2003	2004	2005	2006	2007	2008
Skipjack	9.9	13.6	13.1	12.3	12.1	12.0
Albacore	37.8	36.5	33.2	34.8	35.6	37.9
Yellowfin	44.3	52.1	40.1	52.1	42.2	50.9
Bigeye	37.4	35.9	31.6	35.5	35.6	41.4
Mahimahi	20.7	13.0	17.2	13.4	13.5	19.1
Black marlin	n/a	n/a	n/a	n/a	n/a	n/a
Blue marlin	n/a	n/a	45.8	n/a	n/a	n/a
Wahoo	30	27.4	31.7	31.9	29.9	33.2
Swordfish	n/a	72.3	n/a	90.3	n/a	n/a
Sailfish	n/a	n/a	22.9	21.7	n/a	n/a
Moonfish	n/a	n/a	95.5	34.7	n/a	n/a
Pomfret	n/a	n/a	7.8	n/a	5.4	n/a
Rainbow Runner	n/a	10.8	n/a	n/a	n/a	n/a

Table 33. Cannery-sampled average weight per fish in pounds (2009-2011)

Species	2009	2010	2011	•	·	•
Skipjack	12.1	12.1	10.4			
Albacore	38.7	38.1	38.7			
Yellowfin	55.2	49.9	56.7			
Bigeye	43.7	45.3	54.0			
Mahimahi	15.1	23.7	21.6			
Black marlin	n/a	n/a	n/a			
Blue marlin	n/a	n/a	48.9			
Wahoo	28.5	31.4	36.2			
Swordfish	n/a	n/a	n/a			
Sailfish	n/a	n/a	n/a			
Moonfish	n/a	n/a	n/a			
Pomfret	n/a	n/a	n/a			
Rainbow Runner	n/a	n/a	n/a			

Interpretation: The cannery data represents the portion of the catch unloaded by larger vessels fishing farther away from Tutuila. The Creel Survey represents fish caught by alias near Tutuila. In 1999 longline boats began landing catches gilled and gutted to obtain higher prices at the canneries. This new method could have an impact on size variation for the longline fishery.


Albacore and skipjack average weight-per-fish show no change from 2010 to 2011 while yellowfin increased by about 7 lbs in 2011 to its highest weight since 2002. Bigeye increased by approximately 9 lbs and wahoo increased by roughly 5 lbs. Mahimahi decreased by 2 lbs.

Creel data showed a decrease in albacore weight of about 6.5 lbs. Skipjack, wahoo, and barracudas were also sampled, but there are not 2010 weights to compare to because albacore was the only sampled fish in the creel surveys in 2010.

Calculation: The Creel Survey Annual Average Pounds/Fish for each species was calculated from the creel survey interviews by dividing the total pounds of each species sampled during the year by the number of fish of sampled during the year. If the fish were sampled as other than whole (i.e. Gilled and Gutted) the sampled weight is divided by the appropriate factor (less than 1) to get the whole weight. All weights were measured directly before 2000, but after that most weights were calculated from length measurements. Since these fish are caught by alias operating close to Tutuila this represents fish sizes close to shore.

The Cannery Sampled Annual Average Pounds/Fish for each species was calculated from the length measurements made at the canneries when the fish are unloaded there. The weight of each sampled fish is calculated from the length measurements. These weights are summed over the year for each species and are then divided by the number of fish of that species sampled during the year. Since these fish are caught by larger boats operating away from Tutuila these catches represent fish sizes further out to sea from Tutuila.

Figure 28. American Samoa annual inflation-adjusted revenue in 2011 dollars for tuna and non-tuna PMUS.

Interpretation: Inflation-adjusted revenues for tunas and non-tuna PMUS both increased in 2011. Adjusted revenue for tunas increased by 37% from 2010, continuing an increasing trend from 2008. Non-tuna adjusted revenues increased by more than 50% from the 2010 adjusted revenue. For the previous 5 years, revenue for non-tunas ranged from \$200,000 to \$500,000 annually. The adjusted revenue for tuna species peaked in 2002 at \$20.7 million. The 2011 adjusted revenue is the third highest. Since 2003, the adjusted revenue ranged from \$10 to \$15 million a year.

Calculation: The unadjusted revenues for Tunas and Other PPMUS were calculated by summing the values for the species in these categories as defined by Table 4. The unadjusted revenue for All Pelagics is the sum of the value for the Tuna, Other PPMUS and Miscellaneous categories as defined by Table 4.

The unadjusted revenues from commercial landings for the pelagic species subgroups above were adjusted for inflation by multiplying a given year's revenue by the 2000 consumer price index (CPI) divided by the CPI for that year.

Table~34.~American~Samoa~commercial~pelagic~fishing~revenues~in~unadjusted~and~inflation-adjusted~dollars~1982-2011~including~consumer~price~index~(CPI)

			Revenue in D	ollars	
		Tun	nas	Non-Tuna	PMUS
Year	CPI	Unadjusted	Adjusted	Unadjusted	Adjusted
1982	100	\$18,990	\$51,159	\$1,534	\$4,133
1983	100.8	\$58,561	\$156,534	\$5,828	\$15,578
1984	102.7	\$114,981	\$301,595	\$15,938	\$41,805
1985	103.7	\$95,157	\$247,217	\$26,800	\$69,627
1986	107.1	\$139,021	\$349,638	\$23,117	\$58,140
1987	111.8	\$110,012	\$265,129	\$5,267	\$12,693
1988	115.3	\$143,623	\$335,503	\$25,384	\$59,297
1989	120.3	\$110,343	\$247,058	\$9,338	\$20,907
1990	129.6	\$63,285	\$131,569	\$3,813	\$7,927
1991	135.3	\$94,344	\$187,840	\$17,923	\$35,684
1992	140.9	\$141,106	\$269,794	\$23,451	\$44,839
1993	141.1	\$80,250	\$153,196	\$28,181	\$53,797
1994	143.8	\$337,977	\$633,031	\$59,266	\$111,004
1995	147	\$319,213	\$585,117	\$73,194	\$134,164
1996	152.5	\$393,770	\$695,791	\$76,234	\$134,705
1997	156.4	\$941,063	\$1,620,510	\$162,262	\$279,416
1998	158.4	\$1,241,313	\$2,111,473	\$146,754	\$249,628
1999	159.9	\$1,016,156	\$1,712,222	\$153,286	\$258,287
2000	166.7	\$1,656,449	\$2,676,821	\$161,748	\$261,385
2001	169.9	\$8,207,830	\$13,017,618	\$174,817	\$277,259
2002	172.1	\$13,274,771	\$20,788,292	\$363,831	\$569,760
2003	176.0	\$9,881,723	\$15,119,036	\$420,052	\$642,679
2004	188.5	\$8,384,335	\$11,981,214	\$467,087	\$667,467
2005	198.3	\$8,206,541	\$11,144,483	\$539,924	\$733,217
2006	204.3	\$11,035,543	\$14,555,881	\$505,112	\$666,243
2007	215.5	\$13,583,240	\$16,979,050	\$471,426	\$589,283
2008	231.5	\$9,198,958	\$10,707,587	\$304,264	\$354,164
2009	240.7	\$9,995,866	\$11,182,914	\$255,246	\$285,620
2010	249.4	\$10,181,766	\$10,966,307	\$272,893	\$294,935
2011	269.4	\$16,108,901	\$16,108,901	\$665,488	\$665,488
Average	160.3	\$4,171,096	\$5,510,416	\$181,988	\$253,304
Std Dev	46.36	\$5,220,441	\$6,649,299	\$193,582	\$241,195

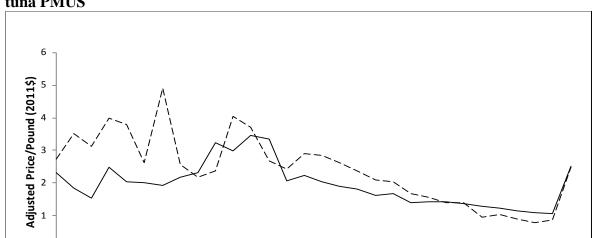


Figure 29. American Samoa average inflation-adjusted price per pound of tunas and non-tuna PMUS

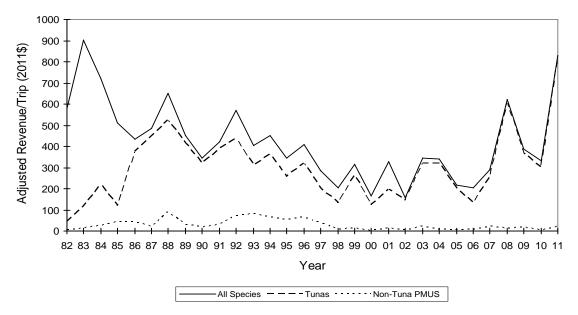
Interpretation: The average inflation-adjusted price-per-pound for tunas and non-tuna Pelagic Management Unit Species increased in 2011 by more than a \$1.00 from 2010, discontinuing a declining trend since 2003. The average price-per-pound for tuna ranged from \$1.00 to \$2.50 between 1998 and 2011, and non-tuna PMUS average price ranged from \$0.80 to \$1.68 between 2002 and 2011. Tuna price-per-pound peaked at \$3.45 in 1993; the non-tuna PMUS average peaked in 1988 at \$4.90. The 2009 inflation-adjusted price-per-pound for non-tuna PMUS was the lowest ever at \$0.80.

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

Year

- - Non-Tuna PMUS

Tunas


Calculation: The unadjusted price/pound for Tunas and Non-Tuna PMUS were calculated by dividing the sum of the values for the species in these categories as defined by Table 4 by the sum of their commercial landings or pounds.

The unadjusted price/pound values for the pelagic species subgroups above were adjusted for inflation by multiplying the given year's price/pound by the 2006 consumer price index (CPI) divided by the CPI for that year.

Table~35.~American~Samoa~average~price~per~pound~of~tuna~PMUS~and~non-tuna~PMUS~in~unadjusted~and~inflation-adjusted~dollars~1982-2011

	<u>A</u>	verage Price/Po	ound (Dollars)	
	Tunas	S	Non-Tuna l	PMUS
Year	Unadjusted	Adjusted	Unadjusted	Adjusted
1982	\$0.86	\$2.32	\$1.01	\$2.73
1983	\$0.69	\$1.84	\$1.31	\$3.51
1984	\$0.59	\$1.54	\$1.18	\$3.11
1985	\$0.95	\$2.47	\$1.53	\$3.98
1986	\$0.82	\$2.05	\$1.51	\$3.80
1987	\$0.83	\$2.00	\$1.09	\$2.62
1988	\$0.83	\$1.94	\$2.10	\$4.90
1989	\$0.97	\$2.18	\$1.14	\$2.56
1990	\$1.12	\$2.32	\$1.05	\$2.19
1991	\$1.63	\$3.24	\$1.19	\$2.37
1992	\$1.56	\$2.98	\$2.12	\$4.04
1993	\$1.81	\$3.45	\$1.95	\$3.72
1994	\$1.79	\$3.35	\$1.43	\$2.69
1995	\$1.13	\$2.08	\$1.33	\$2.44
1996	\$1.26	\$2.23	\$1.65	\$2.91
1997	\$1.18	\$2.03	\$1.66	\$2.85
1998	\$1.11	\$1.89	\$1.54	\$2.63
1999	\$1.07	\$1.81	\$1.40	\$2.36
2000	\$1.01	\$1.63	\$1.30	\$2.09
2001	\$1.06	\$1.69	\$1.29	\$2.04
2002	\$0.89	\$1.39	\$1.07	\$1.68
2003	\$0.94	\$1.44	\$1.02	\$1.57
2004	\$0.99	\$1.42	\$0.99	\$1.41
2005	\$1.01	\$1.37	\$1.04	\$1.41
2006	\$0.98	\$1.30	\$0.71	\$0.94
2007	\$0.99	\$1.24	\$0.84	\$1.05
2008	\$0.99	\$1.16	\$0.78	\$0.91
2009	\$0.99	\$1.10	\$0.71	\$0.80
2010	\$0.99	\$1.07	\$0.81	\$0.88
2011	\$2.50	\$2.50	\$2.47	\$2.47
Average	\$1.12	\$1.97	\$1.31	\$2.42
Std. Dev	\$0.38	\$0.65	\$0.43	\$1.03

Figure 30. American Samoa average inflation-adjusted revenue per trolling trip landing pelagic species

Interpretation: Adjusted revenues per trolling trip for non-tunas have generally been constant since 1998. The average adjusted revenue-per-troll-trip for tunas increased to more than double the 2010 revenue of \$300.00. Skipjack and yellowfin are the primary tuna landings by trollers. The adjusted revenue-per-troll-trip for all species more than doubled in 2011 and the adjusted revenue-per-troll-trip for non-tuna PMUS in 2011 also quadrupled from the 2010 revenue. The 2011 average revenue per trolling trip for tunas is the highest recorded in the history. The highest average revenue for non-tuna is \$38.60 in 1988.

Calculation: The purely trolling interviews in the offshore creel survey system landing any of the species listed in Table 3 and selling part or all of their catch are first counted for the given year to get the number of trips. The unadjusted revenue/trip for Tunas and Non-Tuna PMUS is calculated by first summing the value of the species in these pelagic subgroups caught and sold by purely trolling methods and then dividing this by the number of pure trolling trips. The unadjusted revenue/trip for all species is the sum of the value of all species, in Table 3 or not, caught by the purely trolling trips that sold all or part of their catch divided by the number of such trips. The unadjusted revenue/trip values for the pelagic species subgroups above and for all species were adjusted for inflation by multiplying the given year's revenue/trip by the 2003 consumer price index (CPI) divided by the CPI for that year.

Table 36. American Samoa commercial pelagic revenues in unadjusted and inflationadjusted dollars per trip

	All S	<u>pecies</u>	<u>Tu</u>	Tunas		a PMUS
Year	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted
1982	\$516	\$214	\$39	\$16	\$3.10	\$1.30
1983	\$807	\$338	\$103	\$43	\$12.40	\$5.20
1984	\$642	\$274	\$192	\$82	\$24.60	\$10.50
1985	\$455	\$196	\$108	\$47	\$36.70	\$15.80
1986	\$390	\$173	\$337	\$150	\$39.10	\$17.40
1987	\$433	\$201	\$398	\$185	\$19.60	\$9.10
1988	\$581	\$278	\$469	\$225	\$80.60	\$38.60
1989	\$404	\$202	\$371	\$185	\$25.00	\$12.50
1990	\$308	\$166	\$286	\$154	\$14.50	\$7.80
1991	\$377	\$212	\$347	\$195	\$27.40	\$15.40
1992	\$509	\$298	\$390	\$228	\$62.90	\$36.80
1993	\$360	\$211	\$276	\$162	\$71.10	\$41.70
1994	\$403	\$241	\$324	\$194	\$56.40	\$33.70
1995	\$306	\$187	\$228	\$139	\$48.60	\$29.70
1996	\$364	\$230	\$284	\$180	\$55.70	\$35.30
1997	\$255	\$165	\$179	\$116	\$35.60	\$23.10
1998	\$181	\$119	\$118	\$78	\$9.30	\$6.10
1999	\$282	\$187	\$237	\$158	\$11.10	\$7.40
2000	\$147	\$102	\$110	\$76	\$1.20	\$0.80
2001	\$292	\$206	\$175	\$124	\$12.20	\$8.60
2002	\$141	\$101	\$128	\$91	\$5.30	\$3.80
2003	\$310	\$226	\$285	\$208	\$19.20	\$14.00
2004	\$305	\$239	\$285	\$223	\$8.20	\$6.40
2005	\$192	\$158	\$179	\$148	\$5.10	\$4.20
2006	\$183	\$155	\$118	\$100	\$6.70	\$5.70
2007	\$260	\$233	\$225	\$201	\$19.90	\$17.80
2008	\$557	\$535	\$539	\$518	\$11.90	\$11.40
2009	\$358	\$345	\$340	\$328	\$16.50	\$15.90
2010	\$307	\$307	\$277	\$277	\$3.60	\$3.60
2011	\$710	\$710	\$688	\$688	\$17.90	\$17.90
Average	\$419	\$240	\$296	\$184	\$28.30	\$15.30
Std. Dev	\$175	\$121	\$148	\$133	\$24.00	\$11.70

B. Commonwealth of the Northern Mariana Islands

Introduction

The Northern Mariana Islands pelagic fishery occurs primarily from the island of Farallon de Medinilla in the north to the island of Rota in the south. The fishery is characterized using data from the Commercial Receipt Invoice Database. The data collection system is dependent upon first-level fresh fish purchasers to accurately record all fish purchases to species on specially designed invoices. Staff from the Department of Lands and Natural Resources, Division of Fish and Wildlife (DFW) routinely distributes and collects invoice books from participating local fish purchasers on Saipan. This program is voluntary and includes purchasers at some fish markets, stores, restaurants, hotels and roadside vendors ("fish-mobiles").

The current commercial purchase database collection system only documents landings on Saipan. The establishment of a data collection system for the islands of Tinian and Rota are in the process of being developed as funding allows. It is believed that the commercial purchase database accounts for about 90% of all commercial landings on Saipan. There is a subsistence fishery on Saipan where a small portion of the catch is sold to cover expenses. Fish from the subsistence fishery that are sold from door-to-door may account for up to 30% of unreported commercial sales.

Although the Saipan data collection system has been in operation since the mid-1970s, only data collected since 1983 are considered accurate enough to be used.

Creel Survey data from 2000 to the present are used in this report and serve as the basis of fishing activity analyses. These analyses are limited only to the island of Saipan. Currently, there are no creel surveys being conducted on the islands of Tinian or Rota.

2011 CNMI Pelagic Fishery Summary

Trolling is the primary fishing method in the pelagic fishery. The pelagic fleet, excluding charter boats, consists primarily of vessels less than 24 ft in length which typically cannot venture more 20 miles from Saipan.

Charter vessel landings from the Creel Survey are used in this report. Recorded charter boat landings make up less than 2% of known pelagic landings on Saipan.

The total pelagics landed in 2011 decreased due to decreasing fishing effort, unfavorable sea conditions and rising cost of troll fishing. The primary target and most marketable species for the pelagic fleet are skipjack tuna. In 2011, skipjack tuna landings comprised over 50% of the entire pelagic landings. Schools of skipjack tuna have historically been common in near shore waters, providing an opportunity to catch numerous fish with a minimum of travel time and fuel costs. Skipjack is readily consumed by the local populace and restaurants, primarily as sashimi.

Yellowfin tuna and mahimahi are also very marketable species but are seasonal. During their seasonal runs, these fish are usually found close to shore and provide easy targets for the local fishermen.

In late 2007, Crystal Sea's, based on Rota, became the first longline fishing company in CNMI. However, by 2009, Crystal Seas was renamed Pacific Seafoods and relocated its operations to Saipan. In 2011, there was four licensed longline fishing vessels stationed in the CNMI. Federal log book data is being collected and submitted to NMFS. This report did not include any data or landings from longline vessels.

Plan Team Recommendations

2011 Recommendations

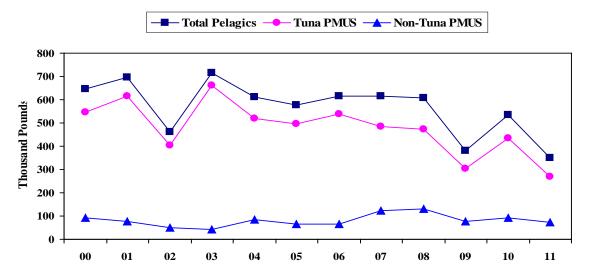
The Pelagics Plan Team (PPT) reiterates its recommendation that the landings of the emerging CNMI longline fishery should be sampled by NMFS or Division of Fish and Wildlife obtain average weights and length-weight conversion factors so that logbook catches in numbers can be expressed as weights.

Table 37. CNMI Creel Survey 2011 pelagic species composition

	Total Landings	Non-	
Species	(Lbs)	Charter	Charter
Skipjack Tuna	224,587	219,249	5,338
Yellowfin Tuna	41,249	41,249	0
Kawakawa	1,652	1,548	104
Tuna PMUS	267,488	262,046	5,442
Mahimahi	56,291	53,327	2,964
Wahoo	11,863	10,776	1,087
Blue Marlin	5,335	5,335	0
Sailfish	0	0	0
Shortbill Spearfish	0	0	0
Non-tuna PMUS	73,489	69,438	4,051
Dogtooth Tuna	1,678	1,678	0
Rainbow Runner	6,144	6,144	0
Barracudas	1,417	1,129	288
Yellowtail Barracuda	0	0	0
Non-PMUS Pelagics	9,236	8,951	288
Total Pelagics	350,216	340,435	9,781

Interpretation: Skipjack tuna continued to dominate the pelagic landings, comprising around 64% of the pelagic catch. Skipjack tunas are easily caught in near shore waters throughout the year. Mahimahi is seasonal with peak catch usually from February through April. Yellowfin season usually runs from April to September. The overall pelagic catch decreased 35% in 2011.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid overestimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

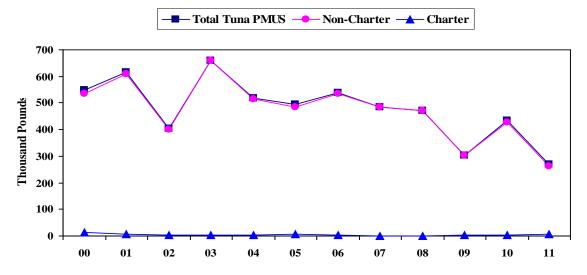

Table 38. CNMI 2011 estimated commercial pelagic landings, revenues and price (from Commercial Receipt invoices)

	Landing		Avg. Price
Species	(Lbs)	Value (\$)	(\$/Lb)
Skipjack Tuna	33,989	65,889	1.94
Yellowfin Tuna	11,979	22,533	1.88
Saba (kawakawa)	823	1,645	2.00
Tuna PMUS	46,790	90,067	1.92
Mahimahi	13,997	26,561	1.90
Wahoo	5,849	11,517	1.97
Sailfish	38	56	1.50
Sickle Pomfret (w/woman)	113	281	2.50
Non-tuna PMUS	19,996	38,415	1.92
Dogtooth Tuna	2,364	4,147	1.75
Rainbow Runner	863	1,725	2.00
Non-PMUS Pelagics	3,226	5,872	1.82
Total Pelagics	70,012	134,354	1.92

Interpretation: In 2011, skipjack tuna dominated the pelagic landings, comprising around 52% of the (commercially receipted) industry's pelagic catch. Though it is the majority of pelagic landings, skipjack landings decreased 53% in 2011. In 2011, yellowfin tuna and mahimahi ranked second and third in total landings. Mahimahi landings decreased 16% and yellowfin landings decreased 42% in 2011. Skipjack tunas are easily caught in near shore waters throughout the year. Mahimahi is seasonal with catch peak usually from February through April. Yellowfin season usually runs from April to September. The 2011 total pelagic recorded catch sold decreased 40% over 2010.

The highest average price of identified pelagic species was \$2.50/lb for sickle pomfret. The lowest priced species is sailfish, which sold at an average price of \$1.50/lb. Skipjack tuna sold at an average price of \$1.94/lb. The main target in the CNMI pelagic fishery is skipjack tuna.

Figure 31. Annual CNMI boat-based creel estimated total landings for all pelagics, tuna PMUS, and non-tuna PMUS

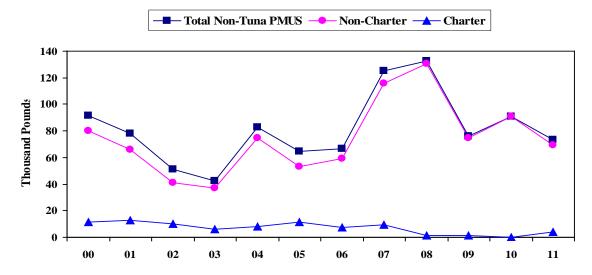

Interpretation: Creel survey landings declined in 2002 possibly due to several typhoons hitting the Mariana Islands. Since then, landings of pelagic species were relatively stable until 2009 when tuna PMUS landings decreased 42%. In 2009, there were fewer fishing trips taken and fishermen took shorter trips. 2010 tuna PMUS landings increased 52% over 2009. Tuna PMUS comprised around 80% of total pelagic landings. In 2011, tuna PMUS decreased significantly by 35% over 2010. This decline is partly due to many days of unfavorable weather conditions for fishing that occurred in 2011.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort

Estimated Pelagics Landings, All Species (lbs)					
			Non-		
	All	Tuna	Tuna		
Year	Pelagics	PMUS	PMUS		
2000	644,324	547,441	91,536		
2001	695,382	614,330	78,164		
2002	461,332	403,062	51,064		
2003	714,407	660,987	41,910		
2004	612,112	517,661	82,625		
2005	576,312	494,493	64,661		
2005	614,002	539,455	66,757		
2007	615,267	486,000	124,996		
2008	608,809	472,703	132,312		
2009	381,380	303,522	76,308		
2010	543,291	432,829	90,694		
2011	350,218	269,167	73,489		
Average	567,522	478,514	81,278		
Standard					
Deviation	110,475	109,659	25,338		
			-		

estimates for the pelagic fishery to avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for total of pelagic species, Tuna PMUS and Non-Tuna PMUS separately are summed across all methods to obtain the numbers plotted above.

Figure 32. Annual CNMI boat-based creel estimated tuna landings for all, non-charter, and charter pelagics for 2000-2011

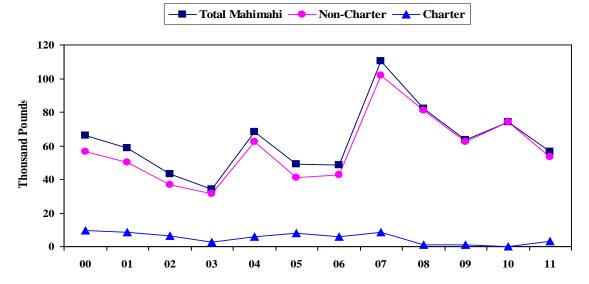

Interpretation: Total landings over the time series indicate that 98% of all tuna PMUS are landed by non-charter vessels. 2011 non-charter landings decreased 38% over the previous year while charter landings increased 35% over 2010.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for total tuna PMUS, charter and non-charter

Estimated Tuna Landings (lbs)				
Year	Total Tunas	Non- charter	Charter	
2000	547,441	534,708	12,733	
2001	614,330	608,705	5,625	
2002	403,062	400,848	2,214	
2003	660,987	658,123	2,863	
2004	517,661	514,985	2,676	
2005	494,493	486,196	8,297	
2006	539,455	535,838	3,617	
2007	486,000	485,025	975	
2008	472,703	471,294	1,408	
2009	303,522	301,207	2,315	
2010	432,826	428,786	4,043	
2011	269,167	263,724	5,443	
Average	478,514	474,156	4,358	
Standard				
Deviation	109,659	109,170	3,199	

separately are summed across all methods to obtain the numbers plotted above.

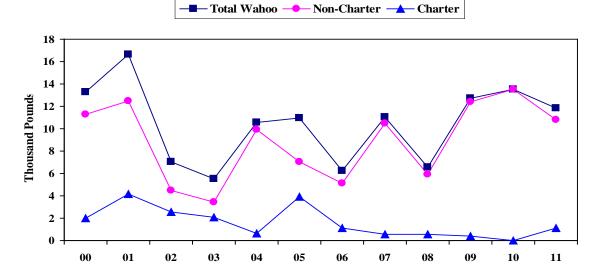
Figure 33. Annual CNMI boat-based creel estimated non-tuna PMUS landings for all, non-charter, and charter pelagics for 2000-2011


Interpretation: The 2010 total non-tuna PMUS figure increased slightly over 2009 by 16% and above the 10 year average since the Boat-based Creel Survey started. This increase is mostly due to the increased mahimahi and wahoo landings. 2011 landings decreased in total non-tuna landings by 19%. The non-charter 2011 landings decreased 23% over previous year.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the

Non-tuna PMUS Landings (lbs)				
	Total Non-			
	tuna	Non-		
Year	PMUS	charter	Charter	
2000	91,536	80,029	11,507	
2001	78,164	65,692	12,472	
2002	51,064	41,246	9,819	
2003	41,910	36,827	5,084	
2004	82,625	74,885	7,740	
2005	64,661	52,898	11,762	
2006	66,757	59,223	7,533	
2007	124,996	115,861	9,135	
2008	132,312	130,854	1,458	
2009	76,308	74,929	1,379	
2010	90,694	90,694	0	
2011	73,489	69,439	4,050	
Average	81,278	74,342	6,936	
Standard				
Deviation	25,338	26,626	4,174	

expanded period. The annual catch for Total Non-Tuna PMUS, Charter and Non-Charter separately are summed across all methods to obtain the numbers plotted above.

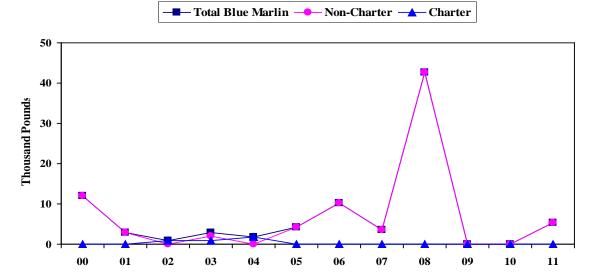

Interpretation: Mahimahi landings have fluctuated yearly, usually in a two year cycle. 2010 landings increased by 16% over 2009 landings. The bulk of mahimahi landings are from Non-Charter vessels. Although mahimahi is a favorite target by Charter boats, the decreasing number of tourist arriving into Saipan has deeply impacted the Charter fishing industry. 2011 total mahimahi landings decreased 24% with non-charter landings decreasing by 28%.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid overestimating seasonal pelagic species. Percent

Mahimahi Landings (lbs)				
	Total	Non-		
Year	Mahimahi	Charter	Charter	
2000	66,230	56,719	9,512	
2001	58,548	50,219	8,328	
2002	43,149	36,774	6,375	
2003	33,855	31,338	2,517	
2004	68,394	62,902	5,492	
2005	48,960	41,122	7,839	
2006	48,666	42,729	5,937	
2007	110,351	101,792	8,559	
2008	81,912	81,025	887	
2009	63,559	62,568	991	
2010	73,965	73,965	0	
2011	56,291	53,327	2,964	
Average	62,838	57,834	5,004	
Standard				
Deviation	19,265	19,379	3,198	

species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for Total Mahimahi, Charter and Non-Charter are separately summed across all methods to obtain the numbers plotted above.

Figure 35. Annual CNMI boat-based creel estimated wahoo landings

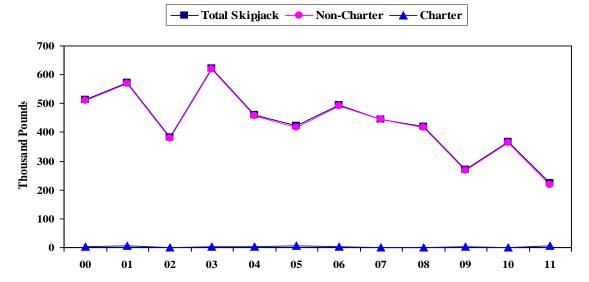

Interpretation: Wahoo landings have fluctuated yearly with majority of landings being made by non-charter vessels. The 2010 wahoo landings increased 6% over 2009 landings and were 26% higher than the 10 year average. There were no wahoo landings recorded during creel survey sample days of charter boats in 2010. The 2011 total wahoo landing decreased 12% over 2010 with non-charter landings decreasing 20% over the previous year.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid overestimating seasonal pelagic species. Percent species composition is calculated by weight for

Wahoo Landings (lbs)					
	Total	Non-			
Year	Wahoo	Charter	Charter		
2000	13,282	11,287	1,996		
2001	16,653	12,509	4,144		
2002	7,060	4,471	2,589		
2003	5,255	3,417	1,837		
2004	10,501	9,924	577		
2005	10,956	7,033	3,924		
2006	6,225	5,141	1,085		
2007	11,023	10,447	576		
2008	6,525	5,954	571		
2009	12,750	12,362	388		
2010	13,494	13,494	0		
2011	11,863	10,776	1,087		
Average	10,491	8,901	1,590		
Standard					
Deviation	3,324	3,351	1,320		

the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for Total Wahoo landings, Charter and Non-Charter separately are summed across all methods to obtain the numbers plotted above.

Figure 36. Annual CNMI boat-based creel estimated blue marlin landings

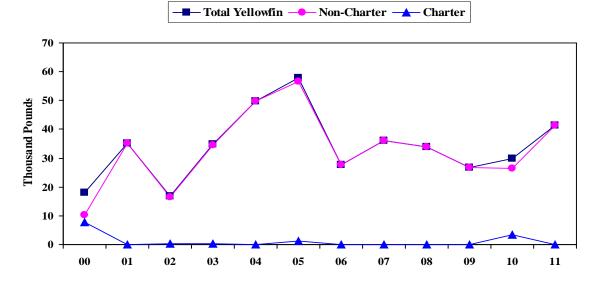

Interpretation: Blue marlin is rarely targeted by non-charter vessels. Charter vessels would prefer to land blue marlin but seldom do due to the short fishing time that tourists charter their vessels. The average charter time is 4 hours. Non-charter fishermen find it difficult to find a market for blue marlin landings. Although the majority of the fishing is done by non-charter vessels, these vessels are usually smaller in size (between 15 to 18 feet in length), which makes it difficult to haul blue marlin. During 2009 and 2010, there was no blue marlin landings recorded during creel survey sample days for non-charter and charter vessels. In 2011, non-charter vessels recorded over 5,000 pounds in blue marlin landings.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid overestimating seasonal pelagic species. Percent

Blue Marlin Landings (lbs)				
	Total			
	Blue	Non-		
Year	Marlin	Charter	Charter	
2000	12,024	12,024	0	
2001	2,963	2,963	0	
2002	855	0	855	
2003	2,800	2,071	729	
2004	1,671	0	1,671	
2005	4,248	4,248	0	
2006	10,161	10,161	0	
2007	3,623	3,623	0	
2008	42,586	42,586	0	
2009	0	0	0	
2010	0	0	0	
2011	5,335	5,335	0	
Average	7,217	6,918	299	
Standard				
Deviation	11,246	11,401	571	

species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for Blue Marlin, Charter and Non-Charter separately are summed across all methods to obtain the numbers plotted above.

Figure 37. Annual CNMI boat-based creel estimated skipjack tuna landings


Interpretation: Skipjack tuna make up the majority of all pelagic landings with 98% of all skipjack landings from non-charter vessels. A drop in 2002 landings may be attributed to several typhoons that hit the Mariana Islands. Skipjack landings spiked in 2003, possibly due to increased fishing efforts. 2009 landings decreased 36% over 2008. This steep decrease on the most important species of the CNMI pelagic fishery is a reflection of the Saipan economy and rising fuel prices. 2010 landings increased 37% over 2009, however are still below the 10 year average. In 2011, the total skipjack tuna landings decreased 39% over the previous year. This decrease may be partially due to increasing fuel prices, the current economic situation in CNMI and unfavorable sea conditions for fishing. These factors caused several long-time troll fishermen to leave the fishery.

Skipjack Tuna Landings (lbs)				
	Total	Non-		
Year	Skipjack	Charter	Charter	
2000	514,027	510,678	3,350	
2001	573,996	569,041	4,955	
2002	381,612	380,062	1,550	
2003	621,460	619,130	2,330	
2004	459,997	457,576	2,421	
2005	424,597	418,340	6,258	
2006	494,927	491,520	3,407	
2007	444,493	443,600	893	
2008	419,311	417,903	1,408	
2009	270,439	268,484	1,955	
2010	365,636	365,192	444	
2011	224,587	219,249	5,338	
Average Standard	432,955	430,097	2,858	
Deviation	109,505	109,485	1,771	

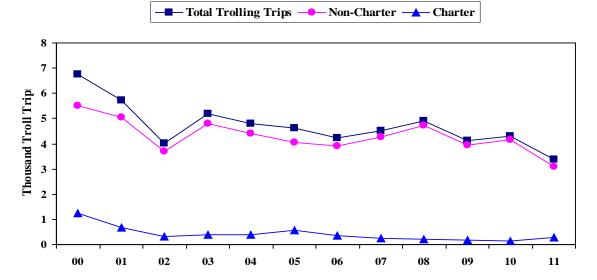
Source and Calculations: Data are from the

Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for Skipjack Tuna, Charter and Non-Charter separately are summed across all methods to obtain the numbers plotted above.

Figure 38. Annual CNMI boat-based creel estimated yellowfin landings

Interpretation: In 2010, yellowfin tuna was only 6% of all pelagics landings. Yellowfin tuna catches are usually smaller in size than other geographical areas. The average size of yellowfin tuna measured during creel surveys on Saipan was 48.7 centimeters in length. 2010 landings nearly equaled the 10 year average. 2011 total landings of yellowfin tuna increased significantly over 2010 by 39%. Fishermen on Saipan recorded a good year for yellowfin tuna in 2011. There were no yellowfin tuna landings recorded in the boat-based creel survey from charter yessels in 2011.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. A 365-day (366 days during leap years) annual expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to

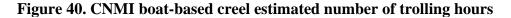

Yello	Yellowfin Tuna Landings (lbs)				
	Total	Non-			
Year	Yellowfin	Charter	Charter		
2000	18,123	10,195	7,928		
2001	35,265	35,265	0		
2002	16,714	16,494	220		
2003	34,896	34,568	327		
2004	49,631	49,631	0		
2005	57,829	56,656	1,173		
2006	27,658	27,599	59		
2007	35,958	35,958	0		
2008	33,906	33,906	0		
2009	26,602	26,602	0		
2010	31,457	31,457	0		
Average	33,458	32,576	882		
Standard	44 550	10.161	2.252		
Deviation	11,550	12,491	2,253		

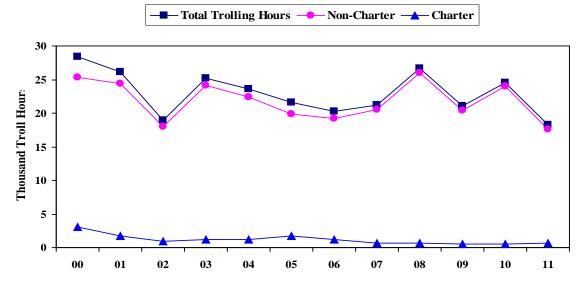
avoid over-estimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for Yellowfin Tuna, Charter and Non-Charter separately are summed across all methods to obtain the numbers plotted above.

Table 39. Boat-based survey statistics: raw data

Year	Survey Days	Total Trips (Boat Log)	Non- Charter Trips (Boat Log)	Charter Trips (Boat Log)	Total Interviews Conducted	Non- charter Interviews	Charter Interviews
2000	66	130	115	15	123	104	19
2001	67	221	202	19	215	196	19
2002	75	149	138	11	163	137	26
2003	91	248	224	24	278	223	55
2004	77	211	191	20	211	187	24
2005	78	293	259	34	294	247	47
2006	71	212	198	14	222	193	29
2007	63	199	193	6	194	187	7
2008	56	164	160	4	160	155	5
2009	66	140	137	3	137	132	5
2010	70	122	119	3	115	113	2
2011	73	110	105	5	105	100	5

Figure 39. CNMI boat-based creel estimated number of trolling trips

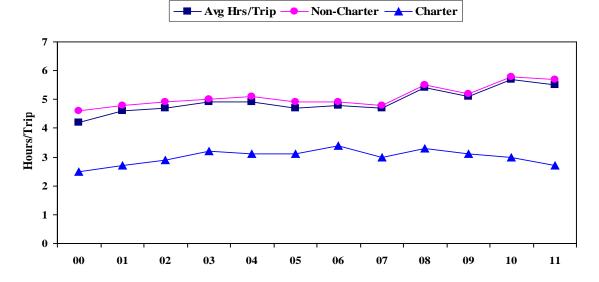



Interpretation: The total number of trolling trips has slightly decreased over the 10 years since the start of the boat-based creel survey. This slight decline in trips is partly due to the down turn in economic activity in CNMI, rising fuel costs, and fishermen leaving the fishery. Despite this, 2010 total trips increased 5% over 2009 due to non-charter boats trips increasing 6% over 2009. In 2011, the number of total estimated trips decreased 22%. non-charter trips decreased 26% over 2010. Charter trips increased significantly by 70% over previous year.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated number

CNMI Estimated Number of Trips					
	Total	Non-			
Year	Trips	Charter	Charter		
2000	6,755	5,528	1,227		
2001	5,709	5,039	671		
2002	4,001	3,683	318		
2003	5,167	4,804	363		
2004	4,783	4,412	371		
2005	4,616	4,064	553		
2006	4,235	3,896	340		
2007	4,504	4,261	242		
2008	4,921	4,717	204		
2009	4,141	3,951	190		
2010	4,312	4,154	158		
2011	3,662	3,093	269		
Average	4,712	4,300	412		
Standard					
Deviation	843	626	285		

of trips for the trolling method as taken directly from creel survey expansion outputs.

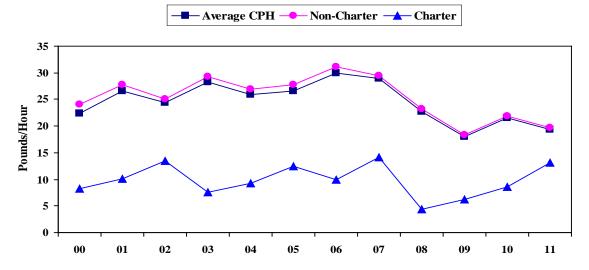


Interpretation: Total trolling hours for Non-Charter boats in 2010 increased 18% over 2009 and 8% over the 10 year average. Charter trolling hours also increased in 2010 by 13% over 2009 but still below the 10 year average. In 2011, the total estimated trolling hours taken decreased 25% with non-charter boats decreasing 27%. Charter estimated trolling hours indicates an increase of 53% over previous year.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated boat hours spent fishing for the trolling method as taken directly from creel survey expansion outputs.

CNMI I	CNMI Estimated Trolling Hours				
	Total	Non-			
Year	Hours	Charter	Charter		
2000	28,425	25,349	3,077		
2001	26,166	24,370	1,796		
2002	18,870	17,940	930		
2003	25,224	24,078	1,146		
2004	23,541	22,375	1,166		
2005	21,619	19,915	1,705		
2006	20,299	19,160	1,140		
2007	21,232	20,499	733		
2008	26,642	25,969	673		
2009	21,027	20,443	584		
2010	24,473	24,000	473		
2011	18,332	17,607	725		
Average	22,998	21,809	1,189		
Standard					
Deviation	3,102	2,791	698		

Figure 41. CNMI boat-based creel estimated average troll trip length (hours/trip)

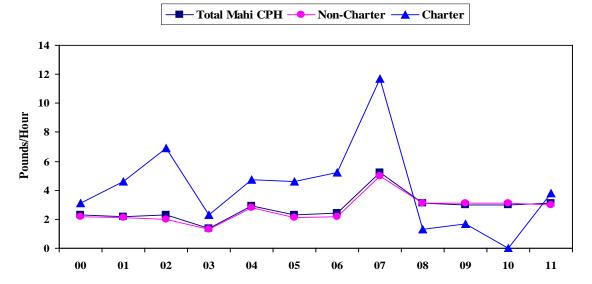

Interpretation: The overall average trolling hours/trips have increased over the 10 year time series. In 2010, total average trip length increased, non-charter boats fished longer hours, and the highest trip length in 10 years was recorded. This increase is possibly due to the remaining

fishermen fishing longer to meet the demand in the market that was created when some fishermen left the industry. Charter vessels also increased the number of hours spent trolling in 2010. Total hrs/trip taken in 2011 decreased by 4%. Non-charter boats hrs/trip decreased 2%. The charter hrs/trip also decreased by 10% over 2010. This decrease in 2011 may be attributed to unfavorable sea conditions and rising fuel prices.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated boat hours spent fishing and number of trips for the trolling method, as taken directly from creel survey, expansion system outputs.

Estimated Troll Trip Length				
	Average	Non-		
Year	Hours/Trip	Charter	Charter	
2000	4.2	4.6	2.5	
2001	4.6	4.8	2.7	
2002	4.7	4.9	2.9	
2003	4.9	5.0	3.2	
2004	4.9	5.1	3.1	
2005	4.7	4.9	3.1	
2006	4.8	4.9	3.4	
2007	4.7	4.8	3.0	
2008	5.4	5.5	3.3	
2009	5.1	5.2	3.1	
2010	5.7	5.8	3.0	
2011	5.5	5.7	2.7	
Average	4.9	5.1	3.0	
Standard				
Deviation	0.4	0.4	0.3	

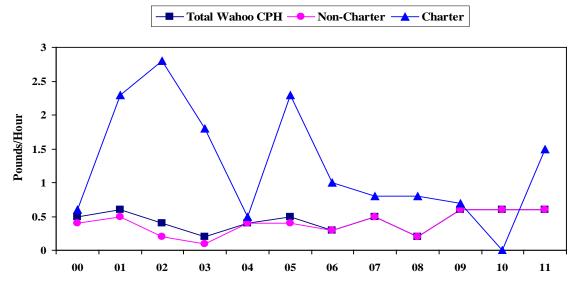
Figure 42. CNMI boat-based creel trolling CPUE (pounds/hour) for all pelagic species


Interpretation: The trolling catch rates yearly fluctuations may be associated with weather patterns that affect sea conditions. 98% of total pelagic fish landed are from non-charter vessels which are usually smaller boats. It is a growing practice on Saipan that fishermen use smaller boats for trolling, which targets mainly skipjack tuna. This practice allows them to use smaller boat engines which saves them on fuel cost. However this practice also affects their ability to fish efficiently during rough weather days. 2010 pounds/hour for all pelagics increased 21% from

2009. Non-charter boats and charter vessels increased 20% and 89% respectively. The 2011 non-charter catch rates for all pelagics decreased by 10%, while charter boats had a significant increase in their catch rates of 55% over previous year.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of all troll catch, divided by the total number of hours spent fishing.

CPUE (pounds/hour): All Pelagic Species				
	Combined	Non-		
Year	Average	Charter	Charter	
2000	22.4	24.1	8.2	
2001	26.6	27.8	10.1	
2002	24.4	25.0	13.4	
2003	28.3	29.3	7.3	
2004	26.0	26.9	9.2	
2005	26.6	27.8	12.4	
2006	29.9	31.1	9.9	
2007	29.0	29.5	14.2	
2008	22.8	23.3	4.4	
2009	18.0	18.3	6.3	
2010	21.6	21.9	8.5	
2011	19.4	19.7	13.2	
Average	24.6	25.4	9.8	
Standard				
Deviation	3.6	3.9	2.9	

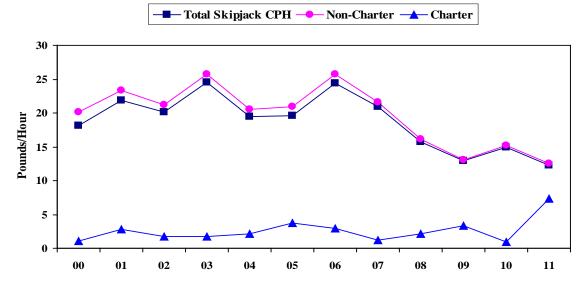

Interpretation: Mahimahi landings fluctuate yearly with high variability possibly due to seasonal availability of stocks and abundance. Mahimahi is also not a very marketable fish on Saipan. Fishermen do not target mahimahi therefore varying catch rates can be expected. The 2011 total mahimahi catch rates increased slightly by 3%. Charter vessels in 2011 recorded mahimahi catch rates of 3.8 lbs/hr and non-charter boats catch rates decreased slightly by 3% from 2010.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total

CPUE (pounds/hour): Mahimahi			
		Non-	
Year	Combined	Charter	Charter
2000	2.3	2.2	3.1
2001	2.2	2.1	4.6
2002	2.3	2.0	6.9
2003	1.3	1.3	2.2
2004	2.9	2.8	4.7
2005	2.3	2.1	4.6
2006	2.4	2.2	5.2
2007	5.2	5.0	11.7
2008	3.1	3.1	1.3
2009	3.0	3.1	1.7
2010	3.0	3.1	0.0
2011	3.1	3.0	3.8
Average	2.8	2.7	4.2
Standard			
Deviation	0.9	0.9	2.9

annual landings of mahimahi divided by the total number of hours spent fishing (gear in use).

Figure 44. CNMI boat-based creel trolling CPUE (pounds/hour) for wahoo

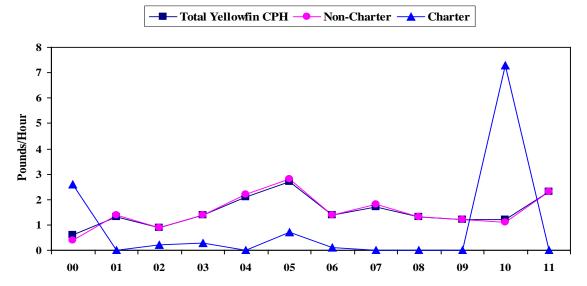


Interpretation: The yearly fluctuation in wahoo catch rates is probably similar to Guam's wide fluctuations in their CPUE, which may be due to high variability in the year to year abundance and availability of the stocks. The combined and non-charter total wahoo catch rates in 2011 have remained constant since 2009. Charter CPUE has increased to the highest level since 2005.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of wahoo divided by the total number of hours spent fishing (gear in use).

CPUE (pounds per hour): Wahoo			
	Non-		
Year	Combined	Charter	Charter
2000	0.5	0.4	0.6
2001	0.6	0.5	2.3
2002	0.4	0.2	2.8
2003	0.2	0.1	1.6
2004	0.4	0.4	0.5
2005	0.5	0.4	2.3
2006	0.3	0.3	1.0
2007	0.5	0.5	0.8
2008	0.2	0.2	0.8
2009	0.6	0.6	0.7
2010	0.6	0.6	0.0
2011	0.6	0.6	1.5
Average	0.5	0.4	1.3
Standard			
Deviation	0.1	0.2	0.8

Figure 45. CNMI boat-based creel trolling CPUE (pounds/hour) for skipjack tuna

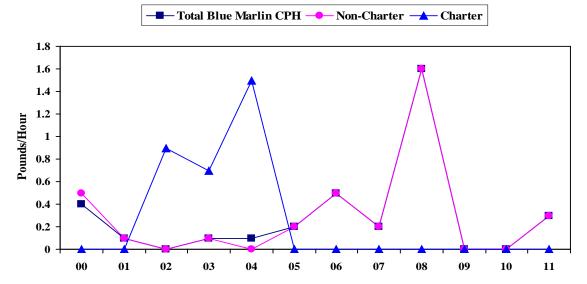

Interpretation: Skipjack tuna is the main targeted species in the pelagic fishery of the CNMI. Yearly fluctuations on catch rates may be due to availability of the stock and sea conditions. As explained in the all pelagic catch rates, commercial fishermen use smaller boats to troll therefore unfavorable sea conditions affect their effectiveness to land skipjack tuna. Also, rising costs of troll fishing have caused many "old time" fishermen to leave the industry. The combined catch rates for 2011 decreased 17% compared to 2010. The non-charter boats catch rates decreased by 18% while charter vessels showed a significant increase from 0.9 lbs/hr in 2010 to 7.4 lbs/hr in 2011.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boat-

CPUE (pounds/hour): Skipjack Tuna			
		Non-	
Year	Combined	Charter	Charter
2000	18.1	20.1	1.1
2001	21.9	23.4	2.8
2002	20.2	21.2	1.7
2003	24.6	25.7	2.0
2004	19.5	20.5	2.1
2005	19.6	21.0	3.7
2006	24.4	25.7	3.0
2007	20.9	21.6	1.2
2008	15.7	16.1	2.1
2009	12.9	13.1	3.3
2010	14.9	15.2	0.9
2011	12.3	12.5	7.4
Average	18.8	19.7	2.6
Standard			
Deviation	3.9	4.3	1.7

based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of skipjack divided by the total number of hours spent fishing (gear in use).

Figure 46. CNMI boat-based creel trolling CPUE (pounds/hour) for yellowfin tuna

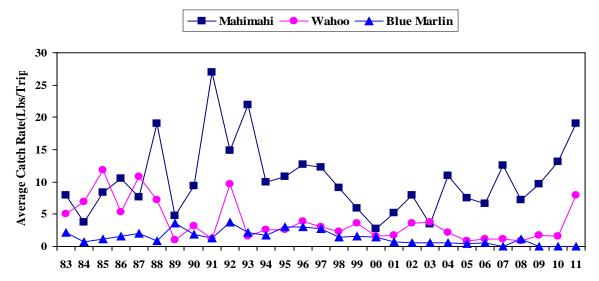

Interpretation: Yellowfin tuna landed on Saipan are usually smaller in size than other geographical areas. The average length of yellowfin tuna measured during creel survey sample days was roughly 48.7 centimeters. The fluctuations in yellowfin tuna catch rates is similar to mahimahi and wahoo in that it may have more to do with abundance and availability of stock. This species is seasonal in the CNMI. The non-charter boats catch rates for yellowfin tuna from the boat-based creel survey in 2011 increased significantly by 109% from 2010 catch rates. In 2011, non-charter fishermen reported a good year for landing yellowfin tuna. There were no recorded landings of yellowfin tuna by charter vessels during creel survey sample days in 2011.

CPUE (J	CPUE (pounds/hour): Yellowfin Tuna		
		Non-	
Year	Combined	Charter	Charter
2000	0.6	0.4	2.6
2001	1.3	1.4	0.0
2002	0.9	0.9	0.2
2003	1.4	1.4	0.3
2004	2.1	2.2	0.0
2005	2.7	2.8	0.7
2006	1.4	1.4	0.1
2007	1.7	1.8	0.0
2008	1.3	1.3	0.0
2009	1.2	1.2	0.0
2010	1.2	1.1	7.3
2011	2.3	2.3	0.0
Average	1.5	1.5	0.9
Standard			
Deviation	0.6	0.6	2.0

Source and Calculations: Data are from the

Division of Fish and Wildlife (DFW) boat-based creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of yellowfin divided by the total number of hours spent fishing (gear in use).

Figure 47. CNMI boat-based creel trolling CPUE (pounds per hour) for blue marlin


Interpretation: Blue marlin is rarely a target by non-charter boats. There is almost no market for blue marlin and boats that make up the majority of the troll fishing industry are generally too small to transport blue marlins once they are landed. Blue marlins are mostly only targeted during fishing tournaments. Charter vessels do target blue marlins but trip time is limited. In 2011, there was an increase in CPUE for non-charter vessels, but charter vessels remained constant at 0.0.

Source and Calculations: Data are from the Division of Fish and Wildlife (DFW) boatbased creel survey. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of marlin divided by

CI	CPUE (pounds/hour): Blue Marlin			
		Non-		
Year	Combined	Charter	Charter	
2000	0.4	0.5	0.0	
2001	0.1	0.1	0.0	
2002	0.0	0.0	0.9	
2003	0.1	0.1	0.6	
2004	0.1	0.0	1.4	
2005	0.2	0.2	0.0	
2006	0.5	0.5	0.0	
2007	0.2	0.2	0.0	
2008	1.6	1.6	0.0	
2009	0.0	0.0	0.0	
2010	0.0	0.0	0.0	
2011	0.3	0.3	0.0	
Average	0.3	0.3	0.3	
Standard				
Deviation	0.4	0.4	0.5	

the total number of hours spent fishing (gear in use).

Figure 48. CNMI trolling catch rates from commercial receipt invoices for mahimahi, wahoo, and blue marlin (pounds/trip)

Interpretation: The mahimahi catch appears to be highly variable, shifting between high and low CPUE annually. It may be biological because it appears that the trolling catch rates of Guam and the CNMI have fluctuated similarly over the last twenty-two years. 2010 total mahimahi catch rates increased 37% over 2009 and 2011 mahimahi catch rates increased by 18% over 2010.

Prior to 1989, wahoo catch rates rivaled those for mahimahi. Wahoo catch rates have generally never regained those historical levels. The record low was hit in 2008 at 0.91 lbs/trip. However, catch rates have increased steadily to the second highest level in 20 years, which was 7.96 lbs/trip in 2011.

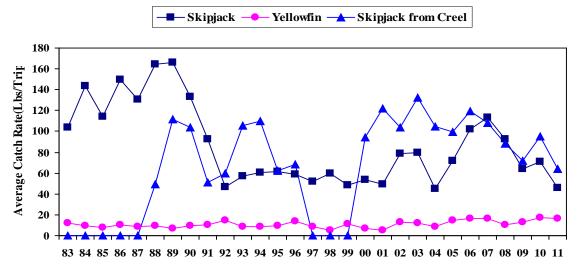

Blue marlins are not a marketable species and are rarely a target by fishermen except during fishing tournaments. When landed, it is rarely sold to vendors participating in the Commercial Purchase Data Collection Program; therefore it would not be recorded in the Commercial Purchase Data Base used to generate these reports. In 2011, blue marlin CPUE was at a record low with no recorded pounds landed.

Table 40. CNMI trolling catch rates from commercial receipt invoices for mahimahi, wahoo, and blue marlin (pounds/trip)

CPUE: Mahimahi, Wahoo, and Blue Marlin (pounds/trip)			
	viai iii (poui	us/trip)	Blue
Year	Mahimahi	Wahoo	Marlin
1983	7.92	4.98	2.15
1984	3.76	6.95	0.76
1985	8.36	11.77	1.20
1986	10.50	5.35	1.57
1987	7.66	10.81	1.98
1988	18.98	7.21	0.81
1989	4.71	1.01	3.67
1990	9.40	3.12	1.83
1991	27.03	1.22	1.26
1992	14.80	9.68	3.72
1993	21.89	1.62	2.15
1994	9.89	2.54	1.73
1995	10.84	2.66	3.08
1996	12.68	3.84	3.06
1997	12.25	2.97	2.77
1998	9.13	2.27	1.51
1999	5.86	3.67	1.61
2000	2.80	1.56	1.38
2001	5.23	1.67	0.71
2002	7.87	3.58	0.55
2003	3.43	3.71	0.53
2004	10.94	2.12	0.61
2005	7.43	0.93	0.44
2006	6.58	1.19	0.54
2007	12.57	1.19	0.04
2008	7.19	0.91	1.11
2009	9.60	1.68	0.04
2010	13.17	1.64	0.04
2011	19.04	7.96	0.00
Average	10.40	3.79	1.41
Standard		_	
Deviation	5.54	3.04	1.06

Source and Calculations: Annual catch rates for selected species were obtained by calculating the average weight per trip for each year. Trips were assumed to be one day in length and each commercial invoice assumed to represent one trip.

Figure 49. CNMI trolling catch rates from commercial receipt invoices for skipjack tuna, yellowfin tuna, and skipjack tuna from the Creel Survey (pounds/trip)

Interpretation: The Creel Survey data on skipjack tuna catch rates showed a very different pattern from the Commercial Purchase data until they appeared to stabilize beginning in 2006. Catch rates based on the Commercial Purchase Data Base and from the Creel Survey data continue a decline in 2011 that began in 2007, both showing a decline of about 30 lbs/trip since 2010. Previous discussions have suggested that non-tuna PMUS may be increasing in value and a slight shift in target troll fish may be occurring.

Catch rates of yellowfin tuna per trip have been relatively consistent since 2005, varying between 13 and 17 lbs/trip, except a low of 10 lbs/trip in 2008. In 2011, the yellowfin tuna catch rate decreased by 1 lb/trip (18%) to 16 lbs/trip from the 2010 level.

Source and Calculations: Data were summarized from the Commercial Purchase Database, which provides average pounds caught per trip. Annual catch rates for selected species were obtained by calculating the average weight per trip for each year. Trips were assumed to be one day in length and each commercial invoice represents one trip. Creel skipjack CPUE was calculated by dividing the sum of skipjack weight from all trolling trip interviews by the number of trolling trips interviewed.

Table 41. CNMI trolling catch rates from commercial receipt invoices for skipjack tuna, yellowfin tuna, and skipjack tuna from the Creel Survey (pounds/trip)

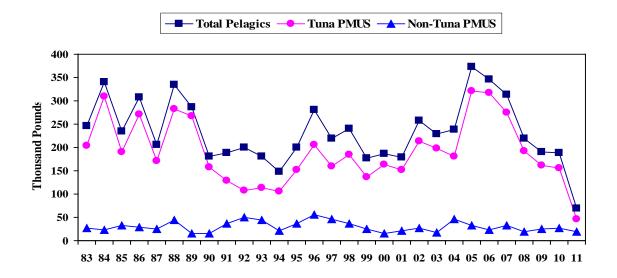

CPUE: Skipjack, Yellowfin, and Skipjack from Creel Survey (pounds/trip)			
110111	Creer Sur ve	ey (pounds/	Skipjack
Year	Skipjack	Yellowfin	Creel
1983	104	12	0
1984	144	10	0
1985	114	8	0
1986	150	10	0
1987	130	8	0
1988	164	9	49
1989	166	7	112
1990	133	9	104
1991	93	10	51
1992	46	14	60
1993	57	9	106
1994	61	9	110
1995	61	10	62
1996	59	14	68
1997	52	8	0
1998	60	5	0
1999	48	11	0
2000	54	7	94
2001	49	5	122
2002	78	13	104
2003	80	12	133
2004	45	8	104
2005	72	14	99
2006	102	16	119
2007	114	17	108
2008	93	10	88
2009	64	13	72
2010	71	17	95
2011	46	16	64
Average	87	11	66
Standard Deviation	37	3	46

Table 42. CNMI consumer price indices (CPI), CPI adjustment factors, and commercial receipt invoice coverage

		CPI Adjusted	Percent Data
Year	CPI	Factor	Coverage
1983	140.90	2.49	80.00
1984	153.20	2.29	80.00
1985	159.30	2.20	80.00
1986	163.50	2.15	80.00
1987	170.70	2.06	80.00
1988	179.60	1.95	80.00
1989	190.20	1.85	80.00
1990	199.33	1.76	80.00
1991	214.93	1.63	80.00
1992	232.90	1.51	80.00
1993	243.18	1.44	80.00
1994	250.00	1.40	80.00
1995	254.48	1.38	80.00
1996	261.98	1.34	80.00
1997	264.95	1.32	80.00
1998	264.18	1.33	80.00
1999	267.80	1.31	80.00
2000	273.23	1.28	80.00
2001	271.01	1.30	80.00
2002	271.55	1.29	80.00
2003	268.92	1.31	80.00
2004	271.28	1.29	55.00
2005	271.90	1.29	55.00
2006	285.96	1.23	55.00
2007	301.72	1.16	65.00
2008	320.39	1.10	65.00
2009	325.20	1.08	55.00
2010	351.05	1.00	45.00
2011	351.05	1.00	40.00

Calculations: The Commonwealth of the Northern Mariana Islands' Consumer Price Index is computed by the CNMI Department of Commerce using the Laspeyres' formula.

Figure 50. CNMI estimated total commercial landings (lbs) from commercial receipt invoices for tuna and non-tuna PMUS

Interpretation: Total pelagic landings in 2011 substantially decreased by 40% from 2010. Tuna PMUS decreased 50% while non-tuna PMUS increased slightly by 10% from 2010. The current downward trend of the CNMI economy has made it challenging for fish vendors to stay open. The decline in total pelagic landings is mostly due to the reduced demand for troll fish in CNMI.

Source and Calculations: All pelagics, tuna and non-tuna PMUS landings were summed from the Commercial Purchase Database.

 $\begin{tabular}{ll} Table 43. CNMI estimated total commercial landings (lbs) from commercial receipt invoices for tuna and non-tuna PMUS \\ \end{tabular}$

CNMI Estimated Total Commercial				
Landings				
	All	Tuna	Non-Tuna	
Year	Pelagics	PMUS	PMUS	
1983	245,985	204,692	26,544	
1984	341,136	310,424	23,244	
1985	234,178	189,809	33,143	
1986	307,459	271,279	29,626	
1987	205,068	171,957	25,450	
1988	334,523	281,872	43,805	
1989	286,784	267,811	14,595	
1990	180,450	158,430	15,936	
1991	188,561	128,848	36,975	
1992	199,228	108,314	50,159	
1993	181,328	113,207	44,518	
1994	147,329	105,942	21,657	
1995	200,180	152,756	35,759	
1996	281,277	206,247	55,712	
1997	218,873	159,626	46,049	
1998	240,263	184,450	35,979	
1999	177,031	136,907	24,768	
2000	187,295	162,747	15,551	
2001	179,181	152,144	21,198	
2002	256,982	213,565	27,876	
2003	228,416	198,843	17,346	
2004	239,007	181,331	45,737	
2005	372,375	321,089	32,136	
2006	346,885	316,446	23,080	
2007	312,554	275,614	32,755	
2008	219,187	192,598	18,454	
2009	190,796	161,778	24,284	
2010	188,351	154,871	26,978	
2011	70012	46790	19996	
Average	233127	190703	29976	
Standard Deviation	66679	67430	10983	

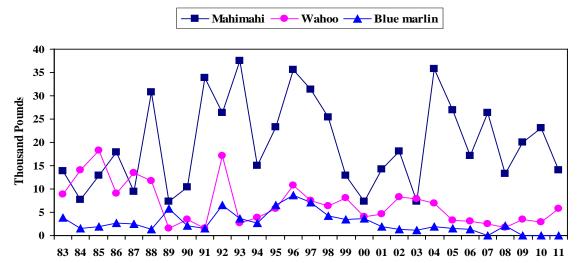
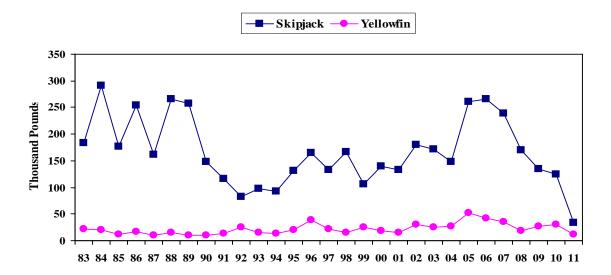


Figure 51. CNMI estimated commercial landings for mahimahi, wahoo, and blue marlin

Interpretation: 2011 mahimahi landings decreased 16% from 2010 to the third lowest level since 2001. Fishermen reported that it was a slower year for mahimahi landings. The 2010 mahimahi landings increased 16% over 2009 and 16% over 27 year average. It is noteworthy that CNMI and Guam mahimahi catches have been fluctuating similarly since 1987, which may indicate a strong biological influence in local landing patterns.

Wahoo landings have been relatively stable, although low, since 2005. Wahoo landings in 2011 showed a significant increase from 2,887 pounds in 2010 to 5,849 pounds in 2011, which is closer to the levels seen from 1997-2004 (avg = 6702 lbs). Fishermen have reported that they fished closer to land and near reefs to lower fuel cost which may have attributed to the increase in wahoo landings.


Blue marlin is rarely a target by the commercial fishermen except for charter boats and during fishing tournaments. If blue marlin are landed, they are often kept by the fishermen and therefore rarely ever recorded in the Commercial Purchase Data Base. Landings in 2007 fell below 100 lbs (except in 2008, where landings were above 2000 lbs) and have remained there. There were no blue marlin recorded in the commercial receipt invoices for 2011, which marks the lowest year on record.

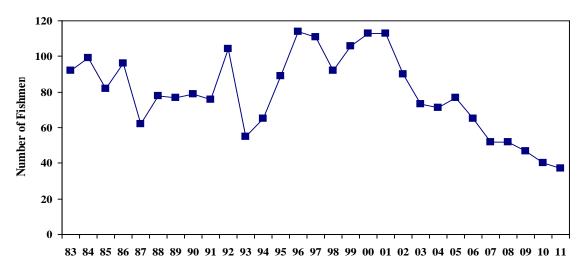
Source and Calculations: The annual commercial landings of the three major PMUS species (mahimahi, wahoo and blue marlin) were summed directly from the Commercial Purchase Database.

Table 44. CNMI estimated commercial landings for mahimahi, wahoo, and blue marlin

Es	Estimated Commercial Landings		
			Blue
Year	Mahimahi	Wahoo	Marlin
1983	13,939	8,760	3,787
1984	7,614	14,087	1,544
1985	12,955	18,251	1,860
1986	17,796	9,062	2,654
1987	9,502	13,404	2,460
1988	30,799	11,697	1,309
1989	7,320	1,571	5,704
1990	10,439	3,462	2,034
1991	33,756	1,521	1,568
1992	26,257	17,172	6,603
1993	37,545	2,779	3,687
1994	15,063	3,863	2,635
1995	23,321	5,722	6,619
1996	35,655	10,783	8,593
1997	31,277	7,580	7,068
1998	25,375	6,299	4,201
1999	12,882	8,063	3,541
2000	7,324	4,097	3,608
2001	14,229	4,550	1,924
2002	18,042	8,212	1,261
2003	7,357	7,950	1,130
2004	35,808	6,936	2,001
2005	26,891	3,349	1,595
2006	17,181	3,116	1,402
2007	26,410	2,504	76
2008	13,187	1,669	2,027
2009	20,030	3,500	82
2010	23,157	2,887	73
Average	20,040	6,887	2,895
Standard			
Deviation	9,463	4,594	2,185

Figure 52. CNMI estimated commercial purchase database landings for skipjack tuna and yellowfin tuna

Interpretation: In 1992, skipjack landings reached a historic low for landings between 1983 and 2006. The second historic high was reached in 2006 and catch has been steadily declining since then to a record low in 2011. This decline in landings is a result of the current downward trend of the CNMI economy and also lack of vendor participation in this voluntary program. The demand for pelagic fish has is not what is once was.


Although more highly prized than skipjack, yellowfin tuna are not as common, and therefore not landed as often. The average fish size tends to be smaller when compared with yellowfin tuna from other geographic areas. Landings of yellowfin increased from 2008 through 2010. However, the commercial receipt invoice landings for yellowfin tuna decreased over 50% in 2011. This decrease in landings is partially due to some vendors not participating in this voluntary program.

Source and Calculations: Landings were summed directly from the Commercial Purchase Database.

 $\begin{tabular}{ll} Table 45. CNMI estimated commercial purchase database landings for skipjack tuna and yellow fin tuna \\ \end{tabular}$

Estimated Commercial		
	Landings	
Year	Skipjack	Yellowfin
1983	183,411	21,281
1984	290,843	19,580
1985	177,344	12,466
1986	254,362	16,917
1987	161,504	10,454
1988	266,497	15,375
1989	257,703	10,109
1990	147,962	10,468
1991	115,802	13,042
1992	82,280	25,687
1993	97,268	14,898
1994	92,212	13,445
1995	131,377	20,918
1996	165,037	38,043
1997	133,446	21,352
1998	167,114	14,570
1999	106,297	24,419
2000	140,389	17,673
2001	133,769	14,543
2002	179,966	30,017
2003	171,574	26,042
2004	148,328	27,548
2005	260,614	52,014
2006	265,753	41,996
2007	238,972	34,894
2008	170,059	18,695
2009	133,794	26,463
2010	124,096	30,507
2011	33,989	11,979
Average	166,612	21,910
Standard		
Deviation	62,942	10,117

Figure 53. CNMI number of commercial vessels landing pelagic species from commercial receipt invoices

Interpretation: The number of fishers (boats) making commercial pelagic landings was relatively constant from 1988-91 compared to earlier years, but a record high number was recorded for 1992. Part of the increase in 1992 was attributable to the influx of new fishing boats as a result of money obtained by leasing property. In addition, it was discovered that some fishermen were using several different boats, thus artificially inflating the total number of boats making pelagic landings.

Many of the 1992's "new" fishermen, with their new boats, are believed to have left the fishery in 1993. It has been suggested that the increase from 1994 to 1997 might be due to the re-entry of repaired and refurbished boats from the 1992 fleet.

The number of fishermen making pelagic landings decreased 20% from 113 in 2001 to 90 in 2002. Data indicates a continued decline of 23% in 2003 and a 7% drop in 2004. The decrease is partly due to vendors whom own multiple fishing boats entering all their landings on a single receipt and at times combining monthly total landings onto a single receipt. Other factors that may have influenced a drop in fishermen making pelagic landings are the bad weather that plagued the Marianas throughout 2003 and early 2004. The continued increase in fuel price also has affected many fishing boat in CNMI. The declining trend continued through 2011, partly due to the increasing price of fuel, the continued decline in the average price per pound of skipjack tuna, and downward trend in the CNMI economy. Also several long-time fishermen have left the fishery.

Source and Calculations: Each invoice from the Commercial Purchase Database records the fisherman's name from which the fish were purchased. The number of fishermen who sold any pelagic species was calculated directly from the data invoices.

Table 46. CNMI number of commercial vessels

	Number of
Year	Vessels
1983	92
1984	99
1985	82
1986	96
1987	62
1988	78
1989	77
1990	79
1991	76
1992	104
1993	55
1994	65
1995	89
1996	114
1997	111
1998	92
1999	106
2000	113
2001	113
2002	90
2003	73
2004	71
2005	77
2006	65
2007	52
2008	52
2009	47
2010	40
2011	37
Average	80
Standard	
Deviation	22

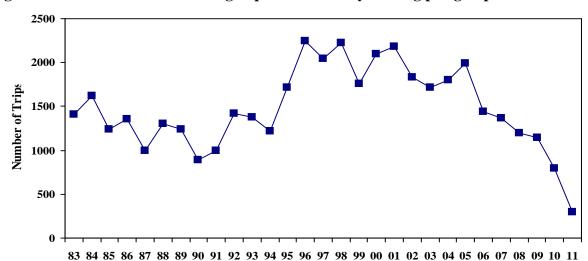
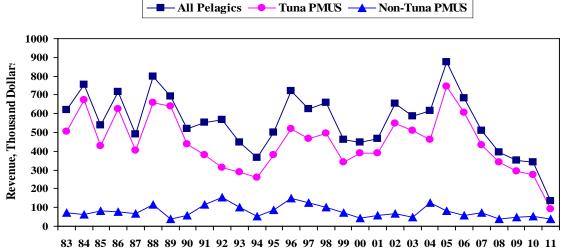


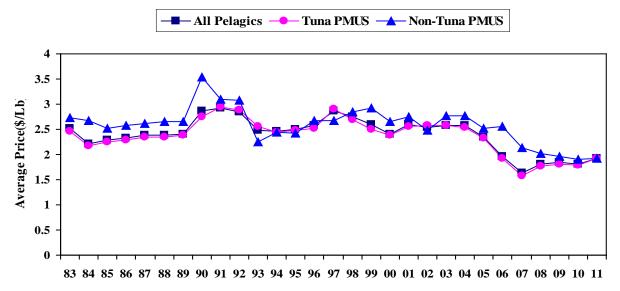
Figure 54. CNMI number of fishing trips commercially landing pelagic species


Interpretation: The number of pelagic trips rose in 1998. The decrease in 1999 figures may be caused by the refusal of vendors to participate in the commercial receipt invoices program. The number of pelagic trips decreased in 2002 by 16% from 2,179 to 1,835 and continued to decline in 2003 by 6% and remained near that level for 2004. There was a 10% increase in 2005 followed by a significant drop of 28% in 2006. The continued decline in the number of trips from 2005 to 2009 is related to the lack of market demand for pelagics. Typhoons hit the Marianas region frequently and the increasing price of fuel cost may have contributed to the decline in fishing trips. In 2006, the price of gasoline in CNMI was \$3.58 per gallon; prices continued rising to \$4.33 per gallon in 2007. 2010 trips indicate a significant decline of 31% over the previous year. This decline continued in 2011 by 37%. Such decline may be partly due to the lack of requirements of vendors and fishermen to participate in this commercial receipt invoice program. However, the CNMI Division of Fish and Wildlife is currently trying to implement a legislative requirement to address this issue.

Source and Calculations: The total trips for all pelagic species were summed from the Commercial Purchase Database. Trips were calculated based on the assumptions that no fisherman makes more than one trip per day, and that all sales from a single trip are made on a single day.

Table 47. CNMI Number of fishing trips commercially landing pelagic species

	Number
Year	of Trips
1983	1,408
1984	1,621
1985	1,240
1986	1,356
1987	992
1988	1,298
1989	1,242
1990	888
1991	999
1992	1,419
1993	1,372
1994	1,218
1995	1,721
1996	2,249
1997	2,042
1998	2,223
1999	1,759
2000	2,095
2001	2,178
2002	1,835
2003	1,715
2004	1,801
2005	1,990
2006	1,436
2007	1,366
2008	1,192
2009	1,148
2010	791
2011	294
Average	1,479
Standard	
Deviation	462


Interpretation: The erratic fluctuations of the inflation-adjusted revenues for tunas and for all pelagics prior to 1990 is most likely due to the annual variations in skipjack tuna landings, which completely dominated the tuna category and the "All Pelagics" category. In 2003, the tunas' inflation-adjusted revenues decreased 8% from the 2002 figures and continued to decline to 11% for 2004. This is due to the decrease in landings of skipjack tuna, which in 2004 comprised only of 67% of the total pelagic landings compared to 2003 where it comprised 87% of the total pelagic landings. The tunas' inflation-adjusted revenues increased significantly by 38% in 2005, but have steadily declined since. According to vendors, these declines are due to the low demand for pelagic or troll species. Revenues declined 36% in 2011 for non-tuna PMUS, marking the second lowest revenue in the past 20 years. The decline in 2011 is related to the decreasing price per pound for pelagics and decline in total landings that is reported on the commercial receipt invoice program.

Source and Calculations: Annual revenue in dollars was summed separately for all pelagic fish, tunas and Non-Tuna PMUS. Inflation-adjusted revenues were calculated using the Consumer Price Index, with 1998 as a base by which previous years' nominal prices are adjusted.

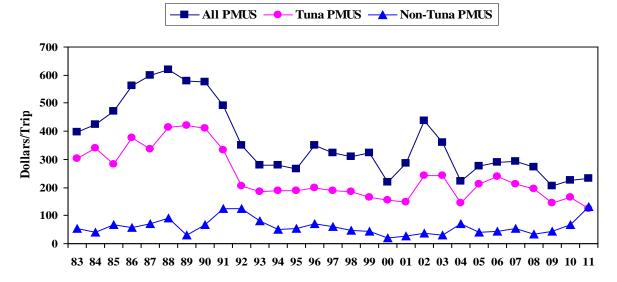
Table 48. CNMI annual adjusted commercial revenues from pelagic species

	A	ll Pelagics	Tuna PMUS		Non-tuna PMUS	
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1983	248,387	618,484	202,800	504,972	29,059	72,357
1984	330,254	756,282	294,077	673,436	27,044	61,931
1985	244,171	537,176	193,920	426,624	37,882	83,340
1986	333,766	717,597	289,681	622,814	35,488	76,299
1987	237,687	489,635	195,793	403,334	32,344	66,629
1988	409,075	797,696	338,348	659,779	59,701	116,417
1989	373,927	691,765	345,839	639,802	20,917	38,696
1990	293,993	517,428	248,144	436,733	32,102	56,500
1991	338,643	551,988	232,077	378,286	70,235	114,483
1992	374,977	566,215	206,950	312,495	102,133	154,221
1993	311,342	448,332	201,350	289,944	69,592	100,212
1994	259,470	363,258	185,381	259,533	37,818	52,945
1995	361,511	498,885	275,080	379,610	62,920	86,830
1996	539,628	723,102	388,691	520,846	110,939	148,658
1997	474,509	626,352	351,492	463,969	93,306	123,164
1998	496,652	660,547	372,142	494,949	77,011	102,425
1999	351,062	459,891	261,394	342,426	55,404	72,579
2000	350,468	448,599	302,473	387,165	32,186	41,198
2001	358,656	466,253	300,154	390,200	44,987	58,483
2002	506,302	653,130	425,961	549,490	53,468	68,974
2003	447,647	586,418	390,100	511,031	36,764	48,161
2004	476,543	614,740	356,110	459,382	98,417	126,958
2005	678,773	875,617	578,914	746,799	62,759	80,959
2006	554,373	681,879	492,762	606,097	48,026	59,072
2007	439,953	510,345	372,573	432,185	60,137	69,759
2008	359,427	395,370	310,855	341,941	33,954	37,349
2009	324,637	350,608	271,832	293,579	44,309	47,854
2010	339,846	339,846	276,286	276,286	51,525	51,525
2011	134,354	134,354	90,067	90,067	38,415	38,415
Average	377,587	554,545	301,767	444,613	53,753	77,807
Standard						
Deviation	111,233	155,841	99,090	144,376	23,657	32,323

Figure 56. CNMI average inflation-adjusted price for commercially landed pelagic species (dollars per pound)

Interpretation: Since 2003 the inflation adjusted average price for tuna has decreased. There was a decline of 2% in 2004, 8% in 2005, 17% in 2006 and 18% in 2007. In 2009, the inflation adjusted price increased slightly by 2% but declined 2% in 2010. The 2011 inflation adjusted price increased slightly by 7% but was still far below the 28 year average.

Decline in price per pound for skipjack tuna is a direct result from strong competition among fishermen. Fishermen would land large amounts of skipjack tuna, flooding markets causing prices to drop as low as \$.75 per pound. This saturation of the local markets directly affects not only the Inflation-Adjusted Average prices, but also the Inflation-Adjusted Revenues. In 2011, there were far fewer fishermen participating in the troll fishery than in previous years.


The average for the inflation-adjusted price of Non-Tuna PMUS increased to \$2.14 or 11% in 2003 and remained at near that level for 2004. However, the price has steadily decreased since 2005 until 2011, when the adjusted average price per pound increased slightly by 2%.

Source and Calculations: The unadjusted average price is calculated by dividing the total revenues generated by the total weight sold. The inflation adjustment is made using the 1998 CNMI Consumer Price Index (CPI) as the basis by which calculations of previous years' prices are made.

Table 49. CNMI average adjusted price for commercially landed species (\$/lb)

	All Pelagics Tuna PMUS		MUS	S Non-Tuna PMUS		
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1983	1.01	2.51	0.99	2.47	1.09	2.73
1984	0.97	2.22	0.95	2.17	1.16	2.66
1985	1.04	2.29	1.02	2.25	1.14	2.51
1986	1.09	2.33	1.07	2.30	1.20	2.58
1987	1.16	2.39	1.14	2.35	1.27	2.62
1988	1.22	2.38	1.20	2.34	1.36	2.66
1989	1.30	2.41	1.29	2.39	1.43	2.65
1990	1.63	2.87	1.57	2.76	2.01	3.55
1991	1.80	2.93	1.80	2.94	1.90	3.10
1992	1.88	2.84	1.91	2.89	2.04	3.07
1993	1.72	2.47	1.78	2.56	1.56	2.25
1994	1.76	2.47	1.75	2.45	1.75	2.44
1995	1.81	2.49	1.80	2.49	1.76	2.43
1996	1.92	2.57	1.88	2.53	1.99	2.67
1997	2.17	2.86	2.20	2.91	2.03	2.67
1998	2.07	2.75	2.02	2.68	2.14	2.85
1999	1.98	2.60	1.91	2.50	2.24	2.93
2000	1.87	2.40	1.86	2.38	2.07	2.65
2001	2.00	2.60	1.97	2.56	2.12	2.76
2002	1.97	2.54	1.99	2.57	1.92	2.47
2003	1.96	2.57	1.96	2.57	2.12	2.78
2004	1.99	2.57	1.96	2.53	2.15	2.78
2005	1.82	2.35	1.80	2.33	1.95	2.52
2006	1.60	1.97	1.56	1.92	2.08	2.56
2007	1.41	1.63	1.35	1.57	1.84	2.13
2008	1.64	1.80	1.61	1.78	1.84	2.02
2009	1.70	1.84	1.68	1.81	1.82	1.97
2010	1.80	1.80	1.78	1.78	1.91	1.91
2011	1.92	1.92	1.92	1.92	1.92	1.92
Average	1.66	2.39	1.65	2.37	1.79	2.58
Standard						
Deviation	0.35	0.34	0.35	0.35	0.34	0.36

Figure 57. CNMI per-trip adjusted revenues for commercially sold pelagic species

Interpretation: The inflation-adjusted revenue per trip for all PMUS decreased 4in 2003 and 2004, and subsequently increased from 2005 through 2007. The inflation-adjusted revenue per trip for all PMUS hit its lowest level in 2009 at \$204/trip, and has since recovered in 2011 to just \$231/trip.

Non-tuna PMUS inflation-adjusted revenue increased in 2004to \$72/per trip from the 2003 level of ~\$29. Inflation-adjusted revenue for non-tuna PMUS then dropped to ~\$41 and has steadily increased (except in 2008) to an all-time high of \$132/trip. This increase is possibly due to fishermen getting better pricing for mahimahi and other non-tuna species.

Tuna inflation-adjusted revenue has been steadily decreasing since 2006, when it hit its third highest level in 20 years. It hit its lowest level in 2011 at only \$124/trip. The decline in revenues is partly due to a drop in price per pound for tuna and low market demand.

Source and Calculations: Values were obtained by selecting, from the Commercial Purchase Database, all trips which landed at least one PMUS, and then calculating a) the average revenue of all species combined, b) the average revenue of Non-Tuna PMUS only, and c) the average revenue of tuna only.

Table 50. CNMI per-trip adjusted revenues for commercially sold pelagic species

	All Pela	agics	Tuna P	MUS	Non-Tuna	PMUS
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1983	159.00	395.91	122.00	303.78	22.00	54.78
1984	185.00	423.65	148.00	338.92	17.00	38.93
1985	214.00	470.80	128.00	281.60	31.00	68.20
1986	262.00	563.30	176.00	378.40	27.00	58.05
1987	290.00	597.40	163.00	335.78	34.00	70.04
1988	318.00	620.10	213.00	415.35	47.00	91.65
1989	312.00	577.20	228.00	421.80	17.00	31.45
1990	327.00	575.52	233.00	410.08	38.00	66.88
1991	302.00	492.26	204.00	332.52	77.00	125.51
1992	231.00	348.81	135.00	203.85	83.00	125.33
1993	195.00	280.80	128.00	184.32	55.00	79.20
1994	200.00	280.00	135.00	189.00	35.00	49.00
1995	193.00	266.34	136.00	187.68	39.00	53.82
1996	261.00	349.74	148.00	198.32	53.00	71.02
1997	245.00	323.40	143.00	188.76	47.00	62.04
1998	234.00	311.22	138.00	183.54	36.00	47.88
1999	246.00	322.26	125.00	163.75	33.00	43.23
2000	172.00	220.16	121.00	154.88	16.00	20.48
2001	219.00	284.70	113.00	146.90	21.00	27.30
2002	339.00	437.31	189.00	243.81	30.00	38.70
2003	275.00	360.25	185.00	242.35	22.00	28.82
2004	172.00	221.88	112.00	144.48	56.00	72.24
2005	213.00	274.77	165.00	212.85	32.00	41.28
2006	236.00	290.28	195.00	239.85	35.00	43.05
2007	251.00	291.16	182.00	211.12	45.00	52.20
2008	248.00	272.80	177.00	194.70	30.00	33.00
2009	189.00	204.12	133.00	143.64	39.00	42.12
2010	227.00	227.00	164.00	164.00	68.00	68.00
2011	231.00	231.00	124.00	124.00	132.00	132.00
Average	236.52	362.56	157.34	239.31	41.97	59.87
Standard						
Deviation	48.02	125.13	34.20	88.18	23.81	28.38

Table 51. CNMI non-charter and charter trolling bycatch summary based on interview catch data, 2000-2011

			Number Caught				Tı	rip	
	Species	Released	Dead/Injd	Both	All	BC%	With BC	All	BC%
Non Charter							3	1,876	0.16
	Mahimahi	4		4	2,998	0.13			
	Yellowfin Tuna		1	1	2,109	0.05			
	Skipjack Tuna	1		1	41,017				
		Total		6	46,124	0.01			
	Compare	ed With All S	species	6	49,034	0.01			
Charter							0	200	0.00
	Compared With All Species				0	1,052	0.00		

Interpretation: With the assistance of NMFS staff, the implementation of an Offshore Day Time Creel Survey program began in April 2000. One of the main purposes of re-implementing the Offshore Creel Survey was to address the issue of bycatch.

A summary report from the year 2000 to 2011 by both non-charter and charter boats indicate less than 1%, or 6 out of 46,124, of the total pelagic species landed is released. The only three species reported as bycatch were mahimahi, yellowfin tuna and skipjack tuna. Four of 2,998 (.13%) mahimahi landed were released. One of 2,109 (.05%) yellowfin tuna landed was released. One of 41,017 skipjack tuna was released. Charter boats had no bycatch reported.

Bycatch in the CNMI has been believed in the past not to exist because fishermen retain most of their catch, which is further supported by the results of the Offshore (Boat Based) Creel Survey. CNMI will continue sampling in order to monitor this issue; however, it is a common practice by fishermen to keep all species caught regardless of size, species or condition.

Source: Offshore (Boat Based) Creel Survey Expansion Program.

C. Guam

Introduction

Pelagic fishing vessels based in Guam are classified into two general groups: 1) distant-water purse seiners and longliners that fish outside Guam's economic exclusive zone (EEZ) and transship through the island and, 2) small recreational trolling boats that fish only within local waters, either within Guam's EEZ, or occasionally, in Commonwealth of the Northern Mariana Islands (CNMI) waters. Primarily, this module covers the Guam-based small-boat pelagic fishery.

The estimated annual pelagic landings have varied widely, ranging between 322,000 and 937,000 pounds over the 30-year time series. The average total catch has shown a slowly increasing trend over the time period. The 2011 total pelagic landings were approximately 588,415 pounds, a decrease of 19% compared with 2010. Landings consisted primarily of five major species: mahimahi (*Coryphaena hippurus*), wahoo (*Acanthocybium solandri*), bonita or skipjack tuna (*Katsuwonus pelamis*), yellowfin tuna (*Thunnus albacares*), and Pacific blue marlin (*Makaira mazara*). Other minor catch species include rainbow runner (*Elagatis bipinnulatus*), kawakawa (*Euthynnus affinis*), dogtooth tuna (*Gymnosarda unicolor*), double-lined mackerel (*Grammatorcynus bilineatus*), and oilfish (*Ruvettus pretiosus*). Sailfish and sharks were also caught in 2011. However, these species were not encountered during offshore creel surveys and therefore not available for expansion for this year's report. While sailfish are kept, sharks are often discarded as bycatch. In addition to the above pelagic species, approximately a half dozen other species were landed incidentally this year.

The number of boats involved in Guam's pelagic or open ocean fishery gradually increased from 193 in 1983 to 469 in 1998. This number decreased until 2001, but has generally been increasing since that year. There were 454 boats involved in Guam's pelagic fishery in 2011, an increase of 5% from 2010. A majority of the fishing boats are less than 10 meters (33 feet) in length and are usually owner-operated by fishermen who earn a living outside of fishing. Most fishermen sell a portion of their catch at one time or another and it is difficult to make a distinction between recreational, subsistence, and commercial fishers. A small, but significant, segment of the pelagic group is made up of marina-berthed charter boats that are operated primarily by full-time captains and crews. Data and graphs for non-charters, charters, and bycatch are represented in this report.

There are general wide year-to-year fluctuations in the estimated landings of the five major pelagic species. Catch amounts for the five common species showed mixed changes from 2010 levels. 2011 mahimahi catch decreased more than 67% from 2010, wahoo catch totals decreased 16.2% from 2010, bonita increased by 3% from 2010, Pacific blue marlin catch decreased 41% from 2010, and yellowfin tuna increased 234% from 2010.

Aggregate landings of all pelagics, tuna, and non-tuna Pelagic Management Unit Species (PMUS) decreased in 2011 from 2010 levels. Landings of all pelagics decreased 19%, with tuna PMUS increasing 18% and non-tuna PMUS decreasing more than 58%. The number of trolling boats increased by 5%, the number of trolling trips decreased by 23.8%, and hours spent trolling

decreased by 16%. Weather on Guam was poor for much of 2010, with many days of wind and rain. There was a higher than average number of small craft advisory days in 2010, which would limit the number of trips taken as well. Trolling catch rates (pounds per hour fished) showed a slight decrease compared with 2009. Total CPUE was down 1.5%, with yellow fin tuna showing the greatest increase. Bonita CPUE also increased, while marlin, and mahi mahi showed decreases. Wahoo CPUE was virtually unchanged from 2009.

Commercial landing data for 2011 decreased from 2010 levels. Commercial landings and revenues decreased in 2011, with total adjusted revenues decreasing 37%. The adjusted average price for all pelagics decreased 4.7%, with tuna PMUS prices decreasing 2%, and non-tuna PMUS decreasing 5%. Adjusted revenue per trolling trip decreased 7.1% for all pelagics, increased 98.2% for tuna PMUS, and decreased 23.3% for non-tuna PMUS. Commercial landings have shown a decreasing trend over the past ten years. While the adjusted average price of pelagic species decreased last year, the number of boats in the fishery increased. A majority of troll fishermen do not rely on the catch or selling of fish as their primary source of income. Previously, Guam law required the government of Guam to provide locally caught fish to food services in government agencies, such as Department of Education and Department of Corrections. In 2002, the government of Guam began implementing cost-saving measures, including privatization of food services. The requirement that locally-caught fish be used for food services, while still a part of private contracts, is not being enforced. This has allowed private contractors to import cheaper foreign fish, and reduced the sales of vendors selling locally caught fish. This represented a substantial portion of sales of locally caught pelagic fish. The decrease in commercial sales seen following 2002 may be, in part, due to this change.

In early 2010, the U.S. military began exercises in an area south and southeast of Guam designated W-517. W-517 is a special use airspace (SUA) (approximately 14,000 nm²) that overlays deep open ocean approximately 50 miles south-southwest of Guam. Exercises in W-517 generally involve live fire and/or pyrotechnics. When W-517 is in use, a notice to mariners (NTM) is issued, and vessels attempting to use the area are advised to be cautious of objects in the water and other small vessels. This discourages access to virtually all banks south of Guam, including Galvez, Santa Rosa, White Tuna, and other popular fishing areas. From 1982-2009, DAWR surveys recorded more than 2020 trolling and bottom fishing trips to these southern banks, an average of more than 72 trips per year. During 2011, 59 NTM comprising a total of 101 days (27.6% of all days) were issued for area W-517. This makes access to these banks less attractive fishing areas for more than a quarter of the year. Additionally, the military occasionally holds exercises that do not involve live fire, but still restricts access to the area. As no notice is given for these events, there is not a reliable way to track how frequently this occurs.

The shortage of staff biologists has been significant in the past several years. DAWR staff biologists continue to oversee several projects simultaneously, while providing on-going training to ensure the high quality of data being collected by all staff. All fisheries staff are trained to identify the most commonly caught fish to the species level. New staff are mentored by biologists and senior technicians in the field before conducting creel surveys on their own.

The makeshift ramp at Ylig Bay was eliminated in 2010. Widening of the main road on the south east coast of Guam will cause removal of the ramp. In December 2006, a new launch ramp and facility was opened in Acfayan Bay, located in the village on Inarajan on the southeast coast of Guam. Monitoring of this ramp for pelagic fishing activity began at the start of 2007. In early 2007, this facility was damaged by heavy surf and has yet to be repaired. Monitoring of this ramp is currently on hold until the ramp is repaired. The current financial situation for the Guam government makes it unlikely this ramp will be repaired in the near future. With the loss of the Ylig ramp and the destruction of the ramp in Acfayan Bay, there will be no boat launching facilities on the east side of Guam.

No FADs were deployed in 2011. Issues with procurement delayed awarding of a FAD deployment contract. DAWR has two more systems, and is waiting for the awarding of the deployment contract to deploy the remaining two. This should bring the number of FADS on station to nine; fourteen is considered to be a full complement.

Plan Team Recommendations

2011 Recommendations

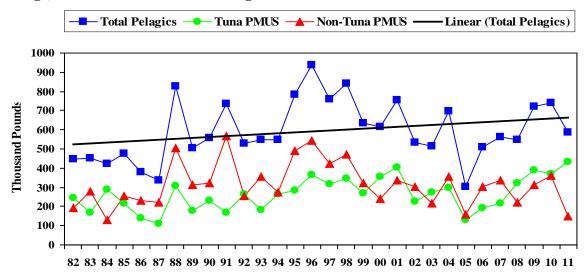
- 1. The U.S. military provides vessels for recreational use by military personnel, including fishing. This fishery is currently not surveyed by the Department of Aquatic and Wildlife Resources (DAWR) and personnel have had difficulty with access to military bases to collect fisheries information. Ease of access to military property and personnel by DAWR staff seems to vary from command to command, and other contractors and personnel are freely able to enter and exit military property more freely. The PPT recommends that the Western Pacific Regional Fishery Management Council (Council) discuss with the military, methods of documenting and surveying fishing activity taking place on military bases. The PPT recommends that a written document defining fisheries survey protocols, and the necessity for collecting fisheries data and DAWR access to address this gap in fisheries data be sent to the military.
- 2. The PPT recommends that the Council work with the military to coordinate with Guam natural resource agencies and local fishermen groups to allow better access to open ocean and coastal fishing areas restricted due to increased military activity and exercises. This includes, but is not limited to area W-517.
- 3. The PPT encourages DAWR and Western Pacific Fisheries Information Network (WPacFIN) to conduct additional outreach with commercial vendors to increase participation in the commercial receipts program. Changing demographics of fishermen selling to novel vendors whose transactions are not being captured by the current commercial receipts program. Similar problems are also being experienced in Saipan. Distrust of government agencies and the use of commercial receipts data seem to be a common reason for not participating in the program.

Table 52. Guam 2011 creel survey - pelagic species composition

	Total Landing		
	(Lbs)	Non-Charter	Charter
Tuna PMUS			
Skipjack Tuna	350,193	340,934	9,259
Yellowfin Tuna	81,814	80,763	1,051
Kawakawa	653	485	168
Albacore	0	0	0
Bigeye Tuna	0	0	0
Other Tuna PMUS	0	0	0
Tuna PMUS Total	432,660	422,182	10,478
Non-Tuna PMUS			
Mahimahi	90,888	81,642	9,246
Wahoo	37,354	32,809	4,545
Blue Marlin	18,895	17,901	994
Black Marlin	0	0	0
Striped Marlin	0	0	0
Sailfish	1,000	1,000	0
Shortbill Spearfish	0	0	0
Swordfish	0	0	0
Oceanic Sharks	238	238	0
Pomfrets	0	0	0
Oilfish	0	0	0
Moonfish	0	0	0
Misc. Longline Fish	0	0	0
Non-Tuna PMUS Total	148,375	133,590	14,785
Non-PMUS Pelagics			
Dogtooth Tuna	1,840	1,782	58
Rainbow Runner	3,473	3,446	27
Barracudas	2,065	2,029	36
Oceanic Sharks	0	0	0
Misc. Troll Fish	0	0	0
Non-Specific Bottomfish	148,375	133,590	14,785
Total	=,		,-
Total Pelagics	588,413	563,029	25,384

Source: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel survey data. This table includes several species of barracuda and the double-lined mackerel, species that may not be included in other tables in this report. Pelagic totals may slightly differ in those tables.

Table 53. Guam 2011 average commercial price of pelagic species


	Average Price (\$/Lb)
Tuna PMUS	
Bonita/skipjack Tuna	1.93
Yellowfin Tuna	2.11
Tunas (misc)	1.50
Tuna PMUS Average	1.84
Non-Tuna PMUS	
Mahi / Dolphinfish	2.18
Wahoo	2.20
Marlin	1.46
Sailfish	1.62
Spearfish	1.50
Swordfish	3.00
Monchong	2.48
Non-Tuna PMUS Average	2.06
Non-PMUS Pelagics	
Dogtooth Tuna	1.50
Rainbow Runner	1.97
Barracuda	1.97
Non-Specific Bottomfish	1.81
Average	
Pelagics Average	1.95

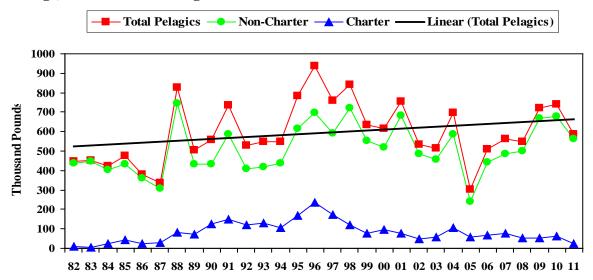
Source: The WPacFIN-sponsored commercial landings system.

Table 54. Annual consumer price indices (CPI) and CPI adjustment factors

		CPI
		Adjustment
Year	CPI	factor
1980	134.0	5.92
1981	161.4	4.92
1982	169.7	4.68
1983	175.6	4.52
1984	190.9	4.16
1985	198.3	4.00
1986	203.7	3.90
1987	212.7	3.73
1988	223.8	3.55
1989	248.2	3.20
1990	238.5	2.80
1991	312.5	2.54
1992	344.2	2.31
1993	372.9	2.13
1994	436.0	1.82
1995	459.2	1.73
1996	482.0	1.65
1997	491.3	1.62
1998	488.2	1.63
1999	497.2	1.60
2000	507.1	1.57
2001	500.0	1.59
2002	503.2	1.58
2003	517.0	1.54
2004	548.5	1.45
2005	590.5	1.34
2006	658.9	1.20
2007	703.5	1.13
2008	733.7	1.08
2009	749.2	1.06
2010	768.5	1.03
2011	793.5	1.00

Figure 58. Guam annual estimated total landings: all pelagics landings, tuna PMUS landings, and non-tuna PMUS landings

Interpretation: The estimated pelagic landings have been cyclic with alternating high and low multi-year periods and annual variation within those smaller time periods. Total pelagic catch peaked in 1996 and reached an historic low in 2005. Since 2005, the annual total pelagic landings have been rising. Factors relating to this cycle may be associated with the biology of the fish or be weather related. There is also evidence from the fishermen and historic creel survey data that some pelagic fish species are not caught consistently year round around Guam.

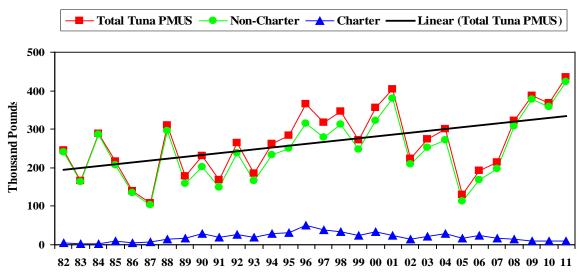

Total pelagic and non-tuna PMUS decreased in 2011 by 19% and 58% respectively, compared with 2010, while tuna landings increased 18%. Non-tuna PMUS catch was well below the 30 year average, while the tuna PMUS catch was well above the 30 year average, and was the highest total on record. Total catch was slightly below the 30 year average. Generally, skipjack tuna are consistently caught year round, with the other major pelagic species being more seasonal. There is now a small fleet of vessels targeting skipjack tuna. These vessels fish almost every day, which is contributing to the high levels of tuna catch.

Source and Calculation: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel survey. A 365-day (366 days during leap years) quarterly expansion is run for each calendar year of survey data to produce catch and effort estimates for the pelagic fishery to avoid overestimating seasonal pelagic species. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

Table 55. Guam estimated total pelagics landings: all pelagics landings, tuna PMUS landings, and non-tuna PMUS landings

			Non-Tuna
Year	All Pelagics	Tuna PMUS	PUMS
1982	447,432	245,400	192,129
1983	450,823	166,105	277,179
1984	424,299	288,634	130,027
1985	477,073	215,686	252,707
1986	381,495	139,099	230,814
1987	338,354	108,729	222,521
1988	827,260	309,571	502,803
1989	505,811	177,158	310,755
1990	559,773	230,559	321,935
1991	737,653	168,669	566,242
1992	528,215	264,362	255,471
1993	548,295	184,394	357,787
1994	545,917	262,181	273,167
1995	781,389	283,055	489,757
1996	935,837	364,929	541,317
1997	759,936	316,552	420,967
1998	841,681	346,634	469,976
1999	632,319	271,359	320,529
2000	614,709	355,581	242,558
2001	754,999	403,691	336,571
2002	534,878	223,805	302,339
2003	514,820	273,029	217,440
2004	694,746	299,495	357,169
2005	301,487	129,489	159,929
2006	510,608	192,247	303,297
2007	562,513	214,014	334,599
2008	550,081	322,053	223,406
2009	719,954	387,643	311,582
2010	738,221	367,960	359,104
2011	588,415	434,501	148,375
Average	593,633	264,922	314,379
Standard			
Deviation	153,666	84,465	111,487

Figure 59. Guam annual estimated total landings: total pelagics landings, non-charter landings, and charter landings

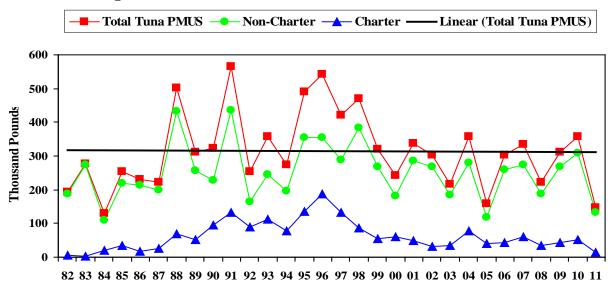

Interpretation: Non-charter trolling trips have always accounted for the bulk of the pelagic catch, although charter boats, which make up less than 5% of the troll fleet, account for a high proportion of trolling effort and catch. Prior to 1988, non-charter boats accounted for over 90% of the troll catch. In 1988, this percentage decreased due to an increase in charter boat activity catering specifically to Asian visitors. Beginning in 1996 however, a downturn in Japan's economy caused a significant decrease in charter trips and subsequent landings. No such trend is observed for non-charters. In 2011, total pelagic landings decreased 19%, non-charter landings decreased 16.8%, while charter landings decreased 58.6%. Non-charter boats landed 95.7% of all pelagics in 2011.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel survey data. A 365-day (366 days during leap years) quarterly expansion is run for each calendar year of survey data to produce catch and effort estimates for trolling. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

Table 56. Guam annual boat-based creel estimated landings: total pelagics, non-charter landings, and charter landings

Year	Total Pelagics	Non-Charter	Charter
1982	447,432	438,297	9,135
1983	450,823	445,116	5,707
1984	424,299	401,687	22,612
1985	477,073	432,202	44,871
1986	381,495	359,020	22,475
1987	338,354	307,342	31,013
1988	827,260	743,415	83,845
1989	505,811	434,832	70,979
1990	559,773	434,361	125,412
1991	737,653	586,914	150,739
1992	528,215	409,548	118,667
1993	548,295	416,340	131,955
1994	545,917	438,677	107,239
1995	781,389	614,137	167,251
1996	935,837	698,544	237,293
1997	759,936	589,089	170,847
1998	841,681	719,841	121,840
1999	632,319	553,487	78,831
2000	614,709	519,677	95,032
2001	754,999	680,436	74,563
2002	534,878	486,790	48,087
2003	514,820	458,746	56,074
2004	694,746	588,217	106,529
2005	301,487	242,520	58,968
2006	510,608	443,504	67,104
2007	562,513	484,230	78,284
2008	550,081	499,137	50,945
2009	719,954	665,904	54,050
2010	738,221	676,904	61,316
2011	588,415	563,029	25,386
Average	593,633	511,065	82,568
Standard			
Deviation	153,666	123,208	52,615

Figure 60. Guam annual tuna PMUS landings: total landings, non-charter landings, and charter landings

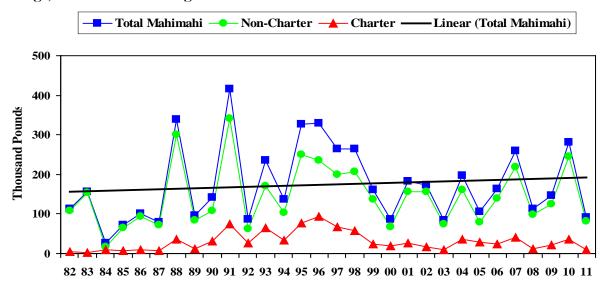

Interpretation: The general trend of the estimated total tuna landings shows an increasing trend between 1987 and 2001. Non-charter boats account for the bulk of the total tuna catch, up to 95% in the 1980s. This decreased when charter boat activity began increased from the late 1980s until the mid 1990s. In 2011, 97% of tuna were caught by non-charter boats. Total 2011 tuna and non-charter landings increased by 18% and 19% respectively. Charter tuna landings increased by 2% from 2010 totals. The 2011 estimated tuna PMUS landings were the highest in the time series, and 64% higher than the 30 year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program, expanded with the assistance of NMFS. A 365-day (366 days during leap years) quarterly expansion is run for each calendar year of survey data to produce catch and effort estimates for trolling. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

Table 57. Guam annual boat-based creel estimated tuna landings: total landings, non-charter landings, and charter landings

Year	Total Tunas	Non-Charter	Charter
1982	245,400	241,410	3,990
1983	166,105	164,377	1,729
1984	288,634	287,078	1,556
1985	215,686	205,965	9,721
1986	139,099	133,618	5,480
1987	108,729	102,529	6,199
1988	309,571	294,961	14,610
1989	177,158	159,766	17,392
1990	230,559	201,046	29,512
1991	168,669	149,568	19,100
1992	264,362	237,210	27,152
1993	184,394	165,609	18,786
1994	262,181	233,223	28,959
1995	283,055	250,837	32,218
1996	364,929	314,719	50,210
1997	316,552	277,987	38,566
1998	346,634	313,004	33,630
1999	271,359	246,794	24,565
2000	355,581	321,642	33,939
2001	403,691	379,991	23,701
2002	223,805	208,925	14,880
2003	273,029	251,484	21,545
2004	299,495	270,647	28,848
2005	129,489	113,040	16,450
2006	192,247	168,788	23,459
2007	214,014	196,056	17,958
2008	322,053	306,682	15,371
2009	387,643	377,471	10,172
2010	367,960	357,668	10,292
2011	434,501	423,964	10,536
Average	264,922	245,238	19,684
Standard			
Deviation	84,465	81,277	11,479

Figure 61. Guam estimated non-tuna PMUS landings: total landings, non-charter landings, and charter landings

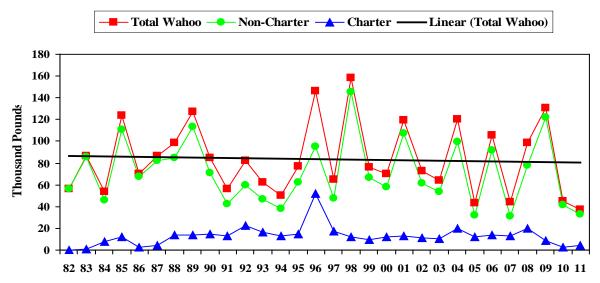

Interpretation: The estimated total non-tuna PMUS landings showed a general increase between 1984 and 1996, corresponding with an increase in boats entering the fishery. Non-charter trolling trips accounts for the bulk of the other PMUS catch. Up until the mid-1980s, non-charter boats accounted for up to 90% of the non-PMUS species. This percentage began decreasing in the late 1980s when charter fishing activity began increasing, associated with an increase in tourism. Charter PMUS harvest began gradually decreasing after 1996. Non-charter PMUS landings also began decreasing after 1996, but exhibit year to year fluctuations. In 2011, total non-tuna PMUS and non-charter non-tuna PMUS decreased 58% and 57% respectively when compared with 2010. Charter non-tuna PMUS decreased 71%. These decreased levels may be due to the biology of non-tuna PMUS species, primarily mahimahi. Additionally, poor weather conditions limited the number of fishing days in 2011. Non-charter boats accounted for 90% of non-tuna PMUS catch in 2011.

Source and Calculation: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program, expanded with the assistance of NMFS. A 365-day (366 days during leap years) expansion is run for each calendar year of survey data to produce catch and effort estimates for each fishing method surveyed. Percent species composition is calculated by weight for the sampled catch for each method to produce catch estimates for each species for the expanded period. The annual catch for all pelagic species and the PMUS separately are summed across all methods to obtain the numbers plotted above.

Table 58. Guam annual boat-based creel estimated non-tuna PMUS landings: total, non-charter vessels, and charter vessels (pounds)

	Total Non-		
Year	Tuna PMUS	Non-Charter	Charter
1982	192,129	187,341	4,788
1983	277,179	273,201	3,978
1984	130,027	108,971	21,056
1985	252,707	218,028	34,678
1986	230,814	213,897	16,917
1987	222,521	197,979	24,542
1988	502,803	433,773	69,030
1989	310,755	257,508	53,247
1990	321,935	226,558	95,378
1991	566,242	434,832	131,410
1992	255,471	165,097	90,374
1993	357,787	245,139	112,648
1994	273,167	195,134	78,032
1995	489,757	355,337	134,421
1996	541,317	354,822	186,495
1997	420,967	289,596	131,371
1998	469,976	382,281	87,695
1999	320,529	267,112	53,417
2000	242,558	181,863	60,695
2001	336,571	286,816	49,756
2002	302,339	269,555	32,784
2003	217,440	183,667	33,773
2004	357,169	279,872	77,297
2005	159,929	118,429	41,500
2006	303,297	259,979	43,318
2007	334,599	274,675	59,924
2008	223,406	187,958	35,449
2009	311,582	267,735	43,847
2010	359,104	308,409	50,695
2011	148,375	133,590	14,786
Average	314,379	251,935	62,443
Standard			
Deviation	111,481	81,748	42,688

Figure 62. Guam annual estimated mahimahi landings: total landings, non-charter landings, and charter landings

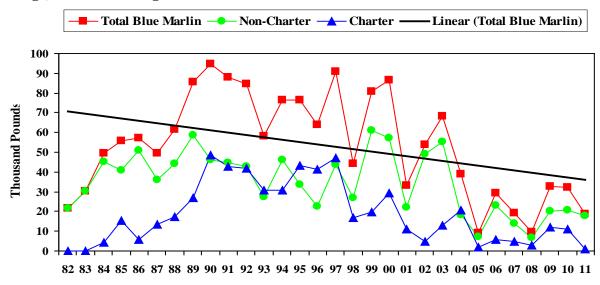


Interpretation: Historically, mahimahi catches have fluctuated wildly, with a good year followed by one or two down years. Catch peaked in 1996, and has been lower since, although still demonstrating the cyclical nature. Non-charter trips account for the bulk of the mahimahi catch, with charter activity harvesting proportionally more beginning in the late 1980s as tourist arrivals to Guam increased. A drop in charter catch corresponds to decreasing tourist arrivals in the late 1990s. In 2011, mahimahi landings decreased, with total and non-charter landings increasing 67% and 67%, respectively. Charter landings decreased by 75%. All three categories are well below the 30 year average.

 $\begin{tabular}{ll} Table 59. Guam \ annual \ estimated \ mahimahi \ landings: total, non-charter \ landings, and \ charter \ landings \ (pounds) \end{tabular}$

	Total		
Year	Mahimahi	Non-Charter	Charter
1982	112,181	107,480	4,701
1983	156,340	153,158	3,183
1984	26,174	17,228	8,946
1985	72,361	65,442	6,919
1986	101,108	92,620	8,488
1987	79,480	72,200	7,280
1988	337,769	300,520	37,249
1989	96,043	84,791	11,253
1990	140,629	108,370	32,259
1991	415,944	341,139	74,805
1992	87,942	62,274	25,668
1993	234,979	169,662	65,317
1994	138,014	103,648	34,367
1995	326,979	250,910	76,069
1996	328,315	235,144	93,170
1997	265,157	198,344	66,813
1998	264,421	206,592	57,830
1999	161,936	137,811	24,126
2000	85,561	66,575	18,986
2001	183,278	157,293	25,986
2002	173,130	156,172	16,958
2003	84,739	74,766	9,973
2004	195,935	160,543	35,392
2005	105,715	77,931	27,784
2006	162,512	139,365	23,147
2007	259,828	218,521	41,307
2008	111,811	99,331	12,480
2009	146,649	124,061	22,588
2010	280,963	244,374	36,589
2011	90,888	81,642	9,246
Average	174,205	143,576	30,629
Standard			
Deviation	95,038	75,935	23,829

Figure 63. Guam annual estimated wahoo landings: total landings, non-charter landings, and charter landings

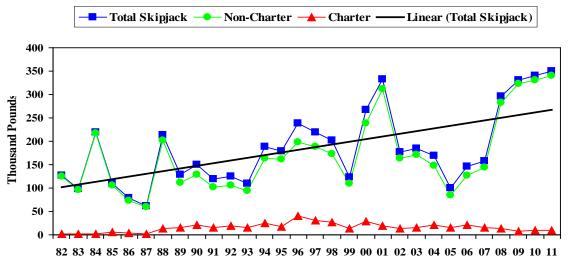


Interpretation: The wide fluctuations in wahoo landings are probably due to the high variability in the year-to-year abundance and availability of the stocks. Until 1987, non-charter landings accounted for over 95% of the total catch. In 1988, this percentage decreased due to an increase in charter boat activity. In 1996, wahoo charter landings peaked, accounting for 35% of the total catch. In 2011, total and non-charter harvest of wahoo decreased 16.2% and 21.3%, respectively, while charter wahoo catch increased by 57%. Non-charter boats harvested 88% of the total wahoo harvest. The total wahoo catch was 55% below the 30 year average, and is the lowest total in the time series.

 $\begin{tabular}{ll} Table 60. Guam \ annual \ estimated \ wahoo \ landings; \ total \ landings, \ non-charter \ landings, \ and \ charter \ landings \ (pounds) \end{tabular}$

Year	Total Wahoo	Non-Charter	Charter
1982	55,993	55,906	87
1983	86,530	85,735	795
1984	53,804	45,900	7,905
1985	123,685	111,144	12,540
1986	70,337	67,909	2,428
1987	86,465	82,477	3,989
1988	98,679	85,006	13,673
1989	127,325	113,557	13,768
1990	85,108	70,710	14,398
1991	55,926	42,633	13,293
1992	82,446	60,003	22,444
1993	62,550	46,532	16,018
1994	50,457	37,766	12,691
1995	77,391	62,365	15,026
1996	146,521	94,896	51,624
1997	65,034	47,693	17,341
1998	158,194	145,659	12,535
1999	76,338	66,673	9,665
2000	70,433	58,157	12,277
2001	119,765	107,150	12,616
2002	72,643	61,386	11,257
2003	64,266	53,505	10,761
2004	120,266	99,941	20,325
2005	43,906	32,201	11,704
2006	105,878	91,713	14,166
2007	44,528	31,166	13,362
2008	98,345	78,274	20,071
2009	130,903	121,868	9,035
2010	44,572	41,670	2,902
2011	37,354	62,809	4,545
Average	83,839	71,065	12,775
Standard			
Deviation	32,109	29,137	9,066

Figure 64. Guam annual estimated blue marlin landings: total landings, non-charter landings, charter landings

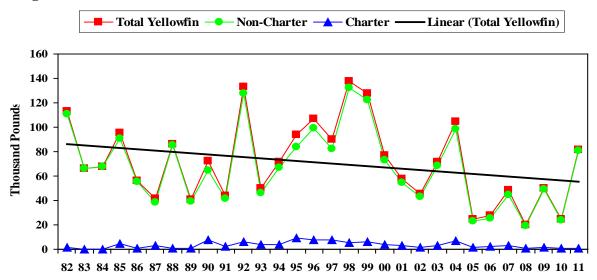


Interpretation: During the 1980s, non-charter boats accounted for the bulk of the blue marlin catch. In the early 1990s, the charter share of the marlin catch began to increase, peaking at 64% in 1996. The increases were due to an increase in charter boat activity and the active targeting of blue marlin by charter boats during the summer months. The decrease in charter landings after 1997 corresponded to the decrease in tourist charter trips. In 2011, all categories of marlin catch decreased. Total catch was down 41%, non- charter catch was down 14%, and charter catch was down 91%. Charter blue marlin catch accounted for 5% of the total blue marlin harvest. Blue marlin landings were below the 30 year average in all categories. The charter total is the lowest in the time series.

Table 61. Guam annual estimated blue marlin landings: total landings, non-charter landings, charter landings (pounds)

	Total Blue		
Year	Marlin	Non-Charter	Charter
1982	21,845	21,845	0
1983	30,402	30,402	0
1984	49,438	45,233	4,205
1985	55,945	40,726	15,219
1986	57,076	51,074	6,002
1987	49,360	36,087	13,274
1988	61,427	44,242	17,185
1989	85,515	58,477	27,038
1990	94,798	46,344	48,455
1991	87,869	44,899	42,970
1992	84,498	42,810	41,688
1993	57,992	27,280	30,713
1994	76,633	46,057	30,576
1995	76,569	33,535	43,034
1996	63,919	22,602	41,318
1997	90,777	43,559	47,217
1998	44,026	27,009	17,017
1999	80,537	61,032	19,505
2000	86,424	56,992	29,432
2001	33,302	22,148	11,154
2002	53,761	49,191	4,569
2003	68,204	55,165	13,039
2004	38,845	18,036	20,809
2005	9,270	7,258	2,012
2006	29,222	23,217	6,005
2007	18,994	14,148	4,846
2008	9,704	6,807	2,898
2009	32,605	20,411	12,194
2010	32,042	20,838	11,204
2011	18,895	17,901	994
Average	53,330	34,511	18,819
Standard			
Deviation	25,561	15,329	15,377

Figure 65. Guam annual estimated skipjack tuna landings: total, non-charter, and charter landings

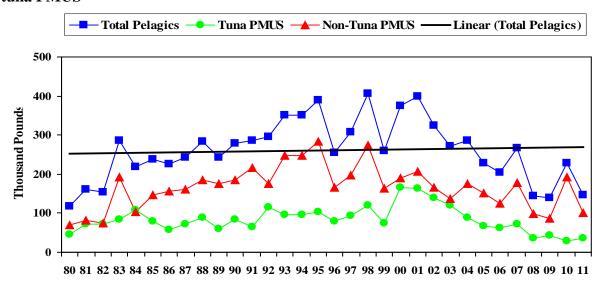

Interpretation: Skipjack tuna catch has fluctuated over the reporting period, reaching a high in 2001. A drop in skipjack tuna during 2002 may be due to direct hits by two super typhoons. The reason for the high numbers of 2001 is not clear. It could have to do with the biology of the species. An increasing catch in skipjack tuna since 2007 reflects an increase in small boats targeting this species. These boats are primarily crewed by Micronesian fishermen.

Total skipjack tuna landings and non-charter landings increased in 2011 by 3% and 3% respectively, while charter landings decreased by 0.3%. Total catch is 89.7% above the 30-year average, and is the highest total in the time series.

Table 62. Guam annual estimated skipjack tuna landings: total, non-charter, and charter landings (pounds)

	Total		
Year	Skipjack	Non-Charter	Charter
1982	126,825	124,649	2,176
1983	97,802	96,142	1,660
1984	218,307	217,152	1,155
1985	110,303	105,359	4,944
1986	78,283	73,878	4,405
1987	61,806	58,948	2,858
1988	214,328	201,561	12,766
1989	128,209	112,364	15,845
1990	149,502	128,910	20,592
1991	118,708	102,845	15,862
1992	123,373	104,117	19,257
1993	109,582	95,081	14,502
1994	188,784	164,288	24,496
1995	179,036	160,771	18,265
1996	238,583	198,888	39,695
1997	219,177	189,211	29,966
1998	201,659	173,892	27,767
1999	123,538	109,696	13,841
2000	267,699	238,330	29,368
2001	331,768	312,001	19,767
2002	176,356	163,504	12,852
2003	185,575	170,352	15,223
2004	168,838	147,447	21,391
2005	99,391	84,762	14,629
2006	146,658	126,042	20,616
2007	157,861	143,332	14,529
2008	295,250	281,827	13,423
2009	330,955	322,574	8,381
2010	339,569	330,310	9,286
2011	350,193	340,934	9,259
Average	184,634	169,342	15,293
Standard			
Deviation	80,494	78,904	9,066

Figure 66. Guam annual estimated yellowfin tuna landings: total, non-charter, and charter landings



Interpretation: The overall yellowfin landings show wide fluctuations during the 30-year time series, although the total and non-charter estimated landings showed a significant decrease from 1998 to 2002. Charter landings of yellowfin tuna peaked in 1985, 1990, and 1995, and then showed a general decrease until 2002. Yellowfin tuna catch was up significantly in 2011, with total catch, non-charter catch, and charter catch up 234%, 241%, and 24.7%, respectively. Non-charter boats harvested 98.7% of the total yearly catch of yellowfin. Total catch and non-charter catch are above their 30-year averages, while the charter total is well below the average for the time series. An increase in the number of vessels targeting small tuna may be the source of the increased catch totals.

Table 63. Guam annual estimated yellowfin tuna landings: total, non-charter, and charter landings (pounds)

	Total		
Year	Yellowfin	Non-Charter	Charter
1982	112,794	110,981	1,813
1983	65,996	65,996	0
1984	67,975	67,710	266
1985	95,273	90,778	4,495
1986	56,024	55,035	989
1987	41,444	38,561	2,883
1988	86,251	85,682	569
1989	40,457	39,453	1,004
1990	72,394	64,942	7,452
1991	44,034	41,822	2,212
1992	133,170	127,311	5,859
1993	50,350	46,444	3,906
1994	71,221	67,022	4,199
1995	93,495	83,913	9,582
1996	107,038	99,005	8,033
1997	90,167	82,408	7,759
1998	137,422	132,020	5,402
1999	128,026	122,204	5,822
2000	76,651	72,967	3,684
2001	57,929	54,668	3,261
2002	45,089	43,336	1,753
2003	71,626	68,573	3,053
2004	104,954	98,255	6,700
2005	24,884	23,130	1,754
2006	28,049	25,419	2,630
2007	48,118	44,934	3,184
2008	19,888	18,900	987
2009	50,279	49,065	1,214
2010	24,502	23,659	843
2011	81,815	80,763	1,051
Average	70,911	67,499	3,530
Standard			
Deviation	32,318	30,900	2,533

Figure 67. Guam annual estimated commercial landings: all pelagics, tuna PMUS, and nontuna PMUS

Interpretation: Commercial pelagic fishery landings showed a general increase for the first 20 years in the 30-year time series. In 2002, the estimated commercial landings decreased overall by 17%, with a 15% decrease for tuna landings and a 20% decrease for landings of other PMUS, possibly due to direct hits by two super typhoons resulting in boat damage, lack of tourist for the commercial charter boats, and unavailability of ice for fishermen. Total commercial catch in 2011 decreased 36% from 2010. Total commercial catch is 44% below the 30 year average.

Source and Calculations: The WPACFIN-sponsored commercial landings system. Total commercial landings were estimated by summing the weight fields in the commercial landings database from the principle fish wholesalers on Guam, and then multiplying by an estimated percent coverage expansion factor. The annual expansion factor was subjectively created based on as much information as possible depending on the year, including: an analysis of the "disposition of catch" data available from the DAWR offshore creel survey; an evaluation of the fishermen in the fishery and their entry/exit patterns; general "dock-side" knowledge of the fishery and the status of the marketing conditions and structure; the overall number of records in the data base; and a certain measure of best guesses.

Table 64. Guam annual estimated commercial landings: all pelagics, tuna PMUS, and nontuna PMUS

			Non-Tuna
Year	All Pelagics	Tuna PMUS	PMUS
1980	118,251	45,043	69,062
1981	162,186	72,229	81,808
1982	153,577	72,347	74,832
1983	285,118	83,764	191,676
1984	218,028	107,568	102,398
1985	237,695	79,028	146,477
1986	226,138	57,689	157,377
1987	242,444	72,004	161,657
1988	284,408	88,093	185,451
1989	242,554	59,825	175,667
1990	279,121	84,176	185,934
1991	285,696	64,694	216,611
1992	296,809	114,765	175,751
1993	351,201	96,289	248,070
1994	351,187	95,321	246,860
1995	389,849	102,236	282,468
1996	255,281	78,636	166,702
1997	307,764	93,825	196,335
1998	405,666	120,186	272,882
1999	260,669	75,346	164,082
2000	376,192	165,898	190,761
2001	399,471	163,369	205,648
2002	325,299	139,009	164,853
2003	272,633	121,326	138,160
2004	285,545	89,479	175,777
2005	228,936	66,804	150,770
2006	203,139	63,579	125,847
2007	266,964	72,271	178,660
2008	144,110	36,009	98,207
2009	138,854	43,760	86,040
2010	228,620	27,935	191,275
2011	145,755	36,939	100,873
Average	261,536	84,045	165,905
Standard			
Deviation	77,049	32,995	54,089

700
600
400
200
400
200

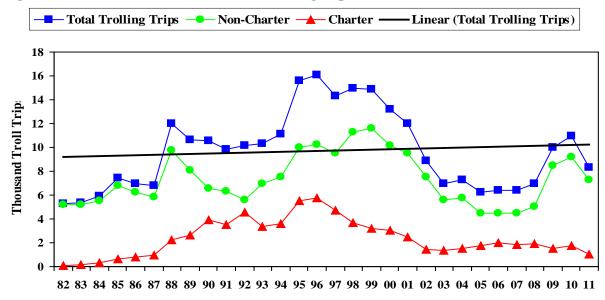
Linear (Estimated Boats)

Figure 68. Guam estimated number of trolling vessels

100

0

Interpretation: Since 1982, the general trend on Guam has been an increase in the number of boats participating in the pelagic fishery, especially since the addition of two marinas to the offshore sampling program. There appears to be a general increase in the number of small boats participating in Guam's pelagic fishery, while the number of charter vessels has remained fairly constant for several years. In 2011, the number of boats was 454, an increase of 5% from 2010.

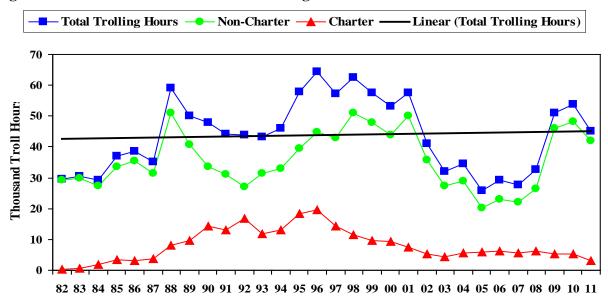

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS. Since only a fraction of the days of the year are sampled, it is not possible to know the exact number of boats participating in the fishery. The 2010 trolling boat log was converted and processed through a boat estimator model 1,000 times.

Table 65. Guam estimated number of trolling vessels from boat-based creel surveys

	Estimated		
Year	Boats	Upper 95%	Lower 95%
1982	199	280	165
1983	193	242	168
1984	219	267	193
1985	276	323	249
1986	246	284	226
1987	219	244	201
1988	320	353	297
1989	329	374	303
1990	352	467	299
1991	349	422	309
1992	332	405	294
1993	346	401	316
1994	369	439	329
1995	427	476	393
1996	466	572	415
1997	449	572	393
1998	469	537	430
1999	449	510	415
2000	416	470	385
2001	375	429	345
2002	375	464	330
2003	371	492	312
2004	401	568	326
2005	358	498	293
2006	386	527	321
2007	370	485	315
2008	385	523	322
2009	368	468	316
2010	432	508	390
2011	454	563	396

Figure 69. Guam estimated number of trolling trips

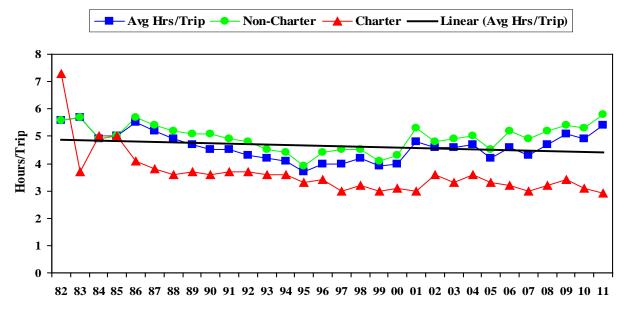

Interpretation: Non-charter and charter troll trips generally increased for the first 15 years of the 29-year time series. The number of troll trips began to decline in 1999 due to a number of factors including a continuing economic recession on the island, a decline in Asian visitors for charter boats, and an increase in cost to maintain, repair, and fuel boats for the average fishermen compared with fish caught for sale to make up for expenses. In 2011, the total number of troll trips decreased by 23.8%, and the number of non-charter trips decreased by 21%. The number of charter trips decreased by 39%. The decrease in non-charter trips may be attributed to an increase in gas prices, as well as an exceptionally high number of bad weather days during 2011. Total trips are 14% below the 30 year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated number of trips for the trolling method as taken directly from creel survey expansion system printouts.

Table 66. Guam Estimated number of trolling trips

	Estimated	Non-	
Year	Trips	Charter	Charter
1982	5,292	5,230	62
1983	5,339	5,187	151
1984	5,913	5,554	359
1985	7,454	6,783	671
1986	6,999	6,227	772
1987	6,776	5,818	958
1988	11,981	9,727	2,254
1989	10,660	8,049	2,612
1990	10,531	6,571	3,960
1991	9,868	6,317	3,550
1992	10,167	5,617	4,551
1993	10,295	6,971	3,324
1994	11,125	7,515	3,610
1995	15,562	10,030	5,532
1996	16,060	10,274	5,787
1997	14,313	9,555	4,758
1998	14,944	11,304	3,641
1999	14,848	11,610	3,239
2000	13,203	10,154	3,049
2001	11,977	9,522	2,456
2002	8,917	7,497	1,420
2003	6,991	5,622	1,368
2004	7,307	5,754	1,553
2005	6,238	4,495	1,743
2006	6,414	4,440	1,973
2007	6,395	4,520	1,875
2008	6,947	5,057	1,891
2009	10,014	8,488	1,526
2010	10,935	9,193	1,743
2011	8,336	7,268	1,068
Average	9,727	7,345	2,382
Standard			
Deviation	3,210	2,117	1,522

Figure 70. Guam estimated number of trolling hours

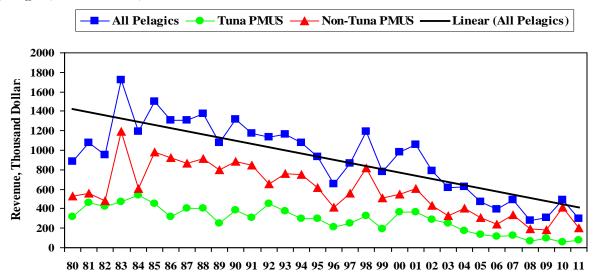

Interpretation: Trolling hours for non-charters and charters have generally increased over the first 15 years. Beginning in 1996, charter troll hours began to decrease. This corresponded to a downturn in Asian economies, which resulted in fewer charter trolling hours. After 2001, charter activity dropped off dramatically. Tourism was also down due to the 9/11 attacks, the SARS scare, and two typhoons striking Guam in 2002. Since 2005, the number of hours trolling has generally been increasing. In 2011, however, total and non-charter totals decreased by 16% and 13%, respectively, while charter hours decreased by 42%. The decrease in hours trolling may be attributed higher gas prices and a high number of bad weather days in 2011. Total hours trolling were 13% below the 30-year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated boat hours spent fishing for the trolling method as taken directly from creel survey expansion system printouts.

Table 67. Guam estimated number of trolling hours

	Estimated	Non-	
Year	Hours	Charter	Charter
1982	29,678	29,226	453
1983	30,363	29,803	560
1984	29,115	27,332	1,783
1985	36,967	33,630	3,337
1986	38,621	35,489	3,132
1987	35,112	31,441	3,671
1988	59,043	50,971	8,073
1989	50,220	40,685	9,535
1990	47,865	33,567	14,298
1991	44,136	30,981	13,155
1992	43,865	27,080	16,785
1993	43,354	31,465	11,889
1994	46,017	32,903	13,113
1995	57,767	39,409	18,359
1996	64,452	44,748	19,704
1997	57,122	42,965	14,157
1998	62,584	50,969	11,614
1999	57,533	47,973	9,560
2000	53,072	43,743	9,329
2001	57,572	50,231	7,341
2002	40,950	35,787	5,162
2003	31,974	27,511	4,463
2004	34,635	29,026	5,608
2005	25,903	20,116	5,786
2006	29,250	22,987	6,263
2007	27,644	21,955	5,689
2008	32,624	26,538	6,087
2009	51,145	45,890	5,255
2010	53667	48295	5372
2011	45053	41944	3108
Average	43910	35822	8088
Standard			
Deviation	11487	9041	5110

Figure 71. Guam estimated trip length (hours per trip)

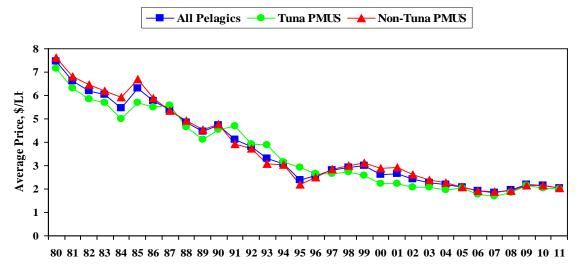

Interpretation: The overall average trolling trip decreased slightly from 2009 and 2010. The redeployment of fish aggregating devices (FADs) still provided charter boats and non-charter fishermen with a prescribed route for trolling activity, although many boats have been observed to be making longer trips to the banks located north and south of Guam. Overall trolling trip length appears to have remained fairly constant throughout the 30-year time series. In 2011, total and non-charter categories showed an increase, with the average number of hours per trip up 10%. This is 17% higher than the 30 year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. These plots are of the estimated boat hours spent fishing and number of trips for the trolling method, as taken directly from creel survey, expansion system printouts.

Table 68. Guam estimated trip length (hours per trip)

	Estimated	Non-	
Year	Trips	Charter	Charter
1982	5.6	5.6	7.3
1983	5.7	5.7	3.7
1984	4.9	4.9	5.0
1985	5.0	5.0	5.0
1986	5.5	5.7	4.1
1987	5.2	5.4	3.8
1988	4.9	5.2	3.6
1989	4.7	5.1	3.7
1990	4.5	5.1	3.6
1991	4.5	4.9	3.7
1992	4.3	4.8	3.7
1993	4.2	4.5	3.6
1994	4.1	4.4	3.6
1995	3.7	3.9	3.3
1996	4.0	4.4	3.4
1997	4.0	4.5	3.0
1998	4.2	4.5	3.2
1999	3.9	4.1	3.0
2000	4.0	4.3	3.1
2001	4.8	5.3	3.0
2002	4.6	4.8	3.6
2003	4.6	4.9	3.3
2004	4.7	5.0	3.6
2005	4.2	4.5	3.3
2006	4.6	5.2	3.2
2007	4.3	4.9	3.0
2008	4.7	5.2	3.2
2009	5.1	5.4	3.4
2010	4.9	5.3	3.1
2011	5.4	5.8	2.9
Average	4.6	4.9	3.6
Standard			
Deviation	0.5	0.5	0.8

Figure 72. Guam estimated annual commercial revenues in inflation-adjusted dollars: all pelagics, tuna PMUS, and non-tuna PMUS

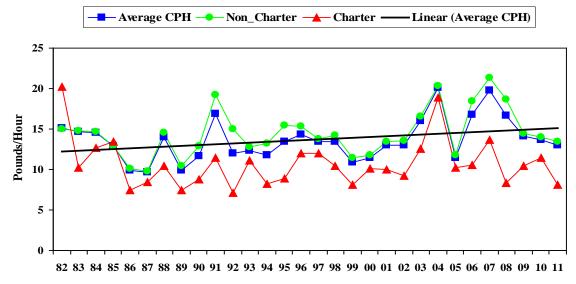

Interpretation: The estimated inflation-adjusted commercial revenues for 2009 increased for all pelagic and the tuna PMUS, and decreased for non-tuna PMUS. Overall, commercial revenues have shown a gradual decrease since the early 1980s. A large drop occurring after 2002 can partly be attributed to two typhoons striking Guam, as well as a change in government policy (see introduction). This trend somewhat continued in 2011, with all three adjusted revenue categories well below the 30-year averages.

Source and Calculations: The WPACFIN-sponsored commercial landings system. Commercial revenues were estimated by summing the revenue fields in the commercial landings database from the principle fish wholesalers on Guam, and then multiplying by the same percent coverage expansion factor. Inflation-adjusted total revenue per trip is derived from the Guam Annual Consumer Price Index (CPI).

Table 69. Guam estimated annual commercial revenues in inflation-adjusted dollars: all pelagics, tuna PMUS, and non-tuna PMUS

	All Pe	lagics	Tuna	PMUS	Non-Tur	na PMUS
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1980	149124	883111	54353	321876	88775	525728
1981	218384	1073577	92914	456767	113212	556552
1982	203847	953190	90719	424202	103459	483774
1983	380231	1718262	105308	475887	262817	1187670
1984	286490	1190939	129389	537871	146339	608333
1985	373796	1495930	112286	449367	244423	978182
1986	334955	1304650	81299	316661	237826	926333
1987	350828	1308939	107642	401613	231451	863543
1988	388630	1378081	115243	408653	258203	915589
1989	337586	1079262	76865	245739	249421	797397
1990	471241	1319005	136321	381562	316491	885858
1991	462191	1173502	119640	303766	333096	845731
1992	492707	1135690	195547	450735	284546	655879
1993	547835	1165794	175360	373167	358592	763084
1994	593838	1080786	165296	300838	411832	749534
1995	537889	929472	173629	300032	356256	61561
1996	398375	655726	127375	209659	254063	418188
1997	534352	862979	154819	250033	344972	557129
1998	733101	1191289	201639	327663	502801	817052
1999	489605	781410	122023	194749	319342	509670
2000	626803	980946	234735	367361	349312	546673
2001	667648	1059557	228652	362870	379174	601749
2002	500777	789725	184705	291280	274929	433564
2003	399989	613983	163423	250854	214143	328710
2004	432735	626167	122098	176676	277544	401607
2005	353131	474608	100720	135368	232336	312260
2006	324686	390922	94040	113225	202560	243882
2007	437861	493907	109201	123179	296385	334322
2008	260474	281832	61360	66392	174973	18932 ⁻
2009	286514	303419	88918	94164	176071	186459
2010	474481	489664	55183	56949	397710	41043
2011	297309	297309	73945	73945	206200	206200
Average	417107	921363	126708	288847	268727	58925 ⁻
Standard Deviation	134016	369347	47826	131753	92662	253670

Figure 73. Guam annual estimated inflation-adjusted average price of pelagics (\$/lb): all pelagics, tuna PMUS, and non-tuna PMUS

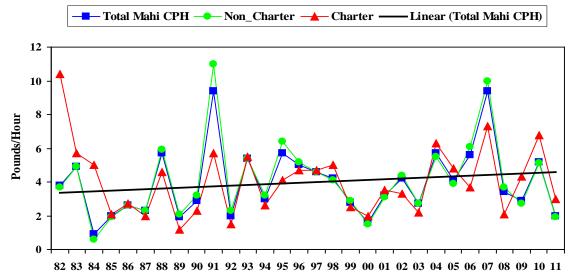

Interpretation: The inflation-adjusted price of tuna and other non-tuna PMUS has shown a steady decline since data on the pelagic fishery was first collected in 1980. In 2007, the trend started to change slightly. In 2011, prices were virtually unchanged, with the adjusted price for all pelagics decreasing 4.7%, 2% for tuna PMUS, and 5% for non-tuna PMUS species. All three categories are well below their 30 year averages. Locally-caught pelagic fish continues to have to compete with cheaper pelagic fish caught by longliners. These are value-added products sold at several supermarkets and roadside vendors.

Source and Calculations: The WPACFIN-sponsored commercial landings system. The average price of the Tunas and other PMUS groups are calculated by dividing the total revenue for each by the sold weight. The inflation adjustment is made by using the Consumer Price Index (CPI) for Guam and establishing the current year figure as the base from which to calculate expansion factors for all previous years (e.g., divide the current year CPI by the CPI of any given year), and then multiplying that factor by the unadjusted average price for the given year.

Table 70. Guam annual estimated inflation-adjusted average price of pelagics (\$/lb): all pelagics, tuna PMUS, and non-tuna PMUS

	All Pela	agics	Tuna P	MUS	Non-Tuna	PMUS
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1980	1.26	7.47	1.21	7.15	1.29	7.61
1981	1.35	6.62	1.29	6.32	1.38	6.80
1982	1.33	6.21	1.25	5.86	1.38	6.46
1983	1.33	6.03	1.26	5.68	1.37	6.20
1984	1.31	5.46	1.20	5.00	1.43	5.94
1985	1.57	6.29	1.42	5.69	1.67	6.68
1986	1.48	5.77	1.41	5.49	1.51	5.89
1987	1.45	5.40	1.49	5.58	1.43	5.34
1988	1.37	4.85	1.31	4.64	1.39	4.94
1989	1.39	4.45	1.28	4.11	1.42	4.54
1990	1.69	4.73	1.62	4.53	1.70	4.76
1991	1.62	4.11	1.85	4.70	1.54	3.90
1992	1.66	3.83	1.70	3.93	1.62	3.73
1993	1.56	3.32	1.82	3.88	1.45	3.08
1994	1.69	3.08	1.73	3.16	1.67	3.04
1995	1.38	2.38	1.70	2.93	1.26	2.18
1996	1.56	.57	1.62	2.67	1.52	2.51
1997	1.74	2.80	1.65	2.66	1.76	2.84
1998	1.81	2.94	1.68	2.73	1.84	2.99
1999	1.88	3.00	1.62	2.58	1.95	3.11
2000	1.67	2.61	1.41	2.21	1.83	2.87
2001	1.67	2.65	1.40	2.22	1.84	2.93
2002	1.54	2.43	1.33	2.10	1.67	2.63
2003	1.47	2.25	1.35	2.07	1.55	2.38
2004	1.52	2.19	1.36	1.97	1.58	2.28
2005	1.54	2.07	1.51	2.03	1.54	2.07
2006	1.60	1.92	1.48	1.78	1.61	1.94
2007	1.64	1.85	1.51	1.70	1.66	1.87
2008	1.81	1.96	1.70	1.84	1.78	1.93
2009	2.06	2.19	2.03	2.15	2.05	2.17
2010	2.08	2.14	1.98	2.04	2.08	2.15
2011	2.04	2.04	2.00	2.00	2.04	2.04
Average	1.60	3.67	1.54	3.54	1.62	3.74
Standard						
Deviation	0.21	1.66	0.23	1.60	0.22	1.73

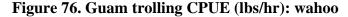
Figure 74. Guam trolling CPUE (lbs/hr)

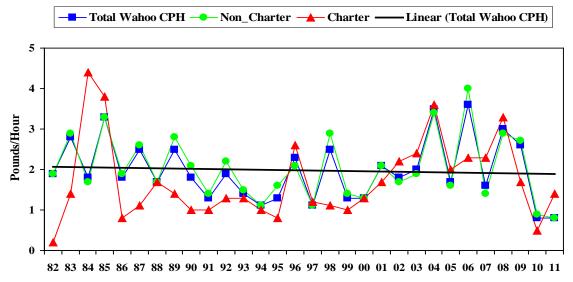

Interpretation: The fluctuations in CPUE are probably due to variability in the year-to-year abundance and availability of the stocks. However, since it is not possible to allocate species-specific effort, effort used to target other species can also result in artificially high or low catch rates for a given species. This is especially true with charter boats targeting blue marlin during the summer months. In 2011, total overall, and non-charter catch rates decreased 5.1% and 4.3%, respectively. Charter catch rates decreased by 29%. Charter catch rates have generally been lower than catch rates of non-charter boats, probably due to their shorter fishing time and non-charter boats beginning earlier in the morning and ending as late as early evening.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of all troll catch, divided by the total number of hours spent fishing (gear in use).

Table 71. Guam trolling CPUE (lbs/hr)

		Non-	
Year	Catch Rate	Charter	Charter
1982	15.1	15.0	20.2
1983	14.7	14.8	10.2
1984	14.6	14.7	12.7
1985	12.9	12.9	13.4
1986	9.9	10.1	7.5
1987	9.7	9.8	8.4
1988	14.0	14.6	10.4
1989	9.9	10.5	7.4
1990	11.7	12.9	8.8
1991	16.9	19.2	11.5
1992	12.0	15.0	7.1
1993	12.3	12.8	11.1
1994	11.8	13.2	8.2
1995	13.4	15.5	8.9
1996	14.3	15.3	12.0
1997	13.4	13.8	12.0
1998	13.5	14.2	10.4
1999	10.9	11.5	8.1
2000	11.5	11.8	10.1
2001	13.0	13.4	10.0
2002	13.0	13.6	9.2
2003	16.0	16.6	12.6
2004	20.1	20.3	18.9
2005	11.5	11.8	10.2
2006	16.8	18.5	10.6
2007	19.8	21.3	13.7
2008	16.7	18.7	8.3
2009	14.1	14.5	10.4
2010	13.7	14.0	11.4
2011	13.0	13.4	8.1
Average	13.7	14.5	10.7
Standard			
Deviation	2.5	2.8	3.0

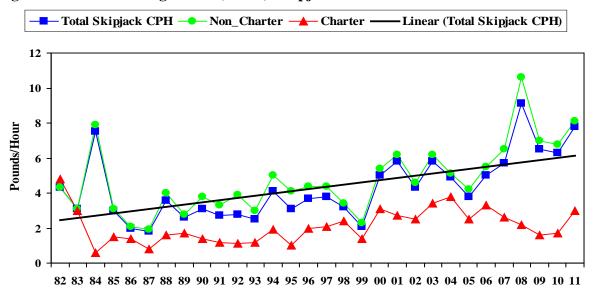



Interpretation: The wide fluctuations in mahimahi CPUEs are probably due to the high variability in the year-to-year abundance and availability of the stocks. It is not possible to allocate species-specific effort one particular species; effort used to target other species can result in artificially high or low catch rates for a given species. In 2011, the catch rate for total and non-charter mahimahi decreased 62%, and 63%, respectively, while charter CPUE decreased by 56%. Total mahimahi CPUE is 50% below the 30 year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of mahimahi divided by the total number of hours spent fishing (gear in use).

Table 72. Guam trolling CPUE (lbs/hr): mahimahi

	Total	Non-	
Year	Mahimahi	Charter	Charter
1982	3.8	3.7	10.4
1983	4.9	4.9	5.7
1984	0.9	0.6	5.0
1985	2.0	1.9	2.1
1986	2.6	2.6	2.7
1987	2.3	2.3	2.0
1988	5.7	5.9	4.6
1989	1.9	2.1	1.2
1990	2.9	3.2	2.3
1991	9.4	11.0	5.7
1992	2.0	2.3	1.5
1993	5.4	5.4	5.5
1994	3.0	3.2	2.6
1995	5.7	6.4	4.1
1996	5.0	5.2	4.7
1997	4.6	4.6	4.7
1998	4.2	4.1	5.0
1999	2.8	2.9	2.5
2000	1.6	1.5	2.0
2001	3.2	3.1	3.5
2002	4.2	4.4	3.3
2003	2.7	2.7	2.2
2004	5.7	5.5	6.3
2005	4.1	3.9	4.8
2006	5.6	6.1	3.7
2007	9.4	10.0	7.3
2008	3.4	3.7	2.1
2009	2.9	2.7	4.3
2010	5.2	5.1	6.8
2011	2.0	1.9	3.0
Average	4.0	4.1	4.1
Standard			
Deviation	2.0	2.2	2.0

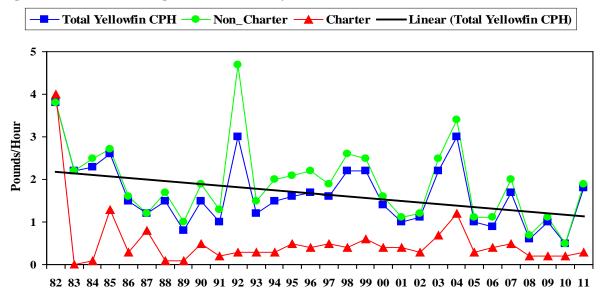

Interpretation: The wide fluctuations in CPUEs are probably due to the high variability in the year-to-year abundance and availability of the stocks. The trend for the 30 year series has remained virtually unchanged. In 2011, all three categories declined. Total wahoo CPUE remained unchanged, while non-charter CPUE decreased by 11%. Charter CPUE increased by 180%. Total CPUE is 60% below the 30 year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of wahoo divided by the total number of hours spent fishing (gear in use).

Table 73. Guam trolling CPUE (lbs/hr): wahoo

	Catch	Non-	
Year	Rate	Charter	Charter
1982	1.9	1.9	0.2
1983	2.8	2.9	1.4
1984	1.8	1.7	4.4
1985	3.3	3.3	3.8
1986	1.8	1.9	0.8
1987	2.5	2.6	1.1
1988	1.7	1.7	1.7
1989	2.5	2.8	1.4
1990	1.8	2.1	1.0
1991	1.3	1.4	1.0
1992	1.9	2.2	1.3
1993	1.4	1.5	1.3
1994	1.1	1.1	1.0
1995	1.3	1.6	0.8
1996	2.3	2.1	2.6
1997	1.1	1.1	1.2
1998	2.5	2.9	1.1
1999	1.3	1.4	1.0
2000	1.3	1.3	1.3
2001	2.1	2.1	1.7
2002	1.8	1.7	2.2
2003	2.0	1.9	2.4
2004	3.5	3.4	3.6
2005	1.7	1.6	2.0
2006	3.6	4.0	2.3
2007	1.6	1.4	2.3
2008	3.0	2.9	3.3
2009	2.6	2.7	1.7
2010	0.8	0.9	0.5
2011	0.8	0.8	1.4
Average	2.0	2.0	1.7
Standard			
Deviation	0.7	0.8	1.0

Figure 77. Guam trolling CPUE (lbs/hr): skipjack tuna

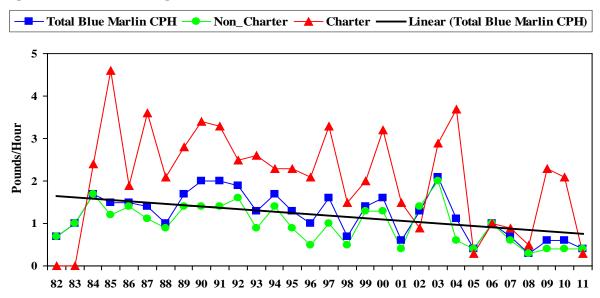

Interpretation: The wide fluctuations in CPUE for skipjack tuna are probably due to the high variability in the year-to-year abundance and availability of the stocks, although skipjack tuna is caught year round. However, it is not possible to allocate species-specific effort, since effort used to target other species can result in an artificially high or low catch rate for a given species. In 2011, the catch rates for total and non-charter increased by 23.8% and 19.1%, respectively. Charter rates increased 76.5% in 2011. Total CPUE was 81% above the 30-year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of skipjack divided by the total number of hours spent fishing (gear in use).

Table 74. Guam trolling CPUE (lbs/hr): skipjack tuna

	Total	Non-	
Year	Skipjack	Charter	Charter
1982	4.3	4.3	4.8
1983	3.1	3.1	3.0
1984	7.5	7.9	0.6
1985	3.0	3.1	1.5
1986	2.0	2.1	1.4
1987	1.8	1.9	0.8
1988	3.6	4.0	1.6
1989	2.6	2.8	1.7
1990	3.1	3.8	1.4
1991	2.7	3.3	1.2
1992	2.8	3.8	1.1
1993	2.5	3.0	1.2
1994	4.1	5.0	1.9
1995	3.1	4.1	1.0
1996	3.7	4.4	2.0
1997	3.8	4.4	2.1
1998	3.2	3.4	2.4
1999	2.1	2.3	1.4
2000	5.0	5.4	3.1
2001	5.8	6.2	2.7
2002	4.3	4.6	2.5
2003	5.8	6.2	3.4
2004	4.9	5.1	3.8
2005	3.8	4.2	2.5
2006	5.0	5.5	3.3
2007	5.7	6.5	2.6
2008	9.1	10.6	2.2
2009	6.5	7.0	1.6
2010	6.3	6.8	1.7
2011	7.8	8.1	3.0
Average	4.3	4.8	2.1
Standard			
Deviation	1.8	1.9	1.0

Figure 78. Guam trolling CPUE (lbs/hr): yellowfin tuna

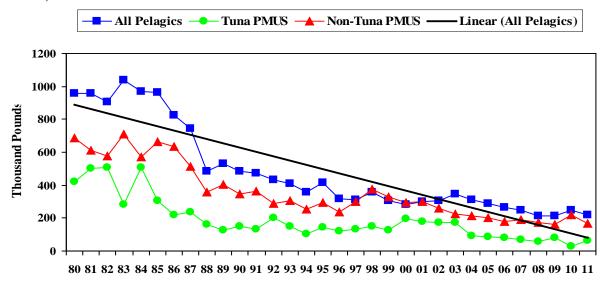

Interpretation: The wide fluctuations in CPUE for yellowfin tunas are probably due to the high variability in the year-to-year abundance and availability of the stocks. It is not possible to allocate species-specific effort, since effort used to target other species can also result in an artificially high or low catch rate for a given species. In 2011, the yellowfin catch rates for total and non-charter catch increased by 260% and 280% respectively. Charter CPUE increased 50%. All three categories are near their 30-year averages.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of yellowfin divided by the total number of hours spent fishing (gear in use).

Table 75. Guam trolling CPUE (lbs/hr): yellowfin tuna

	Total	Non-	
Year	Yellowfin	Charter	Charter
1982	3.8	3.8	4.0
1983	2.2	2.2	0.0
1984	2.3	2.5	0.1
1985	2.6	2.7	1.3
1986	1.5	1.6	0.3
1987	1.2	1.2	0.8
1988	1.5	1.7	0.1
1989	0.8	1.0	0.1
1990	1.5	1.9	0.5
1991	1.0	1.3	0.2
1992	3.0	4.7	0.3
1993	1.2	1.5	0.3
1994	1.5	2.0	0.3
1995	1.6	2.1	0.5
1996	1.7	2.2	0.4
1997	1.6	1.9	0.5
1998	2.2	2.6	0.4
1999	2.2	2.5	0.6
2000	1.4	1.6	0.4
2001	1.0	1.1	0.4
2002	1.1	1.2	0.3
2003	2.2	2.5	0.7
2004	3.0	3.4	1.2
2005	1.0	1.1	0.3
2006	0.9	1.1	0.4
2007	1.7	2.0	0.5
2008	0.6	0.7	0.2
2009	1.0	1.1	0.2
2010	0.5	0.5	0.2
2011	1.8	1.9	0.3
Average	1.7	1.9	0.5
Standard			
Deviation	0.8	0.9	0.7

Figure 79. Guam trolling CPUE (lbs/hr): blue marlin

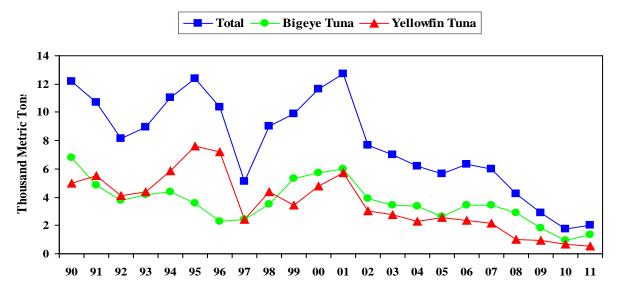

Interpretations: The wide fluctuations in CPUE are probably due to the high variability in the year-to-year abundance and availability of the stocks. Since it is not possible to allocate species-specific effort, effort used to target other species can also result in an artificially high or low catch rate for a given species. The 2011 blue marlin non-charter catch rates were virtually unchanged from 2010. Total CPUE was down 33%, while charter CPUE was down 86%. Total catch CPUE is 67% below the 30 year average.

Source and Calculations: The Division of Aquatic and Wildlife Resources (DAWR) offshore creel sampling program and its associated computerized data expansion system files, expanded with the assistance of NMFS. The data expansion system is run on a calendar year's worth of survey data to produce catch and effort estimates for each fishing method surveyed. This plot and table of catch per unit of effort (CPUE) are based on the total annual landings of marlin divided by the total number of hours spent fishing (gear in use).

Table 76. Guam trolling CPUE (lbs/hr): blue marlin

	Total Blue	Non-	
Year	Marlin	Charter	Charter
1982	0.7	0.7	0.0
1983	1.0	1.0	0.0
1984	1.7	1.7	2.4
1985	1.5	1.2	4.6
1986	1.5	1.4	1.9
1987	1.4	1.1	3.6
1988	1.0	0.9	2.1
1989	1.7	1.4	2.8
1990	2.0	1.4	3.4
1991	2.0	1.4	3.3
1992	1.9	1.6	2.5
1993	1.3	0.9	2.6
1994	1.7	1.4	2.3
1995	1.3	0.9	2.3
1996	1.0	0.5	2.1
1997	1.6	1.0	3.3
1998	0.7	0.5	1.5
1999	1.4	1.3	2.0
2000	1.6	1.3	3.2
2001	0.6	0.4	1.5
2002	1.3	1.4	0.9
2003	2.1	2.0	2.9
2004	1.1	0.6	3.7
2005	0.4	0.4	0.3
2006	1.0	1.0	1.0
2007	0.7	0.6	0.9
2008	0.3	0.3	0.5
2009	0.6	0.4	2.3
2010	0.6	0.4	2.1
2011	0.4	0.4	0.3
Average	1.2	1.0	2.2
Standard			
Deviation	0.5	0.5	1.1

Figure 80. Guam annual inflation-adjusted revenue per trolling trip: all pelagics, tuna PMUS, and non-tuna PMUS


Interpretation: There has been a general decrease from 1980 in the adjusted revenues per trolling trip for all pelagics, tunas and other PMUS, although the revenue values have remained fairly constant for past 9 years. In 2011, the adjusted revenue per trip increased for all pelagics by 10%. Tuna PMUS revenues increased by 98%, and non-tuna PMUS increased by 23%. Despite continual declines in revenues, trolling effort still occurs since most charter and non-charter trolling boats do not rely on selling fish caught as their primary source of income and a reliable market exists for members of the local fishermen's cooperative which provides additional income.

Source and Calculations: Data are from the WPacFIN-sponsored commercial landings system. The average revenue per trip was calculated by summing the revenue of all species sold then dividing by the number of trips, and summing the revenue of tunas and other PMUS sold, and then dividing each by the number of trips, respectively, for any trip, which landed PMUS. Adjusted revenue per trip was derived from the Guam Annual Consumer Price Index (CPI).

 $\begin{tabular}{ll} Table \begin{tabular}{ll} 77. Guam \ annual \ inflation-adjusted \ revenue \ per \ trolling \ trip: \ all \ pelagics, tuna \ PMUS, and \ non-tuna \ PMUS \end{tabular}$

	All Pel	agics	Tuna P	MUS	Non-Tuna	PMUS
Year	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
1980	161.31	995.28	71.14	421.29	116.20	688.14
1981	195.29	960.05	102.24	502.61	124.58	612.44
1982	194.29	908.50	108.45	507.11	123.68	578.33
1983	229.26	1036.03	62.81	283.84	156.75	708.35
1984	233.01	968.62	121.56	505.32	137.48	571.50
1985	240.34	961.84	76.21	304.99	165.90	663.93
1986	212.25	826.71	55.68	216.87	162.89	634.46
1987	199.18	743.14	64.07	239.05	137.77	514.02
1988	137.30	486.87	44.98	159.50	100.78	357.37
1989	166.79	533.23	38.89	124.33	126.20	403.46
1990	172.68	483.33	53.19	148.88	123.50	345.68
1991	185.96	472.15	51.79	131.49	144.20	366.12
1992	188.33	434.10	86.72	199.89	126.18	290.84
1993	191.92	408.41	70.60	150.24	144.36	307.20
1994	197.09	358.70	56.32	102.50	140.32	255.38
1995	239.79	414.36	82.55	142.65	169.38	292.69
1996	191.10	314.55	72.55	119.42	144.71	238.19
1997	192.95	311.61	82.74	133.63	184.35	297.73
1998	221.01	.59.14	92.81	150.82	231.44	376.09
1999	190.05	303.32	78.35	125.05	205.04	327.24
2000	179.42	280.79	127.01	198.77	189.00	295.79
2001	188.68	299.44	113.92	180.79	188.92	299.82
2002	193.42	305.02	109.41	172.54	162.85	256.81
2003	223.73	343.43	110.95	170.31	145.38	223.16
2004	215.10	311.25	65.56	94.87	149.03	215.65
2005	216.34	290.76	64.62	86.85	149.05	200.32
2006	219.47	264.24	68.83	82.87	148.26	178.51
2007	221.40	249.74	61.56	69.44	167.09	188.48
2008	196.13	212.21	55.86	60.44	159.29	172.35
2009	202.16	214.09	76.76	81.29	152.00	160.97
2010	238.87	246.51	29.75	30.70	214.40	221.26
2011	221.90	221.90	60.86	60.86	169.71	169.71
Average	201.77	483.73	75.59	186.23	155.02	356.62
Standard						
Deviation	23.79	267.44	24.10	128.57	28.64	167.48

Figure 81. Guam foreign longline transshipment landings (mt) from vessels fishing outside the Guam EEZ

Interpretation: Annual landings from a primarily foreign longline fishing fleet have ranged from a low of 2,874 metric tons in 2009 to a high of 12,627 metric tons in 2001. These vessels fish primarily outside Guam's EEZ, but transship their catch through Guam. The dramatic drop observed in 1997 was due to a large number of foreign fishing boats leaving the western Pacific that year for several reasons, including availability of fish stocks. In 2011, total longline landings increased 13%, with bigeye landings increasing 43%, and yellowfin landings decreasing 19%. 2011 yellowfin totals were the lowest in the 22 year data set, and total catch was 74% below the 22 year average. The lower numbers may be due to a reduction in the number of agents reporting sales, and vessels relocating to other regions of the Pacific.

Source and Calculations: Data are from the Bureau of Statistics and Plans. Pre-1990 data was extracted directly from transshipment agents' files. Beginning in 1990, a mandatory data submission program was implemented.

Table 78. Guam foreign longline transshipment landings (mt)

Year	Total	Bigeye	Yellowfin
1990	12,198	6,793	5,011
1991	10,707	4,824	5,505
1992	8,157	3,754	4,104
1993	8,981	4,178	4,379
1994	11,023	4,400	5,878
1995	12,366	3,560	7,635
1996	10,356	2,280	7,214
1997	5,093	2,395	2,392
1998	9,032	3,533	4,379
1999	9,865	5,328	3,404
2000	11,664	5,725	4,795
2001	12,716	5,996	5,711
2002	7,691	3,904	3,011
2003	7,010	3,418	2,788
2004	6,190	3,375	2,287
2005	5,660	2,618	2,574
2006	6,315	3,455	2,377
2007	5,991	3,439	2,134
2008	4,215	2,926	1,014
2009	2,874	1,813	934
2010	1,779	935	656
2011	2,016	1,343	532
Average	7,814	3,636	3,578
Standard			
Deviation	3,299	1,448	2,003

Table 79. Guam numbers of trips and interviews for the creel trolling method

Year	Survey Days	Trips in Boat Log	Interviews
1982	46	393	363
1983	47	363	351
1984	54	486	365
1985	66	737	503
1986	49	629	382
1987	48	614	431
1988	51	1032	698
1989	60	1053	642
1990	60	1098	804
1991	60	1097	773
1992	60	1170	843
1993	61	1149	844
1994	69	1224	878
1995	96	1540	1110
1996	96	1543	1146
1997	96	1378	949
1998	96	1477	1052
1999	96	1436	917
2000	96	1338	854
2001	96	1076	620
2002	84	730	396
2003	79	531	289
2004	96	716	366
2005	97	698	377
2006	96	763	413
2007	96	755	391
2008	96	788	405
2009	96	1018	604
2010	96	1135	683
2011	96	878	496

Table 80. 2011 Guam trolling bycatch data

	Ni				
		Released		= Total	Percent
	Number Alive	Dead/Injured	Both	Caught	Bycatch
Non-Charter*	0	1	1	7,100	0
Charter	0	0	0		0
Combined	0	1	1		0

^{*}Bycatch was *Katsuwonus pelamis*, or skipjack tuna.

Table 81. Trolling bycatch annual summaries

Year	Released alive	Released dead/ injured	Total Number Released	Total Number Landed	Percent Bycatch*	Interviews with Bycatch	Total Number of Interviews	Percent of Interviews with Bycatch
2001	7	3	10	5,289	0.2	10	461	2.2
2002	1	2	3	3,443	0.1	3	258	1.2
2003	5	0	5	3,026	0.2	2	178	1.1
2004	0	0	0	4,292	0	0	91	0
2005	3	0	3	2,631	.11	3	n/a	n/a
2006	2	1	3	3,478	.09	3	413	.7
2007	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
2008	1	0	1	3,495	.02	1	98	1.02
2009	2	1	3	3,478	.08	3	604	.05
2010	0	0	0	6,085	0	0	670	0
2011	0	1	1	7,100	.00014	1	496	.002

^{*&}quot;percent bycatch" represents the number of pieces that were discarded compared to the total number of fish caught trolling. The bycatch information is from unexpanded data, taken only from actual interviews that reported bycatch.

Interpretation: Bycatch information was recorded beginning in 2000 as a requirement of the pelagic FMP. Historically, most fish landed are kept regardless of size and species. Bycatch for this fishery are sharks, shark-bitten pelagics, small pelagics, or other pelagic species. In 2011, only one skipjack tuna was released dead or injured from the non-charter fishery; there was no bycatch from the charter fishery.

Source and Calculations: The DAWR creel survey data for boat based methods. Bycatch is obtained directly from trolling interviews where bycatch was voluntarily reported. The number of bycatch reported is from unexpanded data.

D. Hawaii

Introduction

Hawaii's pelagic fisheries, which include the longline, main Hawaiian Island (MHI) troll and handline, offshore handline, and aku boat (pole and line) fisheries, are the state's largest and most valuable. These pelagic fisheries landed an estimated 31 million pounds worth about \$88 million (ex-vessel revenue) in 2011. The longline fishery was the largest of all commercial pelagic fisheries in Hawaii and represented 83% of the total commercial pelagic landings and 89% of the ex-vessel revenue. The MHI troll accounted for 9% and 7% of the landings and revenue, respectively. The MHI handline, aku boat, offshore handline and other gear types made up the remainder.

The target species for the Hawaii fisheries are tunas and billfishes, but a variety of other pelagic species are also landed with some regularity. The largest component of the pelagic landings was tunas, which comprised 64% of the total in 2011. Bigeye tuna alone accounted for 66% of the tunas and 42% of all pelagic landings. Billfish landings made up 19% of the total landings in 2011. Swordfish was the largest of these, at 55% of the billfish and 11% of the total landings. Landings of other pelagic management unit species (PMUS) represented 17% of the total landings in 2011 with mahimahi being the largest component at 5% of the total and 31% of other pelagic landings.

Data Sources and Calculation Procedures

This report contains the most recently available information on Hawaii's commercial pelagic fisheries, as compiled from four data sources: The State of Hawaii's Division of Aquatic Resources (HDAR) Commercial Fish Catch data, HDAR Commercial Marine Dealer (Dealer) data, the National Oceanic and Atmospheric Administration (NOAA) Fisheries, Pacific Islands Fisheries Science Center's (PIFSC) longline logbook data, and joint PIFSC and HDAR Market Sample data. Landings and revenue were calculated for each Hawaii pelagic fishery. The data sources and estimation procedures are described below.

<u>The Hawaii-based Longline Fishery:</u> The Market Sample data were used to estimate catch and revenue for the longline fishery from 1987 to 1991. Market Sample data was collected on five of six business days a week to approximate a coverage rate of about 80%. The Market Sample data were extrapolated to represent a full coverage rate.

The federal longline logbook system was implemented in December 1990 and served as the source of the data used to determine fish catches. Due to limited manpower, the market sampling data collection program was reduced to two business days in 1991 for a coverage rate of about 33%. The number of fish kept from the longline logbook data was multiplied by the

Ito, Russell Y. and Machado, Walter A. 2001. Annual report of the Hawaii-based longline fishery for 2000. Southwest Fisheries Science Center administrative report H-01-07.

average weight per fish from the market sample data to estimate total landings. The estimated landings were then multiplied by the average price per pound from the market sampling data to estimate total revenue.

A system to submit Dealer data electronically was implemented in 1999; the first complete year of fish dealer data was 2000. The Dealer data coverage of the longline landings and revenue was near complete and replaced the Market Sample data as the data source for average weight and average price.

The longline purchases in the Dealer data was identified and separated out by matching specific vessel names and HDAR Commercial Marine License (CML) numbers. The estimation procedure for longline landings and revenue was done by multiplying the total number of each species kept from the Federal longline logbook data by the corresponding average weight of fish from Dealer data. The result was "Pounds Landed" for each species. This procedure was repeated on a monthly basis and summed over the year to get annual totals. There were exceptions though. When the sum of "Pounds Bought" for individual species from the Dealer data was greater than the calculation for "Pounds Landed", "Pounds Bought" was used as the final estimate for landings.

Aku Boat: This fishery includes pelagic species caught by the aku boat or pole-and-line method (HDAR gear code 1) for skipjack tuna in all HDAR statistical areas. Aku boat fishing vessel names and CML numbers were matched up with the corresponding vessel names and CMLs in the Dealer data. The landings and revenue summaries were produced by summing "Pounds Bought" and "Amount Paid" in the Dealer data. Aku boat landings were also summed from the Aku Boat Fishing report to yield "Pounds Landed". When the total of "Pounds Landed" from the Aku Boat Fishing data was greater than the "Pounds Bought" from the Dealer data, "Pounds Landed" was used as the catch. Contrarily, if "Pounds Bought" was greater than "Pounds Landed", the total from "Pounds Bought" was used as the catch. "Pounds Landed" was typically greater than Pounds Bought.

MHI Troll Fishery: The MHI troll fishery includes pelagic species caught by Miscellaneous Trolling Methods (HDAR gear code 6), Lure Trolling (61), Bait Trolling (62), Stick Trolling (63), Casting, Light Tackle, Spinners or Whipping (10) and Hybrid Methods (97) in HDAR statistical areas 100 through 642. These are areas that begin from the shoreline out to 20 minute squares around the islands of Hawaii, Maui, Kahoolawe, Lanai, Mokolai, Oahu, Kauai and Niihau.

MHI Handline Fishery: The MHI handline fishery includes pelagic species caught by Deep Sea or Bottom Handline Methods (HDAR gear code 3), Inshore Handline or Cowrie Shell (Tako) Methods (4), Ika_Shibi (8), Palu-Ahi, Drop Stone or Make Dog Methods (9), Drifting Pelagic Handline Methods (35) and Floatline Methods (91) in HDAR statistical areas 100 to 642 except areas 175, 176, and 181.

Offshore Handline Fishery: The offshore handline fishery includes pelagic species caught by Ika-Shibi (HDAR gear code 8), Palu-Ahi, Drop Stone or Make Dog Methods (9), Drifting Pelagic Handline Methods (35), Miscellaneous Trolling Methods (6), Lure Trolling (61), and Hybrid Methods (97) in Areas 15217 (NOAA Weather Buoy W4), 15717 (NOAA Weather Buoy W2), 15815, 15818 (Cross Seamount), 16019 (NOAA Weather Buoy W3), 16223 (NOAA Weather Buoy W1), 175, 176, 181, 804, 807, 816, 817, 825, 839, 842, 892, 893, 894, 898, 900, 901, 15416, 15417, 15423, 15523, 15718, 15918, 15819, and 16221. This fishery also includes pelagic species caught by Deep Sea or Bottom Handline Methods (3) in Area 16223.

<u>Other Gear:</u> Even though this category is not mentioned specifically in this report, the catch is included in the overall total. It represents pelagic species caught by methods or in areas other than those methods mentioned above. Catch and revenue from this category is primarily composed of pelagic species caught by trolling in areas outside of the MHI (the distant water albacore troll fishery) or pelagic species caught close to shore by diving, spearfishing, squidding, or netting inside of the MHI.

<u>Calculations:</u> Calculating catch by the MHI troll, MHI handline, offshore handline, and other gear involved processing of two data sets: the HDAR Commercial Fish Catch data collected and submitted by the aforementioned fishers, and Dealer data collected and submitted by seafood dealers. "Pounds Landed" from HDAR Commercial Fish Catch data was summed by species for each of the above fisheries. Total "Pounds Landed" for each species was then calculated by summing the catch of that particular species for the MHI troll, MHI handline, offshore handline fisheries and other gear category. The percent catch of each species by fishery was also calculated and later used in conjunction with the Dealer data.

Catch in the Dealer data, referred to as "Pounds Bought", by each fishery was not clearly differentiated; however, "Pounds Sold" by the longline and aku boat fisheries were identified by CML numbers or vessel names and excluded. The remaining "Pounds Bought" was presumed to be from the MHI troll, MHI handline, offshore handline fisheries or other gear category. "Pounds Bought" from this subset of the data was summed on a species specific basis with fishery specific landings of each particular species allocated based on the percent catch by fishery calculated from the Dealer data. The fishery specific allocation was then compared to the "Pounds Landed" from the HDAR Commercial Fish Catch total. The greater value of "Pounds Bought" from the Dealer data or the "Pounds Landed" from the HDAR Commercial Fish catch data was used as the catch. This process was repeated on a monthly basis.

Detailed data were not available for recreational fishers because they are not required to file catch reports (if they sell no fish during the year). In addition, there is no comprehensive creel survey of Hawaii anglers. JIMAR research reports describe aspects of the relationship between commercial and recreational pelagic fishing, but accurate estimates of total recreational

participation and catch remain absent.² The NOAA FISHERIES Marine Recreational Fisheries Statistical Survey (MRFSS) has reinitiated operations in Hawaii after a 20-year absence with the first full year of field surveys in 2002. The combined telephone-creel intercept survey is being conducted in collaboration with the HDAR. In the interim, a summary of what is known about recreational fisheries, including preliminary estimates of recreational catch are included in Appendix 6.

This module was prepared by Russell Ito of the PIFSC. Summaries from NOAA Fisheries longline logbooks were provided by Frederick Dowdell of the PIFSC. HDAR Commercial Fish Catch and Dealer data used calculate the MHI troll, MHI handline, offshore handline, and other gear landings were compiled by Craig Graham from JIMAR. Information on HDAR CMLs was provided by Reginald Kokubun, HDAR.

Hawaii Division of Aquatic Resources Commercial Marine License information

Any fisherman who takes marine species for commercial purposes is required by the State of Hawaii to have a Commercial Marine License (CML) and submit a monthly catch report to HDAR. An exception to this rule is that only one person per vessel is required to submit a catch report. This person is usually, but not necessarily, the captain. Crew members do not ordinarily submit catch reports. HDAR asks fishermen to identify their primary fishing gear or method on the CML at time of licensing. This does not preclude fishermen from using other gears or methods.

A total of 3,762 fishermen were licensed in 2011, including 2,149 (57%) who indicated that their primary fishing method and gear were intended to catch pelagic fish. Most licenses that indicated pelagic fishing as their primary method were issued to trollers (60%) and longline fishermen (29%). The remainder was issued to ika shibi and palu ahi (handline) (10%) and aku boat fishers (1%).

Table 82. Number of Hawaii licenses per fishing method in 2010-2011

McConnell, Kenneth E. and Timothy C. Haab, 2001. Small boat fishing in Hawaii: choice and economic values. University of Hawaii SOEST 01-01, JIMAR 01-336, 62 p.

²Hamilton, Marcia S and Stephen W. Huffman, 1997. Cost-earnings study of Hawaii's small boat fishery, 1995-96. University of Hawaii SOEST 97-06/JIMAR 97-314. 102 p.

Primary Fishing Method	Number of lic	ensees
	2010	2011
Trolling	1,302	1,295
Longline	390	626
Ika Shibi & Palu Ahi	197	211
Aku Boat (Pole and Line)	14	17
Total Pelagic	1,903	2,149
Total All Methods	3,347	3,762

Plan Team Recommendations

2011 Recommendations

The PPT recommends that National Marine Fisheries Service Pacific Islands Fisheries Science Center (NMFS PIFSC) apprise NMFS Pacific Islands Regional Office on a quarterly basis of the North Pacific striped marlin cumulative catch by weight in the WCPFC convention area from the Hawaii-based longline fishery. The PPT also recommends that Hawaii Division of Aquatic Resources provide a similar quarterly catch total of striped marlin for non-longline pelagic fisheries to NMFS PIRO.

To help develop management options for North Pacific striped marlin should any be needed, the PPT recommends that NMFS PIFSC conduct the following analyses:

- i. Using Hawaii longline observer data, summarize the number of striped marlin based on condition (dead or alive) upon retrieval by associated sizes.
- ii. Using Hawaii dealer data, examine the market values of striped and blue marlin size categories to ascertain the economic impacts to the fisheries if a minimum size category were implemented.

Examine the effects on the amounts of retained catches in Hawaii based fisheries of (a) striped marlin and (b) striped and blue marlin combined in the North Pacific of the WCPFC area, if live boated fish smaller than specified minimum sizes were required to be released. The analysis would examine various possible minimum sizes including no minimum size.

Table 83. Hawaii commercial pelagic landings, revenue, and average price by species, 2010-2011

		2010				
Species	Pounds landed (x 1000)	Ex-vessel revenue (\$1000)	Average price (\$/lb)	Pounds landed (x 1000)	Ex-vessel revenue (\$1000)	Average price (\$/lb)
Tuna PMUS						
Albacore	980	\$1,367	\$1.48	1,762	\$2,562	\$1.61
Bigeye tuna	13,104	\$52,862	\$4.04	13,282	\$53,114	\$4.12
Bluefin tuna	1	\$0		0	\$0	
Skipjack tuna	660	\$574	\$1.90	1,110	\$1,021	\$1.60
Yellowfin tuna	2,786	\$7,295	\$3.02	3,933	\$9,977	\$2.90
Tuna PMUS subtotal	17,531	\$62,099	\$3.71	20,087	\$66,674	\$3.59
Billfish PMUS						
Swordfish	3,601	\$7,568	\$2.40	3,320	\$6,669	\$2.57
Blue marlin	1,005	\$1,171	\$1.33	1,251	\$1,240	\$1.35
Striped marlin	377	\$662	\$1.92	925	\$1,137	\$1.25
Other marlins	328	\$432	\$1.40	591	\$555	\$1.14
Billfish PMUS subtota	5,311	\$9,832	\$2.10	6,088	\$9,601	\$2.05
Other PMUS						
Mahimahi	1,695	\$3,415	\$2.26	1,631	\$4,333	\$3.04
Ono (wahoo)	759	\$1,814	\$3.02	674	\$1,820	\$3.21
Opah (moonfish)	1,825	\$2,687	\$1.47	1,606	\$2,846	\$1.82
Oilfish	583	\$815	\$1.40	632	\$868	\$1.37
Pomfrets	601	\$1,618	\$2.71	433	\$1,449	\$3.39
Sharks (whole weight)	277	\$118	\$0.52	234	\$115	\$0.65
Other PMUS subtotal	5,740	\$10,467	\$1.96	5,211	\$11,433	\$2.37
Other pelagics	63	\$68	\$1.69	74	\$97	\$1.46
Total pelagics	28,645	\$82,466	\$3.08	31,460	\$87,805	\$3.12

Interpretation: The total commercial pelagic landings in 2011 were 31.5 million pounds, up 10% from 2010. Tunas represented 64% of the total landings. Bigeye tuna was the largest component of the pelagic landings (42%) followed by yellowfin tuna (13%) and swordfish (11%).

Total Hawaii commercial ex-vessel revenue (\$87.8 million) increased by 6% in 2011. Tunas comprised 76% of this total. Bigeye tuna alone accounted for 60% of the total revenue at \$53 million. Yellowfin tuna revenue increased 37% to \$10 million. Billfish revenue (\$9.6 million) was close to last year's revenue. Swordfish was the third highest contributor to total revenue at \$6.7 million. Revenue of other PMUS species increased 9% in 2011. The total pelagic fish price increased slightly in 2011. Average prices for tuna and billfish decreased by 3% and 2%, respectively while average price for other PMUS increased by 21% in 2011.

Source and Calculations: NMFS longline logbook and HDAR Dealer data were used to produce longline catch, revenue, and average price estimates. The Main Hawaiian Islands (MHI) troll, MHI handline, offshore handline, and other gear catch, revenue, and average price estimates were produced from HDAR Commercial Fish Catch and Dealer data.

"Other Billfish" includes unclassified billfish, sailfish, spearfish and black marlin. "Sharks" includes unclassified sharks, hammerhead sharks, mako sharks, thresher sharks, tiger sharks, blue sharks and white-tipped sharks. "Other Pelagics" includes unclassified tunas, kawakawa, sting rays, barracudas, flying fish, oilfish, sunfish, frigate mackerel and pomfrets.

The revenue for the current year is an unadjusted value while the revenue for the previous year is adjusted by the CPI. The average price is the total revenue divided by the pounds sold for each species where pounds sold is equal to or less than the total catch for each species.

Table 84. Hawaii commercial pelagic landings, revenue, and average price by fishery, 2010-2011

	2010			2011			
Fishery	Pounds landed (x1000)	Ex-vessel revenue (\$1000)	Average price (\$/lb)	Pounds landed (x1000)	Ex-vessel revenue (\$1000)	Average price (\$/lb)	
Longline	23,893	\$72,878	\$3.16	26,110	\$77,987	\$3.18	
MHI trolling	2,854	\$5,610	\$2.70	2,966	\$5,766	\$2.85	
MHI handline	940	\$1,976	\$2.52	1,128	\$2,132	\$2.48	
Offshore handline	616	\$1,276	\$2.14	611	\$834	\$2.36	
Aku boat			\$1.92			\$1.63	
Other gear	342	\$726	\$2.51	645	\$1,086	\$2.63	
Total	28,645	\$82,466	\$3.08	31,460	\$87,805	\$3.10	

Interpretation: The longline fishery is the largest commercial fishery in Hawaii. Longline landings and revenue were 26.1 million pounds and \$78.0 million, respectively, in 2011. Landings and revenue by this fishery increased by 2.2 million pounds and \$5.1 million, respectively. The average price for the longline fishery was about the same as the previous year. The MHI troll fishery is the second largest commercial fishery. It produced 3.0 million pounds worth \$5.7 million in 2011; up slightly from the previous year. The MHI handline fishery produced 1.1 million pounds of pelagic fish worth \$2.1 million while the offshore handline fishery landings were 611,000 pounds worth \$834,000 in 2011.

Source and Calculations: NMFS longline logbook and HDAR Commercial Marine Dealer data were used to produce longline catch, revenue, and average price estimates. The MHI troll, MHI handline, offshore handline, and other gear catch, revenue, and average price estimates were produced from HDAR Commercial Fish Catch and Marine Dealer data.

The catch and revenue for each fishery for each year is the sum of the catch and revenue for each of the species in that fishery for that year. The revenue for the current year is an unadjusted value while the revenue for the previous year is adjusted by the CPI. The average price is the total revenue divided by the pounds sold for each fishery where pounds sold is equal to or less than the total catch for each fishery.

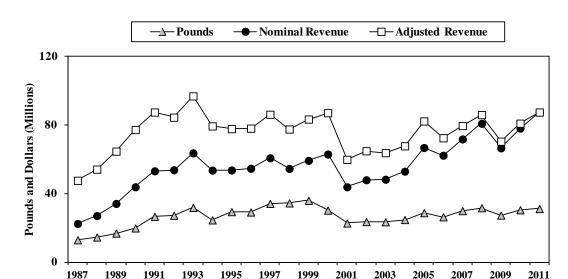


Figure 82. Hawaii total commercial landings and revenue, 1987-2011

Interpretation: Commercial landings and revenue in 2011 were both above their respective long-term averages. The landings increased by 2.8 million pounds while revenue increased by \$5.3 million in 2011. Gear and species specific changes over the 20-year period are explained in greater detail in the following figures and tables.

Source and Calculations: The pounds and nominal revenue values are obtained by adding the landings and revenue values for all species and all fisheries for each year. The adjusted revenue for each year is calculated by multiplying the nominal value by the Honolulu CPI for the current year and then dividing by the Honolulu CPI for that year.

Table 85. Hawaii total commercial landings and revenue, 1987-2011

		Nominal	Adjusted	
	Pounds	revenue	revenue	Honolulu
Year	(1000)	(\$1000)	(\$1000)	CPI
1987	13,025	\$22,493	\$47,688	114.9
1988	14,569	\$27,090	\$54,225	121.7
1989	16,860	\$34,166	\$64,669	128.7
1990	19,933	\$43,850	\$77,349	138.1
1991	26,664	\$53,170	\$87,515	148.0
1992	27,253	\$53,810	\$84,514	155.1
1993	31,931	\$63,680	\$96,892	160.1
1994	24,569	\$53,610	\$79,388	164.5
1995	29,437	\$53,720	\$77,848	168.1
1996	29,156	\$54,710	\$78,075	170.7
1997	34,165	\$60,840	\$86,217	171.9
1998	34,472	\$54,628	\$77,594	171.5
1999	36,004	\$59,320	\$83,383	173.3
2000	30,308	\$63,043	\$87,109	176.3
2001	22,778	\$43,896	\$59,939	178.4
2002	23,593	\$48,040	\$64,906	180.3
2003	23,481	\$48,343	\$63,828	184.5
2004	24,758	\$53,023	\$67,767	190.6
2005	28,769	\$66,809	\$82,278	197.8
2006	26,373	\$62,333	\$72,513	209.4
2007	30,072	\$71,707	\$79,580	219.5
2008	31,714	\$80,813	\$86,003	228.9
2009	27,356	\$66,518	\$70,451	230.0
2010	28,645	\$79,521	\$82,466	234.9
2011	31,460	\$87,805	\$87,805	243.6
Average	26,693.8	56,277.5	76,000.1	
SD	5,934.3	15,442.6	11,770.3	

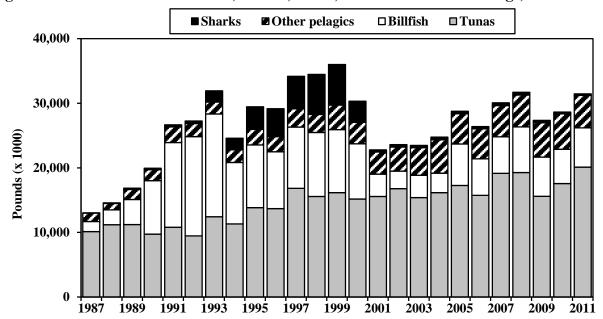


Figure 83. Hawaii commercial tuna, billfish, shark, and other PMUS landings, 1987-2011

Interpretation: Hawaii's pelagic landings increased in 2011. The increase was primarily attributed to tuna landings, which went up 14% from 2010. There was a 15% increase in billfish landings. As shown previously, the billfish landings were primarily attributable to swordfish from the shallow-set longline fishery. However, the increase in billfish landings in 2011 was attributable to greater marlin landings. Other pelagics and sharks decreased by 14% and 15%, respectively.

Source and Calculations: The landings values are obtained by adding the landings values for species in the pelagic species groups defined below and all of the longline and non-longline fisheries for each year.

Tunas: Albacore, Bigeye tuna, Bluefin tuna, Kawakawa, Skipjack tuna, Yellowfin tuna, & Unclassified tuna

Billfishes: Blue marlin, Black marlin, Sailfish, Spearfish, Striped marlin, Swordfish, & Unclassified billfish

Other pelagics: Barracuda, Beltfish, Flying fish, Frigate mackeral, Mahimahi, Moonfish, Oilfish, Pomfret, Stingrays, Sunfish, & Wahoo

Sharks: Blue sharks, Hammerhead sharks, Mako sharks, Thresher sharks, Tiger sharks, Oceanic white-tip sharks, & Unclassified sharks

Table 86. Hawaii total commercial tuna, billfish, shark, and other PMUS landings, 1987-2011

	Hawaii pelagic landings (1000 pounds)						
	Other						
Year	Tunas	Billfish	pelagics	Sharks	Total		
1987	10,130	1,558	1,294	43	13,025		
1988	11,197	2,301	978	94	14,570		
1989	11,223	3,880	1,553	203	16,860		
1990	9,726	8,278	1,707	222	19,933		
1991	10,794	13,129	2,423	318	26,664		
1992	9,461	15,355	2,026	410	27,252		
1993	12,417	15,928	1,850	1,736	31,931		
1994	11,309	9,526	1,977	1,757	24,570		
1995	13,820	9,723	2,426	3,468	29,437		
1996	13,685	8,796	2,349	4,327	29,157		
1997	16,813	9,492	2,850	5,010	34,165		
1998	15,556	9,923	2,782	6,212	34,473		
1999	16,145	9,758	3,828	6,273	36,005		
2000	15,159	8,546	3,340	3,261	30,306		
2001	15,561	3,469	3,414	333	22,778		
2002	16,773	2,728	3,727	366	23,594		
2003	15,387	3,470	4,266	358	23,482		
2004	16,159	3,019	5,162	419	24,759		
2005	17,277	6,404	4,695	393	28,769		
2006	15,735	5,663	4,639	337	26,374		
2007	19,136	5,657	4,863	418	30,073		
2008	19,273	7,067	4,947	416	31,705		
2009	15,588	6,074	5,317	374	27,354		
2010	17,566	5,311	5,491	277	28,645		
2011	20,110	6,088	5,027	234	31,460		
Average	14,640.0	7,245.7	3,317.3	1,490.4	26,693.6		
SD	3,114.7	3,861.8	1,428.9	2,008.3	5,933.9		

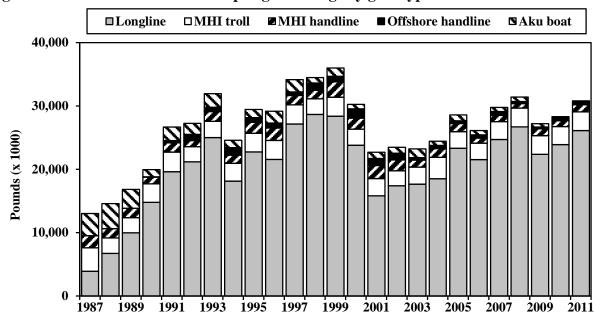


Figure 84. Hawaii total commercial pelagic landings by gear type 1987-2011

Interpretation: Hawaii commercial pelagic landings in 2011 were dominated by longline landings. Total landings increased largely due to higher landings by the longline fishery whose landings increased 9% in 2011. MHI troll and MHI handline fisheries are the next two largest fisheries in Hawaii. MHI troll landings have remained relatively constant since 1987 while MHI handline landings fluctuated. The offshore handline fishery grew in the early 1990s with landings leveling off from 2003. In contrast, aku boat landings have declined from the late 1980s due to attrition of an aging fleet.

Source and Calculations: The landings values are obtained by adding the landings values of all species of each fishery for each year. The total column is greater than the sum of the other five fisheries as it includes contributions from the "Other Gear" fishery.

Table 87. Hawaii total commercial pelagic landings by gear type, 1987-2011

		Hawaii pel	agic total la	ndings (10	00 pounds)	
			MHI	Offshore		
Year	Longline	MHI troll	handline	handline	Aku boat	Total
1987	3,893	3,709	1,914	_	3,503	13,025
1988	6,713	2,445	1,471	-	3,940	14,569
1989	9,966	2,401	1,487	-	2,962	16,860
1990	14,790	2,901	1,060	68	1,116	19,933
1991	19,608	3,102	1,477	331	2,146	26,664
1992	21,190	2,394	946	987	1,735	27,253
1993	25,005	2,578	1,532	679	2,137	31,931
1994	18,138	2,810	1,287	1,175	1,159	24,569
1995	22,733	2,966	1,733	714	1,291	29,437
1996	21,564	2,994	1,962	793	1,844	29,156
1997	27,160	3,016	1,479	563	1,947	34,165
1998	28,655	2,471	1,368	1,134	845	34,472
1999	28,377	3,013	2,414	888	1,312	36,004
2000	23,791	2,564	1,719	1,476	708	30,308
2001	15,800	2,737	2,070	1,093	994	22,778
2002	17,392	2,387	1,699	1,059	936	23,593
2003	17,653	2,698	1,092	402	1,378	23,481
2004	18,495	3,378	1,406	485	656	24,758
2005	23,324	2,607	1,291	424	932	28,769
2006	21,531	2,590	819	503	661	26,373
2007	24,700	2,836	982	599	653	30,072
2008	26,697	2,975	702	328	703	31,714
2009	22,360	2,958	1,066	298	511	27,356
2010	23,893	2,854	940	616		28,645
2011	26,110	2,966	1,128	611		31,460
Average	20,381.5	2,814.0	1,401.7	609.0	1,481.3	26,693.8
SD	6,395.0	318.3	420.3	398.9	937.9	5,934.3

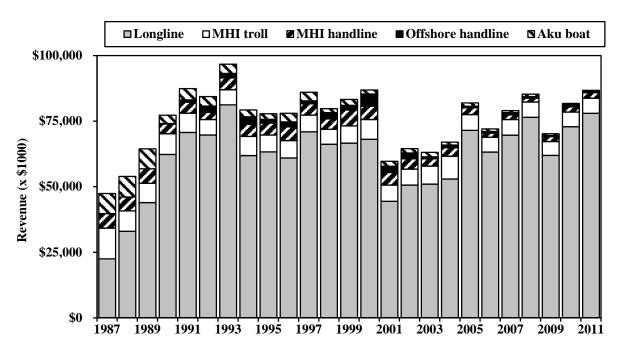


Figure 85. Total commercial pelagic ex-vessel revenue by gear type 1987-2011

Interpretation: Ex-vessel revenue from Hawaii's pelagic fisheries increased 6% in 2011 due to higher revenue by the three largest pelagic fisheries in Hawaii: longline, MHI troll and MHI handline fisheries. The longline fishery was, by far, the largest revenue generating fishery with the MHI troll and MHI handline fisheries ranked as the next two largest fisheries. The offshore handline fishery grew in the early 1990s and peaked in 2000; it varied substantially in the following years. Revenue from the aku boat fishery declined from the late 1980s due fleet attrition and lower landings.

Source and Calculations: The ex-vessel revenue values were obtained by adding the revenue for all species of each fishery for each year. Ex-vessel revenue was then adjusted for inflation using the Honolulu Consumer Price Index (CPI). The total column is greater than the sum of the other five fisheries as it includes contributions from the "Other Gear" fishery.

Table 88. Hawaii total commercial pelagic ex-vessel revenue by gear type, 1987-2011

		Hawaii	pelagic tota	al revenue (S	\$1000)	
-			MHI	Offshore		
Year	Longline	MHI troll	handline	handline	Aku boat	Total
1987	\$22,429	\$11,737	\$5,525	-	\$7,668	\$47,688
1988	\$32,967	\$7,756	\$5,312	-	\$7,842	\$54,225
1989	\$43,910	\$7,380	\$5,531	-	\$7,567	\$64,669
1990	\$62,283	\$7,927	\$3,676	\$171	\$3,186	\$77,349
1991	\$70,664	\$7,402	\$4,168	\$877	\$4,295	\$87,515
1992	\$69,714	\$5,909	\$2,755	\$2,320	\$3,658	\$84,514
1993	\$81,197	\$5,806	\$4,449	\$1,712	\$3,543	\$96,892
1994	\$61,882	\$7,252	\$4,642	\$2,883	\$2,620	\$79,388
1995	\$63,229	\$6,479	\$4,549	\$1,397	\$2,166	\$77,848
1996	\$60,936	\$6,636	\$5,236	\$1,858	\$3,287	\$78,075
1997	\$70,929	\$6,359	\$4,314	\$1,149	\$3,270	\$86,217
1998	\$66,204	\$5,697	\$3,919	\$2,409	\$1,515	\$77,594
1999	\$66,608	\$6,585	\$6,046	\$1,766	\$2,269	\$83,383
2000	\$68,048	\$7,582	\$5,110	\$4,593	\$1,556	\$87,109
2001	\$44,370	\$6,246	\$4,789	\$2,399	\$1,843	\$59,939
2002	\$50,625	\$6,077	\$3,932	\$2,224	\$1,642	\$64,906
2003	\$50,972	\$6,878	\$2,787	\$758	\$1,698	\$63,828
2004	\$52,904	\$8,696	\$3,208	\$1,088	\$1,064	\$67,767
2005	\$71,467	\$6,048	\$2,610	\$531	\$1,278	\$82,278
2006	\$63,219	\$5,651	\$1,581	\$593	\$987	\$72,513
2007	\$69,620	\$6,010	\$1,747	\$889	\$718	\$79,580
2008	\$76,470	\$5,806	\$1,506	\$609	\$889	\$86,003
2009	\$61,900	\$5,327	\$1,853	\$416	\$693	\$70,451
2010	\$72,878	\$5,610	\$1,977	\$1,276		\$82,466
2011	\$77,987	\$5,766	\$2,132	\$834		\$87,805
Average	\$61,336.4	\$6,744.9	\$3,734.1	\$1,310.0	\$2,837.2	\$76,000.1
SD	\$14,087.7	\$1,353.2	\$1,418.2	\$1,080.3	\$2,178.2	\$11,770.3

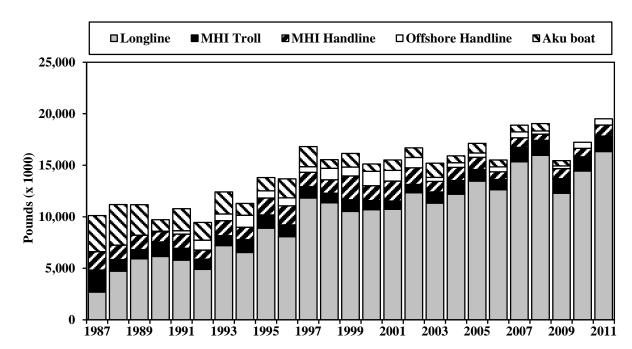


Figure 86. Hawaii commercial tuna landings by gear type, 1987-2011

Interpretation: Longline gear was the largest single contributor to Hawaii commercial tuna landings since 1988 and reached a record level in 2011. Tuna landings by the MHI troll fishery were highest in 1987, dropped the following year, and remained around its long-term average thereafter. Landings by the MHI handline fishery peaked in 1999, dropped to a record low in 2008. Offshore handline tuna landings grew in the early 1990s and varied substantially since. The aku boat fishery was on a declining trend.

Source and Calculations: Tuna landings by gear types were summarized for the longline, MHI troll, MHI handline, offshore handline, aku boat fisheries, and other gear. The tuna catch statistics for the longline fishery were derived from NMFS longline logbook, Joint NMFS and HDAR Market Sample, and HDAR Commercial Marine Dealer data. The HDAR Commercial Fish Catch and Marine Dealer data were used to calculate landings for other gear types.

Table 89. Hawaii commercial tuna landings by gear type, 1987-2011

	Hav	vaii tuna l	andings by	gear type (1000 pound	ls)
!		МНІ	MHI	Offshore	-	
Year	Longline	Troll	Handline	Handline	Aku boat	Total
1987	2,705	2,136	1,782	-	3,501	10,130
1988	4,725	1,141	1,395	-	3,936	11,197
1989	5,921	904	1,393	-	2,961	11,223
1990	6,162	1,401	981	66	1,116	9,726
1991	5,797	1,145	1,380	326	2,146	10,794
1992	4,908	980	885	966	1,721	9,461
1993	7,205	964	1,458	656	2,134	12,417
1994	6,540	1,240	1,213	1,157	1,158	11,309
1995	8,898	1,295	1,642	694	1,291	13,820
1996	8,074	1,146	1,845	776	1,844	13,685
1997	11,826	1,107	1,384	554	1,942	16,813
1998	11,359	933	1,298	1,121	845	15,556
1999	10,529	1,135	2,302	867	1,312	16,145
2000	10,700	879	1,442	1,397	707	15,160
2001	10,730	799	1,942	1,045	993	15,561
2002	12,348	804	1,598	1,010	934	16,772
2003	11,337	1,088	1,023	382	1,374	15,385
2004	12,197	1,316	1,286	462	654	16,158
2005	13,464	1,117	1,204	413	931	17,276
2006	12,641	979	749	485	661	15,732
2007	15,354	1,383	930	578	652	19,134
2008	15,962	1,463	607	310	702	19,280
2009	12,287	1,417	969	277	509	15,593
2010	14,448	1,380	826	589		17,566
2011	16,335	1,509	1,060	603		20,110
Average	10,098.1	1,186.5	1,303.7	669.7	1,479.3	14,640.1
SD	3,804.7	287.9	403.5	337.4	937.2	3,114.9

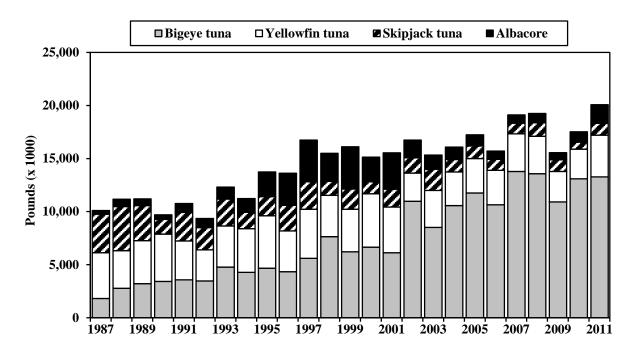


Figure 87. Species composition of the tuna landings by gear type, 1987-2011

Interpretation: Bigeye tuna was the largest component of the tuna landings and reached a record level in 2007. Yellowfin tuna was the second largest component of the tuna landings. Yellowfin tuna landings were below its long-term average for the past 8 years. Skipjack tuna landings decreased over time and were at its lowest levels in 2010. Albacore landings grew rapidly peaking in 1999, declined to a recent low in 2009 and increasing more than 2 fold in the past two years.

Source and Calculations: The tuna landing statistics were derived from NMFS longline logbook, Joint NMFS and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data. The tuna landings were composed of albacore, bigeye tuna, bluefin tuna, kawakawa, skipjack tuna, and yellowfin tuna.

Table 90. Species composition of tuna landings, 1987-2011

_	Н	awaii tuna l	landings (1	000 pounds	3)
	Bigeye	Yellowfin	10		
Year	tuna	tuna	tuna	Albacore	Total
1987	1,813	4,316	3,633	344	10,130
1988	2,770	3,551	4,156	695	11,197
1989	3,208	4,064	3,298	626	11,223
1990	3,425	4,460	1,389	422	9,726
1991	3,573	3,661	2,691	846	10,794
1992	3,456	2,943	2,099	854	9,461
1993	4,768	3,872	2,546	1,122	12,417
1994	4,280	4,106	1,553	1,293	11,309
1995	4,667	4,940	1,814	2,328	13,820
1996	4,330	3,851	2,426	3,020	13,685
1997	5,595	4,628	2,608	3,920	16,813
1998	7,641	3,896	1,326	2,645	15,556
1999	6,212	4,012	1,909	3,979	16,145
2000	6,642	5,040	1,127	2,331	15,161
2001	6,124	4,306	1,694	3,421	15,561
2002	10,970	2,665	1,443	1,668	16,773
2003	8,518	3,484	1,989	1,348	15,387
2004	10,566	3,174	1,182	1,168	16,159
2005	11,760	3,248	1,189	1,047	17,277
2006	10,647	3,242	1,045	776	15,735
2007	13,788	3,550	1,011	769	19,136
2008	13,570	3,536	1,277	874	19,273
2009	10,921	2,860	1,101	681	15,588
2010	13,104	2,786	660	980	17,566
2011	13,282	3,933	1,110	1,762	20,110
Average	7,425.2	3,765.0	1,851.1	1,556.7	14,640.1
SD	3,919.4	643.9	893.4	1,087.4	3,114.7

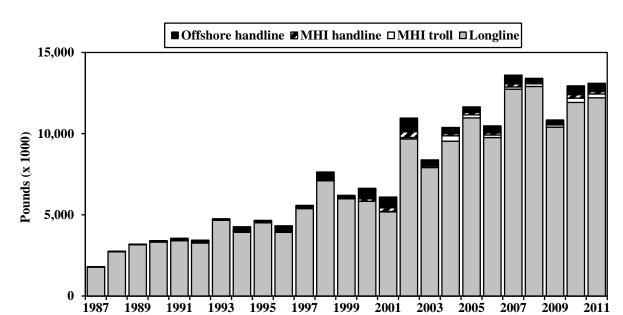


Figure 88. Hawaii bigeye tuna landings by gear type, 1987-2011

Interpretation: Annual bigeye tuna landings increased more than seven-fold over the 22 year period with a record 13.8 million pounds in 2007. The longline fishery typically produces over 90% of the bigeye tuna. Bigeye landings by this fishery reached a record 12.7 million pounds in 2007. The offshore handline fishery was the second largest fishery for bigeye tuna in Hawaii accounting for 4% of the total in 2011. Combined MHI troll and MHI handline landings of bigeye tuna yielded 3% of the total.

Source and Calculations: Bigeye tuna catch statistics were derived from NMFS longline logbook, Joint NMFS and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for catches of bigeye tuna included the longline, MHI troll, MHI handline, and offshore handline fisheries. The total column also contains small bigeye tuna catches by the aku boat fishery and other gear category.

Table 91. Hawaii bigeye tuna landings, 1987-2011

	Hawaii bigeye tuna landings (1000 pounds)				
			MHI	Offshore	
Year	Longline	MHI troll	handline	handline	Total
1987	1,796	11	6	-	1,813
1988	2,732	10	28	-	2,770
1989	3,178	11	19	-	3,208
1990	3,338	15	41	31	3,425
1991	3,423	11	45	94	3,573
1992	3,277	9	19	151	3,456
1993	4,677	4	2	85	4,768
1994	3,940	6	10	324	4,280
1995	4,522	10	33	102	4,667
1996	3,940	4	11	375	4,330
1997	5,399	6	52	138	5,595
1998	7,113	5	15	508	7,641
1999	5,995	7	46	164	6,212
2000	5,836	15	141	650	6,642
2001	5,193	23	226	660	6,124
2002	9,676	86	353	850	10,971
2003	7,922	82	75	316	8,517
2004	9,544	328	125	385	10,566
2005	10,977	188	143	345	11,760
2006	9,765	154	135	431	10,645
2007	12,741	140	188	535	13,788
2008	12,909	166	86	245	13,579
2009	10,409	130	70	239	10,933
2010	11,930	261	212	542	13,104
2011	12,207	243	140	515	13,282
Average	6,897.6	77.0	88.8	349.3	7,425.9
SD	3,576.8	96.9	87.1	219.5	3,920.4

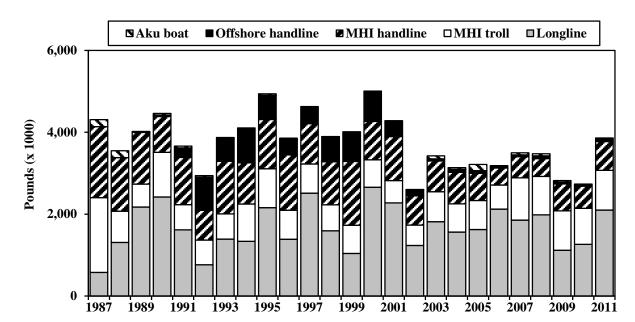


Figure 89. Hawaii yellowfin tuna landings by gear type, 1987-2011

Interpretation: Annual landings of yellowfin tuna were low during the past six years. The longline fishery typically had the highest yellowfin tuna landings. The MHI troll fishery was the second largest fishery for yellowfin tuna followed by the MHI handline and offshore handline fisheries, respectively. The aku boat fishery had small landings of yellowfin tuna. This species is usually caught by the aku boat fishery when fishing for skipjack tuna is poor.

Source and Calculations: Yellowfin tuna catch statistics were derived from NMFS longline logbook, Joint NMFS and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for catches of yellowfin tuna included the longline, MHI troll, MHI handline, offshore handline, and aku boat fisheries. The total column also contains small catches of yellowfin tuna from the other gear category.

Table 92. Hawaii yellowfin tuna landings, 1987-2011

	I	Iawaii yello	wfin tuna l	andings (10	000 pounds)	
			MHI	Offshore		
Year	Longline	MHI troll	handline	handline	Aku boat	Total
1987	575	1,828	1,734	-	173	4,316
1988	1,309	764	1,310	-	168	3,551
1989	2,174	559	1,266	-	21	4,064
1990	2,421	1,089	876	35	39	4,460
1991	1,617	615	1,154	232	44	3,661
1992	763	606	722	816	36	2,943
1993	1,392	616	1,283	571	10	3,872
1994	1,336	914	1,003	834	19	4,106
1995	2,159	949	1,207	591	34	4,940
1996	1,389	707	1,352	401	2	3,851
1997	2,515	712	986	415	0	4,628
1998	1,592	636	1,052	613	3	3,896
1999	1,042	687	1,559	703	21	4,012
2000	2,656	671	938	739	2	5,039
2001	2,277	542	1,078	379	4	4,306
2002	1,235	500	711	151	6	2,664
2003	1,815	732	752	53	73	3,484
2004	1,564	690	770	75	38	3,175
2005	1,624	708	665	67	149	3,248
2006	2,123	590	414	52	6	3,243
2007	1,856	1,032	517	42	50	3,548
2008	1,982	941	437	65	50	3,537
2009	1,118	964	656	46	37	2,867
2010	1,263	881	542	49		2,786
2011	2,102	970	704	84		3,933
Average	1,676.0	796.1	947.6	318.8	42.8	3,765.3
SD	545.9	272.0	350.3	293.1	51.6	643.4

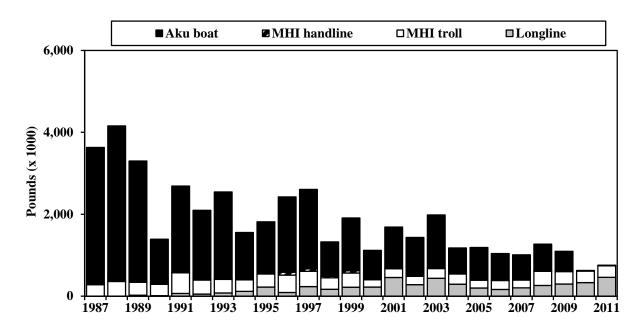


Figure 90. Hawaii skipjack tuna landings by gear type, 1987-2011

Interpretation: Skipjack tuna landings were on a declining trend and were below the long-term average for the past 8 years. The decline of skipjack tuna landings is a result of the attrition in the aku boat fishery. The decline in skipjack tuna landings was not apparent or as apparent in other fisheries. Skipjack tuna landings by the longline fishery reached a record in 2011 and has been the largest fishery for this species during the past 2 years.

Source and calculations: Skipjack tuna catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for catches of skipjack tuna included the longline, MHI troll, MHI handline, and aku boat fisheries. The total column also contains small catches of skipjack tuna from the other gear category.

Table 93. Hawaii skipjack tuna landings, 1987-2011

	Hawaii skipjack tuna landings (1000 pounds)					
•			МН			
Year	Longline	MHI troll	handline	Aku boat	Total	
1987	3	277	25	3,328	3,633	
1988	8	351	29	3,768	4,156	
1989	22	318	20	2,938	3,298	
1990	12	278	26	1,073	1,398	
1991	66	504	19	2,102	2,691	
1992	49	347	21	1,682	2,099	
1993	79	332	14	2,121	2,546	
1994	116	283	21	1,133	1,553	
1995	223	318	17	1,256	1,814	
1996	91	424	69	1,842	2,426	
1997	234	376	56	1,942	2,608	
1998	168	278	38	842	1,326	
1999	219	347	52	1,291	1,909	
2000	221	181	14	704	1,127	
2001	455	215	30	988	1,694	
2002	282	203	20	927	1,443	
2003	438	237	16	1,292	1,989	
2004	294	246	23	615	1,181	
2005	197	191	21	779	1,189	
2006	162	221	11	648	1,045	
2007	202	192	15	600	1,011	
2008	263	344	20	645	1,277	
2009	298	303	24	471	1,098	
2010	331	279	17		660	
2011	460	279	17		1,110	
Average	195.7	292.9	25.4	1,434.3	1,851.3	
SD	138.0	76.9	14.2	912.0	893.3	

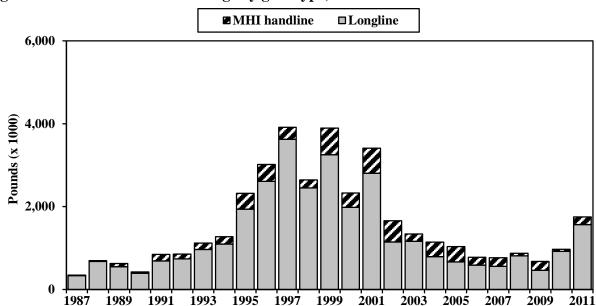


Figure 91. Hawaii albacore landings by gear type, 1987-2011

Interpretation: Albacore landings increased more than 11-fold from 1987 to 1997, peaked in 1999, decreased through 2009 and rose by more than 2-fold the following two years. The longline accounted for majority of the albacore landings. Albacore landings by the MHI handline fishery was relatively small but grew over the 25-year period peaking at 642,000 pounds in 1999. On rare occasions, the MHI troll fishery has encountered short "runs" of albacore but those landings were negligible in comparison.

Source and calculations: Albacore catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer Data. The gear types summarized for catches of albacore included the longline, MHI troll, and MHI handline fisheries.

Table 94. Hawaii albacore tuna landings, 1987-2011

	Hawaii al	bacore lan	dings (100	0 pounds)
	,		MHI	
Year	Longline	MHI troll	handline	Total
1987	331	1	12	344
1988	676	1	18	695
1989	547	1	78	626
1990	390	1	31	422
1991	687	2	157	846
1992	735	3	116	854
1993	965	3	154	1,122
1994	1,095	22	176	1,293
1995	1,938	10	380	2,328
1996	2,606	5	409	3,020
1997	3,626	7	287	3,920
1998	2,450	4	191	2,645
1999	3,250	87	642	3,979
2000	1,979	5	347	2,331
2001	2,803	13	605	3,421
2002	1,145	9	511	1,668
2003	1,160	10	176	1,348
2004	791	7	351	1,168
2005	662	14	370	1,046
2006	587	2	187	776
2007	554	7	208	769
2008	808	3	62	875
2009	460	7	214	682
2010	919	4	48	980
2011	1,564	8	186	1,762
Average	1,309.1	9.4	236.6	1,556.8
SD	954.7	16.9	176.4	1,087.4

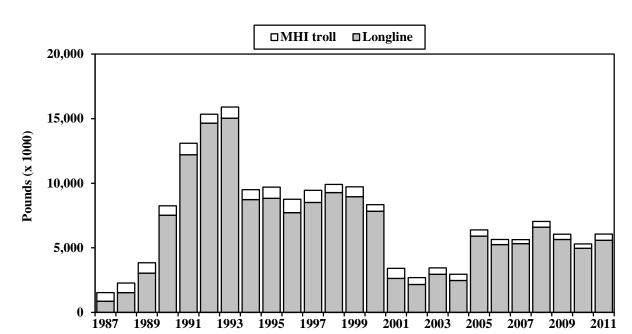


Figure 92. Hawaii commercial billfish landings by gear type, 1987-2011

Interpretation: Two major factors affected billfish landings since 1987. The first was the growth of the longline fishery for swordfish in the early 1990s. The second was a series of management decisions that were intended to minimized longline interactions with sea turtles. These decisions strongly affected the amount of swordfish-targeted effort and the associated landings. In contrast, billfish landings by the MHI troll fishery and the MHI handline fishery were relatively small. Billfish landings by the MHI troll fishery for the past 7 years were relatively stable although below the long-term average.

Source and calculations: The billfish catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data. Billfish landings were calculated for the longline, MHI troll, and MHI handline. The total column also contains small catches of billfish from the offshore handline and other gear category. The billfish group was composed of swordfish, blue marlin, striped marlin, spearfish, sailfish, black marlin, and unclassified billfish.

Table 95. Hawaii billfish landings, 1987-2011

	Hawaii billfish landings (1000 lbs)					
			MHI			
Year	Longline	MHI troll	handline	Total		
1987	862	666	30	1,558		
1988	1,537	736	28	2,301		
1989	3,043	805	32	3,880		
1990	7,519	732	27	8,278		
1991	12,208	890	31	13,129		
1992	14,656	683	16	15,355		
1993	15,034	870	24	15,928		
1994	8,737	770	19	9,526		
1995	8,837	856	30	9,723		
1996	7,723	1,042	31	8,796		
1997	8,517	935	40	9,492		
1998	9,277	626	20	9,923		
1999	8,958	769	31	9,758		
2000	7,828	506	201	8,546		
2001	2,630	780	51	3,469		
2002	2,160	535	26	2,728		
2003	2,954	491	18	3,470		
2004	2,472	481	23	3,019		
2005	5,909	475	17	6,404		
2006	5,248	397	13	5,663		
2007	5,322	316	14	5,657		
2008	6,594	448	17	7,066		
2009	5,650	403	14	6,070		
2010	4,963	334	11	5,311		
2011	5,579	486	15	6,088		
Average	6,568.7	641.3	31.1	7,245.5		
SD	3,778.4	203.1	36.6	3,861.9		

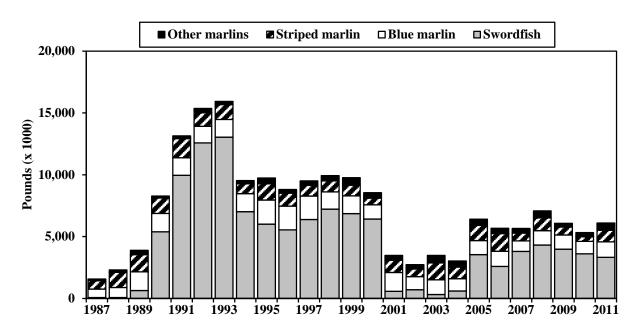
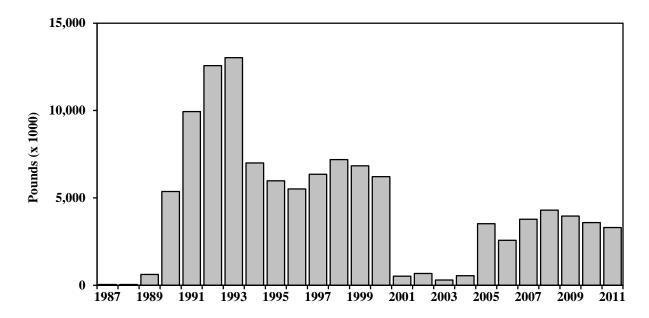


Figure 93. Species composition of the billfish landings, 1987-2011


Interpretation: The billfish landings consisted mostly of marlins and small landings of swordfish from 1987 through 1989. However, in 1990 the billfish composition changed and total landings more than doubled as longline vessels began targeting swordfish. Swordfish landings continued to dominate billfish landings from 1990 through 2000 despite a 46% decrease in 1994. Swordfish landings dropped 91% in 2001 from regulatory actions and remained low through 2004. Swordfish reestablished itself as the dominant component of the billfish landings from 2005 through 2011 when targeting of swordfish was once again allowed under a new suite of regulations. Blue marlin composed 18% of the billfish landings with landings peaking in 1995-1997. Striped marlin landings peaked in 1991, declined to a low in 2010 and increased to approach its long-term average in 2011.

Source and calculations: The billfish catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data and was calculated for each species. The gear types summarized for each species was composed longline, MHI troll, MHI handline, offshore handline, aku boat, and other gear.

Table 96. Species composition of billfish landings, 1987-2011

	I	Hawaii billf	ish landing	s (1000 lbs))
		Blue	Striped	Other	
Year	Swordfish	marlin	marlin	marlins	Total
1987	60	687	667	144	1,558
1988	65	812	1,230	194	2,301
1989	635	1,502	1,403	340	3,880
1990	5,383	1,484	1,246	164	8,278
1991	9,953	1,417	1,552	208	13,129
1992	12,569	1,339	1,098	349	15,355
1993	13,036	1,434	1,191	266	15,928
1994	7,010	1,454	796	267	9,526
1995	5,994	1,952	1,313	464	9,723
1996	5,529	1,931	1,044	292	8,796
1997	6,368	1,908	861	354	9,492
1998	7,208	1,403	891	421	9,923
1999	6,855	1,432	866	605	9,758
2000	6,414	1,146	548	438	8,546
2001	562	1,527	1,001	380	3,469
2002	703	1,050	615	360	2,728
2003	316	1,176	1,373	606	3,470
2004	599	993	937	491	3,019
2005	3,539	1,135	1,221	509	6,404
2006	2,581	1,225	1,439	419	5,663
2007	3,796	846	637	379	5,657
2008	4,316	1,161	1,023	567	7,067
2009	3,974	1,155	644	297	6,074
2010	3,601	1,005	377	328	5,311
2011	3,320	1,251	925	591	6,088
Average	4,575.5	1,297.0	995.9	377.2	7,245.7
SD	3,666.0	327.9	310.8	135.0	3,861.8

Interpretation: The trend in swordfish landings reflected both an increase in the number of vessels in the longline fishery and widespread targeting of swordfish by the fishery. Swordfish landings rose rapidly, peaking in 1993, and falling the following year. Landings remained relatively steady up to 2000 but dropped dramatically a result of increased regulations and prohibition on targeting swordfish by the longline fishery. Although the longline fishery for swordfish was reopened under a new set of regulations in April 2004, landings remained low. Swordfish landings increased from 2005 through 2011 as longline fishers became more proficient using techniques mandated under the new requirements. Swordfish landings by the MHI handline fishery were negligible.

Source and calculations: Swordfish catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for catches of swordfish included the longline, MHI troll, and MHI handline fisheries. The total column also contains small swordfish catches by the other gear category.

Table 97. Hawaii swordfish landings, 1987-2011

	Swordfish landings (1000 lbs)					
			MHI			
Year	Longline	MHI troll	handline	Total		
1987	52	1	7	60		
1988	52	2	11	65		
1989	619	2	14	635		
1990	5,372	1	10	5,383		
1991	9,939	1	13	9,953		
1992	12,566	0	3	12,569		
1993	13,027	0	9	13,036		
1994	7,002	1	7	7,010		
1995	5,981	1	12	5,994		
1996	5,517	1	11	5,529		
1997	6,352	1	15	6,368		
1998	7,193	1	14	7,208		
1999	6,835	1	19	6,855		
2000	6,215	5	193	6,414		
2001	519	4	39	562		
2002	681	3	19	703		
2003	301	1	12	316		
2004	549	0	16	599		
2005	3,527	1	10	3,538		
2006	2,573	1	8	2,581		
2007	3,781	2	12	3,796		
2008	4,299	1	14	4,316		
2009	3,960	1	12	3,974		
2010	3,591	1	9	3,601		
2011	3,308	1	11	3,320		
Average	4,552.4	1.4	20.1	4,575.4		
SD	3,666.7	1.1	36.6	3,666.0		

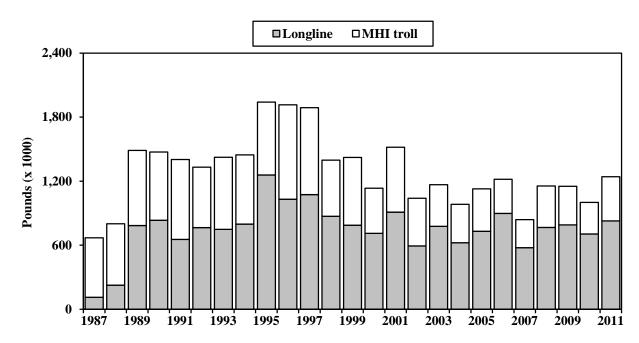


Figure 95. Hawaii blue marlin landings by gear type, 1987-2011

Interpretation: The two fisheries that accounted for majority of blue marlin landings were the longline and MHI troll fisheries. Blue marlin landings by the longline fishery was above or close to the long-term average from 2008 through 2011, while landings by the MHI troll fishery were below the long-term average for the past 10 years.

Source and calculations: Blue marlin catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for catches of blue marlin included the longline, MHI troll, and MHI handline fisheries. The total column also contains small catches of blue marlin by the offshore handline fishery and other gear category.

Blue marlin catches by the longline fishery are nominal estimates that do not account for misidentification problems. The misidentification problems is currently being studied in a Pelagic Fisheries Research Program (PFRP) project (see PFRP newsletter 7(10), 1-4). The general pattern is blue marlin are over-reported in longline logbooks because striped marlin is often misidentified as blue marlin. Thus, the nominal longline blue marlin estimates are probably inflated.

Table 98. Hawaii blue marlin landings by gear type, 1987-2011

	Blue	marlin lan	dings (100	0 lbs)
,			MHI	
Year	Longline	MHI troll	handline	Total
1987	112	557	18	687
1988	225	575	12	812
1989	784	704	14	1,502
1990	834	638	12	1,484
1991	654	749	14	1,417
1992	765	565	9	1,339
1993	748	675	11	1,434
1994	798	648	8	1,454
1995	1,257	684	11	1,952
1996	1,030	885	16	1,931
1997	1,074	814	20	1,908
1998	870	527	6	1,403
1999	787	635	10	1,432
2000	711	422	5	1,146
2001	909	608	5	1,527
2002	593	446	6	1,050
2003	777	390	5	1,176
2004	623	360	5	993
2005	731	396	6	1,136
2006	897	320	4	1,225
2007	577	263	2	846
2008	766	388	3	1,161
2009	790	362	2	1,155
2010	705	296	2	1,005
2011	828	414	4	1,251
Average	753.8	532.9	8.4	1,297.0
SD	231.7	170.0	5.1	327.9

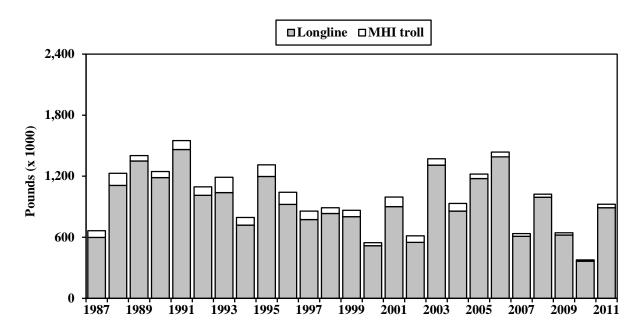


Figure 96. Hawaii striped marlin landings by gear type, 1987-2011

Interpretation: Striped marlin landings varied over the 21-year period and dropped significantly in 2007. Striped marlin was landed primarily by the longline fishery. The MHI troll fishery was the second largest producer of striped marlin in Hawaii. The MHI troll landings were close to the long-term average, but only contributed 4% to the total. There was substantial annual variation in landings of striped marlin by the MHI troll fishery.

Source and Calculations: Striped marlin catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for catches of striped marlin included the longline, MHI troll, and MHI handline fisheries. The total column also contains small striped marlin catches by the offshore handline fishery and other gear category.

Striped marlin catches by the longline fishery are nominal estimates which do not account for misidentification problems. The misidentification problem was studied in a Pelagic Fisheries Research Program (PFRP) project (see PFRP newsletter 7(10), 1-4). The results of this study have shown that striped marlin are underreported in longline logbooks because they are often misidentified as blue marlin. Thus, the nominal striped marlin landing estimates for the longline fishery are negatively biased and the longline landings presented in this report are a conservative estimate.

Table 99. Hawaii striped marlin landings by gear type, 1987-2011

	Striped marlin landings (1000 lbs)			
	МНІ			
Year	Longline	MHI troll	handline	Total
1987	599	66	2	667
1988	1,110	118	2	1,230
1989	1,350	52	1	1,403
1990	1,186	59	1	1,246
1991	1,462	89	1	1,552
1992	1,013	83	2	1,098
1993	1,039	150	2	1,191
1994	719	76	1	796
1995	1,198	114	1	1,313
1996	923	119	2	1,044
1997	775	83	3	861
1998	834	57	0	891
1999	803	62	1	866
2000	517	30	1	548
2001	902	93	5	1,001
2002	550	65	1	615
2003	1,308	63	1	1,373
2004	858	74	2	937
2005	1,177	44	0	1,221
2006	1,390	47	0	1,439
2007	609	28	0	637
2008	993	30	0	1,023
2009	622	22	0	644
2010	365	12	0	377
2011	890	35	0	925
Average	927.7	66.9	1.1	995.9
SD	296.5	34.2	1.1	310.8

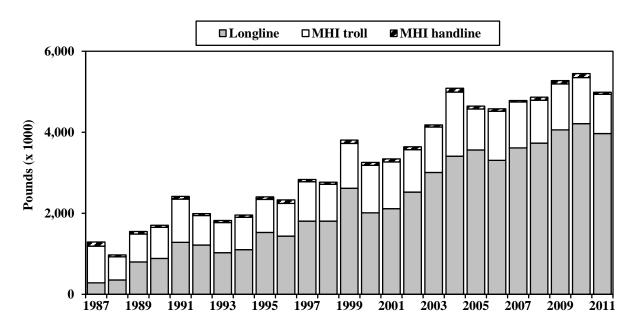


Figure 97. Hawaii commercial landings of other PMUS by gear type, 1987-2011

Interpretation: The landings of other pelagic MUS increased over the 25 year period. The growth was attributed primarily to the longline fishery. The MHI troll fishery was second highest in other pelagic MUS landings but did not show as great a increase compared to the longline fishery. Other pelagic MUS landings by the MHI handline and offshore handline fisheries were much lower than the longline and MHI troll fisheries.

Source and calculations: Other pelagic PMUS catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data and was calculated for each gear type. The other pelagic PMUS species include mahimahi, moonfish, oilfish, pomfret, and ono (wahoo).

Table 100. Hawaii commercial landings of other PMUS by gear type, 1987-2011

	Landings of other PMUS by gear type (1000 lbs)					
		MHI	MHI	Offshore		
Year	Longline	troll	handline	handline	Aku boat	Total
1987	283	907	102	-	2	1,294
1988	357	569	48	-	4	978
1989	799	691	62	-	1	1,553
1990	887	768	52	0	0	1,707
1991	1,285	1,067	66	5	0	2,423
1992	1,216	731	46	21	14	2,027
1993	1,030	744	50	23	3	1,850
1994	1,104	800	55	18	0	1,977
1995	1,530	815	61	20	0	2,426
1996	1,440	806	85	17	0	2,348
1997	1,807	974	55	9	5	2,850
1998	1,807	912	49	13	0	2,781
1999	2,618	1,109	82	20	0	3,829
2000	2,013	1,174	70	69	1	3,340
2001	2,114	1,155	73	41	1	3,414
2002	2,525	1,045	71	44	1	3,727
2003	3,010	1,119	51	18	3	4,266
2004	3,412	1,580	95	22	2	5,162
2005	3,563	1,014	68	10	1	4,695
2006	3,309	1,213	56	14	0	4,640
2007	3,613	1,137	35	19	0	4,863
2008	3,731	1,061	75	15	1	4,945
2009	4,058	1,137	80	12	2	5,317
2010	4,214	1,137	98	16	-	5,491
2011	3,969	967	51	7	=	5,027
Average	2,227.8	985.2	65.4	19.7	1.8	3,317.2
SD	1,241.0	216.7	17.6	14.9	3.0	1,428.8

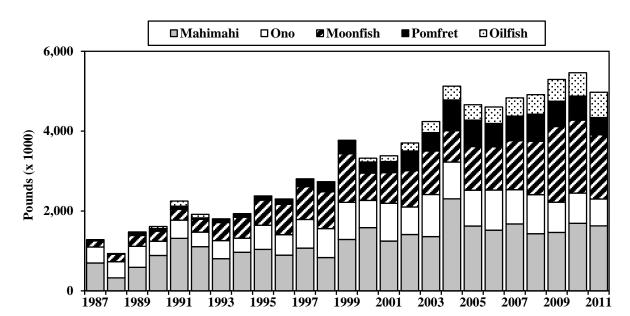


Figure 98. Species composition of other PMUS landings, 1987-2011

Interpretation: Mahimahi and moonfish were the two largest components of other pelagic MUS landings. Landings of both species were above their respective long-term averages. Ono landings increased at a gradual rate and were below its long-term average in 2011 for the first time in 15 years. Though pomfret and oilfish landings were below those mentioned above, they increased at the highest rates during the 25-year period.

Source and calculations: The other pelagic PMUS catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data and was calculated for each species. The gear types summarized for each species include catches from the longline, MHI troll, MHI handline, offshore handline, aku boat fisheries, and other gear category.

Table 101. Species composition of other PMUS by gear type, 1987-2011

	Landings of other PMUS by species (1000 lbs)					
Year	Mahimahi	Ono	Moonfish	Pomfret	Oilfish	Total
1987	704	400	152	23	2	1,294
1988	332	406	182	18	3	978
1989	597	522	274	63	24	1,553
1990	894	353	253	66	52	1,707
1991	1,322	456	270	75	130	2,423
1992	1,112	365	320	37	85	2,026
1993	814	450	454	92	0	1,850
1994	974	351	524	85	4	1,977
1995	1,044	606	629	93	10	2,426
1996	899	514	760	121	11	2,349
1997	1,077	715	823	178	15	2,850
1998	839	725	922	225	26	2,782
1999	1,293	929	1,210	313	29	3,828
2000	1,587	682	685	277	93	3,340
2001	1,253	945	769	276	142	3,414
2002	1,418	686	910	492	202	3,727
2003	1,363	1,053	1,091	459	278	4,266
2004	2,311	919	783	769	344	5,162
2005	1,629	897	1,094	658	386	4,695
2006	1,525	1,004	1,082	583	414	4,639
2007	1,682	856	1,223	618	458	4,863
2008	1,436	976	1,336	677	491	4,947
2009	1,468	756	1,895	633	544	5,317
2010	1,695	759	1,825	601	583	5,491
2011	1,631	674	1,606	433	632	5,027
Average	1,235.9	680.0	842.9	314.6	198.3	3,317.3
SD	431.0	227.6	495.6	251.7	215.8	1,428.9

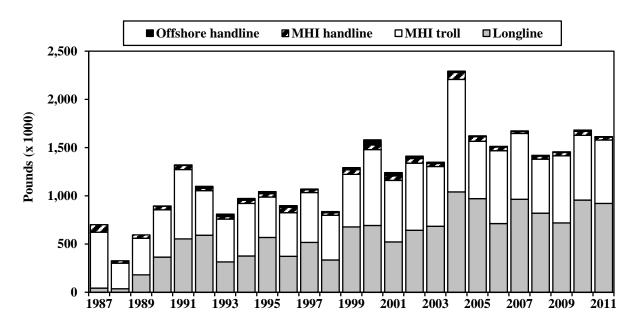
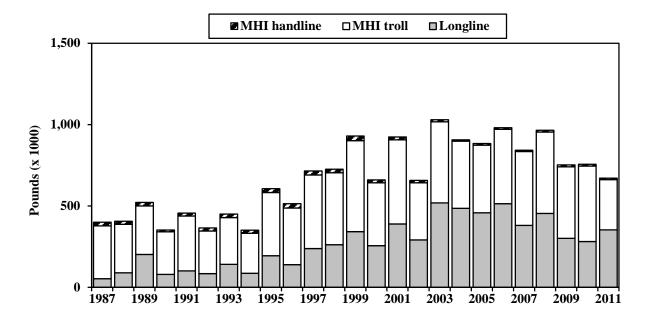


Figure 99. Hawaii mahimahi landings by gear type, 1987-2011


Interpretation: Mahimahi landings were higher than the long-term average for the past thirteen years. The highest landing for this species was in 2004 with records for both the longline and troll fisheries. Ninety-seven percent of mahimahi landings were attributable to the MHI troll and longline fisheries. Both the MHI troll and longline landings were above their respective long-term averages. The MHI handline, offshore handline, and aku boat landings of mahimahi were very low.

Source and calculations: Mahimahi catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for catches of mahimahi included the longline, MHI troll, MHI handline, offshore handline, and aku boat fisheries. The total column also contains small mahimahi catches by the other gear category.

Table 102. Hawaii mahimahi landings by gear type, 1987-2011

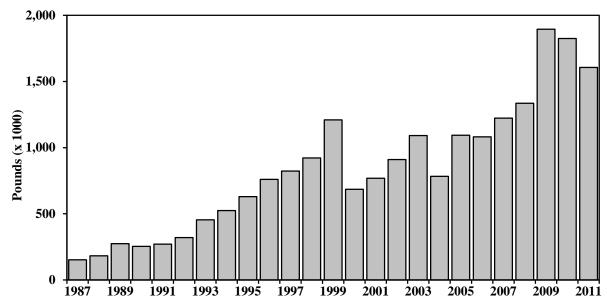
	Mahimahi landings (1000 lbs)					
		MHI	MHI	Offshore		
Year	Longline	troll	handline	handline	Aku boat	Total
1987	45	579	78	-	2	704
1988	39	264	25	-	4	332
1989	183	379	34	-	1	597
1990	366	491	37	0	0	894
1991	555	718	44	5	0	1,322
1992	593	461	24	21	14	1,112
1993	316	444	27	23	3	814
1994	377	546	33	18	0	974
1995	570	419	35	20	0	1,044
1996	375	451	56	17	0	899
1997	518	517	27	9	5	1,077
1998	336	464	26	13	0	839
1999	679	545	49	20	0	1,293
2000	694	786	48	54	1	1,587
2001	523	637	47	35	1	1,253
2002	645	694	48	26	1	1,418
2003	686	619	31	14	3	1,363
2004	1,041	1,166	72	14	2	2,311
2005	972	595	47	8	1	1,629
2006	714	754	38	8	0	1,525
2007	966	681	21	6	1	1,682
2008	821	560	31	9	1	1,436
2009	720	696	34	7	2	1,468
2010	957	671	41	14	-	1,695
2011	923	656	30	6	-	1,631
Average	584.6	591.7	39.3	13.9	1.8	1,235.9
SD	282.2	174.5	14.2	12.2	3.0	431.0

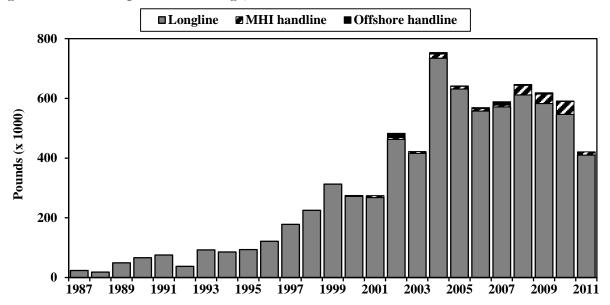
Figure 100. Hawaii wahoo (ono) landings by gear type, 1987-2011

Interpretation: Ono landings were stable through the early 1990s, rose in the mid-1990s, and peaked in 2003. They declined gradually in the following years. The longline and troll fisheries were the main contributors to higher ono landings. Ono landings in 2011 were close to their long-term average. The MHI troll fishery contributed the greatest proportion of these landings consistently through 2003, at which time the longline fishery began to periodically produce greater ono landings.

Source and calculations: Ono catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for catches of ono included the longline, MHI troll, and MHI handline fisheries. The total column also contains small ono catches by the other gear category.

	Ono landings (1000 lbs)			
		MHI	MHI	
Year	Longline	troll	handline	Total
1987	53	324	23	400
1988	90	298	18	406
1989	202	298	22	522
1990	80	262	11	353
1991	101	337	18	456
1992	85	262	18	365
1993	142	286	22	450
1994	87	245	19	351
1995	195	388	23	606
1996	140	347	27	514
1997	239	451	25	715
1998	262	442	21	725
1999	343	558	28	929
2000	256	386	18	682
2001	390	516	18	945
2002	292	350	15	686
2003	519	498	13	1,053
2004	486	412	8	919
2005	458	416	10	897
2006	514	457	10	1,004
2007	381	454	7	856
2008	454	500	11	976
2009	301	439	12	756
2010	282	463	11	759
2011	353	309	9	674
Average	268.2	388.0	16.7	680.0
SD	149.2	89.0	6.3	227.6

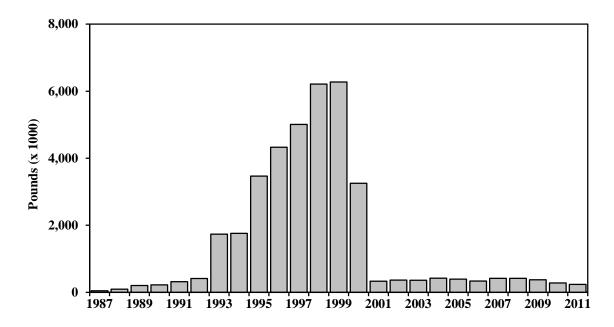



Figure 101. Hawaii moonfish landings, 1987-2011

Interpretation: Moonfish are unique among the PMUS because they are caught exclusively by the longline fishery. Landings increased more than 12-fold over the 25 year period. Moonfish landings reached a record 1.9 million pounds in 2009 and declined to 1.6 million pounds in 2011. Moonfish appear to have 3 cycles of distinct peaks for the past 12 years.

Source and calculations: Moonfish catch statistics were derived from NOAA Fisheries longline logbook, Joint NOAA Fisheries and HDAR Market Sample, and HDAR Commercial Marine Dealer data.

	Moonfish landings				
	(1000 lbs)				
Year	Longline	Total			
1987	152	152			
1988	182	182			
1989	274	274			
1990	253	253			
1991	270	270			
1992	320	320			
1993	454	454			
1994	524	524			
1995	629	629			
1996	760	760			
1997	823	823			
1998	922	922			
1999	1,210	1,210			
2000	685	685			
2001	768	768			
2002	910	910			
2003	1,091	1,091			
2004	783	783			
2005	1,093	1,094			
2006	1,082	1,082			
2007	1,223	1,223			
2008	1,336	1,336			
2009	1,895	1,895			
2010	1,825	1,825			
2011	1,606	1,606			
Average	842.8	842.8			
SD	495.6	495.7			

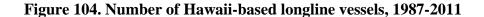


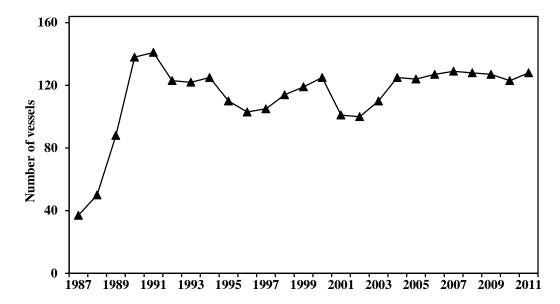
Interpretation: Landings of pomfrets came exclusively from the longline fishery up through the 1990s. Pomfret landings by the handline fisheries rose but were only a small fraction of the total pomfret landings. Pomfret landings rose gradually from 1987 to 1996 with substantially higher landings observed from 2002. Landings peaked at 770,000 pounds in 2004. Landings were relatively unchanged from 2005 through 2010, and decreased to 430,000 pounds in 2011.

Source and calculations: Pomfret catch statistics were derived from NOAA Fisheries longline logbook and HDAR Commercial Fish Catch, and Marine Dealer data. The gear types summarized for catches of pomfrets included the longline, MHI troll, and MHI handline fisheries. The total column also contains small landings of pomfret by the other gear category.

	Pomfret landings (1000 lbs)			
		MHI	Offshore	
Year	Longline	handline	handline	Total
1987	23	0	-	23
1988	18	0	-	18
1989	49	0	-	63
1990	66	0	0	66
1991	75	0	0	75
1992	37	0	0	37
1993	92	0	0	92
1994	85	0	0	85
1995	93	0	0	93
1996	121	0	0	121
1997	178	0	0	178
1998	225	0	0	225
1999	313	0	0	313
2000	272	3	0	277
2001	268	6	0	276
2002	463	6	14	492
2003	416	6	0	459
2004	735	14	5	769
2005	632	9	1	658
2006	558	8	3	583
2007	572	6	11	618
2008	612	32	3	677
2009	583	32	4	632
2010	547	43	1	601
2011	410	11	0	433
Average	297.7	7.0	1.7	314.6
SD	233.7	11.7	3.6	251.7

Figure 103. Hawaii shark landings, 1987-2011

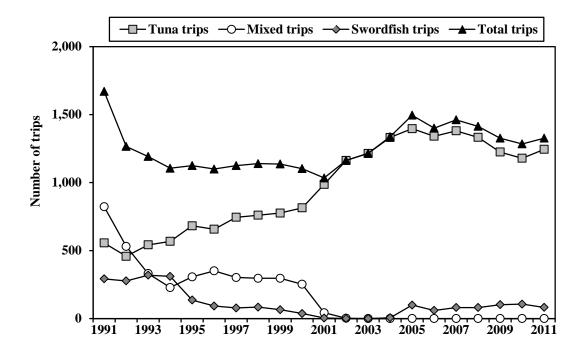



Interpretation: Sharks were landed almost exclusively by the longline fishery. Shark landings increased dramatically from 1987 to a peak of 6.3 million pounds in 1999. Sharks were landed headed and gutted in the late 1980's but a market for shark fins began in the early 1990's. Finning sharks then became widespread throughout the longline fishery. Shark landings dropped by 47% in 2000 in response to a state law that prohibited finning. This was followed by the federal Shark Finning Prohibition Act which was passed shortly thereafter. These regulatory measures caused a 90% decline in shark landings observed in 2001 with landings remaining low through 2011. The sharks landed after the shark finning prohibition were typically make and thresher sharks that are sold as fillets and steaks.

Source and calculations: Shark catches (in number of fish) were derived from NOAA Fisheries longline logbook and extrapolated to weight by using the mean weight calculated from the Market sample or HDAR Commercial Marine Dealer data. When the practice of finning sharks was allowed (typically blue and other shark species), their carcasses were discarded at sea. These fish still represented a kept and landed fish. Since the mean weight could not be calculated using either the NOAA Fisheries market sample or HDAR commercial marine dealer data, these finned shark catches were also extrapolated by multiplying the number of sharks finned by an average weight from the observer data as a crude method to estimate shark biomass.

Table 103. Hawaii shark landings, 1987-2011

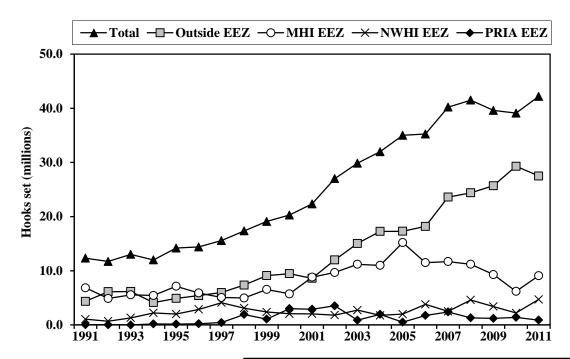
	Shark landings (1000 lbs)				
=					
Year	Longline	Total			
1987	43	43			
1988	94	94			
1989	203	203			
1990	222	222			
1991	318	318			
1992	410	410			
1993	1,736	1,736			
1994	1,757	1,757			
1995	3,468	3,468			
1996	4,327	4,327			
1997	5,010	5,010			
1998	6,212	6,212			
1999	6,272	6,273			
2000	3,243	3,253			
2001	326	333			
2002	359	366			
2003	353	358			
2004	414	419			
2005	389	393			
2006	333	337			
2007	410	418			
2008	409	416			
2009	367	374			
2010	269	277			
2011	227	234			
Average	1,486.8	1,597.4			
SD	2,009.2	2,061.1			


Interpretation: There were 128 active Hawaii-based longline vessels in 2011, up 5 vessels from 2010. One hundred eight longline vessels targeted tunas exclusively throughout the entire year while 20 vessels targeted both swordfish and tunas at some time during 2011.

The shallow-set sector of the Hawaii-based longline fishery for swordfish was reopened April 2004 under a new set of regulations intended to reduce the number of sea turtle interactions. The California-based longline fishery targeting swordfish was closed at the same time. The increase in vessels during 2003 and 2004 is due to California-based vessels migrating back to Hawaii.

Source and calculations: The number of Hawaii-based longline vessels was compiled by counting the number of unique permit numbers from the NMFS marketing monitoring data from 1987-1990 and the NMFS longline logbook data from 1991-2011 based on date of landing.

Year	Vessels
1987	37
1988	50
1989	88
1990	138
1991	141
1992	123
1993	122
1994	125
1995	110
1996	103
1997	105
1998	114
1999	119
2000	125
2001	101
2002	100
2003	110
2004	125
2005	124
2006	127
2007	129
2008	128
2009	127
2010	123
2011	128
Average	112.9
\mathbf{SD}	24.4


Interpretation: The Hawaii-based longline fleet made 1,327 trips in 2011. Total number of trips was above the long-term average in 2011. The majority of the trips (94%) targeted tunas, with the remainder targeting swordfish.

Source and calculations: The number of trips was compiled from NMFS federal longline logbook data collected from 1991 to 2011. The trip summary was based on landing date. The trip type was determined by an interview with the vessel captain or assigned by FMEP staff on the basis of gear characteristics, fishing techniques and locations, catch composition and past targeting strategy.

	Ha	waii longli	ne trip act	ivity
	Total	Tuna	Mixed	Swordfish
Year	trips	trips	trips	trips
1991	1,671	556	823	292
1992	1,266	458	531	277
1993	1,192	542	331	319
1994	1,106	568	228	310
1995	1,125	682	307	136
1996	1,100	657	351	92
1997	1,125	745	302	78
1998	1,140	760	296	84
1999	1,137	776	296	65
2000	1,103	814	252	37
2001	1,034	987	43	4
2002	1,163	1,163	2	0
2003	1,215	1,215	0	0
2004	1,338	1,332	0	6
2005	1,496	1,397	0	99
2006	1,401	1,341	0	60
2007	1,462	1,381	0	81
2008	1,414	1,333	0	81
2009	1,327	1,225	0	102
2010	1,285	1,179	0	106
2011	1,327	1,245	0	82
Average	1,258.4	969.3	179.1	110.0
SD	163.1	327.8	223.2	101.5

240

Figure 106. Number of hooks set by the Hawaii-based longline fishery, 1991-2011

Interpretation: The total number of hooks set by the Hawaii-based longline fishery increased steadily since 1994 to a record 42.2 million hooks in 2011. Much of the increase is due to the shift in effort from swordfish and mixed target to tuna. Tuna sets typically set more hooks per day than swordfish and mixed target set types. Most of the hooks set were in the areas outside the EEZ (65%) and MHI EEZ (22%) in 2011. Effort in the NWHI EEZ (11%) increased to a record 4.7 million hooks while effort in the EEZ of Pacific Remote Island Areas (PRIAs) (2%) decreased in 2011.

Source and calculations: Number of hooks set was compiled from NMFS federal longline logbook data collected from 1991 to 2011. The summary of hooks set was based on date of haul.

	Nı	Number of hooks set by area (milions)								
	Outside		NWHI							
Year	EEZ	MHI EEZ	EEZ	PRIA EEZ	Total					
1991	4.4	6.9	1.1	0.1	12.3					
1992	6.1	4.9	0.7	0.0	11.7					
1993	6.2	5.6	1.3	0.0	13.0					
1994	4.1	5.5	2.2	0.2	12.0					
1995	4.9	7.1	2.0	0.2	14.2					
1996	5.4	5.9	2.9	0.2	14.4					
1997	6.0	5.1	4.1	0.4	15.6					
1998	7.4	5.0	3.1	1.9	17.4					
1999	9.1	6.6	2.4	1.1	19.1					
2000	9.5	5.7	2.1	3.0	20.3					
2001	8.6	8.8	2.0	2.9	22.4					
2002	12.0	9.7	1.8	3.5	27.0					
2003	15.0	11.2	2.7	0.9	29.9					
2004	17.3	11.0	1.8	2.0	32.0					
2005	17.3	15.2	2.0	0.5	35.0					
2006	18.2	11.5	3.8	1.8	35.3					
2007	23.6	11.7	2.5	2.4	40.2					
2008	24.4	11.2	4.6	1.3	41.5					
2009	25.7	9.3	3.4	1.2	39.6					
2010	29.3	6.2	2.2	1.4	39.1					
2011	27.5	9.1	4.7	0.9	42.2					
Average	13.42	8.24	2.54	1.23	25.43					
SD 241	8.49	2.91	1.09	1.07	11.36					

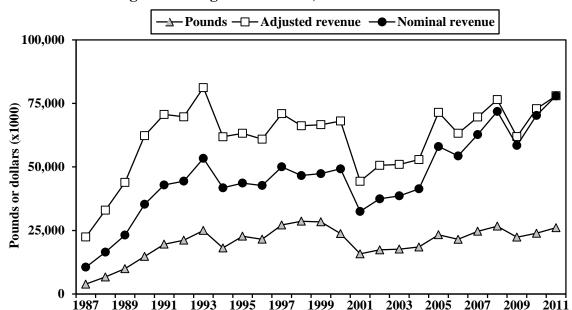
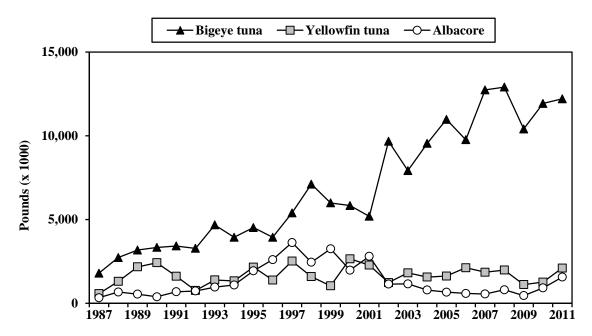


Figure 107. Hawaii longline landings and revenue, 1987-2011


Interpretation: Hawaii longline landings were 26.1 million pounds worth an estimated \$78 million. Total landings and adjusted revenue in 2011 was 28% and 27% higher than their respective long-term averages. The Hawaii longline landings and revenue trended higher from 2001.

Source and calculations: Longline catch and nominal ex-vessel revenue estimates were compiled from NMFS logbook and market sample or HDAR Commercial Marine Dealer data.

Total catch and revenue estimates were calculated by extrapolating NMFS market sample data from 1987-1991, combining the number of fish from the federal logbook with the average weight per fish and average price per pound from the market sample data during 1992-1999, and the HDAR Dealer data from 2000 to 2011. The adjusted revenue was calculated by multiplying nominal revenue by the Honolulu CPI for the current year and then dividing by the Honolulu CPI.

		Adjusted	Nominal	Honolulu
Year	Pounds	revenue	revenue	CPI
1987	3,893	\$22,429	\$10,579	114.9
1988	6,713	\$32,967	\$16,470	121.7
1989	9,966	\$43,910	\$23,199	128.7
1990	14,790	\$62,283	\$35,309	138.1
1991	19,608	\$70,664	\$42,932	148.0
1992	21,190	\$69,714	\$44,387	155.1
1993	25,005	\$81,197	\$53,365	160.1
1994	18,138	\$61,882	\$41,788	164.5
1995	22,733	\$63,229	\$43,632	168.1
1996	21,564	\$60,936	\$42,700	170.7
1997	27,160	\$70,929	\$50,052	171.9
1998	28,655	\$66,204	\$46,609	171.5
1999	28,377	\$66,608	\$47,386	173.3
2000	23,791	\$68,048	\$49,248	176.3
2001	15,800	\$44,370	\$32,494	178.4
2002	17,392	\$50,625	\$37,470	180.3
2003	17,653	\$50,972	\$38,606	184.5
2004	18,495	\$52,904	\$41,394	190.6
2005	23,324	\$71,467	\$58,030	197.8
2006	21,531	\$63,219	\$54,343	209.4
2007	24,700	\$69,620	\$62,732	219.5
2008	26,697	\$76,470	\$71,855	228.9
2009	22,360	\$61,900	\$58,444	230.0
2010	23,893	\$72,878	\$70,275	234.9
2011	26,110	\$77,987	\$77,987	243.6
Average	20,381.5	61,336.4	46,051.4	
SD	6,395.0	14,087.7	16,010.0	

Figure 108. Hawaii longline tuna landings, 1987-2011

Interpretation: The three major tuna species landed by the Hawaii-based longline fishery are bigeye tuna, yellowfin tuna, and albacore. Bigeye tuna landings by the longline fishery increased from the 1980s, peaked at 12.9 million pounds in 2008, and was 12.2 million pounds in 2011. Yellowfin tuna landings varied throughout the 25-year period; they were 2.1 million pounds in 2011. Albacore landings peaked in 1997, trended lower through 2009, and increased above the long-term average to 1.6 million pounds in 2011. The longline fishery also landed small amounts of skipjack tuna and bluefin tuna.

Source and calculations: The longline tuna catch estimates were derived from NMFS longline logbook, market sample, and Marine Dealer data. Longline tuna catches were estimated by either extrapolating the NMFS market sample data (1987-1991) or multiplying the number of fish from the logbook data by the average weight from the sample or HDAR Dealer data (1992-2011).

Table 104. Hawaii longline tuna landings, 1987-2011

		Hawaii longline tuna landings (1000 lbs)										
	Bigeye	Yellowfin		Skipjack	Bluefin							
Year	tuna	tuna	Albacore	tuna	tuna	Total						
1987	1,796	575	331	3	0	2,705						
1988	2,732	1,309	676	8	0	4,725						
1989	3,178	2,174	547	22	0	5,921						
1990	3,338	2,421	390	12	1	6,162						
1991	3,423	1,617	687	66	4	5,797						
1992	3,277	763	735	49	84	4,908						
1993	4,677	1,392	965	79	92	7,205						
1994	3,940	1,336	1,095	116	53	6,540						
1995	4,522	2,159	1,938	223	56	8,898						
1996	3,940	1,389	2,606	91	48	8,074						
1997	5,399	2,515	3,626	234	52	11,826						
1998	7,113	1,592	2,450	168	36	11,359						
1999	5,995	1,042	3,250	219	23	10,529						
2000	5,836	2,656	1,979	221	7	10,700						
2001	5,193	2,277	2,803	455	2	10,730						
2002	9,676	1,235	1,145	282	2	12,348						
2003	7,922	1,815	1,160	438	1	11,337						
2004	9,544	1,564	791	294	1	12,197						
2005	10,977	1,624	662	197	1	13,464						
2006	9,765	2,123	587	162	1	12,641						
2007	12,741	1,856	554	202	0	15,354						
2008	12,909	1,982	808	263	1	15,962						
2009	10,409	1,118	460	298	2	12,287						
2010	11,930	1,263	916	331	1	14,448						
2011	12,207	2,102	1,564	460	0	16,335						
Average	6,897.6	1,676.0	1,309.0	195.7	18.7	10,098.1						
SD	3,576.8	545.9	954.8	138.0	28.6	3,804.7						

Figure 109. Hawaii longline billfish landings, 1987-2011

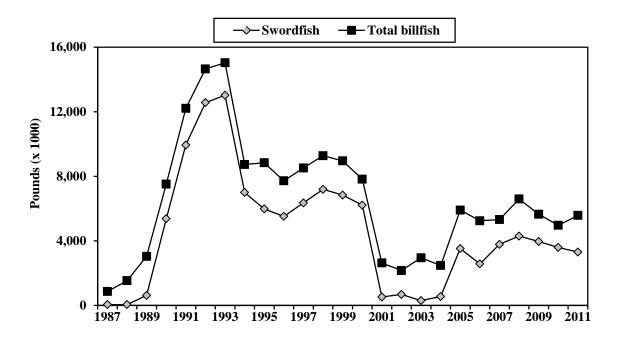
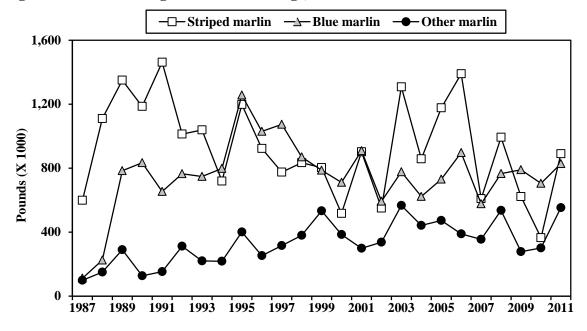



Figure 110. Hawaii longline marlin landings, 1987-2011

Interpretation: Billfish landings were 5.6 million pounds in 2011, 15% below the long-term average. Swordfish was the largest component of the billfish landings. The swordfish-targeted longline fishery target operated up through October but was closed November 18 due to this segment of the longline fishery reaching its annual limit of 16 leather back sea turtle interactions. Swordfish landings during 2005-2011 were lower compared to the 1990s but significantly higher than those landed during early 2001 through March 2004 when the shallow-set longline fishery operations were prohibited.

Marlins are caught incidentally by the longline fishery and are retained because they sell for a moderate market price. Striped marlin and blue marlin are the largest component of the marlin landings. Both striped marlin and blue marlin landings substantially. Striped marlin landings were slightly below its long-term average at 890,000 pounds while blue marlins landings were just above the long-term average in 2011.

	Hawaii longline billfish landings (1000 lbs)										
		Striped	Blue	Other	Total						
Year	Swordfish	marlin	marlin	marlin	billfish						
1987	52	599	112	99	862						
1988	52	1,110	225	150	1,537						
1989	619	1,350	784	290	3,043						
1990	5,372	1,186	834	127	7,519						
1991	9,939	1,462	654	153	12,208						
1992	12,566	1,013	765	312	14,656						
1993	13,027	1,039	748	220	15,034						
1994	7,002	719	798	218	8,737						
1995	5,981	1,198	1,257	401	8,837						
1996	5,517	923	1,030	253	7,723						
1997	6,352	775	1,074	316	8,517						
1998	7,193	834	870	380	9,277						
1999	6,835	803	787	533	8,958						
2000	6,215	517	711	385	7,828						
2001	519	902	909	299	2,630						
2002	681	550	593	337	2,160						
2003	301	1,308	777	567	2,954						
2004	549	858	623	442	2,472						
2005	3,527	1,177	731	473	5,909						
2006	2,573	1,390	897	389	5,248						
2007	3,781	609	577	355	5,322						
2008	4,299	993	766	536	6,594						
2009	3,960	622	790	278	5,650						
2010	3,591	365	705	301	4,963						
2011	3,308	890	828	553	5,579						
Average	4,552.4	927.7	753.8	334.7	6,568.7						
SD	3,666.7	296.5	231.7	134.2	3,778.4						

Source and calculations: The longline billfish catch estimates were derived from NMFS longline logbook, market sample, and HDAR Dealer data. Longline billfish catches were estimated by either extrapolating the NMFS Market Sample data to an estimated full coverage (1987-1991) or multiplying the number of fish from the logbook data by the average weight from the Market Sample or HDAR Dealer data (1992-2011).

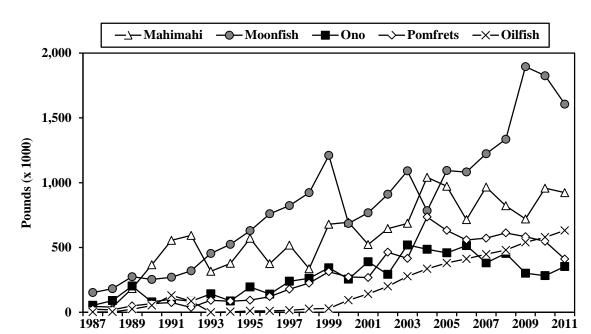


Figure 111. Hawaii longline landings of other PMUS, 1987-2011

Interpretation: Longline landings of other pelagic PMUS show an increasing trend with landings at 3.9 million pounds in 2011, 78% above the long-term average. Moonfish was the dominant component in this category at 1.6 million pounds in 2011, 91% above the long-term average. Mahimahi comprised a large fraction of the landings with landings 58% higher than its long-term average in 2011. Ono and pomfret landings increased substantially during the 25-year period with record landings in 2003 and 2004, respectively.

Source and calculations: Estimates of longline catch of other pelagic species were derived from NMFS longline logbook, Market Sample, and HDAR Dealer data. Catch of other pelagic species were estimated by either extrapolating the NMFS Market Sample data to an estimated full coverage (1987-1991) or multiplying the number of fish from the logbook data by the average weight from the Market Sample or HDAR Dealer data (1992-2011).

Table 105. Hawaii longline landings of other PMUS, 1987-2011

	Hawaii	i longline la	ndings of	other pelagio	PMUS (10	000 lbs)
Year	Mahimahi	Moonfish	Ono	Pomfrets	Oilfish	Total
1987	45	152	53	23	2	283
1988	39	182	90	18	3	357
1989	183	274	202	49	24	799
1990	366	253	80	66	52	887
1991	555	270	101	75	130	1,285
1992	593	320	85	37	85	1,216
1993	316	454	142	92	0	1,030
1994	377	524	87	85	4	1,104
1995	570	629	195	93	10	1,530
1996	375	760	140	121	11	1,440
1997	518	823	239	178	15	1,807
1998	336	922	262	225	26	1,807
1999	679	1,210	343	313	29	2,618
2000	694	685	256	272	93	2,013
2001	523	768	390	268	141	2,114
2002	645	910	292	463	200	2,525
2003	686	1,091	519	416	277	3,010
2004	1,041	783	486	735	335	3,412
2005	972	1,093	458	632	380	3,563
2006	714	1,082	514	558	412	3,309
2007	966	1,223	381	572	448	3,613
2008	821	1,335	454	612	480	3,731
2009	720	1,895	301	583	540	4,058
2010	957	1,825	282	547	579	4,214
2011	923	1,606	353	410	631	3,969
Average	584.6	842.8	268.2	297.7	196.3	2,227.8
SD	282.2	495.6	149.2	233.7	213.5	1,241.0

Figure 112. Hawaii longline blue and total shark landings, 1987-2011

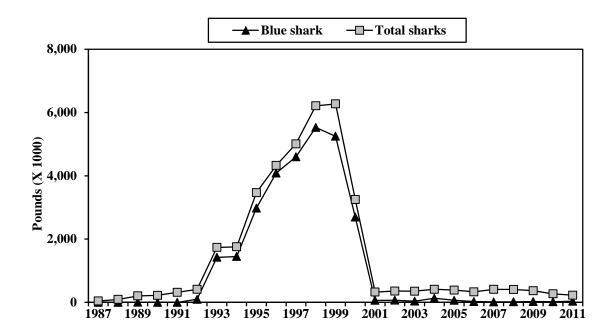
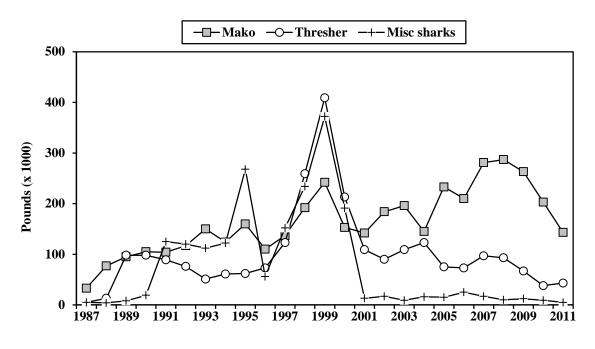



Figure 113. Hawaii longline mako, thresher and other shark landings, 1987-2011

Interpretation: Shark landings in 2011 were 85% below the long-term average. Shark landings have been low since 2001 due to State and Federal laws which prohibit the practice of finning and landing sharks without the associated carcass. Blue shark and other sharks were retained for fins only, so landings dropped significantly when laws prohibiting the practice took effect. Mako and thresher sharks were retained for their flesh and had landings substantially lower and less variable compared to blue sharks.

Source and calculations: Catch statistics for sharks were derived from NMFS longline logbook, Market Sample, and HDAR Dealer data. Shark catch landed whole was estimated by multiplying the number of fish from the logbook data by the average weight from the Market Sample or HDAR Dealer data. When finning sharks was allowed, finned shark catches were also extrapolated to whole weight by multiplying the number of sharks finned by an average weight from the observer data.

Table 106. Hawaii longline landings of blue, mako, thresher, and other sharks, 1987-2011

	Hawaii longline shark landings (1000 lbs)										
	Blue			Misc	Total						
Year	shark	Mako	Thresher	sharks	sharks						
1987	0	33	5	5	43						
1988	0	77	13	4	94						
1989	2	95	98	8	203						
1990	0	105	98	19	222						
1991	0	104	89	125	318						
1992	97	117	76	120	410						
1993	1,423	150	51	112	1,736						
1994	1,450	124	61	122	1,757						
1995	2,978	160	62	268	3,468						
1996	4,088	110	73	56	4,327						
1997	4,598	137	123	152	5,010						
1998	5,527	192	259	234	6,212						
1999	5,249	242	409	372	6,272						
2000	2,693	153	213	191	3,250						
2001	63	142	109	13	326						
2002	67	184	90	17	359						
2003	39	196	109	9	353						
2004	130	145	123	16	414						
2005	66	233	75	15	389						
2006	26	210	73	25	333						
2007	15	281	97	17	410						
2008	18	287	93	10	409						
2009	24	263	67	12	367						
2010	19	203	38	9	269						
2011	36	143	43	5	227						
Average	1,144.3	163.4	101.9	77.4	1,487.1						
SD	1,865.3	64.9	83.6	99.6	2,009.5						

250

Table 107. Hawaii-based longline catch (number of fish) by area, 1991-2011

		Tunas			Billfi	shes		Other	Pelagic P	MUS	
	Bigeye	Yellowfin			Blue	Striped	Other		Ono		
Year	tuna	tuna	Albacore	Swordfish	marlin	marlin	billfish	Mahimahi	(wahoo)	Moonfish	Sharks
	waiian Isla			1				1			
1991	22,517	7,150	5,763		2,881	18,117	8,197	17,672	1,885	2,569	13,295
1992	22,982	3,846	3,979		2,761	9,838	3,368	13,313	1,194	2,387	11,748
1993	25,031	8,895	6,496		2,720	10,426	3,440	9,366	2,641	3,261	12,955
1994	27,022	6,815	10,833		3,344	6,494	3,213	-	1,332	3,626	14,455
1995	31,899	13,018	18,271		4,168	12,472	6,900	30,417	2,658	4,022	22,557
1996	29,803	7,715	19,259	4,634	3,556	7,124	3,404	11,676	1,527	3,094	19,418
1997	21,397	10,982	19,025	4,873	4,085	4,193	3,662	11,660	2,525	-	16,476
1998	26,723	4,678	12,482	4,721	1,698	4,856	4,254	7,664	2,305	-	14,685
1999	29,328	4,838	23,805	2,357	1,709	5,617	6,702		2,579	5,168	17,469
2000	21,654	5,247	5,964		1,557	2,446	3,492		1,202	2,752	16,590
2001	36,928	5,671	10,448		2,134	7,651	4,018	-	3,223	3,404	16,086
2002	51,177	2,465	2,707		873	3,449	3,761		1,345	3,373	14,828
2003 2004	39,907 49,152	10,058 8,847	2,593 3,031		1,742 1,135	12,247 6,665	8,292 5,272	25,255 26,631	4,751	3,454 2,707	25,876 25,022
2004	52,856	13,762	4,606		1,133	6,953	5,372 7,796	40,170	3,204 5,473		27,277
2005	32,799	6,731			1,547	7,479	3,881	_	3,473 4,130	_	17,824
2007	43,887	6,127	1,598		636	2,406	3,250	*	-	3,298 2,947	16,725
2007	34,807	13,090	1,236 1,303		991	3,397	3,230 4,917		2,863 2,562	*	13,188
2009	23,829	2,616	490		602	1,952	1,846	ŕ	1,255	2,438	11,096
2010	15,897	3,196	1,571	1,393	435	705	1,462		1,039	1,354	9,258
2010	26,804	8,490	4,081	953	903	3,984	3,281	14,779	1,039	1,878	13,683
_		aiian Island		733	703	3,704	3,201	14,779	1,209	1,070	13,063
1991	4,473	1,375	481	9,472	342	3,845	1,082	2,003	134	70	10,604
1992	2,624	396		5,228	244	1,776	330		77	187	9,042
1993	7,760	2,019			509	2,861	754		198	398	17,507
1994	10,726	2,015	5,592		554	2,679	719		227	707	28,346
1995	9,011	3,630			1,379	5,076	1,557		902	810	19,915
1996	15,409	2,451	12,738		1,114	4,184	1,651	1,995	659	2,388	16,539
1997	30,168	5,139	17,118	5,148	1,519	4,109	2,250	6,321	1,789	2,877	17,921
1998	16,629	2,713	6,802	10,611	1,208	5,757	2,927	3,527	761	1,862	20,152
1999	9,672	1,581	6,261	6,182	1,053	3,515	2,400	4,316	763	1,431	15,070
2000	7,615	1,380	2,663	6,676	415	2,294	1,082	6,413	224	699	11,233
2001	8,521	1,169	3,648	373	761	2,528	882	3,923	783	1,030	5,478
2002	9,492	806	1,897	109	295	1,352	1,339	3,485	313	882	4,950
2003	8,929	2,522	2,286	259	1,035	4,703	2,597	3,559	1,596	1,372	11,871
2004	8,918	932	708	203	265	1,292	938	3,866	469	662	6,854
2005	6,709	2,030	1,041		512	2,187	1,044	5,697	620	865	11,524
2006	20,383	4,162			480	3,291	1,660	-	1,322		12,865
2007	11,390	1,973	966		161	1,212	737		476		7,416
2008	18,378	8,062	1,271		913	3,939	2,622		1,590		9,135
2009	11,350	1,779	1,781		262	1,262	713		490	_	6,008
2010	7,158	1,290			155	466	389		448	1,059	4,630
2011	17,507	4,481	7,052	2,019	633	3,493	2,902	8,717	739	1,260	10,455

Table 107 continued. Hawaii-based longline catch (number of fish) by area, 1991-2011

		Tunas			Billfis	shes		Other	Pelagic P	PMUS	
	Bigeye	Yellowfin			Blue	Striped	Other		Ono		
Year	tuna	tuna		Swordfish	marlin	marlin	billfish	Mahimahi	(wahoo)	Moonfish	Sharks
		and Areas E		1				ı			
1991	374	439	30		17	60	45		21		237
1992	70	42	0		7	1	7	6	8		223
1993	4	1	0	0	0	3	1		3		7
1994	1,127	1,649	151	53	37	173	55	37	77	24	705
1995	460	583	296	21	94	121	94	252	206		895
1996	766	1,184	1,612	17	86	192	93	49	155	57	756
1997	2,070	1,932	4,054	33	194	255	293	591	328	206	1,503
1998	17,742	6,330	3,784	174	308	307	450	831	1,127	258	5,892
1999	4,514	5,737	1,575	102	315	438	619	542	1,499	179	3,463
2000	7,483	21,788	8,766	234	766	733	910	1,202	1,916	448	8,307
2001	5,566	20,778	9,529	224	1,072	1,049	684	1,708	2,151	279	5,199
2002	18,110	12,826	6,342	532	778	1,015	765	957	2,429	377	7,660
2003	2,106	2,392	2,202	83	443	572	490	842	1,058	117	2,606
2004	9,813	4,587	2,661	253	426	618	533	1,049	1,344	288	4,860
2005	1,428	1,714	1,089	64	143	161	163	316	569	46	962
2006	6,698	7,353	2,359	134	614	520	528	1,126	1,486	311	3,499
2007	14,509	3,257	1,432	248	426	383	567		1,677		4,452
2008	5,987	2,247	2,422	120	310	293	608		1,122		2,676
2009	3,985	1,922	1,073	138	291	206	438		552		3,513
2010	7,447	1,584	779	165	334	129	231		628		3,485
2011	4,082	2,560	998	91	195	390	315		643	111	1,606
Outside	e EEZ	,									,
1991	13,559	4,305	7,777	43,194	1,008	6,730	3,511	19,766	695	440	47,047
1992	18,228	3,595	15,523	61,968	1,506	4,434	1,963	41,044	1,169	719	73,884
1993	22,008	5,147	22,551	65,601	1,895	4,920	1,486	14,367	1,600	856	124,139
1994	9,227	3,037	14,553	30,698	742	1,946	1,130	12,283	877	733	71,150
1995	18,577	6,419	22,125	23,758	3,125	4,885	3,207	23,374	2,801	1,314	58,154
1996	17,597	6,236	23,720	29,621	1,929	4,250	2,624	9,591	2,120	1,776	64,279
1997	26,140	10,992	30,887	29,568	2,457	4,080	2,806	30,747	3,640	2,314	49,938
1998	37,777	8,017	25,765	28,270	2,127	3,427	3,885	10,161	4,088	3,479	59,208
1999	36,960	4,817	35,752	29,600	1,851	4,868	7,375	27,862	5,438	5,628	51,797
2000	37,828	9,933	21,649	27,668	1,770	2,455	3,485	32,601	4,402	3,046	42,968
2001	27,712	9,460	27,841	2,545	2,440	5,209	3,413	17,715	7,117	3,068	20,149
2002	62,017	4,278	9,643	2,275	2,025	3,076	4,076	22,407	4,791	4,658	23,197
2003	56,292	12,958	13,783	1,780	2,439	8,437	7,092		10,991	6,955	29,193
2004	74,231	11,541	10,941	3,569	3,020	6,589	7,743	35,065	10,593	4,905	38,288
2005	68,365	11,468	6,901		2,072	6,493	6,207		9,505		35,944
2006	58,785	12,324	6,460		3,063	9,728	6,372		10,197		34,316
2007	89,650	14,923	7,210		2,068	4,206	5,999		7,540		47,170
2008	93,170	11,131	11,657		2,011	6,786	7,790		8,969		37,536
2009	79,887	7,097	6,819	16,965	3,118	4,545	6,394		6,539		40,133
2010	106,719	7,732	16,055		2,536	2,629	6,840		6,693		53,693
2011	107,778	16,098	22,296		2,809	8,886	9,774		7,810		39,520
4011	10/,//8	10,098	44,490	10,248	4,009	0,000	3,114	37,131	7,010	14,055	39,340

Table 107 continued. Hawaii-based longline catch (number of fish) by area, 1991-2011

		Tunas			Billfis	shes		Other	Pelagic P	MUS	
	Bigeye	Yellowfin			Blue	Striped	Other		Ono		
Year	tuna	tuna	Albacore	Swordfish	marlin	marlin	billfish	Mahimahi	(wahoo)	Moonfish	Sharks
Total ca	atch										
1991	40,923	13,269	14,051	66,289	4,248	28,752	12,835	39,525	2,735	3,079	71,183
1992	43,904	7,879	19,813	74,314	4,518	16,049	5,668	56,684	2,448	3,293	94,897
1993	54,803	16,062	30,460	79,554	5,124	18,210	5,681	26,018	4,442	4,515	154,608
1994	48,102	13,516	31,129	43,345	4,677	11,292	5,117	33,017	2,513	5,090	114,656
1995	59,947	23,650	45,789	37,418	8,766	22,554	11,758	59,879	6,567	6,151	101,521
1996	63,575	17,586	57,329	38,259	6,685	15,750	7,772	23,311	4,461	7,315	100,992
1997	79,775	29,045	71,084	39,622	8,255	12,637	9,011	49,319	8,282	8,244	85,838
1998	98,871	21,738	48,833	43,776	5,341	14,347	11,516	22,183	8,281	9,184	99,937
1999	80,474	16,973	67,393	38,241	4,928	14,438	17,096	44,380	10,279	12,406	87,799
2000	74,580	38,348	39,042	37,108	4,508	7,928	8,969	57,844	7,744	6,945	79,098
2001	78,727	37,078	51,466	4,169	6,407	16,437	8,997	44,954	13,274	7,781	46,912
2002	140,796	20,375	20,589	3,668	3,971	8,892	9,941	48,223	8,878	9,290	50,635
2003	107,234	27,930	20,864	3,544	5,659	25,959	18,471	55,398	18,396	11,898	69,546
2004	142,114	25,907	17,341	5,191	4,846	15,164	14,586	66,611	15,610	8,562	75,024
2005	129,358	28,974	13,637	24,354	4,321	15,794	15,210	77,962	16,167	13,332	75,707
2006	118,665	30,570	11,422	16,585	5,704	21,018	12,441	52,615	17,135	12,809	68,504
2007	159,436	26,280	10,844	24,273	3,291	8,207	10,553	82,881	12,556	14,371	75,763
2008	152,342	34,530	16,653	23,991	4,225	14,415	15,937	67,249	14,243	15,125	62,535
2009	119,051	13,414	10,163	21,842	4,273	7,965	9,391	63,702	8,836	21,362	60,750
2010	137,221	13,802	20,686	20,043	3,460	3,929	8,922	94,896	8,808	19,740	71,066
2011	156,171	31,629	34,427	19,311	4,540	16,753	16,272	81,205	10,481	17,904	65,264

Interpretation: The bolded numbers in Table 107. Hawaii-based longline catch (number of fish) by area, 1991-2011 show the area with the highest catch for a particular species in each area. The bolded numbers in the total catch table is the year in which the record catch was made for each species of fish. In general, longline catches for most of the species were highest in the MHI EEZ through the mid-1990s. The high catches then shifted to areas outside of the U.S. EEZ. Catch of all species of fish, except yellowfin tuna in 2008, were highest outside the U.S. EEZ during the most recent five year period.

Source and calculations: Catches (number of fish) by area were compiled from NMFS federal longline logbook data collected from 1991 to the current year. The catch tables (based on date of haul) were summaries of fish kept and released. The bold numbers are the areas where the catch for that species and year was larger than for the other three areas

Table 108. Average weight in pounds of tunas landed by the Hawaii-based longline fishery, 1987-2011

			Tunas		
	Bigeye	Yellowfin		Skipjack	Bluefin
Year	tuna	tuna	Albacore	tuna	Tuna
1987	77	82	63	18	-
1988	83	103	60	19	-
1989	77	104	62	19	-
1990	81	122	61	21	638
1991	85	118	52	20	185
1992	77	99	45	17	192
1993	88	93	44	17	203
1994	81	97	41	18	190
1995	79	95	51	18	271
1996	64	80	53	17	223
1997	71	89	55	20	239
1998	74	76	55	20	177
1999	75	62	52	20	202
2000	79	67	54	17	166
2001	68	62	55	18	190
2002	71	62	56	16	151
2003	77	67	56	19	273
2004	69	62	46	16	207
2005	88	58	50	15	238
2006	84	68	51	12	-
2007	82	72	54	15	-
2008	86	57	52	17	-
2009	84	77	47	18	-
2010	88	89	47	18	-
2011	79	64	46	18	-
Average	78.7	81.0	52.3	17.7	234.1
SD	6.6	19.0	5.7	2.0	113.1

 $Table \ 109. \ Average \ weight \ in \ pounds \ of \ marlin, sailfish, swordfish, and \ spearfish \ landed \ by \ the \ Hawaii-based \ longline \ fishery, 1987-2011$

			Bil	lfish		
		Striped	Blue			Black
Year	Swordfish	marlin	marlin	Spearfish	Sailfish	marlin
1987	129	66	161	34	52	208
1988	119	57	157	31	51	151
1989	130	62	165	31	55	191
1990	152	62	199	35	55	204
1991	153	58	173	32	51	184
1992	178	66	175	34	45	155
1993	171	64	157	34	49	136
1994	163	64	171	33	55	167
1995	171	58	156	33	47	72
1996	157	58	154	31	40	-
1997	163	66	134	31	46	190
1998	176	60	165	32	43	167
1999	188	55	164	29	45	131
2000	180	62	157	35	57	150
2001	146	48	142	31	48	151
2002	146	55	150	33	59	222
2003	141	49	145	31	56	150
2004	137	53	132	30	39	185
2005	164	72	175	31	40	196
2006	167	64	158	30	50	186
2007	174	74	176	33	48	192
2008	198	67	183	33	60	249
2009	194	68	185	28	45	-
2010	191	93	195	31	55	-
2011	199	48	187	34	58	-
Average	163.5	62.0	164.6	32.0	50.0	173.2
SD	22.4	9.4	17.5	1.8	6.2	37.5

Table 110. Average weight in pounds of mahimahi, wahoo, moonfish, pomfrets, oilfish, and sharks landed by the Hawaii-based longline fishery, 1987-2011

		Other	PMUS			Sha	rks
		Ono				Mako	Thresher
Year	Mahimahi	(Wahoo)	Moonfish	Pomfrets	Oilfish	shark	shark
1987	21	33	111	15	20	124	97
1988	20	32	108	18	22	137	122
1989	23	35	104	18	23	161	158
1990	19	36	98	18	22	162	167
1991	15	32	97	17	23	135	180
1992	11	35	98	16	22	144	176
1993	13	33	101	16	21	147	199
1994	12	34	103	17	13	153	164
1995	10	31	101	16	23	178	172
1996	17	31	105	15	-	177	156
1997	13	30	103	17	-	161	160
1998	16	32	101	15	-	177	171
1999	16	34	98	14	-	177	202
2000	14	33	100	14	18	168	166
2001	12	29	99	13	16	175	166
2002	14	33	98	13	17	182	166
2003	13	29	93	12	16	184	196
2004	16	31	92	11	16	173	169
2005	13	28	83	13	17	177	202
2006	14	30	85	13	17	176	193
2007	12	31	86	15	16	189	190
2008	12	32	89	14	15	184	205
2009	12	33	90	15	16	186	192
2010	10	31	91	14	15	197	185
2011	12	34	90	12	16	185	178
Average	e 14.4	32.1	97.0	14.8	18.3	168.4	173.3
SI	3.4	2.0	7.3	2.0	3.2	18.8	24.6

Interpretation: Longline fishing effort can cover a large area within a trip. The data on individual fish from the market data cannot be directly linked to the exact area of capture, therefore the average weight by location was referenced in general terms.

The three main tuna species, bigeye tuna, yellowfin tuna, and albacore, exhibited changes throughout 1987-2011. The average weight of bigeye tuna showed variability over the 25 year period, ranging from 64 pounds to 88 pounds. Bigeye tuna average weight was at or above its long-term average weight during the past 7 years. Yellowfin tuna average weight showed the most variation ranging from 57 pounds to 122 pounds. The average weight of yellowfin tuna decreased in the 1990s and remained around 60 to 70 pounds thereafter. The average weight of albacore was 60 pounds or more from 1987 until 1990, then declined to a low of 41 pounds in 1994. This decline was related to increasing incidental landings of small albacore far north of the Hawaiian Islands by longliners targeting swordfish. The average weight of albacore was close to its long-term average in subsequent years.

Swordfish landed by tuna-targeted trips were smaller than from swordfish-targeted trips. Average weight for swordfish was lowest in the late 1980s when the longline fishery targeted tunas only. The average weight increased in the early 1990s as the number of swordfish-target trips grew. Average weight peaked at 188 pounds in 1999 and was about the same the following year. Swordfish-directed effort (shallow-set longlining) was restricted or prohibited during 2001-2004. As a result, almost all the longline effort was directed towards tuna (deep-set longline) and swordfish; average weight then dropped below 150 pounds during that time. Swordfish average weight increased again when the longline fishery was allowed to target swordfish in 2004 with the mean weight above 190 pounds during the past four years.

Average weight of blue marlin varied substantially and ranged from 132 pounds in 2004 to 199 pounds and has been above its long-term average weight during the past 5 years. Average weight of striped marlin show very little variation over the 25-year period but was at a record 93 pounds in 2010 then match a record low mean weight (48 lbs) the following year.

Source and calculations: Average weight of the longline landings was summarized from the NMFS, Honolulu Laboratory and HDAR market sampling data from 1987 to 1999. The average weight was calculated from the State Commercial Marine Dealer data identified as landed by longline fishing during 2000 to 2011. Swordfish and sharks were landed headed and gutted. In December 2004, the Honolulu Auction required fishers to gill and gut tunas and mahimahi that weighed more than 20 pounds and marlins greater than 40 pounds. When fish were processed prior to sale, e.g., headed and gutted, gilled and gutted, a conversion factor was applied to convert it to an estimated whole weight. Discarded fish and sharks that were retained for fins only were not represented in these size summaries.

Table 111. Bycatch, retained catch, and total catch for the Hawaii-based longline fishery, 2011

Interpretation: Bycatch of the Hawaii-based longline fishery was measured in number of fish released. The total bycatch for all species combined was 14% in 2011. Tunas, which are the primary target species of the longline fleet, had a low bycatch rate (2%). The number of bigeye tuna released was highest for all tuna species although the bycatch rate was relatively low (1.8%). Swordfish had a bycatch rate of 11% in 2011. Although marlins and other miscellaneous pelagic catch are not targeted, these species are highly marketable and also have low rates of discards (1% and 3%, respectively). Ninety-eight percent of the sharks caught by the longline fishery were released. Blue sharks and other sharks are not marketable and therefore a high percentage of those species were discarded. In contrast, a relatively higher proportion of make and thresher sharks were kept since there was a market for their flesh.

	Number	Percent		
	released	released	Kept	Caught
Tuna	10104504	10104804		Cuught
Albacore	776	2.3	33,651	34,427
Bigeye tuna	2,761	1.8	153,410	156,171
Bluefin tuna	2,701	0.0	155,410	130,171
	795	3.1	24,996	25,791
Skipjack tuna Yellowfin tuna	793 751	2.4	30,878	31,629
			*	· ·
Other tuna	10	33.3	20	30
Billfish				
Blue marlin	48	1.1	4,492	4,540
Striped marlin	258	1.5	16,495	16,753
Spearfish	206	1.3	15,517	15,723
Other marlin	10	1.8	539	549
Swordfish	2,146	11.1	17,165	19,311
	,		,	ŕ
Other pelagic fish				
Mahimahi	1,800	2.2	79,405	81,205
Moonfish	161	0.9	17,743	17,904
Oilfish	842	2.2	37,838	38,680
Pomfret	553	1.7	32,890	33,443
Wahoo	49	0.5	10,432	10,481
Miscellaneous fish	1,826	41.7	2,550	4,376
Total (non-shark)	12,992	2.6	478,023	491,015
, , , , ,	,		,	,
Sharks				
Blue shark	55,455	99.4	358	55,813
Mako shark	2,450	75.9	776	3,226
Thresher shark	4,391	94.5	256	4,647
Other sharks	1,501	96.7	51	1,552
Total sharks	63,797	97.8	1,441	65,238

Source and calculations:

Longline bycatch totals and percentages were compiled from NMFS longline logbook data. Longline catch was summarized on date of haul.

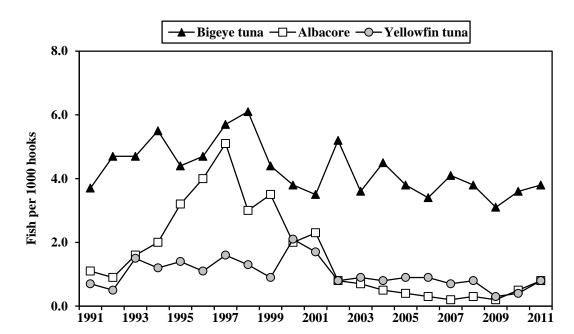


Figure 114. Hawaii longline CPUE for major tunas on tuna trips, 1991-2011

Interpretation: Tuna-target trips always had the highest catch-per-unit-effort (CPUE) for bigeye tuna, which is the primary target species. Bigeye tuna CPUE was consistently higher than that for albacore or yellowfin tuna. Bigeye tuna CPUE peaked at 6.1 in 1998, declined to a low of 3.1 in 2009, and increased to 3.8 in 2011. Bigeye tuna CPUE was usually highest in the MHI EEZ.

Albacore generally sells for a substantially lower price than bigeye tuna, so it is seldom targeted or is caught incidentally. Albacore CPUE rose rapidly in the early 1990s, peaked in 1997, declined to a record low of 0.2 fish per 1000 hooks in 2007 and 2009, and increased to 0.8 in 2011. Albacore CPUE is usually higher outside of the U.S. EEZ.

CPUE for yellowfin tuna was at its lowest level at 0.5 in 1992, peaked at 2.1 in 2000, declined just below 1 fish two years later and has remained low thereafter. High yellowfin tuna CPUEs were observed in the EEZ of Kingman Reef and Palmyra Atoll.

Source and calculation: Tuna CPUE was compiled from NMFS longline logbook data and summarized on date of haul. CPUE was measured as number of fish caught (kept + released) per 1000 hooks. Trip target information was collected from an interview with the longline captain or, if the captain could not be contacted, NMFS staff categorized the trip based on the vessel's fishing history and gear configuration.

Table 112. Hawaii longline CPUE for major tunas on tuna trips, 1991-2011

	Tuna trip CPUE					
-	(fish per 1000 hooks)					
	Bigeye		Yellowfin			
Year	tuna	Albacore	tuna			
1991	3.7	1.1	0.7			
1992	4.7	0.9	0.5			
1993	4.7	1.6	1.5			
1994	5.5	2.0	1.2			
1995	4.4	3.2	1.4			
1996	4.7	4.0	1.1			
1997	5.7	5.1	1.6			
1998	6.1	3.0	1.3			
1999	4.4	3.5	0.9			
2000	3.8	2.0	2.1			
2001	3.5	2.3	1.7			
2002	5.2	0.8	0.8			
2003	3.6	0.7	0.9			
2004	4.5	0.5	0.8			
2005	3.8	0.4	0.9			
2006	3.4	0.3	0.9			
2007	4.1	0.2	0.7			
2008	3.8	0.3	0.8			
2009	3.1	0.2	0.3			
2010	3.6	0.5	0.4			
2011	3.8	0.8	0.8			
Average	4.29	1.59	1.01			
SD	0.81	1.43	0.45			

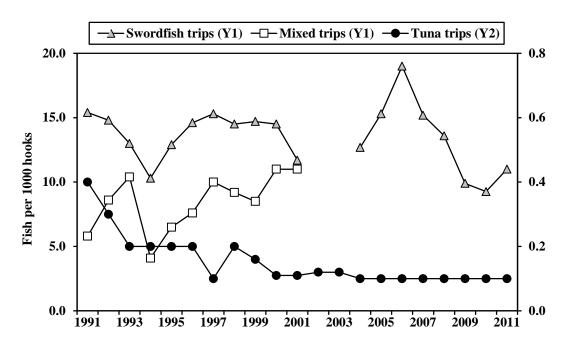


Figure 115. Hawaii longline swordfish CPUE by trip type, 1991-2011

Interpretation: Swordfish-targeted trips had the highest swordfish CPUE of all trip types. Swordfish CPUE on swordfish target trips declined from 1991 to 1994 but returned to typical swordfish catch rates the subsequent year through 2000. Swordfish target effort was drastically reduced in 2001 and prohibited in 2002 and 2003 due to sea turtle conservation measures. It then reopened under a new set of regulations in April 2004. A few swordfish trips were made before the end of the year and had a respectable swordfish CPUE. In 2005, the first complete year since its reopening, the swordfish fishery managed to equal a record CPUE of 15.3 fish per 1000 hooks previously attained in 1991. The swordfish fishery was closed in March 2006 due to reaching the limit of 17 loggerhead turtle interactions, but attained a record CPUE of 19.0. Swordfish CPUE for the shallow-set fishery decreased to its lowest level at 9.3 in 2010 and increased to 11.0 in 2011

Tuna-target trips had significantly lower swordfish CPUEs compared to the swordfish targeted trips. Swordfish CPUE was 40 to 200 times lower on tuna-target trips when compared to swordfish-target trips.

Source and calculation: Longline swordfish CPUE was compiled from NMFS longline logbook data and summarized based on date of haul. CPUE was based on number of swordfish caught (kept + released) divided by the number of hooks set. Trip target information was collected from an interview with the longline captain or, if the captain could not be contacted, NMFS staff categorized the trip based on the vessel's fishing history and gear configuration.

Table 113. Hawaii longline swordfish CPUE by trip type, 1991-2011

	Swordfish CPUE						
	(fish per 1000 hooks)						
	Swordfish Mixed Tuna						
Year	trips	trips	trips				
1991	15.4	5.8	0.4				
1992	14.8	8.6	0.3				
1993	13.0	10.4	0.2				
1994	10.3	4.1	0.2				
1995	12.9	6.5	0.2				
1996	14.6	7.6	0.2				
1997	15.3	10.0	0.1				
1998	14.5	9.2	0.2				
1999	14.7	8.5	0.2				
2000	14.5	11.0	0.1				
2001	11.7	11.0	0.1				
2002	-	-	0.1				
2003	-	-	0.1				
2004	12.7	-	0.1				
2005	15.3	-	0.1				
2006	19.0	-	0.1				
2007	15.2	-	0.1				
2008	13.6	-	0.1				
2009	9.9	-	0.1				
2010	9.3	-	0.1				
2011	11.0	-	0.1				
Average	13.56	8.43	0.15				
SD	2.37	2.24	0.08				

Figure 116. Longline blue marlin CPUE by trip type, 1992-2011

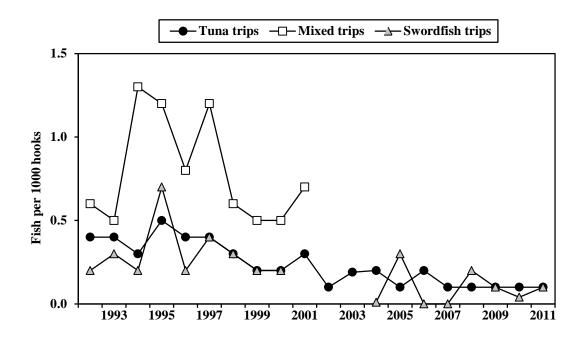
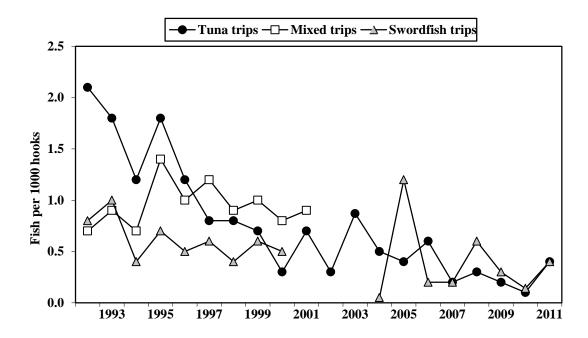



Figure 117. Longline striped marlin CPUE by trip type, 1992-2011

Interpretation: Blue and striped marlin are caught incidentally by the longline fishery. Therefore, their catch rates are significantly lower than those for target species such as swordfish and bigeye tuna. There were differences in marlin CPUE among trip types. Blue marlin CPUE was higher on mixed-target trips. The highest blue marlin CPUE on mixed trips occurred between 1992 and 1997; catch rates remained stable at slightly lower levels from 1998 through 2001 but decreased even further and have remained low. The trend for blue marlin CPUE was one in decline over the 20 year period. Striped marlin CPUE was higher on tuna-target trips in the early to mid-1990s but did not show much difference from 2007. The trend for striped marlin CPUE also declined from the 1990s.

Source and calculations: Longline CPUE was compiled from NMFS longline logbook data and summarized on date of haul. CPUE was based on number of blue or striped marlin caught (kept + released) divided by the number of hooks set for each trip type. Trip target information was collected from an interview with the longline captain or, if the captain could not be contacted, NMFS staff categorized the trip based on the vessel's fishing history and gear configuration.

Table 114. Hawaii longline striped and blue marlin CPUE by trip type, 1991-2011

	Blue marlin			S	triped mar	lin
_	Tuna	Mixed	Swordfish	Tuna	Mixed	Swordfish
Year	trips	trips	trips	trips	trips	trips
1991	Poor	species ide	entification pro	ecluded quai	ntification	in 1991
1992	0.4	0.6	0.2	2.1	0.7	0.8
1993	0.4	0.5	0.3	1.8	0.9	1.0
1994	0.3	1.3	0.2	1.2	0.7	0.4
1995	0.5	1.2	0.7	1.8	1.4	0.7
1996	0.4	0.8	0.2	1.2	1.0	0.5
1997	0.4	1.2	0.4	0.8	1.2	0.6
1998	0.3	0.6	0.3	0.8	0.9	0.4
1999	0.2	0.5	0.2	0.7	1.0	0.6
2000	0.2	0.5	0.2	0.3	0.8	0.5
2001	0.3	0.7	-	0.7	0.9	-
2002	0.1	-	-	0.3	-	-
2003	0.2	-	-	0.9	-	-
2004	0.2	-	0.0	0.5	-	0.1
2005	0.1	-	0.3	0.4	-	1.2
2006	0.2	-	0.0	0.6	-	0.2
2007	0.1	-	0.0	0.2	-	0.2
2008	0.1	-	0.2	0.3	-	0.6
2009	0.1	-	0.1	0.2	-	0.3
2010	0.1	-	0.0	0.1	-	0.1
2011	0.1		0.1	0.4		0.4
Average	0.23	0.79	0.20	0.76	0.95	0.51
SD	0.13	0.81	0.20	0.70	0.98	0.49

Figure 118. Hawaii longline mahimahi CPUE by trip type, 1991-2011

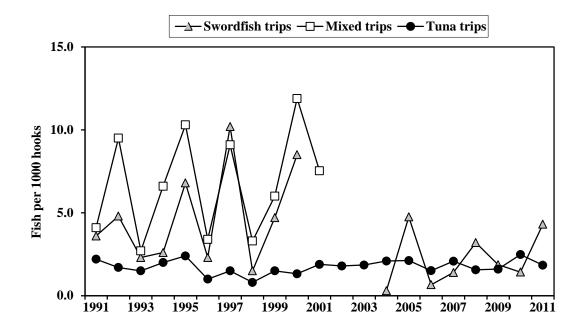
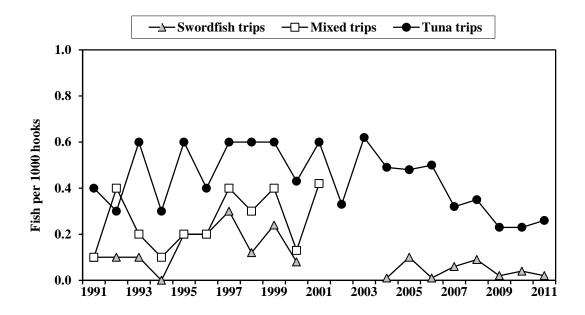



Figure 119. Hawaii longline ono (wahoo) CPUE by trip type, 1991-2011

Interpretation: Mahimahi and ono were caught incidentally by the longline fishery. There were substantial differences in mahimahi CPUE among trip types and considerable annual variation in CPUE within each trip type (Figure 118). Mahimahi CPUE was higher with much more annual variability on swordfish and mixed-target trips. The highest mahimahi CPUE was by mixed trips at 11.9 in 2000. Ono CPUE was consistently higher on tuna trips (Figure 119). Ono CPUE in 2011 was lower than its long-term CPUE.

Source and calculations: Longline CPUE was compiled from NMFS longline logbook data and summarized on date of haul. CPUE was based on number of mahimahi or ono caught (kept + released) divided by the number of hooks set for each trip type. Trip target information was collected from an interview with the longline captain or, if the captain could not be contacted, NMFS staff categorized the trip based on the vessel's fishing history and gear configuration.

Table 115. Hawaii longline mahimahi and ono CPUE by trip type, 1991-2011

]	Mahimah	i		Ono	
		Mixed	Swordfish		Mixed	Swordfish
Year	Tuna trips	trips	trips	Tuna trips	trips	trips
1991	2.2	4.1	3.6	0.4	0.1	0.1
1992	1.7	9.5	4.8	0.3	0.4	0.1
1993	1.5	2.7	2.3	0.6	0.2	0.1
1994	2.0	6.6	2.6	0.3	0.1	0.0
1995	2.4	10.3	6.8	0.6	0.2	0.2
1996	1.0	3.4	2.3	0.4	0.2	0.2
1997	1.5	9.1	10.2	0.6	0.4	0.3
1998	0.8	3.3	1.5	0.6	0.3	0.1
1999	1.5	6.0	4.7	0.6	0.4	0.2
2000	1.3	11.9	8.5	0.4	0.1	0.1
2001	1.9	7.5	-	0.6	0.4	-
2002	1.8	-	-	0.3	-	-
2003	1.9	-	-	0.6	-	-
2004	2.1	-	0.3	0.5	-	0.0
2005	2.1	-	4.8	0.5	-	0.1
2006	1.5	-	0.7	0.5	-	0.0
2007	2.1	-	1.4	0.3	-	0.1
2008	1.6	-	3.2	0.4	-	0.1
2009	1.6	-	1.9	0.2	-	0.0
2010	2.5	-	1.4	0.2	-	0.0
2011	1.8	-	4.3	0.3	-	0.0
Average	1.75	6.77	3.62	0.44	0.26	0.10
SD	0.42	3.16	2.69	0.14	0.13	0.09

Figure 120. Hawaii longline moonfish CPUE by trip type, 1991-2011

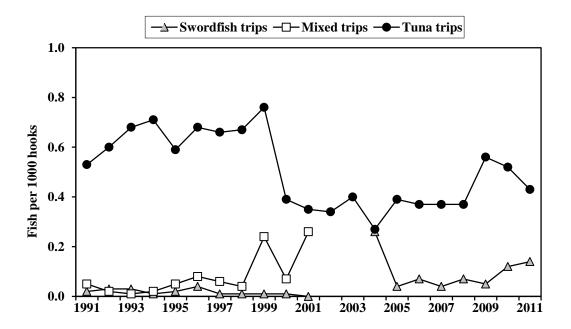
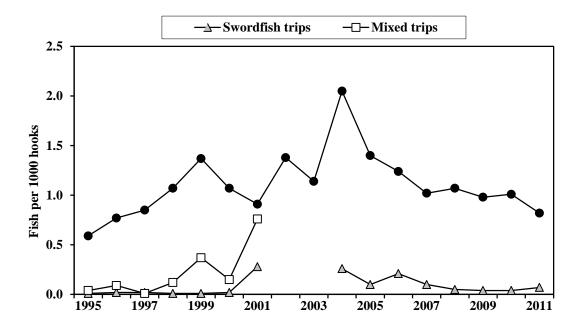
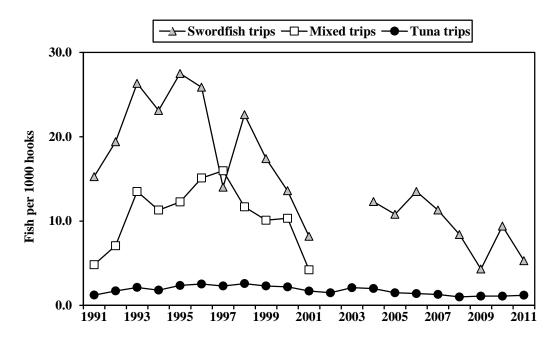



Figure 121. Hawaii longline pomfret CPUE by trip type, 1994-2011

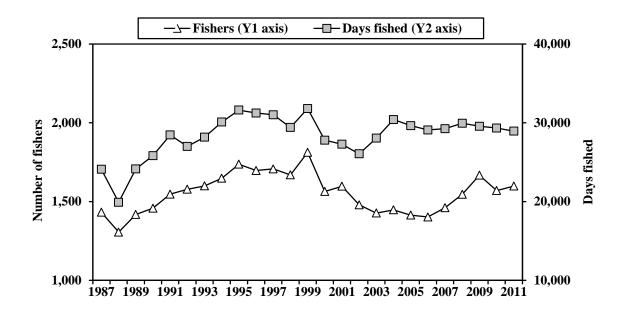

Interpretation: Moonfish and pomfrets were caught incidentally by the longline fishery. There were substantial differences in moonfish and pomfret CPUE among the different trip types. CPUE for both moonfish and pomfret was higher on tuna-target trips. Moonfish CPUE during 2000-2008 appear to be about half compared to the period 1993-1999. Pomfret CPUE showed a general increase from 1995 through 2004 then declined in the following years.

Source and calculations: Longline CPUE was compiled from NMFS longline logbook data and summarized on date of haul. CPUE was based on number of moonfish or pomfrets caught (kept + released) divided by the number of hooks set for each trip type. Trip target information was collected from an interview with the longline captain or, if the captain could not be contacted, NMFS staff categorized the trip based on the vessel's fishing history and gear configuration.

Table 116. Hawaii longline moonfish and pomfret CPUE by trip type, 1991-2011

		Moonfish	1		Pomfret	
_	Tuna	Mixed	Swordfish	Tuna	Mixed	Swordfish
Year	trips	trips	trips	trips	trips	trips
1991	0.5	0.1	0.0	-	-	-
1992	0.6	0.0	0.0	-	-	
1993	0.7	0.0	0.0	-	-	
1994	0.7	0.0	0.0	-	-	-
1995	0.6	0.1	0.0	0.6	0.0	0.0
1996	0.7	0.1	0.0	0.8	0.1	0.0
1997	0.7	0.1	0.0	0.9	0.0	0.0
1998	0.7	0.0	0.0	1.1	0.1	0.0
1999	0.8	0.2	0.0	1.4	0.4	0.0
2000	0.4	0.1	0.0	1.1	0.2	0.0
2001	0.4	0.3	-	0.9	0.8	0.3
2002	0.3	-	-	1.4	-	-
2003	0.4	-	-	1.1	-	-
2004	0.3	-	0.3	2.1	-	0.3
2005	0.4	-	0.0	1.4	-	0.1
2006	0.4	-	0.1	1.2	-	0.2
2007	0.4	-	0.0	1.0	-	0.1
2008	0.4	-	0.1	1.1	-	0.1
2009	0.6	-	0.1	1.0	-	0.0
2010	0.5	-	0.1	1.0	-	0.0
2011	0.4		0.1	0.8	<u>-</u>	0.1
Average	0.51	0.08	0.05	1.10	0.22	0.08
SD	0.15	0.09	0.06	0.33	0.27	0.09

Figure 122. Hawaii longline blue shark CPUE by trip type, 1991-2011



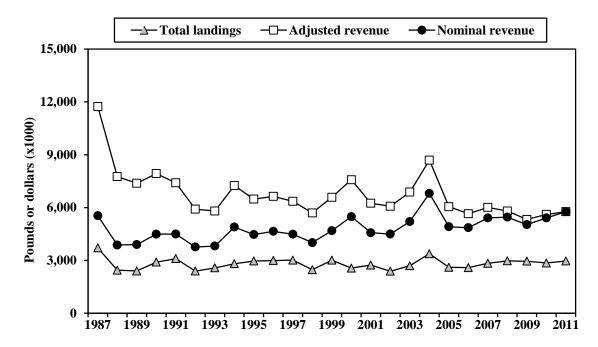
Interpretation: Blue sharks are caught incidentally by the longline fishery. The blue shark CPUE on swordfish-targeted trips is always considerably greater (by about 8-fold) than on tuna-targeted trips. Blue shark CPUE on swordfish targeted trip during 2004-2011 was lower than in the 1990s. One factor that may have contributed to this is the implementation of sea turtle bycatch reduction measures, e.g., use of circle hooks, night setting, mackerel-like bait.

Source and calculation: The longline blue shark CPUE was compiled from federal daily longline logbooks and summarized based on date of haul. CPUE was based on number of blue sharks caught (kept + released) divided by the number of hooks set. Trip target information was collected from an interview with the longline captain or, if the captain could not be contacted, NMFS staff categorized the trip based on the vessels' fishing history and gear configuration.

	Blue shark CPUE					
	(fish p	er 1000 ho	ooks)			
	Swordfish	Mixed	Tuna			
Year	trips	trips	trips			
1991	15.3	4.8	1.2			
1992	19.4	7.1	1.7			
1993	26.3	13.5	2.1			
1994	23.1	11.3	1.8			
1995	27.5	12.3	2.4			
1996	25.9	15.1	2.5			
1997	14.0	16.0	2.3			
1998	22.6	11.7	2.6			
1999	17.4	10.1	2.3			
2000	13.6	10.3	2.2			
2001	8.2	4.2	1.7			
2002	-	-	1.5			
2003	-	-	2.1			
2004	12.3	-	2.0			
2005	10.8	-	1.5			
2006	13.5	-	1.4			
2007	11.3	-	1.3			
2008	8.4	-	1.0			
2009	4.3	-	1.1			
2010	9.4	-	1.1			
2011	5.3		1.2			
Average	15.19	10.57	1.76			
SD	7.17	3.86	0.51			

Figure 123. Number of Main Hawaiian Islands troll fishers and number of days fished, 1987-2011

Interpretation: The Main Hawaiian Islands (MHI) troll fishers rose from a record low in 1988 and peaked in 1999. There were 1,598 MHI troll fishers in 2011. The pattern for number of days fished by the MHI troll fishery was similar to that of the number of troll fishers.


Source and calculations: The State of Hawaii Division of Aquatic Resources (HDAR) issued Commercial Marine Licenses (CMLs) based on the State Fiscal Year (FY); July 1st of one year through June 30th of the following year. A different CML number was issued every FY to each fisher up until 1993. Up to 1993, the number of fishers was counted as number of unique names of fishermen submitting Commercial Fishing Reports rather than unique CMLs to avoid double counting fishers within a calendar year. Beginning in FY 1994, the State began reissuing the same CML number to individual commercial fishers that reapplied for a CML. From this time the number of MHI troll fishers was counted based on number of unique CMLs submitting Fishing Reports.

The number of days fished by the MHI troll fishery was calculated using the Fishing Report data. A MHI troll day fished is defined as a unique CML number fishing on a unique day for the gear types and fishing areas defined for the MHI troll fishery at the beginning of this module. The number of days fished includes days that fishers did not catch anything or days that fish were caught but not sold.

 $\begin{tabular}{l} Table 117. Number of Main Hawaiian Islands troll fishers and number of days fished, \\ 1987-2011 \end{tabular}$

Year	Fishers	Days fished
1987	1,432	24,092
1988	1,306	19,912
1989	1,418	24,132
1990	1,458	25,830
1991	1,547	28,452
1992	1,578	27,003
1993	1,599	28,170
1994	1,648	30,093
1995	1,737	31,611
1996	1,697	31,238
1997	1,707	31,015
1998	1,669	29,406
1999	1,812	31,801
2000	1,564	27,796
2001	1,597	27,271
2002	1,479	26,061
2003	1,427	28,041
2004	1,447	30,404
2005	1,414	29,637
2006	1,402	29,088
2007	1,461	29,251
2008	1,546	29,937
2009	1,667	29,553
2010	1,570	29,328
2011	1,598	28,935
Average	1,551.2	28,322.3
SD	124.8	2,713.8

Figure 124. Main Hawaiian Islands troll landings and revenue, 1987-2011

Interpretation: The total landings by the MHI troll fishery in 2011 were 3.0 million pounds worth an estimated \$5.8 million. Total landings were 5% above the long-term average but revenue was 15% below the long-term average. Landings ranged from 2.4 million pounds to 3.7 million pounds throughout 1987-2011. Adjusted revenue varied substantially from \$5.3 million in 2009 to \$11.7 million in 1987.

Source and calculations: Total landings and nominal revenue for the MHI troll fishery were derived from HDAR Commercial Fishing and Marine Dealer Report data. The total landings and nominal revenue values were obtained by adding the landings and revenue values for all species caught by the MHI troll fishery. The adjusted revenue is calculated by dividing the nominal revenue by the Honolulu CPI for the respective year then multiplying the result by the current year (2011) Honolulu CPI.

	Total	Adjusted	Nominal	
	landings	revenue	revenue	Honolulu
Year	(1000 lbs)	(\$1000)	(\$1000)	CPI
1987	3,709	\$11,737	\$5,536	114.9
1988	2,445	\$7,756	\$3,875	121.7
1989	2,401	\$7,380	\$3,899	128.7
1990	2,901	\$7,927	\$4,494	138.1
1991	3,102	\$7,402	\$4,497	148.0
1992	2,394	\$5,909	\$3,762	155.1
1993	2,578	\$5,806	\$3,816	160.1
1994	2,810	\$7,252	\$4,897	164.5
1995	2,966	\$6,479	\$4,471	168.1
1996	2,994	\$6,636	\$4,650	170.7
1997	3,016	\$6,359	\$4,487	171.9
1998	2,471	\$5,697	\$4,011	171.5
1999	3,013	\$6,585	\$4,685	173.3
2000	2,564	\$7,582	\$5,487	176.3
2001	2,737	\$6,246	\$4,574	178.4
2002	2,387	\$6,077	\$4,498	180.3
2003	2,698	\$6,878	\$5,209	184.5
2004	3,378	\$8,696	\$6,804	190.6
2005	2,607	\$6,048	\$4,911	197.8
2006	2,590	\$5,651	\$4,858	209.4
2007	2,836	\$6,010	\$5,415	219.5
2008	2,975	\$5,806	\$5,456	228.9
2009	2,958	\$5,327	\$5,030	230.0
2010	2,854	\$5,610	\$5,410	234.9
2011	2,966	\$5,766	\$5,766	243.6
Average	2,814.0	\$ 6,744.9	\$4,819.9	
SD	318.3	\$ 1,353.2	\$ 715.4	

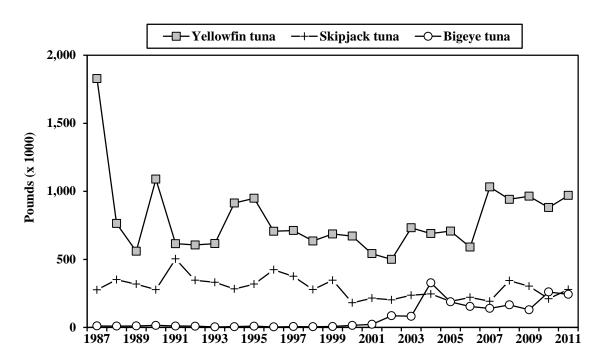


Figure 125. Main Hawaiian Islands troll tuna landings, 1987-2011

Interpretation: The MHI troll tuna landings was composed predominantly of yellowfin tuna. Yellowfin tuna landings increased dramatically from the mid 1980s, dropped in the late 1980s and remained relatively stable thereafter. Skipjack tuna was the second largest component of the MHI troll landings. Skipjack tuna landings were relatively stable though they have been on a gradual decline. Small quantities of bigeye tuna, albacore, and other tunas were also landed by this fishery.

Source and calculations: The tuna landings statistics for the MHI troll fishery were derived from HDAR Commercial Fishing and Marine Dealer Report data. The MHI troll fishery tuna landings was calculated by totaling tuna caught by species and includes kawakawa and unclassified tunas in the other tunas category.

Table 118. Main Hawaiian Islands troll tuna landings, 1987-2011

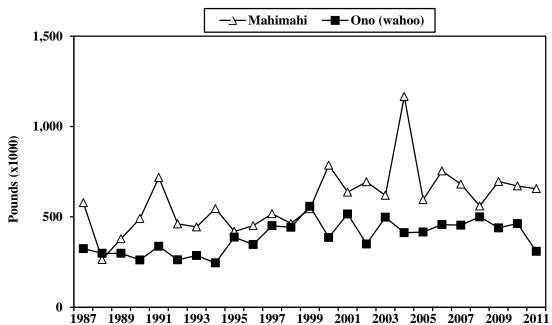
		MHI tr	oll tuna landin	gs (1000 por	unds)	
	Yellowfin	Skipjack			Other	Total
Year	tuna	tuna	Bigeye tuna	Albacore	tunas	tunas
1987	1,828	277	11	1	19	2,136
1988	764	351	10	1	16	1,141
1989	559	318	11	1	14	904
1990	1,089	278	15	1	18	1,401
1991	615	504	11	2	13	1,145
1992	606	347	9	3	15	980
1993	616	332	4	3	9	964
1994	914	283	6	22	15	1,240
1995	949	318	10	10	9	1,295
1996	707	424	4	5	6	1,146
1997	712	376	6	7	6	1,107
1998	636	278	5	4	10	933
1999	687	347	7	87	7	1,135
2000	671	181	15	5	6	879
2001	542	215	23	13	5	799
2002	500	203	86	9	6	804
2003	732	237	82	10	27	1,088
2004	690	246	328	7	45	1,316
2005	708	191	188	14	15	1,117
2006	590	221	154	2	12	979
2007	1,032	192	140	7	11	1,383
2008	941	344	166	3	8	1,463
2009	964	303	130	7	13	1,417
2010	881	211	261	4	24	1,380
2011	970	279	243	8	9	1,509
Average	796.1	290.2	77.0	9.4	13.5	1,186.5
SD	272.0	78.6	96.9	16.9	8.7	287.9

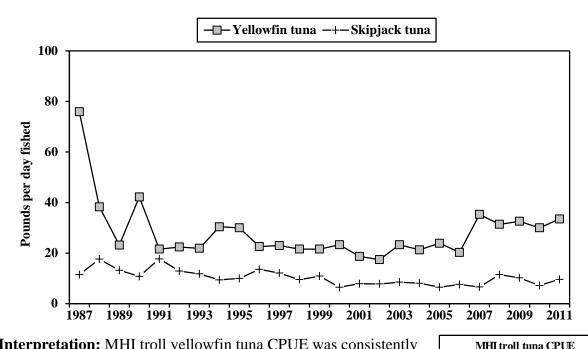
Figure 126. Main Hawaiian Islands troll billfish landings, 1987-2011

Interpretation: Billfish landings by the MHI troll fishery in 2011 were 486,000 pounds, 24% below the long-term average. Landings of billfish by the MHI troll fishery consisted primarily of blue marlin. Blue marlin landings have been on a decreasing trend from a peak of 885,000 pounds in 1996 to 263,000 pounds in 2007. The striped marlin landings in this fishery were relatively low. The MHI troll fishery also had small landings of other billfish, including spearfish, sailfish, swordfish, and black marlin.

Source and calculations: The billfish landings statistics for the MHI troll fishery were derived from HDAR Commercial Fishing and Marine Dealer Report data. Billfish landings by the MHI troll fishery was calculated by totaling billfish landings by species and include black marlin, sailfish, spearfish and unclassified billfish in the other billfish category.

		MHI troll billfish landings (1000 pounds)					
	-	Blue	Striped	Other		Total	
%	Year	marlin	marlin	billfish	Swordfish	billfishes	
/0	1987	557	66	42	1	666	
	1988	575	118	41	2	736	
	1989	704	52	47	2	805	
	1990	638	59	33	1	732	
f	1991	749	89	52	1	890	
•	1992	565	83	35	0	683	
	1993	675	150	44	0	870	
ry	1994	648	76	46	1	770	
О	1995	684	114	57	1	856	
	1996	885	119	37	1	1,042	
۱.	1997	814	83	36	1	935	
ι.	1998	527	57	41	1	626	
	1999	635	62	71	1	769	
S	2000	422	30	49	5	506	
d	2001	608	93	75	4	780	
	2002	446	65	22	3	535	
	2003	390	63	37	1	491	
	2004	360	74	46	0	481	
	2005	396	44	35	1	475	
	2006	320	47	29	1	397	
	2007	263	28	23	2	316	
	2008	388	30	29	1	448	
	2009	362	22	18	1	403	
	2010	296	12	26	1	334	
	2011	414	35	36	1	486	
275	Average	532.9	66.9	40.2	1.4	641.3	
213	SD	170.0	34.2	13.7	1.1	203.1	




Figure 127. Main Hawaiian Islands troll landings of other pelagic PMUS, 1987-2011

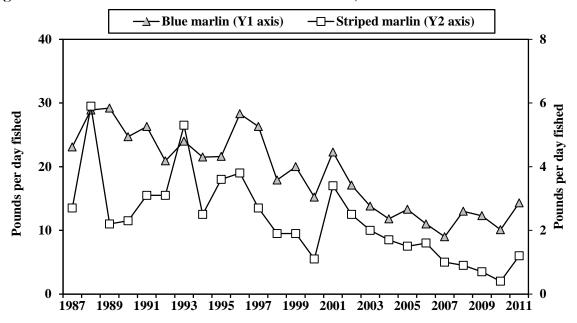
Interpretation: Landings of other pelagic species by the MHI troll fishery in 2011 was 971,000 pounds, close to its long-term average. Mahimahi and ono comprised the majority of these landings. Mahimahi was above its long-term average by 11% while ono was 20% below its long-term average.

Source and calculations: The other pelagic species catch statistics for the MHI troll fishery were derived from HDAR Commercial Fishing and Dealer data. Other pelagic landings by the MHI troll fishery were calculated by totaling other pelagic landings by species. The total other pelagic column is the sum of the two dominant pelagic species plus miscellaneous pelagic species, which include barracuda, flying fish, and frigate mackerel.

	MHI troll other pelagic landings					
	(1000 pounds)					
				Total		
			Misc	other		
Year	Mahimahi	Ono (wahoo)	pelagics	pelagics		
1987	579	324	3	907		
1988	264	298	6	569		
1989	379	298	14	691		
1990	491	262	16	768		
1991	718	337	12	1,067		
1992	461	262	8	731		
1993	444	286	13	744		
1994	546	245	9	800		
1995	419	388	8	815		
1996	451	347	7	806		
1997	517	451	5	974		
1998	464	442	6	912		
1999	545	558	6	1,109		
2000	786	386	7	1,179		
2001	637	516	6	1,159		
2002	694	350	4	1,048		
2003	619	498	3	1,120		
2004	1,166	412	3	1,581		
2005	595	416	4	1,016		
2006	754	457	3	1,214		
2007	681	454	3	1,137		
2008	560	500	4	1,064		
2009	696	439	4	1,138		
2010	671	463	6	1,140		
2011	656	309	6	971		
Average	591.7	388.0	6.7	986.4		
SD	174.5	89.0	3.7	217.4		

Figure 128. Main Hawaiian Islands troll tuna CPUE, 1987-2011

Interpretation: MHI troll yellowfin tuna CPUE was consistently higher than skipjack tuna CPUE. Yellowfin tuna CPUE was 34 pounds per trip in 2011 and has been above its long-term average CPUE for the past five years. Yellowfin tuna peaked at 76 pounds in 1987 and dropped to 23 pounds per trip in 1989; it remained close to that level thereafter. Skipjack tuna CPUE was 10 pounds per trip in 2011.

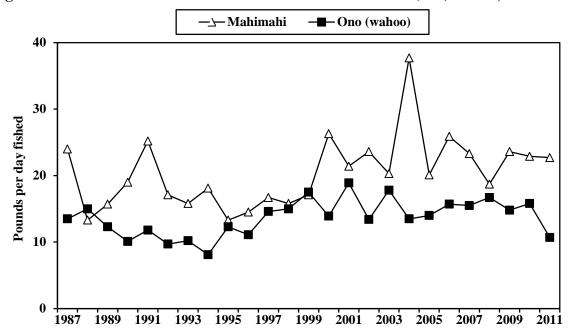

Source and calculations: These numbers are the landings of yellowfin tuna and skipjack tuna by the MHI troll fishery during each year divided by the number of MHI troll days fished (Figure

123) during that year. For the smaller table the landings are divided by the number of MHI troll hours fished. The landings values used here are the actual pounds landed from the (HDAR) commercial fish landings data. They are not replaced by pounds sold from the HDAR fish dealer data when the pounds sold is greater than the pounds landed in 2000 and later.

MHI troll tuna CPUE							
(pound	(pounds per hours fished)						
	Yellowfin Skipjack						
Year	Year tuna tuna						
2003	3.9	1.4					
2004	3.6	1.4					
2005	4.1	1.1					
2006	3.5	1.3					
2007	5.9	1.1					
2008	5.4	2.0					
2009	5.5	1.7					
2010	5.0	1.2					
2011	5.5	1.6					
Average	4.70	1.42					
SD	0.95	0.30					
277							

WITH ITOH WHA CFUE				
(por	ınds per day			
	Yellowfin	Skipjack		
Year	tuna	tuna		
1987	76	12		
1988	38	18		
1989	23	13		
1990	42	11		
1991	22	18		
1992	22	13		
1993	22	12		
1994	30	9		
1995	30	10		
1996	23	14		
1997	23	12		
1998	22	10		
1999	22	11		
2000	23	7		
2001	19	8		
2002	17	8		
2003	23	9		
2004	21	8		
2005	24	7		
2006	20	8		
2007	35	7		
2008	31	12		
2009	33	10		
2010	30	7		
2011	34	10		
Average	28.2	10.4		
SD	11.8	3.1		

Figure 129. Main Hawaiian Island troll marlin CPUE, 1987-2011


Interpretation: CPUE for blue marlin (Y1 axis) was substantially higher compared to the CPUE for striped marlin (Y2 axis). The CPUE trend for both blue marlin and striped marlin was that of a decline from the mid-1990s. CPUE for both species increased in 2011 but were still well below their respective long-term averages.

Source and calculations: The MHI troll CPUE (pounds per day fished) were calculated from the HDAR Fishing Report data. MHI troll blue marlin and striped marlin landings from

the Fishing Report data was divided by the MHI troll the number of days fished in Figure 123. For the smaller table the landings are divided by the number of MHI troll hours fished. The number of days fished includes days that fishers did not catch anything or days that fish were caught but not sold.

MHI troll marlin CPUE						
(pounds per hours fished)						
	Blue Striped					
Year	marlin	marlin				
2003	2.3	0.3				
2004	2.0	0.3				
2005	2.3	0.3				
2006	1.9	0.3				
2007	1.5	0.2				
2008	2.2	0.2				
2009	2.1	0.1				
2010	1.7	0.1				
2011	2.4	0.2				
Average	2.03	0.21				
SD	0.29	0.09				

Figure 130. Main Hawaiian Island troll mahimahi and wahoo (ono) CPUE, 1987-2011

Interpretation: Mahimahi CPUE for the MHI troll fishery was slightly higher and more variable than that for ono. The CPUE for both mahimahi and ono in 2007 exceeded their long-term averages by 16% and 17%, respectively. Mahimahi CPUE peaked in 2004, dropped the following year, and remained somewhat stable through 2011. Ono CPUE was stable from the late 1990s and dropped below its long-term average in 2011.

Source and calculations: The MHI troll CPUE (pounds per day fished) were calculated from the HDAR Fishing Report data. MHI troll mahimahi and ono landings from the Fishing Report

data was divided by the MHI troll the number of days fished in Figure 123. For the smaller table the landings are divided by the number of MHI troll hours fished. The number of days fished includes days that fishers did not catch anything or days that fish were caught but not sold.

MHI troll mahimahi and ono CPUE						
(pour	ds per hours i	fished)				
	Ono					
Year	Mahimahi	(wahoo)				
2003	3.4	3.0				
2004	6.3	2.3				
2005	3.4	2.4				
2006	4.4	2.7				
2007	3.9	2.6				
2008	3.2	2.9				
2009	4.0	2.5				
2010	3.8	2.6				
2011	3.7	1.8				
Average	4.02	2.52				
SD	0.93	0.36				
279						

(pounds per day fished)					
	<u>-</u>				
Year	Mahimahi	Ono (wahoo)			
1987	24	14			
1988	13	15			
1989	16	12			
1990	19	10			
1991	25	12			
1992	17	10			
1993	16	10			
1994	18	8			
1995	13	12			
1996	15	11			
1997	17	15			
1998	16	15			
1999	17	18			
2000	26	14			
2001	21	19			
2002	24	13			
2003	20	18			
2004	38	14			
2005	20	14			
2006	26	16			
2007	23	16			
2008	19	17			
2009	24	15			
2010	23	16			
2011	23	11			
Average	20.5	13.7			
SD	5.4	2.7			

MHI troll mahimahi and ono CPLE

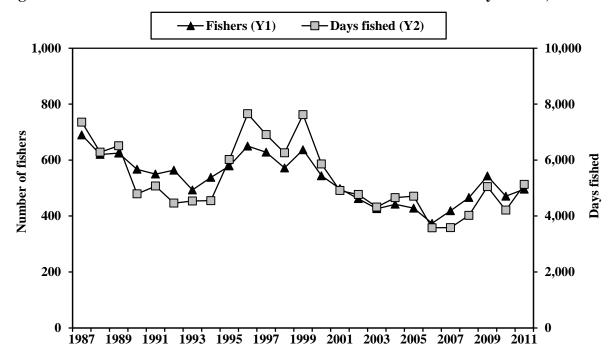


Figure 131. Number of Main Hawaiian Islands handline fishers and days fished, 1987-2011

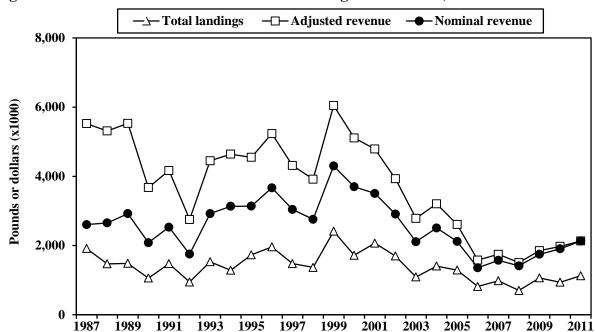
Interpretation: There were 496 MHI handline fishers that fished 5,129 days in 2011. Both measures of effort were below their respective long-term averages. MHI handline effort was on a downward trend from 1999 to a record low in 2006 and increased thereafter.

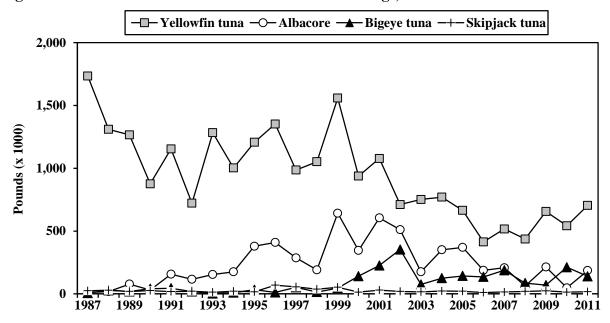
Source and calculations: The State of Hawaii, Division of Aquatic Resources (HDAR) issued Commercial Marine Licenses (CMLs) based on the State Fiscal Year (FY); July 1st of one year through June 30th of the following year. A different CML number was issued every FY to each fisher up until 1993. Up to 1993, the number of fishers was counted as number of unique names of fishermen submitting Commercial Fishing Reports rather than unique CMLs to avoid double counting fishers within a calendar year. Beginning in FY 1994, the State began reissuing the same CML number to individual commercial fishers that reapplied for a CML. From this time the number of MHI handline fishers was counted based on number of unique CMLs submitting Fish Reports.

The number of days fished by the MHI handline fishery was calculated using the HDAR Fishing Report data. A MHI handline day fished is defined as a unique CML number fishing on a unique day for the gear types and fishing areas defined for the MHI handline fishery at the beginning of this module. The number of days fished includes days that fishers did not catch anything or days that fish were caught but not sold

Table 119. Number of Main Hawaiian Islands handline fishers and days fished, 1987-2011

		Days
Year	Fishers	fished
1987	690	7,356
1988	620	6,280
1989	625	6,511
1990	567	4,791
1991	550	5,072
1992	564	4,462
1993	493	4,537
1994	538	4,548
1995	579	6,022
1996	650	7,655
1997	628	6,911
1998	572	6,259
1999	637	7,625
2000	544	5,862
2001	498	4,911
2002	462	4,768
2003	426	4,320
2004	442	4,658
2005	428	4,710
2006	374	3,579
2007	419	3,585
2008	466	4,023
2009	543	5,047
2010	471	4,209
2011	496	5,129
Average	531.3	5,313.2
SD	83.4	1,209.1




Figure 132. Main Hawaiian Island handline landings and revenue, 1987-2011

Interpretation: Total landings by the MHI handline fishery in 2011 were 1.1 million pounds worth an estimated \$2.1 million. Total landings and revenue by this fishery were below the long-term values by 20% and 43%, respectively. The recent pattern for MHI handline fishery landings and revenue was similar to the trip activity, which consisted of a decreasing trend from 1999 to 2006, followed by a gradually increasing trend through 2011.

Source and calculations: Total landings and nominal revenue for the MHI handline fishery were derived from HDAR Commercial Fishing and Marine Dealer Report data. The total landings and nominal revenue values were obtained by adding the landings and revenue values for all species caught by the MHI handline fishery. The adjusted revenue is calculated by dividing the nominal revenue by the respective year Honolulu CPI and then multiplying the result by the current year (2011) Honolulu CPI.

	Total	Adjusted	Nominal	
	landings	revenue	revenue	Honolulu
Year	(1000 lbs)	(\$1000)	(\$1000)	CPI
1987	1,914	\$5,525	\$2,606	114.9
1988	1,471	\$5,312	\$2,654	121.7
1989	1,487	\$5,531	\$2,922	128.7
1990	1,060	\$3,676	\$2,084	138.1
1991	1,477	\$4,168	\$2,532	148.0
1992	946	\$2,755	\$1,754	155.1
1993	1,532	\$4,449	\$2,924	160.1
1994	1,287	\$4,642	\$3,135	164.5
1995	1,733	\$4,549	\$3,139	168.1
1996	1,962	\$5,236	\$3,669	170.7
1997	1,479	\$4,314	\$3,044	171.9
1998	1,368	\$3,919	\$2,759	171.5
1999	2,414	\$6,046	\$4,301	173.3
2000	1,718	\$5,110	\$3,698	176.3
2001	2,070	\$4,789	\$3,507	178.4
2002	1,699	\$3,932	\$2,910	180.3
2003	1,092	\$2,787	\$2,111	184.5
2004	1,406	\$3,208	\$2,510	190.6
2005	1,291	\$2,610	\$2,119	197.8
2006	819	\$1,581	\$1,359	209.4
2007	982	\$1,747	\$1,574	219.5
2008	702	\$1,506	\$1,415	228.9
2009	1,066	\$1,853	\$1,750	230.0
2010	940	\$1,977	\$1,906	234.9
2011	1,128	\$2,132	\$2,132	243.6
Average	1,401.7	3,734.1	2,580.6	
SD	420.3	1,418.2	765.0	

Figure 133. Main Hawaiian Island handline tuna landings, 1987-2011

Interpretation: MHI handline tuna landings in 2011 were 1.1 million pounds, 19% below the long-term average. The largest component was yellowfin tuna, followed by albacore and bigeye tuna. Yellowfin tuna landings by the MHI handline fishery were 26% below the long-term average. Albacore landings were 21% below its long-term average while bigeye tuna was 58% above its long-term average.

Source and calculations: The tuna landing statistics for the MHI handline fishery were derived from HDAR Commercial Fishing and Dealer Report data. The MHI handline fishery tuna landings were calculated by totaling tuna landings by species; kawakawa and unclassified tunas were included in the other tunas category.

	MHI handline tuna landings (1000 lbs)					
•	Yellowfin		Bigeye	Skipjack	Other	
Year	tuna	Albacore	tuna	tuna	tunas	Total
1987	1,734	12	6	25	5	1,782
1988	1,310	18	28	29	9	1,395
1989	1,266	78	19	20	11	1,393
1990	876	31	41	26	7	981
1991	1,154	157	45	19	6	1,380
1992	722	116	19	21	7	885
1993	1,283	154	2	14	5	1,458
1994	1,003	176	10	21	3	1,213
1995	1,207	380	33	17	6	1,642
1996	1,352	409	11	69	4	1,845
1997	986	287	52	56	3	1,384
1998	1,052	191	15	38	3	1,298
1999	1,559	642	46	52	2	2,302
2000	938	346	141	14	2	1,442
2001	1,078	605	226	30	4	1,942
2002	711	511	353	20	3	1,598
2003	752	176	75	16	4	1,023
2004	770	351	125	23	17	1,286
2005	665	370	143	21	5	1,204
2006	414	187	135	11	2	749
2007	517	208	188	15	2	930
2008	437	62	86	20	3	607
2009	656	214	70	24	6	969
2010	542	48	212	14	9	826
2011	704	186	140	17	14	1,060
Average	947.6	236.6	88.8	25.2	5.6	1,303.7
SD	2350.3	176.4	87.1	14.3	3.8	403.5

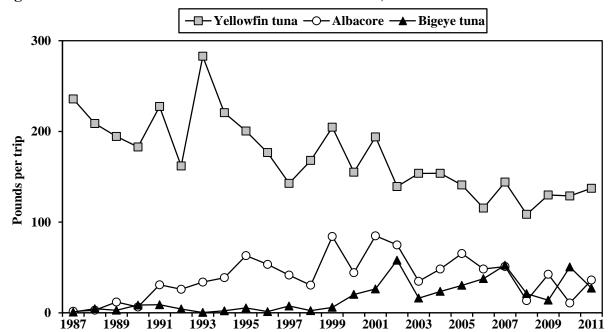


Figure 134. Main Hawaiian Island handline tuna CPUE, 1987-2011

Interpretation: MHI handline CPUE (pounds per day fished) were slightly higher than the long-term average. Yellowfin tuna CPUE, the dominant component of the handline landings, was 137 pounds per trip in 2011; 22% below its long-term average. Nonetheless, the yellowfin tuna CPUE was relatively stable from 2002. Albacore and bigeye tuna CPUE varied substantially from 2000.

Source and Calculations: The MHI handline CPUE (pounds per day fished) were calculated from the HDAR Fishing Report data. MHI handline yellowfin and skipjack tuna landings from the Fishing Report data was divided by the MHI handline number of days fished in Figure 131. The small table (Table 121. Main Hawaiian Island handline tuna CPUE, 2003-2011) is the MHI handline yellowfin and skipjack tuna landings from the Fishing Report data divided by the MHI handline hours fished. The number of days fished includes days that fishers did not catch anything or days that fish were caught but not sold. The total CPUE was greater than the sum of the three dominant tuna species because it includes skipjack tuna, kawakawa, and other tunas.

Table 120. Main Hawaiian Island handline tuna landings per trip, 1987-2011

	MHI handline landings per trip (pounds)					
	Yellowfin		Bigeye			
Year	tuna	Albacore	tuna	Total		
1987	236	2	1	242		
1988	209	3	5	222		
1989	194	12	3	214		
1990	183	7	9	205		
1991	227	31	9	272		
1992	162	26	4	198		
1993	283	34	0	321		
1994	221	39	2	267		
1995	200	63	5	273		
1996	177	53	1	241		
1997	143	42	8	200		
1998	168	31	2	207		
1999	205	84	6	302		
2000	155	44	20	222		
2001	194	85	26	312		
2002	139	75	58	277		
2003	154	35	16	211		
2004	154	48	24	235		
2005	141	65	30	242		
2006	116	48	38	205		
2007	144	51	53	253		
2008	109	14	21	149		
2009	130	42	14	192		
2010	129	11	51	194		
2011	137	36	27	204		
Average	172.3	39.2	17.3	234.5		
SD	42.3	23.8	17.3	42.0		

Table 121. Main Hawaiian Island handline tuna CPUE, 2003-2011

	MHI handline landings (pounds per hour fished)				
	Yellowfin		Bigeye		
Year	tuna	Albacore	tuna	Total	
2003	21.5	4.9	2.3	29.3	
2004	21.5	6.8	3.3	32.8	
2005	20.3	9.4	4.3	34.8	
2006	17.3	7.2	5.6	30.6	
2007	22.5	8.0	8.2	39.4	
2008	17.0	2.1	3.3	23.3	
2009	19.6	6.4	2.1	28.9	
2010	19.0	1.6	7.5	28.8	
2011	19.9	5.3	4.0	29.8	
Average	19.94	5.75	4.51	30.86	
SD	2.13	2.58	2.17	4.49	

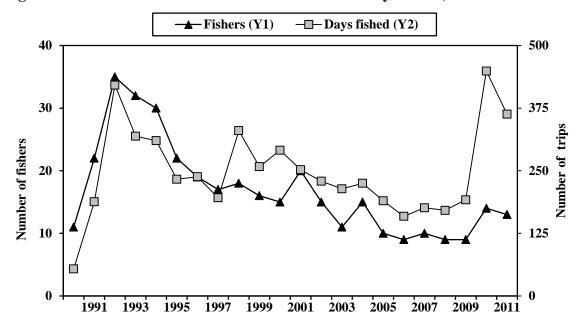
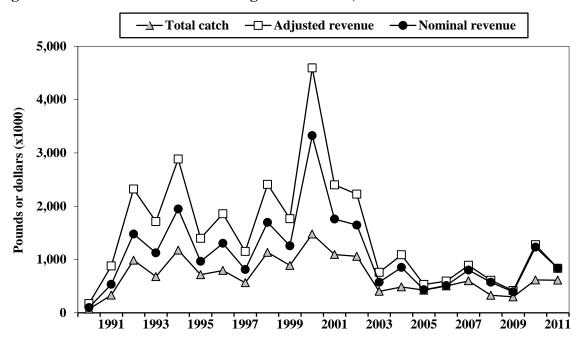


Figure 135. Number of offshore handline fishers and days fished, 1990-2011

Interpretation: The offshore tuna handline fishery had 13 fishers that fished 363 days in 2011, slightly less than the previous year but higher than effort during 2005-2009. The number of fishers peaked in 1992 while days fished peaked in 2011.


Source and calculations: The State of Hawaii, Division of Aquatic Resources (HDAR) issued Commercial Marine Licenses (CMLs) based on the State Fiscal Year (FY); July 1st of one year through June 30th of the following year. A different CML number was issued every FY to each fisher up until 1993. Up to 1993, the number of fishers was counted as number of unique names of fishermen submitting Commercial Fish Reports rather than unique CMLs to avoid double counting fishers within a calendar year. Beginning in FY 1994, the State began reissuing the same CML number to individual commercial fishers that reapplied for a CML. From this time the number of offshore handline fishers was counted based on number of unique CMLs submitting Fishing Reports.

The number of days fished by the MHI handline fishery was calculated using the HDAR Fishing Report data. A MHI handline day fished is defined as a unique CML number fishing on a unique day for the gear types and fishing areas defined for the MHI handline fishery at the beginning of this module. The number of days fished includes days that fishers did not catch anything or days that fish were caught but not sold.

Table 122. Number of offshore handline fishers and days fished, 1990-2011

Year	Fishers	Days fished
1990	11	54
1991	22	188
1992	35	421
1993	32	319
1994	30	310
1995	22	233
1996	19	238
1997	17	196
1998	18	330
1999	16	258
2000	15	291
2001	20	252
2002	15	229
2003	11	214
2004	15	225
2005	10	190
2006	9	159
2007	10	176
2008	9	171
2009	9	192
2010	14	449
2011	13	363
Average	16.9	248.1
SD	7.5	90.8

Figure 136. Offshore handline landings and revenue, 1990-2011

Interpretation: Total landings and revenue by the offshore handline fishery were 611,000 pounds worth an estimated \$834,000 in 2011. Total landings and revenue by this fishery decreased from the previous year and below the long-term values by 12% and 44%, respectively. The recent trend for landings and revenue by the offshore handline fishery was one that showed a steep decline from 2000 to 2003 and remained low through 2011.

Source and calculations: Total landings and nominal revenue for the offshore handline fishery were derived from HDAR Commercial Fishing and Marine Dealer Report data. The total landings and nominal revenue values were obtained by adding the landings and revenue values for all species caught by the offshore handline fishery. The adjusted revenue is calculated by dividing the nominal revenue by the respective year Honolulu CPI and then multiplying the result by the current year (2011) Honolulu CPI.

	Total	Adjusted	Nominal	
	landings	revenue		
Year	(1000 lbs)	(\$1000)	(\$1000)	CPI
1990	68	\$171 \$97		138.1
1991	331	\$877	\$533	148.0
1992	987	\$2,320	\$1,477	155.1
1993	679	\$1,712	\$1,125	160.1
1994	1,175	\$2,883	\$1,947	164.5
1995	714	\$1,397	\$964	168.1
1996	793	\$1,858	\$1,302	170.7
1997	563	\$1,149	\$811	171.9
1998	1,134	\$2,409	\$2,409 \$1,696	
1999	888	\$1,766 \$1,256		173.3
2000	1,476	\$4,593	34,593 \$3,324 1	
2001	1,093	\$2,399	\$1,757	178.4
2002	1,059	\$2,224	\$1,646	180.3
2003	402	\$758	\$574	184.5
2004	485	\$1,088	\$851	190.6
2005	424	\$531	\$431	197.8
2006	503	\$593	\$510	209.4
2007	599	\$889	\$801	219.5
2008	328	\$609	\$572	228.9
2009	298	\$416	\$393	230.0
2010	616	\$1,276 \$1,230 2		234.9
2011	611	\$834	\$834	243.6
Average	692.0	1,488.7	\$1,096.9	
SD	348.8	1,027.2	\$706.3	

288

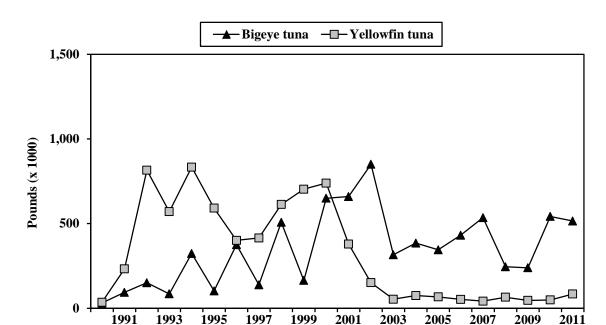
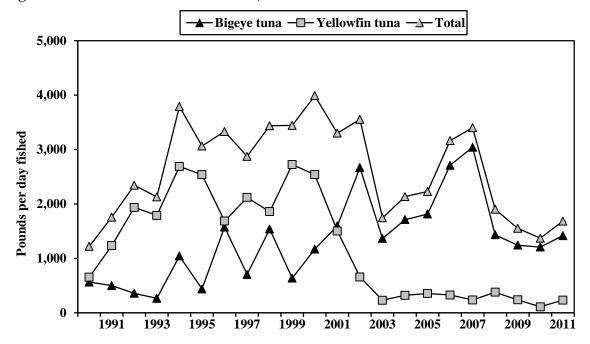


Figure 137. Offshore handline landings of bigeye and yellowfin tuna, 1990-2011

Interpretation: Bigeye tuna was the largest component of the offshore handline landings (84%) followed by yellowfin tuna (14%), and small landings of mahimahi. Yellowfin tuna was the largest component of the landings until 2001 when it was replaced by bigeye tuna. This may reflect better species identification by fishermen (small bigeye tuna and yellowfin tuna can be very difficult to distinguish). In general, bigeye tuna landings had wide inter-annual fluctuations in the 1990s, a steep decline in 2003, and a gradual increasing trend to 2007. Landings were substantially lower the following two years and recovered in 2010 and 2011.


Most of the tunas landed by the offshore handline fishery are smaller in size than the MHI handline fishery. The yellowfin tuna landings reported in the HDAR commercial fish landings data may actually be bigeye tuna. Therefore, the total tuna landings by the offshore handline fishery may be more accurate than the landings for individual species. HDAR is making an effort to help educate fishermen and fish dealers correctly ID small tunas.

Source and calculations: The landings statistics for the offshore tuna handline fishery were derived from HDAR Commercial Fishing and Marine Dealer Report data. The offshore tuna handline fishery landings were calculated by totaling landings by species.

Table 123. Offshore handline landings of bigeye, yellowfin, and mahimahi, 1990-2011

	Offshore handline landings (1000 pounds)				
_	Bigeye	Yellowfin			
Year	tuna	tuna	Mahimahi	Total	
1990	31	35	0	68	
1991	94	232	5	331	
1992	151	816	21	987	
1993	85	571	23	679	
1994	324	834	18	1,175	
1995	102	591	20	714	
1996	375	401	17	793	
1997	138	415	9	563	
1998	508	613	13	1,134	
1999	164	703	20	888	
2000	650	739	54	1,476	
2001	660	379	35	1,093	
2002	850	151	26	1,059	
2003	316	53	14	402	
2004	385	75	14	485	
2005	345	67	8	424	
2006	431	52	8	503	
2007	535	42	6	599	
2008	245	65	9	328	
2009	239	46	7	298	
2010	542	49	14	616	
2011	515	84	6	611	
Average	349.3	318.8	15.8	692.0	
SD	219.5	293.1	11.8	348.8	

Figure 138. Offshore handline CPUE, 1990-2011

Interpretation: Offshore handline CPUE was 1,684 pounds in 2011, below its long-term average. Bigeye tuna CPUE in 2011 was slightly higher than its long-term average. In contrast, yellowfin tuna and mahimahi CPUE were far below their long-term averages by 81% and 70%, respectively. In general, bigeye CPUE was higher during the past 11 years while yellowfin tuna CPUE was much lower in the same period.

The total landings per trip by the offshore handline fishery may be more accurate than the catch for individual species due to misidentification of tunas in this fishery.

Source and calculations: The offshore handline CPUE (pounds per day fished) were calculated from the HDAR Fishing Report data. Offshore handline landings from the Fishing Report data was divided by the offshore handline number of days fished in Figure 131. The total landings were greater than the sum of the three dominant species because it included skipjack tuna, kawakawa, and other pelagic species.

	Offshore handline landings (pounds per day fished)				
-	Bigeye	Yellowfin	day Hsticu)		
Year	tuna	tuna	Mahimahi	Total	
1990	565	654	1	1,220	
1991	500	1,234	24	1,758	
1992	358	1,937	49	2,344	
1993	266	1,790	73	2,130	
1994	1,044	2,689	57	3,790	
1995	439	2,538	87	3,065	
1996	1,576	1,685	70	3,331	
1997	706	2,119	48	2,874	
1998	1,539	1,858	39	3,436	
1999	636	2,725	79	3,443	
2000	1,171	2,539	169	3,989	
2001	1,598	1,502	130	3,300	
2002	2,669	658	98	3,554	
2003	1,367	231	61	1,744	
2004	1,712	322	61	2,136	
2005	1,814	355	40	2,230	
2006	2,710	328	52	3,162	
2007	3,041	236	34	3,402	
2008	1,433	379	55	1,903	
2009	1,243	238	39	1,552	
2010	1,208	110	32	1,370	
2011	1,418	233	18	1,684	
Average	1,318.8	1,198.2	59.8	2,609.9	
SD	766.7	952.4	37.3	869.0	

291 l

Table 124. Average weight by species for the troll and handline landings, 1987-2011

		Tu	nas			Billfish		Other 1	PMUS
		Bigeye	Skipjack	Yellowfin	Blue	Striped		1	Ono
Year	Albacore	tuna	tuna	tuna	marlin	marlin	Swordfish	Mahimahi	(wahoo)
1987	33	13	7	26	209	65	125	20	23
1988	57	33	7	27	178	64	115	18	24
1989	49	24	11	40	180	73	104	20	25
1990	52	25	6	35	246	71	93	19	24
1991	51	28	8	32	194	62	111	15	22
1992	52	24	6	26	213	69	73	13	25
1993	52	20	7	41	179	66	138	14	23
1994	50	22	8	35	228	66	94	14	26
1995	20	15	7	28	200	60	106	15	24
1996	41	21	11	40	192	65	87	16	22
1997	40	19	11	34	175	68	96	16	21
1998	21	21	6	28	224	64	82	18	25
1999	48	24	7	31	210	55	88	18	27
2000	48	28	11	48	238	61	177	15	25
2001	42	21	11	41	181	50	150	15	24
2002	38	30	10	42	224	42	152	16	26
2003	46	20	6	30	185	49	118	16	22
2004	43	36	6	27	207	59	142	18	23
2005	48	29	5	23	183	74	102	15	23
2006	47	27	8	29	209	69	128	16	23
2007	49	31	4	35	267	89	132	16	24
2008	51	35	6	26	205	67	158	15	26
2009	46	30	7	29	231	84	184	14	24
2010	49	32	5	30	257	106	123	14	26
2011	45	27	9	32	222	50	132	13	27
Average	44.7	25.4	7.6	32.6	209.5	65.9	120.4	16.0	24.2
SD	8.9	5.9	2.2	6.3	25.7	13.3	29.3	2.0	1.6

Interpretation: The mean weight for all species of fish caught on troll and handline gear was close to their respective long-term average weight. The mean weight for striped marlin was below its long-term average because of high catches of small fish in 2011. Blue marlin had the biggest mean weight of all species landed by the troll and handline fishery at 222 pounds.

Source and Calculations: The average weights were calculated from HDAR commercial marine dealer data. Landings by the troll and handline fishery were usually landed whole. If fish were processed prior to sale, e.g., headed and gutted, gilled and gutted, a conversion factor was applied to convert it to an estimated whole weight.

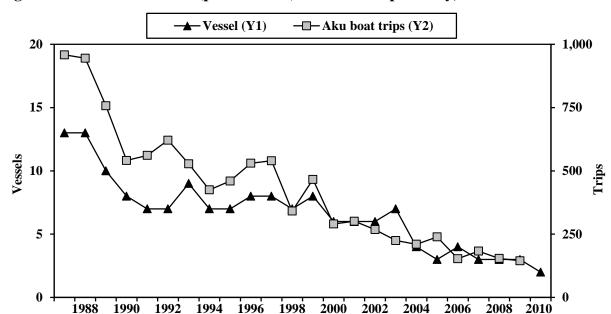
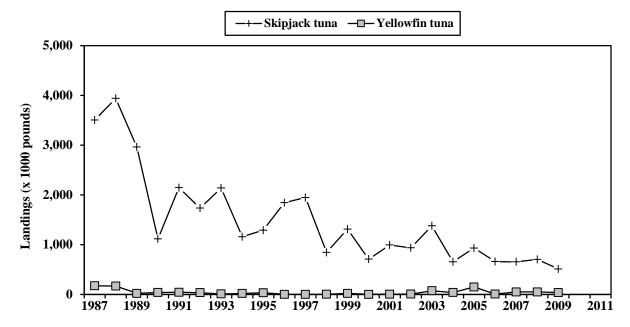


Figure 139. Hawaii aku boat (pole and line) vessel and trip activity, 1987-2011

Interpretation: The vessel and trip activity of the aku boat fishery has been in decline over the 25-year period with only two aku boat vessels fishing in 2010 and 2011. The steep decline occurred in the 1980s and was attributed primarily to the closure of the tuna cannery. Attrition of vessels, many which were built in the 1940s, and poor skipjack tuna landings also contributed to the long-term decline in this fishery. The most recent trip activity available for the aku boat fishery was a record low 145 trips in 2009.

Source and Calculations: The number of aku boat vessels and trips were counted from HDAR Commercial Aku Boat Report data. The number of aku boat vessels was determined by counting the number of unique vessel names. A unique combination of HDAR Commercial Marine License numbers, landing month and day was used to calculate a aku boat trip. The total number of aku boat trips included zero landing trips. Due to confidentiality rules (less than 3 vessels operating), data summaries were not available for 2010 and 2011.

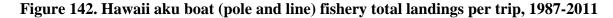
		Aku boat
T 7		
Year	Vessels	trips
1987	13	958
1988	13	945
1989	10	757
1990	8	541
1991	7	561
1992	7	621
1993	9	528
1994	7	425
1995	7	460
1996	8	530
1997	8	540
1998	7	341
1999	8	466
2000	6	290
2001	6	301
2002	6	268
2003	7	225
2004	4	210
2005	3	239
2006	4	153
2007	3	183
2008	3	154
2009	3	145
2010	2	
2011	2	
Average	6.4	427.9
SD	3.0	237.7

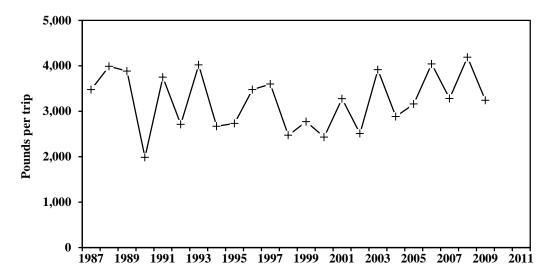

Figure 140. Hawaii aku boat (pole and line) landings and revenue, 1987-2011

Interpretation: The latest aku boat landing estimate was 508,000 pounds, worth an estimated \$711,000 in 2009. The trends for total landings and revenue were similar to the number of aku boat vessels and trip activity. Aku boat landings and revenue peaked in 1988, then decreased sharply in 1990, and have continued to decline slowly since.

Source and Calculations: Total landings and nominal revenue for the aku boat fishery were derived from HDAR Commercial Aku Boat Report data. The total landings and nominal revenue values were obtained by adding the landings and revenue values for all species caught by the aku boat fishery. The adjusted revenue is calculated by dividing the nominal revenue by the Honolulu CPI then multiplying the result by the current Honolulu CPI. Due to confidentiality rules (less than 3 vessels operating), data summaries were not available for 2010 and 2011.

	Total	Adjusted	Nominal		
	landings	revenue	revenue	Honolulu	
Year	(1000 lbs)	(\$1000) (\$1000)		CPI	
1987	3,503	\$7,668	568 \$3,751 11		
1988	3,940	\$7,842	\$4,063	121.7	
1989	2,962	\$7,567	\$4,146	128.7	
1990	1,116	\$3,186	\$1,873	138.1	
1991	2,146	\$4,295	\$2,706	148.0	
1992	1,735	\$3,658	\$2,415	155.1	
1993	2,137	\$3,543	\$2,415	160.1	
1994	1,159	\$2,620	\$1,835	164.5	
1995	1,291	\$2,166	\$1,550	168.1	
1996	1,844	\$3,287	\$2,389	170.7	
1997	1,947	\$3,270	\$2,393	171.9	
1998	845	\$1,515	\$1,106	171.5	
1999	1,312	\$2,269	\$1,674	173.3	
2000	708	\$1,556	\$1,168	176.3	
2001	994	\$1,843	\$1,400	178.4	
2002	936	\$1,642	\$1,260	180.3	
2003	1,378	\$1,698	\$1,334	184.5	
2004	656	\$1,064	\$863	190.6	
2005	932	\$1,278	\$1,076	197.8	
2006	661	\$987	\$880	209.4	
2007	653	\$718	\$671	219.5	
2008	703	\$889	\$866	228.9	
2009	511	\$693	\$679 230.0		
2010				234.9	
2011				243.6	
Average	1,481.3	2,837.2	1,848.4		
SD	937.9	2,178.2	1,043.2		


Figure 141. Hawaii aku boat (pole and line) fishery landings, 1987-2011



Interpretation: Total aku boat landings in 2006 were 654,000 pounds, 42% below the long-term average. The aku boat fishery landings consisted primarily of skipjack tuna. There were also small landings of yellowfin tuna. Skipjack tuna landings varied annually with an overall downward trend. Part of the reason for the decline in landings from this fishery was the closure of the tuna cannery in 1985. After the closure of the cannery, the aku boat fishery was left with only the fresh fish market.

Source and Calculations: The landing statistics for the aku boat fishery were derived from HDAR Commercial Aku Boat Report data. The aku boat landings were calculated by totaling catch by species. Due to confidentiality rules (less than 3 vessels operating), data summaries were not available for 2010 and 2011.

	Aku boat landings (x 1000 pounds)					
	Skipjack	Yellowfin	Other			
Year	tuna	tuna	tunas	Mahimahi	Total	
1987	3,328	173	0	2	3,503	
1988	3,768	168	0	4	3,940	
1989	2,938	21	2	1	2,962	
1990	1,073	39	4	0	1,116	
1991	2,102	44	1	0	2,146	
1992	1,682	36	4	14	1,735	
1993	2,121	10	3	3	2,137	
1994	1,133	19	6	0	1,159	
1995	1,256	34	0	0	1,291	
1996	1,842	2	0	0	1,844	
1997	1,942	0	0	5	1,947	
1998	842	3	0	0	845	
1999	1,291	21	0	0	1,312	
2000	704	2	1	1	708	
2001	988	4	1	1	994	
2002	927	6	2	1	936	
2003	1,292	73	10	3	1,378	
2004	615	38	1	2	656	
2005	779	149	3	1	932	
2006	648	6	7	0	661	
2007	600	50	3	1	653	
2008	645	50	8	1	703	
2009	471	37	1	2	511	
2010						
2011						
Average	1,434.3	42.8	2.4	1.8	1,481.3	
SD	912.0	51.6	2.8	3.0	937.9	

Interpretation: The most recent CPUE for skipjack tuna in the aku boat fishery was 3,238 pounds per trip in 2009. The aku boat skipjack tuna landings per trip varied substantially over the 23-year period.

Source and Calculations: Aku boat CPUE was measured as pounds per trip. The aku boat fishery CPUE statistics were derived from the HDAR Commercial Aku Boat Report data and measured as landings (in pounds) per trip. Landings per trip were calculated by dividing the pounds by the total number of aku boat trips. The calculation for aku boat CPUE included zero landing trips. Due to confidentiality rules (less than 3 vessels operating), data summaries were not available for 2010 and 2011.

	Aku boat CPUE				
	(pounds per trip)				
	Skipjack	Total			
Year	tuna	catch			
1987	3,474	3,657			
1988	3,987	4,169			
1989	3,881	3,913			
1990	1,983	2,063			
1991	3,746	3,826			
1992	2,709	2,794			
1993	4,017	4,047			
1994	2,667	2,727			
1995	2,731	2,806			
1996	3,475	3,479			
1997	3,596	3,606			
1998	2,469	2,478			
1999	2,770	2,815			
2000	2,429	2,436			
2001	3,274	3,291			
2002	2,508	2,521			
2003	3,911	4,026			
2004	2,882	3,033			
2005	3,157	3,785			
2006	4,040	4,122			
2007	3,278	3,514			
2008	4,187	4,560			
2009	3,238	3,494			
2010					
2011					
Average	3,235.0	3,348.5			
SD	641.7	687.7			

E. International

Introduction

The U.S Pacific Island Exclusive Economic Zones managed by the Council are surrounded by large and diverse fisheries targeting pelagic species. The International Module contains reported catches of pelagic species in the entire Pacific Ocean by fleets of Pacific Island nations and distant water fishing nations (DWFN) and information for a Stock Assessment and Fishery Evaluation (SAFE) report that includes the most recent assessment information in relation to status determination criteria. Fishery trends in the entire Pacific Ocean are illustrated for the purse seine, longline and pole-and-line fisheries. A table lists the U.S. longline landings as submitted to the Western and Central Pacific Fisheries Commission (WCPFC) and Inter-American Tropical Tuna Commission (IATTC).

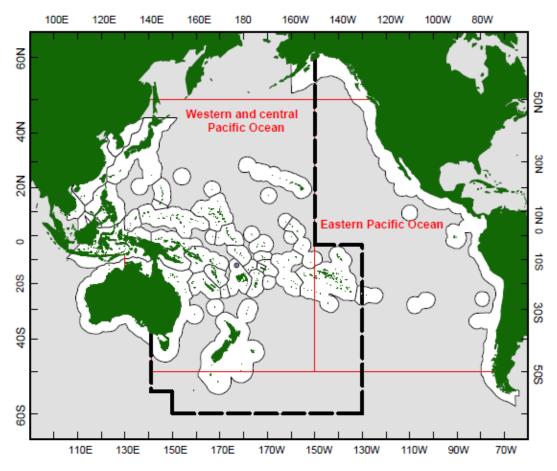
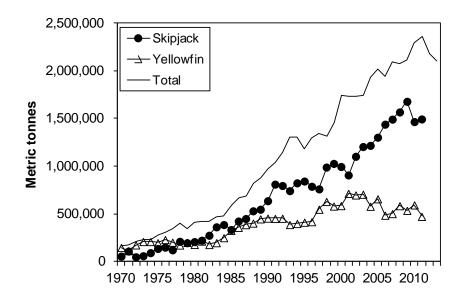


Figure 143. The western and central Pacific Ocean (WCPO), the eastern Pacific Ocean (EPO) and the WCPFC Convention Area (WCP-CA in dashed lines)

1. The 2011 purse-seine fishery in the WCPFC Convention Area (WCP-CA). Source: WCPFC-SC8-2011 GN-WP-01

Vessels: The majority of the historic WCP–CA purse seine catch has come from the four main Distant Water Fishing Nation (DWFN) fleets – Japan, Korea, Chinese-Taipei and USA, which numbered 147 vessels in 1995, declined to a low of 110 vessels in 2006 before increasing again to 136 vessels in 2011. The Pacific Islands fleets have gradually increased in numbers over the past two decades to a level of 87 vessels in 2011. The remainder of the purse seine fishery includes several fleets which entered the WCPFC tropical fishery in the 2000s (e.g. China, Ecuador, El Salvador, New Zealand and Spain). The total number of purse seine vessels was relatively stable over the period 1990-2006 (in the range of around 180–220 vessels), but over the last five years, the number of vessels has gradually increased, attaining a level of 283 vessels in 2011.


Catch: The provisional 2011 purse-seine catch of 1,688,336 mt was the lowest catch for five years and more than 220,000 mt lower than the record attained in 2009 (1,919,424 mt). The 2011 purse-seine skipjack catch (1,330,667 mt) was also the lowest for five years and significantly lower (nearly 200,000 mt) than the record catch in 2009; the proportion of adjusted skipjack tuna catch (79%) was in line with the average for the past three years, but higher than the average over the past 15 years (72%). The 2011 purse-seine catch estimate for yellowfin tuna (280,251 mt – 17%) was the lowest since 1996 and significantly lower (150,000+ mt) than the record catch taken in 2008 (434,149 mt). The provisional catch estimate for bigeye tuna for 2011 (77,095 mt) was amongst the highest on record but may be revised once all observer data for 2011 have been received and processed. The high bigeye catch in 2011 coincides with a record number of associated sets (WCPFC Database) and a pulse of bigeye recruitment in the purse seine fishery.

Fleet Distribution: The purse seine catch distribution in tropical areas of the WCP–CA is strongly influenced by El Niño–Southern Oscillation Index (ENSO) events. During the first half of 2007, the WCP–CA was in an ENSO-neutral state, but then moved into a prolonged La Niña state, which persisted throughout 2008 and into 2009. There was a transition in the middle of 2009 to an El Niño period which then presided into the first quarter of 2010. Conditions in the WCP-CA then switched back to a strong La Niña state over the latter months of 2010 and into the first quarter of 2011. By the middle of 2011, the WCP-CA was in an ENSO-neutral state and briefly returned to a strong La Niña period in late 2011, before waning again to neutral conditions in early 2012. The forecast for the remainder of 2012 is a shift to El Niño conditions. The strong La Niña in 2011 meant that the main fishing activity was again restricted to the western areas of the WCP-CA (the waters of the PNG, FSM and Solomon Islands) as experienced in other recent La Niña periods (e.g. 2008).

Table 125. Total reported purse seine catch (metric tons) of skipjack, yellowfin and bigeye tuna in the Pacific Ocean. Source: SPC 2011 Yearbook

Year	Skipjack	Yellowfin	Bigeye	Total
1968	67,336	93,533	4,809	165,678
1969	51,050	117,545	1,145	169,740
1970	58,000	148,741	3,154	209,895
1971	111,394	115,843	5,237	232,474
1972	51,427	176,118	4,815	232,360
1973	62,344	211,420	4,302	278,066
1974	94,762	211,521	2,908	309,191
1975	138,537	198,465	8,081	345,083
1976	152,613	232,602	18,945	404,160
1977	124,265	204,075	13,238	341,578
1978	213,706	174,715	20,733	409,154
1979	198,996	202,138	14,528	415,662
1980	210,600	180,744	25,109	416,453
1981	225,423	216,113	22,961	464,497
1982	276,982	180,121	19,231	476,334
1983	365,469	199,469	24,149	589,087
1984	389,206	251,895	29,288	670,389
1985	337,471	329,078	24,028	690,577
1986	426,191	360,367	28,487	815,045
1987	452,212	388,129	31,587	871,928
1988	533,343	404,769	32,269	970,381
1989	549,946	449,121	34,615	1,033,682
1990	639,377	456,863	42,255	1,138,495
1991	813,166	453,528	41,688	1,308,382
1992	798,669	455,431	49,127	1,303,227
1993	744,662	389,758	42,103	1,176,523
1994	826,738	400,662	71,556	1,298,956
1995	845,355	414,043	77,861	1,337,259
1996	790,699	419,625	102,367	1,312,691
1997	763,431	549,987	141,367	1,454,785
1998	991,941	631,368	120,778	1,744,087
1999	1,030,444	583,553	115,874	1,729,871
2000	997,866	588,177	147,780	1,733,823
2001	909,219	716,554	117,782	1,743,555
2002	1,104,834	699,639	124,713	1,929,186
2003	1,207,343	707,434	99,828	2,014,605
2004	1,219,633	581,193	140,090	1,940,916
2005	1,305,181	659,603	131,579	2,096,363
2006	1,441,691	487,350	148,017	2,077,058
2007	1,494,534	504,526	113,463	2,112,523
2008	1,570,077	587,255	133,611	2,290,943
2009	1,681,577	537,644	138,510	2,357,731
2010	1,468,825	595,396	109,664	2,173,885
2011	1,496,591	475,183	128,720	2,100,494
Average	664,389	38 5.92 9	61,644	1,111,063
STD Deviation	503,744	185,744	52,318	719,802

Figure 144. Total purse seine catch of skipjack and yellowfin tuna in the Pacific Ocean, 1968–2011. Source: SPC 2011 Yearbook

2. The 2011 longline fishery in the WCP-CA. Source: WCPFC-SC8-2011 GN-WP-01

Vessels: The total number of vessels involved in the fishery has generally fluctuated between 3,500 and 6,000 for the last 30 years. The fishery involves two main types of operation:

- Large (typically >250 GRT) **distant-water** freezer vessels which undertake long voyages (months) and operate over large areas of the region. These vessels may target either tropical (yellowfin, bigeye tuna) or subtropical (albacore tuna) species.
- Smaller (typically <100 GRT) **offshore** vessels which are usually **domestically-based**, undertaking trips less than one month, with ice or chill capacity, and serving fresh or air-freight sashimi markets, or [albacore] canneries.

The following broad categories of longline fishery, based on type of operation, area fished and target species, are currently active in the WCP–CA:

- South Pacific offshore albacore fishery comprises Pacific-Islands domestic "offshore" vessels, such as those from American Samoa, Cook Islands, Fiji, French Polynesia, New Caledonia, Samoa, Solomon Islands, Tonga and Vanuatu; these fleets mainly operate in subtropical waters, with albacore the main species taken.
- Tropical offshore bigeye/yellowfin-target fishery includes "offshore" sashimi longliners from Chinese-Taipei, based in Micronesia, Guam, Philippines and Chinese-Taipei, mainland Chinese vessels based in Micronesia, and domestic fleets based in Indonesia, Micronesian countries, Philippines, PNG, the Solomon Islands and Vietnam.
- Tropical distant-water bigeye/yellowfin-target fishery comprises "distant-water" vessels from Japan, Korea, Chinese-Taipei, mainland China and Vanuatu. These vessels primarily operate in the eastern tropical waters of the WCP–CA, targeting bigeye and yellowfin tuna for the frozen sashimi market.
- South Pacific distant-water albacore fishery comprises "distant-water" vessels from Chinese-Taipei, mainland China and Vanuatu operating in the south Pacific, generally below 20°S, targeting albacore tuna destined for canneries.
- Domestic fisheries in the sub-tropical and temperate WCP–CA comprise vessels targeting different species within the same fleet depending on market, season and/or area. These fleets include the domestic fisheries of Australia, Japan, New Zealand and Hawaii. For example, the Hawaiian longline fleet has a component that targets swordfish and another that targets bigeye tuna.
- South Pacific distant-water swordfish fishery is a relatively new fishery and comprises "distant-water" vessels from Spain.
- North Pacific distant-water albacore and swordfish fisheries mainly comprise "distant-water" vessels from Japan (swordfish and albacore), Chinese-Taipei (albacore only) and Vanuatu (albacore only).

Catch: The provisional WCP–CA longline catch (251,298 mt) for 2011 was the fifth highest on record, at around 15,000 mt lower than the highest on record attained in 2002 (266,963 mt). The WCP–CA albacore longline catch (96,219 mt - 38%) for 2011 was the second highest on record, 6,000 mt lower than the record (102,763 mt in 2010). In contrast, the provisional bigeye catch (67,599 mt - 27%) for 2011 was the lowest since 1997, but may be revised upwards when final estimates are provided. The yellowfin catch for 2011 (86,187 mt - 34%) was stable but slightly higher than the average catch level for this species over the period 2000-2010. A significant change in the WCP–CA longline fishery over the past 10 years has been the growth of the Pacific

Islands domestic albacore fishery, which has risen from taking 33% of the total south Pacific albacore longline catch in 1998 to accounting for around 50-60% of the catch in recent years. The combined national fleets (including chartered vessels) mainly active in the Pacific Islands domestic albacore fishery have numbered more than 500 (mainly small "offshore") vessels in recent years and are now on par with the number of distant-water longline vessels active in the WCP–CA.

The distant-water fleet dynamics continue to evolve in recent years, with catches down from record levels in the mid-2000s initially due to a reduction in vessel numbers, although vessel numbers for some fleets appear to be on the rise again in recent years. The Japanese distant-water and offshore longline fleets have experienced a substantial decline in both bigeye catches (from 20,725 mt in 2004 to 7,185 mt in 2011) and vessel numbers (366 in 2004 to 152 in 2011). The Chinese-Taipei distant-water longline fleet bigeye catch declined from 16,888 mt in 2004 to 6,579 mt (in 2011), mainly related to a substantial drop in vessel numbers (137 vessels in 2004 reduced to 75 vessels in 2009, but back up to 95 vessels in 2011). The Korean distant-water longline fleet experienced smaller declines in bigeye and yellowfin catches in recent years, but with a more significant drop in vessel numbers – from 184 vessels active in 2002 reduced to 108 vessels in 2008, but back to 124 vessels in 2011.

Fleet Distribution: Effort by the large-vessel, distant-water fleets of Japan, Korea and Chinese-Taipei account for most of the effort but there has been some reduction in vessel numbers in some fleets over the past decade. Effort is widespread as sectors of these fleets target bigeye and yellowfin for the frozen sashimi market in central and eastern tropical waters, and albacore for canning in the more temperate waters. Activity by the foreign-offshore fleets from Japan, mainland China and Chinese-Taipei is restricted to tropical waters, targeting bigeye and yellowfin for the fresh sashimi market; these fleets have limited overlap with the distant-water fleets. The substantial "offshore" effort in the west of the region is primarily by the Indonesian and Chinese-Taipei domestic fleets targeting yellowfin and bigeye. The growth in domestic fleets in the South Pacific over the past decade has been noted; the most prominent examples are the increases in the Samoan, Fijian and French Polynesian fleets, and more recently the Solomon Islands chartered vessels.

 $\begin{tabular}{ll} Table 126. Total reported longline catch (metric tonnes) of PMUS in the Pacific Ocean. \\ Source: SPC and I-ATTC \end{tabular}$

Year	Albacore	Yellowfin	Bigeye	Striped	Black	Blue	Swordfish	Total
, oa.	7 11000010		2.90,0	Marlin	Marlin	Marlin	011010	· Otal
1962	51,069	65,758	80,945	18,925	2,560	21,634	11,325	252,216
1963	44,734	72,158	109,157	19,625	2,918	23,626		283,845
1964	38,483	62,216	77,257	28,484	2,306	16,334		234,039
1965	39,681	61,107	59,008	23,229	2,808	12,864		208,555
1966	64,261	70,720	66,749	18,710	2,979	11,651	11,882	246,952
1967	73,773	45,005	68,669	21,961	3,081	10,729	12,243	235,461
1968	57,520	60,558	62,432	25,996	3,724	10,431	11,807	232,468
1969	44,028	66,701	84,442	17,529	3,260	11,767	15,278	243,005
1970	54,004	68,124	67,689	18,600	4,195	14,089	11,729	238,430
1971	53,512	64,940	66,602	16,579	4,316	9,204	10,572	225,725
1972	58,156	77,110	85,462	12,291	4,383	10,368	10,414	258,184
1973	63,735	73,515	91,062	10,763	4,698	11,036	11,112	265,921
1974	47,086	64,680	78,748	10,141	3,635	10,004	10,167	224,461
1975	37,396	79,056	99,356	9,154	3,669	9,279	10,840	248,750
1976	47,467	91,995	122,804	9,929	2,495	9,950	13,444	298,084
1977	55,703	105,035	140,335	6,093	3,048	10,036		334,131
1978	46,741	118,743	121,034	6,239	3,204	12,431	13,974	322,366
1979	40,900	116,538	112,621	9,196	2,727	13,942	13,836	309,760
1980	46,607	133,850	120,888	9,650	1,887	14,261	12,486	339,629
1981	51,558	101,124	94,980	9,649	2,256	14,808		287,556
1982	46,622	94,975	98,569	9,247	2,236	15,143		278,610
1983	40,895	94,557	101,455	7,948	1,981	13,464	13,449	273,749
1984	36,473	80,603	92,823	7,498	1,565	17,394	12,727	249,083
1985	41,919	87,164	117,651	7,108	1,228	13,255	14,300	282,625
1986	45,781	85,422	149,166	9,715	1,418	15,626	14,759	321,887
1987	37,390	93,003	159,478	13,205	1,891	21,685	17,606	344,258
1988	43,889	99,462	122,421	12,896	2,582	20,215	17,720	319,185
1989	33,274	82,555	124,136	10,119	1,400	17,285	15,897	284,666
1990	37,912	104,126	163,979	8,131	1,343	15,740	17,277	348,508
1991	44,341	85,177	151,274	8,230	1,695	17,561	23,384	331,662
1992	52,005	87,844	146,733	8,417	1,878	19,929	28,142	344,948
1993	62,141	87,573	128,833	14,175	1,645	22,425	25,824	342,616
1994	65,823	99,500	137,362	9,585	2,100	24,636	22,047	361,053
1995	63,456	97,907	114,614	10,438	1,493	25,332	20,209	333,449
1996	66,146	90,657	92,867	9,052	1,044	18,122	22,248	300,136
1997	83,022	90,248	110,879	9,483	1,117	18,459	28,755	341,963
1998	92,020	77,839	118,874	10,638	1,713	21,304	29,099	351,487
1999	82,722	67,843	101,406	8,503	2,021	18,263	28,108	308,866
2000	82,257	97,456	109,698	6,153	1,401	17,431	30,144	344,540
2001	90,599	104,617	132,285	6,740	1,621	19,780	34,293	389,935
2002	102,322	104,813	154,305	6,534	1,873	19,008	36,487	425,342
2003	89,644	108,101	133,393	7,270	2,103	28,209	38,397	407,117
2004	87,199	105,201	128,891	6,633	2,334	25,629	37,437	393,324
2005	92,925	93,754	115,254	5,798	2,771	23,454	28,686	362,642
2006	93,613	87,617	115,452	5,598	2,462	20,207	31,737	356,686
2007	88,271	84,793	110,722	4,755	1,808	17,384	34,311	342,044
2008	87,568	88,270	105,181	4,605	1,869	16,480	34,146	338,119
2009	109,482	102,480	111,046	3,847	2,046	16,900	33,775	379,576
2010	114,914	96,272	102,978	3,887	2,212	18,070	34,697	373,030
2011	105,086	99,483	96,054	4,553	1,898	17,132	36,862	361,068
Average	62,723	87,565	109,160	10,876	2,378	16,679		309,634
STD deviation	22,681	17,414	26,488	5,821	899	4,814	9,564	54,356

Figure 145. Reported longline tuna catches in the Pacific Ocean. Source: SPC and I-ATTC.

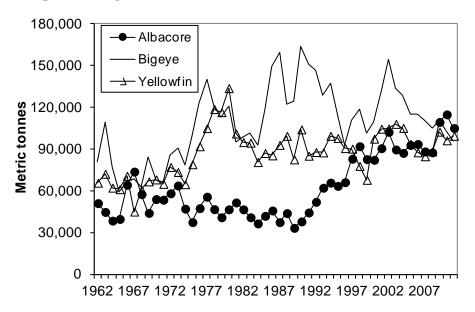
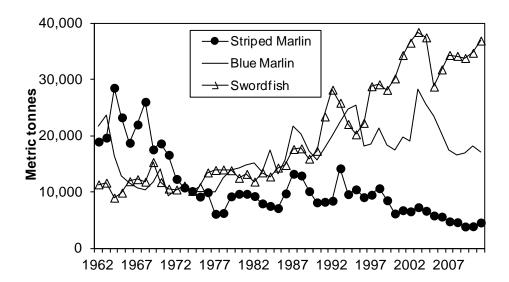



Figure 146. Reported longline billfish catches in the Pacific Ocean. Source: SPC and I-ATTC $\,$

3. The 2011 pole-and-line fishery in the WCP-CA. Source: WCPFC-SC8-2011 GN-WP-01

Vessels: The pole-and-line fleet was composed of less than 200 vessels in the 2011 fishery which excludes vessels in the Indonesia domestic fishery.

Catch: The 2011 pole-and-line catch (164,416 mt) was the lowest annual catch since the mid-1960s and continuing the trend in declining catches for three decades. Skipjack tends to account for the majority of the catch (~70-80% in recent years, but typically more than 85% of the total catch in tropical areas) and albacore (8–20% in recent years) is taken by the Japanese coastal and offshore fleets in the temperate waters of the north Pacific. Yellowfin tuna (5–10%) and a small component of bigeye tuna (1–6%) make up the remainder of the catch. The Japanese distant-water and offshore fleets (92,975 mt in 2011) and the Indonesian fleets10 (60,415 mt in 2007) account for most of the WCP–CA pole-and-line catch. The catches by the Japanese distant-water and offshore fleets in recent years have been the lowest for several decades and this is no doubt related to the continued reduction in vessel numbers (in 2011 reduced to only 90 vessels, the lowest on record). The Solomon Islands fleet recovered from low catch levels experienced in the early 2000s (only 2,773 mt in 2000 due to civil unrest) to reach a level of 10,448 mt in 2003. This fleet ceased operating in 2009, but resumed fishing in 2011.

Fleet Distribution: The WCP–CA pole-and-line fishery has several components:

- The year-round tropical skipjack fishery, mainly involving the domestic fleets of Indonesia, Solomon Islands and French Polynesia, and the distant water fleet of Japan;
- Seasonal sub-tropical skipjack fisheries in the home waters of Japan, Australia, Hawaii and Fiji;
- A seasonal albacore/skipjack fishery east of Japan (largely an extension of the Japan home-water fishery).

Table 127. Total reported pole-and-line catch (metric tonnes) of skipjack in the Pacific Ocean. Source: SPC 2011 Yearbook

Year	Catch
1970	386,544
1971	344,963
1972	179,383
1973	262,352
1974	296,831
1975	232,119
1976	287,838
1977	302,163
1978	337,448
1979	292,205
1980	338,682
1981	300,198
1982	266,004
1983	304,149
1984	382,358
1985	250,956
1986	338,616
1987	264,700
1988	305,356
1989	292,646
1990	225,415
1991	294,667
1992	253,674
1993	283,838
1994	231,161
1995	262,400
1996	213,963
1997	228,872
1998	258,375
1999	255,288
2000	246,531
2001	187,938
2002	181,234
2003	202,792
2004	193,464
2005	217,943
	208,546
2006	
2007	212,899
2008	218,326
2009	200,739
2010	222,876
2011	203,040
Average	261,178
STD deviation	53,718

Figure 147. Reported pole-and-line catch (metric tons) in the Pacific Ocean. Source: SPC 2011 Yearbook

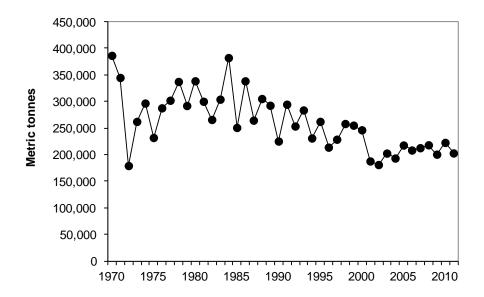


Figure 148. Estimated total catch of tuna species in the Pacific Ocean. Source: SPC 2011 Yearbook

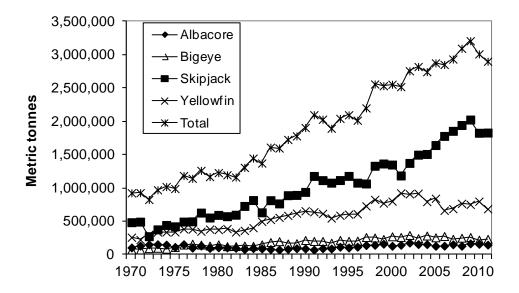
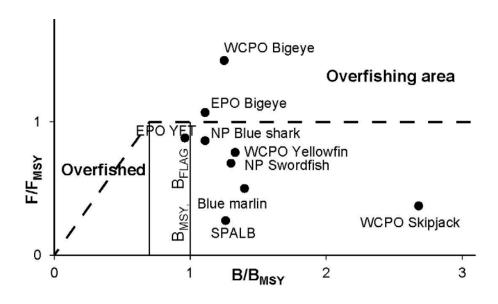


Table 128. Estimated annual catch (metric tons) of tuna species in the Pacific Ocean. Source: SPC 2011 Yearbook

Year	Albacore	Bigeye	Skipjack	Yellowfin	Total
1970	105,911	75,234	485,202	260,003	926,350
1971	133,348	75,920	493,663	225,017	927,948
1972	152,045	95,662	275,261	303,562	826,530
1973	154,422	101,076	377,579	338,713	971,790
1974	149,330	87,414	443,719	339,198	1,019,661
1975	113,804	113,745	423,264	340,054	990,867
1976	155,028	149,377	494,428	386,087	1,184,920
1977	102,141	162,527	497,970	381,548	1,144,186
1978	134,054	149,335	629,341	349,707	1,262,437
1979	98,292	134,305	555,278	381,690	1,169,565
1980	107,775	152,547	594,696	374,011	1,229,029
1981	106,185	125,462	575,531	389,406	1,196,584
1982	99,778	126,691	597,493	338,975	1,162,937
1983	80,643	134,722	729,377	362,992	1,307,734
1984	95,904	130,760	817,577	403,089	1,447,330
1985	90,739	152,132	633,311	496,771	1,372,953
1986	81,934	187,051	815,566	526,287	1,610,838
1987	74,082	199,811	767,274	557,652	1,598,819
1988	83,617	165,274	890,459	587,843	1,727,193
1989	94,281	170,187	894,616	621,120	1,780,204
1990	90,381	217,834	940,250	656,924	1,905,389
1991	73,534	203,486	1,179,721	641,437	2,098,178
1992	94,061	203,181	1,116,726	617,146	2,031,114
1993	90,238	178,213	1,078,769	548,517	1,895,737
1994	116,152	220,035	1,117,915	588,503	2,042,605
1995	104,959	205,578	1,179,996	606,282	2,096,815
1996	116,926	208,596	1,078,545	611,900	2,015,967
1997	141,576	262,741	1,066,216	729,857	2,200,390
1998	144,737	255,563	1,331,990	827,208	2,559,498
1999	161,790	233,000	1,366,104	772,984	2,533,878
2000	130,616	273,307	1,350,242	801,292	2,555,457
2001	145,286	263,513	1,186,556	924,337	2,519,692
2002	178,438	293,280	1,375,090	910,916	2,757,724
2003	156,641	245,665	1,499,018	920,118	2,821,442
2004	155,575	284,845	1,509,329	794,655	2,744,404
2005	129,991	258,085	1,643,285	844,729	2,876,090
2006	132,204	277,542	1,780,080	663,653	2,853,479
2007	153,229	236,052	1,856,476	688,036	2,933,793
2008	131,141	252,244	1,944,104	768,245	3,095,734
2009	167,158	262,488	2,025,905	752,573	3,208,124
2010	159,714	223,635	1,827,599	800,832	3,011,780
2011	148,294	235,266	1,830,834	687,181	2,901,575
Average	122,285	190,081	1,0308389	574,311	1,917,065
STD deviation	29,335	62,705	493,301	201,312	741,408

3. Stock status and WPRFMC reference points


This section contains a brief review of the stock status for several pelagic species and the status of these stocks in relation to WPRFMC reference points. Stock assessments are presented annually at the Scientific Committee (SC) of the WCPFC and at the International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). In August 2012, the SC reviewed an assessment for south Pacific albacore and oceanic white tip shark. Recent stock status for various species are summarized from the SC species summary statements (http://www.wcpfc.int/node/4587 and http://www.wcpfc.int/node/5408 which also contains additional information on recent developments in the fishery, sizes of fish and trends in catch per unit effort (CPUE), recruitment, biomass and fishing mortality. In July 2012, the 12th meeting of the ISC reviewed an assessment for North Pacific striped marlin and summary statements from the meeting are available (http://isc.ac.affrc.go.jp/pdf/ISC12pdf/ISC12_Plenary_Report-FINAL.pdf).

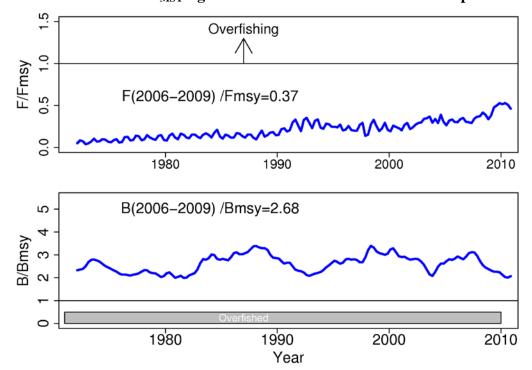
Amendment 10 of the WPRFMC Pelagic FMP provided new specifications of overfishing criteria and control rules that trigger Council action based on the status of pelagic stocks. Amendment 10 defined Maximum Sustainable Yield (MSY) as a control rule that specifies the relationship of Fishing Mortality (F) to Biomass (B) and other indicators of productive capacity under a MSY harvest policy. Because fisheries must be managed to achieve optimum yield, not MSY, the MSY control rule is a benchmark control rule rather than an operational one. However, the MSY control rule is useful for specifying the "objective and measurable criteria for identifying when the fishery to which the plan applies is overfished" that are required under the MSA. The National Standard Guidelines (50 CFR 600.310) refer to these criteria as "status determination criteria" and state that they must include two limit reference points, or thresholds: one for F that identifies when overfishing is occurring and a second for B or its proxy that indicates when the stock is overfished (Figure 149). The status determination criterion for F is the maximum fishing mortality threshold (MFMT). Minimum stock size threshold (MSST) is the criterion for B. If fishing mortality exceeds the MFMT for a period of one year or more, overfishing is occurring. If stock biomass falls below MSST in a given year, the stock or stock complex is overfished. A Council must take remedial action in the form of a new FMP, an FMP amendment, or proposed regulations when it has been determined by the Secretary of Commerce that overfishing is occurring, a stock or stock complex is overfished, either of the two thresholds is being approached, or existing remedial action to end previously identified overfishing has not resulted in adequate progress.

Table 129. Schedule of completed stock assessments for WPRFMC PMUS

Albacore Tuna (S. Pacific)	2012	Swordfish (N. Pacific)	2009
Albacore Tuna (N. Pacific)	2011	Wahoo	
Other tuna relatives (Auxis sp.,		Yellowfin Tuna (WCPO)	2011
(allothunnus sp., Scomber sp.)			
Bigeye Tuna (WCPO)	2011	Kawakawa	
Black Marlin		Bluefin Tuna (Pacific)	2008
Blue Marlin	2002	Common Thresher Shark	
SharkBlue		Pelagic Thresher Shark	
Mahimahi		Bigeye Thresher Shark	
Oilfishes		Shotfin Mako Shark	
Opah		Longfin Mako Shark	
Pomfrets		Blue Shark (N. Pacific)	2009
Sailfish		Silky Shark	
Shortbill Spearfish		Oceanic Whitetip Shark	2012
Skipjack Tuna (WCPO)	2011	Salmon Shark	
Striped Marlin (N. Pacific)	2012	Squid	

Figure 149. Specification of fishing mortality and biomass reference points in the WPRFMC Pelagics FMP and current stock status in the western-central (WCPO) and eastern Pacific Ocean (EPO)

Skipjack tuna in the WCP-CA


Stock status: The 2011 stock assessment indicates that for the skipjack stock in the WCP-CA overfishing is not occurring ($F_{\text{current}} / F_{\text{MSY}} < 1$), that the stock is not in an overfished state ($B_{\text{current}} / B_{\text{MSY}} > 1$), and that exploitation is modest relative to the stock's biological potential (Figure 150).

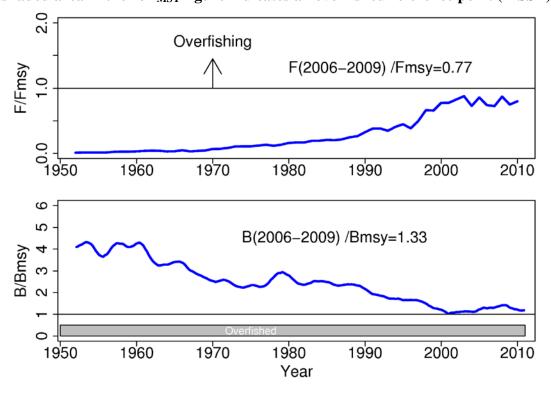
Management advice and implications: Catches in 2011 were roughly 1.497 million mt, slightly below the record high catch of 1.608 million mt in 2009. Equilibrium yield at the current F is about 1.14 million mt, which is about 76% of the MSY level. The assessment continues to show that the stock is currently only moderately exploited (FCUR/FMSY = 0.37) and fishing mortality levels are sustainable. However, there is concern that high catches in the equatorial region could result in range contractions of the stock, thus reducing skipjack availability to higher latitude (e.g. Japan, Australia, New Zealand, and Hawaii) fisheries.

If recent fishing patterns continue, catch rate levels are likely to decline and catch should decrease as stock levels are fished down to MSY levels. Due to the rapid change of the fishing mortality and biomass indicators relative to MSY in recent years, increases of fishing effort should be monitored. The Commission should consider developing limits on fishing for skipjack to limit the declines in catch rate associated with further declines in biomass.

Fishing is having a significant impact on stock size, especially in the western equatorial region and can be expected to affect catch rates. The stock distribution is also influenced by changes in oceanographic conditions associated with El Nino and La Nina events, which impact upon catch rates and stock size. Additional purse-seine effort will yield only modest gains in long-term skipjack catches and may result in a corresponding increase in fishing mortality for bigeye and yellowfin tunas. The management of total effort in the WCPO should recognize this.

Figure 150. Ratios of F/F_{MSY} (top) and B/B_{MSY} (bottom) for skipjack tuna in the WCP-CA. The horizontal line at 1.0 in the F/F_{MSY} figure indicates an overfishing reference point. The shaded area in the B/B_{MSY} figure indicates an overfished reference point.

Yellowfin tuna in the WCP-CA


Stock status: The 2011 stock assessment indicates that for the yellowfin stock in the WCP-CA overfishing is not occurring ($F_{\text{current}}/F_{\text{MSY}}$ < 1), that the stock is not in an overfished state ($B_{\text{current}}/B_{\text{MSY}}$ > 1) (Figure 151).

Management advice and implications: The WCPFC Scientific Committee (SC) determined that the WCPO yellowfin appears to be capable of producing MSY. The stock is not experiencing overfishing and is not in an overfished state. Projections to 2021 indicate that fishing mortality is projected to remain below FMSY and the spawning biomass will remain above SB_{MSY}.

However, the SC noted that levels of fishing mortality, exploitation rates and depletion differ between regions, and that exploitation rates were highest in the western equatorial region (region 3 in the stock assessment model), which accounts for \sim 81% of the total yellowfin tuna catch, and that the spawning biomass in this region is estimated to have declined to about 31% of the unexploited level (SBB₂₀₁₀,F=0).

The SC recommended that there be no increase in fishing mortality in the western equatorial region. The increase in catch of juvenile yellowfin has resulted in a moderate (~40%) reduction in the potential yield of the WCPO yellowfin stock. The SC concluded that MSY levels would increase if the mortality of juvenile yellowfin was reduced.

Figure 151. Ratios of F/F_{MSY} (top) and B/B_{MSY} (bottom) for yellowfin tuna in the WCP-CA. The horizontal line at 1.0 in the F/F_{MSY} figure indicates an overfishing reference point. The shaded area in the B/B_{MSY} figure indicates an overfished reference point (MSST)

Big eye tuna in the WCP-CA

Stock status: A stock assessment was undertaken for bigeye during 2011. The WCPFC chose a model to represent the basebase and 5 additional models to characterize uncertainty.

 $F_{\text{current}}/F_{\text{MSY}}$ is estimated at 1.46 (base case; range 1.16 – 2.10) indicating that overfishing is occurring for the WCPO bigeye tuna stock (Figure 19, Table 6) and that in order to reduce fishing mortality to F_{MSY} the base case indicates that a 32% reduction in fishing mortality is required from the 2006–2009 level. Considering historical levels of fishing mortality, a 39% reduction in fishing mortality from 2004 levels is required and a 28% reduction from average 2001–2004 levels (consistent with the aim of CMM2008-01).

The base case indicates that the current total and spawning biomass are higher than the associated MSY levels ($Bcurrent/B \sim MSY = 1.25$ and SBcurrent/SB = 1.19). However, two of the alternate models found that SBcurrent < 1.0 with a range across the six models considered of 0.86 - 1.49. Therefore, there is a possibility that bigeye tuna is currently in an overfished state.

An analysis of historical patterns in the mix of fishing gears indicates that MSY has been reduced to less than half its levels prior to 1970 through increased harvest of juveniles. Recent overfishing could result in further losses in potential yields in the future.

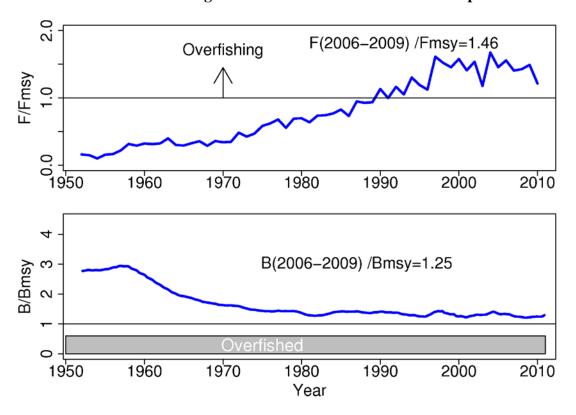
Management advice and implications: The SC recommends a minimum of 32% reduction in fishing mortality from the average levels for 2006-2009 to return the fishing mortality rate to F_{MSY} . This recommended level of reduction is equivalent to a minimum 39% reduction of the 2004 level in fishing mortality, and a 28% reduction of the average 2001-2004 levels.

It is too early to quantitatively conclude whether CMM2008-01 has reduced fishing mortality for bigeye tuna to the levels specified in the CMM. Data for 2009 and 2010 have been incorporated into the stock assessments, but the data for these years are incomplete and estimates of fishing mortality in the final year of the model (2010) are particularly uncertain.

The FAD closure introduced in 2009 contributed to the reduction of bigeye catches in 2009 and preliminarily in 2010 (Agenda item 4.3a). Total bigeye purse seine effort between 20N-20S has declined in 2010 and 2011 since the high of roughly 1.9 million mt in 2009 (for flag specific references, refer to attachment B, CMM 2008-01).

Total purse seine effort between 20N-20S decreased in 2010 and 2011 from the record high in 2009 (which corresponded to the implementation of CMM2008-01). This occurred because of an increase in days fished and the provisions and exemptions within the CMM2008-01 and a range of other reasons.

Longline catch in 2009 increased, stopping a downward trend since a high of 425,342 mt in 2002. However, longline catch has resumed a gradual decrease in 2010 and 2011 (for flag specific references, refer to attachment F, CMM 2008-01).

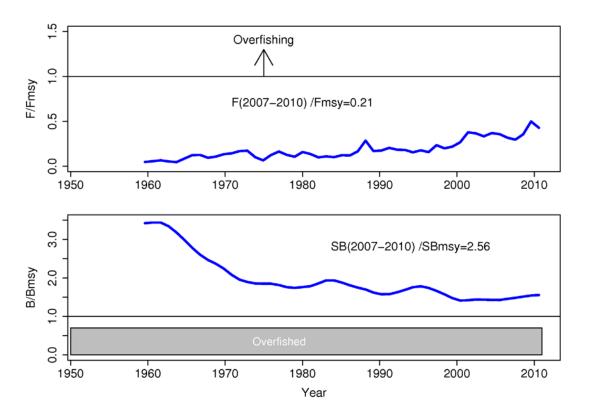

Reported catches since 2009 from the mix of surface fisheries in Indonesia and Philippines declined by 33% in 2010, however confirmation is required when more detailed data for 2010 are available including purse seine effort data.

Projections to 2021 indicate that fishing mortality would be reduced to close to the F_{MSY} level, and the stock would move to a slightly overfished state. However, these conclusions should be treated with caution because projections are based on incomplete data and the assumption that catch and effort levels in 2010 will be maintained.

Overfishing and the increase in catch of juvenile bigeye have resulted in a considerable reduction in the potential yield of the WCPO bigeye stock. The SC concludes that *MSY* levels would increase if the mortality of juvenile bigeye was reduced.

The SC noted that levels of fishing mortality, exploitation rates and depletion differ between regions, and that exploitation and depletion rates were highest in equatorial regions (regions 3 and 4 in the stock assessment model), which accounts for 88% of the total bigeye tuna catch (2001-2010), and that the spawning biomass in these regions is estimated to have declined to about 17% of the level that is estimated to occur in the absence of fishing (SB2010, F=0). The Commission may consider measures that utilize a spatial management approach.

Figure 152. Ratios of F/F_{MSY} F (top) and B/B_{MSY} (bottom) for bigeye tuna in the WCP-CA. The horizontal line at 1.0 in the F/F_{MSY} figure indicates an overfishing reference point. The shaded area in the B/BMSY figure indicates an overfished reference point.



South Pacific albacore tuna

Stock status: A stock assessment was undertaken for albacore during 2012. The 2012 assessment results are generally similar to, but more optimistic than those of the 2009 and 2011 assessments. The key conclusions, based on the median of the grid sensitivities, are that overfishing is not occurring and the stock is not in an overfished state. Spawning potential depletion levels of albacore were moderate at ~37%. However, SC8 noted that depletion levels of the exploitable biomass is estimated between about 10% and 60%, depending on the fishery, having increased sharply in recent years.

Management implications: The South Pacific albacore stock is currently not overfished and overfishing is not occurring. Current biomass is sufficient to support current levels of catch. However, for several years the SC has noted that any increases in catch or effort are likely to lead to declines in catch rates in some regions, especially for longline catches of adult albacore, with associated impacts on vessel profitability. SC8 further noted that vessel activity must be managed, as per the requirements of CMM 2010-05. Given the recent expansion of the fishery and recent declines in exploitable biomass available to longline fisheries, and given the importance of maintaining catch rates, the SC recommends that longline fishing mortality be reduced if the Commission wishes to maintain economically viable catch rates.

Figure 153. Ratios of F/F_{MSY} (top) and B/B_{MSY} (bottom) for South Pacific albacore. The horizontal line at 1.0 in the F/F_{MSY} figure indicates an overfishing reference point. The shaded area in the B/B_{MSY} figure indicates an overfished reference point

Stock status - North Pacific albacore

An assessment was completed in June 2011. The ISC noted that F2006-2008 is significantly below F2002-2004 and provided the following recommendations on conservation advice:

- a) The stock is considered to be healthy at average historical recruitment levels and fishing mortality (F2006-2008).
- b) Sustainability is not threatened by overfishing as the F2006-2008 level (current F) is about 71% of FSSB-ATHL and the stock is expected to fluctuate around the long-term median SSB (~400,000 t) in the short- and long-term future.
- c) If future recruitment declines by about 25% below average historical recruitment levels, then the risk of SSB falling below the SSB-ATHL threshold with 2006-2008 F levels increases to 54% indicating that the impact on the stock is unlikely to be sustainable.
- d) Increasing F beyond F2006-2008 levels (current F) will not result in proportional increases in yield as a result of the population dynamics of this stock.
- e) The current assessment results confirm that F has declined relative to the 2006 assessment, which is consistent with the intent of the previous (2006) WG recommendation.

Stock status – Western and Central Pacific striped marlin in the North Pacific (WCNPSTR)

The WCNPSTR stock is overfished and experiencing overfishing. The current (2010) spawning biomass is 65% below $SB_{MSY}=2,713$ mt and the current fishing mortality (2007-2009) exceeds $F_{MSY}=0.61$ by 24%. Reducing fishing mortality would likely increase spawning stock biomass and may improve the chances of higher recruitment. Given the current pessimistic status of the stock, SC8 recommends that the Commission strengthen the existing CMM to ensure the recovery of NPSR based on information provided by ISC.

Stock status – Oceanic white-tip shark in the WCP-CA

Spawning biomass, total biomass and recruitment all exhibit a declining trend since 1995 (the first year of the assessment). Current spawning biomass is low and is estimated to be at 15% of SB_{MSY} . Fishing mortality from the non-target longline fishery has an increasing trend since 1995 while the fishing mortality from the targeted longline fishery and the purse seine fisheries has varied without trend. Current fishing mortality is high and is estimated to be over 6 times greater than F_{MSY} . The key conclusions are that overfishing is occurring and the stock is in an overfished state relative to MSY-based reference points ($SB_{current}/SB_{MSY}$ 0.153 (0.082-0.409)) and depletion based reference points ($SB_{current}/SB_{zero}$ 0.065 (0.034-0.173)). This conclusion is robust to uncertainties in key model assumptions.

Management advice and implications: Despite the data limitations going into the assessment, and the wide range of uncertainties considered, all of the accepted model runs indicate that the WCPO oceanic whitetip shark stock is currently overfished and overfishing is occurring relative to commonly used MSY-based reference points and depletion-based reference points. Management measures to reduce fishing mortality and to rebuild spawning biomass have been agreed to under CMM 2011-04, but mitigation to avoid capture is recommended.

Stock status – North Pacific swordfish

The North Pacific WCPO and EPO SWO stocks were assessed by the ISC Billfish Working Group in 2009. Based on the 2009 stock assessment results, the exploitable biomass of the WCPO SWO stock was estimated to be about 75,000 t in 2006 (B2006), roughly 30% above BMSY. The exploitation rate on the WCPO stock in 2006 was estimated to be 14% with a total catch of roughly 9,900 t or roughly 69% of MSY (MSY=14,400 t). Based on the 2010 stock assessment update results for the EPO stock only, the exploitable biomass of the EPO SWO stock was estimated to be about 69,000 t in 2006, over 200% above BMSY. The ISC indicated that both the WCPO and EPO stocks of swordfish are healthy and above the level required to sustain recent catches.

Stock status - Pacific bluefin tuna

A summary of the 2010 assessment update is as follows:

- 1. A number of sensitivity runs were conducted in 2010 to investigate uncertainties in biological assumptions and fishery data. Results indicate that the assumption of adult M is particularly influential to the estimate of absolute spawning biomass and fishing mortality. Although absolute estimates from the stock assessment model were sensitive to different assumptions of M, relative measures were less sensitive.
- 2. The estimate of spawning biomass in 2008 (at the end of the 2007 fishing year) declined from 2006 and is estimated to be in the range of the 40-60 percentile of the historically observed spawning biomasses.
- 3. Average Fishing Mortality 2004-2006 (F2004-2006) had increased from F2002-2004 by 6% for age-0, approximately 30% for ages 1-4, and 6% for ages 5+.
- 4. 30-year projections predict that at F2004-2006 median spawning biomass is likely to decline to levels around the 25th percentile of historical spawning biomass with approximately 5% of the projections declining to or below the lowest previously observed spawning biomass. At F2002-2004 median spawning biomass is likely to decline in subsequent years but recover to levels near the median of the historically observed levels. In contrast to F2004-2006, F2002-2004 had no projections (0%) declining to the lowest observed spawning biomass. In both projections long-term average yield is expected to be lower than recent levels.

Management implications: ISC's plenary reached consensus on the management advice for Pacific bluefin tuna as follows: given the conclusions of the July 2010 PBFWG workshop, the current (2004–2006) level of F relative to potential biological reference points, and the increasing trend of F, it is important that the level of F is decreased below the 2002–2004 levels, particularly on juvenile age classes.

Table~130.~Estimates~of~stock~status~in~relation~to~over fishing~and~over fished~reference~points~for~WPRFMC~PMUS

	Overfishing	Is overfishing	Approaching	Overfished	Is the stock	Approaching	Assessment	Natural	
Stock	reference point	occurring?	Overfishing (2 yr)	reference point	overfished?	Overfished (2 yr)	results	mortality ¹	MSST
Skipjack Tuna (WCPO)	F/F _{MSY} =0.37	No	No	B/B _{MSY} =2.68	No	No	Hoyle et al. 2011	>0.5 yr ⁻¹	0.5 B _{MSY}
Yellowfin Tuna (WCPO)	F/F _{MSY} =0.77	No	No	B/B _{MSY} =1.33	No	No	Langley et al. 2011	0.8-1.6 yr ⁻¹	0.5 B _{MSY}
Albacore Tuna (S. Pacific)	F/F _{MSY} =0.21	No	No	SB/SB _{MSY} =2.56	No	No	Hoyle et al. 2012	0.4 yr ⁻¹	0.7 SB _{MS}
Albacore Tuna (N. Pacific)	Unknown	No		Unknown	No		ISC 2011	0.4 yr ⁻¹	0.6 B _{MSY}
Bigeye Tuna (WCPO)	F/F _{MSY} =1.46	Yes	Not applicable	B/B _{MSY} =1.25	No	No	Davies et al. 2011	0.4 yr ⁻¹	0.6 B _{MSY}
Blue Marlin (Pacific)	F/F _{MSY} =0.50	No	Unknown	B/B _{MSY} =1.4	No	Unknown	Kleiber et al. 2002	0.2 yr ⁻¹	0.8 B _{MSY}
Swordfish (N. Pacific)	F/F _{MSY} =0.54	No	Unknown	B/B _{MSY} =1.60	No	Unknown	ISC 2009	0.3 yr ⁻¹	0.7 B _{MSY}
Striped Marlin (N. Pacific)	F/F _{MSY} =1.24	Yes	Not applicable	SB/SB _{MSY} =0.35	Yes	Not applicable	ISC 2012	0.4 yr ⁻¹	0.6 SB _{MS}
Blue Shark (N. Pacific) ²	F/F _{MSY} =0.86	No	Unknown	B/B _{MSY} =1.11	No	Unknown	Kleiber et al. 2009	0.2 yr ⁻¹	0.8 B _{MSY}
Oceanic white-tip shark (WCPO)	F/F _{MSY} =6.69	Yes	Not applicable	SB/SB _{MSY} =0.15	Yes	Not applicable	Rice and Harley	0.18 yr ⁻¹	0.82 B _{MS}
Other Billfishes		Unknown			Unknown			Unknown	
Other Pelagic Sharks		Unknown			Unknown			Unknown	
Other PMUS		Unknown			Unknown			Unknown	
¹ Estimates based on Boggs et a		in the assessment	ts						
Assssment results based on rule	n - A								

Table 131. U.S. and American Samoa longline landings in the North Pacific Ocean, American Samoa landings in the South Pacific Ocean, and total landings as reported to WCPFC and IATTC, 2007-2011

	1	U.S. in No	orth Pacif	ic Ocean		Americ	an Samo	a in Nort	h Pacific Ocean	Americ	an Samo	a in Sout	h Pacific	Ocean			Total		
	2011	2010	2009	2008	2007	2011	2010	2009		2011	2010	2009	2008	2007	2011	2010	2009	2008	2007
<u>Vessels</u>	128	123	127	129	129	115	11	10		24	26	26	28	29	152	146	151	155	156
Species																			
Albacore, North Pacific	498	324	178	298	243	90	32	2		0	0	0	0		589	356	179	298	2
Albacore, South Pacific	0	0	0	0		0	0	0		2,514	3,943	3,883	3,550	5,183	2,514	3,943	3,883	3,550	5,1
Bigeye tuna	3,566	3,577	3,741	4,649	5,381	965	310	89		211	178	160	132	218	4,742	4,064	3,990	4,781	5,5
Pacific bluefin tuna	0	0	1	0	0	0	0	0		2	3	1	1	2	2	3	2	1	
Skipjack tuna	158	114	117	117	91	26	12	4		96	110	151	165	162	280	235	271	282	2
Yellowfin tuna	737	462	429	836	833	119	28	12		318	445	386	333	640	1,174	935	826	1,169	1,4
Other tuna	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	
TOTAL TUNA	4,959	4,477	4,464	5,900	6,549	1,200	381	107		3,141	4,679	4,581	4,180	6,205	9,301	9,537	9,152	10,081	12,7
			_	_								_				4		_	
Black marlin	1	0	0	0	1	0	0	0		1	0	0	0	0	1	1	0	0	
Blue marlin	291	238	334	333	255	37	10	4		40	45	37	34	38	367	293	374	367	
Sailfish	10	9	10	10	10	1	0	0		4	2	2	1	1	15	11	11	11	
Spearfish	169	79	97	210	141	31	5	1		5	2	3	1	1	205	86	100	211	
Striped marlin, North Pacific	262	124	234	411	267	63	6	3		0	0	0	0		325	130	237	411	- :
Striped marlin, South Pacific	0	0	0	0		0	0	0		3	2	4	1	1	3	2	4	1	
Other marlins	1	1	0	2	1	0	0	0		0	0	0	0	0	1	1	0	2	
Swordfish, North Pacific	838	1,013	1,242	1,301	1,428	18	11	3		0	0	0	0		856	1,024	1,244	1,301	1,4
Swordfish, South Pacific	0	0	0	0		0	0	0		12	11	9	7	13	12	11	9	7	
TOTAL BILLFISH	1,570	1,464	1,916	2,267	2,103	151	33	10		64	62	54	43	54	1,786	1,559	1,980	2,310	2,
Blue shark	9	6	9	7	6	3	0	0		2	1	1	1	1	14	7	9	7	
Mako shark	43	63	102	109	119	7	2	0		0	0	0	0	0	50	65	102	109	
Thresher	15	16	28	39	42	3	0	0		0	0	0	0	0	18	16	28	39	
Other sharks	2	3	6	4	7	0	0	0		1	1	0	0	1	3	3	6	4	
TOTAL SHARKS	69	87	144	159	174	13	3	0		4	2	1	1	2	86	92	146	160	1
Mahimahi	290	229	265	323	376	47	13	4		11	9	16	12	14	347	251	285	335	3
M ahimahi M oonfish	309	356	485	412	451	75	21	9		3	2	3	2	3	386	379	497	415	
M oontish Oilfish	175	164	485 194	178	180	49	12	4		1	0	2	0	0	224	176	200	178	
Pomfret	115	169	202	224	234	30	10	7		0	0	1	0	0	145	180	210	224	2
Wahoo	124	100	116	194	169	17	5	2		93	133	139	133	197	235	238	258	326	
	20	100	8	194	169	0	0	0		0	0	139	133	197	233	10	258	326 14	3
Other fish FOTAL OTHER	1,033	1,028	1,269	1,345	1,420	217	61	26		108	145	162	148	215	1,358	1,234	1,458	1,493	1,0
	- 05					1.50-	,			0.04=	4.00=				10.50-	10.10-			
GEAR TOTAL	7,631	7,056	7,794	9,671	10,246	1,582	478	144		3,317	4,887	4,798	4,372	6,475	12,530	12,422	12,736	14,043	16,7

U.S. longline catch estimates originate from the PIFSC enhanced (with weight estimates) logbook 5x5 degree summary database, and from the SWFSC for California American Samoa Nom. P. Bluefin assumed O. tuna

Table 132. U.S. longline landings in the Pacific and Eastern Pacific Oceans as reported to WCPFC and IATTC, 2007-2011

	U.S. long	gline catcl	h (mt) by	species i	n the	U.S. long	line catcl	n (mt) by	species in t	he
	Pacific C	cean nor	th of the	Equator,	2007-2011.	Eastern l	Pacific Oc	ean, 2007	-2011.	
			U.S.				Al	l U.S. ves	sels	
	2011	2010	2009	2008	2007	2011	2010	2009	2008	2007
Vessels	129	125	128	130	130	112	117	102	119	85
<u>Species</u>										
Albacore, North Pacific	596	373	201	353	245	98	49	22	55	7
Albacore, South Pacific	0	0	0	0		0	0	0	0	
Bigey e tuna	4,615	4,933	4,560	5,927	5,693	1,050	1,356	730	1,277	417
Pacific bluefin tuna	0	0	1	0	0	0	0	0	0	0
Skipjack tuna	173	135	136	121	93	15	21	16	4	1
Yellowfin tuna	791	516	524	869	838	54	54	84	33	11
Other tuna	0	0	0	0	0	0	0	0	0	0
TOTAL TUNA	6,176	5,957	5,423	7,269	6,869	1,217	1,481	851	1,369	437
Black marlin	1	0	0	0	1	0	0	0	0	0
Blue marlin	329	283	357	348	261	38	45	20	15	7
Sailfish	12	10	10	11	10	2	1	1	1	0
Spearfish	200	109	111	226	147	31	31	14	16	7
Striped marlin, North Pacific	294	152	256	426	276	31	28	19	16	9
Striped marlin, South Pacific	0	0	0	0		0	0	0	0	
Other marlins	1	1	0	2	1	0	0	0	0	0
Swordfish, North Pacific	1,602	1,657	1,813	1,980	1,666	764	643	569	679	307
Swordfish, South Pacific	0	0	0	0	, i	0	0	0	0	
TOTAL BILLFISH	2,437	2,212	2,549	2,994	2,363	867	748	623	727	331
Blue shark	11	7	9	7	7	2	1	1	0	3
Mako shark	60	89	119	131	127	18	26	17	22	9
Thresher	16	17	29	42	43	1	1	1	3	2
Other sharks	2	3	6	4	7	0	1	0	0	0
TOTAL SHARKS	89	117	164	184	183	20	30	19	25	14
M ahimahi	366	415	327	374	426	76	185	58	51	62
Moonfish	673	782	874	615	535	364	426	380	202	122
Oilfish	214	216	223	203	187	39	53	25	25	10
Pomfret	148	220	251	279	256	33	51	42	55	25
Wahoo	138	115	133	206	174	14	15	14	12	4
Other fish	20	12	8	14	10	0	2	0	0	0
TOTAL OTHER	1,559	1,761	1,815	1,690	1,588	526	732	519	345	223
GEAR TOTAL	10,261	10,047	9,950	12,137	11,003	2,630	2,39()	2,012	2,466	1,004

Literature cited

Boggs, C., Dalzell, P., Essington, T., Labelle, M., Mason, D., Skillman, R., and J. Wetherall. 2000. Recommended overfishing definitions and control rules for the western Pacific regional fishery management council's pelagic fishery management plan. Administrative Report H-00-05, Honolulu Laboratory, SWFSC, NMFS, NOAA.

Brodziak, J. 2012. Executive Summary: Western and Central North Pacific Striped Marlin Stock Assessment. ISC/12/BILLWG-2/1

Davies, N., Hoyle, S., Harley S., Langley, A., Kleiber, P. and J. Hampton 2011. Stock assessment of bigeye tuna in the western and central Pacific Ocean. WCPFC-SC7-2011/SA-WP-02, Pohnpei, Federated States of Micronesia, 9-17 August 2011.

Hoyle, S., Hampton, J., and N. Davies 2012. Stock assessment of albacore tuna in the South Pacific Ocean. WCPFC-SC8-2012/SA-WP-04, Busan, South Korea, 7-15 August 2012. ISC Albacore Working Group. 2011. Stock Assessment of Albacore Tuna in the North Pacific Ocean in 2011. WCPFC-SC7-2011/SA-WP-10, Pohnpei, Federated States of Micronesia, 9-17 August 2011.

ISC Billfish Working Group. 2009. International Scientific Committee for Tuna and Tuna-Like Species [ISC] Plenary. Annex 7. Report of the Billfish Working Group Workshop (19-26 May 2009; Busan, Korea), 74 p.

ISC Billfish Working Group. 2012. Annex 5 REPORT OF THE BILLFISH WORKING GROUP WORKSHOP. WCPFC-SC8-2012/SA-WP-10, Busan, South Korea, 7-15 August 2012.

Kleiber, P., Hampton, J., Hinton, M., and Y. Uozumi. 2002. Update on blue marlin stock assessment. WP BBRG–10, SCTB 15, Honolulu, Hawaii, 22–27 July 2002.

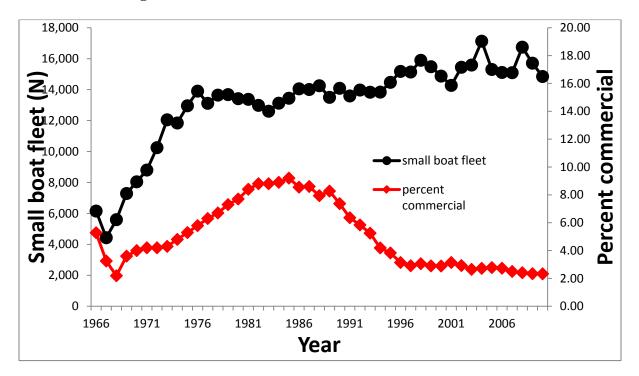
Kleiber, P., Clarke, S., Bigelow, K., Nakano, H., McAllister, M. and Y. Takeuchi. 2009. North Pacific Blue Shark Stock Assessment. NOAA Tech. Memo. NMFS PIFSC-17. 74 p.

Langley, A., Hoyle, S. and J. Hampton 2011. Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WCPFC-SC7-2011/SA-03, Pohnpei, Federated States of Micronesia, 9-17 August 2011.

Rice, J. and S. Harley. 2012. Stock assessment of oceanic whitetip sharks in the western and central Pacific Ocean. WCPFC-SC8-2012/SA-WP-06, Busan, South Korea, 7-15 August 2012.

F. Marine Recreational Fisheries of the Western Pacific Region

Introduction


Fishing, either for subsistence or recreation, continues to be an important activity throughout the Western Pacific Region in the four major populated island areas of the Western Pacific Region, Hawaii, American Samoa, Guam and the Commonwealth of the Northern Mariana Islands (CNMI). Fish consumption in Micronesia and Polynesia typically averages about 130 lb/per capita/yr (Dalzell et al. 1996) and even in more culturally diverse Hawaii, fish consumption is almost three times the US national average at about 42 lb/person/yr (Dalzell & Paty 1996).

Recreational fisheries in the Western Pacific Region

In Hawaii, recreational shoreline fishing was more popular than boat fishing up to and after WW II. Boat fishing during this period referred primarily to fishing from traditional canoes (Glazier 1999). All fishing was greatly constrained during WW II through time and area restrictions, which effectively stopped commercial fishing and confined recreational fishing to inshore areas (Brock 1947). Following WWII, the advent of better fishing equipment and new small boat hulls and marine inboard and outboard engines led to a growth in small vessel-based recreational fishing.

A major period of expansion of small vessel recreational fishing occurred between the late 1950s and early 1970s, through the introduction of fiberglass technology to Hawaii and the further refinement of marine inboard and outboard engines (Figure 154). By the early 1960s, there were an estimated 5,300 small boats in the territory being used for recreational fishing. By the 1980s, the number of recreational or pleasure craft had risen to almost 13,000 vessels and to about 15,000 vessels in the 1990s. There are presently about 30 fishing clubs in Hawaii and a variety of different recreational fishing tournaments organized both by clubs and independent tournament organizers. Hawaii also hosts between 150 and 200 boat-based fishing tournaments, about 30 of which are considered major international competitions, with over 20 boats and entry fees of \$100. This level of interest in recreational fishing is sufficient to support a local fishing magazine, Hawaii Fishing News, which besides articles of interest to recreational fishermen, includes a monthly roundup of the fishing activity and conditions at the major small boat harbors in the State.

Figure 154. Annual number of small vessel fleet registrations in Hawaii, 1966-2010 - total fleet size and percentage of vessels being registered for commercial fishing (Source: Hawaii Division of Boating and Ocean Resources)

Elsewhere in the region, recreational fishing is less structured. In Guam, fishing clubs have been founded along ethnic lines by Japanese and Korean residents. These clubs had memberships of 10-15 people, along with their families. Four such clubs were founded in Guam during the past 20 years, but none lasted for more than a 2-3 years (Gerry Davis, NMFS PIRO pers. comm.). There was also a Guam Boating Association comprising mostly fishermen, with several hundred members. This organization functioned as a fishing club for about 10 years and then disbanded. Some school groups and the Boy Scouts have formed fishing clubs focused on rod and reel fishing, and there is still one spear-fishing club that has only a handful of members, but appears to still be active. There are also some limited fishing tournaments on Guam, including a fishing derby for children organized by the local Aquatic and Wildlife Resources Division. There are few fishing clubs in the in the Northern Mariana Islands. The Saipan Sportfishing Association (SSA) has been in existence for at least 16 years, and is the sponsor of the annual Saipan International Fishing Tournament, which is usually held in August or September. In 1997, the SSA listed approximately 40 members.

A recent innovation in the Mariana Islands is the publication of a free quarterly magazine, Mariana Fishing Magazine, which covers recreational fishing in both Guam and the CNMI.

Levine and Allen (2009) provide an overview of fisheries in American Samoa, including subsistence and recreational fisheries. Citing a survey conducted in American Samoa by Kilarski *et al.* (2006), Levine and Allen noted that approximately half of the respondents stated that they fished for recreation, with 71 percent of these individuals fishing once a week or less. Fishermen

also fished infrequently for cultural purposes, although cultural, subsistence, and recreational fishing categories were difficult to distinguish as one fishing outing could be motivated by all three reasons.

Boat-based recreational fishing in American Samoa has been influenced primarily by the fortunes of fishing clubs and fishing tournaments. Tournament fishing for pelagic species began in American Samoa in the 1970s, and between 1974 and 1998, a total of 64 fishing tournaments were held in American Samoa (Tulafono 2001). Most of the boats that participated were alia catamarans and small skiffs. Catches from tournaments were often sold, as most of the entrants are local small-scale commercial fishermen. In 1996, three days of tournament fishing contributed about one percent of the total domestic landings. Typically, 7 to 14 local boats carrying a total of 55 to 70 fishermen participated in each tournament, which were held two to five times per year (Craig et al. 1993).

The majority of tournament participants operated 28-foot alia, the same vessels that engage in the small-scale longline fishery. With more emphasis on commercial longline fishing since 1996, interest in the tournaments waned (Tulafono 2001) and pelagic fishing effort shifted markedly from trolling to longlining. Catch-and-release recreational fishing is virtually unknown in American Samoa. Landing fish to meet cultural obligations is so important that releasing fish would generally be considered a failure to meet these obligations (Tulafono 2001). Nevertheless, some pelagic fishermen who fish for subsistence release fish that are surplus to their subsistence needs.

More recently, recreational fishing has undergone a renaissance in American Samoa through the establishment of the Pago Pago Game Fishing Association (PPGFA), which was founded by a group of recreational anglers in 2003³. The motivation to form the PPGFA was the desire to host regular fishing competitions. There are about 15 recreational fishing vessels ranging from 10 ft single engine dinghies to 35 ft twin diesel engine cabin cruisers. The PPGFA has annually hosted international tournaments in each of the past five years with fishermen from neighboring Samoa and Cook Islands attending. The recreational vessels use anchored fish aggregating devices (FADs) extensively, and on tournaments venture to the various outer banks which include the South Bank (35 miles), North East Bank (40 miles NE), South East bank (37 miles SE), Two Percent Bank (40 miles), and East Bank (24 miles East). Several recreational fishermen have aspirations to become charter vessels and are in the process of obtaining captains (6 pack) licenses. In 2010, PPGFA played host to the 11th Steinlager I'a Lapo'a Game Fishing Tournament, which was a qualifying event for the International Game Fish Association's Offshore World Championship in Cabo San Lucas, Mexico.

There is no full-time regular charter fishery in American Samoa similar to those in Hawaii or Guam. However, Pago Pago Marine Charters⁴, which is concerned primarily with industrial work such as underwater welding, construction, and salvage, also includes for-hire fishing among the services it offers.

٠.

³ http://ppgfa.com/page/about-ppgfa

⁴ http://pagopagomarinecharters.com/

There is also some recreational fishing activity at some of the Pacific Remote Island Areas (PRIAs), namely at Midway, Wake and Palmyra Islands. There are no resident populations at Howland & Baker, Johnston and Jarvis Islands and fishing activity at these locations is likely minimal. There was a tourist facility at Midway until 2002, which operated a charter boat fishery targeting primarily pelagic fish at Midway Atoll. The company operated five vessels for charter fishing at Midway: three 22-26 ft catamarans for lagoon and nearshore fishing operations and two 38 ft sportfishing vessels used for blue water trolling. In addition, there were approximately seven small vessels maintained and used by Midway residents for recreational fishing. Of this total, three vessels engaged primarily in offshore trolling for PMUS including yellowfin tuna, whaoo and marlin. All vessels fishing at Midway were required to file a float plan prior to a fishing trip and complete the "Midway Sports Fishing Boat Trip Log" upon completion of each trip. The US Fish and Wildlife Service was responsible for compiling these catch data.

At Palmyra Atoll, an island privately owned by The Nature Conservancy, a 22 ft catamaran is used for offshore trolling and four small boats operated within the lagoon used for bonefish angling. There are several craft used for recreational fishing at the military base on Wake Island including two landing craft and two small vessels.

Recreational catches

Estimates of recreational catch for the Western Pacific are given in Table 133. The data for Guam, CNMI, and American Samoa are based on the proportion of catches landed for sale and catches retained and not sold, in all landings sampled by creel surveys in each area. The ratio of unsold to sold catch in the samples was used in conjunction with the total catch estimate expanded from the creel survey data. This was adjusted downwards based on the creel surveys by the ratio of landings by vessels retaining 100% of their catch to the total unsold catch. This accounts for that fraction of the catch not sold by commercial fishing vessels. The volume of fish landed by vessels retaining all their catch was labeled the nominal recreational catch.

The recreational catch for Hawaii is generated from the Hawaii Marine Recreational Fisheries Statistical Survey, which is a collaborative effort between the State of Hawaii's Division of Aquatic Resources and the National Marine Fisheries Service (NMFS) Office of Science and Technology. This survey is part of the NMFS Marine Fisheries Recreational Statistical Survey (MRFSS) which has been modified following a review by the National Academy of Science in 2006 under the auspices of the Marine Recreational Improvement Program (MRIP).

Table 133. Estimated recreational pelagic fish catches in the four principal island groups of the Western Pacific Region in 2011

Location	Total catch (lbs)	Unsold catch (lb)	Nominal recreational catch (lb)	Recr. catch as % of total catch	Recr. fishing trips
American Samoa	96,966	3,350	2,920	3.01%	11
Guam	388,632	171,540	161,700	41.60%	8,647
Hawaii	40,241,431	NA	10,952,202	27.21%	224,027
CNMI	255,154	38,062	36,528	14.31%	3,878

Charter vessel sports-fishing

Tables 134-138 present summaries of the charter vessel sportsfishing in the Western Pacific. Charter fishing in Hawaii is more focused on catching blue marlin, which in 2004 formed about 50 % of the total annual charter vessel catch by weight, but in 2011 only formed about a 30% of the charter vessel catch with nearly half the catch comprising yellowfin and mahimahi (Table135). Although commercial troll vessels take blue marlin, these comprise only about a ten percent of their catch, with the majority of the target species being yellowfin, mahimahi, wahoo and skipjack (Table 135). Unlike other parts of the US, there is little recreational fishery interest in catching sharks in Hawaii.

Guam has a charter fishing sector, which unlike Hawaii, caters for both pelagic and bottomfish fishing. Until recently, the troll charter fishery was expanding, but over the past few years, the number of vessels involved and level of fishing has decreased in response to lower tourist volume from Japan due to the ongoing economic recession. The charter vessel fleet comprises about 5% of Guam's commercial troll fleet and accounts for about 13% of the troll trips, although catches form only 4.3% of the troll catch (see Guam module in this volume).

Charter fishing in CNMI is limited, with about ten boats operating on Saipan, and a few vessels on Tinian conducting occasional fishing charters. Tourism is not a significant component of the American Samoa economy, and hence there is little charter fishing activity, although Pago Pago Marine Charters was established in 2012 as a full-time charter fishing operation.

Table 134. Estimated catches by pelagic charter fishing vessels in Guam, Hawaii and CNMI in 2011

Location	Catch (lb)	Effort (trips)	Principal species
Guam	25,134	1,068	Mahimahi, Blue marlin, Skipjack, Wahoo
Hawaii	589,108	9,572	Yellowfin, Mahimahi, Blue marlin, Wahoo
CNMI	6,808	188	Wahoo, Skipjack, Mahimahi, Blue marlin

Charter vessel fishing in the Western Pacific Region has elements of both recreational and commercial fishing. The primary motivation for charter patrons is recreational fishing, with the

possibility of catching large game fish such as blue marlin. The charter vessel skipper and crew receive compensation in the form of the patron's fee, but are also able to dispose of fish in local markets, as is the case in Hawaii. The catch composition of charter vessel catch versus conventional commercial trolling in Hawaii reflects the different target species of the two fisheries. Blue marlins are the dominant feature of charter vessels in Hawaii, while in Guam (Tables 135 & 136), the charter catch composition is dominated by mahimahi and skipjack tuna. One of the features of the Guam charter industry is offering Japanese patrons fresh sashimi from the catch.

Table 135. Comparison of species composition of landings made by Hawaii pelagic charter vessels versus commercial troll vessels, 2011

	Char	ter	Comm	ercial
Species	Landings (lb)	Percent	Landings (lb)	Percent
Blue marlin	182,934	31.05%	221,902	10.62%
Yellowfin tuna	150,161	25.49%	736,501	35.26%
Mahimahi	132,709	22.53%	451,166	21.60%
Skipjack	45,568	7.74%	207,231	9.92%
Wahoo	32,411	5.50%	269,206	12.89%
Striped marlin	18,062	3.07%	15,362	0.74%
Spearfish	13,583	2.31%	10,948	0.52%
Bigeye tuna	5,852	0.99%	142,554	6.83%
Black marlin	1,417	0.24%	6,753	0.32%
Albacore	0	0.00%	6,900	0.33%
All other	6,411	1.09%	20,171	0.97%
Total	589,108	100.00%	2,088,692	100.00%

Table 136. Comparison of species composition of landings made by Guam pelagic charter vessels versus commercial troll vessels, 2011

	Charte	er	Commer	cial
Species	Landings (lb)	Percent	Landings (lb)	Percent
Skipjack Tuna	9,259	36.48%	340,934	60.55%
Mahimahi	9,246	36.42%	81,642	14.50%
Wahoo	4,545	17.90%	32,809	5.83%
Yellowfin Tuna	1,051	4.14%	80,763	14.34%
Blue Marlin	994	3.92%	17,901	3.18%
Others	289	1.14%	8,980	1.59%
Total	25,384	100.00%	563,029	100.00%

In Hawaii, there is considerable variation in charter vessel catches between the various islands (Table 137), with the largest charter vessel fishery based on the island of Hawaii. In 2011, charter vessel catches on the island of Hawaii accounted for nearly 35% of the total charter vessel

landings within the state, with Oahu, Kauai, and Maui County charter vessels forming the remaining charter vessel catch.

Table 137. Charter vessel catches in Hawaii by island, 2011

					CPUE
Island	Catch (lb)	Percent	Trips	Percent	(lb/trip)
Hawaii	205,083	34.81%	4,199	43.87%	48.84
Kauai	80,919	13.74%	1,108	11.58%	73.03
Maui County	87,955	14.93%	2,046	21.37%	42.99
Oahu	215,151	36.52%	2,219	23.18%	96.96
Total	589,108	100.00%	9,572	100.00%	61.54

^{*} DAR confidentiality protocols prevent reporting Molokai and Lanai separately, and these are aggregated with data for Maui, reported collectively as Maui County

Most charter fishing on the island of Hawaii is conducted from Kona's small boat harbor at Honokohau, and about 47% of the charter vessel catch in 2011 was blue marlin (Table 138). Blue marlin used to be about two-thirds of the catch, but this number has fallen considerably with the spread of a stronger catch and release ethic for billfish by charter vessel operators at Honokohau. Elsewhere in 2011, yellowfin dominated charter vessel landings on Kauai, and mahimahi dominated the charter vessel landings on Maui and Oahu. Blue marlin comprised between 10% and 36% of catches at Oahu, Maui and Kauai. Other important species in charter vessel catches, depending on location, include skipjack and wahoo.

Table 138. Composition of charter vessel catches in the Main Hawaiian Islands, 2011

Hawaii	Landings (lb)	Percent	Kauai	Landings (lb)	Percent
Blue marlin	96,371	46.99%	Yellowfin tuna	34,302	42.39%
Yellowfin tuna	45,738	22.30%	Skipjack	19,820	24.49%
Mahimahi	18,955	9.24%	Mahimahi	10,414	12.87%
Skipjack	12,382	6.04%	Blue marlin	8,187	10.12%
Wahoo	11,239	5.48%	Wahoo	3,194	3.95%
Spearfish	9,266	4.52%	Bigeye tuna	2,564	3.17%
Striped marlin	5,576	2.72%	Striped marlin	840	1.04%
Bigeye tuna	2,287	1.12%	Spearfish	282	0.35%
Black marlin	1,417	0.69%	Black marlin		0.00%
All other	1,852	0.90%	All other	1,317	1.63%
Total	205,083	100.00%	Total	80,919	100.00%

Maui	Landings (lb)	Percent	Oahu	Landings (lb)	Percent
Mahimahi	40,302	47.61%	Mahimahi	63,039	41.44%
Blue marlin	22,964	21.29%	Yellowfin tuna	62,332	40.98%
Wahoo	8,656	16.93%	Blue marlin	55,412	36.43%
Yellowfin tuna	7,790	8.32%	Skipjack	11,943	7.85%

Total	87,955	100.00%	Total	152,112	100.00%
All other	1,491	2,31%	All other	1751	1.15%
Black marlin			Black marlin		0.00%
Bigeye tuna	413	0.27%	Bigeye tuna	588	0.39%
Skipjack	1,424	0.99%	Spearfish	2,069	1.36%
Spearfish	1,966	1.02%	Striped marlin	8,696	5.72%
Striped marlin	2,950	1.26%	Wahoo	9,321	6.13%

Recreational Fishing Data Collection in Hawaii

Recreational fish catches in Hawaii are monitored through the Hawaii Marine Recreational Fishing Survey (HMRFS), a collaborative project of the NMFS Office of Science and Technology and the Hawaii Division of Aquatic Resources. This project is a segment of the nationwide Marine Recreational Fisheries Statistical Survey (MRFSS), which has been used by NMFS to estimate recreational catches in most of the coastal states of the US.

The MRFSS program uses a triple survey approach that has been developed over the 20+ years of its history. For each two-month survey period (wave) a random sample of households is called by telephone to determine how many have conducted any fishing in the ocean, their mode of fishing (private boat, rental boat, charter boat, or shoreline), what methods were used, and how much effort (number of trips and hours) was expended. Concurrently, surveyors are sent out to boat launch ramps, small boat harbors, and shoreline fishing sites to interview fishermen to fill out intercept survey forms. The intercept survey collects data on fishing area, fishing methods, trip/effort, species caught, and lengths and weights of fish. The sites are randomly selected, but weighted proportionately to fishing pressure so that the sites with the highest pressures are likely to be surveyed more often. In addition, the charter boat operators are surveyed by a separate survey. This additional survey of the charter fleet serves the same function as the random digit dialing household survey and is necessary because out of town fishers that charter vessels would not be covered by randomly calling the Hawaiian populace. The telephone and charter survey data are used to estimate total statewide fishing effort and the intercept surveys provide detailed catch and trip information. Data from the three surveys are combined and expanded to yield statewide estimates of total effort and catch by species, mode, and county.

NMFS and HDAR contributed joint funding for intercept surveys and charter boat surveys on the islands of Oahu, Hawaii, and Maui. NMFS also funded the Random Digit Dialing household telephone survey via a national contractor beginning in January 2001. The HMRFS project commenced in July 2001 but took until 2003 until annual results were first reported from this initiative.

In 2006, the MRFSS survey was reviewed by the National Research Council of the National Academy of Sciences (NRC 2006). The reviewers were critical of the statistical methods employed to generate expansions of the survey data to annual recreational catch estimates for each state. Consequently, NMFS conducted an overhaul of the MRFSS survey to respond to the NRC criticisms. As such, readers of this report should understand that there is uncertainty

surrounding the various expansions from the HMRFS survey and figures reported here may change as new methods are implemented to conduct the expansions from survey data.

Table 139 provides summaries of the recreational boat and shoreline fish catch between 2003 and 2011 for pelagic and other species of fish.

Table 139. Recreational fish catches in Hawaii from 2003-2011. Source: HDAR HMFRS and NMFS PIFSC

Year	(Fish type)	Boat -based (lbs)	Shore-based (lbs)	Total
2003	Pelagic	14,905,992	422,434	15,328,426
	Others	517,119	1,429,637	1,946,756
	Total	15,423,111	1,852,071	17,275,182
2004	Pelagic	12,210,684	120,780	12,331,464
	Others	1,193,998	1,148,203	2,342,202
	Total	13,404,683	1,268,983	14,673,666
2005	Pelagic	12,804,980	229,060	13,034,040
	Others	795,859	1,015,650	1,811,509
	Total	13,600,839	1,244,710	14,845,549
2006	Pelagic	11,830,852	258,802	12,089,653
	Others	856,243	1,519,289	2,375,533
	Total	12,687,095	1,778,091	14,465,186
2007	Pelagic	13,956,647	114,831	14,071,478
	Others	404,284	346,457	750,741
	Total	14,360,931	461,288	14,822,219
2008	Pelagic	21,802,390	56,937	21,859,327
	Others	231,584	773,611	1,005,195
	Total	22,033,974	830,548	22,864,522
2009	Pelagic	17,071,412	66,635	17,138,048
	Others	272,841	369,993	642,834
	Total	17,344,253	436,629	17,780,882
2010	Pelagic	11,754,054	14,469	11,768,523
	Others	728,295	492,484	1,220,778
	Total	12,482,349	506,952	12,989,301
2011	Pelagic	14,216	10,574,696	10,588,912
	Others	691,864	377,506	1,069,370
	Total	706,080	10,952,202	11,658,281

Figures 155-159 summarize aspects of the boat-based recreational fishery landings for six major pelagic fish species in Hawaii (blue marlin, striped marlin, mahimahi, skipjack, yellowfin and wahoo) between 2003 and 2011 Skipjack tuna are the most commonly recreationally caught pelagic fish (Figure 155) followed by yellowfin tuna, mahimahi and wahoo. In terms of weight, however, yellowfin tuna dominates recreational pelagic fish catches (Figure 156).

Although blue marlin numbers in the catch are small compared to other species, because of their much greater average weight (Figure 157) they can comprise a significant fraction of the recreational catch by weight. Average weights for most species tended to be relatively similar between years for mahimahi, skipjack, and wahoo, but may vary considerably between years for blue marlin, striped marlin and yellowfin tuna. This is also reflected in the nominal catch rate (lbs/trip) in Figure 158, where yellowfin catch rate was high in 2003, declined in 2004 and 2005, and then increased to a peak in 2009 and 2011. The distribution of fishing recreational fishing effort shows that boat-based activity is highest in the summer and fall when the weather is at its most clement in Hawaii (Figure 159).

Figure 155. Catch number estimates for six major pelagic species in 2003-2011. Black vertical bars are 95% confidence intervals.

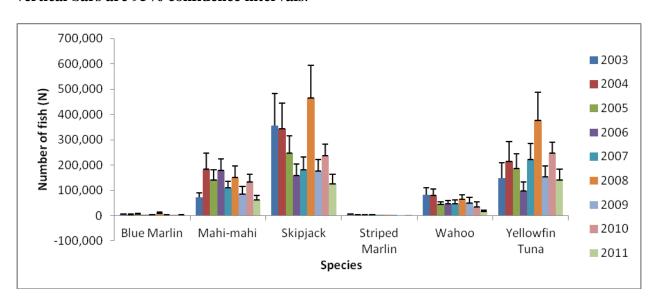


Figure 156. Annual recreational fishery landings by weight of six major pelagic fish species in Hawaii between 2003 and 2011

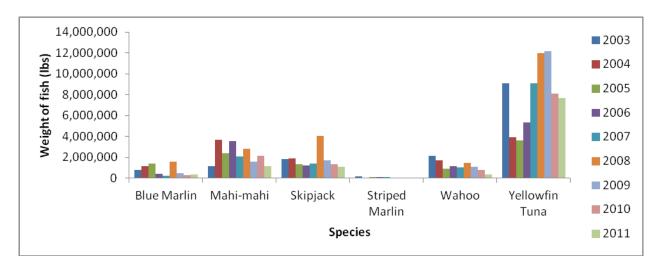


Figure 157. Average weight of six major pelagic fish species caught by recreational fishing in Hawaii between 2003 and 2011

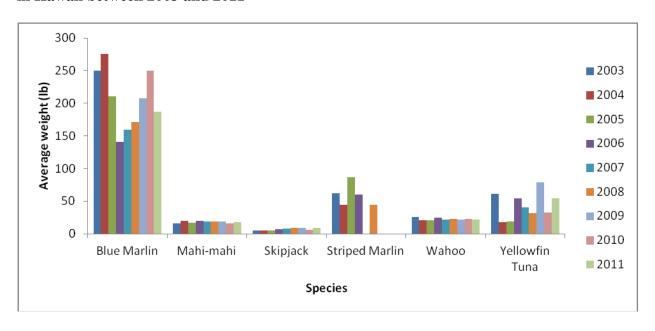
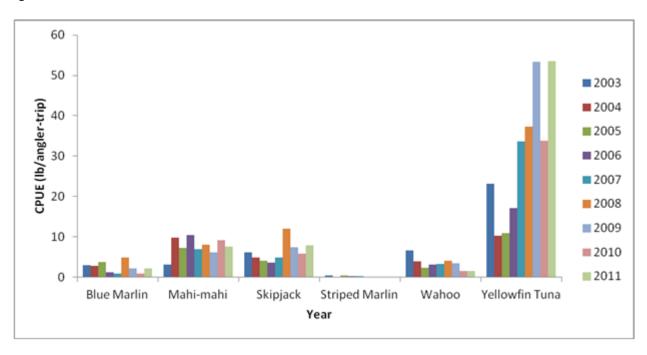



Figure 158. Annual recreational catch per unit effort (lbs per trip) for six major pelagic species in Hawaii between 2003 and 2011

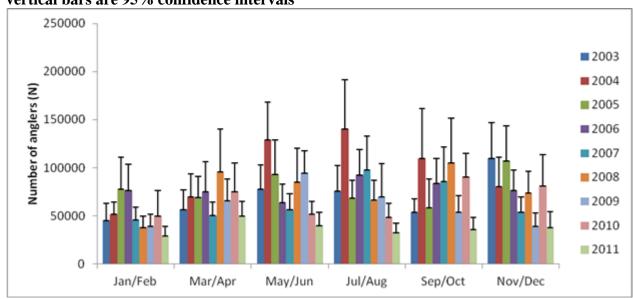


Figure 159. Boat fishing trip estimates (number of angler trips) from 2003-2011. Black vertical bars are 95% confidence intervals

References

Brock, V.E. Report of the Director, Division of Fish and Game. Report of the Board of Commissioners of Agriculture and Forestry of the Territory of Hawaii. Honolulu.

Craig, P., B. Ponwith, F. Aitaoto, and D. Hamm. 1993. The commercial, subsistence, and recreational fisheries of American Samoa –Fisheries of Hawaii and U.S. – associated pacific Islands. Marine Fisheries Review 55 (2), 109-116.

Dalzell, P., T. Adams, & N. Polunin, 1996. Coastal fisheries in the South Pacific. Oceanography and Marine Biology Annual Review 33, 395-531.

Dalzell, P. & W. Paty, 1996. The importance and uniqueness of fisheries in the Western Pacific Region. Paper presented at the 91st Western Pacific Fishery Council Meeting, 18-21 November 1996, Honolulu, 10 p.

Glazier, E.W. 1999. Social aspects of Hawaii's small vessel troll fishery. Phase II of the Social Aspects of Pacific Pelagic Fisheries Program, Univ. Hawaii, JIMAR, 287 pp.

Kilarski, S., D. Klaus, J. Lipscomb, K. Matsoukas, R. Newton, and A. Nugent. 2006. Decision Support for Coral Reef Fisheries Management: Community Input as a Means of Informing Policy in American Samoa. A Group Project submitted in partial satisfaction of the requirements of the degree of Master's in Environmental Science and Management for the Donald Bren School of Environmental Management. University of California, Santa Barbara.

Levine, A. and S. Allen. 2009. American Samoa as a fishing community. U.S. Dept. of Commerce, NOAA Tech. Memo., NOAA-TM-NMFS-PIFSC-19, 74 pp.

Tulafono, R. 2001. Gamefishing and tournaments in American Samoa. In, Proceedings of the 1998 Pacific Island Gamefish Symposium: Facing the Challenges of Resource Conservation, Sustainable Development, and the Sportfishing Ethic, 29 July-1 August, 1998, Kailua-Kona, Hawaii, Western Pacific Regional Fishery Management Council.

Appendix 1

2011 Pelagic Plan Team Members

Pelagics

Mr. Keith Bigelow (CHAIR)

NMFS Pacific Islands Fisheries Science Center

Dr. Christofer Boggs NMFS Pacific Islands Fisheries Science Center

Mr. Michael Fujimoto Hawaii Division of Aquatic Resources

Mr. Russell Ito NMFS Pacific Islands Fisheries Science Center

Dr. Pierre Kleiber NMFS Pacific Islands Fisheries Science Center

Mr. Brent Tibbats Guam Division of Aquatic & Wildlife Resources

Mr. Ray Roberto CNMI Division of Fish & Wildlife

Dr. Kevin Weng PFRP University of Hawaii

Mr. Paul Bartram Akala Products Inc.

Mr. Nonu Tuisamoa American Samoa Dept. of Marine & Wildlife

Resources

Brett Weidoff NMFS Pacific Islands Regional Office

Tom Graham NMFS Pacific Islands Regional Office

Ex-officio Members of All Plan Teams

Mr. David Hamm WPacFIN NMFS Pacific Islands Fisheries Science

Center

Mr. Michael Quach WPacFIN NMFS Pacific Islands Fisheries Science

Center

Mr. Reginald Kokubun HI Division of Aquatic Resources (HI only)

Mr. Justin Hospital NMFS Pacific Islands Fisheries Science Center

Appendix 2

Glossary of Terms and List of Acronyms

Glossary of Terms

<u>TERM</u> <u>DEFINITION</u>

Alia Samoan fishing catamaran, about 30 feet long, constructed of aluminum or wood with fiberglass.

Used for various fisheries including trolling, longline, and bottomfishing

Bycatch Fish caught in a fishery but discarded or released, except in a recreational fisheries catch and

release program.

Commercial Commercial fishing, where the catch is intended to be sold, bartered, or traded.

Guam A U.S. territory in the Marianas Archipelago. South of and adjacent to the Commonwealth of

Northern Marianas Islands.

Hawaii U.S. state. See MHI, NWHI. Composed of the islands, atolls and reefs of the Hawaiian

Archipelago from Hawai'i to Kure Atoll, except Midway Islands. Capitol - Honolulu.

Ika-shibi Hawaiian term for night tuna handline fishing method. Fishing for tuna using baited handlines at

night with a nightlight and chumming to attract squid and tuna.

Incidental Catch Fish caught that are retained in whole or part, though not necessarily the targeted species.

Examples include monchong, opah and sharks.

Interaction Catch of protected species, which is required to be released. Examples: Hawaiian monk seals,

marine turtles and albatrosses.

Logbook Journal kept by fishing vessels for each fishing trip; records catch data, including bycatch and

incidental catch. Required in the federally regulated longline and crustacean fisheries in the

Hawaiian EEZ.

Longline Fishing method utilizing a horizontal mainline stretching from several hundred yards to many

miles in length, suspended for the surface by floats, to which droppers with baited hooks are

attached.

Longliner Fishing vessel specifically adapted to use the longline fishing method.

Palu-ahi Hawaiian term for day tuna handline fishing. Fishing for tuna using baited handlines and

chumming with cut bait in a chum bag or wrapped around a stone. Also, drop-stone, make-dog,

etc.

Pelagic The pelagic habitat is the upper layer of the water column from the surface to the thermocline. The

pelagic species include all commercially targeted highly migratory species such as tuns, billfish and some incidental-catch species such as sharks, as well as coastal pelagic species such as akule

and opelu.

Pole-and-Line Fishing for tuna using poles and fixed leaders with barbless lures and chumming with live baitfish.

Poles can be operated manually or mechanically. Also, fishing vessels called baitboats or aku-

boats (Hawaii).

Protected Refers to species which are protected by federal legislation such as the Endangered Species Act,

Marine Mammal Protection Act, and Migratory Bird Treaty Act. Examples: Black-footed and

Laysan albatrosses, marine turtles, dolphins.

Purse seine Fishing for tuna by surrounding schools of fish with a very large net and trapping them by closing

the bottom of the net.

Recreational Recreational fishing for sport or pleasure, where the catch is not sold, bartered or traded.

Sanctuary Protected area. Commercial/recreational fishing may be restricted.

Secretary When capitalized and used in reference to fisheries within the U.S. EEZs, it refers to the U.S.

Secretary of Commerce.

Small pelagics Species such as akule (big-eye scad - Selar spp.) And opelu (mackerel scad - Decapterus spp).

These fish occur mainly in shallow inshore waters but may also be found in deeper offshore

waters. Not part of the PMUS.

Trolling Fishing by towing lines with lures or live-bait from a moving vessel.

List of Acronyms

<u>Acronym</u>	Meaning
AP	Advisory Panel. Appointed industry/government/educational representatives functioning in an advisory capacity to the Council.
AS	American Samoa. Includes the islands of Tutuila, Manua, Rose and Swains Atolls.
ASDPW	Department of Public Works, American Samoa. Also, DPW.
ASG	American Samoa Government
CNMI	Commonwealth of the Northern Mariana Islands. Also, Northern Mariana Islands, Northern Marianas, and NMI. Includes the islands of Saipan, Tinian, Rota, and many others in the Marianas Archipelago.
CPUE	Catch-Per-Unit-Effort. A standard fisheries index usually expressed as numbers of fish caught per unit of gear per unit of time, eg., number of fish per hook per line-hour or number of fish per 1,000 hooks. The term catch rate is sometimes used when data are insufficiently detailed to calculate an accurate CPUE.
DAWR	Division of Aquatic & Wildlife Resources, Territory of Guam.
DBEDT	Department of Business, Economic Development & Tourism, State of Hawaii.
DFW	Division of Fish & Wildlife, Northern Mariana Islands.
DLNR	Department of Land & Natural Resources, State of Hawaii. Parent agency for Division of Aquatic Resources (HDAR).
DMWR	Department of Marine & Wildlife Resources, American Samoa. Also, MWR.
DOC	Department of Commerce. In this annual report, it refers to the American Samoa Government.
EEZ	Exclusive Economic Zone, refers to the sovereign waters of a nation, recognized internationally under the United Nations Convention on the Law of the Sea as extending out 200 nautical miles from shore. Within the U.S., the EEZ typically is between three and 200 nautical miles from shore.
ESA	Endangered Species Act. An Act of Congress passed in 1966 that establishes a federal program to protect species of animals whose survival is threatened by habitat destruction, overutilization, disease etc.
FAD	Fish Aggregating Device; a raft or pontoon, usually tethered, and under which, pelagic fish will

concentrate.

FDCC Fishery Data Coordinating Committee, WPRFMC.

FEP Fisheries Ecosystem Plan

FFA Forum Fisheries Agency. An agency of the South Pacific Forum, which comprises the independent

island states of the South Pacific, Australia and New Zealand. The FFA formed to negotiated access agreements between FFA member countries and distant water fishing nations such as Japan

and the USA.

FMP Fishery Management Plan.

HDAR Hawaii Division of Aquatic Resources. Also, DAR.

HIMB Hawaii Institute of Marine Biology, University of Hawaii.

HMRFS Hawaii Marine Recreational Fishing Survey

HURL Hawaii Undersea Research Lab.

JIMAR Joint Institute of Marine and Atmospheric Research, University of Hawaii.

IATTC Inter-American Tropical Tuna Commission.

Lbs Pounds

MFCMA Magnuson Fishery Conservation and Management Act of 1976. Also, Magnuson-Stevens Fishery

Conservation and Management Act of 1996. Sustainable Fisheries Act. (Also, MSA)

MHI Main Hawaiian Islands (comprising the islands of Hawai'i, Mau'i, Lana'i, Moloka'i, Kaho'olawe,

O'ahu, Kauai', Ni'ihau and Ka'ula).

MRFSS Marine Recreational Fishing Statistical Survey

MSY Maximum Sustainable Yield.

mt Metric tonnes

MUS Management Unit Species

NMFS National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Department

of Commerce. Also NOAA Fisheries.

NOAA National Oceanic and Atmospheric Administration, U.S. Department of Commerce.

NWHI Northwestern Hawaiian Islands. All islands in the Hawaiian Archipelago, other than the Main

Hawaiian Islands (MHI).

OFP Oceanic Fisheries Program of the South Pacific Commission.

OY Optimum Yield.

PIFSC Pacific Islands Fisheries Science Center

PIRO Pacific Islands Regional Office, National Marine Fisheries Service. Also, NMFS PIRO.

PFRP Pacific Pelagic Fisheries Research Program, JIMAR, University of Hawaii. Also PPFRP.

PMUS Pacific Pelagic Management Unit Species. Also, PPMUS. Species managed under the Pelagics

FMP.

PPGFA Pago Pago Game Fishing Association

PT or PPT Pelagic Plan Team. Advisory body to the Council composed of scientists and fishermen who

monitor and manage the fisheries under the jurisdiction of the Pelagics FMP.

SAFE Stock Assessment and Fishery Evaluation, NMFS.

SPC South Pacific Commission. A technical assistance organization comprising the independent island

states of the tropical Pacific Ocean, dependant territories and the metropolitan countries of

Australia, New Zealand, USA, France and Britain.

SPR Spawning Potential Ratio. A term for a method to measure the effects of fishing pressure on a

stock by expressing the spawning potential of the fished biomass as a percentage of the unfished

virgin spawning biomass. Stocks are deemed to be overfished when the SPR<20%.

SSC Scientific & Statistical Committee, an advisory body to the Council comprising experts in

fisheries, marine biology, oceanography, etc.

USCG U.S. Coast Guard, 14th District, Department of Transportation.

USFWS U.S. Fish & Wildlife Service, Department of Interior. Also, FWS.

VMS Vessel Monitoring System. A satellite based system for locating and tracking fishing vessels.

Fishing vessels carry a transponder which can be located by overhead satellites. Two-way

communication is also possible via most VMS systems.

WPacFIN Western Pacific Fishery Information Network, NMFS.

WPRFMC Also, the Council. Western Pacific Regional Fishery Management Council. One of eight

nationwide fishery management bodies created by the Magnuson Fisheries Conservation and Management Act pf 1976 to develop and manage domestic fisheries in the U.S. EEZ. Composed

of American Samoa, Guam, Hawaii, and Commonwealth of Northern Mariana Islands.